WorldWideScience

Sample records for included bare concrete

  1. New generation concretes including reactive powder concretes

    Directory of Open Access Journals (Sweden)

    Stefania Grzeszczyk

    2015-09-01

    Full Text Available Based on a broad literature review, this paper presents characteristics of new generation composites on the basis of cements which are applied in engineering structures and in rehabilitation of structures. The role of cement, microfillers, superplasticizers and fibers in the above stated composites i.e. factors which allow for the maximum packing of particles in the cement matrix and a minimum pore volume, and the increase in composite bending strength, have been discussed. Special attention was paid to Reactive Powder Concrete in which coarse aggregate was replaced by ground quartz and sand. Such composites contain active microfillers and the applied new-generation superplasticizers allow us to decrease the water-cement ratio in the composite up to 0.2. Whereas, steel fibre additive allows us to significantly improve the bending strength.The paper presents the properties of the excellent Ductal — a composite from Reactive Powder Concrete, which at compressive strength from 180 to 230 MPa achieves the tensile strength of 30 to 50 MPa. Its application allows us to create slim profiles and tall light and slender, and simultaneously durable and corrosion-resistant structural elements of considerable span. This paper gives a few examples of Ductal application in practice.[b]Keywords[/b]: civil engineering, composite materials, reactive powder concrete

  2. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage

    International Nuclear Information System (INIS)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe; Gusarov, Andrei; Faustov, Alexey; Areias, Lou

    2015-01-01

    We present the preliminary results obtained with bare fiber Bragg grating-based sensors embedded into half-scale Belgian Supercontainer concept. Being temperature and strain sensitive, some sensors were placed into aluminum tubes to monitor only temperature and results were compared with thermocouples data. The utility of using bare fiber Bragg gratings, knowing that these ones are very fragile, is to have a direct contact between the high alkaline environment of the concrete and silica fibers and to determine its impact over a very long time. (authors)

  3. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [Electromagnetism and Telecommunications Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Gusarov, Andrei [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Faustov, Alexey [Belgian Nuclear Research Center, Boeretang 200, 2400 Mol, (Belgium); Electromagnetisme and Telecommunication Department of the University of Mons, 31 Boulevard Dolez, 7000 Mons, (Belgium); Areias, Lou [Mechanics of Materials and Constructions Department of the Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, (Belgium); European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol, (Belgium)

    2015-07-01

    We present the preliminary results obtained with bare fiber Bragg grating-based sensors embedded into half-scale Belgian Supercontainer concept. Being temperature and strain sensitive, some sensors were placed into aluminum tubes to monitor only temperature and results were compared with thermocouples data. The utility of using bare fiber Bragg gratings, knowing that these ones are very fragile, is to have a direct contact between the high alkaline environment of the concrete and silica fibers and to determine its impact over a very long time. (authors)

  4. PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-02-01

    Full Text Available The disposal and further recycling of concrete is being investigated worldwide, because the issue of complete recycling has not yet been fully resolved. A fundamental difficulty faced by researchers is the reuse of the recycled concrete fines which are very small (< 1 mm. Currently, full recycling of such waste fine fractions is highly energy intensive and resulting in production of CO2. Because of this, the only recycling methods that can be considered as sustainable and environmentally friendly are those which involve recycled concrete powder (RCP in its raw form. This article investigates the performance of RCP with the grain size < 0.25 mm as a potential binder replacement, and also as a microfiller in cement-based composites. Here, the RCP properties are assessed, including how mechanical properties and the microstructure are influenced by increasing the amount of the RCP in a cement paste (≤ 25 wt%.

  5. Bare Fiber Bragg Gratings embedded into concrete buffer Supercontainer concept for nuclear waste storage [ANIMMA--2015-IO-337

    Energy Technology Data Exchange (ETDEWEB)

    Kinet, Damien; Chah, Karima; Megret, Patrice; Caucheteur, Christophe [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); Gusarov, Andrei [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Faustov, Alexey [University of Mons, Boulevard Dolez 31, 7000 Mons (Belgium); SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Areias, Lou [Department Mechanics of Materials and Constructions - MeMC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); EIG EURIDICE - European Underground Research Infrastructure for Disposal of nuclear waste In Clay Environment, Boeretang 200, 2400 Mol (Belgium)

    2015-07-01

    Nuclear power plants have been generating electricity for more than 50 years. In Belgium, 55% of the current energy supply comes from nuclear power. Providing for the safe storage of nuclear waste, including spent fuel (SF) and vitrified high level radioactive waste (HLW), remains an important challenge in the life cycle of nuclear fuel. In this context, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) is investigating a reference conceptual design called the Supercontainer (SC) for the packaging of SF and HLW. This conceptual design is based on a multiple-barrier system consisting of a hermetically-sealed carbon steel overpack and a surrounding highly-alkaline concrete buffer. The first one is developed to retain the radionuclides. The two main functions of the buffer are (a) to create a high pH environment around the carbon steel overpack in order to passivate the metal surface and so to slow down the corrosion propagation during the thermal phase and (b) to provide a radiological shielding during the construction and the handling of the Supercontainer. A recent test has been performed to investigate the feasibility to construct the SC. This test incorporated several kinds of sensors including Digital Image Correlation (DIC), Acoustic Emission (AE), corrosion sensing techniques and optical fibers with and without fiber Bragg gratings (FBGs). In particular, several single-mode optical fibers with 4 mm long FBGs with different Bragg wavelengths and distributed along the optical fibers were used. For casting and curing condition monitoring, a number of gratings were incorporated inside the concrete buffer during the first stage of construction. Then other sensors were embedded near a heat source installed in the second stage to simulate the effects of heat generated by radioactive waste. The FBGs were designed to measure both temperature and strain effects in the concrete. To discriminate between these effects special packaging

  6. PRIMARY STAGE OF PAKIS-STEM-BLOCK SYSTEM AS THERMAL PROTECTIVE TO FLAT BARE CONCRETE ROOFTOP IN TROPICAL CLIMATE OF SURABAYA

    Directory of Open Access Journals (Sweden)

    Danny Santoso Mintorogo

    2011-07-01

    Full Text Available In the era of global warming and increasing urban heat island condition, flat concrete deck on shop-houses may be less sustainable to handle the excessive solar heat radiation impacts on the roof surfaces. Innovative alternative roofing system is needed to manage heat radiation that will lead to sustainable factors likes energy savings, less energy body used on the roofing materials, and provide comprehensive environmental friendly roof system. This paper discusses about particular environmental friendly materials such as “Pakis-Stem Blocks” system is a good thermal resistant to absorb the solar sun heat and provide natural cooling through convective-wind without adding substantial loads to the roof structures. “Pakis-stem blocks” are easier, cheaper and more valuable than other sub-structure roofing materials as thermal resistant layer on flat bare concrete deck besides green roofing systems.

  7. Seismic behavior of circular reinforced concrete bridge columns under combined loading including torsion.

    Science.gov (United States)

    2009-12-01

    Reinforced concrete (RC) columns of skewed and curved bridges with unequal spans and column heights can be subjected to : combined loading including axial, flexure, shear, and torsion loads during earthquakes. The combination of axial loads, shear : ...

  8. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    International Nuclear Information System (INIS)

    Noh, Jea Myoung; Cho, Myung Sug

    2010-01-01

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  9. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    Science.gov (United States)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  10. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash.

    Science.gov (United States)

    Golewski, Grzegorz Ludwik

    2017-12-06

    The paper presents the results of tests on the effect of the low calcium fly ash (LCFA) addition, in the amounts of: 0% (LCFA-00), 20% (LCFA-20) and 30% (LCFA-30) by weight of cement, on fracture processes in structural concretes. In the course of the experiments, compressive strength of concrete and fracture toughness for: I (tensile), II (in-plane shear) and III (anti-plane shear) models of cracking were measured. The tests determined the effect of age of concretes modified with LCFA on the analyzed parameters. The experiments were carried out after: 3, 7, 28, 90, 180 and 365 days of curing. Fracture toughness of concretes was determined in terms of the critical stress intensity factors: K I c S , K I I c , K I I I c and then a generalized fracture toughness K c was specified. The obtained results are significant for the analysis of concrete structures subjected to complex loading. The properties of composites with the additive of LCFA depend on the age of the concrete tested. Mature concretes exhibit high fracture toughness at 20% additive of LCFA, while the additive of LCFA in the amount of 30% weight of cement has a beneficial effect on the parameters of concrete only after half a year of curing.

  11. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Grzegorz Ludwik Golewski

    2017-12-01

    Full Text Available The paper presents the results of tests on the effect of the low calcium fly ash (LCFA addition, in the amounts of: 0% (LCFA-00, 20% (LCFA-20 and 30% (LCFA-30 by weight of cement, on fracture processes in structural concretes. In the course of the experiments, compressive strength of concrete and fracture toughness for: I (tensile, II (in-plane shear and III (anti-plane shear models of cracking were measured. The tests determined the effect of age of concretes modified with LCFA on the analyzed parameters. The experiments were carried out after: 3, 7, 28, 90, 180 and 365 days of curing. Fracture toughness of concretes was determined in terms of the critical stress intensity factors: K I c S , K I I c , K I I I c and then a generalized fracture toughness K c was specified. The obtained results are significant for the analysis of concrete structures subjected to complex loading. The properties of composites with the additive of LCFA depend on the age of the concrete tested. Mature concretes exhibit high fracture toughness at 20% additive of LCFA, while the additive of LCFA in the amount of 30% weight of cement has a beneficial effect on the parameters of concrete only after half a year of curing.

  12. On the Determination of Concrete Armour Unit Stress including Specific Results related to Dolosse

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Howell, G.L.; Liu, Z.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams...

  13. On the Determination of Concrete Armour Unit Stress including Specific Results related to Dolosse

    OpenAIRE

    Burcharth, H. F.; Howell, G.L.; Liu, Z.

    1991-01-01

    Failures of rubble mound breakwaters armoured with complex types of unreinforced concrete armour units are often due to breakage. This happens when the stresses exceed the material strength. Sufficient parametric studies of the stresses are not yet available to produce design diagrams for structural integrity. The paper presents a general discussion of the problems related to stress etermination and describes the results and the analyses of model tests with 200 kg and 200 g load-cell instrume...

  14. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    Science.gov (United States)

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  15. The investigation of gamma and neutron shielding properties of concrete including basalt fibre for nuclear energy applications

    International Nuclear Information System (INIS)

    Nulk, H.; Ipbuker, C.; Gulik, V.; Tkaczyk, A.; Biland, A.

    2015-01-01

    In this study, we would like to draw attention to the prospect of basalt fibre as the main component for concrete reinforcement of NPP. This work describes the computational study of gamma attenuation parameters, the effective atomic number Z(eff) and the effective electron density N e (eff), of relatively light-weight concrete with chopped basalt fibre used as reinforcement in different mixture rates. We can draw the following conclusions. Basalt fibre is a relatively cheap material that can be used as reinforcement instead of metallic fibers. Basalt fibre has a similar specific gravity to that of concrete elements. Basalt fibre has high chemical and abrasion resistance. Basalt fibre has almost 10 times the tensile strength of steel re-bars. Gamma-ray attenuation coefficients increase with addition of basalt fibre into concrete in every case. The effective atomic number of the concrete increases with the addition of basalt fibre. The results show that basalt fibre reinforced concrete have improved shielding properties against gamma rays in comparison with regular concrete. This result is based on a regular concrete with only basalt fiber reinforcement. We estimate that with addition of standard aggregates for radiation shielding concrete, such as barite, magnetite or hematite, the shielding properties will increase exponentially

  16. The Globe laid bare

    CERN Multimedia

    Fortunati, Lucien

    2015-01-01

    If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced.

  17. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  18. The WECHSL-Mod2 code: A computer program for the interaction of a core melt with concrete including the long term behavior

    International Nuclear Information System (INIS)

    Reimann, M.; Stiefel, S.

    1989-06-01

    The WECHSL-Mod2 code is a mechanistic computer code developed for the analysis of the thermal and chemical interaction of initially molten LWR reactor materials with concrete in a two-dimensional, axisymmetrical concrete cavity. The code performs calculations from the time of initial contact of a hot molten pool over start of solidification processes until long term basemat erosion over several days with the possibility of basemat penetration. The code assumes that the metallic phases of the melt pool form a layer at the bottom overlayed by the oxide melt atop. Heat generation in the melt is by decay heat and chemical reactions from metal oxidation. Energy is lost to the melting concrete and to the upper containment by radiation or evaporation of sumpwater possibly flooding the surface of the melt. Thermodynamic and transport properties as well as criteria for heat transfer and solidification processes are internally calculated for each time step. Heat transfer is modelled taking into account the high gas flux from the decomposing concrete and the heat conduction in the crusts possibly forming in the long term at the melt/concrete interface. The WECHSL code in its present version was validated by the BETA experiments. The test samples include a typical BETA post test calculation and a WECHSL application to a reactor accident. (orig.) [de

  19. The WECHSL-Mod3 code: A computer program for the interaction of a core melt with concrete including the long term behavior. Model description and user's manual

    International Nuclear Information System (INIS)

    Foit, J.J.; Adroguer, B.; Cenerino, G.; Stiefel, S.

    1995-02-01

    The WECHSL-Mod3 code is a mechanistic computer code developed for the analysis of the thermal and chemical interaction of initially molten reactor materials with concrete in a two-dimensional as well as in a one-dimensional, axisymmetrical concrete cavity. The code performs calculations from the time of initial contact of a hot molten pool over start of solidification processes until long term basemat erosion over several days with the possibility of basemat penetration. It is assumed that an underlying metallic layer exists covered by an oxidic layer or that only one oxidic layer is present which can contain a homogeneously dispersed metallic phase. Heat generation in the melt is by decay heat and chemical reactions from metal oxidation. Energy is lost to the melting concrete and to the upper containment by radiation or evaporation of sumpwater possibly flooding the surface of the melt. Thermodynamic and transport properties as well as criteria for heat transfer and solidification processes are internally calculated for each time step. Heat transfer is modelled taking into account the high gas flux from the decomposing concrete and the heat conduction in the crusts possibly forming in the long term at the melt/concrete interface. The CALTHER code (developed at CEA, France) which models the radiative heat transfer from the upper surface of the corium melt to the surrounding cavity is implemented in the present WECHSL version. The WECHSL code in its present version was validated by the BETA, ACE and SURC experiments. The test samples include a BETA and the SURC2 post test calculations and a WECHSL application to a reactor accident. (orig.) [de

  20. The Globe laid bare

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    If you’re at CERN at the moment, you will certainly have noticed the work under way on the Globe. The structure, which has been in pride of place opposite the Laboratory for over ten years, has never been so completely laid bare. But, as we explained in a previous article (see here), it is all for a good cause. The Globe is built entirely from wood and certain parts of it need to be replaced.   The Globe after the removal of all the sun baffles. Image: Lucien Fortunati. Picture the general structure of the Globe. In simple terms, the building consists of two spheres, one inside the other. The inner sphere houses the Universe of Particles exhibition and the conference room and is connected to the outer sphere by two access ramps. “Each of these two spheres is made up of eighteen large supporting arcs,” explains Amaya Martínez García of the GS department, who is supervising the Globe renovation project. “These eighteen arcs are ...

  1. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  2. Electron beam control for barely separated beams

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  3. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  4. Bare coordination: the semantic shift

    NARCIS (Netherlands)

    de Swart, Henriette|info:eu-repo/dai/nl/074764187; Le Bruyn, Bert|info:eu-repo/dai/nl/30484912X

    2014-01-01

    This paper develops an analysis of the syntax-semantics interface of two types of split coordination structures. In the first type, two bare singular count nouns appear as arguments in a coordinated structure, as in bride and groom were happy. We call this the N&N construction. In the second type,

  5. Concrete aggregate durability study.

    Science.gov (United States)

    2009-06-01

    There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...

  6. Fibre Concrete 2017

    Science.gov (United States)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  7. Water Accommodation on Bare and Coated Ice

    Science.gov (United States)

    Kong, Xiangrui

    2015-04-01

    A good understanding of water accommodation on ice surfaces is essential for quantitatively predicting the evolution of clouds, and therefore influences the effectiveness of climate models. However, the accommodation coefficient is poorly constrained within the literature where reported values vary by up to three orders of magnitude. In addition, the complexity of the chemical composition of the atmosphere plays an important role in ice phase behavior and dynamics. We employ an environmental molecular beam (EMB) technique to investigate molecular water interactions with bare and impurity coated ice at temperatures from 170 K to 200 K. In this work, we summarize results of water accommodation experiments on bare ice (Kong et al., 2014) and on ice coated by methanol (Thomson et al., 2013), butanol (Thomson et al., 2013) and acetic acid (Papagiannakopoulos et al., 2014), and compare those results with analogous experiments using hexanol and nitric acid coatings. Hexanol is chosen as a complementary chain alcohol to methanol and butanol, while nitric acid is a common inorganic compound in the atmosphere. The results show a strong negative temperature dependence of water accommodation on bare ice, which can be quantitatively described by a precursor model. Acidic adlayers tend to enhance water uptake indicating that the system kinetics are thoroughly changed compared to bare ice. Adsorbed alcohols influence the temperature dependence of the accommodation coefficient and water molecules generally spend less time on the surfaces before desorbing, although the measured accommodation coefficients remain high and comparable to bare ice for the investigated systems. We conclude that impurities can either enhance or restrict water uptake in ways that are influenced by several factors including temperature and type of adsorbant, with potential implications for the description of ice particle growth in the atmosphere. This work was supported by the Swedish Research Council and

  8. TRANSPARENT CONCRETE

    OpenAIRE

    Sandeep Sharma*, Dr. O.P. Reddy

    2017-01-01

    Transparent concrete is the new type of concrete introduced in todays world which carries special property of light transmitting due to presence of light Optical fibres. Which is also known as translucent concrete or light transmitting concrete, it is achieved by replacing coarse aggregates with transparent alternate materials (Optical fibres). The binding material in transparent concrete may be able to transmit light by using clear resins the concrete mix. The concrete used in industry in pr...

  9. How Concrete is Concrete

    OpenAIRE

    Koeno Gravemeijer

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two diff...

  10. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  11. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  12. A General Discussion of Problems Related to the Determination of Concrete Armour Unit Stresses Including Specific Results related to Static and Dynamic Stresses in Dolosse

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Liu, Zhou

    1989-01-01

    Recent breakwater failures revealed the shortcomings of the traditional design procedures for concrete armour units. This paper deals with one of them, which can be expressed as the "lack of balance between the hydraulic stability of the armour layer and the mechanical strength or integrity...... of the units". This problem is related mainly to the slender types of armour units. The paper discusses the various types of loads, and the practical determination of the wave and gravity induced loads and stresses, especially the model test technique and its restrictions. Examples related to Dolosse...

  13. How Concrete is Concrete?

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2011-01-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics.Key words:  Conceret Learning Materials, School Math, Common Sense, Scaffolding, Communication DOI: http://dx.doi.org/10.22342/jme.2.1.780.1-14

  14. Eelgrass beds and bare substrata – sparid and mugilid composition ...

    African Journals Online (AJOL)

    The results indicate that the family Mugilidae is better represented at unvegetated sites when compared to members of the family Sparidae, with the exception of Lithognathus lithognathus, but that the dominant three sparids and dominant two mugilids were most abundant in sparse eelgrass beds that included both bare ...

  15. Characterisation and management of concrete grinding residuals.

    Science.gov (United States)

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  16. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  17. Usage of Crushed Concrete Fines in Decorative Concrete

    Science.gov (United States)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of

  18. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  19. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research....... The present paper uses the prior research results to optimize a test-setup for concrete hinge testing by means of a universal method taking into account the application of the hinge in an arch structure. 3D CAD is utilized in all steps of the planning to reduce errors during assembly of the parts in the test...

  20. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  1. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  2. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years....... The present paper uses the prior research results to optimize a test-setup for concrete hinge testing by means of a universal method taking into account the application of the hinge in an arch structure. 3D CAD is utilized in all steps of the planning to reduce errors during assembly of the parts in the test...

  3. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  4. An historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.

    1986-03-01

    The requirement that concrete in nuclear waste repositories be stable physically and chemically for hundreds, if not thousands, of years has initiated studies of ancient and old concretes. The history of cement and concrete is described. The oldest know concrete, from Yugoslavia, is ca. 7,500 years old. Concrete was used in many ancient civilisations, including those of Egypt, Greece and Rome. Ancient concretes were usually based upon lime, but sometimes gypsum was used. Pure lime concretes hardened by atomospheric carbonation but the Ancients, in particular the Romans, also employed hydraulic limes and discovered pozzolanas to make superior concretes which, upon hardening, contained complex cementitious hydrates including calcium-silicate-hydrate (CSH), the principal binding element in Portland cement concrete. Portland cement was not invented until 1824 or later and consists principally of calcium silicates formed by clinkerisation of a mixture of limestone and clay in carefully measured proportions. The cement sets hydraulically to form, principally, calcium hydroxide and CSH, the latter being an amorphous or semi-amorphous substance of variable composition. The published literature relating to the analysis of old and ancient cements and concretes is reviewed. A suite of samples spanning the history of concrete has been obtained. A variety of physical and chemical techniques have been employed to characterise these samples. (author)

  5. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-01-01

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers' health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE's Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building's concrete floors included ThO 2 and thorium oxalate. The nitric acid was found to facilitate Th extraction

  6. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  7. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  8. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  9. Concrete sample point: 304 Concretion Facility

    International Nuclear Information System (INIS)

    Rollison, M.D.

    1995-01-01

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis

  10. Concrete sample point: 304 Concretion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  11. Hvorfor siger vi ikke bare ugh?!

    DEFF Research Database (Denmark)

    Pálfi, Loránd-Levente

    2009-01-01

    Det danske sprog er ramt af en flerdobbelt katastrofe: De unge i folkeskolerne og gymnasierne taler og skriver et stadigt dårligere dansk, og forskningen i dansk sprog går i stå. Og Dansk Sprognævn, som burde stå vagt om sproget, lader ikke bare stå til, men ophæver forfaldet til lov. Er en "B...

  12. Civilian peacekeeping: a barely tapped ressource

    OpenAIRE

    2010-01-01

    Christine Schweitzer: Introduction - Civilian peacekeeping. A barely tapped ressource (7-16); Rolf Carrière: The world needs 'another peacekeeping' (17-24); Tim Wallis: Best practices for unarmed civilian peacekeeping (25-34); Rachel Julians: Peacekeeping with nonviolence: protection strategies for sustainable peace (35-42); Christine Schweitzer: Humanitarian protection as an additional function of humanitarian, development and peace projects - or rather a task requiring experts? (43-52); Chr...

  13. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  14. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  15. Bare Beach Logistics Over-the-Shore: An Outdated Concept?

    National Research Council Canada - National Science Library

    Pehrson, Christopher J

    2000-01-01

    This paper is a critical review of bare beach logistics over-the-shore (LOTS) operations. It examines the utility of the bare beach and asks if this method of LOTS is still viable for today's military...

  16. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  17. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  18. Algebraic approach to bare nucleon matrix elements of quark operators

    International Nuclear Information System (INIS)

    Zschocke, Sven; Kaempfer, Burkhard; Plunien, Guenter

    2005-01-01

    An algebraic method for evaluating bare nucleon matrix elements of quark operators is proposed. Thereby, bare nucleon matrix elements are traced back to vacuum matrix elements. The method is similar to the soft pion theorem. Matrix elements of two-quark, four-quark and six-quark operators inside the bare nucleon are considered

  19. Ikke bare porno på mobilen

    DEFF Research Database (Denmark)

    Andersen, Tem Frank

    2013-01-01

    Den britiske børne- og ungdomsforsker professor Sonia Livingstone ved London School of Economics viser gennem en række interviews, at billeder af eksplicitte sexhandlinger er en velkendt del af den ungdommelige cirkulation af ’hverdagspornografisk’ materiale (Ringrose et al. 2012). ’Sexting’ er a...... altså ikke bare porno på en mobilplatform. Det er handlinger og værgestrategier, som unge piger er nødt til at forholde sig til i hverdagen, mens drengene umiddelbart ser ud til at slippe relativt let udenom den chikane, der kan ligge i ’sexting’....

  20. Historic Concrete : From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  1. Studies of historic concrete

    International Nuclear Information System (INIS)

    Jull, S.P.; Lees, T.P.

    1990-01-01

    Underground concrete repositories for nuclear waste will have to maintain their integrity for hundreds of years. This study examines ancient concretes and assesses the suitability of equivalent modern materials for underground storage. Thirty four ancient samples have been obtained from Great Britain, Austria and Italy. One 19th century sample was also collected. The samples were examined using a variety of analytical techniques (including scanning electron microscopy, optical microscopy, chemical analysis and pH determination). The samples were also subjected to a range of physical tests. Most of the samples examined were very weak and porous although they had retained full structural integrity. With the exception of the 19th century sample, none of the concretes had maintained pH alkaline enough to immobilize radionuclides. Hydrated calcium silicates have been detected in some samples which are similar to those observed in modern Portland cement concretes. These stable cementitious species have endured for almost two thousand years. All the ancient concretes and mortars examined contained natural pozzolanic material or crushed burnt clay. This may have had some effect on the reduction in alkalinity although the main reason was full carbonation of calcium hydroxide

  2. 1.5. The concrete mix properties

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    Different properties of concrete mix, including connectivity, mobility and water demand were considered in this work. The steps of water demand of concrete mix obtained from Portland cement, sand and gravel are presented in this work. The classification of concrete mixes is presented as well.

  3. Do Bare Rocks Exist on the Moon?

    Science.gov (United States)

    Allen, Carlton; Bandfield, Joshua; Greenhagen, Benjamin; Hayne, Paul; Leader, Frank; Paige, David

    2017-01-01

    Astronaut surface observations and close-up images at the Apollo and Chang'e 1 landing sites confirm that at least some lunar rocks have no discernable dust cover. However, ALSEP (Apollo Lunar Surface Experiments Package) measurements as well as astronaut and LADEE (Lunar Atmosphere and Dust Environment Explorer) orbital observations and laboratory experiments possibly suggest that a fine fraction of dust is levitated and moves across and above the lunar surface. Over millions of years such dust might be expected to coat all exposed rock surfaces. This study uses thermal modeling, combined with Diviner (a Lunar Reconnaissance Orbiter experiment) orbital lunar eclipse temperature data, to further document the existence of bare rocks on the lunar surface.

  4. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  5. The bare parameters of Gribov's Langrangian are understood and determined

    International Nuclear Information System (INIS)

    Bishari, M.

    1977-01-01

    In the context of the ''1/N Dual Unitarization'' scheme, an explicit dynamical study of the triple bare pomeron mechanism which governs the interaction term in Gribov's Lagrangian is presented. Together with the previously established bare pomeron slope and intercept, controlling respectively, the kinetic and mass terms in Gribov's Lagrangian, this work demonstrates the viability of the ''1/N Dual Unitarization'' approach for a field theory of interaction bare pomerons. (author)

  6. Sustainable concretes for transportation infrastructure.

    Science.gov (United States)

    2010-07-01

    performance in concrete for structural and transportation applications. Based on the challenges associated with coal ash (including SDA) and the economic costs linked to cement production, this research seeks to develop an environmentally friendly an...

  7. Potential of waste tires as aggregates in concrete | Mutuku | Journal ...

    African Journals Online (AJOL)

    Potential use of this kind of concrete includes nonstructural purposes such as lightweight concrete walls and blocks, building facades and crash barriers. Keywords: concrete aggregates, rubber chips, rubberized concrete, used tires, waste recycling. Journal of Civil Engineering Research and Practice Vol. 3(1) 2006: 75-84 ...

  8. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  9. Fire testing of bare uranium hexafluoride cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)

    1991-12-31

    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  10. Adjunction, Labeling, and Bare Phrase Structure

    Directory of Open Access Journals (Sweden)

    Norbert Hornstein

    2008-03-01

    Full Text Available The primary aim in this paper is to propose a phrase structure for adjunction that is compatible with the precepts of Bare Phrase Structure (BPS. Current accounts are at odds with the central vision of BPS and current practice leans more to descriptive eclecticism than to theoretical insight. A diagnosis for this conceptual disarray is suggested here: It stems from a deeply held though seldom formulated intuition; the tacit view that adjuncts are the abnormal case while arguments describe the grammatical norm. In actuality, it is argued, adjuncts are so well behaved that they require virtually no grammatical support to function properly. Arguments, in contrast, are refractory and require grammatical aid to allow them to make any propositional contribution. This last remark should come as no surprise to those with neo-Davidsonian semantic sympathies. Connoisseurs of this art form are well versed in the important role that grammatical (aka, thematic roles play in turning arguments into modifiers of events. Such fulcra are not required for meaningfully integrating adjuncts. into sentences. In what follows, we take this difference to be of the greatest significance and we ask ourselves what this might imply for the phrase structure of adjunction.

  11. Concrete evidence

    Energy Technology Data Exchange (ETDEWEB)

    Provis, J.; Duxson, P.; van Deventer, J. [University of Melbourne, Vic. (Australia)

    2008-11-15

    The time is right for a revolution in the cement industry which is responsible for 5-8% of all human-derived carbon dioxide emissions. Zeobond, an Australian company, has developed E-Crete which is a geopolymer concrete using fly ash and blast furnace slags which reduces CO{sub 2} emissions by 80% from the 0.67t of CO{sub 2} per ton of cement emitted by the Australian triple blend of cement, fly ash and slag. The article discusses the products development, standards for cements and challenges to the commercialization of E-Crete. 5 refs., 3 figs.

  12. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  13. Waste Concrete as a Source of Aggregate for New Concrete | Okafor ...

    African Journals Online (AJOL)

    Three concrete mixes of widely differing water cement ratios were made using crushed waste concrete as coarse aggregate. The properties investigated include the physical properties of the recycled aggregate, the compressive and flexural strengths of the concrete. These properties were compared with those of similar ...

  14. Hydrodynamic behavior of a bare rod bundle

    International Nuclear Information System (INIS)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers

  15. v-bare and the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Orrell, J.L.

    2004-01-01

    Neutrino oscillation results from KamLAND, the Sudbury Neutrino Observatory (SNO), and Super-Kamiokande provide evidence for neutrino mass. Determination of the Dirac or Majorana nature of neutrinos is an important next step in neutrino physics. An electron antineutrino, v-bare, component of the solar neutrino flux would provide a telltale sign neutrinos are Majorana particles. The SNO Collaboration is currently searching for an v-bare signal, intending to measure or limit the flux of v-bare in the solar neutrino energy range. A method for increasing the fiducial volume and lowering the analysis energy threshold using the time coincidence signature of the product particles of the charged current weak interaction of a v-bare with a deuterium nucleus, v-bare + d → e+ + n + n, is presented

  16. Role of water in the tribochemical removal of bare silicon

    International Nuclear Information System (INIS)

    Chen, Cheng; Xiao, Chen; Wang, Xiaodong; Zhang, Peng; Chen, Lei; Qi, Yaqiong; Qian, Linmao

    2016-01-01

    Highlights: • The wear of bare silicon against SiO 2 micro-spherical tip is a tribochemical process with participation of water. • The water amount at Si/SiO 2 interface plays a significant role on the wear of bare silicon. • The role of water relies on the hydroxylation by auto-ionized OH − , the hydrolysis of H 2 O molecules, and the dissolution of SiO m H n in water. - Abstract: Nanowear tests of bare silicon against a SiO 2 microsphere were conducted in air (relative humidity [RH] = 0%–89%) and water using an atomic force microscope. Experimental results revealed that the water played an important role in the tribochemical wear of the bare silicon. A hillock-like wear trace with a height of 0.7 nm was generated on the bare silicon surface in dry air. As the RH increased, the wear depth increased and reached the maximum level in water. Analysis of frictional dissipated energy suggested that the wear of the bare silicon was not dominated by mechanical interactions. High-resolution transmission electron microscopy detection demonstrated that the silicon atoms and crystal lattice underneath the worn area maintained integral perfectly and thus further confirmed the tribochemical wear mechanism of the bare silicon. Finally, the role of water in the tribochemical wear of the bare silicon may be explained by the following three aspects: the hydroxylation by hydroxyl ions auto-ionized in water, the hydrolytic reaction of water molecules, and the dissolution of the tribochemical product SiO m H n in liquid water. With increasing RH, a greater water amount would adsorb to the Si/SiO 2 interface and induce a more serious tribochemical wear on the bare silicon surface. The results of this paper may provide further insight into the tribochemical removal mechanism of bare monocrystalline silicon and furnish the wider reaction cognition for chemical mechanical polishing.

  17. Recycled concrete aggregate in portland cement concrete.

    Science.gov (United States)

    2013-01-01

    Aggregates can be produced by crushing hydraulic cement concrete and are known as recycled concrete : aggregates (RCA). This report provides results from a New Jersey Department of Transportation study to identify : barriers to the use of RCA in new ...

  18. Complications of transradial coronary angiography: a comparative study between using trocar needle and using bare needle

    International Nuclear Information System (INIS)

    Huang Chunyan; Wang Zhongjie; Chen Liyuan

    2010-01-01

    Objective: To analyze the advantages and disadvantages of trocar needle puncturing and bare needle puncturing in performing transradial coronary angiography through comparing the surgical successful rate and the occurrence of complications between two techniques. Methods: A total of 450 patients, who were scheduled to receive transradial coronary angiography, were enrolled in this study. The patients were randomly and equally divided into trocar needle group (n=225) and bare needle group (n=225). Transradial coronary angiography was performed in all patients, the technical success and the puncture-related complications were observed. The differences between two groups were compared and the results were statistically analyzed. Results: The successful rate of placing sheath pipe in trocar needle group and bare needle group was 98.22% (221/225) and 90.22% (203/225) respectively, the difference between two groups was statistically significant (P < 0.01). The mean time spent in puncturing in trocar needle group and bare needle group was (3.98 ± 0.54) min. and (6.13 ± 0.61) min. respectively (P < 0.01). In bare needle group the complications included radial artery spasm (4.89%, n=11), subcutaneous ecchymosis (6.67%, n=15) and local hematoma (3.56%, n=8), while in trocar group the complications included radial artery spasm (1.33%, n=3), subcutaneous ecchymosis (2.67%, n=6) and local hematoma (0.44%, n=1). Conclusion: In performing percutaneous coronary arteriography via radial arterial access the use of trocar needle is superior to the use of bare needle. Using trocar needle can reduce the operative time,increase the technical successful rate and lower the occurrence of complications. Therefore, using trocar needle to perform puncturing should be the technique of first choice. (authors)

  19. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  20. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  1. Bare coupling constants and asymptotic behaviour in reggeon field theory

    International Nuclear Information System (INIS)

    Baig, M.

    1983-01-01

    A relation between the values of bare coupling constants and the asymptotic behaviour of the reggeon field theory (RFT) is discussed. It is shown how the numerical values of bare coupling constants fix the starting point of renormalization group trajectories which, in turn, determine the asymptotic behaviour of the RFT. Applications to a pure pomeron theory and a pomeron plus f-pole model are discussed. Some nontrivial phenomenological information concerning the values of bare triple-Regge pomeron-f-pole coupling constants is obtained

  2. Resolving the anomaly of bare habitable ground in Daisyworld

    Science.gov (United States)

    Hankin, Robin K. S.; Mitchell, Neil

    2011-02-01

    The parable of Daisyworld places biological homeostasis on a non-teleological basis. However, one feature of Daisyworld is that, at equilibrium, the system appears to require habitable but bare ground. The presence of bare ground is an unavoidable consequence of the death rate parameter γ. Here, we simplify Watson and Lovelock's original formulation by removing γ and allowing instead the black and white daisies to infiltrate each others' territory. This device furnishes a model in which the area of bare ground asymptotically approaches zero. The infiltration process is modelled in terms of a parameter that is ecologically interpretable as a quantification of the incumbent advantage enjoyed by the dominant species.

  3. Review of concrete properties for prestressed concrete pressure vesssels

    Energy Technology Data Exchange (ETDEWEB)

    Nanstad, R.K.

    1976-10-01

    The desire for increasing power output along with safety requirements has resulted in consideration of the prestressed concrete pressure vessel (PCPV) for most current nuclear reactor systems, as well as for the very-high-temperature reactor for process heat and as primary pressure vessels for coal conversion systems. Results are presented of a literature review to ascertain current knowledge regarding plain concrete properties under conditions imposed by a mass concrete structure such as PCRV. The effects of high temperature on such properties as strength, elasticity, and creep are discussed, as well as changes in thermal properties, multiaxial behavior, and the mechanisms thought to be responsible for the observed behavior. In addition, the effects of radiation and moisture migration are discussed. It is concluded that testing results found in the technical literature show much disagreement as to the effects of temperature on concrete properties. The variations in concrete mixtures, curing and testing procedures, age at loading, and moisture conditions during exposure and testing are some of the reasons for such disagreement. Test results must be limited, in most cases, to the materials and conditions of a given test rather than applied to such a general class of materials such as concrete. It is also concluded that sustained exposure of normal concretes to current PCRV operating conditions will not result in any significant loss of properties. However, lack of knowledge regarding effects of temperatures exceeding 100/sup 0/C (212/sup 0/F), moisture migration, and multiaxial behavior precludes a statement advocating operation beyond current design limits. The report includes recommendations for future research on concrete for PCPVs.

  4. Sodium-concrete reactions experiments and code development

    International Nuclear Information System (INIS)

    Casselman, C.; Malet, J.C.; Dufresne, J.; Bolvin, M.

    1988-01-01

    Hypothesis of hot sodium leak in a fast breeder reactor implies, for the safety organism to consider spillage of sodium on concrete. This safety analysis involves the understanding of sodium-concrete reactions, the knowledge of their consequences and to test the choiced preventive solutions. In association with EDF, the nuclear safety department had carried out an extensive experimental program, the different parts of which are connected with each aspect of this problem: - firstly, interaction between sodium and bare surface of usual concrete; - secondly, the case of a sodium spillage on a concrete surface covered with a defected liner; - thirdly, special concrete tests for a comparison with usual concrete behavior, in direct contact with hot sodium; - at last, a test which concerns a new design with a layer of the selected concrete protected with a defected liner. On the same time, theoretical work leads to elaborate a physical model to describe temporal evolution of thermal and chemical decomposition of a concrete slab under hot sodium action. SORBET-REBUS system will use quoted above test results to its validation

  5. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  6. Genetics Home Reference: bare lymphocyte syndrome type II

    Science.gov (United States)

    ... Immunodeficiency Disorders Health Topic: Immune System and Disorders Genetic and Rare Diseases Information Center (1 link) Bare lymphocyte syndrome 2 Additional NIH Resources (1 link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases Educational Resources (6 ...

  7. Bare and effective fluid description in brane world cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Casilla 307, Santiago (Chile); Lepe, Samuel; Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2010-03-15

    An effective fluid description, for a brane world model in five dimensions, is discussed for both signs of the brane tension. We found several cosmological scenarios where the effective equation differs widely from the bare equation of state. For universes with negative brane tension, with a bare fluid satisfying the strong energy condition, the effective fluid can cross the barrier {omega} {sub eff}=-1. (orig.)

  8. Native bare zone assemblage nucleates myosin filament assembly.

    Science.gov (United States)

    Niederman, R; Peters, L K

    1982-11-15

    Native myosin filaments from rabbit psoas muscle are always 1.5 micrometer long. The regulated assembly of these filaments is generally considered to occur by an initial antiparallel and subsequent parallel aggregation of identical myosin subunits. In this schema myosin filament length is controlled by either a self-assembly or a Vernier process. We present evidence which refines these ideas. Namely, that the intact myosin bare zone assemblage nucleates myosin filament assembly. This suggestion is based on the following experimental evidence. (1) A native bare zone assemblage about 0.3 micrometer long can be formed by dialysis of native myosin filaments to either a pH 8 or a 0.2 M-KCl solution. (2) Upon dialysis back to 0.1 M-KCl, bare zone assemblages and distal myosin molecules recombine to form 1.5 micrometer long bipolar filaments. (3) The bare zone assemblage can be separated from the distal myosin molecules by column chromatography in 0.2 M-KCl. Upon dialysis of the fractionated subsets back to 0.1 M-KCl, the bare zone assemblage retains its length of about 0.3 micrometer. However, the distal molecules reassemble to form filaments about 5 micrometers long. (4) Filaments are formed from mixes of the isolated subsets. The lengths of these filaments vary with the amount of distal myosin present. (5) When native filaments, isolated bare zone assemblages or distal myosin molecules are moved sequentially to 0.6 M-KCl and then to 0.1 M-KCl, the final filament lengths are all about 5 micrometers. The capacity of the bare zone assemblage to nucleate filament assembly may be due to the bare zone myosin molecules, the associated M band components or both.

  9. FUETAP concrete

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Delzer, D.B.

    1988-01-01

    Cement-based waste forms have been used for several decades to immobilize low-level radioactive wastes. With the appropriate formulation for a given waste, the forms - whether as grout sheets placed in shale fractures deep underground, mixed with soil in a trench, or as monoliths in shallow-land burial - can be provided with the ability to immobilize various low-level radioactive components and with adequate compressive and tensile strength to ensure their durability for many years without cracking or disintegration. Because of the high activity inherent in high-level wastes, the incorporation of these wastes into cementitious forms can cause problems such as gas-pressure build-up from pore water radiolysis and expansion and subsequent cracking from the wastes' thermal activity, either of which can result in the release of radionuclides into the environment. This article discusses FUETAP concretes which utilize the thermal power of the waste to accelerate the curing process. If necessary, heat is also applied externally. In the end, a hard, dense product is obtained from which more than 98% of the unbound water has been driven off; the problems of radiolytic decomposition and thermal expansion become negligible

  10. Sustainable Concrete Performance—CO2-Emission

    Directory of Open Access Journals (Sweden)

    Rafal Latawiec

    2018-02-01

    Full Text Available The balance of carbon dioxide emissions and other greenhouse gases in the life cycle of concrete is one of the important elements affecting the sustainable development of concrete technology. Modifications in the composition in the aim of minimization of so-called “carbon footprint” of concrete also affect the majority of its technical features, including primarily the mechanical properties and durability. The article presents a desirability function that would allow us to estimate the combined effect of the modification in terms of both CO2 emissions and some of the technical features of the concrete. As criterial features equivalent CO2 emission, compressive strength and susceptibility/resistance to concrete carbonation are selected. Selected features should be considered as an example for the presentation of the proposed methodology and represent the three pillars of concrete desirability in terms of sustainable development, i.e., the constructional usefulness, durability, and environmental performance.

  11. Monitoring water loss form fresh concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Desiccation of concrete before or during setting may lead to detrimental plastic shrinkage cracking in the concrete surface zone. Cracking due to plastic shrinkage is a major technological problem for any concrete, however, modern high-performance concretes are especially susceptible to this....... This paper concerns in particular a new method for site measurement of evaporation from concrete surfaces in the early hardening phase. Compared to the methods used today for determination of the desiccation process in the early hardening phase, the so-called Curing Meter permits a simple, safe and accurate...... determination of the evaporation loss from hardening concrete and thus better possibility for preventing curing problems, including detrimental crack damage due to plastic shrinkage....

  12. Role of water in the tribochemical removal of bare silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng; Xiao, Chen [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Xiaodong [Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Peng; Chen, Lei; Qi, Yaqiong [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Qian, Linmao, E-mail: linmao@swjtu.edu.cn [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-12-30

    Highlights: • The wear of bare silicon against SiO{sub 2} micro-spherical tip is a tribochemical process with participation of water. • The water amount at Si/SiO{sub 2} interface plays a significant role on the wear of bare silicon. • The role of water relies on the hydroxylation by auto-ionized OH{sup −}, the hydrolysis of H{sub 2}O molecules, and the dissolution of SiO{sub m}H{sub n} in water. - Abstract: Nanowear tests of bare silicon against a SiO{sub 2} microsphere were conducted in air (relative humidity [RH] = 0%–89%) and water using an atomic force microscope. Experimental results revealed that the water played an important role in the tribochemical wear of the bare silicon. A hillock-like wear trace with a height of 0.7 nm was generated on the bare silicon surface in dry air. As the RH increased, the wear depth increased and reached the maximum level in water. Analysis of frictional dissipated energy suggested that the wear of the bare silicon was not dominated by mechanical interactions. High-resolution transmission electron microscopy detection demonstrated that the silicon atoms and crystal lattice underneath the worn area maintained integral perfectly and thus further confirmed the tribochemical wear mechanism of the bare silicon. Finally, the role of water in the tribochemical wear of the bare silicon may be explained by the following three aspects: the hydroxylation by hydroxyl ions auto-ionized in water, the hydrolytic reaction of water molecules, and the dissolution of the tribochemical product SiO{sub m}H{sub n} in liquid water. With increasing RH, a greater water amount would adsorb to the Si/SiO{sub 2} interface and induce a more serious tribochemical wear on the bare silicon surface. The results of this paper may provide further insight into the tribochemical removal mechanism of bare monocrystalline silicon and furnish the wider reaction cognition for chemical mechanical polishing.

  13. Investigation of silica fume concrete bridge deck overlay failures.

    Science.gov (United States)

    2016-02-23

    Many of these microsilica-modified concrete or silica fume concrete (SFC) bridge deck overlays across the State of Wyoming are suffering from premature distress that includes random cracking, loss of bond and delaminations. To determine the most like...

  14. Concretes characterization for spent radioactive sources

    International Nuclear Information System (INIS)

    Martinez B, J.; Monroy G, F. P.

    2013-10-01

    The present work includes the preparation and characterization of the concrete used as conditioning matrix of spent radioactive sources in the Treatment Plant of Radioactive Wastes of the Instituto Nacional de Investigaciones Nucleares (ININ). The concrete tests tubes were subjected to resistance assays to the compression, leaching, resistance to the radiation and porosity, and later on characterized by means of X rays diffraction, scanning electron microscopy and infrared spectrometry, with the purpose of evaluating if this concrete accredits the established tests by the NOM-019-Nucl-1995. The results show that the concrete use in the Treatment Plant fulfills the requirements established by the NOM-019-Nucl-1995. (author)

  15. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  16. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  17. EAARL Coastal Topography-Chandeleur Islands, Louisiana, 2010: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Bonisteel-Cormier, Jamie M.; Brock, John C.; Sallenger, A.H.; Wright, C. Wayne; Nagle, David B.; Vivekanandan, Saisudha; Yates, Xan; Klipp, Emily S.

    2010-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) and submerged topography datasets were produced collaboratively by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Chandeleur Islands, acquired March 3, 2010. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color-infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then processed using the Airborne Lidar Processing System (ALPS), a custom

  18. EAARL Coastal Topography - Northern Gulf of Mexico, 2007: Bare Earth

    Science.gov (United States)

    Smith, Kathryn E.L.; Nayegandhi, Amar; Wright, C. Wayne; Bonisteel, Jamie M.; Brock, John C.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Gulf Coast Network, Lafayette, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. The purpose of this project is to provide highly detailed and accurate datasets of select barrier islands and peninsular regions of Louisiana, Mississippi, Alabama, and Florida, acquired on June 27-30, 2007. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using

  19. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    Science.gov (United States)

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  20. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    Science.gov (United States)

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  1. Concrete manufacture with un-graded recycled aggregates

    OpenAIRE

    Richardson, Alan; Coventry, Kathryn; Graham, Sue

    2009-01-01

    Purpose – The purpose of this paper is to investigate whether concrete that includes un-graded recycled aggregates can be manufactured to a comparable strength to concrete manufactured from virgin aggregates. \\ud \\ud Design/methodology/approach – A paired comparison test was used to evaluate the difference between concrete made with virgin aggregates (plain control) and concrete including recycled waste. Un-graded construction demolition waste and un-graded ground glass were used as aggregate...

  2. Microscopic examination of deteriorated concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.

    2010-01-01

    Concrete petrography is the integrated microscopic and mesoscale (hand specimen size) investigation of hardened concrete, that can provide information on the composition of concrete, the original relationships between the concrete's various constituents, and any changes therein, whether as a result

  3. Concrete under severe conditions. Environment and loading

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the CONSEC Conferences is to focus on concrete infrastructures, either subjected to severe environment or severe loading, or any combination of severe conditions. Experience from the performance of existing concrete structures, and especially under severe environmental conditions, severe accidental loading or extended lifespan, has demonstrated the need for better integration of structural and durability design, new design concepts including reliability-based durability design, performance-based material requirements, structural robustness, and an improved basis for documentation of obtained construction quality and durability properties during concrete construction. An improved basis for operation and preventive maintenance of concrete structures including repairs and retrofitting is also very important. Premature corrosion of reinforcing steel, inadequate structural design for seismic or blast loading, are examples of reduced service life of concrete structures that not only represent technical and economical problems, but also a huge waste of natural resources and hence also, an environmental and ecological problem. Experience of structures effectively submitted to severe conditions represents a unique benchmark for quantifying the actual safety and durability margin of concrete structures. In fact for several reasons, most concrete design codes, job specifications and other requirements for concrete structures have frequently shown to yield insufficient and unsatisfactory results and ability to solve the above problems, as well as issues raised by specific very long-term or very severe requirements for nuclear and industrial waste management, or civil works of strategic relevance. Recently available high to ultra-high performance concrete may find rational and valuable application in such cases. It is very important, therefore, to bring people with different professional backgrounds together to exchange experience and develop multi

  4. Laterally Loaded Partially Prestressed Concrete Piles

    Science.gov (United States)

    1989-09-01

    of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540

  5. Reliable concrete repair : A critical review

    NARCIS (Netherlands)

    Lukovic, M.; Ye, G.; Van Breugel, K.

    2012-01-01

    This paper highlights the importance of achieving durable and long-term predictable repair of reinforced concrete structures. The performance of concrete repair in past and current engineering practice, including all types of repair and application of different materials, is often unsatisfactory.

  6. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  7. Concrete pavement joint deterioration.

    Science.gov (United States)

    2015-12-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in IN...

  8. Fibre reinforced concrete exposed to elevated temperature

    Science.gov (United States)

    Novák, J.; Kohoutková, A.

    2017-09-01

    Although concrete when subject to fire performs very well, its behaviour and properties change dramatically under high temperature due to damaged microstructure and mesostructure. As fibre reinforced concrete (FRC) represents a complex material composed of various components with different response to high temperature, to determine its behaviour and mechanical properties in fire is a demanding task. The presented paper provides a summary of findings on the fire response of fibre FRC. Namely, the information on steel fibre reinforced concrete (SFRC), synthetic fibre reinforced concrete and hybrid (steel + synthetic) fibre reinforced concrete have been gathered from various contributions published up to date. The mechanical properties including the melting point and ignition point of fibres affect significantly the properties of concrete composites with addition of fibres. The combination of steel and synthetic fibres represents a promising alternative how to ensure good toughness of a concrete composite before heating and improve its residual mechanical behaviour and spalling resistance as well as the ductility after heating. While synthetic fibres increase concrete spalling resistance, steel fibres in a concrete mix leads to an improvement in both mechanical properties and resistance to heating effects.

  9. Effect of bare mass on the Hosotani mechanism

    International Nuclear Information System (INIS)

    Takenaga, Kazunori

    2003-01-01

    It is pointed out that the existence of bare mass terms for matter fields changes gauge symmetry patterns through the Hosotani mechanism. As a demonstration, we study an SU(2) gauge model with massive adjoint fermions defined on M 4 x S 1 . It turns out that the vacuum structure changes at certain critical values of mL, where m (L) stands for the bare mass (the circumference of S 1 ). The gauge symmetry breaking patterns are different from models with massless adjoint fermions. We also consider a supersymmmetric SU(2) gauge model with adjoint hypermultiplets, in which the supersymmetry is broken by bare mass terms for the gaugino and squark fields instead of the Scherk-Schwarz mechanism

  10. The effective delayed neutron fraction for bare-metal criticals

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1999-01-01

    Given sufficient material, a large number of actinides could be used to form bare-metal criticals. The effective delayed neutron fraction for a bare critical comprised of a fissile material is comparable with the absolute delayed neutron fraction. The effective delayed neutron fraction for a bare critical composed of a fissionable material is reduced by factors of 2 to 10 when compared with the absolute delayed neutron fraction. When the effective delayed neutron fraction is small, the difference between delayed and prompt criticality is small, and extreme caution must be used in critical assemblies of these materials. This study uses an approximate but realistic model to survey the actinide region to compare effective delayed neutron fractions with absolute delayed neutron fractions

  11. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  12. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  13. Semantic coherence in English accusative-with-bare-infinitive constructions

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2013-01-01

    Drawing on usage-based cognitively oriented construction grammar, this paper investigates the patterns of coattraction of items that appear in the two VP positions (the VP in the matrix clause, and the VP in the infinitive subordinate clause) in the English accusative-with-bare-infinitive constru......Drawing on usage-based cognitively oriented construction grammar, this paper investigates the patterns of coattraction of items that appear in the two VP positions (the VP in the matrix clause, and the VP in the infinitive subordinate clause) in the English accusative...... relations of English accusatives-with-bare-infinitives through the relations of semantic coherence between the two VPs....

  14. 7 CFR 2902.42 - Wood and concrete sealers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section 2902.42... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by...

  15. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  16. Recycled Concrete as Aggregate for Structural Concrete Production

    OpenAIRE

    Mirjana Malešev; Vlastimir Radonjanin; Snežana Marinković

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC) as a control concrete and two types of concrete made with natural fine and recycle...

  17. A Failure Criterion for Concrete

    DEFF Research Database (Denmark)

    Ottosen, N. S.

    1977-01-01

    A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace...... are given for three typical ratios. A review of some earlier proposed failure criteria is included....

  18. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  19. BARE retrotransposons are translated and replicated via distinct RNA pools.

    Directory of Open Access Journals (Sweden)

    Wei Chang

    Full Text Available The replication of Long Terminal Repeat (LTR retrotransposons, which can constitute over 80% of higher plant genomes, resembles that of retroviruses. A major question for retrotransposons and retroviruses is how the two conflicting roles of their transcripts, in translation and reverse transcription, are balanced. Here, we show that the BARE retrotransposon, despite its organization into just one open reading frame, produces three distinct classes of transcripts. One is capped, polyadenylated, and translated, but cannot be copied into cDNA. The second is not capped or polyadenylated, but is destined for packaging and ultimate reverse transcription. The third class is capped, polyadenylated, and spliced to favor production of a subgenomic RNA encoding only Gag, the protein forming virus-like particles. Moreover, the BARE2 subfamily, which cannot synthesize Gag and is parasitic on BARE1, does not produce the spliced sub-genomic RNA for translation but does make the replication competent transcripts, which are packaged into BARE1 particles. To our knowledge, this is first demonstration of distinct RNA pools for translation and transcription for any retrotransposon.

  20. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  1. Shielding properties of protective thin film coatings and blended concrete compositions for high level waste storage packages

    International Nuclear Information System (INIS)

    Fusco, Michael A.; Winfrey, Leigh; Bourham, Mohamed A.

    2016-01-01

    Highlights: • Measured linear attenuation coefficients are the same for bare and coated steels. • Gamma mean free path is much larger than coating thickness; buildup is negligible. • ‘Concrete-6’ reduces exposure rate outside spent fuel cask significantly over ordinary concrete. - Abstract: Various thin film coatings have been proposed to protect stainless steel high level waste (HLW) containers from premature failure due to localized corrosion, hydrogen embrittlement, and mechanical wear. These coatings include TiN, ZrO 2 , MoS 2 , TiO 2 , and Al 2 O 3 , to be deposited either in multiple layers or as a thicker, single-layer composite. Linear attenuation coefficients of these materials have been simulated using MicroShield and measured experimentally for various photon energies. Additionally, spent fuel casks with overpacks made of two different types of concrete were simulated to compare exposure rate at the cask surface. In the energy range that is significant for high level waste storage all coating materials possess very similar attenuation behavior. A specialty concrete, containing magnetite (Fe 3 O 4 ) and lead oxide (PbO), reduces the exposure rate at the outer surface of the overpack by several orders of magnitude. The higher-Z elements not present in ordinary concrete greatly increase attenuation of intermediate-energy gammas (0.4–1.0 MeV). The thin film coatings do not affect the shielding capabilities of the HLW packaging, as their total proposed thickness is nearly three orders of magnitude less than the mean free path (MFP) of the primary photons of interest.

  2. Quantum capacitance, electrostatic potential, electronic and structural data for bare and functionalized niobium carbide MXenes

    Directory of Open Access Journals (Sweden)

    Yan Xin

    2017-12-01

    Full Text Available The data reported in this article are structural and physicochemical properties for bare and F, O, OH and CH3O-functionalized Nbn+1Cn (n = 1, 2, 3 and 4 MXenes. The structural properties are presented as top views and side views from the X direction of the optimal structures of studied MXenes. The physicochemical properties include quantum capacitances, electrostatic potentials and electronic properties such as the projected density of states (PDOS and band structures. Further interpretation and discussion of these data can be obtained from the article entitled “Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters” (Xin and Yu, 2017 [1].

  3. Drug-eluting stents versus bare-metal stents for acute coronary syndrome

    DEFF Research Database (Denmark)

    Feinberg, Joshua; Nielsen, Emil Eik; Greenhalgh, Janette

    2017-01-01

    BACKGROUND: Approximately 3.7 million people died from acute coronary syndrome worldwide in 2012. Acute coronary syndrome, also known as myocardial infarction or unstable angina pectoris, is caused by a sudden blockage of the blood supplied to the heart muscle. Percutaneous coronary intervention...... CRITERIA: Randomised clinical trials assessing the effects of drug-eluting stents versus bare-metal stents for acute coronary syndrome. We included trials irrespective of publication type, status, date, or language. DATA COLLECTION AND ANALYSIS: We followed our published protocol and the methodological......-eluting stents group compared with 6.63% in the bare-metal stents group based on the RR of 0.96 (95% CI 0.83 to 1.11, 10,939 participants, 19 trials/20 comparisons, very low-quality evidence). The results of Trial Sequential Analysis showed that we did not have sufficient information to confirm or reject our...

  4. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  5. Diffusion of radon through cracks in a concrete slab.

    Science.gov (United States)

    Landman, K A

    1982-07-01

    A mathematical model is developed to describe diffusion of radon through cracks or gaps in concrete slabs which are used in building foundations. As radon approaches the soil surface from underlying soil, it encounters a concrete slab. The radon will diffuse toward any air-filled cracks. The rate of exhalation through a portion of a cracked slab is determined and compared to the rate of exhalation from the same surface area of bare soil. In a typical case, this ratio is approx. 0.25. This is about a 20-fold increase to the ratio found when the concrete slab has no cracks. Therefore crack pathways are potentially a major source of indoor radon.

  6. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  7. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard, A. B.; Damkilde, L.; Hansen, Per Freiesleben

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete that includes the transitional thermal effect. The model governs both early age concrete and hardened concrete. The development of the material properties in the model is assumed to depend on the hydration process...... and the thermal activation of water in the microstructure. The thermal activation is assumed to be governed by the Arrhenius principle, and the activation energy of the viscosity of water is found applicable in the analysis of the experimental data. Changes in temperature create an imbalance in the microstructure...

  8. Conductive concrete wins Popular Science prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    A conductive concrete developed by a research team at IRC (Institute for Research in Construction, National Research Council of Canada) has won a prize in the home technology category because of its possible use in heating homes. Following the award, there have been a number of inquiries regarding possible applications for the concrete. Greatest interests in the concrete have been in its potential to heat buildings by using it as flooring. Other possible applications included de-icing pavements to building warming pads for parking aircraft. Essentially, carbon fibres and conductive particles are added to a concrete mix in such a quantity that they form a network within the mix, ensuring high electrical conductivity. A demonstration project is underway to build a 20 by 80 foot conductive concrete pad to test the material`s capability as a snow removal and de-icing tool.

  9. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process......Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... and the thermal activation of the water in the microstructure. The thermal activation is assumed to be governed by the Arrhenius principle and the activation energy of the viscosity of water is found applicable in the analysis of experimental data. Changes in temperature create an imbalance in the microstructure...

  10. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.

    1995-01-01

    The US Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. The primary objective was to demonstrate the feasibility of this approach as a means to achieve ''release levels'' which could be consistent with unrestricted use of a decontaminated building. The secondary objectives were: To establish process parameters; to quantify the economics; to ascertain the ALARA considerations; and to evaluate wasteform and waste volume. The work carried out to this point has achieved promising results to the extent that ISOTRON reg-sign has been authorized to expand the planned activity to include the fabrication of a prototype version of a commercial device

  11. Combined Effects of Curing Temperatures and Alkaline Concrete on Tensile Properties of GFRP Bars

    Directory of Open Access Journals (Sweden)

    Wen-rui Yang

    2017-01-01

    Full Text Available A significant number of studies have been conducted on the tensile properties of GFRP bars embedded in concrete under different environments. However, most of these studies have been experimentally based on the environmental immersion test after standard-curing and the lack of influence on the tensile properties of GFRP bars embedded in concrete during the curing process of concrete. This paper presents the results of the microscopic structures through scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and tensile properties of GFRP bars, which were employed to investigate the combined effects of curing temperatures and alkaline concrete on tensile properties of GFRP bars. The results showed that the higher curing temperature aggravated the influence of the alkaline concrete environment on GFRP bars but did not change the mechanisms of mechanical degradation of the GFRP bars. The influence of different curing temperatures on the tensile strength of GFRP bars was different between the bare bar and bars in concrete. Finally, the exponential correlation equation of two different test methods was established, and the attenuation ratio of the tensile strength of GFRP bars embedded in concrete under different curing temperatures was predicted by the bare test.

  12. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  13. Evaluation of crushed concrete base strength.

    Science.gov (United States)

    2012-12-01

    This research project was conducted with two primary objectives, which include: 1) determine whether current Mississippi Department of Transportation (MDOT) requirements for recycled concrete aggregates (RCA) provide adequate materials for a roadway ...

  14. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  15. 1.3. Chemical and mineral additives of concretes and water used for concrete mix preparation

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is known that chemical and mineral additives increase physicochemical properties of concretes, thus, chemical and mineral additives, including super plasticizer and organo mineral additives are examined in this work. It was noted that along with salt water fresh water can also be used for concrete mix preparation.

  16. Percutaneous Creation of Bare Intervascular Tunnels for Salvage of Thrombosed Hemodialysis Fistulas Without Recanalizable Outflow

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Matt Chiung-Yu, E-mail: jjychen@gmail.com [Yuan’s General Hospital, Department of Interventional Radiology (China); Wang, Yen-Chi [E-Da Hospital, Department of Radiology (China); Weng, Mei-Jui [Kaohsiung Veterans General Hospital, Department of Radiology (China)

    2015-08-15

    PurposeThis study aimed to retrospectively assess the efficacy of a bare intervascular tunnel for salvage of a thrombosed hemodialysis fistula. We examined the clinical outcomes and provided follow-up images of the bare intervascular tunnel.Materials and MethodsEight thrombosed fistulas lacked available recanalizable outflow veins were included in this study. These fistulas were salvaged by re-directing access site flow to a new outflow vein through a percutaneously created intervascular tunnel without stent graft placement. The post-intervention primary and secondary access patency rates were calculated using the Kaplan–Meier method.ResultsThe procedural and clinical success rates were 100 %. Post-intervention primary and secondary access patency at 300 days were 18.7 ± 15.8 and 87.5 ± 11.7 %, respectively. The mean follow-up period was 218.7 days (range 10–368 days). One patient died of acute myocardial infarction 10 days after the procedure. No other major complications were observed. Minor complications, such as swelling, ecchymosis, and pain around the tunnel, occurred in all of the patients.ConclusionsPercutaneous creation of a bare intervascular tunnel is a treatment option for thrombosed hemodialysis fistulas without recanalizable outflow in selected patients.

  17. Swiss bare mice: a suitable model for transcutaneous in vivo Raman spectroscopic studies of breast cancer.

    Science.gov (United States)

    Bhattacharjee, T; Kumar, Piyush; Maru, G; Ingle, A; Krishna, C Murali

    2014-01-01

    Breast cancer is the most common cancer affecting females worldwide. As early detection results in better prognosis, screening tools for breast cancer are being explored. Raman spectroscopy, a rapid, objective, and noninvasive tool, has shown promising results in the diagnosis of several cancers including breast cancer. For development as a screening tool, a study of spectral signatures associated with breast cancer progression is imperative. However, such studies are not possible in human subjects. Hence, there is a need for a suitable animal model, which is conducive to transcutaneous in vivo Raman spectroscopic measurements of breast with minimal interference from skin and hair and has contribution from functional mammary epithelium of breast. In this study, rodent models like C57, Swiss albino, Swiss bare, agouti mice, and Sprague-Dawley rats were evaluated. Among these models, transcutaneous breast spectra of hairless Swiss bare mice have the best signal-to-noise ratio and were closest to reported ex vivo as well as intraoperative in vivo human breast spectra. Principal component-linear discriminant analysis of several anatomical sites confirms minimal skin interference and suggests contribution from functional mammary epithelium of breast. Moreover, transcutaneous spectra from normal breast and breast tumors of Swiss bare mice could be classified with 99% efficiency, which is better than the previous reports. Thus, Swiss bare mice model may be better suited for transcutaneous in vivo Raman spectroscopic studies of breast physiology and pathology, especially breast cancer. Prospectively, in addition to cancer progression, breast-to-bone metastasis can also be studied, since these anatomical sites can be uniquely classified.

  18. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    Science.gov (United States)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  19. Fire Resistance of Geopolymer Concretes

    Science.gov (United States)

    2010-03-21

    and general appearance to Portland cement concrete. Geopolymer concrete has been proposed as an alternative to Portland cement concrete in...1 Project report – Grant FA23860814096, "Fire resistance of geopolymer concretes" – J. Provis, University of Melbourne 1. Background and...experimental program This project provided funding for us to carry out fire testing of geopolymer concrete specimens and associated laboratory

  20. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Directory of Open Access Journals (Sweden)

    Hongying Dong

    2014-12-01

    Full Text Available In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  1. Application of nanotechnology in self-compacting concrete design

    International Nuclear Information System (INIS)

    Maghsoudi, A. A.; Arabpour Dahooei, F.

    2009-01-01

    In this study, first, different mix design of four types of Self-Compacting Concrete, 1. Self-Compacting Concrete consisted of only nano silica, 2. Self-Compacting Concrete included only micro silica, 3. Self-Compacting Concrete consisted of both micro silica and nano silica and 4. Self-Compacting Concrete without micro silica and nano silica called as control mix, were casted and tested to find out the values of the Slump Flow, L-Box and 7 and 28 days compressive strength. Then, based on the results obtained and as yet there is no universally accepted standard for characterizing of Self-Compacting Concrete, the most suitable four concrete mixes were selected for further investigation of fresh and hardened concrete. For selected mixes, the fresh concrete properties such as values of the Slump Flow, L-Box, V-Funnel, J-Ring and hardened engineering properties such as compressive and flexural strength, shrinkage and swelling values were investigated for three curing conditions at short and long term. The results showed that the engineering properties of Self-Compacting Concrete mixes could not be improved by adding only nano silica. However, a satisfactory behavior can be achieved using micro silica in the Self-Compacting Concrete mixes. However, by adding both micro silica and nano silica to the Self-Compacting Concrete mixtures, the best effect on the engineering properties was reported while comparing to the control mixes.

  2. Evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-04-01

    This study evaluated the use of recycled concrete as coarse aggregate in new concrete pavements. : Recycled concrete aggregate (RCA) produced from demolished pavements in three geographically dispersed locations in Washington state were used to perfo...

  3. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  4. Assembling Bare Au Nanoparticles at Positively Charged Templates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; Mallapragada, Surya; Vaknin, David

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the chargedinterfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits shortrange in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), display less in-plane regular packing compared to bare AuNPs.

  5. Current Collection Experiment of Bare Electrodynamic Tether Using Sounding Rocket

    Science.gov (United States)

    Yamagiwa, Yoshiki; Kanbe, Atsushi; Wakatsuki, Masaru; Tanaka, Kouji; Sumino, Makoto; Watanabe, Takeo; Sahara, Hironori; Fujii, Hironori A.

    Three innovative tether technologies, tape tether deployment, attitude control by tether robot, and current collection by bare tether, will be verified in the Tether Experiment (T-REx) by using JAXA's sounding rocket S-520 in 2010. In the experiments, the current collection experiment by bare tether is the first experiment in space in the world, and it is expected that this experiment not only will give the new knowledge in plasma physics but also will be very important for the understanding of the charging phenomenon of spaceship and the design of the electrodynamic tether system in the future. The detail and the state of preparation of the experiment are shown in this paper.

  6. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  7. Durability of heavyweight concrete containing barite

    International Nuclear Information System (INIS)

    Binici, Hanifi

    2010-01-01

    The supplementary waste barite aggregates deposit in Osmaniye, southern Turkey, has been estimated at around 500 000 000 tons based on 2007 records. The aim of the present study is to investigate the durability of concrete incorporating waste barite as coarse and river sand (RS), granule blast furnace slag (GBFS), granule basaltic pumice (GBP) and ≤ 4 mm granule barite (B) as fine aggregates. The properties of the fresh concrete determined included the air content, slump, slump loss and setting time. They also included the compressive strength, flexural and splitting tensile strengths and Young's modulus of elasticity, resistance to abrasion and sulphate resistance of hardened concrete. Besides these, control mortars were prepared with crushed limestone aggregates. The influence of waste barite as coarse aggregates and RS, GBFS, GBP and B as fine aggregates on the durability of the concretes was evaluated. The mass attenuation coefficients were calculated at photon energies of 1 keV to 100 GeV using XCOM and the obtained results were compared with the measurements at 0.66 and 1.25 MeV. The results showed the possibility of using these waste barite aggregates in the production of heavy concretes. In several cases, some of these properties have been improved. Durability of the concrete made with these waste aggregates was improved. Thus, these materials should be preferably used as aggregates in heavyweight concrete production. (orig.)

  8. Bare lymphocyte syndrome: imaging findings in an adult

    Energy Technology Data Exchange (ETDEWEB)

    Bernaerts, A.; Vandevenne, J.E.; De Schepper, A.M. [Dept. of Radiology, Universitair Ziekenhuis Antwerpen, Edegem (Belgium); Lambert, J. [Dept. of Dermatology, Universitair Ziekenhuis Antwerpen, Edegem (Belgium); De Clerck, L.S. [Dept. of Immunology, Universitair Ziekenhuis Antwerpen, Edegem (Belgium)

    2001-05-01

    Bare lymphocyte syndrome (BLS) is a rare primary immune disorder characterized by defective expression of human leukocyte antigen (HLA) on lymphocytes, often resulting in extensive and recurrent multi-organ infections. We describe a previously undiagnosed case of an adult woman who presented with radiological findings of severe bronchiectases, near-total granulomatous destruction of facial bones, and osteomyelitis. Diagnosis of BLS should be considered when evaluating children with unexplained bronchiectases or adults with long history of chronic multi-organ infections. (orig.)

  9. Bare-Hand Volume Cracker for Raw Volume Data Analysis

    Directory of Open Access Journals (Sweden)

    Bireswar Laha

    2016-09-01

    Full Text Available Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the Volume Cracker (VC 3D interaction (3DI technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the Bare-Hand Volume Cracker (BHVC through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3D interaction techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers, and provides evidence suggesting that 3D interaction could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization, for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.

  10. Plastic and free shrinkages cracking of blended white cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, A.M.; White, T.; Ariaratnam, S.; Knutson, K. [Housing and Building National Research Center, Cairo (Egypt)

    2007-07-01

    This paper presented the results of a study that investigated the plastic and free shrinkages of white portland cement concrete, concrete incorporating silica fume (SF) and concrete incorporating metakaolin (MK) compared to regular plain gray portland cement concrete. An experimental program was designed to investigate the plastic and free shrinkage of concrete containing gray and white blended cement. The paper discussed the experimental details including materials and cement types such as SF, MK, aggregate, and superplasticizer as well as concrete mixtures and specimen preparation including mixture proportions, preparation and curing of concrete specimens, and test specimens. It also presented the determination of concrete properties such as slump of fresh concrete, plastic shrinkage, and dry shrinkage. Test results and discussion of results were also provided. It was concluded that plain white portland cement concrete showed less number of plastic cracks but slightly higher average crack width compared to other concrete mixtures with MK or SF. In addition, free shrinkage behavior of plain white cement and plain gray cement matrix was comparable. 23 refs.

  11. Radiographic testing of concrete

    International Nuclear Information System (INIS)

    Porter, James F.

    1997-01-01

    The increase in construction activity in the Philippines, reinforced concrete building is still a favorite among designers, because it is much cheaper to build and it requires qualified welders, etc. and extensive nondestructive testing and inspection of metals, welds and castings. Of all the techniques radiography is widely used for concrete

  12. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  13. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  14. Concrete deck material properties.

    Science.gov (United States)

    2009-01-01

    The two-fold focus of this study was (a) to develop an understanding of the mechanisms responsible for causing : cracking in the concrete; and (b) to study the influence of the local materials on the performance of NYSDOTs HP : concrete mixture. R...

  15. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Going back in the memory pipeline, it was M F Kaplan1 (in 1961) who tried to obtain the fracture toughness of concrete. It was observed ... of cracks. The next question is how to bring the size effect into codes of practice on the design of reinforced concrete structures, since large structures like dams, nuclear reactors, very tall.

  16. Fracture Mechanics of Concrete

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This special issue of S¯adhan¯a is rightly dedicated to the fracture mechanics of concrete. In particular, the size effect is highlighted. As appropriately pointed out in the first inter- national conference on fracture mechanics of concrete structures, FraMCos-I, organized by Z P Ba˘zant, at Breckenridge, Colorado in 1992, ...

  17. UO2/magnetite concrete interaction and penetration study

    International Nuclear Information System (INIS)

    Farhadieh, R.; Purviance, R.; Carlson, N.

    1983-01-01

    The concrete structure represents a line of defense in safety assessment of containment integrity and possible minimization of radiological releases following a reactor accident. The penetration study of hot UO 2 particles into limestone concrete and basalt concrete highlighted some major differences between the two concretes. These included penetration rate, melting and dissolution phenomena, released gases, pressurization of the UO 2 chamber, and characteristics of post-test concrete. The present study focuses on the phenomena associated with core debris interaction with and penetration into magnetite type concrete. The real material experiment was carried out with UO 2 particles and magnetite concrete in a test apparatus similar to the one utilized in the UO 2 /limestone experiment

  18. Models of transport processes in concrete

    International Nuclear Information System (INIS)

    Pommersheim, J.M.; Clifton, J.R.

    1991-01-01

    An approach being considered by the US Nuclear Regulatory Commission for disposal of low-level radioactive waste is to place the waste forms in concrete vaults buried underground. The vaults would need a service life of 500 years. Approaches for predicting the service life of concrete of such vaults include the use of mathematical models. Mathematical models are presented in this report for the major degradation processes anticipated for the concrete vaults, which are corrosion of steel reinforcement, sulfate attack, acid attack, and leaching. The models mathematically represent rate controlling processes including diffusion, convection, and reaction and sorption of chemical species. These models can form the basis for predicting the life of concrete under in-service conditions. 33 refs., 6 figs., 7 tabs

  19. Outline of principle of design construction of demolished concrete from electric power plant

    International Nuclear Information System (INIS)

    Takahashi, Tomohiko; Sakagami, Takeharu; Inagaki, Hirokazu; Morozumi, Hironori; Muranaka, Kenji

    2005-01-01

    'The principle of design construction of recycled demolished concrete from electric power plant' (a plan) is going to be published by TSCE Concrete Committee in 2005. The abstract of the above principle is described. A large amount of demolished concrete is generated by decommissioning of atomic power plant. About 450,000 to 500,000t of concrete with small radiation level per an atomic power plant will be generated. This report included decommissioning of Tokai power plant, characteristics of subject of demolished concrete, the recycled demolished concrete, fresh conditions of the recycled demolished concrete, the strength, deformation properties, durability, alkali silica reactivity of them and control measurement. (S.Y.)

  20. Electrokinetic decontamination of concrete

    International Nuclear Information System (INIS)

    Lomasney, H.L.; Yachmenev, V.

    1994-01-01

    Concrete structures which have been contaminated with uranium and other radioisotopes may be decontaminated using in-situ electrokinetic remediation. By placing an electrode cell on the concrete surface and using the concrete's rebar, a ground rod, or another surface cell as the counter electrode, the radioisotopes may be migrated from the concrete into this cell. The process is highly dependent upon the chemical parameters of the species involved; namely, the concrete, the contaminants, and the solubilizers used to mobilize the contaminants. In a preliminary study conducted at the K-25 Site of the Oak Ridge National Labs, an estimated removal of >40 percent of uranium has been observed for a short duration run. This removal occurred using traditional uranium solubilizers in contact with the contaminated surface

  1. Advances in Modeling Concrete Service Life : Proceedings of 4th International RILEM PhD Workshop

    CERN Document Server

    Gulikers, Joost

    2012-01-01

    In this book, a critical analysis is made on service life models related to reinforcement corrosion. The contributors are on the frontier of knowledge in the field of durability of reinforced concrete. Topics covered in the book include: causes and mechanisms of deterioration, transport mechanisms in concrete, numerical modeling of concrete behavior, durability modeling and prediction, reliability approach to structural design for durability, structural behavior following degradation of concrete structures, deterioration and repair of concrete structures, and corrosion measurement techniques.

  2. Enhanced Accelerated Drying of Concrete Floor Slabs

    OpenAIRE

    Holmes, Niall; West, Roger P.

    2013-01-01

    Concrete floor slabs dry out through a process of evaporation and diffusion provided the ambient environment promotes such drying. Impermeable floor coverings laid on concrete slabs can be subject to damage caused by high levels of residual moisture trapped by premature sealing of the surface. This damage can include timber floor boards buckling, vinyls blistering or tiles lifting. Whether or not it is safe to apply such a covering depends on whether the slab is sufficiently dry. Furthermore,...

  3. Preliminary model for core/concrete interactions

    International Nuclear Information System (INIS)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content

  4. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  5. Influence of additives on flexural strength of concrete

    Directory of Open Access Journals (Sweden)

    Tolmachov Sergii

    2017-01-01

    Full Text Available In earlier studies, the effect of chemical and mineral additives on the compressive strength of concretes was considered, but little attention was paid to the flexural strength of concrete. However, monolithic concretes of transport purpose, including road concretes, operate under conditions of tensile loads, which lead to their destruction. Therefore, it is actual to analyze the effect of superplasticizers, especially carboxylate type, as well as mineral additives and their complexes on the flexural strength of concrete. The article shows the results of studies for determining the influence of a superplasticizer of a carboxylate type, microfiller and fiber on the flexural strength of concrete. The influence of the time for maintaining a concrete mixture on the physical and mechanical properties of concrete is shown. The article shown that the addition of the mineral additive into the concrete mixture leads to an increase of flexural strength to 13 %. The use of an organomineral complex leads to an increase the early flexural strength of concrete to 37 %, and at the age of 28 days - to 20 %. The use of the complex of additives and polypropylene fibers results in an insignificant increase of the flexural strength in comparison with concretes containing only a complex of additives.

  6. Exploitation of Ultrahigh-Performance Fibre-Reinforced Concrete for the Strengthening of Concrete Structural Members

    Directory of Open Access Journals (Sweden)

    Mohammed A. Al-Osta

    2018-01-01

    Full Text Available The repair and strengthening of reinforced concrete members are very important due to several factors, including unexpected increases in load levels and/or the damaging impact of aggressive environmental conditions on structural concrete members. Many researchers have turned to using materials for the repair and strengthening of damaged structures or the construction of new concrete structural members. Ultrahigh-performance fibre-reinforced concrete (UHPFRC, characterized by superior structural and durability performance in aggressive environmental conditions, is one of the materials that have been considered for the repair and strengthening of concrete structural members. The repair or strengthening of concrete structures using UHPFRC needs a thorough knowledge of the behaviour of both the strengthening material and the strengthened concrete structure at service load conditions, in addition to an understanding of the design guidelines governing the use of such materials for effective repair and strengthening. In this study, the recent issues and findings regarding the use of UHPFRC as a repair or strengthening material for concrete structural members are reviewed, analysed, and discussed. In addition, recommendations were made concerning areas where future attention and research on the use of UHPFRC as a strengthening material needs to be focused if the material is to be applied in practice.

  7. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    Science.gov (United States)

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  8. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  9. Performance Evaluation of a Multipurpose Bare PC Gateway

    DEFF Research Database (Denmark)

    Tsetse, Anthony; Appiah-Kubi, Patrick; Loukili, Alae

    2015-01-01

    Internet usage keeps growing daily with global internet traffic expected to quadruple by the end of 2015. This is as mainly due to increasing number of devices connecting to the internet and making data exchange much easier. This growth has impacted the current Internet Protocol version 4 being u...... results indicate a relatively better performance (18%-45%) of the Bare PC gateway compared to a Linux gateway (running the functionalities as standalone systems). We believe the proposed solution could easily scale to wide area networks and also provide a cost efficient solution...

  10. Rethinking biopower: posthumanism, bare life, and emancipatory work.

    Science.gov (United States)

    Cloyes, Kristin G

    2010-01-01

    This article answers a call, recently published in Advances in Nursing Science, to more fully explore the use of Italian political philosopher Giorgio Agamben's theory of biopower in nursing research and scholarship. Giorgio Agamben argues that biopower is not a modern phenomenon, and critical analysis of the historical origins of Western political practice shows how humanist discourse has been complicit in a long tradition of marginalization and violence, accomplished in each era by designating certain classes of human beings as "bare life." I discuss how I have used Agamben's theory to frame my own research, and the challenges of applying this theory in emancipatory work.

  11. Carbonation and CO2 uptake of concrete

    International Nuclear Information System (INIS)

    Yang, Keun-Hyeok; Seo, Eun-A; Tae, Sung-Ho

    2014-01-01

    This study developed a reliable procedure to assess the carbon dioxide (CO 2 ) uptake of concrete by carbonation during the service life of a structure and by the recycling of concrete after demolition. To generalize the amount of absorbable CO 2 per unit volume of concrete, the molar concentration of carbonatable constituents in hardened cement paste was simplified as a function of the unit content of cement, and the degree of hydration of the cement paste was formulated as a function of the water-to-cement ratio. The contribution of the relative humidity, type of finishing material for the concrete surface, and the substitution level of supplementary cementitious materials to the CO 2 diffusion coefficient in concrete was reflected using various correction factors. The following parameters varying with the recycling scenario were also considered: the carbonatable surface area of concrete crusher-runs and underground phenomena of the decreased CO 2 diffusion coefficient and increased CO 2 concentration. Based on the developed procedure, a case study was conducted for an apartment building with a principal wall system and an office building with a Rahmen system, with the aim of examining the CO 2 uptake of each structural element under different exposure environments during the service life and recycling of the building. As input data necessary for the case study, data collected from actual surveys conducted in 2012 in South Korea were used, which included data on the surrounding environments, lifecycle inventory database, life expectancy of structures, and recycling activity scenario. Ultimately, the CO 2 uptake of concrete during a 100-year lifecycle (life expectancy of 40 years and recycling span of 60 years) was estimated to be 15.5%–17% of the CO 2 emissions from concrete production, which roughly corresponds to 18%–21% of the CO 2 emissions from the production of ordinary Portland cement. - Highlights: • CO 2 uptake assessment approach owing to the

  12. Concrete and criticality

    International Nuclear Information System (INIS)

    Carter, R.D.

    1978-01-01

    Concrete is a widely used structural material which occurs frequently in systems requiring criticality analyses. Ordinarily, we give little thought to what its actual composition is (as compared to reference compositions), yet in criticality safety, differences in composition can cause large changes in k-effective and it may not be easy to predict in which direction the change will occur. Concrete composition is quite variable with differences in the aggregate used in the concrete in various parts of the country providing relative large differences in k-effective. The water content of concrete can also strongly affect the reactivity of a system in which it acts as a reflector or is interspersed between fissile units. Because concrete is so common and is often (but not always) a better reflector than water, one must know the concrete compositions or be prepared to use a ''worst case'' composition. It may be a problem, however, to determine just what is the worst case. At the Hanford Plant, the aggregate normally used is basalt, which gives a composition very low in carbon as opposed to those areas (e.g., Oak Ridge) where the use of limestone aggregate will result in concrete with a high carbon content. The data presented show some of the effects found in situations using ''Hanford'' concrete, but similar effects might be found with other compositions. In some cases, the use of concrete may be incidental to the effects shown. While the numbers shown are those for actual systems, the primary intent is to alert the reader that these effects can occur. In applying this information, the analyst should use material specific to the systems being analyzed

  13. Biodecontamination of concrete

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-01-01

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology

  14. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  15. Properties of high-workability concrete with recycled concrete aggregate

    OpenAIRE

    Safiuddin,; Alengaram,Ubagaram Johnson; Salam,Abdus; Jumaat,Mohd Zamin; Jaafar,Fahrol Fadhli; Saad,Hawa Binti

    2011-01-01

    This study presents the effects of recycled concrete aggregate (RCA) on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA) by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results rev...

  16. Electrokinetic Strength Enhancement of Concrete

    Science.gov (United States)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  17. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  18. A historical examination of concrete

    International Nuclear Information System (INIS)

    Mallinson, L.G.; Li Davies, I.

    1987-01-01

    The requirement that concrete in radioactive waste repositories be stable physically and chemically for very long times has initiated studies of ancient and old concretes. This report is a contribution to this effort. After a description of the history of cement and concrete, the published literature relating to the analysis of old and ancient concrete is reviewed. A series of samples spanning the history of concrete has been obtained; a variety of physical and chemical techniques have been employed to characterize these samples. Reasons for survival of ancient concretes, and for durability of early, reinforced concretes are identified. Recommendations for further studies are given. 132 refs

  19. An Improved Shock Model for Bare and Covered Explosives

    Science.gov (United States)

    Scholtes, Gert; Bouma, Richard

    2017-06-01

    TNO developed a toolbox to estimate the probability of a violent event on a ship or other platform, when the munition bunker is hit by e.g. a bullet or fragment from a missile attack. To obtain the proper statistical output, several millions of calculations are needed to obtain a reliable estimate. Because millions of different scenarios have to be calculated, hydrocode calculations cannot be used for this type of application, but a fast and good engineering solutions is needed. At this moment the Haskins and Cook-model is used for this purpose. To obtain a better estimate for covered explosives and munitions, TNO has developed a new model which is a combination of the shock wave model at high pressure, as described by Haskins and Cook, in combination with the expanding shock wave model of Green. This combined model gives a better fit with the experimental values for explosives response calculations, using the same critical energy fluence values for covered as well as for bare explosives. In this paper the theory is explained and results of the calculations for several bare and covered explosives will be presented. To show this, the results will be compared with the experimental values from literature for composition B, Composition B-3 and PBX-9404.

  20. Oralloy (93.2 235U) Bare Metal Annuli And Disks

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, Andrew John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacks of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.

  1. Injection technologies for the repair of damaged concrete structures

    CERN Document Server

    Panasyuk, V V; Sylovanyuk, V P

    2014-01-01

    This book analyzes the most important achievements in science and engineering practice concerning operational factors that cause damage to concrete and reinforced concrete structures. It includes methods for assessing their strength and service life, especially those that are based on modern concepts of the fracture mechanics of materials. It also includes basic approaches to the prediction of the remaining service life for long-term operational structures. Much attention is paid to injection technologies for restoring the serviceability of damaged concrete and reinforced concrete structures. In particular, technologies for remedying holes, cracks, corrosion damages etc. The books contains sample cases in which the above technologies have been used to restore structural integrity and extend the reliable service life of concrete and reinforced concrete constructions, especially NPPs, underground railways, bridges, seaports and historical relics.

  2. INORGANIC CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Alisson Clay Rios Silva

    2014-07-01

    Full Text Available In this work, a Geopolymeric Cement Concrete (GCC was developed through adequate portions of geopolymer components. Its characteristics were compared with Portland Cement Concrete (PCC, through of the establishment of some parameters of design, as consumption of binders, water/aggregates ratio and mortar content. The concrete mechanical performance was evaluated with emphasis to the fatigue behavior. Were tested the effects of different tensile strength maximum (increasing and decreasing. The results of fatigue tests had shown that GCC presents a better performance when compared to PCC. Its fatigue strength was 15% higher than that of PCC, when 70% of rupture tension of the concrete in static bending (SR, was applied. Tensions of about 80% SR resulted in 96% of increase, when compared to GCC. The SEM microstructural analysis showed that the GCC has a matrix/aggregate bonding very strong, when compared to PCC, probably due to the massive nature of the geopolymeric matrix.

  3. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  4. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  5. Improving concrete overlay construction.

    Science.gov (United States)

    2010-03-01

    Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...

  6. Modeling reinforced concrete durability.

    Science.gov (United States)

    2014-06-01

    This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...

  7. Concrete decontamination scoping tests

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1995-01-01

    This report details the research efforts and scoping tests performed at the Idaho Chemical Process Plant using scabbling, chemical, and electro-osmotic decontamination techniques on radiologically contaminated concrete

  8. Bituminous concrete overlay studies.

    Science.gov (United States)

    1971-01-01

    Deflection tests conducted on eight sections of primary highway, both before and after asphaltic concrete resurfacings, were analyzed as a study of the utility of such tests in the design of overlays. The application of tentative traffic and allowabl...

  9. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  10. Reaction behaviour of reactor materials, including concrete during core meltdown

    International Nuclear Information System (INIS)

    Holleck, H.; Hofmann, P.; Skokan, A.

    1976-01-01

    The problems dealt with in the studies on the material behaviour of core meltdowns are sketched, and an outline is given on the experimental investigations now in progress. These studies aim at establishing a model which is as realistic as possible, and the paper tries to show that knowledge on the reaction behaviour is a basic prerequisite for this. (orig./TK) [de

  11. Shear Resistance between Concrete-Concrete Surfaces

    Science.gov (United States)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  12. Fibre-concrete container

    International Nuclear Information System (INIS)

    2000-01-01

    In this leaflet the fibre-concrete container for radioactive wastes is described. The fibre container is made of fibre-concrete that contains cement, aggregate, sand, filter, flame-silica, super-plastificator, water and scattered metal fibres. The fibre-concrete container has a dice shape with outer dimension 1.7 x 1.7 x 1.7 m. It is mounted of a container body, a container cover and two caps. Total weight of container is 4,240 kg, maximum weight of loaded container do not must exceed 15,000 kg. The physical and mechanical properties of the fibre-concrete container are described in detail. The fibre-concrete container manufactured for storing of low and intermediate radioactive wastes. A fibre-concrete container utilization to store of radioactive wastes solves these problems: increase of stability of stored packages of radioactive waste; watertightness within 300 years at least; static stability of bearing space; better utilization of bearing spaces; insulation of radioactive waste in a case of seismic and geological event; increase of fire resistance; and transport of radioactive waste

  13. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  14. Prevention of shrinkage cracking in tight concrete structures

    International Nuclear Information System (INIS)

    Alvaredo, A.M.; Wittmann, F.H.

    1995-01-01

    It is shown that crack formation and propagation in concrete members subjected to restrained shrinkage can be realistically predicted by means of a comprehensive approach including a diffusion analysis and fracture mechanics considerations. The conditions for stable crack propagation regarding dimensions of the concrete member, degree of restraint to the imposed deformation and material properties are discussed. Guidelines on the prevention of shrinkage cracking of concrete structures are given. (author). 10 refs., 5 figs

  15. Strain rate effects for spallation of concrete

    Directory of Open Access Journals (Sweden)

    Häussler-Combe Ulrich

    2015-01-01

    Full Text Available Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property – which can be covered by rate dependent stress strain relations – or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  16. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin

    Science.gov (United States)

    Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.

    2017-11-01

    The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.

  17. Electrical Resistivity of Concrete for Durability Evaluation: A Review

    Directory of Open Access Journals (Sweden)

    Pejman Azarsa

    2017-01-01

    Full Text Available Degradation processes in reinforced concrete structures that affect durability are partially controlled by transport of aggressive ions through the concrete microstructure. Ions are charged and the ability of concrete to hold out against transfer of ions greatly relies on its electrical resistivity. Hence, a connection could be expected between electrical resistivity of concrete and the deterioration processes such as increase in permeability and corrosion of embedded steel. Through this paper, an extensive literature review has been done to address relationship between concrete electrical resistivity and its certain durability characteristics. These durability characteristics include chloride diffusivity and corrosion of reinforcement as these have major influence on concrete degradation process. Overall, there exists an inverse or direct proportional correlation between these parameters. Evaluated results, from measuring the concrete electrical resistivity, can also be used as a great indicator to identify early age characteristics of fresh concrete and for evaluation of its properties, determination of moisture content, connectivity of the micropores, and even condition assessment of in-service structures. This paper also reviews and assesses research concerning the influential parameters such as environmental conditions and presence of steel rebar and cracks on measuring electrical resistivity of concrete. Moreover, concrete resistivity concept, application, and its various measurement techniques are introduced.

  18. Performance of Lightweight Natural-Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Hardjasaputra Harianto

    2017-01-01

    Full Text Available Concrete, the most common construction material, has negligible tension capacity. However, a reinforcement material such as natural fibers, can be used to improve the tensile properties of concrete. This paper presents experiments conducted on Super Lightweight Concrete mixed with coconut fibers (SLNFRC. Coconut fibers are regarded as one of the toughest natural fibers to strengthen concrete. Coconut fiber reinforced composites have been considered as a sustainable construction material because the fibers are derived from waste. These wastes, which are available in large quantities in Asia, have to be extracted from the husk of coconut fruits and must pass a mechanical process before being added to a concrete mixture. The Super Lightweight Concrete was made by mixing concrete paste with foam agent that can reduce the overall weight of concrete up to 60% with compressive strength up to 6 MPa. The Super Lightweight Concrete is intended to be used for non-structural walls, as alternative conventional construction materials such as brick walls. The influence of coconut fibers content in increasing the flexural tensile strength of Super Lightweight Concrete was studied in this research. The fiber content studied include 0%, 0.1%, 0.175%, and 0.25% by weight of cement content. Sixteen specimens of SLNFRC mini beams of 60 mm x 60 mm x 300 mm were tested to failure to investigate their flexural strengths. The optimum percent fibers yielding higher tensile strength was found to be 0.175%

  19. Review of concrete biodeterioration in relation to nuclear waste.

    Science.gov (United States)

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.

  20. Analytical Solutions for Corrosion-Induced Cohesive Concrete Cracking

    Directory of Open Access Journals (Sweden)

    Hua-Peng Chen

    2012-01-01

    Full Text Available The paper presents a new analytical model to study the evolution of radial cracking around a corroding steel reinforcement bar embedded in concrete. The concrete cover for the corroding rebar is modelled as a thick-walled cylinder subject to axisymmetrical displacement constraint at the internal boundary generated by expansive corrosion products. A bilinear softening curve reflecting realistic concrete property, together with the crack band theory for concrete fracture, is applied to model the residual tensile stress in the cracked concrete. A governing equation for directly solving the crack width in cover concrete is established for the proposed analytical model. Closed-form solutions for crack width are then obtained at various stages during the evolution of cracking in cover concrete. The propagation of crack front with corrosion progress is studied, and the time to cracking on concrete cover surface is predicted. Mechanical parameters of the model including residual tensile strength, reduced tensile stiffness, and radial pressure at the bond interface are investigated during the evolution of cover concrete cracking. Finally, the analytical predictions are examined by comparing with the published experimental data, and mechanical parameters are analysed with the progress of reinforcement corrosion and through the concrete cover.

  1. Investigation on Blast Resistance of Precast Reinforced Concrete Floor Slab

    Science.gov (United States)

    Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Ruggiero, Andrew; Testa, Gabriel; Bernabei, Manuele; Cassioli, Luigi; Grossi, Silvana

    2017-06-01

    The knowledge of the effective blast resistance of civil infrastructures is a fundamental information for risk assessment and modelling consequences of terrorist attack in high population density urban environment. In this work, blast resistance of precast reinforced concrete floor slab, commonly used for commercial parking, was investigated performing blast tests, detonating bare explosive charge of RDX 80-20 in contact with the slab. The charge mass, and the stand-off distance, was varied in order to generate different damage extents, from visible to fully breached condition. Numerical simulations were performed considering all slab structural elements. Failure model for concrete was calibrated on breach size and shape observed in the experiments. The explosive and blast wave-structure interaction were simulated using arbitrary Lagrangian-Eulerian method (ALE) and particle blast method (PBM) for comparison.

  2. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  3. Organic compounds in concrete from demolition works.

    Science.gov (United States)

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. Copyright © 2015. Published by Elsevier Ltd.

  4. Ageing management of CANDUtm concrete containment buildings

    International Nuclear Information System (INIS)

    Philipose, K.E.; Gregor, F.E.

    2009-01-01

    The containment system in a Nuclear Power Plant (NPP) provides the final physical barrier against release of radioactive materials to the external environment. Even though there are different physical configurations to meet this fundamental safety function in various reactor types, a common feature is the use of a thick-walled concrete structure as part of the containment system commonly referred to as 'Concrete Containment Building'. In order for the concrete containment buildings to continue to provide the required safety function, it has to maintain its structural integrity. As well, its leak rates under test pressures must be maintained below acceptable limits. As some of the containment buildings of the CANDU nuclear power plants are approaching their fourth decade of successful operation, questions regarding the impact of ageing on their ultimate useful service life emerge. Ageing Management has become the tool for addressing those questions. In this paper, the ageing and ageing management of the CANDU concrete containments are discussed, including the specific programs being implemented to monitor and trend the ageing conditions. Specifically, the usefulness of the embedded strain gauges as a tool for the assessment of the condition of the containment concrete structure is discussed. Some of the operational and test data accumulated over the last 30 years have been evaluated and trended to provide some results and conclusions regarding the satisfactory long-term behaviour of the concrete containment buildings. (authors)

  5. Offshore concrete structures

    International Nuclear Information System (INIS)

    Lamas Pardo, M.; Carral Couce, L. M.

    2011-01-01

    In the offshore industry there are two possible materials for the construction of the hull of a structure; the steel and concrete, with the first one widely used until now, as in the rest of the shiphuidling industry of merchant ships, warships, etc. Materials such as aluminum, GRP or timber areused in small units with lengths lower than 100 m, and in less adverse conditions than in the offshore industry. Nevertheless, some ships/barges have been built of concrete in the past, but have been rather isolated cases which have not changed the practice in the industry. In the First and Second World War were built by the scarcity of materials, while the series of barges by Alfred A. Yee was a rare exception. Other units were also made in concrete, but almost anecdotal. Still, the behaviour of these concrete structures, especially in terms of maintenance, has been excellent. Therefore, the fact that the concrete has not had an adequate reception so far in shipbuilding, does not mean that in will not be the material best suited for the offshore industry in the future. The extra displacement and associated fuel costs in concrete ships have been found prohibitive in the past. But the loss of mobility of a concrete hull in relation to a steel hull can be perfectly offset by the advantages offered by the concrete, as the shipping and offshore industry have very different priorities. One of the main differences in these priorities is in terms of maintenance and resistance to fatigue, precisely where the concrete performs better. ships can easily be dry docked for maintenance and repair, while in the offshore platforms these works have to be done in situ so maintenance and fatigue are crucial to them. Besides these, the concrete has other advantages according to findings of several studies. And although they are interested in the conclusions that the makes as they came from people in the concrete industry, the fact that in recent years concrete offshore unit shave been built

  6. Laser damage of HR, AR-coatings, monolayers and bare surfaces at 1064 nm

    Science.gov (United States)

    Garnov, S. V.; Klimentov, S. M.; Said, A. A.; Soileau, M. J.

    1993-01-01

    Laser induced damage thresholds and morphologies were investigated in a variety of uncoated and coated surfaces, including monolayers and multi-layers of different chemical compositions. Both antireflective (AR) and highly reflective (HR) were tested. Testing was done at 1064 nm with 25 picosecond and 8 nanosecond YAG/Nd laser single pulses. Spot diameter in the experiments varied from 0.09 to 0.22 mm. The laser damage measurement procedure consisted of 1-on-1 (single laser pulse in the selected site) and N-on-1 experiments including repeated irradiation by pulses of the same fluence and subsequently raised from pulse to pulse fluence until damage occurred. The highest picosecond damage thresholds of commercially available coatings averaged 12 - 14 J/sq cm, 50 percent less than thresholds obtained in bare fused silica. Some coatings and bare surfaces revealed a palpable preconditioning effect (an increase in threshold of 1.2 to 1.8 times). Picosecond and nanosecond data were compared to draw conclusions about pulse width dependence. An attempt was made to classify damage morphologies according to the type of coating, class of irradiating, and damage level.

  7. Radon emanation fractions from concretes containing fly ash and metakaolin

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Lange, Sarah C., E-mail: taylorlanges@utexas.edu [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Juenger, Maria C.G. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Siegel, Jeffrey A. [Department of Civil, Architectural, and Environmental Engineering, 1 University Station C1748, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Civil Engineering, 35 St. George Street, University of Toronto, Toronto, ON, M5S 1A4 (Canada)

    2014-01-01

    Radon ({sup 222}Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration.

  8. Radon emanation fractions from concretes containing fly ash and metakaolin

    International Nuclear Information System (INIS)

    Taylor-Lange, Sarah C.; Juenger, Maria C.G.; Siegel, Jeffrey A.

    2014-01-01

    Radon ( 222 Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ± 5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. - Highlights: • Fly ash or metakaolin SCMs can neutralize or reduce concrete emanation fractions. • The specific activity of constituents is a poor predictor of the concrete emanation fraction. • Exhalation from fly ash concretes represents a small fraction of the total indoor radon concentration

  9. Development of one-dimensional atmosphere-bare soil model

    Energy Technology Data Exchange (ETDEWEB)

    Yamazawa, Hiromi; Nagai, Haruyasu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    As the first step of modeling of dynamical behaviors of air and water as media of radionuclide migration in the atmosphere-vegetation-soil system, a one-dimensional numerical model of atmosphere-bare soil system was developed. The atmospheric part, which is based on the existing one-dimensional meteorological model PHYD1V3, consists of prognostic equations for horizontal wind components, potential temperature, specific humidity, fog water, turbulence kinetic energy and turbulence length scale. This part also consists of a second-order turbulence closure model and solar-atmospheric radiation model. The soil part consists of prognostic equations for soil temperature, volumetric water content and specific humidity in soil air. Both parts are interfaced to each other with the ground surface water and heat budget equations. This model employs a finite difference scheme with multi-layer description for the both part. (author)

  10. Corrosion of bare and galvanized steel in gypsum

    Directory of Open Access Journals (Sweden)

    Gómez, Mercedes

    1988-12-01

    Full Text Available Gypsum is a relatively low-cost building material much abounding in our country. When it is put in contact with steel, it may produce high corrosion rates due to its pH value (close to 7. This work reports the results obtained in studying the corrosion rates of bare and galvanized steel in contact with gypsum and plaster, as well as the influence curing thermal treatment applied to gypsum, enviromental relative humidity and addition of compounds with different natures and purposes may have in such process. In-situ observations, as well as the measurement of the Polarization Resistance and the weight loss have been used as measurement technics. From the results obtained it has been possible to deduce that galvanized steel has better behaviour in dry enviroments than bare steel in the same conditions and moist atmosphere induces proportionally more corrosion in galvanized steel than in bare one. Additions to gypsum do not modified these conclusions, though it may be pointed out that addition of nitrites or lime improves the behaviour of bare steel, while galvanized behaviour is not modified. The addition of lime is not recommended because phenomena of dilated along time expansion may take place.

    El yeso es un material de construcción de relativo bajo coste y que, además, es muy abundante en nuestro país. Debido a su pH cercano a la neutralidad, cuando entra en contacto con el acero, este puede corroerse a elevadas velocidades. En esta comunicación se presentan los resultados de un estudio sobre la velocidad de corrosión del acero desnudo y galvanizado en contacto con yeso y escayola y la influencia que tienen: el tratamiento térmico del curado del yeso, la humedad relativa ambiental y la adición de aditivos de diversa naturaleza y finalidad. Como técnicas de medida se han utilizado la medida de la Resistencia de Polarización y de la pérdida de peso, así como observaciones visuales. De los resultados se puede deducir que en

  11. Ionization of uracil in collisions with fast bare ions

    Science.gov (United States)

    Tribedi, L. C.; Agnihotri, A. N.; Galassi, M. E.; Rivarola, R. D.; Champion, C.

    2012-11-01

    We study the atomic collisions with large molecules and simple atoms. The ionization and fragmentation spectra are investigated for uracil, a RNA base molecule, under the impact of fast bare C, O and F-ions. The experiments are conducted using a recoil-ion time-of-flight spectrometer. The energy dependence of the total ionization cross sections (TCS) and fragmentation yields are measured for MeV/u energies. In addition, the angular distribution of the electron double differential cross sections (DDCS) are also shown in some cases. The total cross sections of ionization and also the DDCS data are compared with the CDW-EIS calculations. The qualitative agreement is good but, in general, the theory tends to overestimate the data by a factor of 2.2. The angular distribution of electrons clearly indicates a good qualitative agreement except for the lowest energy electrons.

  12. Using of Porcelinite as Coarse Aggregate in Concrete

    Directory of Open Access Journals (Sweden)

    Haifa Saleh

    2015-02-01

    Full Text Available In this research the ability of using porcelinite as coarse aggregate to produce light weight concrete was investigated.  The experimental program consists of preparing and testing a mixes to investigate mechanical properties of concrete, with a total of 15 cubes (100×100×100 mm, 30 cylinders (100×200 mm. The tests include compressive strength, splitting tensile strength, fresh and hardened density of  light weight concrete for different porcelinite percentages ranged between(0% to 100% of the coarse aggregate weight. The obtained results for tested specimens were compared to control one. Test results indicated that using of porcelinite in concrete mix reduces the strength of concrete Porcelinite aggregate represents a reduction in density ranging between (10%-36% of normal weight concrete, therefore there is an advantage  using this type of light weight aggregate in this country where soil bearing capacity is low in most construction sites.

  13. Economical concrete mix design utilizing blended cements, performance-based specifications, and pay factors.

    Science.gov (United States)

    2013-05-01

    This report showcases several new approaches of using materials science and structural mechanics to accomplish : sustainable design of concrete materials. The topics addressed include blended cements, fiber-reinforced concrete : (FRC), internal curin...

  14. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    Science.gov (United States)

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  15. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    Science.gov (United States)

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  16. Multiple-barrier concrete containment without steel liner

    International Nuclear Information System (INIS)

    Costaz, J.L.; Picaut, J.

    1976-01-01

    The difficulties of producing and testing the conventional type of pressure-containment structure makes it attractive to design a multiple-barrier system which dispenses with the steel liner. The French electricity generating authority is currently investigating a system based on an inner, prestressed concrete structure contained in a reinforced concrete outer structure, in which leak-tightness is provided by the concrete itself. Other advantages include reduced thermal stresses, greater freedom in construction and improved impact and blast resistance. Laboratory tests show that properly placed concrete has the required impermeability properties. (author)

  17. Creep of concrete under various temperature, moisture, and loading conditions

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1976-01-01

    An investigation was conducted to obtain information on the time-dependent deformation behavior of concrete in the presence of temperature, moisture, and loading conditions similar to those encountered in a prestressed concrete reactor vessel (PCRV). Variables included concrete strength, aggregate types, curing history, temperature, and types of loading (uniaxial, hydrostatic, biaxial, and triaxial). There were 66 test conditions for creep tests and 12 test conditions for unloaded or control specimens. Experimental results are presented and discussed. Comparisons are made concerning the effect of the various test conditions on the behavior of concrete, and general conclusions are formulated

  18. Topology Optimization for Conceptual Design of Reinforced Concrete Structures

    DEFF Research Database (Denmark)

    Amir, Oded; Bogomolny, Michael

    2011-01-01

    Design of reinforced concrete structures is governed by the nonlinear behavior of concrete and by its dierent strengths in tension and compression. The purpose of this article is to present a computational procedure for optimal conceptual design of reinforced concrete structures, based on topology...... optimization with elasto-plastic material modeling. Concrete and steel are both considered as elasto-plastic materials, including the appropriate yield criteria and post-yielding response. The same approach can be applied also for topology optimization of other material compositions where nonlinear response...

  19. Study on reinforced lightweight coconut shell concrete beam behavior under flexure

    International Nuclear Information System (INIS)

    Gunasekaran, K.; Annadurai, R.; Kumar, P.S.

    2013-01-01

    Highlights: ► Use of coconut shell as aggregate in concrete. ► Behavior of coconut shell concrete under flexure. ► SEM images of cement, sand, coconut shell and coconut shell aggregate concrete. ► Coconut shell hollow blocks and precast slabs are used in practice. - Abstract: Coconut shell has been used as coarse aggregate in the production of concrete. The flexural behavior of reinforced concrete beam made with coconut shell is analyzed and compared with the normal control concrete. Twelve beams, six with coconut shell concrete and six with normal control concrete, were fabricated and tested. This study includes the moment capacity, deflection, cracking, ductility, corresponding strains in both compression and tension, and end rotation. It was found that the flexural behavior of coconut shell concrete is comparable to that of other lightweight concretes. The results of concrete compression strain and steel tension strain showed that coconut shell concrete is able to achieve its full strain capacity under flexural loadings. Under serviceability condition, deflection and cracking characteristics of coconut shell concrete are comparable with control concrete. However, the failure zones of coconut shell concrete were larger than for control concrete beams. The end rotations of the coconut shell concrete beams just prior to failure values are comparable to other lightweight concretes. Coconut shell concrete was used to produce hollow blocks and precast slab in 2007 and they are being subjected to some practical loading till today without any problems such as deflection, bending, cracks, and damages for the past five years

  20. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Winkel, B.V.

    1995-01-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in 2 mix and a 4.5 kip/in 2 mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in 2 . In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F

  1. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  2. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  3. Concrete Cover in Thin-Wall Reinforced Concrete Floating Piers

    Science.gov (United States)

    1976-07-01

    application of a waterproof material to the exterior surface of the concrete vessel, before immersion in seawater or brine solutions, will prevent...introduction to prestressed concrete: Volume 1. Concrete Publications Ltd., London. pp. 343-344. 17. Chapman, C. M. (1911). The effect of electrolysis on...of concrete in brine storage tanks. Proc. ACT, 44:141-147; discussion, 44:148-1 thru 148-3. 35. Kuenning, W. H. et al. (1966). Guide for the

  4. Moisture Transport Through Sprayed Concrete Tunnel Linings

    Science.gov (United States)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  5. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  6. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  7. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  8. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  9. Use of fiber reinforced concrete for concrete pavement slab replacement.

    Science.gov (United States)

    2014-03-01

    Unlike ordinary concrete pavement, replacement concrete slabs need to be open to traffic within 24 hours (sooner in : some cases). Thus, high early-strength concrete is used; however, it frequently cracks prematurely as a result of high : heat of hyd...

  10. A fast method for the determination of the efficiency coefficient of bare CR-39 detector

    International Nuclear Information System (INIS)

    Dwaikat, Nidal; El-hasan, Mousa; Sueyasu, Masto; Kada, Wataru; Sato, Fuminobu; Kato, Yushi; Saffarini, G.; Iida, Toshiyuki

    2010-01-01

    A fast and simple method for the determination of the efficiency coefficient (η) of bare CR-39 detector is presented and discussed. The efficiency coefficient of bare CR-39 detector is then calculated by different ways and the obtained values are found to be comparable to each other. The average value of η of bare CR-39 is found to be 0.20 ± 0.01 tracks cm -2 day -1 per Bq m -3 .

  11. A fast method for the determination of the efficiency coefficient of bare CR-39 detector

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, Nidal, E-mail: nidaldwaiakt@yahoo.co [Department of Electronics, Information Systems and Energy Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Department of Physics, An-Najah National University, Nablus, Palestine (Country Unknown); El-hasan, Mousa [Department of Physics, An-Najah National University, Nablus, Palestine (Country Unknown); Sueyasu, Masto; Kada, Wataru; Sato, Fuminobu; Kato, Yushi [Department of Electronics, Information Systems and Energy Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan); Saffarini, G. [Department of Physics, An-Najah National University, Nablus, Palestine (Country Unknown); Iida, Toshiyuki [Department of Electronics, Information Systems and Energy Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka (Japan)

    2010-10-15

    A fast and simple method for the determination of the efficiency coefficient ({eta}) of bare CR-39 detector is presented and discussed. The efficiency coefficient of bare CR-39 detector is then calculated by different ways and the obtained values are found to be comparable to each other. The average value of {eta} of bare CR-39 is found to be 0.20 {+-} 0.01 tracks cm{sup -2} day{sup -1} per Bq m{sup -3}.

  12. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    Science.gov (United States)

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

  13. Time dependent analysis of concrete in SAP2000

    OpenAIRE

    Varona Moya, Francisco de Borja

    2018-01-01

    This document presents an example of time-dependent analysis of a concrete column using SAP2000. In order to understand the parameters required by the software to run the analysis, the formulation of time dependent properties of concrete according to Model Code 1990 is included.

  14. Economics of Concrete and Wood Tie Track Structures

    Science.gov (United States)

    1978-08-01

    This report presents results from an evaluation of the economic benefits of concrete- versus wood-tie track. The analysis includes the life-cycle capital, maintenance, and renewal costs for concrete- and wood-tie track for four specific test cases an...

  15. Mix design proposal for structural concrete using messobo ordinary ...

    African Journals Online (AJOL)

    Mix design is a process in which one determines the relative quantities of the ingredients prior to mixing to produce the desired quality of concrete. By varying the mix proportions of the ingredients, different strength grades of concrete can be obtained. Several factors, which include water cement ratio, workability, curing type ...

  16. Effect of Neem Seed Husk Ash on Concrete Strength Properties ...

    African Journals Online (AJOL)

    Neem Seed Husk is a by-product obtained during industrial processing of Neem Seed to extract oil and produce fertilizer. Laboratory tests on Neem seed husk ash (NSHA) mixed with cement were conducted to find its effect on concrete strength and workability. Tests including slump test, compressive strength test, concrete ...

  17. Crack Formation During Hardening in Fibre Reinforced Concrete

    DEFF Research Database (Denmark)

    Olesen, John Forbes; Stang, Henrik

    1996-01-01

    The objective of this project is to establish models for the development of cracks in the early age of fibre reinforced concrete due to restrained shrinkage and temperature variations. These models will be based on measurements of age dependant material properties including the post crack response...... of the fibre reinforced concrete....

  18. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  19. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  20. Structural Materials: 95. Concrete

    International Nuclear Information System (INIS)

    Naus, Dan J.

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  1. Improved concretes for corrosion resistance

    Science.gov (United States)

    1997-07-01

    The deterioration of various reinforced concrete bridge components containing conventional black steel reinforcement is the most important problem facing U.S. highway agencies. A major cause of this concrete deterioration (cracking, delamination, and...

  2. Modeling reinforced concrete durability : [summary].

    Science.gov (United States)

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  3. Concrete shaver. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work

  4. Sensitivity of mountain glacier mass balance to changes in bare-ice albedo

    OpenAIRE

    Naegeli, Kathrin; Huss, Matthias

    2017-01-01

    Albedo is an important parameter in the energy balance of bare-ice surfaces and modulates glacier melt rates. The prolongation of the ablation period enforces the albedo feedback and highlights the need for profound knowledge on impacts of bare-ice albedo on glacier mass balance. In this study, we assess the mass balance sensitivity of 12 Swiss glaciers with abundant long-term in-situ data on changes in bare-ice albedo. We use pixel-based bare-ice albedo derived from Landsat 8. A distributed ...

  5. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  6. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  7. Concrete produced with recycled aggregates

    OpenAIRE

    Tenório, J. J. L.; Gomes, P. C. C.; Rodrigues, C. C.; Alencar, T. F. F. de

    2012-01-01

    This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC) for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW), which were d...

  8. TEXTILE TECHNOLOGIES IN CONCRETE ENVIRONMENTS."

    OpenAIRE

    Morrow, Ruth; Belford, Patricia

    2007-01-01

    Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.Girli Concrete brings together concrete and textile technologies, testing ideas ofconcrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concre...

  9. Chernozem aggregate waterstability loss investigation in a long-term bare fallow experiment

    Science.gov (United States)

    Vasilyeva, N. A.; Milanovskiy, E. Y.

    2009-04-01

    -year bare fallow show that overall decrease in Corg under bare fallow is about 50% due to loss of light fractions, 30% due to loss in clay fraction and 15% due to loss in coarse silt medium fraction. Light fraction has predominant particle sizes of D10-D90=(2-20) mkm in fine silt and (7-70 mkm) in coarse silt. Light fraction particles are mostly hydrophobic in nature and may function as high contact seals between soil particles, enhancing hydrophobic interactions within aggregate in the presence of water, and preventing its rapid entrance into the aggregate. Reduction of light fractions fivefold and the increase in SSA (opening of clogged pores) due to overall loss in Corg content allow more rapid water move into the aggregate. Moreover, stable residual of light fraction under bare fallow becomes extremely water-repellent which should make the aggregate system unstable upon water percolation. We observe mineralization and washing out of low-molecular hydrophilic HS from bare fallow soil components. Hydrophilic HS may function as bonding mediators between mineral particles and high-molecular hydrophobic HS. Therefore we propose that disruption of aggregate waterstability results from SOM hydrophilic-hydrophobic disbalance. Molecular parameters of HS hydrophobic and hydrophilic components are substantially different. The enhancement in hydrophobic interaction ability of HS components is accompanied by increase in molecular weight and Corg content, and decrease in nitrogen content. Waterstable aggregates are shown to contain HS with stronger hydrophobic properties than that of dry-sieving ones and it results in a more pronounced reduction of SSA upon waterstable aggregation. The experimental results give evidence and characteristics of at least four SOM pools in a typical chernozem soil: degradable sorbed SOM (accounts for 0.9% of Corg content), which probably includes dissolvable SOM, degradable particulate organic matter (POM) (1.1%), stable sorbed SOM (2%) and stable

  10. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    OpenAIRE

    Choi, Yun-Wang; Park, Man-Seok; Choi, Byung-Keol; Oh, Sung-Rok

    2015-01-01

    In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high...

  11. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  12. Structural Concrete, Science into Practice

    NARCIS (Netherlands)

    Bruggeling, A.S.G.

    1987-01-01

    There is a need for a more rational and unified approach to all types of concrete structure, reinforced of prestressed. The first chapter explains in a historical review why the approach of reinforced concrete and that of prestressed concrete have hitherto been very different. In outlining the

  13. Concrete decontamination and demolition methods

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1980-01-01

    The US Department of Energy (DOE), Division of Environmental Control Technology, requested Nuclear Energy Services to prepare a handbook for the decontamination and decommissioning (D and D) of DOE-owned and commercially-owned radioactive facilities. the objective of the handbook is to provide the nuclear industry with guidance on the state-of-the-art methods and equipment available for decommissioning and to provide the means to estimate decommissioning costs and environmental impact. The methods available for concrete decontamination and demolition are summarized to provide an overview of some of the state-of-the-art techniques to be discussed at this workshop. The pertinent information on each method will include the selection factors such as the rate of performance in terms of concrete removal per unit time (cubic yards per day), manpower required by craft, unit cost (dollars per cubic yard) and the advantages and disadvantages. The methods included in this overview are those that have been routinely used in nuclear and nonnuclear applications or demonstrated in field tests. These methods include controlled blasting, wrecking ball or slab, backhoe mounted ram, flame torch, thermic lance, rock splitter, demolition compound, sawing, core stitch drilling, explosive cutting, paving breaker and power chisel, drill and spall, scarifying, water cannon and grinding

  14. From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Heinemann, H.A.; Zijlstra, H.; Hees, R.P.J. van; Nijland, T.G.

    2012-01-01

    The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conservation strategies would have been necessary. The application of repair techniques poses two

  15. Water evaporation from bare soil at Paraiba, Brazil

    International Nuclear Information System (INIS)

    Lima, Jose Romualdo de Sousa; Antonino, Antonio Celso D.; Lira, Carlos A. Brayner de O.; Maciel Netto, Andre; Silva, Ivandro de Franca da; Souza, Jeffson Cavalcante de

    2002-01-01

    Measurements were accomplished in a 4,0 ha area in Centro de Ciencias Agrarias, UFPB, Areia City, Paraiba State, Brazil (6 deg C 58'S, 35 deg C 41'W and 645 m), aiming to determine water evaporation from bare soil, by energy and water balance approaches. Rain gauge, net radiometer, pyranometer and sensor for measuring the temperature and the relative humidity of the air and the speed of the wind, in two levels above the soil surface, were used to solve the energy balance equations. In the soil, two places were fitted with instruments, each one with two thermal probes, installed horizontally in the depths z1 = 2,0 cm and z2 = 8,0 cm, and a heat flux plate, for the measurement of the heat flux in the soil, the z1 = 5,0 cm. The measured data were stored every 30 minutes in a data logger. For the calculation of the water balance, three tensio-neutronics sites were installed, containing: an access tube for neutrons probe and eight tensiometers. The values of soil evaporation obtained by water balance were lower than obtained by energy balance because of the variability of the water balance terms. (author)

  16. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  17. Curing of Concrete

    African Journals Online (AJOL)

    surface coats, weak concrete blocks, leaky conduits and pipes illustrate defects frequently caused by improper curing .... Furthermore, water lost internally by self desiccation has to be replaced by water from outside, i.e. ... Other methods for preventing loss of moisture involve the use of liquid seal coat, or tight covers such as ...

  18. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    ting. It is used in industrial floorings, ship decks, railway passenger coach floorings, hospital floors, ammunition factory floors, missile silos and underground armament factories and bunkers. Recently, concrete of high compres- sive and tensile strength prepared with magnesium oxy- chloride cement and recycled rubber ...

  19. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  20. Forterra Concrete Products, Inc.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St

  1. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  2. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  3. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  4. Polyester polymer concrete overlay.

    Science.gov (United States)

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  5. Concrete longevity overview

    International Nuclear Information System (INIS)

    Chang, W.; Morreale, B.

    1991-01-01

    A number of compact host states and unaffiliated states are currently selecting appropriate disposal technology and construction materials for their planned low-level radioactive waste (LLW) disposal facilities. Concrete is one of the candidate materials under consideration for the construction of LLW disposal facilities because of its strength, durability, abundant availability, and relatively low cost. The LLW disposal facilities must maintain intruder barrier integrity for up to 500 years, without active maintenance after the first 100 years. The ability of concrete to survive for such a long time as a construction material is a critical issue. This report provides a basic understanding of the composition and workings of concrete as a structural material in LLW disposal facilities and a description of degradation factors and state-of-the-art mitigative measures available to preserve the durability and longevity of concrete. Neither the paper nor the report is intended to be a design guidance document, and neither addresses using cement as a waste solidification agent. 5 refs., 1 tab

  6. Electrical pulses protect concrete

    NARCIS (Netherlands)

    Koleva, D.; Fraaij, A.; Van Kasteren, J.

    2006-01-01

    Even concrete is not as hard as it looks. Sea water, salt on icy roads, and indirectly even carbon dioxide from the air can corrode the steel of the reinforcing bars and so threaten the strength and integrity of a bridge pier, jetty, or viaduct. Dessi Koleva, a chemical engineer from Bulgaria, spent

  7. Structural concrete and sustainability

    CSIR Research Space (South Africa)

    Grieve, G

    2010-04-01

    Full Text Available of the concrete materials to be used on a particular project and this chapter gives guidance to the design and construction teams on how to make these decisions. The designer should also give consideration to passive design factors, as the most significant...

  8. Concrete. Connecting Creative Technologists

    NARCIS (Netherlands)

    Bakker, T.P.; Huijboom, N.M.; Koops, R.; Kotterink, B.; Nieuwenhuis, O.A.; Seiffert, L.; Siem, R.; Zee, F.A. van der

    2015-01-01

    Kruisbestuiving tussen de creatieve en high-tech sector biedt enorme kansen, bijvoorbeeld op het gebied van Smart Industry. Desondanks blijven deze kansen in de praktijk vaak onderbenut. In het project 'CONCRETE' heeft TNO op basis van een aantal case studies onderzocht welke succesfactoren tot een

  9. Properties of high-workability concrete with recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Safiuddin

    2011-01-01

    Full Text Available This study presents the effects of recycled concrete aggregate (RCA on the key fresh and hardened properties of concrete. RCA was used to produce high-workability concrete substituting 0-100% natural coarse aggregate (NCA by weight. The slump and slump flow of fresh concretes were determined to ensure high workability. In addition, the compressive, flexural and splitting tensile strengths, modulus of elasticity, and permeable voids of hardened concretes were determined. The test results revealed that RCA significantly decreased the workability of concrete. RCA also affected the compressive strength, modulus of elasticity, and permeable voids of concrete. At the age of 28 days, the concrete with 100% RCA provided 12.2% lower compressive strength and 17.7% lesser modulus of elasticity than the control concrete. Also, 100% RCA increased the permeable voids of 28-day old concrete by 8.2%. However, no significant negative impact of RCA was observed on the flexural and splitting tensile strengths of concrete.

  10. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  11. Geopolymer concrete for structural use: Recent findings and limitations

    Science.gov (United States)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  12. SLAM: a sodium-limestone concrete ablation model

    International Nuclear Information System (INIS)

    Suo-Anttila, A.J.

    1983-12-01

    SLAM is a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer and dehydrated concrete) region, and a wet (hydrated concrete) region. The model includes a solution to the mass, momentum, and energy equations in each region. A chemical kinetics model is included to provide heat sources due to chemical reactions between the sodium and the concrete. Both isolated model as well as integrated whole code evaluations have been made with good results. The chemical kinetics and water migration models were evaluated separately, with good results. Several small and large-scale sodium limestone concrete experiments were simulated with reasonable agreement between SLAM and the experimental results. The SLAM code was applied to investigate the effects of mixing, pool temperature, pool depth and fluidization. All these phenomena were found to be of significance in the predicted response of the sodium concrete interaction. Pool fluidization is predicted to be the most important variable in large scale interactions

  13. Determination of the Fracture Energy of Concrete

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Stang, Henrik

    1998-01-01

    and precision (repeatability, reproducibility). Concrete with a water/cement ratio of 0.43 including fly ash as well as silica fume is investigated. The results show that WST is significantly faster to work with compared to TPBT, although the sawing procedure is more time consuming. Only when using laboratory......In a NORDTEST project two methods for determination of the fracture energy of concrete are compared; the Three-Point Bend Test (TPBT) and the Wedge Splitting Test (WST). The methods involve notched beams and notched, grooved cubes, respectively. The two methods are compared in relation to handling...

  14. Concretes with red mud coarse aggregates

    Directory of Open Access Journals (Sweden)

    Dênio Ramam Carvalho de Oliveira

    2012-06-01

    Full Text Available Red mud (RM is a mineral waste, residue of the Bayer process used to obtain alumina from bauxite. While the exploration of rolled pebble damages the environment and is much more controlled by the government, the huge RM disposal areas do not stop increasing and polluting soil, rivers and groundwater sources in Amazon. In this work, the material mixtures used to produce coarse aggregates presented up to 80% of RM, 30% of metakaolin and 30% of active silica as recycled waste. Several tests were carried out to determine the aggregates physical properties and to evaluate the mechanical performance of the concretes with the new aggregates, including hydraulic abrasion strength, and the results were compared to the reference ones, i.e. rolled pebble concretes. Additionally, the sintering process neutralizes any toxic substance as occur in some RM products like tiles and bricks, and these results have encouraged an industrial or semi-industrial production of RM aggregates for concretes.

  15. Early Property Development in Concrete

    DEFF Research Database (Denmark)

    Normann, Gitte; Munch-Petersen, Christian

    The Freiesleben Maturity function is widely used for planning of execution. We tested if for concrete with and without fly ash. The test showed surprisingly that the maturity function in general is not valid. We found that curing at high temperature gave a significant decrease in strength. Fly ash...... appears to reduce this decrease somewhat. We also examined the resistance against chloride penetration for the different concrete types. The resistance was reduced at high temperatures for concrete without fly ash. For concrete with fly ash, it was the opposite; concrete with fly ash obtained higher...

  16. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  17. Estimating Durability of Reinforced Concrete

    Science.gov (United States)

    Varlamov, A. A.; Shapovalov, E. L.; Gavrilov, V. B.

    2017-11-01

    In this article we propose to use the methods of fracture mechanics to evaluate concrete durability. To evaluate concrete crack resistance characteristics of concrete directly in the structure in order to implement the methods of fracture mechanics, we have developed special methods. Various experimental studies have been carried out to determine the crack resistance characteristics and the concrete modulus of elasticity during its operating. A comparison was carried out for the results obtained with the use of the proposed methods and those obtained with the standard methods for determining the concrete crack resistance characteristics.

  18. Correlated radiative double electron capture (RDEC) in collisions of bare oxygen ions with carbon targets

    Science.gov (United States)

    Simon, A.; Tanis, J. A.; ElKafrawy, T.; Warczak, A.

    2009-11-01

    Multielectron capture processes observed in low energy collisions of bare ions give insight into electron-electron correlations in strong fields. The main intention of this experiment is to observe radiative double electron capture (RDEC) in collisions of bare oxygen ions at energies of a few MeV/u with carbon targets. Measured results are to be compared with recent theoretical calculations.

  19. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  20. Biolimus-eluting stents with biodegradable polymer versus bare-metal stents in acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Taniwaki, Masanori

    2014-01-01

    BACKGROUND: This study sought to determine whether the 1-year differences in major adverse cardiac event between a stent eluting biolimus from a biodegradable polymer and bare-metal stents (BMSs) in the COMFORTABLE trial (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Metal...

  1. Use of SCC in Prefabricated Concrete Elements

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Lauritsen, Ib

    2004-01-01

    This paper presents observations made on the use of self-compacting concrete for pre-cast elements at Byggebjerg Beton A/S during the last 3 years. The elements include L- and sandwich elements and are mainly produced for agriculture purposes. In general, the flow properties and air content...

  2. Anisotropic damage model for concrete including unilateral effects: application to numerical simulation of confinement vessels; Modelisation de l'endommagement anisotrope du beton avec prise en compte de l'effet unilateral: application a la simulation des enceintes de confinement nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Godard, V

    2005-01-15

    The behaviour of concrete, considered as isotropic for a sound material, becomes anisotropic and unilateral as soon as microcracks are initiated. Concrete also shows a different behaviour in tension than in compression. However, isotropic models, which are more simple and time costless, are still widely used for industrial applications. An anisotropic and unilateral model, with few parameters, is thus proposed in the present work, which enhances the accuracy of the description of concrete's behaviour, while remaining suitable for industrial studies. The validation of the model is based on experimental results. Numerical simulations of structures are also proposed, among which one concerns a representative volume of a confinement vessel. Finally, a non local theory is investigated to overcome the problems induced by strain localisation. (author)

  3. PROSPECTS OF ESTABLISHING EARTHQUAKE RESISTANT BUILDINGS FROM TUBE CONCRETE CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    Abdujafar I. Akaev

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the research is to find optimal design solutions for the erection of buildings that will ensure their reliability and durability, compliance with environmental requirements, fire resistance and earthquake resistance. In this regard, the task is to determine the advantages and prospects of erecting earthquake resistant buildings from tube concrete constructions, since they are distinct in constructive, technological and economic efficiency when are used as vertical load-bearing struts of high-rise buildings. Method The technique for calculating the strength of normal sections of eccentrically-compressed tube concrete elements uses a nonlinear deformation model, taking into account the joint operation of the steel shell and the concrete core under the conditions of triaxial compression. Results In the article the review of the newest world experience of using tube concrete as vertical load-bearing structures for public facilities from the standpoint of earthquake resistant construction is given. The international practices of public facility construction ranging in height from 100 to 600 m with the use of tube concrete technology, including regions with dangerous natural and man-made conditions, have been studied. The structural, operational and technological advantages and disadvantages of tube concrete technology are analysed. Methods for calculating the strength of concrete tube elements in the case of central compression are considered: according to the so-called deformation theory, the state of total destruction of both concrete and tube fluidity attained at maximum pressure are indicated by the beginning of "tube flow on the longitudinal axis". The advantages and disadvantages of both methods are shown. Factors constraining the introduction and wider application of tube concrete constructions in Russia are considered. Conclusion While the advantages of concrete tube constructions in their extensive

  4. Hydrodynamic behavior of a bare rod bundle. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Bartzis, J.G.; Todreas, N.E.

    1977-06-01

    The temperature distribution within the rod bundle of a nuclear reactor is of major importance in nuclear reactor design. However temperature information presupposes knowledge of the hydrodynamic behavior of the coolant which is the most difficult part of the problem due to complexity of the turbulence phenomena. In the present work a 2-equation turbulence model--a strong candidate for analyzing actual three dimensional turbulent flows--has been used to predict fully developed flow of infinite bare rod bundle of various aspect ratios (P/D). The model has been modified to take into account anisotropic effects of eddy viscosity. Secondary flow calculations have been also performed although the model seems to be too rough to predict the secondary flow correctly. Heat transfer calculations have been performed to confirm the importance of anisotropic viscosity in temperature predictions. All numerical calculations for flow and heat have been performed by two computer codes based on the TEACH code. Experimental measurements of the distribution of axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds stresses were performed in the developing and fully developed regions. A 2-channel Laser Doppler Anemometer working on the Reference mode with forward scattering was used to perform the measurements in a simulated interior subchannel of a triangular rod array with P/D = 1.124. Comparisons between the analytical results and the results of this experiment as well as other experimental data in rod bundle array available in literature are presented. The predictions are in good agreement with the results for the high Reynolds numbers.

  5. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats.

    Science.gov (United States)

    Konovalov, Fedor A; Goncharov, Nikolay P; Goryunova, Svetlana; Shaturova, Aleksandra; Proshlyakova, Tatyana; Kudryavtsev, Alexander

    2010-06-01

    Molecular markers based on retrotransposon insertions are widely used for various applications including phylogenetic analysis. Multiple cases were described where retrotransposon-based markers, namely sequence-specific amplification polymorphism (SSAP), were superior to other marker types in resolving the phylogenetic relationships due to their higher variability and informativeness. However, the patterns of evolutionary relationships revealed by SSAP may be dependent on the underlying retrotransposon activity in different periods of time. Hence, the proper choice of retrotransposon family is essential for obtaining significant results. We compared the phylogenetic trees for a diverse set of diploid A-genome wheat species (Triticum boeoticum, T. urartu and T. monococcum) based on two unrelated retrotransposon families, BARE-1 and Jeli. BARE-1 belongs to Copia class and has a uniform distribution between common wheat (T. aestivum) genomes of different origin (A, B and D), indicating similar activity in the respective diploid genome donors. Gypsy-class family Jeli was found by us to be an A-genome retrotransposon with >70% copies residing in A genome of hexaploid common wheat, suggesting a burst of transposition in the history of A-genome progenitors. The results indicate that a higher Jeli transpositional activity was associated with T. urartu versus T. boeoticum speciation, while BARE-1 produced more polymorphic insertions during subsequent intraspecific diversification; as an outcome, each retrotransposon provides more informative markers at the corresponding level of phylogenetic relationships. We conclude that multiple retroelement families should be analyzed for an image of evolutionary relationships to be solid and comprehensive.

  6. Temperature field in concrete when in contact with hot liquids

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de.

    1981-09-01

    In an HCDA (Hypothetical Core Disruptive Accident) it is postulated that liquid metal coolants and core materials come in contact with the retaining concrete structure. A mathematical model and an associated computer program was previously developed to describle the transient heat and mass transfer in the concrete. Implementations on the original program-USINT- are included to consider the variations of the thermal conductivity as a function of the temperature. Also a subroutine - PLOTTI - is incorporated to the program for the plotting of the results. The new program - USINTG - is used to calculate the temperature and pressure fields and the water released from concrete structures during a sodium leak simulation and with the concrete structures in contact with liquid sodium. No consideration about chemical reactions involving the sodium when in contact with concrete is considered. (Author) [pt

  7. Lithuanian Quarry Aggregates Concrete Effects of Alkaline Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Aurimas Rutkauskas

    2016-02-01

    Full Text Available Aggregate alkaline corrosion of cement in concrete is going to respond in sodium and potassium hydroxide (lye with active SiO2 found in some aggregates. During this reaction, the concrete has resulted in significant internal stresses which cause deformation of the concrete, cracking and disintegration. The reaction is slow and concrete signs of decomposition appear only after a few months or years. The study used two different aggregates quarries. Studies show that Lithuania gravel contaminated with reactive particles having amorphous silicon dioxide reacting with cement in sodium and potassium hydroxide and the resulting alkaline concrete corrosion. It was found that, according to AAR 2 large aggregates include Group II – potentially reactive because of their expansion after 14 days, higher than 0.1%.

  8. Transient moisture migration in concrete during severe reactor accidents

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Shiina, Y.

    1984-01-01

    In the most severe hypothetical core heatup accidents in High Temperature Gas Cooled Reactors, the heatup of the concrete reactor vessel can result in gas release from degrading concrete which can ultimately lead to containment building failure. This gas release is largely affected by the moisture migration during concrete heatup. Moisture migration in concrete is also of interest in Light Water Reactors (LWR) core meltdown accidents. Therefore, the general problem of moisture migration in a heated concrete slab has been analyzed, including the effect of water evaporating close to the heated surface and recondensing in cooler regions. Results for early phases of core heatup transients are being given. Their implication on the accident progression is being discussed

  9. Long-term analysis of slender concrete structures with cracking

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    A special form of the finite element program, which is based on the equilibrium of forces in various cross sections of the beam together with the principle of virtual work, is presented for solving concrete beam problems. This analytical method uses the newly developed rheological element and exponential algorithm for computing time-dependent deformation and stress distribution in cracked concrete members subjected to sustained loads, temperature, or drying. Temperature and moisture effects on hydration (aging) and creep rate are included. The rate effects of temperature and moisture on the deformation of concrete are also taken into account in the formulation. Numerical examples are used to illustrate the validity of the analysis on concrete beams. Plain and reinforced concrete beams subjected to bending, heating or drying are analyzed and checked against experimental data

  10. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  11. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Since analytical methods are very time consuming different analytical models have been developed. Three methods for plain concrete are presented, where one of the methods is developed by the author. The method is based on three different fracture models. Also two models applicable for lightly reinforced...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...... to describe fracture in concrete are presented. Two of the methods are combined into a power method which is stable for all brittleness numbers and which is able of calculating the entire load-displacement curve even for very ductile beams. This method is used extensively in the rest of the thesis. Chapter 4...

  12. Concrete lunar base investigation

    Science.gov (United States)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  13. Reinforced concrete tomography

    International Nuclear Information System (INIS)

    Mariscotti, M.A.J.; Morixe, M.; Tarela, P.A.; Thieberger, P.

    1997-01-01

    In this paper we describe the technique of reinforced concrete tomography, its historical background, recent technological developments and main applications. Gamma radiation sensitive plates are imprinted with radiation going through the concrete sample under study, and then processed to reveal the presence of reinforcement and defects in the material density. The three dimensional reconstruction, or tomography, of the reinforcement out of a single gammagraphy is an original development alternative to conventional methods. Re-bar diameters and positions may be determined with an accuracy of ± 1 mm 0.5-1 cm, respectively. The non-destructive character of this technique makes it particularly attractive in cases of inhabited buildings and diagnoses of balconies. (author) [es

  14. Drilling waste makes concrete

    International Nuclear Information System (INIS)

    Rosfjord, A.

    1993-01-01

    The article deals with a method of drilling waste reclamation by utilizing the converted oil-containing cuttings from the North Sea in the concrete production in Norway. The oil content is to be removed in an incineration process by heating the cuttings to about 800 o C. The output capacity from the exhaust gas water cooling system is 7500 kW/hour, and is to be used in different industrial heating processes. The remaining content of pollutants in the cleaned exhaust gas outlet corresponds to the required limits with the exception of SO 2 and HCl. In addition, an exhaust gas washing plant is to be installed in the near future designed for the further reduction of pollutants by 90%. The converted raw materials are used as a supplement for lessening the demand of sand and cement in the production of concrete-made pipes. 1 fig

  15. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include in a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behavior of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behavior, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. In nonlinear incremental analysis a potential is usually assumed in incremental material behavior to keep incremental stiffness matrices symmetric. If the proposed generalized set of constitutive equations is restricted to special types of functions, the resulting tangent stiffness is symmetric. Special functions for the various parts are presented, the tangent stiffness of which can easily be derived explicitly by partial differentiation of the related strain-stress relations. Thus the application of the proposed constitutive equations in incremental nonlinear analysis is very effective. The free coefficients of one general set of equations are adjusted step by step to the results of Kupfer's biaxial tests under shorttime loading. With a new and very short bixial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behavior of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked othogonally reinforced concrete response

  16. Numerical Modeling of Water Flow and Salt Transport in Bare Saline Soil Subjected to Transient Evaporation

    Science.gov (United States)

    Geng, X.; Boufadel, M.; Saleh, F. S.

    2014-12-01

    It has been found that evaporation over bare soil plays an important role in subsurface solute transport processes. A numerical study, based on a density-dependent variably saturated groundwater flow model MARUN, was conducted to investigate subsurface flow and salt transport in bare saline aquifers subjected to transient evaporation. The bulk aerodynamic formulation was adopted to simulate transient evaporation rate at ground surface. Subsurface flow pattern, moisture distribution, and salt migration were quantified. Key factors likely affecting this process, including saturated hydraulic conductivity, capillary drive, air humidity, and surrounding water supply, were examined. The results showed that evaporation induced an upward flow pattern, which led to a high saline plume formed beneath the evaporation zone. In absence of surrounding water supply, as the humidity between the ground surface and air tended to equilibrium, evaporation-induced density gradient generated pore water circulations around the plume edge and caused the salt to migrate downwards with "finger" shapes. It was found that capillary properties and atmospheric condition had significant impacts on subsurface moisture distribution and salt migration in response to the evaporation. Larger capillary fringe and/or lower air humidity would allow evaporation to extract more water from the ground. It would induce a larger and denser saline plume formed beneath the evaporation zone. The results also suggested that the presence of the surrounding water supply (represented as a constant water table herein) could provide a steady evaporation rate at the ground surface; meanwhile, in response to the evaporation, a hydraulic gradient was formed from the water supply boundary, which induced an inclined upper saline plume with greater density far from the supply boundary.

  17. Soil water repellency under stones, forest residue mulch and bare soil following wildfire.

    Science.gov (United States)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.

    2017-04-01

    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  18. Modelling bare fallow SOM dynamics on a Chernozem soil in Central Germany

    Science.gov (United States)

    Franko, Uwe; Merbach, Ines

    2017-04-01

    The level of our process understanding about carbon and nitrogen fluxes in soils becomes visible at extreme situations like bare fallow soils. The observed dynamics of soil organic carbon (SOC) and total nitrogen (TN) in the top soil on a 28 years old fallow experiment on Haplic Chernozem in Bad Lauchstädt (Germany) was modelled using the Candy Carbon Balance (CCB) model that in its standard version was previously validated with LTFE data from Central Europe and a tillage experiment in Austria. For this study we selected two treatments of the fallow experiment in Bad Lauchstädt where the soil was kept bare with mechanical or chemical treatments. For this extreme land use (no input of fresh organic matter) the CCB model was improved to include the SOC related change of soil physical parameters and a dynamic handling of the physically stabilized soil organic matter (SOM) pool. The results from observation and modelling reflected the increased SOM turnover due to soil tillage for carbon as well as nitrogen and thus confirmed the modelling approach for non-tillage in CCB. The added sub model for the dynamics of physically stabilized SOM was also verified. The long term stabilized SOM is very important on this site. The modelled size of the physically stabilized SOC pool was about 55% of total SOC and reduced only slowly during the nearly three decades but the implementation of this effect resulted in improved simulation results. Thus we conclude that scenarios that lead to bigger changes of SOM stocks require a modelling approach that acknowledges the interaction between SOM and soil physical properties.

  19. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  20. Numerical simulation of impact tests on reinforced concrete beams

    International Nuclear Information System (INIS)

    Jiang, Hua; Wang, Xiaowo; He, Shuanhai

    2012-01-01

    Highlights: ► Predictions using advanced concrete model compare well with the impact test results. ► Several important behavior of concrete is discussed. ► Two mesh ways incorporating rebar into concrete mesh is also discussed. ► Gives a example of using EPDC model and references to develop new constitutive models. -- Abstract: This paper focuses on numerical simulation of impact tests of reinforced concrete (RC) beams by the LS-DYNA finite element (FE) code. In the FE model, the elasto-plastic damage cap (EPDC) model, which is based on continuum damage mechanics in combination with plasticity theory, is used for concrete, and the reinforcement is assumed to be elasto-plastic. The numerical results compares well with the experimental values reported in the literature, in terms of impact force history, mid-span deflection history and crack patterns of RC beams. By comparing the numerical and experimental results, several important behavior of concrete material is investigated, which includes: damage variable to describe the strain softening section of stress–strain curve; the cap surface to describe the plastic volume change; the shape of the meridian and deviatoric plane to describe the yield surface as well as two methods of incorporating rebar into concrete mesh. This study gives a good example of using EPDC model and can be utilized for the development new constitutive models for concrete in future.

  1. Durable concrete for a waste repository - Measurement of ionic ingress

    International Nuclear Information System (INIS)

    Feldman, R.F.; Beaudoin, J.J.; Philipose, K.E.

    1990-01-01

    A waste repository for the below ground disposal of low level radioactive waste is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for the required 500 year service life. A research program to design durable concrete and predict its service life is in progress. The degradation of the concrete depends to a large extent on the rate of ingress of corrosive agents. Penetration of chloride and sulfate ions are particularly relevant. Twenty mix formulations were developed to create various types and qualities of concrete, and to study their behavior in different site environmental conditions. A total of 1,000 concrete specimens are being exposed at 20C and 45C to 25 different combinations of the corrosive agents including CO 2 . Procedures to measure the ionic profiles and to determine the factors controlling diffusion of the ions in the various concretes have been developed. Results of selected concrete systems exposed to chloride and sulfate solutions for 1 year are presented and discussed in terms of pore structure and permeability parameters of the concrete

  2. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  3. Hypervelocity impact of concrete

    International Nuclear Information System (INIS)

    Watson, A.J.; Anderson, W.F.; Archer, B.

    1982-01-01

    Blocks of concrete and various other materials were impacted by high speed copper jets at the centre of one face, the resulting transient phenomena were measured using ultra high speed photography and various electrical signal transducers. Measurements were made of the jet velocity, penetration rate, crack velocity and initiation time, and strain pulse propagation. Post test measurements were made using electron microscopy, ultra sonics and stereoscopic photography. (orig.) [de

  4. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  5. Sodium-concrete reactions

    International Nuclear Information System (INIS)

    Gadd, P.G.

    1982-09-01

    Reaction products of all the major constituents of commercial concrete with liquid sodium have been identified using X-Ray Powder Diffraction. Eight different aggregate materials were chosen to represent the main rock classes available and Ordinary Portland Cement was used throughout. A Differential Thermal Analysis apparatus which enabled continuous stirring of the reactants was designed to improve contact between the powdered concrete components and the liquid sodium. Heats of reaction were calculated from peak areas, the apparatus having been calibrated using reactions of sodium with simple binary oxides whose heats of reaction were known. The heat evolution from aggregates was rationalised on the basis of their mineralogical composition, thus providing a means of choosing an optimum aggregate for use in the concrete of a LMFBR. The reaction of SiO 2 with liquid sodium was shown to depend on the oxygen concentration of the sodium. Reaction products are identified. The reaction of Al 2 O 3 with sodium has been shown also to depend on the oxygen concentration. Reaction products are identified. The evolution of hydrogen during a sodium-cement reaction has been studied using an electrochemical hydrogen meter and the penetration of the liquid metal into cement blocks was also investigated. (author)

  6. Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete

    Directory of Open Access Journals (Sweden)

    Hafez E. Elyamany

    2014-06-01

    Full Text Available The objective of this study is to evaluate the effect of various filler types on the fresh and hardened properties of self-compacting concrete (SCC and Flow-able concrete. For this purpose, two groups of fillers were selected. The first group was pozzolanic fillers (silica fume and metakaolin while the second group was non-pozzolanic fillers (limestone powder, granite dust and marble dust. Cement contents of 400 kg/m3 and 500 kg/m3 were considered while the used filler material was 7.5%, 10% and 15%. Slump and slump flow, T50, sieve stability and bleeding tests were performed on fresh concrete. The studied hardened properties included unit weight, voids ratio, porosity, and water absorption and cube compressive strength. In addition, thermo-gravimetric analysis, X-ray diffraction analysis and scanning electronic microscope were performed. The test results showed that filler type and content have significant effect on fresh concrete properties where non-pozzolanic fillers improve segregation and bleeding resistance. Generally, filler type and content have significant effect on unit weight, water absorption and voids ratio. In addition, non-pozzolanic fillers have insignificant negative effect on concrete compressive strength. Finally, there was a good correlation between fresh concrete properties and hardened concrete properties for SCC and Flow-able concrete.

  7. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  8. Inclusion of Solar Elevation Angle in Land Surface Albedo Parameterization Over Bare Soil Surface.

    Science.gov (United States)

    Zheng, Zhiyuan; Wei, Zhigang; Wen, Zhiping; Dong, Wenjie; Li, Zhenchao; Wen, Xiaohang; Zhu, Xian; Ji, Dong; Chen, Chen; Yan, Dongdong

    2017-12-01

    Land surface albedo is a significant parameter for maintaining a balance in surface energy. It is also an important parameter of bare soil surface albedo for developing land surface process models that accurately reflect diurnal variation characteristics and the mechanism behind the solar spectral radiation albedo on bare soil surfaces and for understanding the relationships between climate factors and spectral radiation albedo. Using a data set of field observations, we conducted experiments to analyze the variation characteristics of land surface solar spectral radiation and the corresponding albedo over a typical Gobi bare soil underlying surface and to investigate the relationships between the land surface solar spectral radiation albedo, solar elevation angle, and soil moisture. Based on both solar elevation angle and soil moisture measurements simultaneously, we propose a new two-factor parameterization scheme for spectral radiation albedo over bare soil underlying surfaces. The results of numerical simulation experiments show that the new parameterization scheme can more accurately depict the diurnal variation characteristics of bare soil surface albedo than the previous schemes. Solar elevation angle is one of the most important factors for parameterizing bare soil surface albedo and must be considered in the parameterization scheme, especially in arid and semiarid areas with low soil moisture content. This study reveals the characteristics and mechanism of the diurnal variation of bare soil surface solar spectral radiation albedo and is helpful in developing land surface process models, weather models, and climate models.

  9. 76 FR 18073 - Track Safety Standards; Concrete Crossties

    Science.gov (United States)

    2011-04-01

    ... wide gage or rail rollover derailment with the inherent risk of injury to railroad personnel and... giving rise to this risk may include concrete tie rail seat abrasion, track curvature, and operation of...

  10. Phase I development of an aesthetic, precast concrete bridge rail.

    Science.gov (United States)

    2012-02-01

    Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...

  11. Operational features of decorative concrete

    Science.gov (United States)

    Bazhenova, Olga; Kotelnikov, Maxim

    2018-03-01

    This article deals with the questions of creation and use of decorative and finishing concrete and mortar. It has been revealed that the most effective artificial rock-imitating stone materials are those made of decorative concrete with the opened internal structure of material. At the same time it is important that the particles of decorative aggregate should be distributed evenly in the concrete volume. It can be reached only at a continuous grain-size analysis of the aggregate from the given rock. The article tackles the necessity of natural stone materials imitation for the cement stone color to correspond to the color of the rock. The possibility of creation of the decorative concrete imitating rocks in the high-speed turbulent mixer is considered. Dependences of durability and frost resistance of the studied concrete on the pore size and character and also parameters characterizing crack resistance of concrete are received.

  12. A Study on the Reuse of Plastic Concrete Using Extended Set-Retarding Admixtures.

    Science.gov (United States)

    Lobo, Colin; Guthrie, William F; Kacker, Raghu

    1995-01-01

    The disposal of ready mixed concrete truck wash water and returned plastic concrete is a growing concern for the ready mixed concrete industry. Recently, extended set-retarding admixtures, or stabilizers, which slow or stop the hydration of portland cement have been introduced to the market. Treating truck wash-water or returned plastic concrete with stabilizing admixtures delays its setting and hardening, thereby facilitating the incorporation of these typically wasted materials in subsequent concrete batches. In a statistically designed experiment, the properties of blended concrete containing stabilized plastic concrete were evaluated. The variables in the study included (1) concrete age when stabilized, (2) stabilizer dosage, (3) holding period of the treated (stabilized) concrete prior to blending with fresh ingredients, and (4) amount of treated concrete in the blended batch. The setting time, strength, and drying shrinkage of the blended concretes were evaluated. For the conditions tested, batching 5 % treated concrete with fresh material did not have a significant effect on the setting time, strength, or drying shrinkage of the resulting blended concrete. Batching 50 % treated concrete with fresh materials had a significant effect on the setting characteristics of the blended cocnrete, which in turn affected the water demand to maintain slump. The data suggests that for a known set of conditions, the stabilizer dosage can be optimized within a relatively narrow range to produce desired setting characteristics. The strength and drying shrinkage of the blended concretes were essentially a function of the water content at different sampling ages and the relationship followed the general trend of control concrete.

  13. Concrete workability and fibre content

    OpenAIRE

    Vikan, Hedda

    2007-01-01

    Research report Parameters influencing the workability of fibre concrete and maximum fibre content are given in this state of the art report along with the range of fibre types available on today’s market. The study reveales that new placing techniques and production methods are crucial in order to increase fibre content and concrete strength. Achieving the same mechanical properties as traditionally reinforced concrete will probably also demand changes of the matrix. Finally, reco...

  14. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  15. Structural assessment of concrete bridges

    OpenAIRE

    Plos, Mario; Gylltoft, Kent; Lundgren, Karin; Cervenka, Jan; Herwig, Andrin; Brühwiler, Eugen; Thelandersson, Sven; Elfgren, Lennart; Rosell, Ebbe

    2008-01-01

    The paper summarizes the work on concrete bridges performed in the EU project Sustainable Bridges. The work provides enhanced assessment methods that are able to provide higher load-carrying capacities and longer fatigue lives for exixixting concrete railway bridges. The work is also presented in a Guideleine available at http://www.sustainablebridges.net/ The paper summarizes the work on concrete bridges performed in the EU project Sustainable Bridges. The work provides enhanced assessmen...

  16. Flexible formwork for concrete structures

    OpenAIRE

    Orr, John

    2012-01-01

    Concrete, our most widely used construction material, is a fluid that offers the opportunity to economically create structures of almost any geometry. Yet this unique fluidity is seldom capitalised on, with concrete instead being cast into rigid prismatic moulds to create high material use structures with large carbon footprints. Our rate of concrete consumption means that cement manufacture alone is estimated to account for some 5% of global Carbon Dioxide emissions.This dissertation shows t...

  17. Delayed colon perforation after palliative treatment for rectal carcinoma with bare rectal stent: a case report

    International Nuclear Information System (INIS)

    Han, Young Min; Lee, Jeong Min; Lee, Tae Hoon

    2000-01-01

    In order to relieve mechanical obstruction caused by rectal carcinoma, a bare rectal stent was inserted in the sigmoid colon of a 70-year-old female. The procedure was successful, and for one month the patient made good progress. She then complained of abdominal pain, however, and plain radiographs of the chest and abdomen revealed the presence of free gas in the subdiaphragmatic area. Surgical findings showed that a spur at the proximal end of the bare rectal stent had penetrated the rectal mucosal wall. After placing a bare rectal stent for the palliative treatment of colorectal carcinoma, close follow-up to detect possible perforation of the bowel wall is necessary

  18. Bare pomeron in perturbative QCD and small x behavior of gluon distributions

    International Nuclear Information System (INIS)

    Collins, J.C.

    1989-01-01

    The solution of the integral equation describing the bare pomeron in perturbative QCD with asymptotic freedom corrections taken into account is studied. Upper and lower bounds for the bare pomeron intercept are obtained in terms of the QCD coupling constant at some large scale. The intercept is substantially above unity. After the connection with the operator product expansion is discussed, it is shown that the behavior of parton distribution functions at small x is governed by the intercept of the bare pomeron. Thus they are steeper than 1/x by a power of x. (orig.)

  19. Concrete-Filled Steel Tube Arch Bridges in China

    Directory of Open Access Journals (Sweden)

    Jielian Zheng

    2018-02-01

    Full Text Available In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key construction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world’s longest CFST arch bridge—the First Hejiang Yangtze River Bridge. The main construction technologies of reinforced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges—the Guangxi Yongning Yong River Bridge and the Yunnan–Guangxi Railway Nanpan River Bridge—is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges. Keywords: Concrete-filled steel tube (CFST arch bridge, Steel-reinforced concrete arch bridge, Cable-stayed fastening-hanging cantilever assembly, Vacuum-assisted pouring in-tube concrete, Adjusting load by stay cables

  20. Radon emanation fractions from concretes containing fly ash and metakaolin.

    Science.gov (United States)

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling. © 2013.

  1. Influence of adjuvants on the properties of underwater cast concrete on base of cement (HRS 32.5 N

    Directory of Open Access Journals (Sweden)

    Rouis Mohamed Jamel

    2014-04-01

    *The characterization tests of concrete in the hardened state including destructive and non destructive tests performed on specimens made in concrete (based on portland cement, with varying dosages and adjuvants at different times (28d and 90d.

  2. Drying of concrete. Part I: A comparison of instruments for measuring the relative humidity in concrete structures

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Christensen, Søren Lolk

    1998-01-01

    The paper describes and evaluates five different instruments for measuring the relative humidity (RH) in concrete structures. The instruments work according to different principles. The evaluation of the instruments includes tests for linearity, drift over time, hysteresis and repeatability...

  3. Conceptual model for concrete long time degradation in a deep nuclear waste repository

    International Nuclear Information System (INIS)

    Lagerblad, B.; Traegaardh, J.

    1994-02-01

    This report is mainly a state-of-the-art report of concrete long time durability in the environment expected in a deep site underground nuclear waste repository in Swedish crystalline bedrock. The report treats how the concrete and the surrounding groundwater will interact and how they will be affected by cement chemistry, type of aggregate etc. The different mechanisms for concrete alteration treated include sulphate attack, carbonation, chloride attack, alkali-silica reaction and leaching phenomena. In a long time perspective, the chemical alterations in concrete is mainly governed by the surrounding groundwater composition. After closure the composition of the groundwater will change character from a modified meteoric to a saline composition. Therefore two different simulated groundwater compositions have been used in modelling the chemical interaction between concrete and groundwater. The report also includes a study of old and historical concrete which show observations concerning recrystallization phenomena in concrete. 72 refs, 39 figs

  4. Vision 2030. A Vision for the U.S. Concrete Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-01-01

    On September 27, 2000, the concrete industry's Strategic Development Council hosted a Concrete Vision Workshop in Chicago, Illinois. Meeting participants included over 50 concrete, cement, and other allied industry chief executive officers, presidents, vice-presidents, laboratory and industry research managers, and government representatives. Participants discussed the state of the concrete industry 30 years ago, the state of the current industry, and their vision for the United States concrete industry in 2030. Moreover, they identified specific goals to achieve the industry's Vision 2030. This document, Vision 2030, is the product of that workshop and the comments received after a broad industry review.

  5. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi

    2015-01-01

    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  6. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  7. Transport properties of self-consolidating concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sonebi, M.; Nanukuttan, S. [Queens University Belfast, Belfast (United Kingdom). School of Planning Architecture & Civil Engineering

    2009-03-15

    This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscosity-modifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP give lower permeability, properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher water-cement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

  8. Tension tests of concrete containment wall elements

    International Nuclear Information System (INIS)

    Schultz, D.M.; Julien, J.T.; Russel, H.G.

    1984-01-01

    Tension tests of concrete containment wall elements were conducted as part of a three-phase research program sponsored by the Electric Power Research Institute (EPRI). The objective of the EPRI experimental/analytical program is twofold. The first objective is to provide the utility industry with a test-verified analytical method for making realistic estimates of actual capacities of reinforced and prestressed concrete containments under internal over-pressurization from postulated degraded core accidents. The second objective is to determine qualitative and quantitative leak rate characteristics of typical containment cross-sections with and without penetrations. This paper covers the experimental portion to the EPRI program. The testing program for Phase 1 included eight large-scale specimens representing elements from the wall of a containment. Each specimen was 60-in (1525-mm) square, 24-in (610-mm) thick, and had full-size reinforcing bars. Six specimens were representative of prototypical reinforced concrete containment designs. The remaining two specimens represented prototypical prestressed containment designs. Various reinforcement configurations and loading arrangements resulted in data that permit comparisons of the effects of controlled variables on cracking and subsequent concrete/reinforcement/liner interaction in containment elements. Subtle differences, due to variations in reinforcement patterns and load applications among the eight specimens, are being used to benchmark the codes being developed in the analytical portion of the EPRI program. Phases 2 and 3 of the test program will examine leak rate characteristics and failure mechanisms at penetrations and structural discontinuities. (orig.)

  9. GPR measurements of attenuation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  10. New rheological model for concrete structural analysis

    International Nuclear Information System (INIS)

    Chern, J.C.

    1984-01-01

    Long time deformation is of interest in estimating stresses of the prestressed concrete reactor vessel, in predicting cracking due to shrinkage or thermal dilatation, and in the design of leak-tight structures. Many interacting influences exist among creep, shrinkage and cracking for concrete. An interaction which researchers have long observed, is that at simultaneous drying and loading, the deformation of a concrete structure under the combined effect is larger than the sum of the shrinkage deformation of the structure at no load and the deformation of the sealed structure. The excess deformation due to the difference between observed test data and conventional analysis is regarded as the Pickett Effect. A constitutive relation explaining the Pickett Effect and other similar superposition problems, which includes creep, shrinkage (or thermal dilation), cracking, aging was developed with an efficient time-step numerical algorithm. The total deformation in the analysis is the sum of strain due to elastic deformation and creep, cracking and shrinkage with thermal dilatation. Instead of a sudden stress reduction to zero after the attainment of the strength limit, the gradual strain-softening of concrete (a gradual decline of stress at increasing strain) is considered

  11. GPR measurements of attenuation in concrete

    International Nuclear Information System (INIS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-01-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups

  12. Properties of Low Strength Concrete made with Recycled Concrete ...

    African Journals Online (AJOL)

    Conventional concrete aggregate consists of sand and various sizes of stones. In recent years, there has been a growing interest in substituting conventional aggregates with recycled materials. The present investigation has been carried out to study the effect of fly ash on the mechanical properties of low strength concrete ...

  13. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  14. FINE-GRAINEDCELLULAR CONCRETE CREEP ANALYSIS TECHNIQUE WITH CONSIDERATION FORCARBONATION

    Directory of Open Access Journals (Sweden)

    M. A. Gaziev

    2015-01-01

    Full Text Available The article considers the creep and creep deformation analysis technique in fine-grainedcellular concrete with consideration for carbonation and assurance requirements for the repairing properties and seismic stability. The procedure for determining the creep of fine-grainedcellular concrete is proposed with account of its carbonationby atmospheric carbon dioxide. It has been found theoretically and experimentally that the proposed technique allows obtaining reproducible results and can be recommended for creep determination of fine-grainedcellular concretes, including repairingones, taking into account their carbonation.

  15. A study on the water permeability of concrete structures

    International Nuclear Information System (INIS)

    Loadsman, R.V.C.; Acres, D.H.; Stokes, C.J.; Wadeson, L.

    1988-03-01

    This report forms part of the DoE's research programme on the disposal of nuclear waste. The information available on the permeability of concrete and the effects of various factors on this value are reviewed. The effect of defects on the overall permeability of concrete structures is examined and the recorded performance of a range of existing concrete structures is considered with identification of some of the factors that are significant in practice. Deficiencies in the information available on this subject are identified and recommendations for further work are made including a list of structures suitable for future monitoring. (author)

  16. Concrete pedestals for high-performance semiconductor production equipment

    Science.gov (United States)

    Vogen, Wayne; Franklin, Craig L.; Morneault, Joseph

    1999-09-01

    Concrete pedestals have many vibration and stiffness characteristics that make them a superior choice for sensitive semiconductor production equipment including scanners, scanning electron microscopes, focused ion beam millers and optical inspection equipment. Among the advantages of concrete pedestals are high inherent damping, monolithic construction that eliminates low stiffness joints common in steep pedestals, ability to reuse and ease of installation. Steel pedestals that have plates attached to the top of the frame are easily excited by acoustic excitation, especially in the range from 50 Hertz to 400 Hertz. Concrete pedestals do not suffer from this phenomenon because of the high mass and damping of the top surface.

  17. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  18. Assessing the adequacy of the bare optical potential in near-barrier fusion calculation

    International Nuclear Information System (INIS)

    Canto, L.F.; Gomes, P.R.S.; Lubian, J.; Hussein, M.S.; Lotti, P.

    2014-01-01

    We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy-ion fusion analysis and coupled-channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potential from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. Although this may seem trivial, several recent papers use different bare potentials and reach different conclusions, especially when weakly bound systems are considered and possible relatively small fusion cross section enhancements or suppressions are found. We show also that the barrier parameters taken from above-barrier data may be very wrong. (orig.)

  19. Exit-channel distorting potentials in heavy-ion inelastic scattering and equivalent bare optical potential

    International Nuclear Information System (INIS)

    Kubo, K.-I.; Hodgson, P.E.

    1981-01-01

    The effect of distorting potentials on transitions in the heavy-ion inelastic 16 O on 40 Ca reaction at 60 MeV has been investigated using the DWBA approximation. The polarization potential due to the nuclear and Coulomb excitations was calculated based on the plane wave assumption and the bare imaginary potential calculated by subtracting the polarization potential from the elastic optical potential. The bare potential was found to compare well with a phenomenological channel-coupling calculation. This bare potential was used for the DWBA calculation and the result found to be quite consistent with those obtained by the exact channel-coupling calculation. The shape of the bare potential compared with the elastic optical imaginary potential is discussed with reference to those of the nuclear plus Coulomb excitation contributions and the nuclear-Coulomb cross term, which interfere destructively. (U.K.)

  20. Potentiality, Sovereignty and Bare Life A Critical Reading of Giorgio Agamben

    Directory of Open Access Journals (Sweden)

    German Eduardo Primera Villamizar

    2014-12-01

    Full Text Available This article presents a critical account of Agamben’s understanding of the logic of sovereignty and of the notion bare life, particularly Agamben’s approach to the paradox of sovereignty and its relation to Aristotle’s metaphysical category of potentiality. With regards to bare life, it brings together an analysis of the figure of the homo sacer with an account of Agamben’s use of paradigms as methodological tools. The first part of the paper argues that Agamben ontologises sovereignty by dramatising the paradox of its structure as im-potentiality. The second part claims that even though an account of Agamben’s methodology serves to respond to the different critiques that his notion of bare life has raised, Agamben’s notions of sovereignty and of bare life ultimately rely on Schmitt’s decisionism.

  1. Assessing the adequacy of the bare optical potential in near-barrier fusion calculation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L.F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, CP 68528, Rio de Janeiro (Brazil); Gomes, P.R.S.; Lubian, J. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi, R.J. (Brazil); Hussein, M.S. [Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo-SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo (Brazil); Lotti, P. [INFN, Padova (Italy)

    2014-05-15

    We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy-ion fusion analysis and coupled-channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potential from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. Although this may seem trivial, several recent papers use different bare potentials and reach different conclusions, especially when weakly bound systems are considered and possible relatively small fusion cross section enhancements or suppressions are found. We show also that the barrier parameters taken from above-barrier data may be very wrong. (orig.)

  2. Bamboo reinforced concrete slab with styrofoam lamina filler as solution of lightweight concrete application

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Energy resilience is becoming more important nowadays especially in the field of building sustainability. Some implementations can be carried out including using recycled materials instead of nonrenewable materials such as steel. Hence, one of the investigation conducted in this paper is replacing steel reinforcement with bamboo bars and using recycled materials such as Styrofoam with the aim of producing a concrete element structure that is lighter and more economical. In this research stage, flexural strength test on bamboo reinforced concrete slab with Styrofoam lamination filler was conducted. The results showed that the flexural strength of specimens decreased by 15% but with the weight advantage of 20% less compared with those of normal reinforced concrete slab with the same dimension. It is considered good performance in practical design context, since the nominal flexural capacity of RC slab when designed with minimum reinforcement are usually much higher than the required moment.

  3. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  4. J-plane structure of the 'cylinder'; slope and intercept of the bare pomeron

    International Nuclear Information System (INIS)

    Bishari, M.

    1975-01-01

    An integral equation is derived and investigated for the 'cylinder' with full t-dependence. In contrast to the pure pole planar model, the 'cylinder' contains, in addition to the bare pomeron pole, also a Reggeon-Reggeon cut. The strongly correlated slope and intercept of the bare pomeron have the correct observed values. Brief comments are made on the concept of 'asymptotic planarity'. (Auth.)

  5. Comparative environmental assessment of natural and recycled aggregate concrete.

    Science.gov (United States)

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. CONCRETE PROPERTIES IMPROVEMENT OF SLAB TRACKS USING CHEMICAL ADDITIVES

    Directory of Open Access Journals (Sweden)

    V. V. Pristinskaya

    2015-11-01

    Full Text Available Purpose. On the Railways of Ukraine a very large number of slab tracks are operated with cracks. Many scientific works of previous years are dedicated to improving the design of slab tracks. The main causes of defects are: poor exploitation of the track; insufficient physic-mechanical characteristics of concrete; poor quality of initial materials. It is therefore necessary to develop an optimum concrete mix for the manufacture of these concrete products. Methodology. To assess the impact of individual factors and effects of their interactions on properties of concrete mix and concrete method of experimental and statistical modeling was used. At this, methodological fundamentals of mathematical experiment planning in concrete technology and modern methods of optimization of composite materials were taking into account. Based on the obtained data during the planned experiment conducting, including15 studies and using the computer program MathCad, were obtained the regression equations, which describe the relevant physical and mechanical properties of concrete. On the basis of the equations with the help of computer program MATLAB R2012b the graphs were drawn, illustrating the dependences of system response from the changes of two factors at a fixed value of the third factor. Findings. Firstly was the analysis of cracks that occur in the process of operation in the constructions of slab tracks. Further reasons of possible occurrence of these cracks were presented. In the process of the conducted research the author has concluded that for rational concrete mix development it is necessary to conduct the planned experiment with the use of quality materials. It was established that to increase the strength, chemical additives should be added in to concrete mix, it will let reduce cement amount. Originality. Experiments proved the usage of modern chemical additives in order to improve the properties of concrete. Models were developed, reflecting

  7. The concrete canister program

    International Nuclear Information System (INIS)

    Ohta, M.M.

    1978-02-01

    In the spring of 1974, WNRE began development and demonstration of a dry storage concept, called the concrete canister, as a possible alternative to storage of irradiated CANDU fuel in water pools. The canister is a thick-walled concrete monolith containing baskets of fuel in the dry state. The decay heat from the fuel is dissipated to the environment by natural heat transfer. Four canisters were designed and constructed. Two canisters containing electric heaters have been subjected to heat loads of 2.5 times the design, ramp heat-load cycling, and simulated weathering tests. The other two canisters were loaded with irradiated fuel, one containing fuel bundles of uniform decay heat and the other containing bundles of non-uniform decay heat in a non-symmetrical radial and axial array. The collected data were used to verify the analytical tools for prediction of effectiveness of heat transfer and radiation shielding and to verify the design of the basket and canisters. The demonstration canisters have shown that this concept is a viable alternative to water pools for the storage of irradiated CANDU fuel. (author)

  8. Fiber-Reinforced Polymer Composite Materials Systems to Enhance Reinforced Concrete Structures

    National Research Council Canada - National Science Library

    Marshall, Orange

    1998-01-01

    .... Investigations included shear rehabilitation techniques for concrete beams, in field test methods to determine the bond strength of FRP composites, and low temperature evaluation of FRP performance...

  9. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  10. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  11. Urban Experiments and Concrete Utopias

    DEFF Research Database (Denmark)

    Andersson, Lasse

    2009-01-01

    The paper explores how concrete urban experiments can challenge the pecuniary version of the experience city and stimulate a locally rooted and democratic version of an experience based city using heterotopias and concrete utopias as the link between top down planning and bottom up experiments...

  12. Radiographic testing in concrete structures

    International Nuclear Information System (INIS)

    Oliveira, D. de

    1987-01-01

    The radiographic testing done in concrete structures is used to analyse the homogeneity, position and corrosion of armatures and to detect discontinuity in the concrete such as: gaps, cracks and segregations. This work develops a Image quality Indicator (IQI) with an adequated sensibility to detect discontinuites based on BS4408 norm. (E.G.) [pt

  13. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  14. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  15. The steel–concrete interface

    DEFF Research Database (Denmark)

    Angst, Ueli M.; Geiker, Mette Rica; Michel, Alexander

    2017-01-01

    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics...

  16. Fatigue of Concrete Armour Units

    DEFF Research Database (Denmark)

    Sørensen, N. B.; Burcharth, H. F.; Liu, Z.

    1995-01-01

    In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed.......In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed....

  17. Urban heritage, building maintenance : Concrete

    NARCIS (Netherlands)

    Verhoef, L.G.W.

    1999-01-01

    Concrete as a conglomerate of sand, stone and a binder, is a very old material indeed. In the Roman period earth from Puozzoli, together with lime and water could bind the sand and the stones to form a conglomerate that has an affmity to our modem concrete. Later, in the more northem areas of

  18. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  19. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  20. Qualifying concrete for a low-level waste repository

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1990-06-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at Chalk River Nuclear Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. Durability of concrete depends on its resistance of deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of ions, especially chlorides, sulphate and carbonate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on twelve months of diffusion testing on laboratory specimens

  1. Carbonation rates of concretes containing high volume of pozzolanic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kritsada Sisomphon; Lutz Franke [Technical University Hamburg-Harburg, Hamburg (Germany). Department of Building Physics and Building Materials

    2007-12-15

    The project studies the influence of fly ash and slag replacement on the carbonation rate of the concrete. The experimental work includes samples of pure Portland cement concrete (CEM I 42,5 R), blast-furnace slag concrete (CEM III-B), and fly ash blended concrete. To reveal the effect of curing on carbonation rate, the concretes were exposed to various submerged curing periods during their early ages. After that, the samples were subsequently exposed in the climate room controlling 20 {sup o}C and 50% RH until the testing date when the samples had an age of 5 months. Then, the accelerated carbonation test controlling the carbon dioxide concentration of 3% by volume, with 65% relative humidity were started to perform. The depth of carbonation can be observed by spraying a phenolphthalein solution on the fresh broken concrete surface. Finally, according to Fick's law of diffusion theoretical equations are proposed as a guide for estimating the carbonation rate of fly ash and blast-furnace slag concretes exposed under natural conditions from the results from accelerated carbonation tests.

  2. Diagnosing delayed ettringite formation in concrete structures

    International Nuclear Information System (INIS)

    Thomas, Michael; Folliard, Kevin; Drimalas, Thano; Ramlochan, Terry

    2008-01-01

    There has been a number of cases involving deteriorated concrete structures in North America where there has been considerable controversy surrounding the respective contributions of alkali-silica reaction (ASR) and delayed ettringite formation (DEF) to the observed damage. The problem arises because the macroscopic symptoms of distress are not unequivocal and microscopical examinations of field samples often reveal evidence of both processes making it difficult to separate the individual contributions. This paper presents the results of an investigation of a number of concrete columns carrying a raised expressway in North America; prior studies had implicated both DEF and ASR as possible causes of deterioration. Although the columns were not deliberately heat-cured, it is estimated that the peak internal temperature would have exceeded 70 deg. C and perhaps even 80 deg. C, in some cases. The forensic investigation included scanning electron microscopy with energy-dispersive X-ray analysis and expansion testing of cores extracted from the structure. Small-diameter cores stored in limewater expanded significantly (0.3 to 1.3%) and on the basis of supplementary tests on laboratory-produced concrete specimens it was concluded that expansion under such conditions is caused by DEF as the conditions of the test will not sustain ASR. In at least one column, DEF was diagnosed as the sole contributory cause of damage with no evidence of any contribution from ASR or any other deterioration process. In other cases, both ASR and DEF were observed to have contributed to the apparent damage. Of the columns examined, only concrete containing fly ash appeared to be undamaged. The results of this study confirm that, under certain conditions, the process of DEF (acting in isolation of other processes) can result in significant deterioration of cast-in-place reinforced concrete structures

  3. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  4. Survey of concrete waste forms

    International Nuclear Information System (INIS)

    Moore, J.G.

    1981-01-01

    The incorporation of radioactive waste in cement has been widely studied for many years. It has been routinely used at nuclear research and production sites for some types of nuclear waste for almost three decades and at power reactor plants for nearly two decades. Cement has many favorable characteristics that have contributed to its popularity. It is a readily available material and has not required complex and/or expensive equipment to solidify radioactive waste. The resulting solid products are noncombustible, strong, radiation resistant, and have reasonable chemical and thermal stability. As knowledge increased on the possible dangers from radioactive waste, requirements for waste fixation became more stringent. A brief survey of some of the research efforts used to extend and improve cementitious waste hosts to meet these requirements is given in this paper. Selected data are presented from the rather extensive study of the applicability of concrete as a waste form for Savannah River defense waste and the use of polymer impregnation to reduce the leachability and improve the durability of such waste forms. Hot-pressed concretes that were developed as prospective host solids for high-level wastes are described. Highlights are given from two decades of research on cementitious waste forms at Oak Ridge National Laboratory. The development of the hydrofracture process for the disposal of all locally generated radioactive waste led to a process for the disposal of I-129 and to the current research on the German in-situ solidification process for medium-level waste and the Oak Ridge FUETAP process for all classes of waste including commercial and defense high-level wastes. Finally, some of the more recent ORNL concepts are presented for the use of cement in the disposal of inorganic and biological sludges, waste inorganic salts, trash, and krypton

  5. POROUS STRUCTURE OF ROAD CONCRETE

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such structural components as crystal intergrowth, tobermorite gel, incompletely hydrated cement grains and porous space. The most important technological factors that influence on formation of cement stone microstructure are chemical and mineralogical cement composition, its grinding fineness, water-cement ratio and curing condition. Specific cement stone microstructure is formed due to interrelation of these factors. Cement stone is a capillary-porous body that consists of various solid phases represented predominantly by sub-microcrystals of colloidal dispersion. The sub-microcrystals are able adsorptively, osmotically and structurally to withhold (to bind some amount of moisture. Protection of road concrete as a capillary-porous body is considered as one of the topical issues. The problem is solved with the help of primary and secondary protection methods. Methods of primary protection are used at the stage of designing, preparation and placing of concrete. Methods of secondary protection are applied at the operational stage of road concrete pavement. The paper considers structures of concrete solid phase and characteristics of its porous space. Causes of pore initiation, their shapes, dimensions and arrangement in the concrete are presented in the paper. The highest hazard for road concrete lies in penetration of aggressive liquid in it and moisture transfer in the cured concrete. Water permeability of concrete characterizes its filtration factor which

  6. Properties of concretes produced with waste concrete aggregate

    International Nuclear Information System (INIS)

    Topcu, Ilker Bekir; Sengel, Selim

    2004-01-01

    An environmentally friendly approach to the disposal of waste materials, a difficult issue to cope with in today's world, would only be possible through a useful recycling process. For this reason, we suggest that clearing the debris from destroyed buildings in such a way as to obtain waste concrete aggregates (WCA) to be reused in concrete production could well be a partial solution to environmental pollution. For this study, the physical and mechanical properties along with their freeze-thaw durability of concrete produced with WCAs were investigated and test results presented. While experimenting with fresh and hardened concrete, mixtures containing recycled concrete aggregates in amounts of 30%, 50%, 70%, and 100% were prepared. Afterward, these mixtures underwent freeze-thaw cycles. As a result, we found out that C16-quality concrete could be produced using less then 30% C14-quality WCA. Moreover, it was observed that the unit weight, workability, and durability of the concretes produced through WCA decreased in inverse proportion to their endurance for freeze-thaw cycle

  7. Preliminary model for core/concrete interactions. [PWR and BWR

    Energy Technology Data Exchange (ETDEWEB)

    Murfin, W.B.

    1977-08-01

    A preliminary model is described for computing the rate of penetration of concrete by a molten LWR core. Among the phenomena included are convective stirring of the melt by evolved gases, admixture of concrete decomposition products to the melt, chemical reactions, radiative heat loss, and variation of heat transfer coefficients with local pressure. The model is most applicable to a two-phase melt (metallic plus oxidic) having a fairly high metallic content.

  8. DURABILITY OF ASPHALT CONCRETE MIXTURES USING DOLOMITE AGGREGATES

    Directory of Open Access Journals (Sweden)

    Imad Al-Shalout

    2015-12-01

    Full Text Available This study deals with the durability of asphalt concrete, including the effects of different gradations, compaction temperatures and immersion time on the durability potential of mixtures. The specific objectives of this study are: to investigate the effect of compaction temperature on the mechanical properties of asphalt concrete mixtures; investigate the effect of bitumen content and different aggregate gradations on the durability potential of bituminous mixtures.

  9. Method of erecting a steel concrete support for mining works

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, A.M.; Khusid, M.B.

    1981-09-10

    The method for erecting a steel concrete support for mining works, which includes assembling the external steel ring of the support, filling the fastening space behind it with a binding agent and building up the internal ring of the support using concrete, is characterized by an arrangement whereby in order to increase the weight-bearing capacity of the support after assembly, the steel ring is subjected to preliminary compression by filling the fastening space with a binding agent under pressure.

  10. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review

    Directory of Open Access Journals (Sweden)

    Rawaz Kurda

    2018-04-01

    Full Text Available This paper presents an overview of previous studies on the environmental impact (EI and toxicity of producing recycled concrete aggregates (RCA, fly ash (FA, cement, superplasticizer, and water as raw materials, and also on the effect of replacing cement and natural aggregates (NA with FA and RCA, respectively, on the mentioned aspects. EI and toxicity were analysed simultaneously because considering concrete with alternative materials as sustainable depends on whether their risk assessment is high. Therefore, this study mainly focuses on the cradle-to-gate EI of one cubic meter of concrete, namely abiotic depletion potential (ADP, global warming potential (GWP, ozone depletion potential (ODP, photochemical ozone creation (POCP, acidification potential (AP, eutrophication potential (EP, non-renewable energy (PE-NRe and renewable energy (PE-Re. In terms of toxicity, leachability (chemical and ecotoxicological characterization was considered. The results also include the economic performance of these materials, and show that the incorporation of FA in concrete significantly decreases the EI and cost of concrete. Thus, the simultaneous incorporation of FA and RCA decrease the EI, cost, use of landfill space and natural resources extraction. Nonetheless, the leaching metals of FA decrease when they are incorporated in concrete. Relative to FA, the incorporation of RCA does not significantly affect the EI and cost of concrete, but it significantly reduces the use of landfill space and the need of virgin materials. Keywords: Materials science, Environmental science, Industry, Economics, Safety engineering

  11. On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles

    Science.gov (United States)

    Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.

    2017-11-01

    At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.

  12. Study on the embedment of fiber Fabry-Perot strain sensor in prestressed reinforced concrete bridges

    Science.gov (United States)

    Chen, WeiMin; Zhu, Yong; Fu, YuMei; Huang, Shanglian

    2004-07-01

    In order to address application problem of fiber optic sensor in concrete, characteristics of concrete was analyzed deeply. Mechanical and metrological characteristics of both bare and packed fiber Fabry-Perot strain sensor were also analyzed in details. Modulus requirement and dimensional requirement of fiber strain sensor for concrete was deduced. A special measure of sleeve was proposed to get rid of drawback of packed fiber Fabry-Perot strain sensor in concrete. Corresponding procedures was also proposed to ensure survivability of the sensors when embedding fiber sensor into a concrete structure. An application example of fiber Fabry-Perot strain sensor network system in the Dafosi Bridge of Yangtze River at Chongqing has been presented to demonstrate the validity of this technique. With help of presented technique, 45 fiber Fabry-Perot strain sensors had been successfully embedded in 5 segments of gird during 9 months construction. The system was put into operation automatically from January 2003. Some typical results recorded by the system were presented. Constructing progress, tardo distortion trend, and temperature dependent fluctuation of gird was revealed in the result.

  13. Shear strength of palm oil clinker concrete beams

    International Nuclear Information System (INIS)

    Mohammed, Bashar S.; Foo, W.L.; Hossain, K.M.A.; Abdullahi, M.

    2013-01-01

    Highlights: ► Palm oil clinker can be used as lightweight aggregate for the production of structural concrete. ► The palm oil clinker concrete can be classified as lightweight concrete. ► Full scale reinforced palm oil clinker concrete beams without shear reinforcement were tested. ► The CSA based design equation can be used for the prediction of shear capacity with a limit. - Abstract: This paper presents experimental results on the shear behavior of reinforced concrete beams made of palm oil clinker concrete (POCC). Palm oil clinker (POC) is a by-product of palm oil industry and its utilization in concrete production not only solves the problem of disposing this solid waste but also helps to conserve natural resources. Seven reinforced POCC beams without shear reinforcement were fabricated and their shear behavior was tested. POCC has been classified as a lightweight structural concrete with air dry density less than 1850 kg/m 3 and a 28-day compressive strength more than 20 MPa. The experimental variables which have been considered in this study were the POCC compressive strength, shear span–depth ratio (a/d) and the ratio of tensile reinforcement (ρ). The results show that the failure mode of the reinforced POCC beam is similar to that of conventional reinforced concrete beam. In addition, the shear equation of the Canadian Standard Association (CSA) can be used in designing reinforced POCC beam with ρ ⩾ 1. However, a 0.5 safety factor should be included in the formula for ρ < 1

  14. From concrete repair to concrete conservation: how to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Hees, R.P.J. van; Heinemann, H.A.; Zijlstra, H.

    2011-01-01

    ABSTRACT: The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conserva-tion strategies would have been necessary. The application of repair techniques poses

  15. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  16. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. EAARL Coastal Topography-Assateague Island National Seashore, 2008: Bare Earth

    Science.gov (United States)

    Bonisteel, Jamie M.; Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Stevens, Sara; Yates, Xan; Klipp, Emily S.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of lidar-derived bare-earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the National Park Service (NPS), Northeast Coastal and Barrier Network, Kingston, RI; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of the Assateague Island National Seashore in Maryland and Virginia, acquired March 24-25, 2008. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL) was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the

  18. Microtopography of bare peat: an objective classification from high-resolution topographic survey data

    Science.gov (United States)

    Smith, Mark; Warburton, Jeff

    2017-04-01

    Peatlands globally are at risk of degradation through increased susceptibility to erosion as a result of climate change. For peatland restoration practices to be designed efficiently and evaluated effectively, quantification of eroded peat volumes is required alongside an understanding of the processes responsible for their degradation. Owing to the unique material properties of peat, fine-scale microtopographic expressions of surface processes are especially pronounced and present a potentially rich source of geomorphological information; providing valuable insights into the stability and dominant surface process regimes. Bare peat is highly responsive to changing environmental forces acting at the near surface and characteristic microtopographies emerge in response to rainfall, surface wash, wind action and fluctuations in surface temperature (both drying and freezing). Spatial and temporal variations in surface roughness reflect contrasts in the physical properties of the peat and key erosion processes acting in combination. We present the first conceptual framework to rigorously describe bare peat microtopography and use Structure-from-Motion (SfM) surveys to quantify roughness for different peat surfaces. Through application of a survey-grade structured-light hand-held 3D imager (Mantis Vision F5-Short Range) which can represent sub-millimetre topographic variability in field conditions, we present the most reliable field validation of SfM at the plot scale (<1 m2). Peat microtopography is quantified using 26 roughness metrics that cover a range of surface features (including amplitude, spacing, hybrid, multi-scale and anisotropy parameters). SfM reconstructs peat microtopography effectively, although some smoothing is observed. Over 55 plots, the roughness of microtopographic types is quantified and an objective classification system derived from decision tree analysis. After training on 66% of the data, the decision tree correctly classified 85% of plots

  19. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples

    DEFF Research Database (Denmark)

    Uchida, Yuichi; Fischer, Gregor; Hishiki, Yoshihiro

    2008-01-01

    The development of concrete and cementitious composites with fiber reinforcement to improve the tensile load-deformation behavior has resulted in three distinct classes of materials. These include conventional Fiber Reinforced Concrete (FRC) with tension softening response, High Performance Fiber...... Reinforced Cement Composites (HPFRCC) with strain hardening and multiple cracking behavior, and Ultra High-strength Fiber Reinforced concrete (UFC) with increased tensile strength. The recommendations on the design, production, and application of these classes of fiber reinforced concrete have been...

  20. Effect of internal short fibers, steel reinforcement, and surface layer on impact and penetration resistance of concrete

    OpenAIRE

    Ali Abd_Elhakam Aliabdo; Abd_Elmoaty Mohamed Abd_Elmoaty; Mohamed Hamdy

    2013-01-01

    This paper presents an experimental program to investigate the impact and penetration resistance of concrete. The research work is divided into two approaches. These approaches are effect of concrete constituents and effect of surface layer. Effect of concrete aggregate type, w/c ratio, fiber type, fiber shape, fiber volume fraction, and steel reinforcement is considered in the first approach. The second approach includes using fiber reinforced concrete and glass fiber reinforced polymer as s...

  1. Monitoring device for reinforced concrete

    International Nuclear Information System (INIS)

    Matsuzaki, Tetsuo; Saito, Koichi; Furukawa, Hideyasu.

    1994-01-01

    A reactor container made of reinforced concretes is monitored for the temperature at each of portions upon placing concretes under construction of a plant, upon pressure-proof test and during plant operation. That is, optical fibers are uniformly laid spirally throughout the inside of the concretes. Pulses are injected from one end of the optical fibers, and the temperature at a reflection point can be measured by measuring specific rays (Raman scattering rays) among lights reflected after a predetermined period of time. According to the present invention, measurement for an optional position within a range where one fiber cable is laid can be conducted. Accordingly, it is possible to conduct temperature control upon concrete placing and apply temperature compensation for the measurement for stresses of the concretes and the reinforcing steels upon container pressure-proof. Further, during plant operation, if the temperature of the concretes rises due to thermal conduction of the temperature in the container, integrity of the concretes can be ensured by a countermeasures such as air conditioning. (I.S.)

  2. Durability of Self Compacting Concrete

    International Nuclear Information System (INIS)

    Benmarce, A.; Boudjehem, H.; Bendjhaiche, R.

    2011-01-01

    Self compacting concrete (SCC) seem to be a very promising materials for construction thanks to their properties in a fresh state. Studying of the influence of the parameters of specific designed mixes to their mechanical, physical and chemical characteristics in a state hardened is an important stage so that it can be useful for new-to-the-field researchers and designers (worldwide) beginning studies and work involving self compacting concrete. The objective of this research is to study the durability of self compacting concrete. The durability of concrete depends very much on the porosity; the latter determines the intensity of interactions with aggressive agents. The pores inside of concrete facilitate the process of damage, which began generally on the surface. We are interested to measure the porosity of concrete on five SCC with different compositions (w/c, additives) and vibrated concrete to highlight the influence of the latter on the porosity, thereafter on the compressive strength and the transfer properties (oxygen permeability, chloride ion diffusion, capillary absorption). (author)

  3. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (convention...... of external curing and novel methods of internal curing are described. It is stressed that proper curing is a key factor to achieve durable concrete.......It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...

  4. A new concept for the targeted cutting of concrete structures

    International Nuclear Information System (INIS)

    Reinhardt, Steffen; Gentes, Sascha; Weidemann, Roman; Geimer, Marcus

    2011-01-01

    The decontamination and crushing of reinforced concrete is a main part during deconstruction of nuclear facilities. The selective treatment of contaminated or activated material is of special interest, since the non-contaminated material can be transferred into the normal reprocessing cycle. In the frame of a project concerning the innovative cutting of massive reinforced concrete structures an all-purpose system for spatially restricted and defined cutting of strongly reinforced concrete including packaging suitable for final disposal was developed. Due to the remote handling of the machine the dose rate for personnel can be reduced significantly. Main part of the system is the tool that can cut highly reinforced concrete without system or component replacement. The authors describe preliminary tests of these tools, further experiments and process optimization are necessary before the tools can be integrated into the new system.

  5. Local thermal and structural behavior of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Gluekler, E.L.

    1979-01-01

    At elevated temperatures, structural responses of surface heated concrete walls are significantly affected by the release of capillary, adsorbed and chemically bound water. Two major phenomena are generally observed: (1) degradation of concrete strength because of the loss of hydraulic bonds in gelatious, hydrated compounds, shrinkage of the cement matrix, increase in porosity and microcracking, and (2) pressurization of concrete pores because of vaporization of water and expansion of gases. Under certain conditions, the combined effects of material degradation and internal pressurization could lead to crack formation parallel to the surface, or spallation. This failure mode has been observed in some experiments, but not consistently. In this paper, a criterion for concrete spallation is described which depends on (1) loading conditions including pore pressures and thermal stresses, and (2) materials characteristics at elevated temperatures. (orig.)

  6. DETERMINATION OF ADHESIVE STRENGTH LAYER’S ROLLER COMPACTED CONCRETE THE METHOD AXIAL EXTENSION

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-07-01

    Full Text Available Roller compacted concrete for the construction of hydraulic and hydroelectric buildings is a composite material, which consists of a binder, fine aggregate (sand, coarse aggregate (gravel or crushed stone, water and special additives that provide the desired concrete workability and impart the required concrete performance properties. Concrete mixture is prepared at from concrete mixing plants strictly metered quantities of cement, water, additives and graded aggregates, whereupon they are delivered to the site laying Mixer Truck and sealing layers with each stack layer. The advantages of roller compaction technology should include the reduction of construction time, which allows fast commissioning construction projects, as well as reduce the amount of investment required. One of the main problems encountered in the process of roller compaction of the concrete mix is the need to provide the required adhesion strength between layers of concrete. This paper presents a method for determining the strength of adhesion between the concrete layers of different ages roller compacted concrete using axial tension. This method makes it possible to obtain objective and accurate results with a total thickness of layers of compacted concrete of up to 300…400 mm. Results from this method, studies have shown that the value of strength between the concrete layers in addition to the composition of the concrete and adhesion depends on the quality and the parallel end surfaces of the cylinder-models, which are mounted steel plates for axial tension, as well as the state of the contact surfaces of the concrete layer. The method can be used to determine the strength of interlayer adhesion in roller compacted concrete, which are used in the construction of dams and other hydraulic structures.

  7. Long-life concrete : how long will my concrete last?

    Science.gov (United States)

    2013-10-01

    There is an ongoing discussion about moving toward performance-based specifications for concrete pavements. This document seeks to : move the discussion forward by outlining the needs and the challenges, and proposing some immediate actions. However,...

  8. Porosity of Concrete - Morphological Study of Model Concrete

    NARCIS (Netherlands)

    Hu, J.

    2004-01-01

    This study has developed a comprehensive methodological framework for characterizing geometrical and morphological aspects of pore space in cementitious materials and explored its application to actual cement pastes and model concretes for the purpose of predicting mechanical and transport

  9. Mechanical Properties of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Raman Bedi

    2013-01-01

    Full Text Available Polymer concrete was introduced in the late 1950s and became well known in the 1970s for its use in repair, thin overlays and floors, and precast components. Because of its properties like high compressive strength, fast curing, high specific strength, and resistance to chemical attacks polymer concrete has found application in very specialized domains. Simultaneously these materials have been used in machine construction also where the vibration damping property of polymer concrete has been exploited. This review deals with the efforts of various researchers in selection of ingredients, processing parameters, curing conditions, and their effects on the mechanical properties of the resulting material.

  10. Characteristics of Concrete with Admixtures

    Directory of Open Access Journals (Sweden)

    Bogdan Roşca

    2008-01-01

    Full Text Available In recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have centered on improving the properties of concrete with minimal investments by ready-mix suppliers and contractors in the way of specialized equipment or special skills and education of their labor forces. This approach has resulted in construction cost reductions and universally accepted ready-made remedies for unexpected problems during construction. The behavior of concrete improved with superplasticizers additives is studied.

  11. Durability of fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard

    1996-01-01

    The planned research will indicate, whether fibre reinforced concrete has better or worse durability than normal concrete. Durability specimens will be measured on cracked as well as uncracked specimens. Also the pore structure in the concrete will be characterized.Keywords: Fibre reinforced...... concrete, durability, pore structure, mechanical load...

  12. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  13. Deliberate deformation of concrete after casting

    NARCIS (Netherlands)

    Grunewald, S.; Janssen, B.; Schipper, H.R.; Vollers, K.J.; Walraven, J.C.

    2012-01-01

    This paper discusses the effect of intentional deformation of a flexible formwork after casting of the concrete and the influence of the characteristics of concrete in the fresh state on the quality of a concrete element. This deformation is intended to bring the concrete element in its desired

  14. Current challenges and future directions for bacterial self-healing concrete.

    Science.gov (United States)

    Lee, Yun Suk; Park, Woojun

    2018-04-01

    Microbially induced calcium carbonate precipitation (MICP) has been widely explored and applied in the field of environmental engineering over the last decade. Calcium carbonate is naturally precipitated as a byproduct of various microbial metabolic activities. This biological process was brought into practical use to restore construction materials, strengthen and remediate soil, and sequester carbon. MICP has also been extensively examined for applications in self-healing concrete. Biogenic crack repair helps mitigate the high maintenance costs of concrete in an eco-friendly manner. In this process, calcium carbonate precipitation (CCP)-capable bacteria and nutrients are embedded inside the concrete. These bacteria are expected to increase the durability of the concrete by precipitating calcium carbonate in situ to heal cracks that develop in the concrete. However, several challenges exist with respect to embedding such bacteria; harsh conditions in concrete matrices are unsuitable for bacterial life, including high alkalinity (pH up to 13), high temperatures during manufacturing processes, and limited oxygen supply. Additionally, many biological factors, including the optimum conditions for MICP, the molecular mechanisms involved in MICP, the specific microorganisms suitable for application in concrete, the survival characteristics of the microorganisms embedded in concrete, and the amount of MICP in concrete, remain unclear. In this paper, metabolic pathways that result in conditions favorable for calcium carbonate precipitation, current and potential applications in concrete, and the remaining biological challenges are reviewed.

  15. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    Science.gov (United States)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  16. Physio-chemical reactions in recycle aggregate concrete

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Gao, X.F.; Tam, C.M.; Ng, K.M.

    2009-01-01

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C 3 S 2 H 3 , iron-substituted ettringite, dehydroxylation of CH and development of C 6 S 3 H at about 90 deg. C, 135 deg. C, 441 deg. C and 570 deg. C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C 3 S 2 H 3 , ettringite, CH and C 6 S 3 H, which shows that RAC made from the TSMA can improve the hydration processes

  17. Physio-chemical reactions in recycle aggregate concrete.

    Science.gov (United States)

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  18. Skew decks in reinforced concrete bridges

    Directory of Open Access Journals (Sweden)

    B. F. ROCHA

    Full Text Available Abstract This research investigates reinforced concrete plates and shells with skew reinforcement whose directions are not aligned with the principal internal forces. Two normal forces, one tangential force, two bending moments, and one twisting moment are defined in the plane of the element. The analysis includes two shear forces in the transverse direction. The membrane and flexural forces are distributed between two panels at the upper and lower faces of the element. The smeared cracking model, equilibrium considerations, and plasticity approach yield the design equations of the skew reinforcement. The slab reinforcement of flat bridges, with and without lateral beams and girder bridges are compared considering different skew angles. The minimum reinforcement criteria of skew meshes are discussed. The results show that skew reinforcement yields higher steel and concrete stresses.

  19. Mortar constituent of concrete under cyclic compression

    Science.gov (United States)

    Maher, A.; Darwin, D.

    1980-10-01

    The behavior of the mortar constituent of concrete under cyclic compression was studied and a simple analytic model was developed to represent its cyclic behavior. Experimental work consisted of monotonic and cyclic compressive loading of mortar. Two mixes were used, with proportions corresponding to concretes having water cement ratios of 0.5 and 0.6. Forty-four groups of specimens were tested at ages ranging from 5 to 70 days. complete monotonic and cyclic stress strain envelopes were obtained. A number of loading regimes were investigated, including cycles to a constant maximum strain. Major emphasis was placed on tests using relatively high stress cycles. Degradation was shown to be a continuous process and a function of both total strain and load history. No stability or fatigue limit was apparent.

  20. Location of Bare Soil Surface and Soil Line on the RED-NIR Spectral Plane

    Science.gov (United States)

    Koroleva, P. V.; Rukhovich, D. I.; Rukhovich, A. D.; Rukhovich, D. D.; Kulyanitsa, A. L.; Trubnikov, A. V.; Kalinina, N. V.; Simakova, M. S.

    2017-12-01

    Soil as a separate natural body occupies certain area with its own set of spectral characteristics within the RED-NIR spectral space. This is an ellipse-shaped area, and its semi-major axis is the soil line for a satellite image. The spectral area for a bare soil surface is neighboring to the areas of black carbon, straw, vegetating plants, and missing RED-NIR values. A reliable separation of the bare soil surface within the spectral space is possible with the technology of spectral neighborhood of soil line. The accuracy of this method is 90%. The determination of the bare soil surface using vegetation indices, both relative (NDVI), and perpendicular (PVI), is incorrect; the accuracy of these methods does not exceed 65%, and for most of the survey seasons it may be lower than 50%. The flat part of the "tasseled cap" described as the soil line, is not a synonym for the area of the bare soil surface. The bare soil surface on the RED-NIR plots occupies significantly smaller areas than the area of soil line according to Kauth and Thomas.

  1. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  2. Concrete density estimation by rebound hammer method

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri [NDT Group, Nuclear Malaysia, Bangi, Kajang, Selangor (Malaysia); Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin [Material Technology Program, Faculty of Applied Sciences, UiTM, Shah Alam, Selangor (Malaysia); Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin [Pusat Penyelidikan Mineral, Jabatan Mineral dan Geosains, Ipoh, Perak (Malaysia)

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  3. Comparison of diurnal dynamics in evaporation rate between bare ...

    Indian Academy of Sciences (India)

    de lichens, mosses, liverworts, cyanobacteria and others, which are intimately associated with soil particles, creating a cohesive thin horizontal layer. (Belnap 2003; Bowker 2007; Li 2012). BSCs can profoundly influence the hydrologic regimes of arid and semi-arid desert ecosystems, including infiltra- tion patterns, run off, ...

  4. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    Science.gov (United States)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained

  5. An fMRI study of concreteness effects during spoken word recognition in aging. Preservation or attenuation?

    Directory of Open Access Journals (Sweden)

    Tracy eRoxbury

    2016-01-01

    Full Text Available It is unclear whether healthy aging influences concreteness effects (ie. the processing advantage seen for concrete over abstract words and its associated neural mechanisms. We conducted an fMRI study on young and older healthy adults performing auditory lexical decisions on concrete versus abstract words. We found that spoken comprehension of concrete and abstract words appears relatively preserved for healthy older individuals, including the concreteness effect. This preserved performance was supported by altered activity in left hemisphere regions including the inferior and middle frontal gyri, angular gyrus, and fusiform gyrus. This pattern is consistent with age-related compensatory mechanisms supporting spoken word processing.

  6. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the

  7. Premature asphalt concrete pavement cracking.

    Science.gov (United States)

    2015-06-01

    Recently, the Oregon Department of Transportation (ODOT) has identified hot mix asphalt concrete : (HMAC) pavements that have displayed top-down cracking within three years of construction. The objective of : the study was to evaluate the top-down cr...

  8. Corrosion inhibitors for concrete bridges.

    Science.gov (United States)

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  9. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... of geometric forms in concrete. The former was referred to as mould tectonics, the latter concrete tectonics. A study of the concepts of ‘New Production Philosophy’, ‘Mass-customization’, and Digital Tectonics is presented as a basis for investigating their use in concrete casting. Digital modelling...... plastic in which precision is maintained. The ability to reuse the PETG moulds makes the technique a zero waste production. In general it was concluded that problems with existing techniques relate to production time, surface quality and precision and are caused by the use of mould fabrication technique...

  10. Tests on standard concrete samples

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Compression and tensile tests on standard concrete samples. The use of centrifugal force in tensile testing has been developed by the SB Division and the instruments were built in the Central workshops.

  11. Effect of nano materials in geopolymer concrete

    OpenAIRE

    Naskar, Sudipta; Chakraborty, Arun Kumar

    2016-01-01

    In general, cement based concrete can be replaced by low calcium fly-ash based geopolymer concrete regarding the adverse effect of the manufacture of ordinary Portland cement on environment. Nowadays, nano technology has an important role in the field of construction industries. It has been seen that several properties of cement based concrete are affected by different nano materials. As low calcium fly-ash based geopolymer concrete is an alternate option for cement based concrete, nano mater...

  12. Copper slag concrete admixed with polypropylene fibres

    OpenAIRE

    Chakrawarthi, Vijayaprabha; Darmar, Brindha; Elangovan, Ashokkumar

    2016-01-01

    A sustainable concrete design has become an imperative requirement for the present-day concrete industry. A part of an extensive research project aimed at studying possibilities for using copper slag (CS) and polypropylene (PP) fibres in concrete is presented and analysed. Measurements were conducted to investigate the workability, density, compressive strength, tensile strength, and micro-structural properties of concrete, as well as the ultimate load carrying capacity of reinforced-concrete...

  13. Electrically conductive polymer concrete coatings

    Science.gov (United States)

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  14. A possible step to surfaces at vanishing bare coupling in quantumchromodynamics

    International Nuclear Information System (INIS)

    Schlereth, H.

    1984-01-01

    Starting from a kind of half-dualized nonabelian action it is shown that for gsub(bare) → 0 it reduces to QCD. Integrating out the variables in the reversed order leads to a dual form of QCD. This form contains a constraint which can be solved in terms of surfaces with quark boundaries. Due to the nonabelian structure these surfaces cannot be moved in space-time by singular gauge transformations as the Dirac surface. It is conjectured that they become fully dynamical by quantum effects. The nontrivial structure of the dual theory at gsub(bare) → 0 is entirely due to it being nonabelian. The presence of the surfaces breaks self-duality at gsub(bare) → 0. A lattice version of the half-dualized action is briefly discussed. (Auth.)

  15. Study on the relationship between turbulent normal stresses in the fully developed bare rod bundle flow

    International Nuclear Information System (INIS)

    Lee, Kye Bock; Lee, Byung Jin

    1995-01-01

    The turbulence structure for fully developed flow through the subchannels formed by the bare rod array depends on the pitch to rod diameter ratio. For fairly open spaced bare rod arrays, the distributions of the three components of the turbulent normal stresses are similar to those measured in circular pipe. However, for more closely spaced arrays, the turbulence structure, especially in the gap region, departs markedly from the pipe flow distribution. A linear relationship between turbulent normal stresses and turbulent kinetic energy for fully developed turbulent flow through regularly spaced bare rod arrays has been developed. This correlation can be used in connection with various theoretical analyses applied in turbulence research. 9 figs., 10 refs. (Author)

  16. Elastic and inclusive proton--proton scattering with bare-Pomeron intercept above 1

    International Nuclear Information System (INIS)

    Chu, S.; Desai, B.R.; Shen, B.C.; Field, R.D.

    1976-01-01

    An analysis of high-energy proton--proton scattering with bare-Pomeron intercept above 1 is presented. By use of a value α/sub P/(0) = 1.06, determined by the energy dependence of the pp total cross section, a triple-Regge analysis of the inclusive process pp → pX is carried out and compared with the results of a more conventional analysis with α/sub P/(0) = 1. The resulting triple-Regge couplings are used in calculating the second-order corrections to the bare Pomeron in the bare perturbation expansion of Reggeon field theory. We find that such an approach can correctly describe the existing high-energy pp total cross-section, elastic-, and inclusive-scattering data

  17. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  18. Properties and Internal Curing of Concrete Containing Recycled Autoclaved Aerated Lightweight Concrete as Aggregate

    Directory of Open Access Journals (Sweden)

    Teewara Suwan

    2017-01-01

    Full Text Available Global warming is a vital issue addressed to every sector worldwide, including the construction industry. To achieve the concept of green technology, many attempts have been carried out to develop low-carbon footprint products. In the construction sector, Autoclaved Aerated Concrete (AAC has become more popular and been manufactured to meet the construction demand. However, errors from manufacturing process accounted for approximately 3 to 5% of the AAC production. The development of AAC waste as lightweight aggregate in concrete is one of the potential approaches which was extendedly studied in this paper. The results showed that the compressive strength of AAC-LWA concrete was decreased with an increase in volume and coarse size. The optimum mix proportion was the AAC aggregate size of 1/2′′ to 3/8′′ with 20 to 40% replacement to normal weight aggregate. Internal curing by AAC-LWA was also observed and found to provide sufficient water inside the specimens, leading to an achievement in higher compressive strength. The main goal of this study is not only utilising unwanted wastes from industry (recycling of waste materials but also building up a new knowledge of using AAC-LWA as an internal curing agent as well as the production of value-added lightweight concrete products.

  19. Concrete waste reduction of 50%

    International Nuclear Information System (INIS)

    Vos, R.M. de; Van der Wagt, K.M.; Van der Kruk, E.; Meeussen, H.W.

    2016-01-01

    During decommissioning quite a volume of concrete waste is produced. The degree of activation of the waste can range from clearly activated material to slightly activated or contaminated concrete. The degree of activation influences the applicable waste management processes that can be applied. The subsequent waste management processes can be identified for concrete waste are; disposal, segregation, re-use, conditional release and release. With each of these steps, the footprint of radioactive decommissioning waste is reduced. Future developments for concrete waste reduction can be achieved by applying smart materials in new build facilities (i.e. fast decaying materials). NRG (Nuclear Research and consultancy Group) has investigated distinctive waste management processes to reduce the foot-print of concrete waste streams resulting from decommissioning. We have investigated which processes can be applied in the Netherlands, both under current legislation and with small changes in legislation. We have also investigated the separation process in more detail. Pilot tests with a newly patented process have been started in 2015. We expect that our separation methods will reduce the footprint reduction of concrete waste by approximately 50% due to release or re-use in the nuclear sector or in the conventional industry. (authors)

  20. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Continual erosion of bare rocks after the Wenchuan earthquake and control strategies

    Science.gov (United States)

    Wang, Zhaoyin; Shi, Wenjing; Liu, Dandan

    2011-03-01

    The newly bared rocks created by the Wenchuan earthquake are undergoing continual intensive erosion in the form of detachment and movement of individual grains. Grain erosion is defined as the phenomenon of breaking down bare rocks under the action of insolation and temperature change, detachment of grains from the rockwalls by wind, flow down of grains on the slope under the action of gravity, and accumulation of grains at the toe of the mountain, forming a deposit fan. The Wenchuan earthquake, which occurred in Sichuan on May 12, 2008, caused thousands of avalanches and landslides and left scars on slopes and a huge area of bare rocks. Grain erosion causes flying stones, injured humans and resulted in numerous slope debris flows. The process of grain erosion and strategies to limit the erosion were studied by field investigations and field experiments. According to these field investigations and field studies, the most serious grain erosion occurs in spring and early summer when it is very dry. Rocks are broken down to grains under the action of insolation and temperature change. Then, wind blows the grains from the bare rock down slope. Experimental results showed that the amount of grains blown down by wind per area of rock surface per unit time is proportional to the fourth power of the wind speed. However, the size of the grains blown down by wind increases linearly with the wind speed. An experiment proved that grain erosion can be controlled with two moss species. Moss spores were mixed with clay suspension and splashed on bare rocks. The moss species germinated on the rock surface in one month and greened the bare rocks in two months. The moss layer protected the rocks from insolation and mitigated the effects of temperature change, thus effectively mitigated grain erosion.

  2. Photoelectrochemical properties of bare fluorine doped tin oxide and its electrocatalysis and photoelectrocatalysis toward cysteine oxidation

    International Nuclear Information System (INIS)

    Mu, Shaolin; Shi, Qiaofang

    2016-01-01

    Graphical abstract: CVs of 0.30 M Na 2 SO 4 solution containing 2.0 mM cysteine, curves: (1) glassy carbon electrode, (2) FTO electrode in the dark, (3) FTO electrode in the light illumination, and (4) Pt electrode; pH 10.0, at a scan rate of 60 mV s −1 . - Highlights: • First revelation of photoelectrochemical properties of bare fluorine doped tin oxide. • Determination of band gap of energy of FTO in the solution without a redox couple. • Electrochemical and photoelectrochemical catalysis of bare FTO toward cysteine oxidation. • Determination and recognition of cysteine with electrocatalytic and photocatalytic methods. • Rate-determining step of cysteine oxidation at the FTO electrode. - Abstract: We first revealed that the bare fluorine doped tin oxide (FTO) under the cathodic polarization over −0.7 V (vs.SCE) shows very sensitive to the irradiating light in a wide wavelength region 850–400 nm in the aqueous solution free of a redox couple, and its band gap of energy E g is determined to be 1.38 eV via the photoelectrochemical method. The bare FTO can effectively catalyze electrochemically L-cysteine (CySH) oxidation and especially shows the photocatalytic ability toward CySH oxidation. Thus the bare FTO electrode can be directly used for determination of CySH concentration using cyclic voltammetry in both the dark and light illumination and it can be used to recognize CySH among 20 α-amino acids found in proteins, based on the low oxidation peak potential and unique photoelectric response. The rate-determining step for the photocatalytic oxidation of CySH on the bare FTO electrode is controlled by supply of charge inside the FTO film to the electrode surface, which exhibits the typical characteristics of semiconductors.

  3. Probabilistic Design and Management of Sustainable Concrete Infrastructure Using Multi-Physics Service Life Models

    DEFF Research Database (Denmark)

    Lepech, Michael; Geiker, Mette; Michel, Alexander

    component of this framework is a newly developed multi-physics service life model of reinforced concrete members subjected to chloride-induced corrosion. The corrosion model is based on stringent physical laws describing thermodynamics and kinetics of electrochemical processes including various...... cycles in the broader architecture, engineering, construction (AEC) industry. Specifically, a probabilistic design framework for sustainable concrete infrastructure and a multi-physics service life model for reinforced concrete are presented as important points of integration for innovation between...

  4. Evaluation of Shear Strength of Concrete Flat Plates Reinforced with GFRP Plates

    OpenAIRE

    Min Sook Kim; Young Hak Lee

    2017-01-01

    The shear performance of concrete flat plates with glass fiber-reinforced polymer (GFRP) plate shear reinforcement was investigated through punching shear tests. Each GFRP plate was embedded in the concrete and included openings to permit the flow of concrete during fabrication. Punching shear tests were conducted on a total of 8 specimens, and the resulting crack and fracture formations, strains, and load-displacement curves were analyzed and compared. The experimental variables considered w...

  5. The Effect of High Temperatures on the Effective Thermal Conductivity of Concrete

    International Nuclear Information System (INIS)

    Weidenfeld, G.; Aharon, G.; Hochbaum, I.

    2002-01-01

    Concrete thermal conductivity is an important property for thermal analysis of nuclear accidents.Concrete compositions include water,sand,cement and aggregates of various kinds and combinations.Values of concrete's thermal conductivity for some different compositions can be found in the literature[1]but since the material composition and its temperature significantly affect this property,the exact value of a specific composition should be measured

  6. Concrete Growth and Fatigue Analysis of Chickamauga Lock Miter Gate Anchorages

    Science.gov (United States)

    2017-09-19

    ER D C TR -1 7- 10 Concrete Growth and Fatigue Analysis of Chickamauga Lock Miter Gate Anchorages En gi ne er R es ea rc h an d D...default. ERDC TR-17-10 September 2017 Concrete Growth and Fatigue Analysis of Chickamauga Lock Miter Gate Anchorages Matthew D. Smith, Allen...failure is expected. This analysis included a review of existing structural analysis reports, estimates and prediction of observed concrete growth in

  7. Lacrimal excretory system concretions: canalicular and lacrimal sac.

    Science.gov (United States)

    Repp, Daniel J; Burkat, Cat N; Lucarelli, Mark J

    2009-11-01

    To characterize the demographics of patients with dacryolithiasis and to compare patients who have canalicular concretions with patients who have lacrimal sac and duct dacryoliths. Comparative case series study and literature review. A total of 327 consecutive patients undergoing external dacryocystorhinostomy (DCR) between 1998 and 2008 at the University of Wisconsin-Madison. Fifteen consecutive patients with the diagnosis of canaliculitis during this period were also included. The charts of all patients were reviewed for age, sex, laterality, duration of symptoms, history of dacryocystitis, history of lacrimal system intervention, history of smoking, examination findings, result of canalicular probing and irrigation, and histopathologic evaluation of the dacryolith or canalicular concretion. If applicable, the canaliculus involved was noted, as was any history of purulent canalicular drainage or canalicular injury. Patient demographics, duration of symptoms, history of dacryocystitis, history of smoking, presence of fungi, or Actinomyces on histopathologic evaluation. Findings were compared with prior studies reported in the literature. Of the 327 patients undergoing DCR, 22 (6.7%) had dacryoliths; 11 of 15 patients (73.3%) with canaliculitis had canalicular concretions. Patients with canalicular concretions were older than those with dacryoliths at DCR: 70.6 years versus 51.1 years (P = 0.003). Women made up the majority of both groups: 9 of 11 patients (81.8%) with canalicular concretions and 13 of 22 patients (59.1%) with dacryoliths at DCR (P = 0.26). The mean duration of symptoms was 20.2 months among patients with canalicular concretions and 30.5 months in patients with dacryoliths at DCR (P = 0.66); 1 of 11 patients (9.1%) with canalicular concretions smoked, compared with 9 of 21 patients (42.9%) with dacryoliths at DCR (P = 0.11). Actinomyces was isolated from 10 of 11 canalicular concretions (90.9%) and only 3 of 22 dacryoliths (13.6%) from DCR

  8. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    International Nuclear Information System (INIS)

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  9. Constitutive equations for cracked reinforced concrete based on a refined model

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    Nonlinear numerical methods to calculate structures of reinforced concrete or of prestressed concrete are mostly based on two idealizing assumptions: tension stiffness perpendicular to cracks is equal to the stiffness of reinforcement alone and shear modulus is taken as constant. In real reinforced concrete structures concrete contributes to the tension-stiffness perpendicular to cracks and thus to the global stiffness matrix because of bond action between concrete and reinforcement and shear transfer in cracks is depending on stresses acting in cracks. Only few authors are taking these aspects into account and only with rough semiempirical assumptions. In this paper a refined nonlinear three-dimensional mechanical model for reinforced concrete is presented which can include these effects, hitherto neglected, depending on the given state of stress. The model is composed of three model-elements: component u - uncracked reinforced concrete with perfect bond (stiffness equal to the sum of the stiffnesses of concrete and reinforcement), component r - reinforcement free in surrounding concrete (reinforcement and concrete are having equal normal strains in noncracked directions and equal shear strains), component c - crack-part (shear stiffnesses in cracks is equal to the sum of shear stiffnesses of the reinforcement mesh, interface shear transfer and dowel action in cracks). (Auth.)

  10. Behavior of concrete cylinders confined by a ferro-geopolymer jacket in axial compression

    Directory of Open Access Journals (Sweden)

    Kothay Heng

    2017-06-01

    Full Text Available It is beneficial to utilize geopolymers for their potential properties to rehabilitate concrete structures. These properties include high adhesion to Ordinary Portland Cement (OPC concrete even at low degrees of interfacial roughness, high durability and good fire resistance. This paper introduces use of a ferro-geopolymer jacket to strengthen concrete columns. It is a kind of jacket constructed with a geopolymer mortar reinforced with a wire mesh. This study was conducted to investigate the behavior of concrete cylinders confined with a ferro-geopolymer jacket in axial compression. OPC concrete cylinders with 100 mm diameter and 200 mm height were fabricated. High calcium fly ash-based geopolymer mortar, activated with sodium hydroxide (NaOH and sodium silicate (Na2SiO3, cured at a temperature of 25 ºC was used. Ferro-geopolymer jackets with a25 mm thickness, were reinforced with 1, 2 and 3 layers of expanded metal mesh and cast around concrete cylinders. The study results revealed that the compressive load carrying capacity and axial stiffness of concrete cylinders were improved. A monolithic failure mode was obtained as a result of a strong adhesion between the geopolymer and the concrete core. Enhancement of compressive load carrying capacity of the jacketed concrete cylinders was caused by a combination of a confinement effect and the compressive load resistance of the jacket transferred from concrete core through bonding.

  11. Development of high-performance concrete having high resistance to chloride penetration

    International Nuclear Information System (INIS)

    Oh, Byung Hwan; Cha, Soo Won; Jang, Bong Seok; Jang, Seung Yup

    2002-01-01

    The resistance to chloride penetration is one of the simplest measures to determine the durability of concrete, e.g. resistance to freezing and thawing, corrosion of steel in concrete and other chemical attacks. Thus, high-performance concrete may be defined as the concrete having high resistance to chloride penetration as well as high strength. The purpose of this paper is to investigate the resistance to chloride penetration of different types of concrete and to develop high-performance concrete that has very high resistance to chloride penetration, and thus, can guarantee high durability. A large number of concrete specimens have been tested by the rapid chloride permeability test method as designated in AASHTO T 277 and ASTM C 1202. The major test variables include water-to-binder ratios, type of cement, type and amount of mineral admixtures (silica fume, fly ash and blast-furnace slag), maximum size of aggregates and air-entrainment. Test results show that concrete containing optimal amount of silica fume shows very high resistance to chloride penetration, and high-performance concrete developed in this study can be efficiently employed to enhance the durability of concrete structures in severe environments such as nuclear power plants, water-retaining structures and other offshore structures

  12. Use of waste plastic in concrete mixture as aggregate replacement.

    Science.gov (United States)

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics.

  13. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  14. Evaluation and rehabilitation of corrosion damaged reinforced concrete structures

    International Nuclear Information System (INIS)

    Paul, I.S.

    1999-01-01

    For the last two decades, rehabilitation of corrosion damaged concrete structures has been one of the most important challenges faced by the construction industry throughout the world. The extent of the damage is significant in cold climates and also in hot and humid climates. In both cases, the corrosion is invariably initiated by ingress of salts into the concrete either from de-icing salts used on roads, or from salt-laden air, soils or ground water. However, there is a contrast in sites of distress in the two climatic regions mentioned above. In cold climates, where de-icing salts are used, the damage is generally to superstructures and is therefore visible, but in hot, humid coastal regions damage is primarily in the substructures and may not be so clearly apparent. This paper presents the corrosion mechanism in concrete deterioration, the methods of evaluation of the damaged structures, and rehabilitation strategies. A case history of a concrete rehabilitation project is included together with some lessons learned in rehabilitation of corrosion damaged structures. Recommendations are made for maintenance of concrete structures and a warning is issued that salt run-off from roads in cold climates may cause distress in below ground concrete structures, similar to structures in hot and humid climates with saline groundwater and soils. (author)

  15. Use of selected waste materials in concrete mixes.

    Science.gov (United States)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  16. Use of selected waste materials in concrete mixes

    International Nuclear Information System (INIS)

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures

  17. Processed wastewater sludge for improvement of mechanical properties of concretes

    International Nuclear Information System (INIS)

    Barrera-Diaz, Carlos; Martinez-Barrera, Gonzalo; Gencel, Osman; Bernal-Martinez, Lina A.; Brostow, Witold

    2011-01-01

    Highlights: → Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. → Wastewater sludge contains a large amount of water. → The residual sludge is used to prepare cylinder specimen concrete. → There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  18. Processed wastewater sludge for improvement of mechanical properties of concretes

    Energy Technology Data Exchange (ETDEWEB)

    Barrera-Diaz, Carlos, E-mail: cbd0044@yahoo.com [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Martinez-Barrera, Gonzalo [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Carretera Toluca-Atlacomulco, Km.12, San Cayetano C.P. 50200, Toluca, Edo. de Mexico (Mexico); Gencel, Osman [Civil Engineering Department, Faculty of Engineering, Bartin University, 74100 Bartin (Turkey); Bernal-Martinez, Lina A. [Centro Conjunto de Investigacion en Quimica Sustentable, Universidad Autonoma del Estado de Mexico - Universidad Nacional Autonoma de Mexico (UAEM-UNAM), Carretera Toluca-Atlacomulco, km 14.5, Unidad El Rosedal, C.P. 50200, Toluca, Edo. de Mexico (Mexico); Brostow, Witold [Laboratory of Advanced Polymers and Optimized Materials (LAPOM), Department of Materials Science and Engineering and Center for Advanced Research and Technology (CART), University of North Texas, 1150 Union Circle 305310, Denton, TX 76203-5017 (United States)

    2011-08-15

    Highlights: {yields} Electrochemical methods produce less amount of residual sludge as compared with chemical procedures. {yields} Wastewater sludge contains a large amount of water. {yields} The residual sludge is used to prepare cylinder specimen concrete. {yields} There are improvements in the elastic modulus of the concrete when is prepared with residual sludge. - Abstract: Two problems are addressed simultaneously. One is the utilisation of sludge from the treatment of wastewater. The other is the modification of the mechanical properties of concrete. The sludge was subjected to two series of treatments. In one series, coagulants were used, including ferrous sulphate, aluminium sulphate or aluminium polyhydroxychloride. In the other series, an electrochemical treatment was applied with several starting values of pH. Then, concretes consisting of a cement matrix, silica sand, marble and one of the sludges were developed. Specimens without sludge were prepared for comparison. Curing times and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and static and dynamic elastic moduli were determined. Diagrams of the compressive strength and compressive strain at the yield point as a function of time passed through the minima as a function of time for concretes containing sludge; therefore, the presence of sludge has beneficial effects on the long term properties. Some morphological changes caused by the presence of sludge are seen in scanning electron microscopy. A way of utilising sludge is thus provided together with a way to improve the compressive strain at yield point of concrete.

  19. The Sulphate Effect on Lijiaxia Concrete Dam (China Gallery

    Directory of Open Access Journals (Sweden)

    Xufen Zhu

    2017-01-01

    Full Text Available The concrete degradation is one of the most serious problems for a dam construct during the normal operation, which determines the dam service life. Hence, it is very important to reduce the extent of the dam concrete degradation for the safety of the dam normal operation. Here, Lijiaxia hydroelectric station is taken as an example, and a comprehensive method to assess the sulphate effect on dam gallery is proposed. Eleven samples in total were taken from three difference locations by the drill bore. The microstructural investigations including X-ray fluorescence spectrometry (XRF, X-ray diffraction (XRD, scanning electron microscope (SEM, and energy dispersive spectroscopy (EDS were conducted to assess the sulphate attack and the degradation degree. Meanwhile, the water chemical analysis was applied to reveal the mechanism of concrete degradation. The experimental and analysis results indicate that the concrete degradation degree varies with the location of the samples. The components of the concrete change and the content of SO3 increase dramatically during degradation. Moreover, the mineral facies of the concrete change correspondingly, with the cement paste substituted by the calcite, calcium vitriol, and gypsum. The reinforcement and precaution measures are suggested based on the results of the degradation assessment.

  20. Identification of Delamination in Concrete Slabs by SIBIE Procedure

    International Nuclear Information System (INIS)

    Yamada, M.; Yagi, Y.; Ohtsu, M.

    2017-01-01

    The Impact-Echo method is known as a non-destructive testing for concrete structures. The technique is based on the use of low-frequency elastic waves that propagate in concrete to determine the thickness and to detect internal flaws in concrete. The presence and locations of defects in concrete are estimated from identifying peak frequencies in the frequency spectra, which are responsible for the resonance due to time-of-flight from the defects. In practical applications, however, obtained spectra include so many peak frequencies that it is fairly difficult to identify the defects correctly. In order to improve the Impact-Echo method, Stack Imaging of spectral amplitudes Based on Impact-Echo (SIBIE) procedure is developed as an imaging technique applied to the Impact-Echo data, where defects in concrete are identified visually at the cross-section. In this study, the SIBIE procedure is applied to identify the delamination in a concrete slab. It is demonstrated that the delamination can be identified with reasonable accuracy. (paper)

  1. Laboratory-scale sodium-carbonate aggregate concrete interactions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600/sup 0/C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30/sup 0/C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10/sup 0/C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na/sub 2/CO/sub 3/, Na/sub 2/O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients.

  2. Laboratory-scale sodium-carbonate aggregate concrete interactions

    International Nuclear Information System (INIS)

    Westrich, H.R.; Stockman, H.W.; Suo-Anttila, A.

    1983-09-01

    A series of laboratory-scale experiments was made at 600 0 C to identify the important heat-producing chemical reactions between sodium and carbonate aggregate concretes. Reactions between sodium and carbonate aggregate were found to be responsible for the bulk of heat production in sodium-concrete tests. Exothermic reactions were initiated at 580+-30 0 C for limestone and dolostone aggregates as well as for hydrated limestone concrete, and at 540+-10 0 C for dehydrated limestone concrete, but were ill-defined for dolostone concrete. Major reaction products included CaO, MgO, Na 2 CO 3 , Na 2 O, NaOH, and elemental carbon. Sodium hydroxide, which forms when water is released from cement phases, causes slow erosion of the concrete with little heat production. The time-temperature profiles of these experiments have been modeled with a simplified version of the SLAM computer code, which has allowed derivation of chemical reaction rate coefficients

  3. Bare Nouns in Danish with Special Reference to the Object Position

    DEFF Research Database (Denmark)

    Müller, Henrik Hoeg

    2017-01-01

    Based on a discussion of correlations between syntactic position, prosodic cues, aspect and generic vs. non-generic interpretations, this paper substantiates that Danish Bare Plural count nouns (BPs) have a wider distribution than Bare Singular count nouns (BSS). BPs, unlike BSS, can occur...... in subject position, function as both generic and existential arguments, and appear with all aspectual verb classes. However, BPs and BSS expressing a non-generic, modificational meaning concur in object position of activity verbs and stative verbs with a possession relation implicature. These V+BP and V...

  4. Concrete containment modeling and management, Conmod

    International Nuclear Information System (INIS)

    Jovall, O.; Larsson, J.-A.; Shaw, P.; Touret, J.-P.; Karlberg, G.

    2003-01-01

    The CONMOD project aims to create a system which will ensure that safety requirements for concrete containment structures will be up-held during the entire planned lifetime of plants and possibly during an extended lifetime. An important part of the project is to develop the application and understanding of Non-Destructive Testing (NDT) techniques for the assessment of conformity and condition of concrete reactor containments and to integrate this with state-of-the-art and developed Finite Element (FE) modelling techniques and analysis of structural behaviour. The objective being to create a diagnostic method for evaluation of ageing and degradation of concrete containments. This method, the C ONMOD-methodology , will help in the planning and execution of actions that will improve safety in a manner which is optimal both in terms of economy and safety. The knowledge gained during the project will be presented in a handbook of best practice. The decommissioned Barsebaeck unit 1 reactor containment will be accessible for non-destructive examination throughout the duration of the project. Intrusive investigations will also be made including coring and material tests as a valuable complement to NDT. (author)

  5. CFD approach to modeling of core-concrete interaction

    International Nuclear Information System (INIS)

    Vladimir V Chudanov; Anna E Aksenova; Valerii A Pervichko

    2005-01-01

    (concrete) components; gases release, including hydrogen, and their transfer through the molten corium in view of a modification of a heat transfer; chemical reactions of oxidation, which are accompanied by energy generation and transposition of mass; crust formation and influence of its on a solidification / melting of corium and heat exchange with enclosing constructions; concrete ablation. As against the earlier developed codes, use of multidimensional models will allow to study experimental singularities, for example, carried out within of the programs SURC, ACE and BETA. This paper deals with both the basic features of the developed model and software and with the results of their testing and practical application. (authors)

  6. Stent selection in patients with myocardial infarction: drug eluting, biodegradable polymers or bare metal stents?

    Science.gov (United States)

    Mieres, Juan; Rodríguez, Alfredo E

    2012-08-01

    Percutaneous coronary intervention (PCI) has been increasingly used in the last years during interventional procedures in patients with acute coronary syndromes (ACS) including ST elevation myocardial infarction (STEMI) and non-ST elevation myocardial infarction (NSTEMI). In patients with either STEMI, NSTEMI, high risk ACS with EKG changes or cardiac enzymes rises; PCI with bare metal stent (BMS) implantation has been associated with a significant improvement in clinical outcome. Therefore, BMS implantation during primary PCI in STEMI has become a standard of practice. With the introduction of drug eluting stents (DESs) in this decade, the use of these new devices instead of BMSs in patients with STEMI has emerged as a rational PCI alternative in this particular subgroup of patients. In spite of the unquestionable benefits of DESs in terms of reduction of restenosis and TVR, specific concerns have arisen with regard to their long-term safety. High incidence of very late stent thrombosis has been described with these devices, and special attention should be paid in patients with unstable coronary lesions, in which plaque composition and remodeling may play a main role in their safety and long-term outcome. Intraluminal thrombus caused by plaque rupture is the most frequent mechanism of STEMI, in which the necrotic core and thin fibrous cap play a major role. In this context, the use of first DESs designs may be futile or even unsafe because delayed healing may further contribute to plaque instability. Adjunctive invasive imaging tools can improve stent deployment and safety outcome in these lesions with intravascular findings of plaque instability. Recently, other players such as new dedicated antithrombotic BMS designs, including selfexpanding stents or drug-eluting coated balloons, are exploring their potential indications in patients with ACS and myocardial infarction. This paper reports and discusses new stent devices and adjunctive pharmacologic agents. It

  7. FOAM CONCRETE REINFORCEMENT BY BASALT FIBRES

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2012-10-01

    Full Text Available The authors demonstrate that the foam concrete performance can be improved by dispersed reinforcement, including methods that involve basalt fibres. They address the results of the foam concrete modeling technology and assess the importance of technology-related parameters. Reinforcement efficiency criteria are also provided in the article. Dispersed reinforcement improves the plasticity of the concrete mix and reduces the settlement crack formation rate. Conventional reinforcement that involves metal laths and rods demonstrates its limited application in the production of concrete used for thermal insulation and structural purposes. Dispersed reinforcement is preferable. This technology contemplates the infusion of fibres into porous mixes. Metal, polymeric, basalt and glass fibres are used as reinforcing components. It has been identified that products reinforced by polypropylene fibres demonstrate substantial abradability and deformability rates even under the influence of minor tensile stresses due to the low adhesion strength of polypropylene in the cement matrix. The objective of the research was to develop the type of polypropylene of D500 grade that would demonstrate the operating properties similar to those of Hebel and Ytong polypropylenes. Dispersed reinforcement was performed by the basalt fibre. This project contemplates an autoclave-free technology to optimize the consumption of electricity. Dispersed reinforcement is aimed at the reduction of the block settlement in the course of hardening at early stages of their operation, the improvement of their strength and other operating properties. Reduction in the humidity rate of the mix is based on the plasticizing properties of fibres, as well as the application of the dry mineralization method. Selection of optimal parameters of the process-related technology was performed with the help of G-BAT-2011 Software, developed at Moscow State University of Civil Engineering. The authors also

  8. The road barely taken: funerals, and people with intellectual disabilities.

    Science.gov (United States)

    Forrester-Jones, Rachel

    2013-05-01

    The topic of funerals within the life cycle approach to care in the U.K. remains largely absent. This small exploratory study sought to investigate how practitioners deal with this sensitive issue and to capture the views of older people with and without intellectual disabilities about funerals. A semi-structured questionnaire was administered to 40 service managers, and five focus groups for 26 people with and without intellectual disabilities were facilitated. Questionnaires were subjected to thematic content analysis; focus group data were analysed using a grounded theory approach. Managers demonstrated confusion about organizing the funerals of people with intellectual disabilities. Few differences existed between the views of people with and without intellectual disabilities in relation to funerals and a number of core themes were identified including the lack of opportunities to attend funerals. More thought and practical interventions are needed to support vulnerable people to participate in the funerals of people they know. © 2013 Blackwell Publishing Ltd.

  9. Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers

    OpenAIRE

    Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jim?nez, Jos? Ram?n; Ledesma, Enrique F.

    2016-01-01

    This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All...

  10. [Lipedema, a barely known disease: diagnosis, associated diseases and therapy].

    Science.gov (United States)

    Wenczl, Enikô; Daróczy, Judit

    2008-11-09

    Lipedema is a common but rarely diagnosed disease or frequently confused with obesity. Patients are almost exclusively women. It is characterised by symmetrical, circumscribed, in advanced form deforming fat tissue accumulation on the legs that is associated with lymphedema. Spontaneous pain, pain to pressure and tendency to hematoma are characteristic. One of the possible causes of a fat leg, that is a very common complaint, is lipedema. Main differential diagnoses are obesity, lipohypertrophy and primary and secondary lymphedema. It is often associated with chronic venous and lymphatic insufficiency, early degenerative articular disease and obesity. The disease is rarely recognized and the treatment modalities are not widely known. Therefore patients feel very frustrated that leads to psychologic disorders. Until recently only conservative treatment was possible (combination of manual or intermittent pneumatic drainage, compression bandages and garments and physiotherapy). More recently surgical intervention (liposuction) is also included in the treatment options. The significance of lipedema is due not only to the disease itself, but also to the combination of lipedema and the group of associated and secondary diseases (articular and venous diseases, lymphedema, obesity, psychologic disorders). The more diseases coexist, the worse is the prognosis of lipedema itself. To prevent and delay this disease, it is indispensable to recognise it as early as possible and to treat it expertly and follow up patients suffering from lipedema.

  11. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  12. Drying of concrete. Part II: The drying time of concrete structures

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Christensen, Søren Lolk

    1998-01-01

    . In the paper the effects of the air content and the silica fume content on the drying time are investigated on two concrete mixes having different water/cement ratios. One concrete represents a normal concrete and the other represents a selfdesiccation concrete.......The composition of a concrete mix has a significant influence on the drying time to reach a given relative humidity in the concrete pores. Knowledge of the influence on the drying of a specific component in the concrete makes it possible to design a concrete mix having a predetermined drying time...

  13. Prediction of concrete strength in massive structures

    International Nuclear Information System (INIS)

    Sakamoto, T.; Makino, H.; Nakane, S.; Kawaguchi, T.; Ohike, T.

    1989-01-01

    Reinforced concrete structures of a nuclear power plant are mostly of mass concrete with cross-sectional dimensions larger than 1.0 m. The temperature of concrete inside after placement rises due to heat of hydration of cement. It is well known that concrete strengths of mass concrete structure subjected to such temperature hysteresis are generally not equal to strengths of cylinders subjected to standard curing. In order to construct a mass concrete structure of high reliability in which the specified concrete strength is satisfied by the specified age, it is necessary to have a thorough understanding of the strength gain property of concrete in the structure and its relationships with the water-cement ratio of the mix, strength of standard-cured cylinders and the internal temperature hysteresis. This report describes the result of studies on methods of controlling concrete strength in actual construction projects

  14. Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures- A State of Art of Review

    Science.gov (United States)

    Athiyamaan, V.; Mohan Ganesh, G.

    2017-11-01

    Self-Compacting Concrete is one of the special concretes that have ability to flow and consolidate on its own weight, completely fill the formwork even in the presence of dense reinforcement; whilst maintaining its homogeneity throughout the formwork without any requirement for vibration. Researchers all over the world are developing high performance concrete by adding various Fibers, admixtures in different proportions. Various different kinds Fibers like glass, steel, carbon, Poly propylene and aramid Fibers provide improvement in concrete properties like tensile strength, fatigue characteristic, durability, shrinkage, impact, erosion resistance and serviceability of concrete[6]. It includes fundamental study on fiber reinforced self-compacting concrete with admixtures; its rheological properties, mechanical properties and overview study on design methodology statistical approaches regarding optimizing the concrete performances. The study has been classified into seven basic chapters: introduction, phenomenal study on material properties review on self-compacting concrete, overview on fiber reinforced self-compacting concrete containing admixtures, review on design and analysis of experiment; a statistical approach, summary of existing works on FRSCC and statistical modeling, literature review and, conclusion. It is so eminent to know the resent studies that had been done on polymer based binder materials (fly ash, metakaolin, GGBS, etc.), fiber reinforced concrete and SCC; to do an effective research on fiber reinforced self-compacting concrete containing admixtures. The key aim of the study is to sort-out the research gap and to gain a complete knowledge on polymer based Self compacting fiber reinforced concrete.

  15. UTILIZING WASTE PLASTIC POLYPROPYLENE AND POLYETHYLENE TEREPHTHALATE AS ALTERNATIVE AGGREGATES TO PRODUCE LIGHTWEIGHT CONCRETE: A REVIEW

    Directory of Open Access Journals (Sweden)

    IBRAHIM H. ALFAHDAWI

    2016-08-01

    Full Text Available In recent times, there is an increasing need for the fabrication of mortar and concrete that can be characterised as sustainable and environmentally friendly. Ideally, this concrete should be inexpensive, lightweight, and outstanding in terms of its physical and mechanical specifications. Plastic materials have increasingly been used in the fabrication of different types of concrete admixtures and mortar constituents. These plastic materials take the form of fillers or shredded fibres derived from polypropylene and polyethylene terephthalate. The use of plastic materials presents the following benefits: (i enhanced mixture quality and (ii a reduction in the amount of accumulated single-use plastic materials that negatively impact the environment. This work reviews several previous studies on the utilisation and preparations of plastic materials and their effects on the physical and mechanical properties of concrete. Other topics, including hardened concrete, fresh concrete, application, and thermo-physical characteristics, are also elaborated.

  16. Properties of concrete containing coconut shell powder (CSP) as a filler

    Science.gov (United States)

    Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.

    2017-11-01

    Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.

  17. High-impact concrete for fill in US Department of Transportation type shipping containers

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.; Cash, R.J.

    1990-01-01

    This report describes the use of light-weight, high-impact concrete in U.S. Department of Transportation-type shipments. The formulations described are substantially lighter in weight (20 to 50 percent) than construction concrete, but product test specimens generally yield superior impact characteristics. The use of this specialty concrete for container fill, encapsulations, or liquid-waste solidification can be advantageous. Use of the material for container or cask construction has the advantage of lighter weight for easier handling, and the container consistently exhibits better performance on drop tests. High-impact concrete does have the disadvantage of less gamma radiation shielding per volume, but some formulation changes discussed in this report can be used to prepare better shielding concrete. Test characteristics of high-impact concrete are included. 3 refs., 6 figs., 7 tabs

  18. Characterization of Radiation Fields for Assessing Concrete Degradation in Biological Shields of NPPs

    Directory of Open Access Journals (Sweden)

    Remec Igor

    2017-01-01

    Full Text Available Life extensions of nuclear power plants (NPPs to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.

  19. Efficiency of fiber reinforced concrete application in structures subjected to dynamic effects

    Directory of Open Access Journals (Sweden)

    Morozov Valeriy Ivanovich

    2014-03-01

    Full Text Available Fiber reinforced concretes possess high strength under dynamic loadings, which include impact loads, thanks to their high structural viscosity. This is the reason for using them in difficult operating conditions, where increasing the performance characteristics and the structure durability is of prime importance, and the issues of the cost become less significant. Applying methods of disperse reinforcement is most challenging in case of subtle high-porous materials on mineral binders, for example foamed concrete. At the same time, the experiments conducted in Russia and abroad show, that also in other cases the concrete strength resistance several times increases as a result of disperse reinforcement. This doesn't depend on average density of the concrete and type of fiber used. In the article the fibre reinforced concrete impact resistance is analysed. Recommendations are given in regard to fibre concrete application in manufacture of monolithic floor units for industrial buildings and precast piles.

  20. Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Pt. 1

    International Nuclear Information System (INIS)

    Sugano, T.; Tsubota, H.; Kasai, Y.; Koshika, N.; Ohnuma, H.; Von Riesemann, W.A.; Bickel, D.C.; Parks, M.B.

    1993-01-01

    Structural damage induced by an aircraft crashing into a reinforced concrete structure includes local damage caused by the deformable engines, and global damage caused by the entire aircraft. Local damage to the target may consist of spalling of concrete from its front face together with missile penetration into it, scabbing of concrete from its rear face, and perforation of missile through it. Until now, local damage to concrete structures has been mainly evaluated by rigid missile impact tests. Past research work regarding local damage caused by impact of deformable missiles has been limited. This paper presents the results of a series of impact tests of small-, intermediate-, and full-scale engine models into reinforced concrete panels. The purpose of the tests was to determine the local damage to a reinforced concrete structure caused by the impact of a deformable aircraft engine. (orig.)

  1. RESEARCH PREMATURE DESTRUCTION OF CONCRETE SLEEPERS ON THE MAIN LINES OF PUBLIC COMPANY «UZ»

    Directory of Open Access Journals (Sweden)

    V. V. Kovalenko

    2016-08-01

    Full Text Available Purpose. The study aims to identify the causes of premature destruction of concrete sleepers of one of Ukrainian producers. Methodology. Applied microstructural, fractographic, X-ray microanalysis revealed causes of transient corrosion processes in concrete. Findings. Subject of study in this work is a cement rock and concrete structure of prematurely shattered concrete sleepers. Another premature destruction of concrete sleepers was studied using the traditional method for Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan (DNURT that was patented in 2009. The conducted research showed: 1 a cement rock near the sand particles of high concentration of chlorine and alkali metals exceeding permissible in existing standards; 2 different grained cement crystals indicates excess of water in the concrete mixture; 3 the presence in the cement rock structure of wood fibers, which are due to the additional moisture absorption accelerate chemical reactions in the operated concrete sleepers; 4 speed of alkaline-silicic-acidic reaction in concrete sleepers is 5 microns per year; 5 availability of wood fibers indicates unsatisfactory purity of aggregates screening, including crushed stone; 6 chlorine ions further accelerate structural transformation reaction of cement. Originality. The paper found the rate of corrosion processes in concrete sleepers of Ukrainian producer. The influence on the corrosion rate of contamination of large aggregates of organic substances, including wood fibers was shown in the article. There were presented characteristic signs of accelerating corrosion processes as a result of excess of water and chlorine ions in the structure of cement rock. Practical value. Identifying the typical signs of premature destruction of concrete under rail foundations prevents massive failure of railway sleepers, which affects negatively the railway traffic safety. The proposed by DNURT without steaming

  2. EAARL coastal topography-western Florida, post-Hurricane Charley, 2004: seamless (bare earth and submerged.

    Science.gov (United States)

    Nayegandhi, Amar; Bonisteel, Jamie M.; Wright, C. Wayne; Sallenger, A.H.; Brock, John C.; Yates, Xan

    2010-01-01

    Project Description These remotely sensed, geographically referenced elevation measurements of lidar-derived seamless (bare-earth and submerged) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Coastal and Marine Geology Program (CMGP), St. Petersburg, FL, and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the western Florida coastline beachface, acquired post-Hurricane Charley on August 17 and 18, 2004. The datasets are made available for use as a management tool to research scientists and natural-resource managers. An innovative airborne lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multispectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for sub-meter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the EAARL system, and the resulting data were then

  3. Concretes characterization for spent radioactive sources; Caracterizacion de concretos para fuentes radiactivas gastadas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez B, J. [Instituto Tecnologico de Saltillo, Venustiano Carranza No. 2400, Col. Tecnologico, 25280 Saltillo, Coahuila (Mexico); Monroy G, F. P., E-mail: jmtzbock@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    The present work includes the preparation and characterization of the concrete used as conditioning matrix of spent radioactive sources in the Treatment Plant of Radioactive Wastes of the Instituto Nacional de Investigaciones Nucleares (ININ). The concrete tests tubes were subjected to resistance assays to the compression, leaching, resistance to the radiation and porosity, and later on characterized by means of X rays diffraction, scanning electron microscopy and infrared spectrometry, with the purpose of evaluating if this concrete accredits the established tests by the NOM-019-Nucl-1995. The results show that the concrete use in the Treatment Plant fulfills the requirements established by the NOM-019-Nucl-1995. (author)

  4. Mqcd, ("barely") G2 Manifolds and (orientifold Of) a Compact Calabi-Yau

    Science.gov (United States)

    Misra, Aalok

    We begin with a discussion on two apparently disconnected topics — one related to nonperturbative superpotential generated from wrapping an M2-brane around a supersymmetric three cycle embedded in a G2-manifold evaluated by the path-integral inside a path-integral approach of Ref. 1, and the other centered around the compact Calabi-Yau CY3(3, 243) expressed as a blow-up of a degree-24 Fermat hypersurface in WCP4[1, 1, 2, 8, 12]. For the former, we compare the results with the ones of Witten on heterotic worldsheet instantons.2 The subtopics covered in the latter include an =1 triality between Heterotic, M- and F-theories, evaluation of RP2-instanton superpotential, Picard-Fuchs equation for the mirror Landau-Ginzburg model corresponding to CY3(3, 243), D = 11 supergravity corresponding to M-theory compactified on a "barely" G2 manifold involving CY3(3, 243) and a conjecture related to the action of antiholomorphic involution on period integrals. We then shown an indirect connection between the two topics by showing a connection between each one of the two and Witten's MQCD.3 As an aside, we show that in the limit of vanishing "ζ", a complex constant that appears in the Riemann surfaces relevant to defining the boundary conditions for the domain wall in MQCD, the infinite series of Ref. 4 used to represent a suitable embedding of a supersymmetric 3-cycle in a G2-mannifold, can be summed.

  5. Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1990-09-01

    The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25 degree C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, 137 Cs, 90 Sr, 99 Tc, and 129 I were continuously released at rates between about 5 x 10 -5 and 1 x 10 -4 of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which 14 C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs

  6. Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion

    Science.gov (United States)

    Pinto, Marcus Benghi

    2007-01-01

    The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The…

  7. EAARL-B coastal topography: Chandeleur Islands, Louisiana, 2012: seamless (bare earth and submerged)

    Science.gov (United States)

    Wright, C. Wayne; Klipp, Emily S.; Kranenburg, Christine J.; Troche, Rodolfo J.; Fredericks, Alexandra M.; Masessa, Melanie L.; Nagle, David B.

    2015-01-01

    These remotely sensed, geographically referenced elevation measurements of light detection and ranging (lidar)-derived seamless (bare-earth and submerged) topography datasets were produced by the U.S. Geological Survey (USGS), St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida.

  8. Bare action and regularized functional integral of asymptotically safe quantum gravity

    International Nuclear Information System (INIS)

    Manrique, Elisa; Reuter, Martin

    2009-01-01

    Investigations of quantum Einstein gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together with the regularized measure these bare actions give rise to a functional integral which reproduces the prescribed effective action when the UV cutoff is removed. In this way we are able to reconstruct the underlying microscopic (classical) system and identify its fundamental degrees of freedom and interactions. The bare action of the Einstein-Hilbert truncation is computed and its flow is analyzed as an example. Various conceptual issues related to the completion of the asymptotic safety program are discussed.

  9. Predicting first-year bare-root seedling establishment with soil and community dominance factors

    Science.gov (United States)

    Robin E. Durham; Benjamin A. Zamora; Michael R. Sackschewsky; Jason C. Ritter

    2001-01-01

    The usefulness of measuring community dominance factors and the soil parameters of geometric mean particle size and percent fines as predictors of first-year bare-root establishment of Wyoming big sagebrush seedlings was investigated. The study was conducted on six sandy soils in south-central Washington. Soil parameters that could affect the distribution of Sandberg’s...

  10. Bare spot of the glenoid fossa in children: incidence and MRI features

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Emery, Kathleen H.; Salisbury, Shelia R.

    2010-01-01

    The bare spot of the glenoid fossa is a normal cartilage defect seen frequently in adults. It has been used on arthroscopy as a landmark for the center of the glenoid fossa. There are no reports of this variant in children, but we have noted it on some pediatric clinical shoulder MRI studies. Our main purpose is to evaluate the incidence of the bare spot in children and define location and MRI features. Shoulder MRI studies (total 570) from 2004 to 2008 were reviewed. Children were divided into two age groups: group 1, 0-10 years (n=200), group 2, 11-20 years (n=370). A total of 12 bare spots (2.1%) were identified; all were seen in group 2. Eight (67%) were central and four were eccentric in the glenoid fossa. All showed a well-marginated focal cartilage defect containing hyperintense joint fluid or contrast agent. Three also had air. The bare spot is seen in children. The absence in children younger than 10 years and the low incidence in the second decade support the proposed acquired nature. Familiarity with this finding is important so as not to misinterpret it as a pathologic condition. (orig.)

  11. Distribution of Rhizoctonia Bare Patch and Root Rot in Eastern Washington and Relation to Climatic Variables

    Science.gov (United States)

    Rhizoctonia is a fungus that attacks the roots of wheat and barley, causing a root rot and bare patch in the dryland wheat cropping area of the inland Pacific Northwest. Over the last 7 years, we have been investigating the distribution of this pathogen, using molecular methods based on extracting a...

  12. Drug-eluting versus bare-metal stents in large coronary arteries

    DEFF Research Database (Denmark)

    Kaiser, Christoph; Galatius, Soeren; Erne, Paul

    2010-01-01

    Recent data have suggested that patients with coronary disease in large arteries are at increased risk for late cardiac events after percutaneous intervention with first-generation drug-eluting stents, as compared with bare-metal stents. We sought to confirm this observation and to assess whether...

  13. Grazing intensity and spatial heterogeneity in bare soil in a grazing-resistant grassland

    Science.gov (United States)

    Spatial patterns in rangeland vegetation serve as indicators of rangeland condition and are an important component of wildlife habitat. We illustrate the use of very-large-scale aerial photography (VLSA) to quantify spatial patterns in bare soil of the northeastern Colorado shortgrass steppe. Using ...

  14. Hypertrophic osteoarthropathy in a young child with cytomegalovirus pneumonia and the bare lymphocyte syndrome

    International Nuclear Information System (INIS)

    Taets van Amerongen, A.H.M.; Golding, R.P.; Veerman, A.J.P.

    1986-01-01

    A case of hypertrophic osteoarthropathy is reported in a 3-year-old Turkish girl. She had combined immunodeficiency, later shown to be the Bare Lymphocyte syndrome, and chronic pneumonia. Lung biopsy showed cytomegalovirus. The child developed painful elbow and knee joints and hypertrophic osteoarthropathy was demonstrated radiologically. (orig.)

  15. Change detection of bare areas in the Xolobeni region, South Africa using Landsat NDVI

    CSIR Research Space (South Africa)

    Singh, RG

    2015-06-01

    Full Text Available an understanding of the inter-relationships of the critical factors that have influenced erosion potential over time. Vegetation and bare areas are some of the contributing factors that have influenced erosion at Xolobeni. This study used remote sensing as a tool...

  16. Effects of tillage on runoff from a bare clayey soil on a semi-arid ...

    African Journals Online (AJOL)

    Effects of tillage on runoff from a bare clayey soil on a semi-arid ecotope in the Limpopo Province of South Africa. ... IRWH is a special type of no-till (NT) crop production practice that promotes runoff from a crusted runoff strip into basins where the water infiltrates beyond evaporation but is available for crop use. Runoff was ...

  17. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  18. Volcano-related materials in concretes: a comprehensive review.

    Science.gov (United States)

    Cai, Gaochuang; Noguchi, Takafumi; Degée, Hervé; Zhao, Jun; Kitagaki, Ryoma

    2016-04-01

    Massive volcano-related materials (VRMs) erupted from volcanoes bring the impacts to natural environment and humanity health worldwide, which include generally volcanic ash (VA), volcanic pumice (VP), volcanic tuff (VT), etc. Considering the pozzolanic activities and mechanical characters of these materials, civil engineers propose to use them in low carbon/cement and environment-friendly concrete industries as supplementary cementitious materials (SCMs) or artificial/natural aggregates. The utilization of VRMs in concretes has attracted increasing and pressing attentions from research community. Through a literature review, this paper presents comprehensively the properties of VRMs and VRM concretes (VRMCs), including the physical and chemical properties of raw VRMs and VRMCs, and the fresh, microstructural and mechanical properties of VRMCs. Besides, considering environmental impacts and the development of long-term properties, the durability and stability properties of VRMCs also are summarized in this paper. The former focuses on the resistance properties of VRMCs when subjected to aggressive environmental impacts such as chloride, sulfate, seawater, and freezing-thawing. The latter mainly includes the fatigue, creep, heat-insulating, and expansion properties of VRMCs. This study will be helpful to promote the sustainability in concrete industries, protect natural environment, and reduce the impacts of volcano disaster. Based on this review, some main conclusions are discussed and important recommendations regarding future research on the application of VRMs in concrete industries are provided.

  19. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  20. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    .synligbeton.dk and spæncom’s aesthetic relief effects by the designer Line Kramhøft (www.spaencom.com). It is my hope that the research-development project “Lasting large scale glazed concrete formwork,” I am working on at DTU, department of Architectural Engineering will be able to complement these. It is a project where I...... in the crinkly façade of DR-Byen (the domicile of the Danish Broadcasting Company) by architect Jean Nouvel and Zaha Hadid’s Ordrupgård’s black curved smooth concrete surfaces. Furthermore, one can point to initiatives such as “Synlig beton” (visible concrete) that can be seen on the website www...... try to develop new aesthetic potentials for the concrete, in large scales that has not been seen before in the ceramic area. It is expected to result in new types of large scale and very thin, glazed concrete façades in building. If such are introduced in an architectural context as exposed surfaces...

  1. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  2. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break with the indu......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...... an increased customisation of casting moulds. The hypothesis of this research is that the techniques used in this research do not fully address the tectonic potentials of concrete which gives rise to the primary research question: Is it possible to enhance existing or develop new concrete casting techniques...

  3. Zero-degree binary encounter electron production in 30 MeV bare O8+ in collisions with H2, He, Ne, Ar, Kr and Xe

    International Nuclear Information System (INIS)

    Zouros, T.J.M.; Richard, P.; Liao, C.; Hagmann, S.

    1996-01-01

    Double differential cross-sections for the production of binary encounter electrons were measured for collisions of 30 MeV bare O 8+ projectiles with H 2 , He, Ne, Ar, Kr and Xe targets at an electron ejection angle of θ=0 circle with respect to the beam direction. Results were analyzed in terms of the impulse approximation (IA), in which target electrons in the projectile frame undergo 180 circle Rutherford scattering in the field of the bare projectile ion. Excellent agreement with the data was found for the H 2 and He targets, while for the multi-electron targets good agreement was established only when target electrons whose velocities were lower than the projectile velocity were included in the calculation. (orig.)

  4. Measurement of {sup 241}Am-Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: Spectrum unfolding by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.P. [Radiation Safety Systems Division, BARC, Mumbai 400085 (India)], E-mail: Sam.tripathy@gmail.com; Bakshi, A.K. [Radiological Physics and Advisory Division, BARC, Mumbai 400085 (India); Sathian, V.; Tripathi, S.M. [Radiation Safety Systems Division, BARC, Mumbai 400085 (India); Vega-carrillo, H.R. [Unidad Academica de Estudios Nucleares de la, Universidad Autonoma de Zacatecas, Apdo. Postal 336, 98000 Zacatecas, Zac. (Mexico); Nandy, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, P.K. [Radiation Safety Systems Division, BARC, Mumbai 400085 (India); Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sharma, D.N. [Radiation Safety Systems Division, BARC, Mumbai 400085 (India)

    2009-01-11

    The neutron spectra from a Pb-covered and a bare (without Pb-cover) {sup 241}Am-Be ({alpha},n) source were measured using thermoluminescent detector (TLD) pairs of {sup 6}LiF and {sup 7}LiF with high-density polyethylene (HDPE) multi-spheres of seven different diameters. A total of 8 distinct neutron response signals (including a bare mode exposure) were obtained from which the energy distribution for the entire energy range was generated with the help of different neutron spectrum unfolding methods, viz. BUNKI, BUNKIUT and Frascati unfolding interactive tool (FRUIT). Shape of these spectra are matching very well and is also comparable with the standard IAEA {sup 241}Am-Be spectrum, thus, validating the unfolding methods used in this work. The effect of Pb-cover on the spectrum and the unfolding details are reported in the paper.

  5. Measurement of 241Am-Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: Spectrum unfolding by different methods

    Science.gov (United States)

    Tripathy, S. P.; Bakshi, A. K.; Sathian, V.; Tripathi, S. M.; Vega-carrillo, H. R.; Nandy, M.; Sarkar, P. K.; Sharma, D. N.

    2009-01-01

    The neutron spectra from a Pb-covered and a bare (without Pb-cover) 241Am-Be (α,n) source were measured using thermoluminescent detector (TLD) pairs of 6LiF and 7LiF with high-density polyethylene (HDPE) multi-spheres of seven different diameters. A total of 8 distinct neutron response signals (including a bare mode exposure) were obtained from which the energy distribution for the entire energy range was generated with the help of different neutron spectrum unfolding methods, viz. BUNKI, BUNKIUT and Frascati unfolding interactive tool (FRUIT). Shape of these spectra are matching very well and is also comparable with the standard IAEA 241Am-Be spectrum, thus, validating the unfolding methods used in this work. The effect of Pb-cover on the spectrum and the unfolding details are reported in the paper.

  6. The effect of concrete strength and reinforcement on toughness of reinforced concrete beams

    OpenAIRE

    Carneiro, Joaquim A. O.; Jalali, Said; Teixeira, Vasco M. P.; Tomás, M.

    2005-01-01

    The objective pursued with this work includes the evaluating of the strength and the total energy absorption capacity (toughness) of reinforced concrete beams using different amounts of steel-bar reinforcement. The experimental campaign deals with the evaluation of the threshold load prior collapse, ultimate load and deformation, as well as the beam total energy absorption capacity, using a three point bending test. The beam half span displacement was measured using a displacement transducer,...

  7. Influence of covered stent versus bare stent on long-term efficacy of transjugular intrahepatic portosystemic shunt: a meta-analysis

    Directory of Open Access Journals (Sweden)

    XU Lu

    2016-10-01

    Full Text Available Objective To investigate the long-term postoperative efficacy of transjugular intrahepatic portosystemic shunt (TIPS using polytetrafluoroethylene (PTFE-covered stent or bare stent, and to provide a basis of evidence-based medicine for the selection of stent in TIPS. Methods CBM, Wanfang Data, CNKI, VIP, MEDLINE, and PubMed were searched for controlled trials on TIPS in the treatment of cirrhotic portal hypertension published form 1989 to 2015; the studies which met the inclusion criteria were selected, and quality assessment was performed for these articles. RevMan 5.3 software was used to analyze the incidence rates of stent dysfunction and hepatic encephalopathy and 1-year survival rate after TIPS, and funnel plots were used to analyze publication bias. Results A total of 11 studies were included, consisting of 698 patients in PTFE-covered stent group and 1283 patients in bare stent group. The results of the meta-analysis showed that the PTFE-covered stent group showed a significantly lower incidence rate of stent dysfunction than the bare stent group (14.8% vs 47.0%, OR=0.18, 95% CI: 0.13-0.24, P<0.001. There was no significant difference in the incidence rate of hepatic encephalopathy between the two groups (23.5% vs 25.7%, OR=0.88, 95% CI: 0.66-1.17, P=0.37. The PTFE-covered stent group had a significantly higher 1-year survival rate than the bare stent group (76.9% vs 62.7%, OR=2.10, 95% CI: 1.54-2.85, P<0.001. The funnel plots which were plotted based on the incidence rates of stent dysfunction and hepatic encephalopathy and 1-year survival rate lacked symmetry, which suggested that a certain degree of publication bias might exist. Conclusion Compared with the bare stent, the PTFE-covered stent can improve stent dysfunction and 1-year survival rate after TIPS, while there is no significant change in the incidence rate of hepatic encephalopathy. Therefore, the PTFE-covered stent has certain advantages over the bare stent in TIPS. In

  8. Radiation effects in concrete for nuclear power plants – Part I: Quantification of radiation exposure and radiation effects

    International Nuclear Information System (INIS)

    Field, K.G.; Remec, I.; Pape, Y. Le

    2015-01-01

    Highlights: • Neutron and gamma rays fields in concrete biological shield are calculated. • An extensive database on irradiated concrete properties has been collected. • Concrete mechanical properties decrease beyond 1.0 × 10 19 n/cm 2 fluence. • Loss of properties appears correlated with radiation induced-aggregate swelling. • Commercial reactor bio-shield may experience long-term irradiation damage. - Abstract: A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review of the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation

  9. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    International Nuclear Information System (INIS)

    Luna, Miguel; Arcos, David; Duro, Lara

    2007-11-01

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  10. Effects of grouting, shotcreting and concrete leachates on backfill geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Miguel; Arcos, David; Duro, Lara [Enviros Consulting, Valldoreix, Barc elona (Spain)

    2007-11-15

    The use of concrete to seal open fractures (grouting) and to impermeabilise the deposition tunnels (shotcreting) has been envisaged in the construction of a high level nuclear waste (HLNW) repository according to SKB designs. Nevertheless, the geochemical effect of using concrete in the repository is not fully understood. Concrete degradation due to the interaction with groundwater can affect the performance of other repository barriers, such as the backfill material used for sealing the deposition tunnels. One of the main effects of concrete degradation is the generation of alkaline plumes. For this reason, SKB is currently planning to use a type of concrete whose degradation result in lower pH values than those developed with Ordinary Portland Cement (OPC). In order to assess the long-term geochemical effect of including low-pH concrete elements in a HLNW repository, we performed a 2D reactive-transport model of a backfilled deposition tunnel that intersects a hydraulic conductive fracture which has been partially grouted. An additional case has been modelled where part of the deposition tunnel walls were covered with a shotcrete layer. The modelling results predict the development of a high-alkalinity plume, larger in the case of considering a grouted fracture, accompanied by the precipitation of CSH-phases in the fracture. However, the effect on the backfill material is only significant if concrete is in contact with the backfill (shotcrete case). In order to conduct these models, and considering that at the beginning of the present work there was not a specific composition for such a low-pH concrete, its composition has been assumed in order to meet the expected geochemical evolution of concrete degradation according to SKB expectations. This is a pH of pore water of around 11 and the degradation of CSH phases resulting in a source for Ca and Si into the system. For this reason, jennite and tobermorite have been selected, although it is known that jennite is

  11. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    . However, a single concrete casting material, given the use of the right technique that is able to address all these problems, has not been identified, neither in state-of-the-art nor in the case studies. It follows that due to today’s demands for resource optimization and competitiveness it is unlikely......Contemporary techniques for concrete casting in an architectural context are challenged by demands of increased individualization in our built environment, reductions in the use of resources and waste generation. In recent years, new production technologies and strategies that break...... with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...

  12. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold is rea......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure.......A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...

  13. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  14. Respirable concrete dust--silicosis hazard in the construction industry.

    Science.gov (United States)

    Linch, Kenneth D

    2002-03-01

    Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA

  15. Nonlinear analysis of concrete gravity dams under normal fault motion

    Directory of Open Access Journals (Sweden)

    Mehdi Alijani Ardeshir

    2016-09-01

    Full Text Available The importance of the seismic behavior of concrete gravity dams in their safety evaluation and stability is inevitable. Many factors affect the prediction of the behavior of concrete dams such as dam-foundation-reservoir interaction, dam and foundation cracking and also displacement due to fault movement that could causes nonlinear behavior. The aim of this study is nonlinear analysis of concrete gravity dams, including displacement caused by normal fault movement in the dam foundation. For this purpose, dam-foundation-reservoir system is modeled using Lagrangian method and analysis of system is done by finite element method. The coordinate smeared crack model based on the nonlinear fracture mechanics is used for crack modeling in the dam body and foundation. Using two separate method including split node technique and contact element, the fault movement are modeled and the position and angle of fault has been studied. To verify the results, dam crest displacement and crack profile in the body of a concrete gravity dam is presented as an example. The results show that low fault movement causes the cracks in the dam body and could be jeopardizes the stability and safety of concrete dam.

  16. Plant life management of the ACR-1000 Concrete containment structure

    International Nuclear Information System (INIS)

    Abrishami, H.H.; Ricciuti, R.; Elgohary, M.

    2009-01-01

    The Ageing of reinforced concrete structures due to service conditions, aggressive environments, or accidents may cause their strength, serviceability and durability to decrease over time. For a new plant, a Plant Life Management (PLiM) program should start in the design process and then continues through the plant operation and decommissioning. Hence, PLiM must provide not only Ageing Management program (AMP) but also provide requirements on material characteristic and design criteria as well. The purpose of this paper is to present the Plant Life Management (PLiM) strategy for the concrete containment structure of the ACR-10001 (Advanced CANDU Reactor) designed by AECL. The ACR-1000 is designed for a 100-year plant life including 60-year operating life and an additional 40-year decommissioning period. The approach adopted for the PLiM strategy of the concrete containment structure is a preventive one, key areas being: 1) design methodology, 2) material performance and 3) ageing management program. During the design phase, in addition to strength and serviceability, durability, throughout the service life and decommissioning phase of the ACR-1000 structure, is a major consideration. Factors affecting durability design include: a) concrete performance, b) structural application, and c) consideration of environmental conditions. In addition to addressing the design methodology and material performance requirements, a systematic approach for the ageing management program for the concrete containment structure is presented. (authors)

  17. Configuration of SoC FPGA, Booting of HPS and running Bare Metal Application from SD card.

    CERN Document Server

    Zahid Rasheed, Awais

    2016-01-01

    First, a hardware design is created using Qsys in Quartus 16.0. Creation of the hardware design consists of configuring Hard Processor System (HPS) inside FPGA and adding necessary hardware blocks to the design. After generating the Qsys design, it is then instantiated in top level module in Verilog or VHDL. After setting up all pin assignments and adding all necessary files in the design, project is compiled to have a complete hardware design. Second part comprises full software design in correspondence with the hardware design and booting the HPS from SD card. Software includes enabling the different bridges used by HPS to communicate with FPGA, configuring FPGA from HPS and embedded application itself. Finally, everything is added in the SD card to get a complete automatic bare metal application running on the host board without any configuration what so ever.

  18. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  19. Equipment for measuring autogenous RH-change and autogenous deformation in cement paste and concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Jensen, Ole Mejlhede

    1997-01-01

    Equipment for measuring autogenous RH-change and autogenous deformation in cement paste and concrete are presented. The equipment consists of a Rotronic Hygroskop DT including a measuring chamber for measuring autogenous RH-change in cement paste and concrete, a paste dilatometer for measuring...

  20. Durability of saw-cut joints in plain cement concrete pavements : [technical summary].

    Science.gov (United States)

    2011-01-01

    The main objective of this study was to evaluate factors influencing the durability of the joints in portland cement concrete pavement in the state of Indiana. : The scope of the research included the evaluation of the absorption of water in concrete...