WorldWideScience

Sample records for include genomic structure

  1. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    Science.gov (United States)

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  2. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  3. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  4. Structural genomics in endocrinology

    NARCIS (Netherlands)

    Smit, J. W.; Romijn, J. A.

    2001-01-01

    Traditionally, endocrine research evolved from the phenotypical characterisation of endocrine disorders to the identification of underlying molecular pathophysiology. This approach has been, and still is, extremely successful. The introduction of genomics and proteomics has resulted in a reversal of

  5. Refining borders of genome-rearrangements including repetitions

    Directory of Open Access Journals (Sweden)

    JA Arjona-Medina

    2016-10-01

    Full Text Available Abstract Background DNA rearrangement events have been widely studied in comparative genomic for many years. The importance of these events resides not only in the study about relatedness among different species, but also to determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements (GR, the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve accurate fine-tuning: i.e. the notion of breakpoint (BP is still an open issue, and despite repeated regions are vital to understand evolution they are not taken into account in most of the GR detection and refinement methods. Methods and results We propose a method to refine the borders of GR including repeated regions. Instead of removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors. The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs and repetitions. Conclusion The accurate definition of the borders of SB and repeated genomic regions and consequently the detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly linked with rearrangements.

  6. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  7. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions

    Science.gov (United States)

    Rodríguez-Luna, Stefany Daniela; Cruz Vázquez, Angélica Patricia; Jiménez Suárez, Verónica; Rodríguez-Sanoja, Romina; Alvarez-Buylla, Elena R.; Sánchez, Sergio

    2018-01-01

    Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions. PMID:29447216

  8. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions.

    Directory of Open Access Journals (Sweden)

    Corina Diana Ceapă

    Full Text Available Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.

  9. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  10. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  11. Analysis of Smart Composite Structures Including Debonding

    Science.gov (United States)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite

  12. Structural genomic variations and Parkinson's disease.

    Science.gov (United States)

    Bandrés-Ciga, Sara; Ruz, Clara; Barrero, Francisco J; Escamilla-Sevilla, Francisco; Pelegrina, Javier; Vives, Francisco; Duran, Raquel

    2017-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, whose prevalence is projected to be between 8.7 and 9.3 million by 2030. Until about 20 years ago, PD was considered to be the textbook example of a "non-genetic" disorder. Nowadays, PD is generally considered a multifactorial disorder that arises from the combination and complex interaction of genes and environmental factors. To date, a total of 7 genes including SNCA, LRRK2, PARK2, DJ-1, PINK 1, VPS35 and ATP13A2 have been seen to cause unequivocally Mendelian PD. Also, variants with incomplete penetrance in the genes LRRK2 and GBA are considered to be strong risk factors for PD worldwide. Although genetic studies have provided valuable insights into the pathogenic mechanisms underlying PD, the role of structural variation in PD has been understudied in comparison with other genomic variations. Structural genomic variations might substantially account for such genetic substrates yet to be discovered. The present review aims to provide an overview of the structural genomic variants implicated in the pathogenesis of PD.

  13. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Genomics technologies to study structural variations in the grapevine genome

    Directory of Open Access Journals (Sweden)

    Cardone Maria Francesca

    2016-01-01

    Full Text Available Grapevine is one of the most important crop plants in the world. Recently there was great expansion of genomics resources about grapevine genome, thus providing increasing efforts for molecular breeding. Current cultivars display a great level of inter-specific differentiation that needs to be investigated to reach a comprehensive understanding of the genetic basis of phenotypic differences, and to find responsible genes selected by cross breeding programs. While there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs on plant genomes, few data are available on copy number variation (CNV. Furthermore association between structural variations and phenotypes has been described in only a few cases. We combined high throughput biotechnologies and bioinformatics tools, to reveal the first inter-varietal atlas of structural variation (SV for the grapevine genome. We sequenced and compared four table grape cultivars with the Pinot noir inbred line PN40024 genome as the reference. We detected roughly 8% of the grapevine genome affected by genomic variations. Taken into account phenotypic differences existing among the studied varieties we performed comparison of SVs among them and the reference and next we performed an in-depth analysis of gene content of polymorphic regions. This allowed us to identify genes showing differences in copy number as putative functional candidates for important traits in grapevine cultivation.

  15. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  16. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  17. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their precise...

  18. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Pathgroups, a dynamic data structure for genome reconstruction problems.

    Science.gov (United States)

    Zheng, Chunfang

    2010-07-01

    Ancestral gene order reconstruction problems, including the median problem, quartet construction, small phylogeny, guided genome halving and genome aliquoting, are NP hard. Available heuristics dedicated to each of these problems are computationally costly for even small instances. We present a data structure enabling rapid heuristic solution to all these ancestral genome reconstruction problems. A generic greedy algorithm with look-ahead based on an automatically generated priority system suffices for all the problems using this data structure. The efficiency of the algorithm is due to fast updating of the structure during run time and to the simplicity of the priority scheme. We illustrate with the first rapid algorithm for quartet construction and apply this to a set of yeast genomes to corroborate a recent gene sequence-based phylogeny. http://albuquerque.bioinformatics.uottawa.ca/pathgroup/Quartet.html chunfang313@gmail.com Supplementary data are available at Bioinformatics online.

  20. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2017-09-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an F ST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  1. Structural genomic variation in ischemic stroke

    Science.gov (United States)

    Matarin, Mar; Simon-Sanchez, Javier; Fung, Hon-Chung; Scholz, Sonja; Gibbs, J. Raphael; Hernandez, Dena G.; Crews, Cynthia; Britton, Angela; Wavrant De Vrieze, Fabienne; Brott, Thomas G.; Brown, Robert D.; Worrall, Bradford B.; Silliman, Scott; Case, L. Douglas; Hardy, John A.; Rich, Stephen S.; Meschia, James F.; Singleton, Andrew B.

    2008-01-01

    Technological advances in molecular genetics allow rapid and sensitive identification of genomic copy number variants (CNVs). This, in turn, has sparked interest in the function such variation may play in disease. While a role for copy number mutations as a cause of Mendelian disorders is well established, it is unclear whether CNVs may affect risk for common complex disorders. We sought to investigate whether CNVs may modulate risk for ischemic stroke (IS) and to provide a catalog of CNVs in patients with this disorder by analyzing copy number metrics produced as a part of our previous genome-wide single-nucleotide polymorphism (SNP)-based association study of ischemic stroke in a North American white population. We examined CNVs in 263 patients with ischemic stroke (IS). Each identified CNV was compared with changes identified in 275 neurologically normal controls. Our analysis identified 247 CNVs, corresponding to 187 insertions (76%; 135 heterozygous; 25 homozygous duplications or triplications; 2 heterosomic) and 60 deletions (24%; 40 heterozygous deletions;3 homozygous deletions; 14 heterosomic deletions). Most alterations (81%) were the same as, or overlapped with, previously reported CNVs. We report here the first genome-wide analysis of CNVs in IS patients. In summary, our study did not detect any common genomic structural variation unequivocally linked to IS, although we cannot exclude that smaller CNVs or CNVs in genomic regions poorly covered by this methodology may confer risk for IS. The application of genome-wide SNP arrays now facilitates the evaluation of structural changes through the entire genome as part of a genome-wide genetic association study. PMID:18288507

  2. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  3. Using Genomics for Natural Product Structure Elucidation.

    Science.gov (United States)

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  4. Widespread occurrence of organelle genome-encoded 5S rRNAs including permuted molecules.

    Science.gov (United States)

    Valach, Matus; Burger, Gertraud; Gray, Michael W; Lang, B Franz

    2014-12-16

    5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs (rrn5) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella. Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Interrogating the druggable genome with structural informatics.

    Science.gov (United States)

    Hambly, Kevin; Danzer, Joseph; Muskal, Steven; Debe, Derek A

    2006-08-01

    Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate the utility of TIP's intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential "off-target" liabilities.

  6. Structural Genomics and Drug Discovery for Infectious Diseases

    International Nuclear Information System (INIS)

    Anderson, W.F.

    2009-01-01

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  7. Gene Composer in a structural genomics environment

    International Nuclear Information System (INIS)

    Lorimer, Don; Raymond, Amy; Mixon, Mark; Burgin, Alex; Staker, Bart; Stewart, Lance

    2011-01-01

    For structural biology applications, protein-construct engineering is guided by comparative sequence analysis and structural information, which allow the researcher to better define domain boundaries for terminal deletions and nonconserved regions for surface mutants. A database software application called Gene Composer has been developed to facilitate construct design. The structural genomics effort at the Seattle Structural Genomics Center for Infectious Disease (SSGCID) requires the manipulation of large numbers of amino-acid sequences and the underlying DNA sequences which are to be cloned into expression vectors. To improve efficiency in high-throughput protein structure determination, a database software package, Gene Composer, has been developed which facilitates the information-rich design of protein constructs and their underlying gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bioinformatics steps used in modern structure-guided protein engineering and synthetic gene engineering. An example of the structure determination of H1N1 RNA-dependent RNA polymerase PB2 subunit is given

  8. Including α s1 casein gene information in genomic evaluations of French dairy goats.

    Science.gov (United States)

    Carillier-Jacquin, Céline; Larroque, Hélène; Robert-Granié, Christèle

    2016-08-04

    Genomic best linear unbiased prediction methods assume that all markers explain the same fraction of the genetic variance and do not account effectively for genes with major effects such as the α s1 casein polymorphism in dairy goats. In this study, we investigated methods to include the available α s1 casein genotype effect in genomic evaluations of French dairy goats. First, the α s1 casein genotype was included as a fixed effect in genomic evaluation models based only on bucks that were genotyped at the α s1 casein locus. Less than 1 % of the females with phenotypes were genotyped at the α s1 casein gene. Thus, to incorporate these female phenotypes in the genomic evaluation, two methods that allowed for this large number of missing α s1 casein genotypes were investigated. Probabilities for each possible α s1 casein genotype were first estimated for each female of unknown genotype based on iterative peeling equations. The second method is based on a multiallelic gene content approach. For each model tested, we used three datasets each divided into a training and a validation set: (1) two-breed population (Alpine + Saanen), (2) Alpine population, and (3) Saanen population. The α s1 casein genotype had a significant effect on milk yield, fat content and protein content. Including an α s1 casein effect in genetic and genomic evaluations based only on male known α s1 casein genotypes improved accuracies (from 6 to 27 %). In genomic evaluations based on all female phenotypes, the gene content approach performed better than the other tested methods but the improvement in accuracy was only slightly better (from 1 to 14 %) than that of a genomic model without the α s1 casein effect. Including the α s1 casein effect in a genomic evaluation model for French dairy goats is possible and useful to improve accuracy. Difficulties in predicting the genotypes for ungenotyped animals limited the improvement in accuracy of the obtained estimated breeding values.

  9. Comparative chloroplast genomics: Analyses including new sequencesfrom the angiosperms Nuphar advena and Ranunculus macranthus

    Energy Technology Data Exchange (ETDEWEB)

    Raubeso, Linda A.; Peery, Rhiannon; Chumley, Timothy W.; Dziubek,Chris; Fourcade, H. Matthew; Boore, Jeffrey L.; Jansen, Robert K.

    2007-03-01

    The number of completely sequenced plastid genomes available is growing rapidly. This new array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is most useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the new genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (from the basal group of eudicots). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition.

  10. Genetic parameter estimates for carcass traits and visual scores including or not genomic information.

    Science.gov (United States)

    Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G

    2016-05-01

    The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of

  11. Sharing reference data and including cows in the reference population improve genomic predictions in Danish Jersey.

    Science.gov (United States)

    Su, G; Ma, P; Nielsen, U S; Aamand, G P; Wiggans, G; Guldbrandtsen, B; Lund, M S

    2016-06-01

    Small reference populations limit the accuracy of genomic prediction in numerically small breeds, such like Danish Jersey. The objective of this study was to investigate two approaches to improve genomic prediction by increasing size of reference population in Danish Jersey. The first approach was to include North American Jersey bulls in Danish Jersey reference population. The second was to genotype cows and use them as reference animals. The validation of genomic prediction was carried out on bulls and cows, respectively. In validation on bulls, about 300 Danish bulls (depending on traits) born in 2005 and later were used as validation data, and the reference populations were: (1) about 1050 Danish bulls, (2) about 1050 Danish bulls and about 1150 US bulls. In validation on cows, about 3000 Danish cows from 87 young half-sib families were used as validation data, and the reference populations were: (1) about 1250 Danish bulls, (2) about 1250 Danish bulls and about 1150 US bulls, (3) about 1250 Danish bulls and about 4800 cows, (4) about 1250 Danish bulls, 1150 US bulls and 4800 Danish cows. Genomic best linear unbiased prediction model was used to predict breeding values. De-regressed proofs were used as response variables. In the validation on bulls for eight traits, the joint DK-US bull reference population led to higher reliability of genomic prediction than the DK bull reference population for six traits, but not for fertility and longevity. Averaged over the eight traits, the gain was 3 percentage points. In the validation on cows for six traits (fertility and longevity were not available), the gain from inclusion of US bull in reference population was 6.6 percentage points in average over the six traits, and the gain from inclusion of cows was 8.2 percentage points. However, the gains from cows and US bulls were not accumulative. The total gain of including both US bulls and Danish cows was 10.5 percentage points. The results indicate that sharing reference

  12. Reliability evaluation of containments including soil-structure interaction

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1985-12-01

    Soil-structure interaction effects on the reliability assessment of containment structures are examined. The probability-based method for reliability evaluation of nuclear structures developed at Brookhaven National Laboratory is extended to include soil-structure interaction effects. In this method, reliability of structures is expressed in terms of limit state probabilities. Furthermore, random vibration theory is utilized to calculate limit state probabilities under random seismic loads. Earthquake ground motion is modeled by a segment of a zero-mean, stationary, filtered Gaussian white noise random process, represented by its power spectrum. All possible seismic hazards at a site, represented by a hazard curve, are also included in the analysis. The soil-foundation system is represented by a rigid surface foundation on an elastic halfspace. Random and other uncertainties in the strength properties of the structure, in the stiffness and internal damping of the soil, are also included in the analysis. Finally, a realistic reinforced concrete containment is analyzed to demonstrate the application of the method. For this containment, the soil-structure interaction effects on; (1) limit state probabilities, (2) structural fragility curves, (3) floor response spectra with probabilistic content, and (4) correlation coefficients for total acceleration response at specified structural locations, are examined in detail. 25 refs., 21 figs., 12 tabs

  13. Systematic determination of the mosaic structure of bacterial genomes: species backbone versus strain-specific loops

    Directory of Open Access Journals (Sweden)

    Gendrault-Jacquemard A

    2005-07-01

    Full Text Available Abstract Background Public databases now contain multitude of complete bacterial genomes, including several genomes of the same species. The available data offers new opportunities to address questions about bacterial genome evolution, a task that requires reliable fine comparison data of closely related genomes. Recent analyses have shown, using pairwise whole genome alignments, that it is possible to segment bacterial genomes into a common conserved backbone and strain-specific sequences called loops. Results Here, we generalize this approach and propose a strategy that allows systematic and non-biased genome segmentation based on multiple genome alignments. Segmentation analyses, as applied to 13 different bacterial species, confirmed the feasibility of our approach to discern the 'mosaic' organization of bacterial genomes. Segmentation results are available through a Web interface permitting functional analysis, extraction and visualization of the backbone/loops structure of documented genomes. To illustrate the potential of this approach, we performed a precise analysis of the mosaic organization of three E. coli strains and functional characterization of the loops. Conclusion The segmentation results including the backbone/loops structure of 13 bacterial species genomes are new and available for use by the scientific community at the URL: http://genome.jouy.inra.fr/mosaic.

  14. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  15. Meta-structure and tunable optical device including the same

    Science.gov (United States)

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry

    2017-12-26

    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  16. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  17. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  18. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  19. Structured Matrix Completion with Applications to Genomic Data Integration.

    Science.gov (United States)

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  20. SNP array analysis reveals novel genomic abnormalities including copy neutral loss of heterozygosity in anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Ahmed Idbaih

    Full Text Available Anaplastic oligodendrogliomas (AOD are rare glial tumors in adults with relative homogeneous clinical, radiological and histological features at the time of diagnosis but dramatically various clinical courses. Studies have identified several molecular abnormalities with clinical or biological relevance to AOD (e.g. t(1;19(q10;p10, IDH1, IDH2, CIC and FUBP1 mutations.To better characterize the clinical and biological behavior of this tumor type, the creation of a national multicentric network, named "Prise en charge des OLigodendrogliomes Anaplasiques (POLA," has been supported by the Institut National du Cancer (InCA. Newly diagnosed and centrally validated AOD patients and their related biological material (tumor and blood samples were prospectively included in the POLA clinical database and tissue bank, respectively.At the molecular level, we have conducted a high-resolution single nucleotide polymorphism array analysis, which included 83 patients. Despite a careful central pathological review, AOD have been found to exhibit heterogeneous genomic features. A total of 82% of the tumors exhibited a 1p/19q-co-deletion, while 18% harbor a distinct chromosome pattern. Novel focal abnormalities, including homozygously deleted, amplified and disrupted regions, have been identified. Recurring copy neutral losses of heterozygosity (CNLOH inducing the modulation of gene expression have also been discovered. CNLOH in the CDKN2A locus was associated with protein silencing in 1/3 of the cases. In addition, FUBP1 homozygous deletion was detected in one case suggesting a putative tumor suppressor role of FUBP1 in AOD.Our study showed that the genomic and pathological analyses of AOD are synergistic in detecting relevant clinical and biological subgroups of AOD.

  1. Mechanical behaviour of cracked welded structures including mismatch effect

    International Nuclear Information System (INIS)

    Hornet, P.

    2002-01-01

    The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of

  2. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene

  3. Structural biology at York Structural Biology Laboratory; laboratory information management systems for structural genomics

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2005-01-01

    Roč. 12, č. 1 (2005), s. 3 ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-12.03.2005, Nové Hrady] R&D Projects: GA MŠk(CZ) 1K05008 Keywords : structural biology * LIMS * structural genomics Subject RIV: CD - Macromolecular Chemistry

  4. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...

  5. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  6. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  7. The Drosophila genome nexus: a population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population.

    Science.gov (United States)

    Lack, Justin B; Cardeno, Charis M; Crepeau, Marc W; Taylor, William; Corbett-Detig, Russell B; Stevens, Kristian A; Langley, Charles H; Pool, John E

    2015-04-01

    Hundreds of wild-derived Drosophila melanogaster genomes have been published, but rigorous comparisons across data sets are precluded by differences in alignment methodology. The most common approach to reference-based genome assembly is a single round of alignment followed by quality filtering and variant detection. We evaluated variations and extensions of this approach and settled on an assembly strategy that utilizes two alignment programs and incorporates both substitutions and short indels to construct an updated reference for a second round of mapping prior to final variant detection. Utilizing this approach, we reassembled published D. melanogaster population genomic data sets and added unpublished genomes from several sub-Saharan populations. Most notably, we present aligned data from phase 3 of the Drosophila Population Genomics Project (DPGP3), which provides 197 genomes from a single ancestral range population of D. melanogaster (from Zambia). The large sample size, high genetic diversity, and potentially simpler demographic history of the DPGP3 sample will make this a highly valuable resource for fundamental population genetic research. The complete set of assemblies described here, termed the Drosophila Genome Nexus, presently comprises 623 consistently aligned genomes and is publicly available in multiple formats with supporting documentation and bioinformatic tools. This resource will greatly facilitate population genomic analysis in this model species by reducing the methodological differences between data sets. Copyright © 2015 by the Genetics Society of America.

  8. Structural dynamics of retroviral genome and the packaging.

    Science.gov (United States)

    Miyazaki, Yasuyuki; Miyake, Ariko; Nomaguchi, Masako; Adachi, Akio

    2011-01-01

    Retroviruses can cause diseases such as AIDS, leukemia, and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5' untranslated region (5' UTR), and contains dimerization site(s). Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5' UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus, human immunodeficiency virus type 1 and 2, and describe the molecular mechanism of retroviral genome packaging.

  9. Structural dynamics of retroviral genome and the packaging

    Directory of Open Access Journals (Sweden)

    Yasuyuki eMiyazaki

    2011-12-01

    Full Text Available Retroviruses can cause diseases such as AIDS, leukemia and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid (NC domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5’ untranslated region (5’ UTR, and contains dimerization site(s. Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5’ UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus (MoMLV, human immunodeficiency virus type 1 (HIV-1 and 2 (HIV-2, and describe the molecular mechanism of retroviral genome packaging.

  10. Functional RNA structures throughout the Hepatitis C Virus genome.

    Science.gov (United States)

    Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie

    2017-06-01

    The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Spectral entropy criteria for structural segmentation in genomic DNA sequences

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lobzin, V.V.

    2004-01-01

    The spectral entropy is calculated with Fourier structure factors and characterizes the level of structural ordering in a sequence of symbols. It may efficiently be applied to the assessment and reconstruction of the modular structure in genomic DNA sequences. We present the relevant spectral entropy criteria for the local and non-local structural segmentation in DNA sequences. The results are illustrated with the model examples and analysis of intervening exon-intron segments in the protein-coding regions

  12. Structural genomics of infectious disease drug targets: the SSGCID

    International Nuclear Information System (INIS)

    Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.

    2011-01-01

    An introduction and overview of the focus, goals and overall mission of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) is given. The Seattle Structural Genomics Center for Infectious Disease (SSGCID) is a consortium of researchers at Seattle BioMed, Emerald BioStructures, the University of Washington and Pacific Northwest National Laboratory that was established to apply structural genomics approaches to drug targets from infectious disease organisms. The SSGCID is currently funded over a five-year period by the National Institute of Allergy and Infectious Diseases (NIAID) to determine the three-dimensional structures of 400 proteins from a variety of Category A, B and C pathogens. Target selection engages the infectious disease research and drug-therapy communities to identify drug targets, essential enzymes, virulence factors and vaccine candidates of biomedical relevance to combat infectious diseases. The protein-expression systems, purified proteins, ligand screens and three-dimensional structures produced by SSGCID constitute a valuable resource for drug-discovery research, all of which is made freely available to the greater scientific community. This issue of Acta Crystallographica Section F, entirely devoted to the work of the SSGCID, covers the details of the high-throughput pipeline and presents a series of structures from a broad array of pathogenic organisms. Here, a background is provided on the structural genomics of infectious disease, the essential components of the SSGCID pipeline are discussed and a survey of progress to date is presented

  13. Structures that Include a Semi-Outdoor Space

    DEFF Research Database (Denmark)

    Papachristou, C.; Foteinaki, Kyriaki; Kazanci, Ongun Berk

    2016-01-01

    The thermal environment of buildings with a second "skin" and semi-outdoor space is examined in the present study. A literature review was conducted on similar structures and only a few studies were found focusing on the thermal environment. Two different building case studies were chosen with di...

  14. Structural determinants and mechanism of HIV-1 genome packaging.

    Science.gov (United States)

    Lu, Kun; Heng, Xiao; Summers, Michael F

    2011-07-22

    Like all retroviruses, the human immunodeficiency virus selectively packages two copies of its unspliced RNA genome, both of which are utilized for strand-transfer-mediated recombination during reverse transcription-a process that enables rapid evolution under environmental and chemotherapeutic pressures. The viral RNA appears to be selected for packaging as a dimer, and there is evidence that dimerization and packaging are mechanistically coupled. Both processes are mediated by interactions between the nucleocapsid domains of a small number of assembling viral Gag polyproteins and RNA elements within the 5'-untranslated region of the genome. A number of secondary structures have been predicted for regions of the genome that are responsible for packaging, and high-resolution structures have been determined for a few small RNA fragments and protein-RNA complexes. However, major questions regarding the RNA structures (and potentially the structural changes) that are responsible for dimeric genome selection remain unanswered. Here, we review efforts that have been made to identify the molecular determinants and mechanism of human immunodeficiency virus type 1 genome packaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  16. Quasiparticle semiconductor band structures including spin-orbit interactions.

    Science.gov (United States)

    Malone, Brad D; Cohen, Marvin L

    2013-03-13

    We present first-principles calculations of the quasiparticle band structure of the group IV materials Si and Ge and the group III-V compound semiconductors AlP, AlAs, AlSb, InP, InAs, InSb, GaP, GaAs and GaSb. Calculations are performed using the plane wave pseudopotential method and the 'one-shot' GW method, i.e. G(0)W(0). Quasiparticle band structures, augmented with the effects of spin-orbit, are obtained via a Wannier interpolation of the obtained quasiparticle energies and calculated spin-orbit matrix. Our calculations explicitly treat the shallow semicore states of In and Ga, which are known to be important in the description of the electronic properties, as valence states in the quasiparticle calculation. Our calculated quasiparticle energies, combining both the ab initio evaluation of the electron self-energy and the vector part of the pseudopotential representing the spin-orbit effects, are in generally very good agreement with experimental values. These calculations illustrate the predictive power of the methodology as applied to group IV and III-V semiconductors.

  17. Multi-scale structural community organisation of the human genome.

    Science.gov (United States)

    Boulos, Rasha E; Tremblay, Nicolas; Arneodo, Alain; Borgnat, Pierre; Audit, Benjamin

    2017-04-11

    Structural interaction frequency matrices between all genome loci are now experimentally achievable thanks to high-throughput chromosome conformation capture technologies. This ensues a new methodological challenge for computational biology which consists in objectively extracting from these data the structural motifs characteristic of genome organisation. We deployed the fast multi-scale community mining algorithm based on spectral graph wavelets to characterise the networks of intra-chromosomal interactions in human cell lines. We observed that there exist structural domains of all sizes up to chromosome length and demonstrated that the set of structural communities forms a hierarchy of chromosome segments. Hence, at all scales, chromosome folding predominantly involves interactions between neighbouring sites rather than the formation of links between distant loci. Multi-scale structural decomposition of human chromosomes provides an original framework to question structural organisation and its relationship to functional regulation across the scales. By construction the proposed methodology is independent of the precise assembly of the reference genome and is thus directly applicable to genomes whose assembly is not fully determined.

  18. The Impact of Structural Genomics: Expectations and Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-12-21

    Structural Genomics (SG) projects aim to expand our structural knowledge of biological macromolecules, while lowering the average costs of structure determination. We quantitatively analyzed the novelty, cost, and impact of structures solved by SG centers, and contrast these results with traditional structural biology. The first structure from a protein family is particularly important to reveal the fold and ancient relationships to other proteins. In the last year, approximately half of such structures were solved at a SG center rather than in a traditional laboratory. Furthermore, the cost of solving a structure at the most efficient U.S. center has now dropped to one-quarter the estimated cost of solving a structure by traditional methods. However, top structural biology laboratories are much more efficient than the average, and comparable to SG centers despite working on very challenging structures. Moreover, traditional structural biology papers are cited significantly more often, suggesting greater current impact.

  19. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Insular Celtic population structure and genomic footprints of migration.

    Directory of Open Access Journals (Sweden)

    Ross P Byrne

    2018-01-01

    Full Text Available Previous studies of the genetic landscape of Ireland have suggested homogeneity, with population substructure undetectable using single-marker methods. Here we have harnessed the haplotype-based method fineSTRUCTURE in an Irish genome-wide SNP dataset, identifying 23 discrete genetic clusters which segregate with geographical provenance. Cluster diversity is pronounced in the west of Ireland but reduced in the east where older structure has been eroded by historical migrations. Accordingly, when populations from the neighbouring island of Britain are included, a west-east cline of Celtic-British ancestry is revealed along with a particularly striking correlation between haplotypes and geography across both islands. A strong relationship is revealed between subsets of Northern Irish and Scottish populations, where discordant genetic and geographic affinities reflect major migrations in recent centuries. Additionally, Irish genetic proximity of all Scottish samples likely reflects older strata of communication across the narrowest inter-island crossing. Using GLOBETROTTER we detected Irish admixture signals from Britain and Europe and estimated dates for events consistent with the historical migrations of the Norse-Vikings, the Anglo-Normans and the British Plantations. The influence of the former is greater than previously estimated from Y chromosome haplotypes. In all, we paint a new picture of the genetic landscape of Ireland, revealing structure which should be considered in the design of studies examining rare genetic variation and its association with traits.

  1. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  2. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  3. Structural integrity of LMFBRs including leak before break

    International Nuclear Information System (INIS)

    Vinzens, K.; Laue, H.; Hosemann, B.

    1990-01-01

    Th German Basis Safety Concept is an approach which allows the possibility of catastrophic failures to be excluded. It was developed in Germany to render the probabilistic approach unnecessary for safety cases relating to nuclear power plants. The process of evaluation started in 1972, and in 1979 the Basis Safety Concept was officially published and thus became a legal requirement for LWR plants. With appropriate modifications in regard of the particular features of LMFBR, this concept has also been applied to SNR 300. The 'Structural Integrity Demonstration Concept' of SNR 300 is based on five principles: Principle of quality by design and fabrication, Principle of multiple examination, Principle of worst case consideration, Principle of operating surveillance and documentation, Principle of verification and continuous development. The same principles are taken over for SNR 2. The specific requirements on the components relevant to safety have to be defined at an early stage so that the components can be designed appropriately to the feasibility of the measures required by the concept. (orig.)

  4. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  5. The human genome and sport, including epigenetics, gene doping, and athleticogenomics.

    Science.gov (United States)

    Sharp, N C Craig

    2010-03-01

    Hugh Montgomery's discovery of the first of more than 239 fitness genes together with rapid advances in human gene therapy have created a prospect of using genes, genetic elements, and cells that have the capacity to enhance athletic performance (to paraphrase the World Anti-Doping Agency's definition of gene doping). This brief overview covers the main areas of interface between genetics and sport, attempts to provide a context against which gene doping may be viewed, and predicts a futuristic legitimate use of genomic (and possibly epigenetic) information in sport. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Evolutionary genomics and population structure of Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Koushik Das

    2014-11-01

    Full Text Available Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba.

  7. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob H

    2014-01-01

    BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However......, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure...... lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome...

  8. cDNA structure, genomic organization and expression patterns of ...

    African Journals Online (AJOL)

    Visfatin was a newly identified adipocytokine, which was involved in various physiologic and pathologic processes of organisms. The cDNA structure, genomic organization and expression patterns of silver Prussian carp visfatin were described in this report. The silver Prussian carp visfatin cDNA cloned from the liver was ...

  9. A comparative study of nemertean complete mitochondrial genomes, including two new ones for Nectonemertes cf. mirabilis and Zygeupolia rubens, may elucidate the fundamental pattern for the phylum Nemertea

    Directory of Open Access Journals (Sweden)

    Chen Hai-Xia

    2012-04-01

    Full Text Available Abstract Background The mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms. Complete mitochondrial genome sequences have been reported for more than 2200 metazoans, mainly vertebrates and arthropods. To date, from a total of about 1275 described nemertean species, only three complete and two partial mitochondrial DNA sequences from nemerteans have been published. Here, we report the entire mitochondrial genomes for two more nemertean species: Nectonemertes cf. mirabilis and Zygeupolia rubens. Results The sizes of the entire mitochondrial genomes are 15365 bp for N. cf. mirabilis and 15513 bp for Z. rubens. Each circular genome contains 37 genes and an AT-rich non-coding region, and overall nucleotide composition is AT-rich. In both species, there is significant strand asymmetry in the distribution of nucleotides, with the coding strand being richer in T than A and in G than C. The AT-rich non-coding regions of the two genomes have some repeat sequences and stem-loop structures, both of which may be associated with the initiation of replication or transcription. The 22 tRNAs show variable substitution patterns in nemerteans, with higher sequence conservation in genes located on the H strand. Gene arrangement of N. cf. mirabilis is identical to that of Paranemertes cf. peregrina, both of which are Hoplonemertea, while that of Z. rubens is the same as in Lineus viridis, both of which are Heteronemertea. Comparison of the gene arrangements and phylogenomic analysis based on concatenated nucleotide sequences of the 12 mitochondrial protein-coding genes revealed that species with closer relationships share more identical gene blocks. Conclusion The two new mitochondrial genomes share many features, including gene contents, with other known nemertean mitochondrial genomes. The tRNA families display a composite substitution pathway. Gene order comparison to the proposed ground pattern of

  10. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes.

    Science.gov (United States)

    Parker, Brian J; Moltke, Ida; Roth, Adam; Washietl, Stefan; Wen, Jiayu; Kellis, Manolis; Breaker, Ronald; Pedersen, Jakob Skou

    2011-11-01

    Regulatory RNA structures are often members of families with multiple paralogous instances across the genome. Family members share functional and structural properties, which allow them to be studied as a whole, facilitating both bioinformatic and experimental characterization. We have developed a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein-coding regions comprising 725 individual structures, including 48 families with known structural RNA elements. Known families identified include both noncoding RNAs, e.g., miRNAs and the recently identified MALAT1/MEN β lincRNA family; and cis-regulatory structures, e.g., iron-responsive elements. We also identify tens of new families supported by strong evolutionary evidence and other statistical evidence, such as GO term enrichments. For some of these, detailed analysis has led to the formulation of specific functional hypotheses. Examples include two hypothesized auto-regulatory feedback mechanisms: one involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we identify potential new regulatory networks, including large families of short hairpins enriched in immunity-related genes, e.g., TNF, FOS, and CTLA4, which include known transcript destabilizing elements. Our findings exemplify the diversity of post-transcriptional regulation and provide a resource for further characterization of new regulatory mechanisms and families of noncoding RNAs.

  11. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    Science.gov (United States)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  13. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  14. Genomes in Turmoil: Frugality Drives Microbial Community Structure in Extremely Acidic Environments

    Science.gov (United States)

    Holmes, D. S.

    2016-12-01

    Extremely acidic environments (To gain insight into these issues, we have conducted deep bioinformatic analyses, including metabolic reconstruction of key assimilatory pathways, phylogenomics and network scrutiny of >160 genomes of acidophiles, including representatives from Archaea, Bacteria and Eukarya and at least ten metagenomes of acidic environments [Cardenas JP, et al. pp 179-197 in Acidophiles, eds R. Quatrini and D. B. Johnson, Caister Academic Press, UK (2016)]. Results yielded valuable insights into cellular processes, including carbon and nitrogen management and energy production, linking biogeochemical processes to organismal physiology. They also provided insight into the evolutionary forces that shape the genomic structure of members of acidophile communities. Niche partitioning can explain diversity patterns in rapidly changing acidic environments such as bioleaching heaps. However, in spatially and temporally homogeneous acidic environments genome flux appears to provide deeper insight into the composition and evolution of acidic consortia. Acidophiles have undergone genome streamlining by gene loss promoting mutual coexistence of species that exploit complementarity use of scarce resources consistent with the Black Queen hypothesis [Morris JJ et al. mBio 3: e00036-12 (2012)]. Acidophiles also have a large pool of accessory genes (the microbial super-genome) that can be accessed by horizontal gene transfer. This further promotes dependency relationships as drivers of community structure and the evolution of keystone species. Acknowledgements: Fondecyt 1130683; Basal CCTE PFB16

  15. The First Complete Chloroplast Genome Sequences in Actinidiaceae: Genome Structure and Comparative Analysis.

    Science.gov (United States)

    Yao, Xiaohong; Tang, Ping; Li, Zuozhou; Li, Dawei; Liu, Yifei; Huang, Hongwen

    2015-01-01

    Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5' portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.

  16. Elucidation of Operon Structures across Closely Related Bacterial Genomes

    Science.gov (United States)

    Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components. PMID:24959722

  17. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects.

    Directory of Open Access Journals (Sweden)

    Chuanyu Sun

    Full Text Available Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all prediction models for dairy cattle have included only additive effects because of the limited number of cows with both genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk, fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive and dominance variance components were estimated and then used to estimate additive and dominance effects of single nucleotide polymorphisms (SNPs. The predictive abilities of three models with both additive and dominance effects and a model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values, and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys, respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects fit the data better than including only additive effects; average correlations between estimated genetic effects and phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included. No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on chromosome 14 near DGAT1 for yield traits for both

  18. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2.

    Directory of Open Access Journals (Sweden)

    Sanaa A Ahmed

    Full Text Available In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493 and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071. Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.

  19. Gene order data from a model amphibian (Ambystoma: new perspectives on vertebrate genome structure and evolution

    Directory of Open Access Journals (Sweden)

    Voss S Randal

    2006-08-01

    Full Text Available Abstract Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.

  20. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  1. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2017-08-08

    We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.

  2. CTL epitopes for influenza A including the H5N1 bird flu; genome-, pathogen-, and HLA-wide screening

    DEFF Research Database (Denmark)

    Wang, M.J.; Lamberth, K.; Harndahl, M.

    2007-01-01

    are present in the emerging bird flu isolates. Our study demonstrates that present technology enables a fast global screening for T cell immune epitopes of potential diagnostics and vaccine interest. This technology includes immuno-bioinformatics predictors with the capacity to perform fast genome-, pathogen......-, and HLA-wide searches for immune targets. To exploit this new potential, a coordinated international effort to analyze the precious source of information represented by rare patients, such as the current victims of bird flu, would be essential....

  3. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  4. SINEs, evolution and genome structure in the opossum.

    Science.gov (United States)

    Gu, Wanjun; Ray, David A; Walker, Jerilyn A; Barnes, Erin W; Gentles, Andrew J; Samollow, Paul B; Jurka, Jerzy; Batzer, Mark A; Pollock, David D

    2007-07-01

    Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state.

  5. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  6. Structural and sequence diversity of the transposon Galileo in the Drosophila willistoni genome.

    Science.gov (United States)

    Gonçalves, Juliana W; Valiati, Victor Hugo; Delprat, Alejandra; Valente, Vera L S; Ruiz, Alfredo

    2014-09-13

    Galileo is one of three members of the P superfamily of DNA transposons. It was originally discovered in Drosophila buzzatii, in which three segregating chromosomal inversions were shown to have been generated by ectopic recombination between Galileo copies. Subsequently, Galileo was identified in six of 12 sequenced Drosophila genomes, indicating its widespread distribution within this genus. Galileo is strikingly abundant in Drosophila willistoni, a neotropical species that is highly polymorphic for chromosomal inversions, suggesting a role for this transposon in the evolution of its genome. We carried out a detailed characterization of all Galileo copies present in the D. willistoni genome. A total of 191 copies, including 133 with two terminal inverted repeats (TIRs), were classified according to structure in six groups. The TIRs exhibited remarkable variation in their length and structure compared to the most complete copy. Three copies showed extended TIRs due to internal tandem repeats, the insertion of other transposable elements (TEs), or the incorporation of non-TIR sequences into the TIRs. Phylogenetic analyses of the transposase (TPase)-encoding and TIR segments yielded two divergent clades, which we termed Galileo subfamilies V and W. Target-site duplications (TSDs) in D. willistoni Galileo copies were 7- or 8-bp in length, with the consensus sequence GTATTAC. Analysis of the region around the TSDs revealed a target site motif (TSM) with a 15-bp palindrome that may give rise to a stem-loop secondary structure. There is a remarkable abundance and diversity of Galileo copies in the D. willistoni genome, although no functional copies were found. The TIRs in particular have a dynamic structure and extend in different ways, but their ends (required for transposition) are more conserved than the rest of the element. The D. willistoni genome harbors two Galileo subfamilies (V and W) that diverged ~9 million years ago and may have descended from an ancestral

  7. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...

  8. Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Directory of Open Access Journals (Sweden)

    Grewe Felix

    2013-01-01

    Full Text Available Abstract Background Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales, Ophioglossum californicum (Ophioglossales, and Psilotum nudum (Psilotales. A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic

  9. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2018-02-01

    Full Text Available Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.

  10. Refining the structure and content of clinical genomic reports.

    Science.gov (United States)

    Dorschner, Michael O; Amendola, Laura M; Shirts, Brian H; Kiedrowski, Lesli; Salama, Joseph; Gordon, Adam S; Fullerton, Stephanie M; Tarczy-Hornoch, Peter; Byers, Peter H; Jarvik, Gail P

    2014-03-01

    To effectively articulate the results of exome and genome sequencing we refined the structure and content of molecular test reports. To communicate results of a randomized control trial aimed at the evaluation of exome sequencing for clinical medicine, we developed a structured narrative report. With feedback from genetics and non-genetics professionals, we developed separate indication-specific and incidental findings reports. Standard test report elements were supplemented with research study-specific language, which highlighted the limitations of exome sequencing and provided detailed, structured results, and interpretations. The report format we developed to communicate research results can easily be transformed for clinical use by removal of research-specific statements and disclaimers. The development of clinical reports for exome sequencing has shown that accurate and open communication between the clinician and laboratory is ideally an ongoing process to address the increasing complexity of molecular genetic testing. © 2014 Wiley Periodicals, Inc.

  11. Macromolecular structure determination in the post-genome era

    CERN Document Server

    Kuhn, P

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system...

  12. A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure

    OpenAIRE

    Zuccolo, Andrea; Bowers, John E; Estill, James C; Xiong, Zhiyong; Luo, Meizhong; Sebastian, Aswathy; Goicoechea, Jos? Luis; Collura, Kristi; Yu, Yeisoo; Jiao, Yuannian; Duarte, Jill; Tang, Haibao; Ayyampalayam, Saravanaraj; Rounsley, Steve; Kudrna, Dave

    2011-01-01

    Background Recent phylogenetic analyses have identified Amborella trichopoda, an understory tree species endemic to the forests of New Caledonia, as sister to a clade including all other known flowering plant species. The Amborella genome is a unique reference for understanding the evolution of angiosperm genomes because it can serve as an outgroup to root comparative analyses. A physical map, BAC end sequences and sample shotgun sequences provide a first view of the 870 Mbp Amborella genome....

  13. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection.

    Directory of Open Access Journals (Sweden)

    Leila do Nascimento Vieira

    Full Text Available BACKGROUND: Podocarpus lambertii (Podocarpaceae is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. METHODOLOGY/PRINCIPAL FINDINGS: The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR. It contains 118 unique genes and one duplicated tRNA (trnN-GUU, which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi and Araucariaceae (Agathis dammara. Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. CONCLUSION: The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of

  14. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics.

    Science.gov (United States)

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huanming; Leung, Tak Yeung; Morton, Cynthia C; Cheung, Sau Wai; Choy, Kwong Wai

    2017-11-02

    PurposeRecent studies demonstrate that whole-genome sequencing enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in the 1000 Genomes Project without knowing which bands were affected.MethodsThe 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparent BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold).ResultsWith this approach, we detected four reciprocal balanced translocations and four inversions, ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and polymerase chain reaction studies. One of these DNAs has a subtle translocation that is not readily identified by chromosome analysis because of the similarity of the banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene.ConclusionOur study demonstrates the extension of utilizing low-pass whole-genome sequencing for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.170.

  15. An impedance function approach for soil-structure interaction analyses including structure-to-structure interaction effects

    International Nuclear Information System (INIS)

    Gantayat, A.; Kamil, H.

    1981-01-01

    The dynamic soil-structure and structure-to-structure interaction effects may be determined in one of the two ways: by modeling the entire soil-structure system by a finite-element model, or by using a frequency-dependent (or frequency-independent) impedance function approach. In seismic design of nuclear power plant structures, the normal practice is to use the first approach because of its simplicity and easy availability of computer codes to perform such analyses. However, in the finite-element approach, because of the size and cost restrictions, the three-dimensional behavior of the entire soil-structure system and the radiation damping in soil are only approximately included by using a two-dimensional finite-element mesh. In using the impedance function approach, the soil-structure analyses can be performed in four steps: (a) determination of the dynamic properties of the fixed base superstructure, (b) determination of foundation and structure impedance matrices and input motions, (c) evaluation of foundation motion, (d) analysis of the fixed base superstructure using computed foundation motion. (orig./RW)

  16. Recognizing genes and other components of genomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Burks, C. (Los Alamos National Lab., NM (USA)); Myers, E. (Arizona Univ., Tucson, AZ (USA). Dept. of Computer Science); Stormo, G.D. (Colorado Univ., Boulder, CO (USA). Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  17. Structural constraints in the packaging of bluetongue virus genomic segments.

    Science.gov (United States)

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C; Roy, Polly

    2014-10-01

    The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by biochemical data analysis suggested that a conformational motif formed by interaction of the 5' and 3' ends of the molecule was necessary and sufficient for packaging. A similar structural signal was also identified in S8 of BTV serotype 1. Furthermore, the same conformational analysis of secondary structures for positive-sense ssRNAs was used to generate a chimeric segment that maintained the putative packaging motif but contained unrelated internal sequences. This chimeric segment was packaged successfully, confirming that the motif identified directs the correct packaging of the segment. © 2014 The Authors.

  18. Identification of genomic indels and structural variations using split reads

    Directory of Open Access Journals (Sweden)

    Urban Alexander E

    2011-07-01

    Full Text Available Abstract Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC, a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read. All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions. A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models. This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions. We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole

  19. Secure web book to store structural genomics research data.

    Science.gov (United States)

    Manjasetty, Babu A; Höppner, Klaus; Mueller, Uwe; Heinemann, Udo

    2003-01-01

    Recently established collaborative structural genomics programs aim at significantly accelerating the crystal structure analysis of proteins. These large-scale projects require efficient data management systems to ensure seamless collaboration between different groups of scientists working towards the same goal. Within the Berlin-based Protein Structure Factory, the synchrotron X-ray data collection and the subsequent crystal structure analysis tasks are located at BESSY, a third-generation synchrotron source. To organize file-based communication and data transfer at the BESSY site of the Protein Structure Factory, we have developed the web-based BCLIMS, the BESSY Crystallography Laboratory Information Management System. BCLIMS is a relational data management system which is powered by MySQL as the database engine and Apache HTTP as the web server. The database interface routines are written in Python programing language. The software is freely available to academic users. Here we describe the storage, retrieval and manipulation of laboratory information, mainly pertaining to the synchrotron X-ray diffraction experiments and the subsequent protein structure analysis, using BCLIMS.

  20. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  1. Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight.

    Science.gov (United States)

    Lee, Myoungsook; Kwon, Dae Young; Kim, Myung-Sunny; Choi, Chong Ran; Park, Mi-Young; Kim, Ae-Jung

    2016-02-01

    This is the first study to identify common genetic factors associated with the basal metabolic rate (BMR) and body mass index (BMI) in obese Korean women including overweight. This will be a basic study for future research of obese gene-BMR interaction. The experimental design was 2 by 2 with variables of BMR and BMI. A genome-wide association study (GWAS) of single nucleotide polymorphisms (SNPs) was conducted in the overweight and obesity (BMI > 23 kg/m(2)) compared to the normality, and in women with low BMR (BMR. A total of 140 SNPs reached formal genome-wide statistical significance in this study (P BMR (rs10786764; P = 8.0 × 10(-7), rs1040675; 2.3 × 10(-6)) and BMI (rs10786764; P = 2.5 × 10(-5), rs10786764; 6.57 × 10(-5)). The other genes related to BMI (HSD52, TMA16, MARCH1, NRG1, NRXN3, and STK4) yielded P BMR and BMI, including NRG3, OR8U8, BCL2L2-PABPN1, PABPN1, and SLC22A17 were identified in obese Korean women (P BMR- and BMI-related genes using GWAS. Although most of these newly established loci were not previously associated with obesity, they may provide new insights into body weight regulation. Our findings of five common genes associated with BMR and BMI in Koreans will serve as a reference for replication and validation of future studies on the metabolic rate.

  2. Simultaneous Structural Variation Discovery in Multiple Paired-End Sequenced Genomes

    Science.gov (United States)

    Hormozdiari, Fereydoun; Hajirasouliha, Iman; McPherson, Andrew; Eichler, Evan E.; Sahinalp, S. Cenk

    Next generation sequencing technologies have been decreasing the costs and increasing the world-wide capacity for sequence production at an unprecedented rate, making the initiation of large scale projects aiming to sequence almost 2000 genomes [1]. Structural variation detection promises to be one of the key diagnostic tools for cancer and other diseases with genomic origin. In this paper, we study the problem of detecting structural variation events in two or more sequenced genomes through high throughput sequencing . We propose to move from the current model of (1) detecting genomic variations in single next generation sequenced (NGS) donor genomes independently, and (2) checking whether two or more donor genomes indeed agree or disagree on the variations (in this paper we name this framework Independent Structural Variation Discovery and Merging - ISV&M), to a new model in which we detect structural variation events among multiple genomes simultaneously.

  3. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  4. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  5. RNA structural constraints in the evolution of the influenza A virus genome NP segment

    NARCIS (Netherlands)

    A.P. Gultyaev (Alexander); A. Tsyganov-Bodounov (Anton); M.I. Spronken (Monique); S. Van Der Kooij (Sander); R.A.M. Fouchier (Ron); R.C.L. Olsthoorn (René)

    2014-01-01

    textabstractConserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length,

  6. Macromolecular structure determination in the post-genome era

    International Nuclear Information System (INIS)

    Kuhn, P.; Soltis, S.M.

    2001-01-01

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system for the structure determination steps of this process, starting with the initial characterization of the frozen sample, followed by data collection, data reduction, phase determination, and model building. This paper focuses on the data collection elements of this high-throughput system

  7. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  8. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  9. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  10. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  11. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    Science.gov (United States)

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  12. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B

    Science.gov (United States)

    2013-01-01

    Background Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. Results Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. Conclusions Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease. PMID:24330828

  13. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.

    2013-01-01

    Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data

  14. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  15. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A; Patrapuvich, Rapatbhorn; Clifton, Matthew C; Gardberg, Anna S; Edwards, Thomas E; Armour, Brianna; Begley, Darren W; Dieterich, Shellie H; Dranow, David M; Abendroth, Jan; Fairman, James W; Fox, David; Staker, Bart L; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W; Stacy, Robin; Myler, Peter J; Stewart, Lance J; Manoil, Colin; Van Voorhis, Wesley C

    2013-01-01

    The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases

  16. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  17. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  18. DNA is structured as a linear "jigsaw puzzle" in the genomes of Arabidopsis, rice, and budding yeast.

    Science.gov (United States)

    Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin

    2014-01-01

    Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.

  19. Producing genome structure populations with the dynamic and automated PGS software.

    Science.gov (United States)

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  20. De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  1. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  2. The eukaryotic genome is structurally and functionally more like a social insect colony than a book.

    Science.gov (United States)

    Qiu, Guo-Hua; Yang, Xiaoyan; Zheng, Xintian; Huang, Cuiqin

    2017-11-01

    Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.

  3. The genomic structure of the human UFO receptor.

    Science.gov (United States)

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  4. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  5. Common structural and epigenetic changes in the genome of castration-resistant prostate cancer.

    Science.gov (United States)

    Friedlander, Terence W; Roy, Ritu; Tomlins, Scott A; Ngo, Vy T; Kobayashi, Yasuko; Azameera, Aruna; Rubin, Mark A; Pienta, Kenneth J; Chinnaiyan, Arul; Ittmann, Michael M; Ryan, Charles J; Paris, Pamela L

    2012-02-01

    Progression of primary prostate cancer to castration-resistant prostate cancer (CRPC) is associated with numerous genetic and epigenetic alterations that are thought to promote survival at metastatic sites. In this study, we investigated gene copy number and CpG methylation status in CRPC to gain insight into specific pathophysiologic pathways that are active in this advanced form of prostate cancer. Our analysis defined and validated 495 genes exhibiting significant differences in CRPC in gene copy number, including gains in androgen receptor (AR) and losses of PTEN and retinoblastoma 1 (RB1). Significant copy number differences existed between tumors with or without AR gene amplification, including a common loss of AR repressors in AR-unamplified tumors. Simultaneous gene methylation and allelic deletion occurred frequently in RB1 and HSD17B2, the latter of which is involved in testosterone metabolism. Lastly, genomic DNA from most CRPC was hypermethylated compared with benign prostate tissue. Our findings establish a comprehensive methylation signature that couples epigenomic and structural analyses, thereby offering insights into the genomic alterations in CRPC that are associated with a circumvention of hormonal therapy. Genes identified in this integrated genomic study point to new drug targets in CRPC, an incurable disease state which remains the chief therapeutic challenge. ©2012 AACR.

  6. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    NARCIS (Netherlands)

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; Macgregor, Stuart; Verhoeven, Virginie J. M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T. V. M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Chen, Wei

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We

  7. Sex-stratified Genome-wide Association Studies Including 270000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    NARCIS (Netherlands)

    Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpeläinen, T.O.; Esko, T.; Mägi, R.; Li, S.; Workalemahu, T.; Feitosa, M.F.; Croteau-Chonka, D.C.; Day, F.R.; Fall, T.; Ferreira, T.; Gustafsson, S.; Locke, A.E.; Mathieson, I.; Scherag, A.; Vedantam, S.; Wood, A.R.; Liang, L.; Steinthorsdottir, V.; Thorleifsson, G.; Dermitzakis, E.T.; Dimas, A.S.; Karpe, F.; Min, J.L.; Nicholson, G.; Clegg, D.J.; Person, T.; Krohn, J.P.; Bauer, S.; Buechler, C.; Eisinger, K.; Bonnefond, A.; Froguel, P.; Hottenga, J.J.; Prokopenko, I.; Waite, L.L.; Harris, T.B.; Smith, A.V.; Shuldiner, A.R.; McArdle, W.L.; Caulfield, M.J.; Munroe, P.B.; Grönberg, H.; Chen, Y.D.; Li, G.; Beckmann, J.S.; Johnson, T.; Thorsteinsdottir, U.; Teder-Laving, M.; Khaw, K.T.; Wareham, N.J.; Zhao, J.H.; Amin, N.; Oostra, B.A.; Kraja, A.T.; Province, M.A.; Cupples, L.A.; Heard-Costa, N.L.; Kaprio, J.; Ripatti, S.; Surakka, I.; Collins, F.S.; Saramies, J.; Tuomilehto, J.; Jula, A.; Salomaa, V.; Erdmann, J.; Hengstenberg, C.; Loley, C.; Schunkert, H.; Lamina, C.; Wichmann, H.E.; Albrecht, E.; Gieger, C.; Hicks, A.A.; Johansson, A.; Pramstaller, P.P.; Kathiresan, S.; Speliotes, E.K.; Penninx, B.W.J.H.; Hartikainen, A.L.; Järvelin, M.R.; Gyllensten, U.; Boomsma, D.I.; Campbell, H.; Wilson, J.F.; Chanock, S.J.; Farrall, M.; Goel, A.; Medina-Gomez, C.; Rivadeneira, F.; Estrada, K.; Uitterlinden, A.G.; Hofman, A.; Zillikens, M.C.; den Heijer, M.; Kiemeney, L.A.; Maschio, A.; Hall, P.; Tyrer, J.; Teumer, A.; Völzke, H.; Kovacs, P.; Tönjes, A.; Mangino, M.; Spector, T.D.; Hayward, C.; Rudan, I.; Hall, A.S.; Samani, N.J.; Attwood, A.P.; Sambrook, J.G.; Hung, J.; Palmer, L.J.; Lokki, M.L.; Sinisalo, J.; Boucher, G.; Huikuri, H.V.; Lorentzon, M.; Ohlsson, C.; Eklund, N.; Eriksson, J.G.; Barlassina, C.; Rivolta, C.; Nolte, I.M.; Snieder, H.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Gejman, P.V.; Shi, J.; Jacobs, K.B.; Wang, Z.; Bakker, S.J.; Mateo Leach, I.; Navis, G.; van der Harst, P.; Martin, N.G.; Medland, S.E.; Montgomery, G.W.; Yang, J.; Chasman, D.I.; Ridker, P.M.; Rose, L.M.; Lehtimäki, T.; Raitakari, O.; Absher, D.; Iribarren, C.; Basart, H.; Hovingh, K.G.; Hyppönen, E.; Power, C.; Anderson, D.; Beilby, J.P.; Hui, J.; Jolley, J.; Sager, H.; Bornstein, S.R.; Schwarz, P.E.; Kristiansson, K.; Perola, M.; Lindström, J.; Swift, A.J.; Uusitupa, M.; Atalay, M.; Lakka, T.A.; Rauramaa, R.; Bolton, J.L.; Fowkes, G.; Fraser, R.M.; Price, J.F.; Fischer, K.; Krjuta Kov, K.; Metspalu, A.; Mihailov, E.; Langenberg, C.; Luan, J.; Ong, K.K.; Chines, P.S.; Keinanen-Kiukaanniemie, S.; Saaristo, T.E.; Edkins, S.; Franks, P.W.; Hallmans, G.; Shungin, D.; Morris, A.D.; Palmer, C.N.A.; Erbel, R.; Moebus, S.; Nöthen, M.M.; Pechlivanis, S.; Hveem, K.; Narisu, N.; Hamsten, A.; Humphries, S.E.; Strawbridge, R.J.; Tremoli, E.; Grallert, H.; Thorand, B.; Illig, T.; Koenig, W.; Müller-Nurasyid, M.; Peters, A.; Boehm, B.O.; Kleber, M.E.; März, W.; Winkelmann, B.R.; Kuusisto, J.; Laakso, M.; Arveiler, D.; Cesana, G.; Kuulasmaa, K.; Virtamo, J.; Yarnell, J.W.; Kuh, D; Wong, A.; Lind, L.; de Faire, U.; Gigante, B.; Magnusson, P.K.E.; Pedersen, N.L.; Dedoussis, G.; Dimitriou, M.; Kolovou, G.; Kanoni, S.; Stirrups, K.; Bonnycastle, L.L.; Njolstad, I.; Wilsgaard, T.; Ganna, A.; Rehnberg, E.; Hingorani, A.D.; Kivimaki, M.; Kumari, M.; Assimes, T.L.; Barroso, I.; Boehnke, M.; Borecki, I.B.; Deloukas, P.; Fox, C.S.; Frayling, T.M.; Groop, L.C.; Haritunians, T.; Hunter, D.; Ingelsson, E.; Kaplan, R.; Mohlke, K.L.; O'Connell, J.R.; Schlessinger, D.; Strachan, D.P.; Stefansson, K.; van Duijn, C.M.; Abecasis, G.R.; McCarthy, M.I.; Hirschhorn, J.N.; Qi, L.; Loos, R.J.; Lindgren, C.M.; North, K.E.; Heid, I.M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  8. Alignment-free comparative genomic screen for structured RNAs using coarse-grained secondary structure dot plots

    DEFF Research Database (Denmark)

    Kato, Yuki; Gorodkin, Jan; Havgaard, Jakob Hull

    2017-01-01

    . Methods: Here we present a fast and efficient method, DotcodeR, for detecting structurally similar RNAs in genomic sequences by comparing their corresponding coarse-grained secondary structure dot plots at string level. This allows us to perform an all-against-all scan of all window pairs from two genomes...... without alignment. Results: Our computational experiments with simulated data and real chromosomes demonstrate that the presented method has good sensitivity. Conclusions: DotcodeR can be useful as a pre-filter in a genomic comparative scan for structured RNAs....

  9. Ribosomal DNA sequence heterogeneity reflects intraspecies phylogenies and predicts genome structure in two contrasting yeast species.

    Science.gov (United States)

    West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N

    2014-07-01

    The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of

  10. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    Abstract: Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction....... This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early...... upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  11. Identification of seven novel mutations including the first two genomic rearrangements in SLC26A3 mutated in congenital chloride diarrhea.

    Science.gov (United States)

    Höglund, P; Sormaala, M; Haila, S; Socha, J; Rajaram, U; Scheurlen, W; Sinaasappel, M; de Jonge, H; Holmberg, C; Yoshikawa, H; Kere, J

    2001-09-01

    Congenital chloride diarrhea (CLD) is an autosomal recessive disorder characterized by defective intestinal electrolyte absorption, resulting in voluminous osmotic diarrhea with high chloride content. A variety of mutations in the solute carrier family 26, member 3 gene (SLC26A3, previously known as CLD or DRA) are responsible for the disease. Since the identification of the SLC26A3 gene and the determination of its genomic structure, altogether three founder and 17 private mutations have been characterized within miscellaneous ethnic groups. We screened for mutations in seven unrelated families with CLD. The diagnoses were confirmed by fecal chloride measurements. The combined PCR-SSCP and sequencing analyses revealed altogether seven novel mutations including two missense mutations (S206P, D468V), two splicing defects (IVS12-1G>C, IVS13-2delA), one nonsense mutation (Q436X), one insertion/deletion mutation (2104-2105delGGins29-bp), and an intragenic deletion of SLC26A3 exons 7 and 8. Two previously identified mutations were also found. This is the first report of rearrangement mutations in SLC26A3. Molecular features predisposing SLC26A3 for the two rearrangements may include repetitive elements and palindromic-like sequences. The increasingly wide diversity of SLC26A3 mutations suggests that mutations in the SLC26A3 gene may not be rare events. Copyright 2001 Wiley-Liss, Inc.

  12. Structural genomic variation in childhood epilepsies with complex phenotypes

    DEFF Research Database (Denmark)

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien

    2014-01-01

    of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened.......9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more...

  13. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  14. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  15. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  16. Population Structure and Genomic Breed Composition in an Angus-Brahman Crossbred Cattle Population.

    Science.gov (United States)

    Gobena, Mesfin; Elzo, Mauricio A; Mateescu, Raluca G

    2018-01-01

    Crossbreeding is a common strategy used in tropical and subtropical regions to enhance beef production, and having accurate knowledge of breed composition is essential for the success of a crossbreeding program. Although pedigree records have been traditionally used to obtain the breed composition of crossbred cattle, the accuracy of pedigree-based breed composition can be reduced by inaccurate and/or incomplete records and Mendelian sampling. Breed composition estimation from genomic data has multiple advantages including higher accuracy without being affected by missing, incomplete, or inaccurate records and the ability to be used as independent authentication of breed in breed-labeled beef products. The present study was conducted with 676 Angus-Brahman crossbred cattle with genotype and pedigree information to evaluate the feasibility and accuracy of using genomic data to determine breed composition. We used genomic data in parametric and non-parametric methods to detect population structure due to differences in breed composition while accounting for the confounding effect of close familial relationships. By applying principal component analysis (PCA) and the maximum likelihood method of ADMIXTURE to genomic data, it was possible to successfully characterize population structure resulting from heterogeneous breed ancestry, while accounting for close familial relationships. PCA results offered additional insight into the different hierarchies of genetic variation structuring. The first principal component was strongly correlated with Angus-Brahman proportions, and the second represented variation within animals that have a relatively more extended Brangus lineage-indicating the presence of a distinct pattern of genetic variation in these cattle. Although there was strong agreement between breed proportions estimated from pedigree and genetic information, there were significant discrepancies between these two methods for certain animals. This was most likely due

  17. Population Structure and Genomic Breed Composition in an Angus–Brahman Crossbred Cattle Population

    Directory of Open Access Journals (Sweden)

    Mesfin Gobena

    2018-03-01

    Full Text Available Crossbreeding is a common strategy used in tropical and subtropical regions to enhance beef production, and having accurate knowledge of breed composition is essential for the success of a crossbreeding program. Although pedigree records have been traditionally used to obtain the breed composition of crossbred cattle, the accuracy of pedigree-based breed composition can be reduced by inaccurate and/or incomplete records and Mendelian sampling. Breed composition estimation from genomic data has multiple advantages including higher accuracy without being affected by missing, incomplete, or inaccurate records and the ability to be used as independent authentication of breed in breed-labeled beef products. The present study was conducted with 676 Angus–Brahman crossbred cattle with genotype and pedigree information to evaluate the feasibility and accuracy of using genomic data to determine breed composition. We used genomic data in parametric and non-parametric methods to detect population structure due to differences in breed composition while accounting for the confounding effect of close familial relationships. By applying principal component analysis (PCA and the maximum likelihood method of ADMIXTURE to genomic data, it was possible to successfully characterize population structure resulting from heterogeneous breed ancestry, while accounting for close familial relationships. PCA results offered additional insight into the different hierarchies of genetic variation structuring. The first principal component was strongly correlated with Angus–Brahman proportions, and the second represented variation within animals that have a relatively more extended Brangus lineage—indicating the presence of a distinct pattern of genetic variation in these cattle. Although there was strong agreement between breed proportions estimated from pedigree and genetic information, there were significant discrepancies between these two methods for certain animals

  18. Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Science.gov (United States)

    Spanò, M.; Lillo, F.; Miccichè, S.; Mantegna, R. N.

    2008-10-01

    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups, hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact, we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.

  19. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  20. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  1. The human genome and sport, including epigenetics and athleticogenomics: a brief look at a rapidly changing field.

    Science.gov (United States)

    Sharp, N C Craig

    2008-09-01

    Since Hugh Montgomery discovered the first of what are now nearly 200 "fitness genes", together with rapid advances in human gene therapy, there is now a real prospect of the use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance (to paraphrase the World Anti-Doping Agency's definition of gene doping). This overview covers the main areas of interface between genetics and sport, attempts to provide a context against which gene doping may be viewed, and suggests a futuristic legitimate use of genomic (and possibly epigenetic) information in sport.

  2. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.

    2017-06-22

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  4. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2017-01-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  5. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  6. Mounting Systems for Structural Members, Fastening Assemblies Thereof, and Vibration Isolation Systems Including the Same

    Science.gov (United States)

    Young, Ken (Inventor); Hindle, Timothy (Inventor); Barber, Tim Daniel (Inventor)

    2016-01-01

    Mounting systems for structural members, fastening assemblies thereof, and vibration isolation systems including the same are provided. Mounting systems comprise a pair of mounting brackets, each clamped against a fastening assembly forming a mounting assembly. Fastening assemblies comprise a spherical rod end comprising a spherical member having a through opening and an integrally threaded shaft, first and second seating members on opposite sides of the spherical member and each having a through opening that is substantially coaxial with the spherical member through opening, and a partially threaded fastener that threadably engages each mounting bracket forming the mounting assembly. Structural members have axial end portions, each releasably coupled to a mounting bracket by the integrally threaded shaft. Axial end portions are threaded in opposite directions for permitting structural member rotation to adjust a length thereof to a substantially zero strain position. Structural members may be vibration isolator struts in vibration isolation systems.

  7. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome

    NARCIS (Netherlands)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E.; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T.; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A.; Lucente, Diane; Levy, Brynn; Sanders, Jan-Stephan; Wapner, Ronald J.; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E.

    2017-01-01

    Background: Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. Results: We sequenced 689 participants with autism spectrum disorder (ASD) and other

  8. From structure prediction to genomic screens for novel non-coding RNAs.

    Science.gov (United States)

    Gorodkin, Jan; Hofacker, Ivo L

    2011-08-01

    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  9. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error

    Science.gov (United States)

    Cheng, Ching-Yu; Schache, Maria; Ikram, M. Kamran; Young, Terri L.; Guggenheim, Jeremy A.; Vitart, Veronique; MacGregor, Stuart; Verhoeven, Virginie J.M.; Barathi, Veluchamy A.; Liao, Jiemin; Hysi, Pirro G.; Bailey-Wilson, Joan E.; St. Pourcain, Beate; Kemp, John P.; McMahon, George; Timpson, Nicholas J.; Evans, David M.; Montgomery, Grant W.; Mishra, Aniket; Wang, Ya Xing; Wang, Jie Jin; Rochtchina, Elena; Polasek, Ozren; Wright, Alan F.; Amin, Najaf; van Leeuwen, Elisabeth M.; Wilson, James F.; Pennell, Craig E.; van Duijn, Cornelia M.; de Jong, Paulus T.V.M.; Vingerling, Johannes R.; Zhou, Xin; Chen, Peng; Li, Ruoying; Tay, Wan-Ting; Zheng, Yingfeng; Chew, Merwyn; Rahi, Jugnoo S.; Hysi, Pirro G.; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Delcourt, Cécile; Maubaret, Cecilia; Williams, Cathy; Guggenheim, Jeremy A.; Northstone, Kate; Ring, Susan M.; Davey-Smith, George; Craig, Jamie E.; Burdon, Kathryn P.; Fogarty, Rhys D.; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Iyengar, Sudha K.; Igo, Robert P.; Chew, Emily; Janmahasathian, Sarayut; Stambolian, Dwight; Wilson, Joan E. Bailey; MacGregor, Stuart; Lu, Yi; Jonas, Jost B.; Xu, Liang; Saw, Seang-Mei; Baird, Paul N.; Rochtchina, Elena; Mitchell, Paul; Wang, Jie Jin; Jonas, Jost B.; Nangia, Vinay; Hayward, Caroline; Wright, Alan F.; Vitart, Veronique; Polasek, Ozren; Campbell, Harry; Vitart, Veronique; Rudan, Igor; Vatavuk, Zoran; Vitart, Veronique; Paterson, Andrew D.; Hosseini, S. Mohsen; Iyengar, Sudha K.; Igo, Robert P.; Fondran, Jeremy R.; Young, Terri L.; Feng, Sheng; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Metspalu, Andres; Haller, Toomas; Mihailov, Evelin; Pärssinen, Olavi; Wedenoja, Juho; Wilson, Joan E. Bailey; Wojciechowski, Robert; Baird, Paul N.; Schache, Maria; Pfeiffer, Norbert; Höhn, René; Pang, Chi Pui; Chen, Peng; Meitinger, Thomas; Oexle, Konrad; Wegner, Aharon; Yoshimura, Nagahisa; Yamashiro, Kenji; Miyake, Masahiro; Pärssinen, Olavi; Yip, Shea Ping; Ho, Daniel W.H.; Pirastu, Mario; Murgia, Federico; Portas, Laura; Biino, Genevra; Wilson, James F.; Fleck, Brian; Vitart, Veronique; Stambolian, Dwight; Wilson, Joan E. Bailey; Hewitt, Alex W.; Ang, Wei; Verhoeven, Virginie J.M.; Klaver, Caroline C.; van Duijn, Cornelia M.; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Wong, Tien-Yin; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Tai, E-Shyong; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Saw, Seang-Mei; Teo, Yik-Ying; Fan, Qiao; Cheng, Ching-Yu; Zhou, Xin; Ikram, M. Kamran; Mackey, David A.; MacGregor, Stuart; Hammond, Christopher J.; Hysi, Pirro G.; Deangelis, Margaret M.; Morrison, Margaux; Zhou, Xiangtian; Chen, Wei; Paterson, Andrew D.; Hosseini, S. Mohsen; Mizuki, Nobuhisa; Meguro, Akira; Lehtimäki, Terho; Mäkelä, Kari-Matti; Raitakari, Olli; Kähönen, Mika; Burdon, Kathryn P.; Craig, Jamie E.; Iyengar, Sudha K.; Igo, Robert P.; Lass, Jonathan H.; Reinhart, William; Belin, Michael W.; Schultze, Robert L.; Morason, Todd; Sugar, Alan; Mian, Shahzad; Soong, Hunson Kaz; Colby, Kathryn; Jurkunas, Ula; Yee, Richard; Vital, Mark; Alfonso, Eduardo; Karp, Carol; Lee, Yunhee; Yoo, Sonia; Hammersmith, Kristin; Cohen, Elisabeth; Laibson, Peter; Rapuano, Christopher; Ayres, Brandon; Croasdale, Christopher; Caudill, James; Patel, Sanjay; Baratz, Keith; Bourne, William; Maguire, Leo; Sugar, Joel; Tu, Elmer; Djalilian, Ali; Mootha, Vinod; McCulley, James; Bowman, Wayne; Cavanaugh, H. Dwight; Verity, Steven; Verdier, David; Renucci, Ann; Oliva, Matt; Rotkis, Walter; Hardten, David R.; Fahmy, Ahmad; Brown, Marlene; Reeves, Sherman; Davis, Elizabeth A.; Lindstrom, Richard; Hauswirth, Scott; Hamilton, Stephen; Lee, W. Barry; Price, Francis; Price, Marianne; Kelly, Kathleen; Peters, Faye; Shaughnessy, Michael; Steinemann, Thomas; Dupps, B.J.; Meisler, David M.; Mifflin, Mark; Olson, Randal; Aldave, Anthony; Holland, Gary; Mondino, Bartly J.; Rosenwasser, George; Gorovoy, Mark; Dunn, Steven P.; Heidemann, David G.; Terry, Mark; Shamie, Neda; Rosenfeld, Steven I.; Suedekum, Brandon; Hwang, David; Stone, Donald; Chodosh, James; Galentine, Paul G.; Bardenstein, David; Goddard, Katrina; Chin, Hemin; Mannis, Mark; Varma, Rohit; Borecki, Ingrid; Chew, Emily Y.; Haller, Toomas; Mihailov, Evelin; Metspalu, Andres; Wedenoja, Juho; Simpson, Claire L.; Wojciechowski, Robert; Höhn, René; Mirshahi, Alireza; Zeller, Tanja; Pfeiffer, Norbert; Lackner, Karl J.; Donnelly, Peter; Barroso, Ines; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Deloukas, Panos; Duncanson, Audrey; Jankowski, Janusz; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N.A.; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Spencer, Chris C.A.; Band, Gavin; Bellenguez, Céline; Freeman, Colin; Hellenthal, Garrett; Giannoulatou, Eleni; Pirinen, Matti; Pearson, Richard; Strange, Amy; Su, Zhan; Vukcevic, Damjan; Donnelly, Peter; Langford, Cordelia; Hunt, Sarah E.; Edkins, Sarah; Gwilliam, Rhian; Blackburn, Hannah; Bumpstead, Suzannah J.; Dronov, Serge; Gillman, Matthew; Gray, Emma; Hammond, Naomi; Jayakumar, Alagurevathi; McCann, Owen T.; Liddle, Jennifer; Potter, Simon C.; Ravindrarajah, Radhi; Ricketts, Michelle; Waller, Matthew; Weston, Paul; Widaa, Sara; Whittaker, Pamela; Barroso, Ines; Deloukas, Panos; Mathew, Christopher G.; Blackwell, Jenefer M.; Brown, Matthew A.; Corvin, Aiden; Spencer, Chris C.A.; Bettecken, Thomas; Meitinger, Thomas; Oexle, Konrad; Pirastu, Mario; Portas, Laura; Nag, Abhishek; Williams, Katie M.; Yonova-Doing, Ekaterina; Klein, Ronald; Klein, Barbara E.; Hosseini, S. Mohsen; Paterson, Andrew D.; Genuth, S.; Nathan, D.M.; Zinman, B.; Crofford, O.; Crandall, J.; Reid, M.; Brown-Friday, J.; Engel, S.; Sheindlin, J.; Martinez, H.; Shamoon, H.; Engel, H.; Phillips, M.; Gubitosi-Klug, R.; Mayer, L.; Pendegast, S.; Zegarra, H.; Miller, D.; Singerman, L.; Smith-Brewer, S.; Novak, M.; Quin, J.; Dahms, W.; Genuth, Saul; Palmert, M.; Brillon, D.; Lackaye, M.E.; Kiss, S.; Chan, R.; Reppucci, V.; Lee, T.; Heinemann, M.; Whitehouse, F.; Kruger, D.; Jones, J.K.; McLellan, M.; Carey, J.D.; Angus, E.; Thomas, A.; Galprin, A.; Bergenstal, R.; Johnson, M.; Spencer, M.; Morgan, K.; Etzwiler, D.; Kendall, D.; Aiello, Lloyd Paul; Golden, E.; Jacobson, A.; Beaser, R.; Ganda, O.; Hamdy, O.; Wolpert, H.; Sharuk, G.; Arrigg, P.; Schlossman, D.; Rosenzwieg, J.; Rand, L.; Nathan, D.M.; Larkin, M.; Ong, M.; Godine, J.; Cagliero, E.; Lou, P.; Folino, K.; Fritz, S.; Crowell, S.; Hansen, K.; Gauthier-Kelly, C.; Service, J.; Ziegler, G.; Luttrell, L.; Caulder, S.; Lopes-Virella, M.; Colwell, J.; Soule, J.; Fernandes, J.; Hermayer, K.; Kwon, S.; Brabham, M.; Blevins, A.; Parker, J.; Lee, D.; Patel, N.; Pittman, C.; Lindsey, P.; Bracey, M.; Lee, K.; Nutaitis, M.; Farr, A.; Elsing, S.; Thompson, T.; Selby, J.; Lyons, T.; Yacoub-Wasef, S.; Szpiech, M.; Wood, D.; Mayfield, R.; Molitch, M.; Schaefer, B.; Jampol, L.; Lyon, A.; Gill, M.; Strugula, Z.; Kaminski, L.; Mirza, R.; Simjanoski, E.; Ryan, D.; Kolterman, O.; Lorenzi, G.; Goldbaum, M.; Sivitz, W.; Bayless, M.; Counts, D.; Johnsonbaugh, S.; Hebdon, M.; Salemi, P.; Liss, R.; Donner, T.; Gordon, J.; Hemady, R.; Kowarski, A.; Ostrowski, D.; Steidl, S.; Jones, B.; Herman, W.H.; Martin, C.L.; Pop-Busui, R.; Sarma, A.; Albers, J.; Feldman, E.; Kim, K.; Elner, S.; Comer, G.; Gardner, T.; Hackel, R.; Prusak, R.; Goings, L.; Smith, A.; Gothrup, J.; Titus, P.; Lee, J.; Brandle, M.; Prosser, L.; Greene, D.A.; Stevens, M.J.; Vine, A.K.; Bantle, J.; Wimmergren, N.; Cochrane, A.; Olsen, T.; Steuer, E.; Rath, P.; Rogness, B.; Hainsworth, D.; Goldstein, D.; Hitt, S.; Giangiacomo, J.; Schade, D.S.; Canady, J.L.; Chapin, J.E.; Ketai, L.H.; Braunstein, C.S.; Bourne, P.A.; Schwartz, S.; Brucker, A.; Maschak-Carey, B.J.; Baker, L.; Orchard, T.; Silvers, N.; Ryan, C.; Songer, T.; Doft, B.; Olson, S.; Bergren, R.L.; Lobes, L.; Rath, P. Paczan; Becker, D.; Rubinstein, D.; Conrad, P.W.; Yalamanchi, S.; Drash, A.; Morrison, A.; Bernal, M.L.; Vaccaro-Kish, J.; Malone, J.; Pavan, P.R.; Grove, N.; Iyer, M.N.; Burrows, A.F.; Tanaka, E.A.; Gstalder, R.; Dagogo-Jack, S.; Wigley, C.; Ricks, H.; Kitabchi, A.; Murphy, M.B.; Moser, S.; Meyer, D.; Iannacone, A.; Chaum, E.; Yoser, S.; Bryer-Ash, M.; Schussler, S.; Lambeth, H.; Raskin, P.; Strowig, S.; Zinman, B.; Barnie, A.; Devenyi, R.; Mandelcorn, M.; Brent, M.; Rogers, S.; Gordon, A.; Palmer, J.; Catton, S.; Brunzell, J.; Wessells, H.; de Boer, I.H.; Hokanson, J.; Purnell, J.; Ginsberg, J.; Kinyoun, J.; Deeb, S.; Weiss, M.; Meekins, G.; Distad, J.; Van Ottingham, L.; Dupre, J.; Harth, J.; Nicolle, D.; Driscoll, M.; Mahon, J.; Canny, C.; May, M.; Lipps, J.; Agarwal, A.; Adkins, T.; Survant, L.; Pate, R.L.; Munn, G.E.; Lorenz, R.; Feman, S.; White, N.; Levandoski, L.; Boniuk, I.; Grand, G.; Thomas, M.; Joseph, D.D.; Blinder, K.; Shah, G.; Boniuk; Burgess; Santiago, J.; Tamborlane, W.; Gatcomb, P.; Stoessel, K.; Taylor, K.; Goldstein, J.; Novella, S.; Mojibian, H.; Cornfeld, D.; Lima, J.; Bluemke, D.; Turkbey, E.; van der Geest, R.J.; Liu, C.; Malayeri, A.; Jain, A.; Miao, C.; Chahal, H.; Jarboe, R.; Maynard, J.; Gubitosi-Klug, R.; Quin, J.; Gaston, P.; Palmert, M.; Trail, R.; Dahms, W.; Lachin, J.; Cleary, P.; Backlund, J.; Sun, W.; Braffett, B.; Klumpp, K.; Chan, K.; Diminick, L.; Rosenberg, D.; Petty, B.; Determan, A.; Kenny, D.; Rutledge, B.; Younes, Naji; Dews, L.; Hawkins, M.; Cowie, C.; Fradkin, J.; Siebert, C.; Eastman, R.; Danis, R.; Gangaputra, S.; Neill, S.; Davis, M.; Hubbard, L.; Wabers, H.; Burger, M.; Dingledine, J.; Gama, V.; Sussman, R.; Steffes, M.; Bucksa, J.; Nowicki, M.; Chavers, B.; O’Leary, D.; Polak, J.; Harrington, A.; Funk, L.; Crow, R.; Gloeb, B.; Thomas, S.; O’Donnell, C.; Soliman, E.; Zhang, Z.M.; Prineas, R.; Campbell, C.; Ryan, C.; Sandstrom, D.; Williams, T.; Geckle, M.; Cupelli, E.; Thoma, F.; Burzuk, B.; Woodfill, T.; Low, P.; Sommer, C.; Nickander, K.; Budoff, M.; Detrano, R.; Wong, N.; Fox, M.; Kim, L.; Oudiz, R.; Weir, G.; Espeland, M.; Manolio, T.; Rand, L.; Singer, D.; Stern, M.; Boulton, A.E.; Clark, C.; D’Agostino, R.; Lopes-Virella, M.; Garvey, W.T.; Lyons, T.J.; Jenkins, A.; Virella, G.; Jaffa, A.; Carter, Rickey; Lackland, D.; Brabham, M.; McGee, D.; Zheng, D.; Mayfield, R.K.; Boright, A.; Bull, S.; Sun, L.; Scherer, S.; Zinman, B.; Natarajan, R.; Miao, F.; Zhang, L.; Chen;, Z.; Nathan, D.M.; Makela, Kari-Matti; Lehtimaki, Terho; Kahonen, Mika; Raitakari, Olli; Yoshimura, Nagahisa; Matsuda, Fumihiko; Chen, Li Jia; Pang, Chi Pui; Yip, Shea Ping; Yap, Maurice K.H.; Meguro, Akira; Mizuki, Nobuhisa; Inoko, Hidetoshi; Foster, Paul J.; Zhao, Jing Hua; Vithana, Eranga; Tai, E-Shyong; Fan, Qiao; Xu, Liang; Campbell, Harry; Fleck, Brian; Rudan, Igor; Aung, Tin; Hofman, Albert; Uitterlinden, André G.; Bencic, Goran; Khor, Chiea-Chuen; Forward, Hannah; Pärssinen, Olavi; Mitchell, Paul; Rivadeneira, Fernando; Hewitt, Alex W.; Williams, Cathy; Oostra, Ben A.; Teo, Yik-Ying; Hammond, Christopher J.; Stambolian, Dwight; Mackey, David A.; Klaver, Caroline C.W.; Wong, Tien-Yin; Saw, Seang-Mei; Baird, Paul N.

    2013-01-01

    Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways. PMID:24144296

  10. Structural constraints in the packaging of bluetongue virus genomic segments

    OpenAIRE

    Burkhardt, Christiane; Sung, Po-Yu; Celma, Cristina C.; Roy, Polly

    2014-01-01

    : The mechanism used by bluetongue virus (BTV) to ensure the sorting and packaging of its 10 genomic segments is still poorly understood. In this study, we investigated the packaging constraints for two BTV genomic segments from two different serotypes. Segment 4 (S4) of BTV serotype 9 was mutated sequentially and packaging of mutant ssRNAs was investigated by two newly developed RNA packaging assay systems, one in vivo and the other in vitro. Modelling of the mutated ssRNA followed by bioche...

  11. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe.

    Directory of Open Access Journals (Sweden)

    Martin Sikora

    2014-05-01

    Full Text Available Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.

  12. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus.

    Science.gov (United States)

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A; Downing, Tim

    2018-04-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. ( Viannia ) braziliensis and L. ( V. ) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. ( V. ) naiffi and L. ( V. ) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia : aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia , there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni , L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3' end of chromosome 34 . This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance.

  13. Extending the Intermediate Data Structure (IDS for longitudinal historical databases to include geographic data

    Directory of Open Access Journals (Sweden)

    Finn Hedefalk

    2014-09-01

    Full Text Available The Intermediate Data Structure (IDS is a standardised database structure for longitudinal historical databases. Such a common structure facilitates data sharing and comparative research. In this study, we propose an extended version of IDS, named IDS-Geo, that also includes geographic data. The geographic data that will be stored in IDS-Geo are primarily buildings and/or property units, and the purpose of these geographic data is mainly to link individuals to places in space. When we want to assign such detailed spatial locations to individuals (in times before there were any detailed house addresses available, we often have to create tailored geographic datasets. In those cases, there are benefits of storing geographic data in the same structure as the demographic data. Moreover, we propose the export of data from IDS-Geo using an eXtensible Markup Language (XML Schema. IDS-Geo is implemented in a case study using historical property units, for the period 1804 to 1913, stored in a geographically extended version of the Scanian Economic Demographic Database (SEDD. To fit into the IDS-Geo data structure, we included an object lifeline representation of all of the property units (based on the snapshot time representation of single historical maps and poll-tax registers. The case study verifies that the IDS-Geo model is capable of handling geographic data that can be linked to demographic data.

  14. Structural genomic variation as risk factor for idiopathic recurrent miscarriage

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Palta, Priit; Kasak, Laura

    2014-01-01

    Recurrent miscarriage (RM) is a multifactorial disorder with acknowledged genetic heritability that affects ∼3% of couples aiming at childbirth. As copy number variants (CNVs) have been shown to contribute to reproductive disease susceptibility, we aimed to describe genome-wide profile of CNVs an...

  15. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.

    Science.gov (United States)

    Yap, Jia-Yee S; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y H; Wilton, Alan; Wilkins, Marc R; Rossetto, Maurizio; Delaney, Sven K

    2015-01-01

    The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  16. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    2017-10-01

    Full Text Available Barley is an important crop for the production of malt and beer. However, crops such as rice and wheat are rarely used for malting. α-amylase is the key enzyme that degrades starch during malting. In this study, we compared the genomic properties, gene copies, and conserved promoter motifs of α-amylase genes in barley, rice, and wheat. In all three crops, α-amylase consists of four subfamilies designated amy1, amy2, amy3, and amy4. In wheat and barley, members of amy1 and amy2 genes are localized on chromosomes 6 and 7, respectively. In rice, members of amy1 genes are found on chromosomes 1 and 2, and amy2 genes on chromosome 6. The barley genome has six amy1 members and three amy2 members. The wheat B genome contains four amy1 members and three amy2 members, while the rice genome has three amy1 members and one amy2 member. The B genome has mostly amy1 and amy2 members among the three wheat genomes. Amy1 promoters from all three crop genomes contain a GA-responsive complex consisting of a GA-responsive element (CAATAAA, pyrimidine box (CCTTTT and TATCCAT/C box. This study has shown that amy1 and amy2 from both wheat and barley have similar genomic properties, including exon/intron structures and GA-responsive elements on promoters, but these differ in rice. Like barley, wheat should have sufficient amy activity to degrade starch completely during malting. Other factors, such as high protein with haze issues and the lack of husk causing Lauting difficulty, may limit the use of wheat for brewing.

  17. A genomic overview of the population structure of Salmonella.

    Directory of Open Access Journals (Sweden)

    Nabil-Fareed Alikhan

    2018-04-01

    Full Text Available For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST] corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST, core genome MLST (cgMLST, and whole genome MLST (wgMLST and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs. eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.

  18. A genomic overview of the population structure of Salmonella.

    Science.gov (United States)

    Alikhan, Nabil-Fareed; Zhou, Zhemin; Sergeant, Martin J; Achtman, Mark

    2018-04-01

    For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.

  19. Modeling structure of G protein-coupled receptors in huan genome

    KAUST Repository

    Zhang, Yang

    2016-01-26

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due to difficulties in crystallization, experimental structure determination remains extremely difficult for human GPCRs, which have been a major barrier in modern structure-based drug discovery. We proposed a new hybrid protocol, GPCR-I-TASSER, to construct GPCR structure models by integrating experimental mutagenesis data with ab initio transmembrane-helix assembly simulations, assisted by the predicted transmembrane-helix interaction networks. The method was tested in recent community-wide GPCRDock experiments and constructed models with a root mean square deviation 1.26 Å for Dopamine-3 and 2.08 Å for Chemokine-4 receptors in the transmembrane domain regions, which were significantly closer to the native than the best templates available in the PDB. GPCR-I-TASSER has been applied to model all 1,026 putative GPCRs in the human genome, where 923 are found to have correct folds based on the confidence score analysis and mutagenesis data comparison. The successfully modeled GPCRs contain many pharmaceutically important families that do not have previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin and Neuropeptide Y receptors. All the human GPCR models have been made publicly available through the GPCR-HGmod database at http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ The results demonstrate new progress on genome-wide structure modeling of transmembrane proteins which should bring useful impact on the effort of GPCR-targeted drug discovery.

  20. Detection of G-Quadruplex Structures Formed by G-Rich Sequences from Rice Genome and Transcriptome Using Combined Probes.

    Science.gov (United States)

    Chang, Tianjun; Li, Weiguo; Ding, Zhan; Cheng, Shaofei; Liang, Kun; Liu, Xiangjun; Bing, Tao; Shangguan, Dihua

    2017-08-01

    Putative G-quadruplex (G4) forming sequences (PQS) are highly prevalent in the genome and transcriptome of various organisms and are considered as potential regulation elements in many biological processes by forming G4 structures. The formation of G4 structures highly depends on the sequences and the environment. In most cases, it is difficult to predict G4 formation by PQS, especially PQS containing G2 tracts. Therefore, the experimental identification of G4 formation is essential in the study of G4-related biological functions. Herein, we report a rapid and simple method for the detection of G4 structures by using a pair of complementary reporters, hemin and BMSP. This method was applied to detect G4 structures formed by PQS (DNA and RNA) searched in the genome and transcriptome of Oryza sativa. Unlike most of the reported G4 probes that only recognize part of G4 structures, the proposed method based on combined probes positively responded to almost all G4 conformations, including parallel, antiparallel, and mixed/hybrid G4, but did not respond to non-G4 sequences. This method shows potential for high-throughput identification of G4 structures in genome and transcriptome. Furthermore, BMSP was observed to drive some PQS to form more stable G4 structures or induce the G4 formation of some PQS that cannot form G4 in normal physiological conditions, which may provide a powerful molecular tool for gene regulation.

  1. Genome Scan for Selection in Structured Layer Chicken Populations Exploiting Linkage Disequilibrium Information.

    Directory of Open Access Journals (Sweden)

    Mahmood Gholami

    Full Text Available An increasing interest is being placed in the detection of genes, or genomic regions, that have been targeted by selection because identifying signatures of selection can lead to a better understanding of genotype-phenotype relationships. A common strategy for the detection of selection signatures is to compare samples from distinct populations and to search for genomic regions with outstanding genetic differentiation. The aim of this study was to detect selective signatures in layer chicken populations using a recently proposed approach, hapFLK, which exploits linkage disequilibrium information while accounting appropriately for the hierarchical structure of populations. We performed the analysis on 70 individuals from three commercial layer breeds (White Leghorn, White Rock and Rhode Island Red, genotyped for approximately 1 million SNPs. We found a total of 41 and 107 regions with outstanding differentiation or similarity using hapFLK and its single SNP counterpart FLK respectively. Annotation of selection signature regions revealed various genes and QTL corresponding to productions traits, for which layer breeds were selected. A number of the detected genes were associated with growth and carcass traits, including IGF-1R, AGRP and STAT5B. We also annotated an interesting gene associated with the dark brown feather color mutational phenotype in chickens (SOX10. We compared FST, FLK and hapFLK and demonstrated that exploiting linkage disequilibrium information and accounting for hierarchical population structure decreased the false detection rate.

  2. Genomic structure and evolution of the mating type locus in the green seaweed Ulva partita.

    Science.gov (United States)

    Yamazaki, Tomokazu; Ichihara, Kensuke; Suzuki, Ryogo; Oshima, Kenshiro; Miyamura, Shinichi; Kuwano, Kazuyoshi; Toyoda, Atsushi; Suzuki, Yutaka; Sugano, Sumio; Hattori, Masahira; Kawano, Shigeyuki

    2017-09-15

    The evolution of sex chromosomes and mating loci in organisms with UV systems of sex/mating type determination in haploid phases via genes on UV chromosomes is not well understood. We report the structure of the mating type (MT) locus and its evolutionary history in the green seaweed Ulva partita, which is a multicellular organism with an isomorphic haploid-diploid life cycle and mating type determination in the haploid phase. Comprehensive comparison of a total of 12.0 and 16.6 Gb of genomic next-generation sequencing data for mt - and mt + strains identified highly rearranged MT loci of 1.0 and 1.5 Mb in size and containing 46 and 67 genes, respectively, including 23 gametologs. Molecular evolutionary analyses suggested that the MT loci diverged over a prolonged period in the individual mating types after their establishment in an ancestor. A gene encoding an RWP-RK domain-containing protein was found in the mt - MT locus but was not an ortholog of the chlorophycean mating type determination gene MID. Taken together, our results suggest that the genomic structure and its evolutionary history in the U. partita MT locus are similar to those on other UV chromosomes and that the MT locus genes are quite different from those of Chlorophyceae.

  3. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU

    Science.gov (United States)

    Berger, Michael; Farcas, Anca; Geertz, Marcel; Zhelyazkova, Petya; Brix, Klaudia; Travers, Andrew; Muskhelishvili, Georgi

    2010-01-01

    The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci—spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid. PMID:20010798

  4. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  5. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1–S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  6. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.

    Science.gov (United States)

    Wiebe, Nicholas J P; Meyer, Irmtraud M

    2010-06-24

    The prediction of functional RNA structures has attracted increased interest, as it allows us to study the potential functional roles of many genes. RNA structure prediction methods, however, assume that there is a unique functional RNA structure and also do not predict functional features required for in vivo folding. In order to understand how functional RNA structures form in vivo, we require sophisticated experiments or reliable prediction methods. So far, there exist only a few, experimentally validated transient RNA structures. On the computational side, there exist several computer programs which aim to predict the co-transcriptional folding pathway in vivo, but these make a range of simplifying assumptions and do not capture all features known to influence RNA folding in vivo. We want to investigate if evolutionarily related RNA genes fold in a similar way in vivo. To this end, we have developed a new computational method, Transat, which detects conserved helices of high statistical significance. We introduce the method, present a comprehensive performance evaluation and show that Transat is able to predict the structural features of known reference structures including pseudo-knotted ones as well as those of known alternative structural configurations. Transat can also identify unstructured sub-sequences bound by other molecules and provides evidence for new helices which may define folding pathways, supporting the notion that homologous RNA sequence not only assume a similar reference RNA structure, but also fold similarly. Finally, we show that the structural features predicted by Transat differ from those assuming thermodynamic equilibrium. Unlike the existing methods for predicting folding pathways, our method works in a comparative way. This has the disadvantage of not being able to predict features as function of time, but has the considerable advantage of highlighting conserved features and of not requiring a detailed knowledge of the cellular

  7. Seismic evaluation of a cooling water reservoir facility including fluid-structure and soil-structure interaction effects

    International Nuclear Information System (INIS)

    Kabir, A.F.; Maryak, M.E.

    1991-01-01

    Seismic analyses and structural evaluations were performed for a cooling water reservoir of a nuclear reactor facility. The horizontal input seismic motion was the NRC Reg. guide 1.60 spectrum shape anchored at 0.20g zero period acceleration. Vertical input was taken as two-thirds of the horizontal input. Soil structure interaction and hydrodynamic effects were addressed in the seismic analyses. Uncertainties in the soil properties were accounted for by considering three soil profiles. Two 2-dimensional SSI models and a 3-dimensional static model. Representing different areas of the reservoir structures were developed and analyzed to obtain seismic forces and moments, and accelerations at various locations. The results included in this paper indicated that both hydrodynamic and soil-structure interaction effects are significant contributors to the seismic responses of the water-retaining walls of the reservoir

  8. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  9. Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide.

    Directory of Open Access Journals (Sweden)

    Johanna J Kenyon

    Full Text Available Lipooligosaccharide (LOS is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs. OCL1 (Group A was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates.

  10. Willingness to participate in genomics research and desire for personal results among underrepresented minority patients: a structured interview study.

    Science.gov (United States)

    Sanderson, Saskia C; Diefenbach, Michael A; Zinberg, Randi; Horowitz, Carol R; Smirnoff, Margaret; Zweig, Micol; Streicher, Samantha; Jabs, Ethylin Wang; Richardson, Lynne D

    2013-10-01

    Patients from traditionally underrepresented communities need to be involved in discussions around genomics research including attitudes towards participation and receiving personal results. Structured interviews, including open-ended and closed-ended questions, were conducted with 205 patients in an inner-city hospital outpatient clinic: 48 % of participants self-identified as Black or African American, 29 % Hispanic, 10 % White; 49 % had an annual household income of personal results to be returned was not mentioned, 82 % of participants were willing to participate in genomics research. Reasons for willingness fell into four themes: altruism; benefit to family members; personal health benefit; personal curiosity and improving understanding. Reasons for being unwilling fell into five themes: negative perception of research; not personally relevant; negative feelings about procedures (e.g., blood draws); practical barriers; and fear of results. Participants were more likely to report that they would participate in genomics research if personal results were offered than if they were not offered (89 vs. 62 % respectively, p personal genomic risk results for cancer, heart disease and type 2 diabetes than obesity (89, 89, 91, 80 % respectively, all p personal results was disease-specific worry. There was considerable willingness to participate in and desire for personal results from genomics research in this sample of predominantly low-income, Hispanic and African American patients. When returning results is not practical, or even when it is, alternatively or additionally providing generic information about genomics and health may also be a valuable commodity to underrepresented minority and other populations considering participating in genomics research.

  11. The genomic structure of the DMBT1 gene

    DEFF Research Database (Denmark)

    Mollenhauer, J; Holmskov, U; Wiemann, S

    1999-01-01

    Increasing evidence has accumulated for an involvement of the inactivation of tumour suppressor genes at chromosome 10q in the carcinogenesis of brain tumours, melanomas, and carcinomas of the lung, the prostate, the pancreas, and the endometrium. The gene DMBT1 (Deleted in Malignant Brain Tumours...... 1) is located at chromosome 10q25.3-q26.1, within one of the putative intervals for tumour suppressor genes. DMBT1 is a member of the scavenger-receptor cysteine-rich (SRCR) superfamily and displays homozygous deletions or lack of expression in glioblastoma multiforme, medulloblastoma......, and in gastrointestinal and lung cancers. Based on these properties, DMBT1 has been proposed to be a candidate tumour suppressor gene. We have determined the genomic sequence of DMBT1 to allow analyses of mutations. The gene has at least 54 exons that span a genomic region of about 80 kb. We have identified a putative...

  12. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner

    2015-01-01

    . These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D......Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution...

  13. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.

    Science.gov (United States)

    Bradley, Anthony R; Echalier, Aude; Fairhead, Michael; Strain-Damerell, Claire; Brennan, Paul; Bullock, Alex N; Burgess-Brown, Nicola A; Carpenter, Elisabeth P; Gileadi, Opher; Marsden, Brian D; Lee, Wen Hwa; Yue, Wyatt; Bountra, Chas; von Delft, Frank

    2017-11-08

    The ongoing explosion in genomics data has long since outpaced the capacity of conventional biochemical methodology to verify the large number of hypotheses that emerge from the analysis of such data. In contrast, it is still a gold-standard for early phenotypic validation towards small-molecule drug discovery to use probe molecules (or tool compounds), notwithstanding the difficulty and cost of generating them. Rational structure-based approaches to ligand discovery have long promised the efficiencies needed to close this divergence; in practice, however, this promise remains largely unfulfilled, for a host of well-rehearsed reasons and despite the huge technical advances spearheaded by the structural genomics initiatives of the noughties. Therefore the current, fourth funding phase of the Structural Genomics Consortium (SGC), building on its extensive experience in structural biology of novel targets and design of protein inhibitors, seeks to redefine what it means to do structural biology for drug discovery. We developed the concept of a Target Enabling Package (TEP) that provides, through reagents, assays and data, the missing link between genetic disease linkage and the development of usefully potent compounds. There are multiple prongs to the ambition: rigorously assessing targets' genetic disease linkages through crowdsourcing to a network of collaborating experts; establishing a systematic approach to generate the protocols and data that comprise each target's TEP; developing new, X-ray-based fragment technologies for generating high quality chemical matter quickly and cheaply; and exploiting a stringently open access model to build multidisciplinary partnerships throughout academia and industry. By learning how to scale these approaches, the SGC aims to make structures finally serve genomics, as originally intended, and demonstrate how 3D structures systematically allow new modes of druggability to be discovered for whole classes of targets. © 2017 The

  14. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  15. An ArcGIS approach to include tectonic structures in point data regionalization.

    Science.gov (United States)

    Darsow, Andreas; Schafmeister, Maria-Theresia; Hofmann, Thilo

    2009-01-01

    Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS; therefore, it could be adopted in many practical applications.

  16. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'.

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-11-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  17. G2S: A web-service for annotating genomic variants on 3D protein structures.

    Science.gov (United States)

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-01-27

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that support programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design conception and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Three-dimensional Structure of a Viral Genome-delivery Portal Vertex

    Energy Technology Data Exchange (ETDEWEB)

    A Olia; P Prevelige Jr.; J Johnson; G Cingolani

    2011-12-31

    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-{angstrom}-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a {approx}1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a {approx}200-{angstrom}-long {alpha}-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

  19. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Directory of Open Access Journals (Sweden)

    Richards Vincent P

    2012-12-01

    Full Text Available Abstract Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection. A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs [plasmid, phage, integrative conjugative element (ICE] and comparison to other species provided convincing evidence for lateral gene transfer (LGT between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae, with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST of a subset of the isolates (n = 45 detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types], suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human

  20. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis.

    Science.gov (United States)

    Richards, Vincent P; Zadoks, Ruth N; Pavinski Bitar, Paulina D; Lefébure, Tristan; Lang, Ping; Werner, Brenda; Tikofsky, Linda; Moroni, Paolo; Stanhope, Michael J

    2012-12-18

    Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern

  1. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel

    2015-10-06

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima\\'s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima\\'s D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  2. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    KAUST Repository

    Assefa, Samuel; Lim, Caeul; Preston, Mark D.; Duffy, Craig W.; Nair, Mridul; Adroub, Sabir; Kadir, Khamisah A.; Goldberg, Jonathan M.; Neafsey, Daniel E.; Divis, Paul; Clark, Taane G.; Duraisingh, Manoj T.; Conway, David J.; Pain, Arnab; Singh, Balbir

    2015-01-01

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  3. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Science.gov (United States)

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  4. Structured RNAs in the ENCODE selected regions of the human genome

    DEFF Research Database (Denmark)

    Washietl, Stefan; Pedersen, Jakob Skou; Korbel, Jan O

    2007-01-01

    Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack...... with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz...

  5. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

    Science.gov (United States)

    Collins, Ryan L; Brand, Harrison; Redin, Claire E; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon-Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A; Lucente, Diane; Levy, Brynn; Sanders, Stephan J; Wapner, Ronald J; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E

    2017-03-06

    Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.

  6. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Science.gov (United States)

    Zhang, Yang; Devries, Mark E; Skolnick, Jeffrey

    2006-02-01

    G protein-coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha) root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness

  7. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2006-02-01

    Full Text Available G protein-coupled receptors (GPCRs, encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness

  8. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    International Nuclear Information System (INIS)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-01-01

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5 binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis

  9. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    Science.gov (United States)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  10. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  11. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  12. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  13. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    Science.gov (United States)

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  14. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  15. From structure prediction to genomic screens for novel non-coding RNAs.

    Directory of Open Access Journals (Sweden)

    Jan Gorodkin

    2011-08-01

    Full Text Available Non-coding RNAs (ncRNAs are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs. A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  16. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  17. Long-Range Order and Fractality in the Structure and Organization of Eukaryotic Genomes

    Science.gov (United States)

    Polychronopoulos, Dimitris; Tsiagkas, Giannis; Athanasopoulou, Labrini; Sellis, Diamantis; Almirantis, Yannis

    2014-12-01

    The late Professor J.S. Nicolis always emphasized, both in his writings and in presentations and discussions with students and friends, the relevance of a dynamical systems approach to biology. In particular, viewing the genome as a "biological text" captures the dynamical character of both the evolution and function of the organisms in the form of correlations indicating the presence of a long-range order. This genomic structure can be expressed in forms reminiscent of natural languages and several temporal and spatial traces l by the functioning of dynamical systems: Zipf laws, self-similarity and fractality. Here we review several works of our group and recent unpublished results, focusing on the chromosomal distribution of biologically active genomic components: Genes and protein-coding segments, CpG islands, transposable elements belonging to all major classes and several types of conserved non-coding genomic elements. We report the systematic appearance of power-laws in the size distribution of the distances between elements belonging to each of these types of functional genomic elements. Moreover, fractality is also found in several cases, using box-counting and entropic scaling.We present here, for the first time in a unified way, an aggregative model of the genomic dynamics which can explain the observed patterns on the grounds of known phenomena accompanying genome evolution. Our results comply with recent findings about a "fractal globule" geometry of chromatin in the eukaryotic nucleus.

  18. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS for 6-week body weight in broiler chickens

    Directory of Open Access Journals (Sweden)

    Huiyu eWang

    2014-05-01

    Full Text Available The purpose of this study was to compare results obtained from various methodologies for genome-wide association studies, when applied to real data, in terms of number and commonality of regions identified and their genetic variance explained, computational speed, and possible pitfalls in interpretations of results. Methodologies include: two iteratively reweighted single-step genomic BLUP procedures (ssGWAS1 and ssGWAS2, a single-marker model (CGWAS, and BayesB. The ssGWAS methods utilize genomic breeding values (GEBVs based on combined pedigree, genomic and phenotypic information, while CGWAS and BayesB only utilize phenotypes from genotyped animals or pseudo-phenotypes. In this study, ssGWAS was performed by converting GEBVs to SNP marker effects. Unequal variances for markers were incorporated for calculating weights into a new genomic relationship matrix. SNP weights were refined iteratively. The data was body weight at 6 weeks on 274,776 broiler chickens, of which 4553 were genotyped using a 60k SNP chip. Comparison of genomic regions was based on genetic variances explained by local SNP regions (20 SNPs. After 3 iterations, the noise was greatly reduced of ssGWAS1 and results are similar to that of CGWAS, with 4 out of the top 10 regions in common. In contrast, for BayesB, the plot was dominated by a single region explaining 23.1% of the genetic variance. This same region was found by ssGWAS1 with the same rank, but the amount of genetic variation attributed to the region was only 3%. These finding emphasize the need for caution when comparing and interpreting results from various methods, and highlight that detected associations, and strength of association, strongly depends on methodologies and details of implementations. BayesB appears to overly shrink regions to zero, while overestimating the amount of genetic variation attributed to the remaining SNP effects. The real world is most likely a compromise between methods and remains to

  19. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    method to improve the assembly of the genome of E. tenella from shotgun data, and to help reveal its overall structure. A preliminary assessment of copy-number variation (extra or missing copies of genomic segments between strains of E. tenella was also carried out. The emerging picture is of a very unusual genome architecture displaying inter-strain copy-number variation. We suggest that these features may be related to the known ability of this parasite to rapidly develop drug resistance.

  20. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  1. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Impact simulation of liquid-filled containers including fluid-structure interaction--Part 1: Theory

    International Nuclear Information System (INIS)

    Sauve, R.G.; Morandin, G.D.; Nadeau, E.

    1993-01-01

    In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validations of the theoretical approach. Excellent correlation between predicted and experimental results is obtained

  3. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  4. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  5. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  6. The subclonal structure and genomic evolution of oral squamous cell carcinoma revealed by ultra-deep sequencing

    DEFF Research Database (Denmark)

    Tabatabaeifar, Siavosh; Thomassen, Mads; Larsen, Martin J

    2017-01-01

    Recent studies suggest that head and neck squamous cell carcinomas are very heterogeneous between patients; however the subclonal structure remains unexplored mainly due to studies using only a single biopsy per patient. To deconvolutethe clonal structure and describe the genomic cancer evolution......, we applied whole-exome sequencing combined with ultra-deep targeted sequencing on oral squamous cell carcinomas (OSCC). From each patient, a set of biopsies was sampled from distinct geographical sites in primary tumor and lymph node metastasis.We demonstrate that the included OSCCs show a high...

  7. Genomic structure, expression and association study of the porcine FSD2.

    Science.gov (United States)

    Lim, Kyu-Sang; Lee, Kyung-Tai; Lee, Si-Woo; Chai, Han-Ha; Jang, Gulwon; Hong, Ki-Chang; Kim, Tae-Hun

    2016-09-01

    The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.

  8. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics

    NARCIS (Netherlands)

    Dekker, Frank J; Koch, Marcus A; Waldmann, Herbert; Dekker, Frans

    Finding small molecules that modulate protein function is of primary importance in drug development and in the emerging field of chemical genomics. To facilitate the identification of such molecules, we developed a novel strategy making use of structural conservatism found in protein domain

  9. Evolution of the Exon-Intron Structure in Ciliate Genomes.

    Directory of Open Access Journals (Sweden)

    Vladyslav S Bondarenko

    Full Text Available A typical eukaryotic gene is comprised of alternating stretches of regions, exons and introns, retained in and spliced out a mature mRNA, respectively. Although the length of introns may vary substantially among organisms, a large fraction of genes contains short introns in many species. Notably, some Ciliates (Paramecium and Nyctotherus possess only ultra-short introns, around 25 bp long. In Paramecium, ultra-short introns with length divisible by three (3n are under strong evolutionary pressure and have a high frequency of in-frame stop codons, which, in the case of intron retention, cause premature termination of mRNA translation and consequent degradation of the mis-spliced mRNA by the nonsense-mediated decay mechanism. Here, we analyzed introns in five genera of Ciliates, Paramecium, Tetrahymena, Ichthyophthirius, Oxytricha, and Stylonychia. Introns can be classified into two length classes in Tetrahymena and Ichthyophthirius (with means 48 bp, 69 bp, and 55 bp, 64 bp, respectively, but, surprisingly, comprise three distinct length classes in Oxytricha and Stylonychia (with means 33-35 bp, 47-51 bp, and 78-80 bp. In most ranges of the intron lengths, 3n introns are underrepresented and have a high frequency of in-frame stop codons in all studied species. Introns of Paramecium, Tetrahymena, and Ichthyophthirius are preferentially located at the 5' and 3' ends of genes, whereas introns of Oxytricha and Stylonychia are strongly skewed towards the 5' end. Analysis of evolutionary conservation shows that, in each studied genome, a significant fraction of intron positions is conserved between the orthologs, but intron lengths are not correlated between the species. In summary, our study provides a detailed characterization of introns in several genera of Ciliates and highlights some of their distinctive properties, which, together, indicate that splicing spellchecking is a universal and evolutionarily conserved process in the biogenesis of short

  10. Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Song Jun

    2008-06-01

    Full Text Available Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI. MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.

  11. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes.

    Science.gov (United States)

    Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan

    2016-07-01

    This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.

  12. A structural design and analysis of a piping system including seismic load

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.

    1991-01-01

    The structural design/analysis of a piping system at a nuclear fuel facility is used to investigate some aspects of current design procedures. Specifically the effect of using various stress measures including ASME Boiler ampersand Pressure Vessel (B ampersand PV) Code formulas is evaluated. It is found that large differences in local maximum stress values may be calculated depending on the stress criterion used. However, when the global stress maximum for the entire system are compared the differences are much smaller, being nevertheless, for some load combinations, of the order of 50 percent. The effect of using an Equivalent Static Method (ESM) analysis is also evaluated by comparing its results with those obtained from a Response Spectrum Method (RSM) analysis with the modal responses combined by using the absolute summation (ABS), by using the square root of the squares (SRSS), and by using the 10 percent method (10PC). It is shown that for a spectrum amplification factor (equivalent static coefficient greater than unity) of at least 1.32 must be used in the current application of the ESM analysis in order to obtain results which are conservative in all aspects relative to an RSM analysis based on ABS. However, it appears that an adequate design would be obtained from the ESM approach even without the use of a spectrum amplification factor. 7 refs., 3 figs., 3 tabs

  13. Simple vibration modeling of structural fuzzy with continuous boundary by including two-dimensional spatial memory

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2008-01-01

    Many complicated systems of practical interest consist basically of a well-defined outer shell-like master structure and a complicated internal structure with uncertain dynamic properties. Using the "fuzzy structure theory" for predicting audible frequency vibration, the internal structure......-dimensional continuous boundary. Additionally, a simple method for determining the so-called equivalent coupling factor is presented. The validity of this method is demonstrated by numerical simulations of the vibration response of a master plate structure with fuzzy attachments. It is revealed that the method performs...

  14. Whole-genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds to optimize genetic-trait mapping

    Science.gov (United States)

    Dreger, Dayna L.; Rimbault, Maud; Davis, Brian W.; Bhatnagar, Adrienne; Parker, Heidi G.

    2016-01-01

    ABSTRACT In the decade following publication of the draft genome sequence of the domestic dog, extraordinary advances with application to several fields have been credited to the canine genetic system. Taking advantage of closed breeding populations and the subsequent selection for aesthetic and behavioral characteristics, researchers have leveraged the dog as an effective natural model for the study of complex traits, such as disease susceptibility, behavior and morphology, generating unique contributions to human health and biology. When designing genetic studies using purebred dogs, it is essential to consider the unique demography of each population, including estimation of effective population size and timing of population bottlenecks. The analytical design approach for genome-wide association studies (GWAS) and analysis of whole-genome sequence (WGS) experiments are inextricable from demographic data. We have performed a comprehensive study of genomic homozygosity, using high-depth WGS data for 90 individuals, and Illumina HD SNP data from 800 individuals representing 80 breeds. These data were coupled with extensive pedigree data analyses for 11 breeds that, together, allowed us to compute breed structure, demography, and molecular measures of genome diversity. Our comparative analyses characterize the extent, formation and implication of breed-specific diversity as it relates to population structure. These data demonstrate the relationship between breed-specific genome dynamics and population architecture, and provide important considerations influencing the technological and cohort design of association and other genomic studies. PMID:27874836

  15. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob Hull

    2014-01-01

    annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo...

  16. XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues.

    Science.gov (United States)

    Opazo, María Cecilia; Lizana, Rodrigo; Stappung, Yazmina; Davis, Thomas M; Herrera, Raúl; Moya-León, María Alejandra

    2017-11-07

    Fragaria vesca or 'woodland strawberry' has emerged as an attractive model for the study of ripening of non-climacteric fruit. It has several advantages, such as its small genome and its diploidy. The recent availability of the complete sequence of its genome opens the possibility for further analysis and its use as a reference species. Fruit softening is a physiological event and involves many biochemical changes that take place at the final stages of fruit development; among them, the remodeling of cell walls by the action of a set of enzymes. Xyloglucan endotransglycosylase/hydrolase (XTH) is a cell wall-associated enzyme, which is encoded by a multigene family. Its action modifies the structure of xyloglucans, a diverse group of polysaccharides that crosslink with cellulose microfibrills, affecting therefore the functional structure of the cell wall. The aim of this work is to identify the XTH-encoding genes present in F. vesca and to determine its transcription level in ripening fruit. The search resulted in identification of 26 XTH-encoding genes named as FvXTHs. Genetic structure and phylogenetic analyses were performed allowing the classification of FvXTH genes into three phylogenetic groups: 17 in group I/II, 2 in group IIIA and 4 in group IIIB. Two sequences were included into the ancestral group. Through a comparative analysis, characteristic structural protein domains were found in FvXTH protein sequences. In complement, expression analyses of FvXTHs by qPCR were performed in fruit at different developmental and ripening stages, as well as, in other tissues. The results showed a diverse expression pattern of FvXTHs in several tissues, although most of them are highly expressed in roots. Their expression patterns are not related to their respective phylogenetic groups. In addition, most FvXTHs are expressed in ripe fruit, and interestingly, some of them (FvXTH 18 and 20, belonging to phylogenic group I/II, and FvXTH 25 and 26 to group IIIB) display an

  17. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Marschall, T.; Kloosterman, W.P.; Francioli, L.C.; Baaijens, J.A.; Dijkstra, L.J.; Abdellaoui, A.; Koval, V.; Thung, D.T.; Wardenaar, R.; Renkens, I.; Coe, B.P.; Deelen, P.; de Ligt, J.; Lameijer, E.W.; Dijk, F.; Hormozdiari, F.; Uitterlinden, A.G.; van Duijn, C.M.; Eichler, E.E.; Bakker, P.I.W.; Swertz, M.A.; Wijmenga, C.; van Ommen, G.J.B; Slagboom, P.E.; Boomsma, D.I.; Schönhuth, A.; Ye, K.; Guryev, V.

    2016-01-01

    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic

  18. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health

    Science.gov (United States)

    Holt, Kathryn E.; Wertheim, Heiman; Zadoks, Ruth N.; Baker, Stephen; Whitehouse, Chris A.; Dance, David; Jenney, Adam; Connor, Thomas R.; Hsu, Li Yang; Severin, Juliëtte; Brisse, Sylvain; Cao, Hanwei; Wilksch, Jonathan; Gorrie, Claire; Schultz, Mark B.; Edwards, David J.; Nguyen, Kinh Van; Nguyen, Trung Vu; Dao, Trinh Tuyet; Mensink, Martijn; Minh, Vien Le; Nhu, Nguyen Thi Khanh; Schultsz, Constance; Kuntaman, Kuntaman; Newton, Paul N.; Moore, Catrin E.; Strugnell, Richard A.; Thomson, Nicholas R.

    2015-01-01

    Klebsiella pneumoniae is now recognized as an urgent threat to human health because of the emergence of multidrug-resistant strains associated with hospital outbreaks and hypervirulent strains associated with severe community-acquired infections. K. pneumoniae is ubiquitous in the environment and can colonize and infect both plants and animals. However, little is known about the population structure of K. pneumoniae, so it is difficult to recognize or understand the emergence of clinically important clones within this highly genetically diverse species. Here we present a detailed genomic framework for K. pneumoniae based on whole-genome sequencing of more than 300 human and animal isolates spanning four continents. Our data provide genome-wide support for the splitting of K. pneumoniae into three distinct species, KpI (K. pneumoniae), KpII (K. quasipneumoniae), and KpIII (K. variicola). Further, for K. pneumoniae (KpI), the entity most frequently associated with human infection, we show the existence of >150 deeply branching lineages including numerous multidrug-resistant or hypervirulent clones. We show K. pneumoniae has a large accessory genome approaching 30,000 protein-coding genes, including a number of virulence functions that are significantly associated with invasive community-acquired disease in humans. In our dataset, antimicrobial resistance genes were common among human carriage isolates and hospital-acquired infections, which generally lacked the genes associated with invasive disease. The convergence of virulence and resistance genes potentially could lead to the emergence of untreatable invasive K. pneumoniae infections; our data provide the whole-genome framework against which to track the emergence of such threats. PMID:26100894

  19. Population Structure Analysis of Bull Genomes of European and Western Ancestry

    DEFF Research Database (Denmark)

    Chung, Neo Christopher; Szyda, Joanna; Frąszczak, Magdalena

    2017-01-01

    Since domestication, population bottlenecks, breed formation, and selective breeding have radically shaped the genealogy and genetics of Bos taurus. In turn, characterization of population structure among diverse bull (males of Bos taurus) genomes enables detailed assessment of genetic resources...... and origins. By analyzing 432 unrelated bull genomes from 13 breeds and 16 countries, we demonstrate genetic diversity and structural complexity among the European/Western cattle population. Importantly, we relaxed a strong assumption of discrete or admixed population, by adapting latent variable models...... harboring largest genetic differentiation suggest positive selection underlying population structure. We carried out gene set analysis using SNP annotations to identify enriched functional categories such as energy-related processes and multiple development stages. Our population structure analysis of bull...

  20. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  1. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications.

    Science.gov (United States)

    Chen, Zhi-Teng; Du, Yu-Zhou

    2018-05-01

    The complete mitochondrial genomes (mitogenomes) of Taeniopteryx ugola and Doddsia occidentalis (Plecoptera: Taeniopterygidae) were firstly sequenced from the family Taeniopterygidae. The 15,353-bp long mitogenome of T. ugola and the 16,020-bp long mitogenome of D. occidentalis each contained 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (CR). The mitochondrial gene arrangement of the two taeniopterygids and other stoneflies was identical with the putative ancestral mitogenome of Drosophila yakuba. Most PCGs used standard ATN start codons and TAN termination codons. Twenty-one of the 22 tRNAs in each mitogenome could fold into the cloverleaf secondary structures, while the dihydrouridine (DHU) arm of trnSer (AGN) was reduced or absent. Stem-loop (SL) structures, poly-T stretch, poly-[AT] n stretch and tandem repeats were found in the CRs of the two mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results, both supporting the monophyly of all stonefly families and the two infraorders, Systellognatha and Euholognatha. Taeniopterygidae was grouped with another two families from Euholognatha. The relationships within Plecoptera were recovered as (((Perlidae+Peltoperlidae)+((Pteronarcyidae+Chloroperlidae)+Styloperlidae))+((Capniidae+Taeniopterygidae)+Nemouridae))+Gripopterygidae. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  3. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees.

    Science.gov (United States)

    Keller, Alexander; Förster, Frank; Müller, Tobias; Dandekar, Thomas; Schultz, Jörg; Wolf, Matthias

    2010-01-15

    In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber) and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  4. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  5. Comprehensive Genome Analysis of Carbapenemase-Producing Enterobacter spp.: New Insights into Phylogeny, Population Structure, and Resistance Mechanisms.

    Science.gov (United States)

    Chavda, Kalyan D; Chen, Liang; Fouts, Derrick E; Sutton, Granger; Brinkac, Lauren; Jenkins, Stephen G; Bonomo, Robert A; Adams, Mark D; Kreiswirth, Barry N

    2016-12-13

    Knowledge regarding the genomic structure of Enterobacter spp., the second most prevalent carbapenemase-producing Enterobacteriaceae, remains limited. Here we sequenced 97 clinical Enterobacter species isolates that were both carbapenem susceptible and resistant from various geographic regions to decipher the molecular origins of carbapenem resistance and to understand the changing phylogeny of these emerging and drug-resistant pathogens. Of the carbapenem-resistant isolates, 30 possessed bla KPC-2 , 40 had bla KPC-3 , 2 had bla KPC-4 , and 2 had bla NDM-1 Twenty-three isolates were carbapenem susceptible. Six genomes were sequenced to completion, and their sizes ranged from 4.6 to 5.1 Mbp. Phylogenomic analysis placed 96 of these genomes, 351 additional Enterobacter genomes downloaded from NCBI GenBank, and six newly sequenced type strains into 19 phylogenomic groups-18 groups (A to R) in the Enterobacter cloacae complex and Enterobacter aerogenes Diverse mechanisms underlying the molecular evolutionary trajectory of these drug-resistant Enterobacter spp. were revealed, including the acquisition of an antibiotic resistance plasmid, followed by clonal spread, horizontal transfer of bla KPC -harboring plasmids between different phylogenomic groups, and repeated transposition of the bla KPC gene among different plasmid backbones. Group A, which comprises multilocus sequence type 171 (ST171), was the most commonly identified (23% of isolates). Genomic analysis showed that ST171 isolates evolved from a common ancestor and formed two different major clusters; each acquiring unique bla KPC -harboring plasmids, followed by clonal expansion. The data presented here represent the first comprehensive study of phylogenomic interrogation and the relationship between antibiotic resistance and plasmid discrimination among carbapenem-resistant Enterobacter spp., demonstrating the genetic diversity and complexity of the molecular mechanisms driving antibiotic resistance in this

  6. Voice, Post-Structural Representation and the Subjectivity of "Included" Students

    Science.gov (United States)

    Whitburn, Ben

    2016-01-01

    Aligned with the broader movement from structuralism to the post-structuralisms [Lather, P. 2013. "Methodology-21: What Do We Do in the Afterward?" "International Journal of Qualitative Studies in Education" 26 (6): 634-645; St. Pierre, E. A. 2009. "Afterword: Decentering Voice in Qualitative Inquiry." In "Voice…

  7. An Emerging Tick-Borne Disease of Humans Is Caused by a Subset of Strains with Conserved Genome Structure

    Science.gov (United States)

    Barbet, Anthony F.; Al-Khedery, Basima; Stuen, Snorre; Granquist, Erik G.; Felsheim, Roderick F.; Munderloh, Ulrike G.

    2013-01-01

    The prevalence of tick-borne diseases is increasing worldwide. One such emerging disease is human anaplasmosis. The causative organism, Anaplasma phagocytophilum, is known to infect multiple animal species and cause human fatalities in the U.S., Europe and Asia. Although long known to infect ruminants, it is unclear why there are increasing numbers of human infections. We analyzed the genome sequences of strains infecting humans, animals and ticks from diverse geographic locations. Despite extensive variability amongst these strains, those infecting humans had conserved genome structure including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen. These data provide potential targets to identify human-infective strains and have significance for understanding the selective pressures that lead to emergence of disease in new species. PMID:25437207

  8. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  9. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Science.gov (United States)

    Jackson, Anne U.; Monda, Keri L.; Kilpeläinen, Tuomas O.; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F.; Croteau-Chonka, Damien C.; Day, Felix R.; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E.; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Karpe, Fredrik; Min, Josine L.; Nicholson, George; Clegg, Deborah J.; Person, Thomas; Krohn, Jon P.; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L.; Harris, Tamara B.; Smith, Albert Vernon; Shuldiner, Alan R.; McArdle, Wendy L.; Caulfield, Mark J.; Munroe, Patricia B.; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S.; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J.; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A.; Kraja, Aldi T.; Province, Michael A.; Cupples, L. Adrienne; Heard-Costa, Nancy L.; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S.; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H. Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A.; Johansson, Åsa; Pramstaller, Peter P.; Kathiresan, Sekar; Speliotes, Elizabeth K.; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I.; Campbell, Harry; Wilson, James F.; Chanock, Stephen J.; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G.; Hofman, Albert; Zillikens, M. Carola; den Heijer, Martin; Kiemeney, Lambertus A.; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D.; Hayward, Caroline; Rudan, Igor; Hall, Alistair S.; Samani, Nilesh J.; Attwood, Antony Paul; Sambrook, Jennifer G.; Hung, Joseph; Palmer, Lyle J.; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G.; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M.; Snieder, Harold; Van der Klauw, Melanie M.; Van Vliet-Ostaptchouk, Jana V.; Gejman, Pablo V.; Shi, Jianxin; Jacobs, Kevin B.; Wang, Zhaoming; Bakker, Stephan J. L.; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Yang, Jian; Chasman, Daniel I.; Ridker, Paul M.; Rose, Lynda M.; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G.; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P.; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R.; Schwarz, Peter E. H.; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J.; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A.; Rauramaa, Rainer; Bolton, Jennifer L.; Fowkes, Gerry; Fraser, Ross M.; Price, Jackie F.; Fischer, Krista; KrjutÅ¡kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K.; Chines, Peter S.; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Edkins, Sarah; Franks, Paul W.; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N. A.; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M.; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E.; Strawbridge, Rona J.; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O.; Kleber, Marcus E.; März, Winfried; Winkelmann, Bernhard R.; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W. G.; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L.; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; McCarthy, Mark I.; Hirschhorn, Joel N.; Qi, Lu; Loos, Ruth J. F.; Lindgren, Cecilia M.; North, Kari E.; Heid, Iris M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits. PMID:23754948

  10. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.

    Directory of Open Access Journals (Sweden)

    Joshua C Randall

    2013-06-01

    Full Text Available Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals and took forward 348 SNPs into follow-up (additional 137,052 individuals in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%, including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9 and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG, all of which were genome-wide significant in women (P<5×10(-8, but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

  11. Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2010-01-01

    Full Text Available Abstract Background In several studies, secondary structures of ribosomal genes have been used to improve the quality of phylogenetic reconstructions. An extensive evaluation of the benefits of secondary structure, however, is lacking. Results This is the first study to counter this deficiency. We inspected the accuracy and robustness of phylogenetics with individual secondary structures by simulation experiments for artificial tree topologies with up to 18 taxa and for divergency levels in the range of typical phylogenetic studies. We chose the internal transcribed spacer 2 of the ribosomal cistron as an exemplary marker region. Simulation integrated the coevolution process of sequences with secondary structures. Additionally, the phylogenetic power of marker size duplication was investigated and compared with sequence and sequence-structure reconstruction methods. The results clearly show that accuracy and robustness of Neighbor Joining trees are largely improved by structural information in contrast to sequence only data, whereas a doubled marker size only accounts for robustness. Conclusions Individual secondary structures of ribosomal RNA sequences provide a valuable gain of information content that is useful for phylogenetics. Thus, the usage of ITS2 sequence together with secondary structure for taxonomic inferences is recommended. Other reconstruction methods as maximum likelihood, bayesian inference or maximum parsimony may equally profit from secondary structure inclusion. Reviewers This article was reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. Open peer review Reviewed by Shamil Sunyaev, Andrea Tanzer (nominated by Frank Eisenhaber and Eugene V. Koonin. For the full reviews, please go to the Reviewers' comments section.

  12. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  13. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA

  14. The complete mitochondrial genome structure of the jaguar (Panthera onca).

    Science.gov (United States)

    Caragiulo, Anthony; Dougherty, Eric; Soto, Sofia; Rabinowitz, Salisa; Amato, George

    2016-01-01

    The jaguar (Panthera onca) is the largest felid in the Western hemisphere, and the only member of the Panthera genus in the New World. The jaguar inhabits most countries within Central and South America, and is considered near threatened by the International Union for the Conservation of Nature. This study represents the first sequence of the entire jaguar mitogenome, which was the only Panthera mitogenome that had not been sequenced. The jaguar mitogenome is 17,049 bases and possesses the same molecular structure as other felid mitogenomes. Bayesian inference (BI) and maximum likelihood (ML) were used to determine the phylogenetic placement of the jaguar within the Panthera genus. Both BI and ML analyses revealed the jaguar to be sister to the tiger/leopard/snow leopard clade.

  15. A Study on Conjugate Heat Transfer Analysis of Reactor Vessel including Irradiated Structural Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Kunwoo; Cho, Hyuksu; Im, Inyoung; Kim, Eunkee [KEPCO EnC, Daejeon (Korea, Republic of)

    2015-10-15

    Though Material reliability programs (MRPs) have a purpose to provide the evaluation or management methodologies for the operating RVI, the similar evaluation methodologies can be applied to the APR1400 fleet in the design stage for the evaluation of neutron irradiation effects. The purposes of this study are: to predict the thermal behavior whether or not irradiated structure heat source; to evaluate effective thermal conductivity (ETC) in relation to isotropic and anisotropic conductivity of porous media for APR1400 Reactor Vessel. The CFD simulations are performed so as to evaluate thermal behavior whether or not irradiated structure heat source and effective thermal conductivity for APR1400 Reactor Vessel. In respective of using irradiated structure heat source, the maximum temperature of fluid and core shroud for isotropic ETC are 325.8 .deg. C, 341.5 .deg. C. The total amount of irradiated structure heat source is about 5.41 MWth and not effect to fluid temperature.

  16. A heuristic approach to optimization of structural topology including self-weight

    Science.gov (United States)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  17. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  18. A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis.

    Science.gov (United States)

    Schwarzer, David; Buettner, Falk F R; Browning, Christopher; Nazarov, Sergey; Rabsch, Wolfgang; Bethe, Andrea; Oberbeck, Astrid; Bowman, Valorie D; Stummeyer, Katharina; Mühlenhoff, Martina; Leiman, Petr G; Gerardy-Schahn, Rita

    2012-10-01

    Bacteriophage phi92 is a large, lytic myovirus isolated in 1983 from pathogenic Escherichia coli strains that carry a polysialic acid capsule. Here we report the genome organization of phi92, the cryoelectron microscopy reconstruction of its virion, and the reinvestigation of its host specificity. The genome consists of a linear, double-stranded 148,612-bp DNA sequence containing 248 potential open reading frames and 11 putative tRNA genes. Orthologs were found for 130 of the predicted proteins. Most of the virion proteins showed significant sequence similarities to proteins of myoviruses rv5 and PVP-SE1, indicating that phi92 is a new member of the novel genus of rv5-like phages. Reinvestigation of phi92 host specificity showed that the host range is not limited to polysialic acid-encapsulated Escherichia coli but includes most laboratory strains of Escherichia coli and many Salmonella strains. Structure analysis of the phi92 virion demonstrated the presence of four different types of tail fibers and/or tailspikes, which enable the phage to use attachment sites on encapsulated and nonencapsulated bacteria. With this report, we provide the first detailed description of a multivalent, multispecies phage armed with a host cell adsorption apparatus resembling a nanosized Swiss army knife. The genome, structure, and, in particular, the organization of the baseplate of phi92 demonstrate how a bacteriophage can evolve into a multi-pathogen-killing agent.

  19. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  20. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  1. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    Science.gov (United States)

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  2. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  3. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  4. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  5. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    Science.gov (United States)

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  6. Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine

    International Nuclear Information System (INIS)

    Khatibinia, Mohsen; Javad Fadaee, Mohammad; Salajegheh, Javad; Salajegheh, Eysa

    2013-01-01

    An efficient metamodeling framework in conjunction with the Monte-Carlo Simulation (MCS) is introduced to reduce the computational cost in seismic reliability assessment of existing RC structures. In order to achieve this purpose, the metamodel is designed by combining weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, called wavelet weighted least squares support vector machine (WWLS-SVM). In this study, the seismic reliability assessment of existing RC structures with consideration of soil–structure interaction (SSI) effects is investigated in accordance with Performance-Based Design (PBD). This study aims to incorporate the acceptable performance levels of PBD into reliability theory for comparing the obtained annual probability of non-performance with the target values for each performance level. The MCS method as the most reliable method is utilized to estimate the annual probability of failure associated with a given performance level in this study. In WWLS-SVM-based MCS, the structural seismic responses are accurately predicted by WWLS-SVM for reducing the computational cost. To show the efficiency and robustness of the proposed metamodel, two RC structures are studied. Numerical results demonstrate the efficiency and computational advantages of the proposed metamodel for the seismic reliability assessment of structures. Furthermore, the consideration of the SSI effects in the seismic reliability assessment of existing RC structures is compared to the fixed base model. It shows which SSI has the significant influence on the seismic reliability assessment of structures.

  7. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    Science.gov (United States)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  8. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    -specific evolutionary models based on a phylogenetic tree. All parameters can be estimated by maximum likelihood, including the phylogenetic tree. It can handle any number of aligned genomes, using their phylogenetic tree to model the evolutionary correlations. The time complexity of all algorithms used for handling...

  9. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  10. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  11. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  12. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    Full Text Available The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  13. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis

    DEFF Research Database (Denmark)

    Labrie, Simon J.; Josephsen, Jytte; Neve, Horst

    2008-01-01

    for a shorter tail and a different collar/whisker structure. Its 33,613-bp double-stranded DNA genome had 50 open reading frames. Putative functions were assigned to 29 of them. Unlike other sequenced genomes from lactococcal phages belonging to this species, P335 did not have a lysogeny module. However, it did...... genome. The genetic diversity of the P335 species indicates that they are exceptional models for studying the modular theory of phage evolution....

  14. Experimental Induction of Genome Chaos.

    Science.gov (United States)

    Ye, Christine J; Liu, Guo; Heng, Henry H

    2018-01-01

    Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

  15. Seismic response and fragility evaluation for an Eastern US NPP including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Ghiocel, Dan M.; Wilson, Paul R.; Thomas, Gary G.; Stevenson, John D.

    1998-01-01

    The paper discusses methodological aspects involved in a probabilistic seismic soil-structure interaction (SSI) analysis for a Seismic Probabilistic Risk Assessment (SPRA) review. An example of an Eastern US nuclear power plant (NPP) is presented. The approach presented herein follows the current practice of the Individual Plant Examination for External Events (IPEEE) program in the US. The NPP is founded on a relatively soft soil deposit, and thus the SSI effects on seismic responses are significant. Probabilistic models used for the idealization of the seismic excitation and the surrounding soil deposit are described. Using a lognormal format, computed random variability effects were combined with those proposed in the SPRA methodology guidelines. Probabilistic floor response spectra and structural fragilities for different NPP buildings were computed. Structural capacities were determined following the current practice which assumes independent median safety factors for strength and inelastic absorption. Limitations of the IPEEE practice for performing SPRA are discussed and alternate procedures, more rigorous and simple to implement, are suggested

  16. The importance of including dynamic soil-structure interaction into wind turbine simulation codes

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2014-01-01

    A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance of the founda......A rigorous numerical model, describing a wind turbine structure and subsoil, may contain thousands of degrees of freedom, making the approach computationally inefficient for fast time domain analysis. In order to meet the requirements of real-time calculations, the dynamic impedance...... of the foundation from a rigorous analysis can be formulated into a so-called lumped-parameter model consisting of a few springs, dashpots and point masses which are easily implemented into aeroelastic codes. In this paper, the quality of consistent lumped-parameter models of rigid surface footings and mono piles...... is examined. The optimal order of the models is determined and implemented into the aeroelastic code HAWC2, where the dynamic response of a 5.0 MW wind turbine is evaluated. In contrast to the fore-aft vibrations, the inclusion of soil-structure interaction is shown to be critical for the side-side vibrations...

  17. Improvisation in evolution of genes and genomes: whose structure is it anyway?

    Science.gov (United States)

    Shakhnovich, Boris E; Shakhnovich, Eugene I

    2008-06-01

    Significant progress has been made in recent years in a variety of seemingly unrelated fields such as sequencing, protein structure prediction, and high-throughput transcriptomics and metabolomics. At the same time, new microscopic models have been developed that made it possible to analyze the evolution of genes and genomes from first principles. The results from these efforts enable, for the first time, a comprehensive insight into the evolution of complex systems and organisms on all scales--from sequences to organisms and populations. Every newly sequenced genome uncovers new genes, families, and folds. Where do these new genes come from? How do gene duplication and subsequent divergence of sequence and structure affect the fitness of the organism? What role does regulation play in the evolution of proteins and folds? Emerging synergism between data and modeling provides first robust answers to these questions.

  18. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  19. Fold classification based on secondary structure – how much is gained by including loop topology?

    Directory of Open Access Journals (Sweden)

    Przytycka Teresa

    2006-03-01

    Full Text Available Abstract Background It has been proposed that secondary structure information can be used to classify (to some extend protein folds. Since this method utilizes very limited information about the protein structure, it is not surprising that it has a higher error rate than the approaches that use full 3D fold description. On the other hand, the comparing of 3D protein structures is computing intensive. This raises the question to what extend the error rate can be decreased with each new source of information, especially if the new information can still be used with simple alignment algorithms. We consider the question whether the information about closed loops can improve the accuracy of this approach. While the answer appears to be obvious, we had to overcome two challenges. First, how to code and to compare topological information in such a way that local alignment of strings will properly identify similar structures. Second, how to properly measure the effect of new information in a large data sample. We investigate alternative ways of computing and presenting this information. Results We used the set of beta proteins with at most 30% pairwise identity to test the approach; local alignment scores were used to build a tree of clusters which was evaluated using a new log-odd cluster scoring function. In particular, we derive a closed formula for the probability of obtaining a given score by chance.Parameters of local alignment function were optimized using a genetic algorithm. Of 81 folds that had more than one representative in our data set, log-odds scores registered significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in the remaining cases. Various notions of the significant change or average change were considered and tried, and the results were all pointing in the same direction. Conclusion We found that, on average, properly presented information about the loop topology improves noticeably

  20. Predicting transmission of structure-borne sound power from machines by including terminal cross-coupling

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    2011-01-01

    of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan......Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source...

  1. Model - including thermal creep effects - for the analysis of three-dimensional concrete structures

    International Nuclear Information System (INIS)

    Rodriguez, C.; Rebora, B.; Favrod, J.D.

    1979-01-01

    This article presents the most recent developments and results of research carried out by IPEN to establish a mathematical model for the non-linear rheological three-dimensional analysis of massive prestressed concrete structures. The main point of these latest developments is the simulation of the creep of concrete submitted to high temperatures over a long period of time. This research, financed by the Swiss National Science Foundation, has taken an increased importance with the advent of nuclear reactor vessels of the HHT type and new conceptions concerning the cooling of their concrete (replacement of the thermal insulation by a zone of hot concrete). (orig.)

  2. Recombination-dependent replication and gene conversion homogenize repeat sequences and diversify plastid genome structure.

    Science.gov (United States)

    Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K

    2017-04-01

    There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.

  3. Universal Internucleotide Statistics in Full Genomes: A Footprint of the DNA Structure and Packaging?

    OpenAIRE

    Bogachev, Mikhail I.; Kayumov, Airat R.; Bunde, Armin

    2014-01-01

    Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleot...

  4. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  5. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  6. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

    Science.gov (United States)

    Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W

    2016-06-13

    Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.

  7. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic conservation, Population Structure and Comparative genomics of rare sequence types

    Directory of Open Access Journals (Sweden)

    Kien-Pong eYap

    2016-03-01

    Full Text Available Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus Sequence Typing (MLST is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2 co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC and tviD that may explain the variations that differentiate between seemingly successful (widespread and unsuccessful (poor dissemination S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  8. Chromatin dynamics in genome stability

    DEFF Research Database (Denmark)

    Nair, Nidhi; Shoaib, Muhammad; Sørensen, Claus Storgaard

    2017-01-01

    Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote...... access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance...... of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage....

  9. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Directory of Open Access Journals (Sweden)

    Chuan Hong

    2014-12-01

    Full Text Available Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  10. A structural model of the genome packaging process in a membrane-containing double stranded DNA virus.

    Science.gov (United States)

    Hong, Chuan; Oksanen, Hanna M; Liu, Xiangan; Jakana, Joanita; Bamford, Dennis H; Chiu, Wah

    2014-12-01

    Two crucial steps in the virus life cycle are genome encapsidation to form an infective virion and genome exit to infect the next host cell. In most icosahedral double-stranded (ds) DNA viruses, the viral genome enters and exits the capsid through a unique vertex. Internal membrane-containing viruses possess additional complexity as the genome must be translocated through the viral membrane bilayer. Here, we report the structure of the genome packaging complex with a membrane conduit essential for viral genome encapsidation in the tailless icosahedral membrane-containing bacteriophage PRD1. We utilize single particle electron cryo-microscopy (cryo-EM) and symmetry-free image reconstruction to determine structures of PRD1 virion, procapsid, and packaging deficient mutant particles. At the unique vertex of PRD1, the packaging complex replaces the regular 5-fold structure and crosses the lipid bilayer. These structures reveal that the packaging ATPase P9 and the packaging efficiency factor P6 form a dodecameric portal complex external to the membrane moiety, surrounded by ten major capsid protein P3 trimers. The viral transmembrane density at the special vertex is assigned to be a hexamer of heterodimer of proteins P20 and P22. The hexamer functions as a membrane conduit for the DNA and as a nucleating site for the unique vertex assembly. Our structures show a conformational alteration in the lipid membrane after the P9 and P6 are recruited to the virion. The P8-genome complex is then packaged into the procapsid through the unique vertex while the genome terminal protein P8 functions as a valve that closes the channel once the genome is inside. Comparing mature virion, procapsid, and mutant particle structures led us to propose an assembly pathway for the genome packaging apparatus in the PRD1 virion.

  11. Considerations in the identification of functional RNA structural elements in genomic alignments

    Directory of Open Access Journals (Sweden)

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  12. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    Science.gov (United States)

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  13. Use of deep whole-genome sequencing data to identify structure risk variants in breast cancer susceptibility genes.

    Science.gov (United States)

    Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong

    2018-03-01

    Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.

  14. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B.

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation

  15. Joining and fabrication techniques for high temperature structures including the first wall in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jin; Lee, B. S.; Kim, K. B

    2003-09-01

    The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.

  16. Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice

    Science.gov (United States)

    Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe

    2014-06-01

    The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities

  17. Structural genomics: keeping up with expanding knowledge of the protein universe

    Science.gov (United States)

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2010-01-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space — a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a reassessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006. PMID:17587562

  18. Structural genomics: keeping up with expanding knowledge of the protein universe.

    Science.gov (United States)

    Grabowski, Marek; Joachimiak, Andrzej; Otwinowski, Zbyszek; Minor, Wladek

    2007-06-01

    Structural characterization of the protein universe is the main mission of Structural Genomics (SG) programs. However, progress in gene sequencing technology, set in motion in the 1990s, has resulted in rapid expansion of protein sequence space--a twelvefold increase in the past seven years. For the SG field, this creates new challenges and necessitates a re-assessment of its strategies. Nevertheless, despite the growth of sequence space, at present nearly half of the content of the Swiss-Prot database and over 40% of Pfam protein families can be structurally modeled based on structures determined so far, with SG projects making an increasingly significant contribution. The SG contribution of new Pfam structures nearly doubled from 27.2% in 2003 to 51.6% in 2006.

  19. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  20. Rare genomic structural variants in complex disease: lessons from the replication of associations with obesity.

    Directory of Open Access Journals (Sweden)

    Robin G Walters

    Full Text Available The limited ability of common variants to account for the genetic contribution to complex disease has prompted searches for rare variants of large effect, to partly explain the 'missing heritability'. Analyses of genome-wide genotyping data have identified genomic structural variants (GSVs as a source of such rare causal variants. Recent studies have reported multiple GSV loci associated with risk of obesity. We attempted to replicate these associations by similar analysis of two familial-obesity case-control cohorts and a population cohort, and detected GSVs at 11 out of 18 loci, at frequencies similar to those previously reported. Based on their reported frequencies and effect sizes (OR≥25, we had sufficient statistical power to detect the large majority (80% of genuine associations at these loci. However, only one obesity association was replicated. Deletion of a 220 kb region on chromosome 16p11.2 has a carrier population frequency of 2×10(-4 (95% confidence interval [9.6×10(-5-3.1×10(-4]; accounts overall for 0.5% [0.19%-0.82%] of severe childhood obesity cases (P = 3.8×10(-10; odds ratio = 25.0 [9.9-60.6]; and results in a mean body mass index (BMI increase of 5.8 kg.m(-2 [1.8-10.3] in adults from the general population. We also attempted replication using BMI as a quantitative trait in our population cohort; associations with BMI at or near nominal significance were detected at two further loci near KIF2B and within FOXP2, but these did not survive correction for multiple testing. These findings emphasise several issues of importance when conducting rare GSV association, including the need for careful cohort selection and replication strategy, accurate GSV identification, and appropriate correction for multiple testing and/or control of false discovery rate. Moreover, they highlight the potential difficulty in replicating rare CNV associations across different populations. Nevertheless, we show that such studies are potentially

  1. SV2: accurate structural variation genotyping and de novo mutation detection from whole genomes.

    Science.gov (United States)

    Antaki, Danny; Brandler, William M; Sebat, Jonathan

    2018-05-15

    Structural variation (SV) detection from short-read whole genome sequencing is error prone, presenting significant challenges for population or family-based studies of disease. Here, we describe SV2, a machine-learning algorithm for genotyping deletions and duplications from paired-end sequencing data. SV2 can rapidly integrate variant calls from multiple structural variant discovery algorithms into a unified call set with high genotyping accuracy and capability to detect de novo mutations. SV2 is freely available on GitHub (https://github.com/dantaki/SV2). jsebat@ucsd.edu. Supplementary data are available at Bioinformatics online.

  2. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  3. MR features of the developing perianterior horn structure including subcallosal fasciculus in infants and children

    International Nuclear Information System (INIS)

    Utsunomiya, Hidetsuna; Nakamura, Yasuhiro

    2007-01-01

    To describe the changes in the magnetic resonance (MR) signal of the perianterior horn structure (PAS) with increasing age, we studied 69 infants and children aged between 3 days and 9.4 years (average: 2.8 years) without any neurological deficits. T1- and T2-weighted images and FLAIR (fluid attenuation inversion recovery) images were obtained in the axial plane. Based on a comparison of the intensity of the PAS with that of the cortex in each sequence (T1-WI/FLAIR/T2-WI), we classified the signal-intensity patterns into four types: I, low/low/high; II, low/high/high; III, iso/high/high; IV, high/low/low. Signal-intensity types I, II, III and IV were seen in 22, 8, 17, and 22 subjects, respectively, with younger subjects showing type I or II intensity patterns and older subjects showing type III or IV. In addition, T1-weighted and FLAIR images of subjects with a type I intensity pattern showed a rim of an isointensity component around the PAS that histologically coincided with migrating glial cells. The low-intensity area on FLAIR and T2-WI images of subjects with a type IV intensity pattern may represent myelinated fibers of the subcallosal fasciculus (ScF). The intensity of the MR signals of the PAS changes with increasing age, and this change may reflect histological features. A better understanding of these characteristics may help us to clarify myelination abnormalities, particularly those related to the ScF in the frontal lobe in infants and children. (orig.)

  4. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data.

    Science.gov (United States)

    Mdladla, K; Dzomba, E F; Huson, H J; Muchadeyi, F C

    2016-08-01

    The sustainability of goat farming in marginal areas of southern Africa depends on local breeds that are adapted to specific agro-ecological conditions. Unimproved non-descript goats are the main genetic resources used for the development of commercial meat-type breeds of South Africa. Little is known about genetic diversity and the genetics of adaptation of these indigenous goat populations. This study investigated the genetic diversity, population structure and breed relations, linkage disequilibrium, effective population size and persistence of gametic phase in goat populations of South Africa. Three locally developed meat-type breeds of the Boer (n = 33), Savanna (n = 31), Kalahari Red (n = 40), a feral breed of Tankwa (n = 25) and unimproved non-descript village ecotypes (n = 110) from four goat-producing provinces of the Eastern Cape, KwaZulu-Natal, Limpopo and North West were assessed using the Illumina Goat 50K SNP Bead Chip assay. The proportion of SNPs with minor allele frequencies >0.05 ranged from 84.22% in the Tankwa to 97.58% in the Xhosa ecotype, with a mean of 0.32 ± 0.13 across populations. Principal components analysis, admixture and pairwise FST identified Tankwa as a genetically distinct population and supported clustering of the populations according to their historical origins. Genome-wide FST identified 101 markers potentially under positive selection in the Tankwa. Average linkage disequilibrium was highest in the Tankwa (r(2)  = 0.25 ± 0.26) and lowest in the village ecotypes (r(2) range = 0.09 ± 0.12 to 0.11 ± 0.14). We observed an effective population size of 100 kb with the exception of those in Savanna and Tswana populations. This study highlights the high level of genetic diversity in South African indigenous goats as well as the utility of the genome-wide SNP marker panels in genetic studies of these populations. © 2016 Stichting International Foundation for Animal Genetics.

  5. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish

    DEFF Research Database (Denmark)

    Baatrup, E

    1991-01-01

    metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini......1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system......, including their sense organs, for mediating relevant behaviour such as food search, predator recognition, communication and orientation. 3. Unfortunately, the nervous system is most vulnerable and injuries to its elements may dramatically change the behaviour and consequently the survival of fish. 4. Heavy...

  6. Resolution of fine biological structure including small narcomedusae across a front in the Southern California Bight

    Science.gov (United States)

    McClatchie, Sam; Cowen, Robert; Nieto, Karen; Greer, Adam; Luo, Jessica Y.; Guigand, Cedric; Demer, David; Griffith, David; Rudnick, Daniel

    2012-04-01

    We sampled a front detected by SST gradient, ocean color imagery, and a Spray glider south of San Nicolas Island in the Southern California Bight between 14 and 18 October 2010. We sampled the front with an unusually extensive array of instrumentation, including the Continuous Underway Fish Egg Sampler (CUFES), the undulating In Situ Ichthyoplankton Imaging System (ISIIS) (fitted with temperature, salinity, oxygen, and fluorescence sensors), multifrequency acoustics, a surface pelagic trawl, a bongo net, and a neuston net. We found higher fluorescence and greater cladoceran, decapod, and euphausiid densities in the front, indicating increased primary and secondary production. Mesopelagic fish were most abundant in oceanic waters to the west of the front, market squid were abundant in the front associated with higher krill and decapod densities, and jack mackerel were most common in the front and on the shoreward side of the front. Egg densities peaked to either side of the front, consistent with both offshore (for oceanic squid and mesopelagic fish) and shelf origins (for white croaker and California halibut). We discovered unusually high concentrations of predatory narcomedusae in the surface layer of the frontal zone. Potential ichthyoplankton predators were more abundant either in the front (decapods, euphausiids, and squid) or shoreward of the front (medusae, chaetognaths, and jack mackerel). For pelagic fish like sardine, which can thrive in less productive waters, the safest place to spawn would be offshore because there are fewer potential predators.

  7. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  8. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody; Coll, Francesc; McNerney, Ruth; Ascher, David; Pires, Douglas; Furnham, Nick; Coeck, Nele; Hill-Cawthorne, Grant; Nair, Mridul; Mallard, Kim; Ramsay, Andrew; Campino, Susana; Hibberd, Martin; Pain, Arnab; Rigouts, Leen; Clark, Taane

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure

  9. Impact of nuclear organization and chromatin structure on DNA repair and genome stability

    International Nuclear Information System (INIS)

    Batte, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end. My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at sub-telomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that hetero-chromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair. (author) [fr

  10. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    Directory of Open Access Journals (Sweden)

    Fontanesi Luca

    2012-11-01

    Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.

  11. Structure and mechanism of the ATPase that powers viral genome packaging.

    Science.gov (United States)

    Hilbert, Brendan J; Hayes, Janelle A; Stone, Nicholas P; Duffy, Caroline M; Sankaran, Banumathi; Kelch, Brian A

    2015-07-21

    Many viruses package their genomes into procapsids using an ATPase machine that is among the most powerful known biological motors. However, how this motor couples ATP hydrolysis to DNA translocation is still unknown. Here, we introduce a model system with unique properties for studying motor structure and mechanism. We describe crystal structures of the packaging motor ATPase domain that exhibit nucleotide-dependent conformational changes involving a large rotation of an entire subdomain. We also identify the arginine finger residue that catalyzes ATP hydrolysis in a neighboring motor subunit, illustrating that previous models for motor structure need revision. Our findings allow us to derive a structural model for the motor ring, which we validate using small-angle X-ray scattering and comparisons with previously published data. We illustrate the model's predictive power by identifying the motor's DNA-binding and assembly motifs. Finally, we integrate our results to propose a mechanistic model for DNA translocation by this molecular machine.

  12. Computational and experimental analyses of the wave propagation through a bar structure including liquid-solid interface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [UST Graduate School, Daejeon (Korea, Republic of); Rhee, Hui Nam [Division of Mechanical and Aerospace Engineering, Sunchon National University, Sunchon (Korea, Republic of); Yoon, Doo Byung; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    In this research, we study the propagation of longitudinal and transverse waves through a metal rod including a liquid layer using computational and experimental analyses. The propagation characteristics of longitudinal and transverse waves obtained by the computational and experimental analyses were consistent with the wave propagation theory for both cases, that is, the homogeneous metal rod and the metal rod including a liquid layer. The fluid-structure interaction modeling technique developed for the computational wave propagation analysis in this research can be applied to the more complex structures including solid-liquid interfaces.

  13. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  14. Northern Bobwhite (Colinus virginianus Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA. Median joining (MJ haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05, thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT, frequency distribution tests (D, FS and phylogenetic analyses (RAxML provide no evidence for positive selection or hybridization with the sympatric scaled quail

  15. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete

  16. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.

    1988-01-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  17. The complete genome structure and phylogenetic relationship of infectious hematopoietic necrosis virus

    Science.gov (United States)

    Morzunov , Sergey P.; Winton, James R.; Nichol, Stuart T.

    1995-01-01

    Infectious hematopoietic necrosis virus (IHNV), a member of the family Rhabdoviridae, causes a severe disease with high mortality in salmonid fish. The nucleotide sequence (11, 131 bases) of the entire genome was determined for the pathogenic WRAC strain of IHNV from southern Idaho. This allowed detailed analysis of all 6 genes, the deduced amino acid sequences of their encoded proteins, and important control motifs including leader, trailer and gene junction regions. Sequence analysis revealed that the 6 virus genes are located along the genome in the 3′ to 5′ order: nucleocapsid (N), polymerase-associated phosphoprotein (P or M1), matrix protein (M or M2), surface glycoprotein (G), a unique non-virion protein (NV) and virus polymerase (L). The IHNV genome RNA was found to have highly complementary termini (15 of 16 nucleotides). The gene junction regions display the highly conserved sequence UCURUC(U)7RCCGUG(N)4CACR (in the vRNA sense), which includes the typical rhabdovirus transcription termination/polyadenylation signal and a novel putative transcription initiation signal. Phylogenetic analysis of M, G and L protein sequences allowed insights into the evolutionary and taxonomic relationship of rhabdoviruses of fish relative to those of insects or mammals, and a broader sense of the relationship of non-segmented negative-strand RNA viruses. Based on these data, a new genus, piscivirus, is proposed which will initially contain IHNV, viral hemorrhagic septicemia virus and Hirame rhabdovirus.

  18. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.; Ivanova, N.; Francino, P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland,A.; Detter, J.C.; Land, M.; Richardson, P.M.; Yu, X.J.; Walker, D.H.; McBride, J.W.; Kyrpides, N.C.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).

  19. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.

    Science.gov (United States)

    Zubradt, Meghan; Gupta, Paromita; Persad, Sitara; Lambowitz, Alan M; Weissman, Jonathan S; Rouskin, Silvi

    2017-01-01

    Coupling of structure-specific in vivo chemical modification to next-generation sequencing is transforming RNA secondary structure studies in living cells. The dominant strategy for detecting in vivo chemical modifications uses reverse transcriptase truncation products, which introduce biases and necessitate population-average assessments of RNA structure. Here we present dimethyl sulfate (DMS) mutational profiling with sequencing (DMS-MaPseq), which encodes DMS modifications as mismatches using a thermostable group II intron reverse transcriptase. DMS-MaPseq yields a high signal-to-noise ratio, can report multiple structural features per molecule, and allows both genome-wide studies and focused in vivo investigations of even low-abundance RNAs. We apply DMS-MaPseq for the first analysis of RNA structure within an animal tissue and to identify a functional structure involved in noncanonical translation initiation. Additionally, we use DMS-MaPseq to compare the in vivo structure of pre-mRNAs with their mature isoforms. These applications illustrate DMS-MaPseq's capacity to dramatically expand in vivo analysis of RNA structure.

  20. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.

    Science.gov (United States)

    Qian, Lifu; Wang, Hui; Yan, Jie; Pan, Tao; Jiang, Shanqun; Rao, Dingqi; Zhang, Baowei

    2018-05-10

    Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the O L was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNA Leu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.

  1. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage

    DEFF Research Database (Denmark)

    Andersen, Jannik N; Jansen, Peter G; Echwald, Søren M

    2004-01-01

    sequence databases, we discovered one novel human PTP gene and defined chromosomal loci and exon structure of the additional 37 genes encoding known PTP transcripts. Direct orthologs were present in the mouse genome for all 38 human PTP genes. In addition, we identified 12 PTP pseudogenes unique to humans...... that have probably contaminated previous bioinformatics analysis of this gene family. PCR amplification and transcript sequencing indicate that some PTP pseudogenes are expressed, but their function (if any) is unknown. Furthermore, we analyzed the enhanced diversity generated by alternative splicing...

  2. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  3. Overview of the creative genome: effects of genome structure and sequence on the generation of variation and evolution.

    Science.gov (United States)

    Caporale, Lynn Helena

    2012-09-01

    This overview of a special issue of Annals of the New York Academy of Sciences discusses uneven distribution of distinct types of variation across the genome, the dependence of specific types of variation upon distinct classes of DNA sequences and/or the induction of specific proteins, the circumstances in which distinct variation-generating systems are activated, and the implications of this work for our understanding of evolution and of cancer. Also discussed is the value of non text-based computational methods for analyzing information carried by DNA, early insights into organizational frameworks that affect genome behavior, and implications of this work for comparative genomics. © 2012 New York Academy of Sciences.

  4. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle.

    Science.gov (United States)

    Prangishvili, David; Vestergaard, Gisle; Häring, Monika; Aramayo, Ricardo; Basta, Tamara; Rachel, Reinhard; Garrett, Roger A

    2006-06-23

    A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.

  5. The structures of bovine herpesvirus 1 virion and concatemeric DNA: implications for cleavage and packaging of herpesvirus genomes

    International Nuclear Information System (INIS)

    Schynts, Frederic; McVoy, Michael A.; Meurens, Francois; Detry, Bruno; Epstein, Alberto L.; Thiry, Etienne

    2003-01-01

    Herpesvirus genomes are often characterized by the presence of direct and inverted repeats that delineate their grouping into six structural classes. Class D genomes consist of a long (L) segment and a short (S) segment. The latter is flanked by large inverted repeats. DNA replication produces concatemers of head-to-tail linked genomes that are cleaved into unit genomes during the process of packaging DNA into capsids. Packaged class D genomes are an equimolar mixture of two isomers in which S is in either of two orientations, presumably a consequence of homologous recombination between the inverted repeats. The L segment remains predominantly fixed in a prototype (P) orientation; however, low levels of genomes having inverted L (I L ) segments have been reported for some class D herpesviruses. Inefficient formation of class D I L genomes has been attributed to infrequent L segment inversion, but recent detection of frequent inverted L segments in equine herpesvirus 1 concatemers [Virology 229 (1997) 415-420] suggests that the defect may be at the level of cleavage and packaging rather than inversion. In this study, the structures of virion and concatemeric DNA of another class D herpesvirus, bovine herpesvirus 1, were determined. Virion DNA contained low levels of I L genomes, whereas concatemeric DNA contained significant amounts of L segments in both P and I L orientations. However, concatemeric termini exhibited a preponderance of L termini derived from P isomers which was comparable to the preponderance of P genomes found in virion DNA. Thus, the defect in formation of I L genomes appears to lie at the level of concatemer cleavage. These results have important implications for the mechanisms by which herpesvirus DNA cleavage and packaging occur

  6. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  7. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  8. Software for computing and annotating genomic ranges.

    Directory of Open Access Journals (Sweden)

    Michael Lawrence

    Full Text Available We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  9. Software for computing and annotating genomic ranges.

    Science.gov (United States)

    Lawrence, Michael; Huber, Wolfgang; Pagès, Hervé; Aboyoun, Patrick; Carlson, Marc; Gentleman, Robert; Morgan, Martin T; Carey, Vincent J

    2013-01-01

    We describe Bioconductor infrastructure for representing and computing on annotated genomic ranges and integrating genomic data with the statistical computing features of R and its extensions. At the core of the infrastructure are three packages: IRanges, GenomicRanges, and GenomicFeatures. These packages provide scalable data structures for representing annotated ranges on the genome, with special support for transcript structures, read alignments and coverage vectors. Computational facilities include efficient algorithms for overlap and nearest neighbor detection, coverage calculation and other range operations. This infrastructure directly supports more than 80 other Bioconductor packages, including those for sequence analysis, differential expression analysis and visualization.

  10. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-01-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The ∼108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  11. Discovery of new enzymes and metabolic pathways using structure and genome context

    Science.gov (United States)

    Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W.; Wood, B. McKay; Brown, Shoshana; Bonanno, Jeffery B.; Hillerich, Brandan S.; Seidel, Ronald D.; Babbitt, Patricia C.; Almo, Steven C.; Sweedler, Jonathan V.; Gerlt, John A.; Cronan, John E.; Jacobson, Matthew P.

    2014-01-01

    Assigning valid functions to proteins identified in genome projects is challenging, with over-prediction and database annotation errors major concerns1. We, and others2, are developing computation-guided strategies for functional discovery using “metabolite docking” to experimentally derived3 or homology-based4 three-dimensional structures. Bacterial metabolic pathways often are encoded by “genome neighborhoods” (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by “predicting” the intermediates in the glycolytic pathway in E. coli5. Metabolite docking to multiple binding proteins/enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. We report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed i) the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and ii) the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guide functional predictions to enable the discovery of new metabolic pathways. PMID:24056934

  12. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  13. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).

    Science.gov (United States)

    Costa, Gideão W W F; Cioffi, Marcelo de B; Bertollo, Luiz A C; Molina, Wagner F

    2015-06-01

    Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes.

  14. Whole-genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora

    DEFF Research Database (Denmark)

    Habibi, Roghayeh; Tarighi, Saeed; Behravan, Javad

    2017-01-01

    Here, we report the first draft whole-genome sequence of Pseudomonas fluorescens strain EK007-RG4, which was isolated from the phylloplane of a pear tree. P. fluorescens EK007-RG4 displays strong antagonism against Erwinia amylovora, the causal agent for fire blight disease, in addition to several...

  15. An Atypical Human Induced Pluripotent Stem Cell Line With a Complex, Stable, and Balanced Genomic Rearrangement Including a Large De Novo 1q Uniparental Disomy

    Science.gov (United States)

    Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439

  16. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C.; Winkler, Thomas W.; Kutalik, Zoltán; Berndt, Sonja I.; Jackson, Anne U.; Monda, Keri L.; Kilpeläinen, Tuomas O.; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F.; Croteau-Chonka, Damien C.; Day, Felix R.; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E.; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T.; Dimas, Antigone S.; Karpe, Fredrik; Min, Josine L.; Nicholson, George; Clegg, Deborah J.; Person, Thomas; Krohn, Jon P.; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Hottenga, Jouke-Jan; Prokopenko, Inga; Waite, Lindsay L.; Harris, Tamara B.; Smith, Albert Vernon; Shuldiner, Alan R.; McArdle, Wendy L.; Caulfield, Mark J.; Munroe, Patricia B.; Grönberg, Henrik; Chen, Yii-Der Ida; Li, Guo; Beckmann, Jacques S.; Johnson, Toby; Thorsteinsdottir, Unnur; Teder-Laving, Maris; Khaw, Kay-Tee; Wareham, Nicholas J.; Zhao, Jing Hua; Amin, Najaf; Oostra, Ben A.; Kraja, Aldi T.; Province, Michael A.; Cupples, L. Adrienne; Heard-Costa, Nancy L.; Kaprio, Jaakko; Ripatti, Samuli; Surakka, Ida; Collins, Francis S.; Saramies, Jouko; Tuomilehto, Jaakko; Jula, Antti; Salomaa, Veikko; Erdmann, Jeanette; Hengstenberg, Christian; Loley, Christina; Schunkert, Heribert; Lamina, Claudia; Wichmann, H. Erich; Albrecht, Eva; Gieger, Christian; Hicks, Andrew A.; Johansson, Asa; Pramstaller, Peter P.; Kathiresan, Sekar; Speliotes, Elizabeth K.; Penninx, Brenda; Hartikainen, Anna-Liisa; Jarvelin, Marjo-Riitta; Gyllensten, Ulf; Boomsma, Dorret I.; Campbell, Harry; Wilson, James F.; Chanock, Stephen J.; Farrall, Martin; Goel, Anuj; Medina-Gomez, Carolina; Rivadeneira, Fernando; Estrada, Karol; Uitterlinden, André G.; Hofman, Albert; Zillikens, M. Carola; den Heijer, Martin; Kiemeney, Lambertus A.; Maschio, Andrea; Hall, Per; Tyrer, Jonathan; Teumer, Alexander; Völzke, Henry; Kovacs, Peter; Tönjes, Anke; Mangino, Massimo; Spector, Tim D.; Hayward, Caroline; Rudan, Igor; Hall, Alistair S.; Samani, Nilesh J.; Attwood, Antony Paul; Sambrook, Jennifer G.; Hung, Joseph; Palmer, Lyle J.; Lokki, Marja-Liisa; Sinisalo, Juha; Boucher, Gabrielle; Huikuri, Heikki; Lorentzon, Mattias; Ohlsson, Claes; Eklund, Niina; Eriksson, Johan G.; Barlassina, Cristina; Rivolta, Carlo; Nolte, Ilja M.; Snieder, Harold; van der Klauw, Melanie M.; van Vliet-Ostaptchouk, Jana V.; Gejman, Pablo V.; Shi, Jianxin; Jacobs, Kevin B.; Wang, Zhaoming; Bakker, Stephan J. L.; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Martin, Nicholas G.; Medland, Sarah E.; Montgomery, Grant W.; Yang, Jian; Chasman, Daniel I.; Ridker, Paul M.; Rose, Lynda M.; Lehtimäki, Terho; Raitakari, Olli; Absher, Devin; Iribarren, Carlos; Basart, Hanneke; Hovingh, Kees G.; Hyppönen, Elina; Power, Chris; Anderson, Denise; Beilby, John P.; Hui, Jennie; Jolley, Jennifer; Sager, Hendrik; Bornstein, Stefan R.; Schwarz, Peter E. H.; Kristiansson, Kati; Perola, Markus; Lindström, Jaana; Swift, Amy J.; Uusitupa, Matti; Atalay, Mustafa; Lakka, Timo A.; Rauramaa, Rainer; Bolton, Jennifer L.; Fowkes, Gerry; Fraser, Ross M.; Price, Jackie F.; Fischer, Krista; Krjutå Kov, Kaarel; Metspalu, Andres; Mihailov, Evelin; Langenberg, Claudia; Luan, Jian'an; Ong, Ken K.; Chines, Peter S.; Keinanen-Kiukaanniemi, Sirkka M.; Saaristo, Timo E.; Edkins, Sarah; Franks, Paul W.; Hallmans, Göran; Shungin, Dmitry; Morris, Andrew David; Palmer, Colin N. A.; Erbel, Raimund; Moebus, Susanne; Nöthen, Markus M.; Pechlivanis, Sonali; Hveem, Kristian; Narisu, Narisu; Hamsten, Anders; Humphries, Steve E.; Strawbridge, Rona J.; Tremoli, Elena; Grallert, Harald; Thorand, Barbara; Illig, Thomas; Koenig, Wolfgang; Müller-Nurasyid, Martina; Peters, Annette; Boehm, Bernhard O.; Kleber, Marcus E.; März, Winfried; Winkelmann, Bernhard R.; Kuusisto, Johanna; Laakso, Markku; Arveiler, Dominique; Cesana, Giancarlo; Kuulasmaa, Kari; Virtamo, Jarmo; Yarnell, John W. G.; Kuh, Diana; Wong, Andrew; Lind, Lars; de Faire, Ulf; Gigante, Bruna; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Dedoussis, George; Dimitriou, Maria; Kolovou, Genovefa; Kanoni, Stavroula; Stirrups, Kathleen; Bonnycastle, Lori L.; Njølstad, Inger; Wilsgaard, Tom; Ganna, Andrea; Rehnberg, Emil; Hingorani, Aroon; Kivimaki, Mika; Kumari, Meena; Assimes, Themistocles L.; Barroso, Inês; Boehnke, Michael; Borecki, Ingrid B.; Deloukas, Panos; Fox, Caroline S.; Frayling, Timothy; Groop, Leif C.; Haritunians, Talin; Hunter, David; Ingelsson, Erik; Kaplan, Robert; Mohlke, Karen L.; O'Connell, Jeffrey R.; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Duijn, Cornelia M.; Abecasis, Gonçalo R.; McCarthy, Mark I.; Hirschhorn, Joel N.; Qi, Lu; Loos, Ruth J. F.; Lindgren, Cecilia M.; North, Kari E.; Heid, Iris M.

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  17. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    DEFF Research Database (Denmark)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133...

  18. Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    NARCIS (Netherlands)

    Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpelainen, T.O.; Esko, T.; Magi, R.; Li, S.; Workalemahu, T.; Feitosa, M.F.; Croteau-Chonka, D.C.; Day, F.R.; Fall, T.; Ferreira, T.; Gustafsson, S.; Locke, A.E.; Mathieson, I.; Scherag, A.; Vedantam, S.; Wood, A.R.; Liang, L.; Steinthorsdottir, V.; Thorleifsson, G.; Dermitzakis, E.T.; Dimas, A.S.; Karpe, F.; Min, J.L.; Nicholson, G.; Clegg, D.J.; Person, T.; Krohn, J.P.; Bauer, S.; Buechler, C.; Eisinger, K.; Bonnefond, A.; Froguel, P.; Hottenga, J.J.; Prokopenko, I.; Waite, L.L.; Harris, T.B.; Smith, A.V.; Shuldiner, A.R.; McArdle, W.L.; Caulfield, M.J.; Munroe, P.B.; Gronberg, H.; Chen, Y.D.; Li, G.; Beckmann, J.S.; Johnson, T.; Thorsteinsdottir, U.; Teder-Laving, M.; Khaw, K.T.; Wareham, N.J.; Zhao, J.H.; Amin, N.; Oostra, B.A.; Kraja, A.T.; Province, M.A.; Cupples, L.A.; Heard-Costa, N.L.; Kaprio, J.; Ripatti, S.; Surakka, I.; Collins, F.S.; Saramies, J.; Tuomilehto, J.; Jula, A.; Salomaa, V.; Erdmann, J.; Hengstenberg, C.; Loley, C.; Schunkert, H.; Lamina, C.; Wichmann, H.E.; Albrecht, E.; Gieger, C.; Hicks, A.A.; Johansson, A; Pramstaller, P.P.; Kathiresan, S.; Speliotes, E.K.; Penninx, B.; Hartikainen, A.L.; Jarvelin, M.R.; Gyllensten, U.; Boomsma, D.I.; Campbell, H.; Wilson, J.F.; Chanock, S.J.; Farrall, M.; Goel, A.; Medina-Gomez, C.; Rivadeneira, F.; Estrada, K.; Uitterlinden, A.G.; Heijer, M. den; Kiemeney, L.A.L.M.; et al.,

    2013-01-01

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  19. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits

    NARCIS (Netherlands)

    Randall, Joshua C; Winkler, Thomas W; Kutalik, Zoltán; Berndt, Sonja I; Jackson, Anne U; Monda, Keri L; Kilpeläinen, Tuomas O; Esko, Tõnu; Mägi, Reedik; Li, Shengxu; Workalemahu, Tsegaselassie; Feitosa, Mary F; Croteau-Chonka, Damien C; Day, Felix R; Fall, Tove; Ferreira, Teresa; Gustafsson, Stefan; Locke, Adam E; Mathieson, Iain; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R; Liang, Liming; Steinthorsdottir, Valgerdur; Thorleifsson, Gudmar; Dermitzakis, Emmanouil T; Dimas, Antigone S; Karpe, Fredrik; Min, Josine L; Nicholson, George; Clegg, Deborah J; Person, Thomas; Krohn, Jon P; Bauer, Sabrina; Buechler, Christa; Eisinger, Kristina; Bonnefond, Amélie; Froguel, Philippe; Smith, Albert Vernon; Zhao, Jing Hua; Penninx, Brenda; Nolte, Ilja M; Snieder, Harold; Van der Klauw, Melanie M; Van Vliet-Ostaptchouk, Jana V; Bakker, Stephan J L; Mateo Leach, Irene; Navis, Gerjan; van der Harst, Pim; Kumari, Meena

    Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723

  20. Inferring network structure in non-normal and mixed discrete-continuous genomic data.

    Science.gov (United States)

    Bhadra, Anindya; Rao, Arvind; Baladandayuthapani, Veerabhadran

    2018-03-01

    Inferring dependence structure through undirected graphs is crucial for uncovering the major modes of multivariate interaction among high-dimensional genomic markers that are potentially associated with cancer. Traditionally, conditional independence has been studied using sparse Gaussian graphical models for continuous data and sparse Ising models for discrete data. However, there are two clear situations when these approaches are inadequate. The first occurs when the data are continuous but display non-normal marginal behavior such as heavy tails or skewness, rendering an assumption of normality inappropriate. The second occurs when a part of the data is ordinal or discrete (e.g., presence or absence of a mutation) and the other part is continuous (e.g., expression levels of genes or proteins). In this case, the existing Bayesian approaches typically employ a latent variable framework for the discrete part that precludes inferring conditional independence among the data that are actually observed. The current article overcomes these two challenges in a unified framework using Gaussian scale mixtures. Our framework is able to handle continuous data that are not normal and data that are of mixed continuous and discrete nature, while still being able to infer a sparse conditional sign independence structure among the observed data. Extensive performance comparison in simulations with alternative techniques and an analysis of a real cancer genomics data set demonstrate the effectiveness of the proposed approach. © 2017, The International Biometric Society.

  1. Universal internucleotide statistics in full genomes: a footprint of the DNA structure and packaging?

    Directory of Open Access Journals (Sweden)

    Mikhail I Bogachev

    Full Text Available Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleotide interval distributions exhibit the same [Formula: see text]-exponential form. While in prokaryotes a single [Formula: see text]-exponential function makes the best fit, in eukaryotes the PDF contains additionally a second [Formula: see text]-exponential, which in the human genome makes a perfect approximation over nearly 10 decades. We suggest that this functional form is a footprint of the heterogeneous DNA structure, where the first [Formula: see text]-exponential reflects the universal helical pitch that appears both in pro- and eukaryotic DNA, while the second [Formula: see text]-exponential is a specific marker of the large-scale eukaryotic DNA organization.

  2. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Population structure and genomic inbreeding in nine Swiss dairy cattle populations.

    Science.gov (United States)

    Signer-Hasler, Heidi; Burren, Alexander; Neuditschko, Markus; Frischknecht, Mirjam; Garrick, Dorian; Stricker, Christian; Gredler, Birgit; Bapst, Beat; Flury, Christine

    2017-11-07

    Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH ) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH : 0.027), OB (F ROH : 0.029), and SI (F ROH : 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH : 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service

  4. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases

    Directory of Open Access Journals (Sweden)

    Dashuang Shi

    2015-08-01

    Full Text Available Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase and ornithine transcarbamylase (OTCase, are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase, N-succinyl-l-ornithine transcarbamylase (SOTCase, ygeW encoded transcarbamylase (YTCase and putrescine transcarbamylase (PTCase have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase, l-2,4-diaminobutyrate transcarbamylase (DBTCase and ureidoglycine transcarbamylase (UGTCase, demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.

  5. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    Science.gov (United States)

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    DEFF Research Database (Denmark)

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae....... The structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases...... structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene sequences corresponding closely to spacer sequences of chromosomal repeat clusters....

  7. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  8. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  9. Spectral element modelling of wave propagation in isotropic and anisotropic shell-structures including different types of damage

    International Nuclear Information System (INIS)

    Schulte, R T; Fritzen, C-P; Moll, J

    2010-01-01

    During the last decades, guided waves have shown great potential for Structural Health Monitoring (SHM) applications. These waves can be excited and sensed by piezoelectric elements that can be permanently attached onto a structure offering online monitoring capability. However, the setup of wave based SHM systems for complex structures may be very difficult and time consuming. For that reason there is a growing demand for efficient simulation tools providing the opportunity to design wave based SHM systems in a virtual environment. As usually high frequency waves are used, the associated short wavelength leads to the necessity of a very dense mesh, which makes conventional finite elements not well suited for this purpose. Therefore in this contribution a flat shell spectral element approach is presented. By including electromechanical coupling a SHM system can be simulated entirely from actuator voltage to sensor voltage. Besides a comparison to measured data for anisotropic materials including delamination, a numerical example of a more complex, stiffened shell structure with debonding is presented.

  10. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  11. Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size.

    Science.gov (United States)

    Dvorak, Jan; Wang, Le; Zhu, Tingting; Jorgensen, Chad M; Deal, Karin R; Dai, Xiongtao; Dawson, Matthew W; Müller, Hans-Georg; Luo, Ming-Cheng; Ramasamy, Ramesh K; Dehghani, Hamid; Gu, Yong Q; Gill, Bikram S; Distelfeld, Assaf; Devos, Katrien M; Qi, Peng; You, Frank M; Gulick, Patrick J; McGuire, Patrick E

    2018-05-16

    Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum, and rice. Similar searches were initiated with genes annotated in the rice pseudomolecules. Matrices of colinear genes and rearrangements in their order were constructed. Optical Bionano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of colinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene colinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon, and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 colinear genes. The rates of acquisition of major rearrangements were greater in the wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice, and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit caused the fast evolution of the Triticeae genomes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. The population genomics of begomoviruses: global scale population structure and gene flow

    Directory of Open Access Journals (Sweden)

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  13. Musa sebagai Model Genom

    Directory of Open Access Journals (Sweden)

    RITA MEGIA

    2005-12-01

    Full Text Available During the meeting in Arlington, USA in 2001, the scientists grouped in PROMUSA agreed with the launching of the Global Musa Genomics Consortium. The Consortium aims to apply genomics technologies to the improvement of this important crop. These genome projects put banana as the third model species after Arabidopsis and rice that will be analyzed and sequenced. Comparing to Arabidopsis and rice, banana genome provides a unique and powerful insight into structural and in functional genomics that could not be found in those two species. This paper discussed these subjects-including the importance of banana as the fourth main food in the world, the evolution and biodiversity of this genetic resource and its parasite.

  14. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  15. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  16. Processive and nonprocessive cellulases for biofuel production. Lessons from bacterial genomes and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, David B. [Cornell Univ. Ithaca, New York, NY (United States). Dept. of Molecular Biology and Genetics

    2012-01-15

    Cellulases are key enzymes used in many processes for producing liquid fuels from biomass. Currently there many efforts to reduce the cost of cellulases using both structural approaches to improve the properties of individual cellulases and genomic approaches to identify new cellulases as well as other proteins that increase the activity of cellulases in degrading pretreated biomass materials. Fungal GH-61 proteins are important new enzymes that increase the activity of current commercial cellulases leading to lower total protein loading and thus lower cost. Recent work has greatly increased our knowledge of these novel enzymes that appear to be oxido-reductases that target crystalline cellulose and increase its accessibility to cellulases. They appear to carry out the C1 activity originally proposed by Dr Reese. Cellobiose dehydrogenase appears to interact with GH-61 proteins in this function, providing a role for this puzzling enzyme. Cellulase research is making considerable progress and appears to be poised for even greater advances. (orig.)

  17. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    Francioli, Laurent C.; Menelaou, Andronild; Pulit, Sara L.; Van Dijk, Freerk; Palamara, Pier Francesco; Elbers, Clara C.; Neerincx, Pieter B. T.; Ye, Kai; Guryev, Victor; Kloosterman, Wigard P.; Deelen, Patrick; Abdellaoui, Abdel; Van Leeuwen, Elisabeth M.; Van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F. J.; Karssen, Lennart C.; Kanterakis, Alexandros; Amin, Najaf; Hottenga, Jouke Jan; Lameijer, Eric-Wubbo; Kattenberg, Mathijs; Dijkstra, Martijn; Byelas, Heorhiy; Van Settenl, Jessica; Van Schaik, Barbera D. C.; Bot, Jan; Nijman, Isaac J.; Renkens, Ivo; Marscha, Tobias; Schonhuth, Alexander; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Polak, Paz; Sohail, Mashaal; Vuzman, Dana; Hormozdiari, Fereydoun; Van Enckevort, David; Mei, Hailiang; Koval, Vyacheslav; Moed, Ma-Tthijs H.; Van der Velde, K. Joeri; Rivadeneira, Fernando; Estrada, Karol; Medina-Gomez, Carolina; Isaacs, Aaron; Platteel, Mathieu; Swertz, Morris A.; Wijmenga, Cisca

    Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring

  18. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    The Genome of the Netherlands Consortium; T. Marschall (Tobias); A. Schönhuth (Alexander)

    2014-01-01

    htmlabstractWhole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch

  19. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  20. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  1. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    Science.gov (United States)

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural

  2. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  3. Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium.

    Science.gov (United States)

    Sillanpää, Jouko; Nallapareddy, Sreedhar R; Prakash, Vittal P; Qin, Xiang; Höök, Magnus; Weinstock, George M; Murray, Barbara E

    2008-10-01

    Attention has recently been drawn to Enterococcus faecium because of an increasing number of nosocomial infections caused by this species and its resistance to multiple antibacterial agents. However, relatively little is known about the pathogenic determinants of this organism. We have previously identified a cell-wall-anchored collagen adhesin, Acm, produced by some isolates of E. faecium, and a secreted antigen, SagA, exhibiting broad-spectrum binding to extracellular matrix proteins. Here, we analysed the draft genome of strain TX0016 for potential microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Genome-based bioinformatics identified 22 predicted cell-wall-anchored E. faecium surface proteins (Fms), of which 15 (including Acm) had characteristics typical of MSCRAMMs, including predicted folding into a modular architecture with multiple immunoglobulin-like domains. Functional characterization of one [Fms10; redesignated second collagen adhesin of E. faecium (Scm)] revealed that recombinant Scm(65) (A- and B-domains) and Scm(36) (A-domain) bound to collagen type V efficiently in a concentration-dependent manner, bound considerably less to collagen type I and fibrinogen, and differed from Acm in their binding specificities to collagen types IV and V. Results from far-UV circular dichroism measurements of recombinant Scm(36) and of Acm(37) indicated that these proteins were rich in beta-sheets, supporting our folding predictions. Whole-cell ELISA and FACS analyses unambiguously demonstrated surface expression of Scm in most E. faecium isolates. Strikingly, 11 of the 15 predicted MSCRAMMs clustered in four loci, each with a class C sortase gene; nine of these showed similarity to Enterococcus faecalis Ebp pilus subunits and also contained motifs essential for pilus assembly. Antibodies against one of the predicted major pilus proteins, Fms9 (redesignated EbpC(fm)), detected a 'ladder' pattern of high-molecular-mass protein bands in a

  4. Structural diversity and dynamics of genomic replication origins in Schizosaccharomyces pombe

    Science.gov (United States)

    Cotobal, Cristina; Segurado, Mónica; Antequera, Francisco

    2010-01-01

    DNA replication origins (ORI) in Schizosaccharomyces pombe colocalize with adenine and thymine (A+T)-rich regions, and earlier analyses have established a size from 0.5 to over 3 kb for a DNA fragment to drive replication in plasmid assays. We have asked what are the requirements for ORI function in the chromosomal context. By designing artificial ORIs, we have found that A+T-rich fragments as short as 100 bp without homology to S. pombe DNA are able to initiate replication in the genome. On the other hand, functional dissection of endogenous ORIs has revealed that some of them span a few kilobases and include several modules that may be as short as 25–30 contiguous A+Ts capable of initiating replication from ectopic chromosome positions. The search for elements with these characteristics across the genome has uncovered an earlier unnoticed class of low-efficiency ORIs that fire late during S phase. These results indicate that ORI specification and dynamics varies widely in S. pombe, ranging from very short elements to large regions reminiscent of replication initiation zones in mammals. PMID:20094030

  5. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    Science.gov (United States)

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  7. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea).

    Science.gov (United States)

    Huang, Wei; Zhang, Jianshe; Liao, Zhi; Lv, Zhenming; Wu, Huifei; Zhu, Aiyi; Wu, Changwen

    2016-01-15

    Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Aero-structural optimization of wind turbine blades using a reduced set of design load cases including turbulence

    DEFF Research Database (Denmark)

    Sessarego, Matias; Shen, Wen Zhong

    2018-01-01

    Modern wind turbine aero-structural blade design codes generally use a smaller fraction of the full design load base (DLB) or neglect turbulent inflow as defined by the International Electrotechnical Commission standards. The current article describes an automated blade design optimization method...... based on surrogate modeling that includes a very large number of design load cases (DLCs) including turbulence. In the present work, 325 DLCs representative of the full DLB are selected based on the message-passing-interface (MPI) limitations in Matlab. Other methods are currently being investigated, e.......g. a Python MPI implementation, to overcome the limitations in Matlab MPI and ultimately achieve a full DLB optimization framework. The reduced DLB and the annual energy production are computed using the state-of-the-art aero-servo-elastic tool HAWC2. Furthermore, some of the interior dimensions of the blade...

  9. Rare CNVs in Suicide Attempt include Schizophrenia-Associated Loci and Neurodevelopmental Genes: A Pilot Genome-Wide and Family-Based Study.

    Directory of Open Access Journals (Sweden)

    Marcus Sokolowski

    Full Text Available Suicidal behavior (SB has a complex etiology involving genes and environment. One of the genetic components in SB could be copy number variations (CNVs, as CNVs are implicated in neurodevelopmental disorders. However, a recently published genome-wide and case-control study did not observe any significant role of CNVs in SB. Here we complemented these initial observations by instead using a family-based trio-sample that is robust to control biases, having severe suicide attempt (SA in offspring as main outcome (n = 660 trios. We first tested for CNV associations on the genome-wide Illumina 1M SNP-array by using FBAT-CNV methodology, which allows for evaluating CNVs without reliance on CNV calling algorithms, analogous to a common SNP-based GWAS. We observed association of certain T-cell receptor markers, but this likely reflected inter-individual variation in somatic rearrangements rather than association with SA outcome. Next, we used the PennCNV software to call 385 putative rare (100 kb CNVs, observed in n = 225 SA offspring. Nine SA offspring had rare CNV calls in a set of previously schizophrenia-associated loci, indicating the importance of such CNVs in certain SA subjects. Several additional, very large (>1MB sized CNV calls in 15 other SA offspring also spanned pathogenic regions or other neural genes of interest. Overall, 45 SA had CNVs enriched for 65 medically relevant genes previously shown to be affected by CNVs, which were characterized by a neurodevelopmental biology. A neurodevelopmental implication was partly congruent with our previous SNP-based GWAS, but follow-up analysis here indicated that carriers of rare CNVs had a decreased burden of common SNP risk-alleles compared to non-carriers. In conclusion, while CNVs did not show genome-wide association by the FBAT-CNV methodology, our preliminary observations indicate rare pathogenic CNVs affecting neurodevelopmental functions in a subset of SA, who were distinct from SA having

  10. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies.

    Science.gov (United States)

    Karamitros, Timokratis; Harrison, Ian; Piorkowska, Renata; Katzourakis, Aris; Magiorkinis, Gkikas; Mbisa, Jean Lutamyo

    2016-01-01

    Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.

  11. Structural genomic abnormalities in autism and schizophrenia. With a focus on the 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Vorstman, J.A.S.

    2008-01-01

    The research presented in this thesis is centered around one question: What can we learn from the study of psychiatric phenotypes related to structural genomic abnormalities? In this thesis this subject is examined, with most studies focused on the clinical and genetic aspects of the 22q11.2

  12. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile

    DEFF Research Database (Denmark)

    Amlacher, Stefan; Sarges, Phillip; Flemming, Dirk

    2011-01-01

    is composed of two large Nups, Nup192 and Nup170, which are flexibly bridged by short linear motifs made up of linker Nups, Nic96 and Nup53. This assembly illustrates how Nup interactions can generate structural plasticity within the NPC scaffold. Our findings therefore demonstrate the utility of the genome...

  13. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    NARCIS (Netherlands)

    Zhang, Z.; Mao, L.; Chen, Junshi; Bu, F.; Li, G.; Sun, J.; Li, S.; Sun, H.; Jiao, C.; Blakely, R.; Pan, J.; Cai, R.; Luo, R.; Peer, Van de Y.; Jacobsen, E.; Fei, Z.; Huang, S.

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep

  14. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  15. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  16. Genome-wide analysis of Epstein-Barr virus identifies variants and genes associated with gastric carcinoma and population structure.

    Science.gov (United States)

    Yao, Youyuan; Xu, Miao; Liang, Liming; Zhang, Haojiong; Xu, Ruihua; Feng, Qisheng; Feng, Lin; Luo, Bing; Zeng, Yi-Xin

    2017-10-01

    Epstein-Barr virus is a ubiquitous virus and is associated with several human malignances, including the significant subset of gastric carcinoma, Epstein-Barr virus-associated gastric carcinoma. Some Epstein-Barr virus-associated diseases are uniquely prevalent in populations with different geographic origins. However, the features of the disease and geographically associated Epstein-Barr virus genetic variation as well as the roles that the variation plays in carcinogenesis and evolution remain unclear. Therefore, in this study, we sequenced 95 geographically distinct Epstein-Barr virus isolates from Epstein-Barr virus-associated gastric carcinoma biopsies and saliva of healthy donors to detect variants and genes associated with gastric carcinoma and population structure from a genome-wide spectrum. We demonstrated that Epstein-Barr virus revealed the population structure between North China and South China. In addition, we observed population stratification between Epstein-Barr virus strains from gastric carcinoma and healthy controls, indicating that certain Epstein-Barr virus subtypes are associated with different gastric carcinoma risks. We identified that the BRLF1, BBRF3, and BBLF2/BBLF3 genes had significant associations with gastric carcinoma. LMP1 and BNLF2a genes were strongly geographically associated genes in Epstein-Barr virus. Our study provides insights into the genetic basis of oncogenic Epstein-Barr virus for gastric carcinoma, and the genetic variants associated with gastric carcinoma can serve as biomarkers for oncogenic Epstein-Barr virus.

  17. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Directory of Open Access Journals (Sweden)

    Jie Qiu

    Full Text Available Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou and a wild line (Lanxi 1 collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1 no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2 besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3 high heterozygous rates (0.19-0.49 were observed in several semi-wild lines; and (4 over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  18. Impact simulation of liquid-filled containers including fluid-structure interaction--Part 2: Experimental verification

    International Nuclear Information System (INIS)

    Sauve, R.G.; Morandin, G.D.; Nadeau, E.

    1993-01-01

    In a number of applications, the hydrodynamic effect of a fluid must be included in the structural evaluation of liquid-filled vessels undergoing transient loading. Prime examples are liquid radioactive waste transportation packages. These packages must demonstrate the ability to withstand severe accidental impact scenarios. A hydrodynamic model of the fluid is developed using a finite element discretization of the momentum equations for a three-dimensional continuum. An inviscid fluid model with an isotropic stress state is considered. A barotropic equation of state, relating volumetric strain to pressure, is used to characterize the fluid behavior. The formulation considers the continuum as a compressible medium only, so that no tension fields are permitted. The numerical technique is incorporated into the existing general-purpose three-dimensional structural computer code H3DMAP. Part 1 of the paper describes the theory and implementation along with comparisons with classical theory. Part 2 describes the experimental validation of the theoretical approach. Excellent correlation between predicted and experimental results is obtained

  19. Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis

    DEFF Research Database (Denmark)

    Sarusi Portuguez, Avital; Schwartz, Michal; Siersbaek, Rasmus

    2017-01-01

    The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains...... by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis...

  20. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics

    DEFF Research Database (Denmark)

    Gopalakrishnan, Shyam; Samaniego Castruita, Jose Alfredo; Sinding, Mikkel Holger Strander

    2017-01-01

    Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data - that of a......Background An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data...... that regardless of the reference genome choice, most evolutionary genomic analyses yield qualitatively similar results, including those exploring the structure between the wolves and dogs using admixture and principal component analysis. However, we do observe differences in the genomic coverage of re-mapped...

  1. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov.

    Directory of Open Access Journals (Sweden)

    Sven eBreider

    2014-08-01

    Full Text Available Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov. and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.

  2. Molecular comparisons of full length metapneumovirus (MPV genomes, including newly determined French AMPV-C and -D isolates, further supports possible subclassification within the MPV Genus.

    Directory of Open Access Journals (Sweden)

    Paul A Brown

    Full Text Available Four avian metapneumovirus (AMPV subgroups (A-D have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus "clusters" HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II.

  3. Molecular Comparisons of Full Length Metapneumovirus (MPV) Genomes, Including Newly Determined French AMPV-C and –D Isolates, Further Supports Possible Subclassification within the MPV Genus

    Science.gov (United States)

    Brown, Paul A.; Lemaitre, Evelyne; Briand, François-Xavier; Courtillon, Céline; Guionie, Olivier; Allée, Chantal; Toquin, Didier; Bayon-Auboyer, Marie-Hélène; Jestin, Véronique; Eterradossi, Nicolas

    2014-01-01

    Four avian metapneumovirus (AMPV) subgroups (A–D) have been reported previously based on genetic and antigenic differences. However, until now full length sequences of the only known isolates of European subgroup C and subgroup D viruses (duck and turkey origin, respectively) have been unavailable. These full length sequences were determined and compared with other full length AMPV and human metapneumoviruses (HMPV) sequences reported previously, using phylogenetics, comparisons of nucleic and amino acid sequences and study of codon usage bias. Results confirmed that subgroup C viruses were more closely related to HMPV than they were to the other AMPV subgroups in the study. This was consistent with previous findings using partial genome sequences. Closer relationships between AMPV-A, B and D were also evident throughout the majority of results. Three metapneumovirus “clusters” HMPV, AMPV-C and AMPV-A, B and D were further supported by codon bias and phylogenetics. The data presented here together with those of previous studies describing antigenic relationships also between AMPV-A, B and D and between AMPV-C and HMPV may call for a subclassification of metapneumoviruses similar to that used for avian paramyxoviruses, grouping AMPV-A, B and D as type I metapneumoviruses and AMPV-C and HMPV as type II. PMID:25036224

  4. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  5. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae: structural comparative analysis, gene content and microsatellite detection

    Directory of Open Access Journals (Sweden)

    Andrew W. Gichira

    2017-01-01

    Full Text Available Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp, with a pair of Inverted Repeats (IR 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp and a small single copy (SSC, 18,696. H. abyssinica’s chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene (infA which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica. A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  6. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection.

    Science.gov (United States)

    Gichira, Andrew W; Li, Zhizhong; Saina, Josphat K; Long, Zhicheng; Hu, Guangwan; Gituru, Robert W; Wang, Qingfeng; Chen, Jinming

    2017-01-01

    Hagenia is an endangered monotypic genus endemic to the topical mountains of Africa. The only species, Hagenia abyssinica (Bruce) J.F. Gmel, is an important medicinal plant producing bioactive compounds that have been traditionally used by African communities as a remedy for gastrointestinal ailments in both humans and animals. Complete chloroplast genomes have been applied in resolving phylogenetic relationships within plant families. We employed high-throughput sequencing technologies to determine the complete chloroplast genome sequence of H. abyssinica. The genome is a circular molecule of 154,961 base pairs (bp), with a pair of Inverted Repeats (IR) 25,971 bp each, separated by two single copies; a large (LSC, 84,320 bp) and a small single copy (SSC, 18,696). H. abyssinica 's chloroplast genome has a 37.1% GC content and encodes 112 unique genes, 78 of which code for proteins, 30 are tRNA genes and four are rRNA genes. A comparative analysis with twenty other species, sequenced to-date from the family Rosaceae, revealed similarities in structural organization, gene content and arrangement. The observed size differences are attributed to the contraction/expansion of the inverted repeats. The translational initiation factor gene ( infA ) which had been previously reported in other chloroplast genomes was conspicuously missing in H. abyssinica . A total of 172 microsatellites and 49 large repeat sequences were detected in the chloroplast genome. A Maximum Likelihood analyses of 71 protein-coding genes placed Hagenia in Rosoideae. The availability of a complete chloroplast genome, the first in the Sanguisorbeae tribe, is beneficial for further molecular studies on taxonomic and phylogenomic resolution within the Rosaceae family.

  7. Digital Genome-Wide ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral Amplification

    Science.gov (United States)

    Castle, John C.; Armour, Christopher D.; Löwer, Martin; Haynor, David; Biery, Matthew; Bouzek, Heather; Chen, Ronghua; Jackson, Stuart; Johnson, Jason M.; Rohl, Carol A.; Raymond, Christopher K.

    2010-01-01

    Non-coding RNAs (ncRNAs) are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6) is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I) cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available. PMID:20668672

  8. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polyA-neutral amplification.

    Directory of Open Access Journals (Sweden)

    John C Castle

    Full Text Available Non-coding RNAs (ncRNAs are an essential class of molecular species that have been difficult to monitor on high throughput platforms due to frequent lack of polyadenylation. Using a polyadenylation-neutral amplification protocol and next-generation sequencing, we explore ncRNA expression in eleven human tissues. ncRNAs 7SL, U2, 7SK, and HBII-52 are expressed at levels far exceeding mRNAs. C/D and H/ACA box snoRNAs are associated with rRNA methylation and pseudouridylation, respectively: spleen expresses both, hypothalamus expresses mainly C/D box snoRNAs, and testes show enriched expression of both H/ACA box snoRNAs and RNA telomerase TERC. Within the snoRNA 14q cluster, 14q(I-6 is expressed at much higher levels than other cluster members. More reads align to mitochondrial than nuclear tRNAs. Many lincRNAs are actively transcribed, particularly those overlapping known ncRNAs. Within the Prader-Willi syndrome loci, the snoRNA HBII-85 (group I cluster is highly expressed in hypothalamus, greater than in other tissues and greater than group II or III. Additionally, within the disease locus we find novel transcription across a 400,000 nt span in ovaries. This genome-wide polyA-neutral expression compendium demonstrates the richness of ncRNA expression, their high expression patterns, their function-specific expression patterns, and is publicly available.

  9. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  10. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    Science.gov (United States)

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  11. The ecoresponsive genome of Daphnia pulex

    Energy Technology Data Exchange (ETDEWEB)

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald; Thomas, W. Kelley; Tucker, Abraham; Oakley, Todd H.; Tokishita, Shinichi; Aerts, Andrea; Arnold, Georg J.; Basu, Malay Kumar; Bauer, Darren J.; Caceres, Carla E.; Carmel, Liran; Casola, Claudio; Choi, Jeong-Hyeon; Detter, John C.; Dong, Qunfeng; Dusheyko, Serge; Eads, Brian D.; Frohlich, Thomas; Geiler-Samerotte, Kerry A.; Gerlach, Daniel; Hatcher, Phil; Jogdeo, Sanjuro; Krijgsveld, Jeroen; Kriventseva, Evgenia V; Kültz, Dietmar; Laforsch, Christian; Lindquist, Erika; Lopez, Jacqueline; Manak, Robert; Muller, Jean; Pangilinan, Jasmyn; Patwardhan, Rupali P.; Pitluck, Samuel; Pritham, Ellen J.; Rechtsteiner, Andreas; Rho, Mina; Rogozin, Igor B.; Sakarya, Onur; Salamov, Asaf; Schaack, Sarah; Shapiro, Harris; Shiga, Yasuhiro; Skalitzky, Courtney; Smith, Zachary; Souvorov, Alexander; Sung, Way; Tang, Zuojian; Tsuchiya, Dai; Tu, Hank; Vos, Harmjan; Wang, Mei; Wolf, Yuri I.; Yamagata, Hideo; Yamada, Takuji; Ye, Yuzhen; Shaw, Joseph R.; Andrews, Justen; Crease, Teresa J.; Tang, Haixu; Lucas, Susan M.; Robertson, Hugh M.; Bork, Peer; Koonin, Eugene V.; Zdobnov, Evgeny M.; Grigoriev, Igor V.; Lynch, Michael; Boore, Jeffrey L.

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46 Daphnia pulex opsins. 36 figures, 50 tables, 183 references.

  12. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure.

    Science.gov (United States)

    Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P

    2017-12-19

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.

  13. Identification and classification of conserved RNA secondary structures in the human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Bejerano, Gill; Siepel, Adam

    2006-01-01

    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars...... for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set......, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization....

  14. Visualizing information across multidimensional post-genomic structured and textual databases.

    Science.gov (United States)

    Tao, Ying; Friedman, Carol; Lussier, Yves A

    2005-04-15

    Visualizing relationships among biological information to facilitate understanding is crucial to biological research during the post-genomic era. Although different systems have been developed to view gene-phenotype relationships for specific databases, very few have been designed specifically as a general flexible tool for visualizing multidimensional genotypic and phenotypic information together. Our goal is to develop a method for visualizing multidimensional genotypic and phenotypic information and a model that unifies different biological databases in order to present the integrated knowledge using a uniform interface. We developed a novel, flexible and generalizable visualization tool, called PhenoGenesviewer (PGviewer), which in this paper was used to display gene-phenotype relationships from a human-curated database (OMIM) and from an automatic method using a Natural Language Processing tool called BioMedLEE. Data obtained from multiple databases were first integrated into a uniform structure and then organized by PGviewer. PGviewer provides a flexible query interface that allows dynamic selection and ordering of any desired dimension in the databases. Based on users' queries, results can be visualized using hierarchical expandable trees that present views specified by users according to their research interests. We believe that this method, which allows users to dynamically organize and visualize multiple dimensions, is a potentially powerful and promising tool that should substantially facilitate biological research. PhenogenesViewer as well as its support and tutorial are available at http://www.dbmi.columbia.edu/pgviewer/ Lussier@dbmi.columbia.edu.

  15. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Monika Szczecińska

    2015-09-01

    Full Text Available Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2 enabled the molecular delimitation of closely-related Pulsatilla

  16. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses

    Directory of Open Access Journals (Sweden)

    Dibari Bianca

    2012-06-01

    Full Text Available Abstract Background Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3 that have been widely characterized in rice, maize and sorghum. Results In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA, since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. Conclusions We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses.

  17. Congruence as a measurement of extended haplotype structure across the genome

    Science.gov (United States)

    2012-01-01

    Background Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC) for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC), we developed software for studying extended haplotypes. Methods The software, called ExHap (Extended Haplotype), uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. Results Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A). Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity). We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. Conclusions Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies. PMID:22369243

  18. Salmonella strains isolated from Galápagos iguanas show spatial structuring of serovar and genomic diversity.

    Directory of Open Access Journals (Sweden)

    Emily W Lankau

    Full Text Available It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.

  19. Salmonella strains isolated from Galápagos iguanas show spatial structuring of serovar and genomic diversity.

    Science.gov (United States)

    Lankau, Emily W; Cruz Bedon, Lenin; Mackie, Roderick I

    2012-01-01

    It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.

  20. Salmonella Strains Isolated from Galápagos Iguanas Show Spatial Structuring of Serovar and Genomic Diversity

    Science.gov (United States)

    Lankau, Emily W.; Cruz Bedon, Lenin; Mackie, Roderick I.

    2012-01-01

    It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome. PMID:22615968

  1. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  2. Study on the seismic response of reactor vessel of pool type LMFBR including fluid-structure interaction

    International Nuclear Information System (INIS)

    Tanimoto, K.; Ito, T.; Fujita, K.; Kurihara, C.; Sawada, Y.; Sakurai, A.

    1988-01-01

    The paper presents the seismic response of reactor vessel of pool type LMFBR with fluid-structure interaction. The reactor vessel has bottom support arrangement, the same core support system as Super-Phenix in France. Due to the bottom support arrangement, the level of core support is lower than that of the side support arrangement. So, in this reactor vessel, the displacement of the core top tends to increase because of the core's rocking. In this study, we investigated the vibration and seismic response characteristics of the reactor vessel. Therefore, the seismic experiments were carried out using one-eighth scale model and the seismic response including FSI and sloshing were investigated. From this study, the effect of liquid on the vibration characteristics and the seismic response characteristics of reactor vessel were clarified and sloshing characteristics were also clarified. It was confirmed that FEM analysis with FSI can reproduce the seismic behavior of the reactor vessel and is applicable to seismic design of the pool type LMFBR with bottom support arrangement. (author). 5 refs, 14 figs, 2 tabs

  3. Genomic effects on advertisement call structure in diploid and triploid hybrid waterfrogs (Anura, Pelophylax esculentus).

    Science.gov (United States)

    Hoffmann, Alexandra; Reyer, Heinz-Ulrich

    2013-12-04

    In anurans, differences in male mating calls have intensively been studied with respect to taxonomic classification, phylogeographic comparisons among different populations and sexual selection. Although overall successful, there is often much unexplained variation in these studies. Potential causes for such variation include differences among genotypes and breeding systems, as well as differences between populations. We investigated how these three factors affect call properties in male water frogs of Pelophylax lessonae (genotype LL), P. ridibundus (RR) and their interspecific hybrid P. esculentus which comes in diploid (LR) and triploid types (LLR, LRR). We investigated five call parameters that all showed a genomic dosage effect, i.e. they either decreased or increased with the L/R ratio in the order LL-LLR-LR-LRR-RR. Not all parameters differentiated equally well between the five genotypes, but combined they provided a good separation. Two of the five call parameters were also affected by the breeding system. Calls of diploid LR males varied, depending on whether these males mated with one or both of the parental species (diploid systems) or triploid hybrids (mixed ploidy systems). With the exception of the northernmost mixed-ploidy population, call differences were not related to the geographic location of the population and they were not correlated with genetic distances in the R and L genomes. We found an influence of all three tested factors on call parameters, with the effect size decreasing from genotype through breeding system to geographic location of the population. Overall, results were in line with predictions from a dosage effect in L/R ratios, but in three call parameters all three hybrid types were more similar to one or the other parental species. Also calls of diploid hybrids varied between breeding systems in agreement with the sexual host required for successful reproduction. The lack of hybrid call differences in a mixed-ploidy population at

  4. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

    Science.gov (United States)

    Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang

    2015-08-04

    Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Science.gov (United States)

    Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio

    2008-01-01

    Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406

  6. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  7. Integration of Structural Dynamics and Molecular Evolution via Protein Interaction Networks: A New Era in Genomic Medicine

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M.; Kumar, Sudhir; Ozkan, S. Banu

    2016-01-01

    Summary Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. PMID:26684487

  8. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  10. Prospects and limitations of full-text index structures in genome analysis

    Science.gov (United States)

    Vyverman, Michaël; De Baets, Bernard; Fack, Veerle; Dawyndt, Peter

    2012-01-01

    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared. PMID:22584621

  11. Structural priming is a useful but imperfect technique for studying all linguistic representations, including those of pragmatics.

    Science.gov (United States)

    Rees, Alice; Bott, Lewis

    2017-01-01

    Structural priming is a useful tool for investigating linguistics representations. We argue that structural priming can be extended to the investigation of pragmatic representations such as Gricean enrichments. That is not to say priming is without its limitations, however. Interpreting a failure to observe priming may not be as simple as Branigan & Pickering (B&P) imply.

  12. Ultra high-resolution gene centric genomic structural analysis of a non-syndromic congenital heart defect, Tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Douglas C Bittel

    Full Text Available Tetralogy of Fallot (TOF is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months. Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1 for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001. We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.

  13. The role of parasite-driven selection in shaping landscape genomic structure in red grouse (Lagopus lagopus scotica).

    Science.gov (United States)

    Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B

    2016-01-01

    Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection. © 2015 John Wiley & Sons Ltd.

  14. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis.

    Science.gov (United States)

    Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo

    2013-02-04

    Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.

  15. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  16. The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acroneuria hainana Wu (Insecta: Plecoptera, Perlidae).

    Science.gov (United States)

    Huang, Mingchao; Wang, Yuyu; Liu, Xingyue; Li, Weihai; Kang, Zehui; Wang, Kai; Li, Xuankun; Yang, Ding

    2015-02-15

    The Plecoptera (stoneflies) is a hemimetabolous order of insects, whose larvae are usually used as indicators for fresh water biomonitoring. Herein, we describe the complete mitochondrial (mt) genome of a stonefly species, namely Acroneuria hainana Wu belonging to the family Perlidae. This mt genome contains 13 PCGs, 22 tRNA-coding genes and 2 rRNA-coding genes that are conserved in most insect mt genomes, and it also has the identical gene order with the insect ancestral gene order. However, there are three special initiation codons of ND1, ND5 and COI in PCGs: TTG, GTG and CGA, coding for L, V and R, respectively. Additionally, the 899-bp control region, with 73.30% A+T content, has two long repeated sequences which are found at the 3'-end closing to the tRNA(Ile) gene. Both of them can be folded into a stem-loop structure, whose adjacent upstream and downstream sequences can be also folded into stem-loop structures. It is presumed that the four special structures in series could be associated with the D-loop replication. It might be able to adjust the replication speed of two replicate directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Do we see what we should see? Describing non-covalent interactions in protein structures including precision

    Directory of Open Access Journals (Sweden)

    Manickam Gurusaran

    2014-01-01

    Full Text Available The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e. to too many decimal places is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges, i.e. ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and α-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures, takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.

  18. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  19. Genetic diversity and structure of elite cotton germplasm (Gossypium hirsutum L.) using genome-wide SNP data.

    Science.gov (United States)

    Ai, XianTao; Liang, YaJun; Wang, JunDuo; Zheng, JuYun; Gong, ZhaoLong; Guo, JiangPing; Li, XueYuan; Qu, YanYing

    2017-10-01

    Cotton (Gossypium spp.) is the most important natural textile fiber crop, and Gossypium hirsutum L. is responsible for 90% of the annual cotton crop in the world. Information on cotton genetic diversity and population structure is essential for new breeding lines. In this study, we analyzed population structure and genetic diversity of 288 elite Gossypium hirsutum cultivar accessions collected from around the world, and especially from China, using genome-wide single nucleotide polymorphisms (SNP) markers. The average polymorphsim information content (PIC) was 0.25, indicating a relatively low degree of genetic diversity. Population structure analysis revealed extensive admixture and identified three subgroups. Phylogenetic analysis supported the subgroups identified by STRUCTURE. The results from both population structure and phylogenetic analysis were, for the most part, in agreement with pedigree information. Analysis of molecular variance revealed a larger amount of variation was due to diversity within the groups. Establishment of genetic diversity and population structure from this study could be useful for genetic and genomic analysis and systematic utilization of the standing genetic variation in upland cotton.

  20. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  1. REGEN: Ancestral Genome Reconstruction for Bacteria

    OpenAIRE

    Yang, Kuan; Heath, Lenwood S.; Setubal, João C.

    2012-01-01

    Ancestral genome reconstruction can be understood as a phylogenetic study with more details than a traditional phylogenetic tree reconstruction. We present a new computational system called REGEN for ancestral bacterial genome reconstruction at both the gene and replicon levels. REGEN reconstructs gene content, contiguous gene runs, and replicon structure for each ancestral genome. Along each branch of the phylogenetic tree, REGEN infers evolutionary events, including gene creation and deleti...

  2. Spatial variation in the parasite communities and genomic structure of urban rats in New York City.

    Science.gov (United States)

    Angley, L P; Combs, M; Firth, C; Frye, M J; Lipkin, I; Richardson, J L; Munshi-South, J

    2018-02-01

    Brown rats (Rattus norvegicus) are a globally distributed pest. Urban habitats can support large infestations of rats, posing a potential risk to public health from the parasites and pathogens they carry. Despite the potential influence of rodent-borne zoonotic diseases on human health, it is unclear how urban habitats affect the structure and transmission dynamics of ectoparasite and microbial communities (all referred to as "parasites" hereafter) among rat colonies. In this study, we use ecological data on parasites and genomic sequencing of their rat hosts to examine associations between spatial proximity, genetic relatedness and the parasite communities associated with 133 rats at five sites in sections of New York City with persistent rat infestations. We build on previous work showing that rats in New York carry a wide variety of parasites and report that these communities differ significantly among sites, even across small geographical distances. Ectoparasite community similarity was positively associated with geographical proximity; however, there was no general association between distance and microbial communities of rats. Sites with greater overall parasite diversity also had rats with greater infection levels and parasite species richness. Parasite community similarity among sites was not linked to genetic relatedness of rats, suggesting that these communities are not associated with genetic similarity among host individuals or host dispersal among sites. Discriminant analysis identified site-specific associations of several parasite species, suggesting that the presence of some species within parasite communities may allow researchers to determine the sites of origin for newly sampled rats. The results of our study help clarify the roles that colony structure and geographical proximity play in determining the ecology of R. norvegicus as a significant urban reservoir of zoonotic diseases. Our study also highlights the spatial variation present in urban

  3. One common structural peculiarity of the Solar system bodies including the star, planets, satellites and resulting from their globes rotation

    Science.gov (United States)

    Kochemasov, G. G.

    2008-09-01

    Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets, satellites and Sun compels to look for a common reason of such phenomenon. All bodies rotate and their spherical shape makes zones at different latitudes to have differing angular momenta as a distance to the rotation axis diminishes gradually from the equator to the poles (this is felt particularly when one launches rockets into space -preferable more cheap launches are from the equatorial regions - Kourou is better than Baikonur). One of remarkable changes occurs at tropics. As a single rotating planetary body tends to have angular momenta of its tectonic blocks equilibrated it starts mechanisms leveling this basic physical property. At tropical zones (bulged also due to the rotation ellipsoid) the outer shell - crust as a consequence tends to be destroyed, sunk, subsided and shrunk; a density of crust material changes; the atmosphere reacts changing chemistry and structure; in terrestrial anthroposphere man looses its mass and stature. But according to the Le Chatelier rule mechanisms with an opposing tendency also begin to act. At Earth the wide planetary long tropical zone is marked by destruction of the crust. It is demonstrated by development of numerous islands of the Malay Archipelago (the Sunda Isls., Maluku Isls, Philippines) between the Southeastern Asia and Australia. In Africa and South America huge depressions of the Congo and Amazon Rivers develops where the Archean crust is subsided to depths of more than 2 km. In the Pacific along the equator numerous islands of Micronesia occur. Subsidence of the basaltic oceanic crust is followed by an intensive folding and faulting of basalt and sedimentary layers (Fig. 1) as a larger mass must be held by a smaller space (a planetary radius is diminished). The central Atlantic is very demonstrative in this sense suffering huge transform fault

  4. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    Science.gov (United States)

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  6. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  7. A scale-free structure prior for graphical models with applications in functional genomics.

    Directory of Open Access Journals (Sweden)

    Paul Sheridan

    Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale

  8. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  9. Comprehensive genomic analyses of the OM43 clade including a novel species from Red Sea indicate ecotype differentiation among marine methylotrophs

    KAUST Repository

    Jimenez Infante, Francy M.

    2015-12-11

    The OM43 clade within the family Methylophilaceae of Betaproteobacteria represents a group of methylotrophs playing important roles in the metabolism of C1 compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (designated here as MBRS-H7) from the ultra-oligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species, which forms a distinct cluster together with isolate KB13 from Hawaii (H-RS cluster) that is separate from that represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S–23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low chlorophyll and/or high temperature provinces for the H-RS cluster, but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of H-RS include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely the existence of the NADH:quinone oxidoreductase NUO system in the H-RS and the non-homologous NQR system in HTCC2181, which might have implications on their overall energetic yields.

  10. Comprehensive genomic analyses of the OM43 clade including a novel species from Red Sea indicate ecotype differentiation among marine methylotrophs

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Alam, Intikhab; Kamau, Allan; Blom, Jochen; Bajic, Vladimir B.; Stingl, Ulrich

    2015-01-01

    The OM43 clade within the family Methylophilaceae of Betaproteobacteria represents a group of methylotrophs playing important roles in the metabolism of C1 compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (designated here as MBRS-H7) from the ultra-oligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species, which forms a distinct cluster together with isolate KB13 from Hawaii (H-RS cluster) that is separate from that represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S–23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low chlorophyll and/or high temperature provinces for the H-RS cluster, but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of H-RS include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely the existence of the NADH:quinone oxidoreductase NUO system in the H-RS and the non-homologous NQR system in HTCC2181, which might have implications on their overall energetic yields.

  11. Comprehensive Genomic Analyses of the OM43 Clade, Including a Novel Species from the Red Sea, Indicate Ecotype Differentiation among Marine Methylotrophs

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Alam, Intikhab; Kamau, Allan Anthony; Blom, Jochen; Bajic, Vladimir B.

    2015-01-01

    The OM43 clade within the family Methylophilaceae of Betaproteobacteria represents a group of methylotrophs that play important roles in the metabolism of C1 compounds in marine environments and other aquatic environments around the globe. Using dilution-to-extinction cultivation techniques, we successfully isolated a novel species of this clade (here designated MBRS-H7) from the ultraoligotrophic open ocean waters of the central Red Sea. Phylogenomic analyses indicate that MBRS-H7 is a novel species that forms a distinct cluster together with isolate KB13 from Hawaii (Hawaii-Red Sea [H-RS] cluster) that is separate from the cluster represented by strain HTCC2181 (from the Oregon coast). Phylogenetic analyses using the robust 16S-23S internal transcribed spacer revealed a potential ecotype separation of the marine OM43 clade members, which was further confirmed by metagenomic fragment recruitment analyses that showed trends of higher abundance in low-chlorophyll and/or high-temperature provinces for the H-RS cluster but a preference for colder, highly productive waters for the HTCC2181 cluster. This potential environmentally driven niche differentiation is also reflected in the metabolic gene inventories, which in the case of the H-RS cluster include those conferring resistance to high levels of UV irradiation, temperature, and salinity. Interestingly, we also found different energy conservation modules between these OM43 subclades, namely, the existence of the NADH:quinone oxidoreductase complex I (NUO) system in the H-RS cluster and the nonhomologous NADH:quinone oxidoreductase (NQR) system in the HTCC2181 cluster, which might have implications for their overall energetic yields. PMID:26655752

  12. Complete plastid genome sequence of Primula sinensis (Primulaceae: structure comparison, sequence variation and evidence for accD transfer to nucleus

    Directory of Open Access Journals (Sweden)

    Tong-Jian Liu

    2016-06-01

    Full Text Available Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp were separated by a large single-copy region (82,064 bp and a small single-copy region (17,725 bp. The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.

  13. GOBASE: an organelle genome database

    OpenAIRE

    O?Brien, Emmet A.; Zhang, Yue; Wang, Eric; Marie, Veronique; Badejoko, Wole; Lang, B. Franz; Burger, Gertraud

    2008-01-01

    The organelle genome database GOBASE, now in its 21st release (June 2008), contains all published mitochondrion-encoded sequences (?913 000) and chloroplast-encoded sequences (?250 000) from a wide range of eukaryotic taxa. For all sequences, information on related genes, exons, introns, gene products and taxonomy is available, as well as selected genome maps and RNA secondary structures. Recent major enhancements to database functionality include: (i) addition of an interface for RNA editing...

  14. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    Science.gov (United States)

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  16. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha; Dassanayake, Maheshi; Haas, Jeffrey S.; Kropornika, Anna; Wright, Chris L.; D'Urzo, Matilde Paino; Hong, Hyewon; Ali, Shahjahan; Herná ndez, Á lvaro Gonzalez; Lambert, Georgina M.; Inan, Gü nsu; Galbraith, David; Bressan, Ray Anthony; Yun, Daejin; Zhu, Jian-Kang; Cheeseman, John McP; Bohnert, Hans Jü rgen

    2010-01-01

    and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously

  17. Discovery, genotyping and characterization of structural variation and novel sequence at single nucleotide resolution from de novo genome assemblies on a population scale

    DEFF Research Database (Denmark)

    Liu, Siyang; Huang, Shujia; Rao, Junhua

    2015-01-01

    present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome......) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We...... assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction...

  18. PREVALENCE OF SOME HELMINTHS IN RODENTS CAPTURED FROM DIFFERENT CITY STRUCTURES INCLUDING POULTRY FARMS AND HUMAN POPULATION OF FAISALABAD, PAKISTAN

    Directory of Open Access Journals (Sweden)

    A. RAFIQUE, S. A. RANA, H. A. KHAN AND A. SOHAIL1

    2009-07-01

    Full Text Available The aim of the present study was to investigate prevalence of zoonotic helminths from human, Rattus rattus (R. rattus, Rattus norvegicus (R. norvegicus and Mus musculus of eight different structures, namely grain shops in grain market, departmental stores, railway godowns, food processing plants (bakeries, poultry farms, houses in kachi-abadies, houses in departmental colonies and posh residences and banglows in Faisalabad city. All the structures were sampled for 2 months each and completed in 16 months. Highest prevalence (70% of Vsmpirolepis spp. was observed in R. rattus sampled from poultry farms, which was significantly higher (P<0.05 than the prevalence of all the helminths recovered from other structures. Hymenolepis nana (H. nana was observed in 60% of the sampled Mus musculus collected from kachi-abadies, which was significantly higher (P<0.05 than all other structures studies for H. nana, except R. rattus from kachi-abadies (55% and R. norvegicus from grain shops in grain market (55%. The rodent’s endo-parasites viz., Hymenolepis nana, Teania taenaeformis, Entrobius spps and Trichuiris spps observed in R. rattus, R. norvegicus and M. musculus at different percentages were also recorded in human stool samples with an incidence of 48, 21, 76 and 10%, respectively.

  19. Simulation-Visualization and Self-Assessment Modules' Capabilities in Structural Analysis Course Including Survey Analysis Results

    Science.gov (United States)

    Kadiam, Subhash Chandra Bose S. V.; Mohammed, Ahmed Ali; Nguyen, Duc T.

    2010-01-01

    In this paper, we describe an approach to analyze 2D truss/Frame/Beam structures under Flash-based environment. Stiffness Matrix Method (SMM) module was developed as part of ongoing projects on a broad topic "Students' Learning Improvements in Science, Technology, Engineering and Mathematics (STEM) Related Areas" at Old Dominion…

  20. A fast vibro-acoustic response analysis method for double wall structures including a viscothermal air layer

    NARCIS (Netherlands)

    Basten, T.G.H.; Grooteman, F.P.

    2000-01-01

    The damping behaviour of a thin air layer between two flexible panels can be used to reduce sound radiation of structural excited panels. The numerical model of the double wall panels takes into account full acousto-elastic interaction and viscothermal wave propagation in the air layer. This means

  1. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    Science.gov (United States)

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  2. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans

    DEFF Research Database (Denmark)

    Klasson, Lisa; Westberg, Joakim; Sapountzis, Panagiotis

    2009-01-01

    genome of W. pipientis strain wRi that induces very strong cytoplasmic incompatibility in its natural host Drosophila simulans. A comparison with the previously sequenced genome of W. pipientis strain wMel from Drosophila melanogaster identified 35 breakpoints associated with mobile elements and repeated...... sequences that are stable in Drosophila lines transinfected with wRi. Additionally, 450 genes with orthologs in wRi and wMel were sequenced from the W. pipientis strain wUni, responsible for the induction of parthenogenesis in the parasitoid wasp Muscidifurax uniraptor. The comparison of these A...

  3. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    Science.gov (United States)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  5. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  6. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  7. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Directory of Open Access Journals (Sweden)

    Rohini Garg

    Full Text Available DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases, namely Methyltransferase (MET, Chromomethylase (CMT and Domains Rearranged Methyltransferase (DRM, which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2 subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  8. Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers.

    Science.gov (United States)

    Zhang, Xiao; Zhang, Hua; Li, Lujiang; Lan, Hai; Ren, Zhiyong; Liu, Dan; Wu, Ling; Liu, Hailan; Jaqueth, Jennifer; Li, Bailin; Pan, Guangtang; Gao, Shibin

    2016-08-31

    Maize breeding germplasm used in Southwest China has high complexity because of the diverse ecological features of this area. In this study, the population structure, genetic diversity, and linkage disequilibrium decay distance of 362 important inbred lines collected from the breeding program of Southwest China were characterized using the MaizeSNP50 BeadChip with 56,110 single nucleotide polymorphisms (SNPs). With respect to population structure, two (Tropical and Temperate), three (Tropical, Stiff Stalk and non-Stiff Stalk), four [Tropical, group A germplasm derived from modern U.S. hybrids (PA), group B germplasm derived from modern U.S. hybrids (PB) and Reid] and six (Tropical, PB, Reid, Iowa Stiff Stalk Synthetic, PA and North) subgroups were identified. With increasing K value, the Temperate group showed pronounced hierarchical structure with division into further subgroups. The Genetic Diversity of each group was also estimated, and the Tropical group was more diverse than the Temperate group. Seven low-genetic-diversity and one high-genetic-diversity regions were collectively identified in the Temperate, Tropical groups, and the entire panel. SNPs with significant variation in allele frequency between the Tropical and Temperate groups were also evaluated. Among them, a region located at 130 Mb on Chromosome 2 showed the highest genetic diversity, including both number of SNPs with significant variation and the ratio of significant SNPs to total SNPs. Linkage disequilibrium decay distance in the Temperate group was greater (2.5-3 Mb) than that in the entire panel (0.5-0.75 Mb) and the Tropical group (0.25-0.5 Mb). A large region at 30-120 Mb of Chromosome 7 was concluded to be a region conserved during the breeding process by comparison between S37, which was considered a representative tropical line in Southwest China, and its 30 most similar derived lines. For the panel covered most of widely used inbred lines in Southwest China, this work

  9. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    DEFF Research Database (Denmark)

    Deng, Xiangyu; Desai, Prerak T.; den Bakker, Henk C.

    2014-01-01

    serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains...

  10. Genomic structure in Europeans dating back at least 36,200 years

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine; Korneliussen, Thorfinn Sand; Sikora, Martin

    2014-01-01

    The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000...

  11. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    the model are linear in alignment length and genome number. The model is applied to the problem of gene finding. The benefit of modelling sequence evolution is demonstrated both in a range of simulations and on a set of orthologous human/mouse gene pairs. AVAILABILITY: Free availability over the Internet...

  12. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger Eleanor Hall; Campos, Paula; Strugnell, Jan

    2013-01-01

    techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic...... a recent population expansion or selective sweep, which may explain the low level of genetic diversity....

  13. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures.

    Science.gov (United States)

    Bastiaansen, John W M; Coster, Albart; Calus, Mario P L; van Arendonk, Johan A M; Bovenhuis, Henk

    2012-01-24

    Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects. Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations. Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure. The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was

  14. Clustering of 770,000 genomes reveals post-colonial population structure of North America

    Science.gov (United States)

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E.; Wang, Yong; Granka, Julie M.; Byrnes, Jake; Noto, Keith; Kermany, Amir R.; Myres, Natalie M.; Barber, Mathew J.; Rand, Kristin A.; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L.; Chahine, Kenneth G.; Ball, Catherine A.

    2017-02-01

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

  15. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  16. The Right to Be Included: Homeschoolers Combat the Structural Discrimination Embodied in Their Lawful Protection in the Czech Republic

    Science.gov (United States)

    Kašparová, Irena

    2015-01-01

    There is a 240-year tradition of compulsory school attendance in the Czech Republic. To many, compulsory school attendance is synonymous with the right to be educated. After the collapse of communism in 1989, along with the democratization of the government, the education system was slowly opened to alternatives, including the right to educate…

  17. Protein Structure Initiative Material Repository: an open shared public resource of structural genomics plasmids for the biological community

    Science.gov (United States)

    Cormier, Catherine Y.; Mohr, Stephanie E.; Zuo, Dongmei; Hu, Yanhui; Rolfs, Andreas; Kramer, Jason; Taycher, Elena; Kelley, Fontina; Fiacco, Michael; Turnbull, Greggory; LaBaer, Joshua

    2010-01-01

    The Protein Structure Initiative Material Repository (PSI-MR; http://psimr.asu.edu) provides centralized storage and distribution for the protein expression plasmids created by PSI researchers. These plasmids are a resource that allows the research community to dissect the biological function of proteins whose structures have been identified by the PSI. The plasmid annotation, which includes the full length sequence, vector information and associated publications, is stored in a freely available, searchable database called DNASU (http://dnasu.asu.edu). Each PSI plasmid is also linked to a variety of additional resources, which facilitates cross-referencing of a particular plasmid to protein annotations and experimental data. Plasmid samples can be requested directly through the website. We have also developed a novel strategy to avoid the most common concern encountered when distributing plasmids namely, the complexity of material transfer agreement (MTA) processing and the resulting delays this causes. The Expedited Process MTA, in which we created a network of institutions that agree to the terms of transfer in advance of a material request, eliminates these delays. Our hope is that by creating a repository of expression-ready plasmids and expediting the process for receiving these plasmids, we will help accelerate the accessibility and pace of scientific discovery. PMID:19906724

  18. An Asset Pricing Approach to Testing General Term Structure Models including Heath-Jarrow-Morton Specifications and Affine Subclasses

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; van der Wel, Michel

    of the risk premium is associated with the slope factor, and individual risk prices depend on own past values, factor realizations, and past values of other risk prices, and are significantly related to the output gap, consumption, and the equity risk price. The absence of arbitrage opportunities is strongly...... is tested, but in addition to the standard bilinear term in factor loadings and market prices of risk, the relevant mean restriction in the term structure case involves an additional nonlinear (quadratic) term in factor loadings. We estimate our general model using likelihood-based dynamic factor model...... techniques for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our factor model estimates are similar across a general state space implementation and an alternative robust two-step principal components approach. The evidence favors time-varying market prices of risk. Most...

  19. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    Science.gov (United States)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  20. THE TEMPIO DELLA CONSOLAZIONE IN TODI: INTEGRATED GEOMATIC TECHNIQUES FOR A MONUMENT DESCRIPTION INCLUDING STRUCTURAL DAMAGE EVOLUTION IN TIME

    Directory of Open Access Journals (Sweden)

    F. Radicioni

    2017-05-01

    Full Text Available The Tempio della Consolazione in Todi (16th cent. has always been one of the most significant symbols of the Umbrian landscape. Since the first times after its completion (1606 the structure has exhibited evidences of instability, due to foundation subsiding and/or seismic activity. Structural and geotechnical countermeasures have been undertaken on the Tempio and its surroundings from the 17th century until recent times. Until now a truly satisfactory analysis of the overall deformation and attitude of the building has not been performed, since the existing surveys record the overhangs of the pillars, the crack pattern or the subsidence over limited time spans. Describing the attitude of the whole church is in fact a complex operation due to the architectural character of the building, consisting of four apses (three polygonal and one semicircular covered with half domes, which surround the central area with the large dome. The present research aims to fill the gap of knowledge with a global study based on geomatic techniques for an accurate 3D reconstruction of geometry and attitude, integrated with a historical research on damage and interventions and a geotechnical analysis. The geomatic survey results from the integration of different techniques: GPS-GNSS for global georeferencing, laser scanning and digital photogrammetry for an accurate 3D reconstruction, high precision total station and geometric leveling for a direct survey of deformations and cracks, and for the alignment of the laser scans. The above analysis allowed to assess the dynamics of the cracks occurred in the last 25 years by a comparison with a previous survey. From the photographic colour associated to the point cloud was also possible to map the damp patches showing on the domes intrados, mapping their evolution over the last years.

  1. Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects

    International Nuclear Information System (INIS)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1989-01-01

    The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies

  2. Intraspecies genomic diversity and natural population structure of the meat-borne lactic acid bacterium Lactobacillus sakei.

    Science.gov (United States)

    Chaillou, Stéphane; Daty, Marie; Baraige, Fabienne; Dudez, Anne-Marie; Anglade, Patricia; Jones, Rhys; Alpert, Carl-Alfred; Champomier-Vergès, Marie-Christine; Zagorec, Monique

    2009-02-01

    Lactobacillus sakei is a food-borne bacterium naturally found in meat and fish products. A study was performed to examine the intraspecies diversity among 73 isolates sourced from laboratory collections in several different countries. Pulsed-field gel electrophoresis analysis demonstrated a 25% variation in genome size between isolates, ranging from 1,815 kb to 2,310 kb. The relatedness between isolates was then determined using a PCR-based method that detects the possession of 60 chromosomal genes belonging to the flexible gene pool. Ten different strain clusters were identified that had noticeable differences in their average genome size reflecting the natural population structure. The results show that many different genotypes may be isolated from similar types of meat products, suggesting a complex ecological habitat in which intraspecies diversity may be required for successful adaptation. Finally, proteomic analysis revealed a slight difference between the migration patterns of highly abundant GapA isoforms of the two prevailing L. sakei subspecies (sakei and carnosus). This analysis was used to affiliate the genotypic clusters with the corresponding subspecies. These findings reveal for the first time the extent of intraspecies genomic diversity in L. sakei. Consequently, identification of molecular subtypes may in the future prove valuable for a better understanding of microbial ecosystems in food products.

  3. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    Science.gov (United States)

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. 3D modeling of genome macroorganization on the basis of its structural changes after action of radiation

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.; Aleksandrova, M.V.; Zaikin, N.S.; Koren'kov, V.V.; Pervushova, O.V.; Stepanenko, V.A.

    2006-01-01

    At present, after 120 years of the theoretical and experimental works, the issue of the genome macroarchitecture as the highest level of interphase chromosome organization in somatic cell nuclei remains still unresolved. The problem of the spatial arrangement of interphase chromosomes in haploid germ cells has never even been studied. A 3D simulation of packaging of the entire second chromosome in Drosophila mature sperms has been performed by using mathematical approaches and visualization methods to present macromolecular structure data. As genetic markers for simulation, frequency and location of the second inversion breakpoints for 72 structural υg mutants induced by ionizing radiation were used supposing that both ends of each inversion are topologically brought together forming loop of appropriate size. For the account of a degree of spatial affinity and visualization of chromosomal loops modern 3D-modeling methods with application of splines, libraries OpenGL, language Delphi, program Gmax were used. According to the model proposed, the entire second chromosome within mature sperm nuclei seems to be packaged in the form of a megarosette-loop structure which may be a basic principle of organization of the genome macro-architecture in animal haploid germ cells

  5. SHAPE analysis of the FIV Leader RNA reveals a structural switch potentially controlling viral packaging and genome dimerization.

    Science.gov (United States)

    Kenyon, Julia C; Tanner, Sian J; Legiewicz, Michal; Phillip, Pretty S; Rizvi, Tahir A; Le Grice, Stuart F J; Lever, Andrew M L

    2011-08-01

    Feline immunodeficiency virus (FIV) infects many species of cat, and is related to HIV, causing a similar pathology. High-throughput selective 2' hydroxyl acylation analysed by primer extension (SHAPE), a technique that allows structural interrogation at each nucleotide, was used to map the secondary structure of the FIV packaging signal RNA. Previous studies of this RNA showed four conserved stem-loops, extensive long-range interactions (LRIs) and a small, palindromic stem-loop (SL5) within the gag open reading frame (ORF) that may act as a dimerization initiation site (DIS), enabling the virus to package two copies of its genome. Our analyses of wild-type (wt) and mutant RNAs suggest that although the four conserved stem-loops are static structures, the 5' and 3' regions previously shown to form LRI also adopt an alternative, yet similarly conserved conformation, in which the putative DIS is occluded, and which may thus favour translational and splicing functions over encapsidation. SHAPE and in vitro dimerization assays were used to examine SL5 mutants. Dimerization contacts appear to be made between palindromic loop sequences in SL5. As this stem-loop is located within the gag ORF, recognition of a dimeric RNA provides a possible mechanism for the specific packaging of genomic over spliced viral RNAs.

  6. The genome structure of Arachis hypogaea (Linnaeus, 1753 and an induced Arachis allotetraploid revealed by molecular cytogenetics

    Directory of Open Access Journals (Sweden)

    Eliza F. de M. B. do Nascimento

    2018-03-01

    Full Text Available Peanut, Arachis hypogaea (Linnaeus, 1753 is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994 and A. ipaensis (Krapovickas & W. C. Gregory, 1994, followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.

  7. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  8. Effectiveness of Tuned Mass Dampers in Seismic Response Control of Isolated Bridges Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Said Elias

    Full Text Available Abstract The effect of soil-structure interaction (SSI on the dynamic responses of seismically isolated three-span continuous reinforced concrete (RC bridge is investigated. Also, tuned mass damper(s (TMD/s is/are installed to control undesirable bearing displacement, even under the SSI effect. The TMDs are placed at the mid-span of the bridge and each tuned with a modal frequency, while controlling up to first few modes as desirable. The soil surrounding the foundation of pier is modeled by frequency independent coefficients. Dynamic analysis is carried out in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the non-isolated, isolated, and controlled isolated bridge are compared. It is observed that the soil surrounding the pier has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with installation of the TMDs.

  9. Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid.

    Science.gov (United States)

    Cherel, Y;