WorldWideScience

Sample records for include fungi bacteria

  1. Metabolic Interactions between Bacteria and Fungi in Commensal Oral Biofilms

    OpenAIRE

    Lof, Marloes; Janus, Marleen M.; Krom, Bastiaan P.

    2017-01-01

    Oral health is more than just the absence of disease. The key to oral health is a diverse microbiome in an ecological balance. The oral microbiota is one of the most complex and diverse microbial communities in the human body. To maintain oral health, balance between the human host and the intrinsic microorganisms is essential. The healthy oral cavity is represented by a great microbial diversity, including both bacteria and fungi. The bacterial microbiome is very well studied. In contrast, f...

  2. [Establishment of Assessment Method for Air Bacteria and Fungi Contamination].

    Science.gov (United States)

    Zhang, Hua-ling; Yao, Da-jun; Zhang, Yu; Fang, Zi-liang

    2016-03-15

    In this paper, in order to settle existing problems in the assessment of air bacteria and fungi contamination, the indoor and outdoor air bacteria and fungi filed concentrations by impact method and settlement method in existing documents were collected and analyzed, then the goodness of chi square was used to test whether these concentration data obeyed normal distribution at the significant level of α = 0.05, and combined with the 3σ principle of normal distribution and the current assessment standards, the suggested concentrations ranges of air microbial concentrations were determined. The research results could provide a reference for developing air bacteria and fungi contamination assessment standards in the future.

  3. Fluconazole-Pyridoxine Bis-Triazolium Compounds with Potent Activity against Pathogenic Bacteria and Fungi Including Their Biofilm-Embedded Forms

    Directory of Open Access Journals (Sweden)

    Marsel R. Garipov

    2017-01-01

    Full Text Available Two novel quaternary ammonium salts, bis-triazolium derivatives of fluconazole and pyridoxine, were synthesized by reaction of fluconazole with pyridoxine-based synthetic intermediates. The leading compound demonstrated pronounced antimycotic and antibacterial in vitro activity, comparable to or exceeding that of the reference antifungal (fluconazole, terbinafine and antibacterial/antiseptic (miramistin, benzalkonium chloride agents. In contrast to many antimicrobials, the leading compound was also active against biofilm-embedded staphylococci and Escherichia coli. While no biofilm structure destruction occurred, all compounds were able to diffuse into the matrix and reduce the number of colony-forming units by three orders of magnitude at 16 × MBC. The leading compound was significantly less toxic than miramistin and benzalkonium chloride and more toxic than the reference antifungal drugs. The obtained results make the described chemotype a promising starting point for the development of new broad-spectrum antimicrobial therapies with powerful effect on fungal and bacterial pathogens including their biofilm-embedded forms.

  4. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  5. Enumeration, isolation and identification of bacteria and fungi from ...

    African Journals Online (AJOL)

    Enumeration, isolation and identification of bacteria and fungi from soil contaminated with petroleum products ... dropping can be useful in the bioremediation of soil contaminated with petroleum products and possibly other oil polluted sites.

  6. 104 Key words: Moringa, marinade, bacteria, fungi, catfish, smoke ...

    African Journals Online (AJOL)

    Osondu

    2013-01-16

    Jan 16, 2013 ... spoilage thus limiting economic loss and possible heath risk to consumers. Key words: Moringa, marinade, bacteria, fungi, catfish, smoke-dried. Introduction ..... were reared because E. coli is an indicator organism and its ...

  7. Controlling weeds with fungi, bacteria and viruses: a review

    Science.gov (United States)

    Harding, Dylan P.; Raizada, Manish N.

    2015-01-01

    Weeds are a nuisance in a variety of land uses. The increasing prevalence of both herbicide resistant weeds and bans on cosmetic pesticide use has created a strong impetus to develop novel strategies for controlling weeds. The application of bacteria, fungi and viruses to achieving this goal has received increasingly great attention over the last three decades. Proposed benefits to this strategy include reduced environmental impact, increased target specificity, reduced development costs compared to conventional herbicides and the identification of novel herbicidal mechanisms. This review focuses on examples from North America. Among fungi, the prominent genera to receive attention as bioherbicide candidates include Colletotrichum, Phoma, and Sclerotinia. Among bacteria, Xanthomonas and Pseudomonas share this distinction. The available reports on the application of viruses to controlling weeds are also reviewed. Focus is given to the phytotoxic mechanisms associated with bioherbicide candidates. Achieving consistent suppression of weeds in field conditions is a common challenge to this control strategy, as the efficacy of a bioherbicide candidate is generally more sensitive to environmental variation than a conventional herbicide. Common themes and lessons emerging from the available literature in regard to this challenge are presented. Additionally, future directions for this crop protection strategy are suggested. PMID:26379687

  8. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  9. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Science.gov (United States)

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  10. The interactions of bacteria with fungi in soil : Emerging concepts

    NARCIS (Netherlands)

    Haq, Irshad; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk; Gadd, GM; Sariaslani, S

    2014-01-01

    In this chapter, we review the existing literature on bacterial fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in

  11. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi ...

    African Journals Online (AJOL)

    At present, the greatest interest resides with the development and application of specific biocontrol agent for the control of diseases on plant and this form the focus of this work. Several soil bacteria were evaluated in vitro for their effectiveness on the basis of their ability to suppress fungi in plate inhibition assays. 51 strains ...

  12. DNA Integrity and Shock Wave Transformation Efficiency of Bacteria and Fungi

    Science.gov (United States)

    Loske, Achim M.; Campos-Guillén, Juan; Fernández, Francisco; Pastrana, Xóchitl; Magaña-Ortíz, Denis; Coconi-Linares, Nancy; Ortíz-Vázquez, Elizabeth; Gómez-Lim, Miguel

    Delivery of DNA into bacteria and fungi is essential in medicine and biotechnology to produce metabolites, enzymes, antibiotics and proteins. So far, protocols to genetically transform bacteria and fungi are inefficient and have low reproducibility.

  13. Fungi outcompete bacteria under increased uranium concentration in culture media

    International Nuclear Information System (INIS)

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L.; McGuinness, Keith A.; Lu, Ping; Gibb, Karen S.

    2013-01-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation. -- Highlights: ► Fungi outcompete bacteria under increased uranium concentration in culture media. ► Soil microorganisms isolated from the Ranger Land Application Areas (LAAs) were resistant to uranium. ► Bacillus was the most abundant cultivable genus retrieved from the Ranger LAAs soils. ► Uranium in LAAs soils is

  14. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  15. Visualization of interaction between inorganic nanoparticles and bacteria or fungi

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Hotowy, Anna Malgorzata

    2010-01-01

    Purpose: The objective of the present investigation was to evaluate the morphologic characteristics of self-assemblies of diamond (nano-D), silver (nano-Ag), gold (nano-Au), and platinum (nano-Pt) nanoparticles with Staphylococus aureus (bacteria) and Candida albicans (fungi), to determine...... interaction between the nanoparticles and microorganisms showed that nano-D, which are dielectrics and exhibit a positive zeta potential, were very different from the membrane potentials of microorganisms, and uniformly surrounded the microorganisms, without causing visible damage and destruction of cells...... and cell wall. Conclusion: Nano-Ag, nano-Au, and nano-Pt (all metal nanoparticles) are harmful to bacteria and fungi. In contrast, nano-D bind closely to the surface of microorganisms without causing visible damage to cells, and demonstrating good self-assembling ability. The results indicate that both...

  16. The interactions of bacteria with fungi in soil: emerging concepts.

    Science.gov (United States)

    Haq, Irshad Ul; Zhang, Miaozhi; Yang, Pu; van Elsas, Jan Dirk

    2014-01-01

    In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions. © 2014 Elsevier Inc. All rights reserved.

  17. Compost biodegradation of recalcitrant hoof keratin by bacteria and fungi.

    Science.gov (United States)

    Reuter, T; Gilroyed, B H; Xu, W; McAllister, T A; Stanford, K

    2015-08-01

    Compost activities efficiently break down a wide range of organic substances over time. In this study, bovine hoof was used as recalcitrant protein model to gain so far cryptic information on biodegradation during livestock mortalities composting. Bovine hooves (black and white), containing different amounts of melanin, placed into nylon bags were monitored during composting of cattle mortalities for up to 230 days. Besides physiochemical analysis, bacterial 16S and fungal 18S DNA fragments were amplified by PCR and profiles were separated by DGGE. Sequence analysis of separated fragments revealed various bacterial and fungal identities during composting. The microbial diversity was affected by a time-temperature interaction and by the hoof colour. Our molecular data, supported by electron microscopy, suggest hoof colonization by shifting bacteria and fungi communities. During composting, microbial communities work collaboratively in the degradation of recalcitrant organic matter such as keratin over time. A number of biomolecules including recalcitrant proteins may persist in environmental reservoirs, but breakdown can occur during composting. A combination of bioactivity and physiochemical conditions appear to be decisive for the fate of persistent biomolecules. © 2015 The Society for Applied Microbiology.

  18. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zhao Huibin

    2018-03-01

    Full Text Available Polar microbial derived antibiotics have potential as alternatives to traditional antibiotics in treating fish against pathogenic bacteria. In this paper, 23 strains of polar fungi were fermented to detect bacteriostatic products on three aquatic pathogenic bacteria, subsequently the active fungus was identified. It was indicated that secondary metabolites of 23 strains weredistinct; of these, the extract of strain B-7 (belonging to Bjerkandera according to molecular identification demonstrated a strong antibacterial activity to Streptococcus agalactiae, Vibrio anguillarum and Aeromonas hydrophila ATCC7966 by Kirby-Bauerpaper strip method. During one fermentation cycle, the pH curve of the fermentation liquor became lowest (4.0 on the 4th day and rose back to 7.6 finally after 5 days, The residual sugar curve was decreased before stablising on the 6th day. It is presumed that a large amount of alkaline secondary metabolites might have been produced during fermentation. This study focuses on antagonism between aquatic pathogenic bacteria and fermentation metabolites from Antarctic fungi for the first time, which may provide data on research of antibiotics against aquatic pathogenic bacteria.

  19. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Wagenaar, A.M.; Klein Gunnewiek, P.J.A.; Van Veen, J.A.

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal

  20. Activity of Antarctic fungi extracts against phytopathogenic bacteria.

    Science.gov (United States)

    Purić, J; Vieira, G; Cavalca, L B; Sette, L D; Ferreira, H; Vieira, M L C; Sass, D C

    2018-06-01

    This study aims to obtain secondary metabolites extracts from filamentous fungi isolated from soil and marine sediments from Antarctic ecosystems and to assess its potential antibacterial activity on Xanthomonas euvesicatoria and Xanthomonas axonopodis pv. passiflorae (phytopathogenic bacteria causing diseases in pepper and tomato and passionfruit, respectively). Among the 66 crude intracellular and extracellular extracts obtained from fungi recovered from soil and 79 obtained from marine sediment samples, 25 showed the ability to prevent the growth of X. euvesicatoria in vitro and 28 showed the ability to prevent the growth of X. axonopodis pv. passiflorae in vitro. Intracellular and extracellular extracts from soil fungi inhibited around 97% of X. euvesicatoria and 98% of X. axonopodis pv. passiflorae at 2·1 mg ml -1 . The average inhibition rates against X. euvesicatoria and X. axonopodis pv. passiflorae for intracellular and extracellular extracts from marine sediments fungi were around 96 and 97%, respectively, at 3·0 mg ml -1 . Extracts containing secondary metabolites with antimicrobial activity against X. euvesicatoria and X. axonopodis pv. passiflorae were obtained, containing possible substitutes for the products currently used to control these phytopathogens. Micro-organisms from extreme ecosystems, such as the Antarctic ecosystem, need to survive in harsh conditions with low temperatures, low nutrients and high UV radiation. Micro-organisms adapt to these conditions evolving diverse biochemical and physiological adaptations essential for survival. All this makes these micro-organisms a rich source of novel natural products based on unique chemical scaffolds. Discovering novel bioactive compounds is essential because of the rise in antibiotic-resistant micro-organisms and the emergence of new infections. Fungi from Antarctic environments have been proven to produce bioactive secondary metabolites against various micro-organisms, but few studies

  1. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  2. 9 CFR 113.25 - Culture media for detection of bacteria and fungi.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Culture media for detection of bacteria and fungi. 113.25 Section 113.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Standard Procedures § 113.25 Culture media for detection of bacteria and fungi. (a...

  3. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    International Nuclear Information System (INIS)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers

  4. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  5. A short-term study on the interaction of bacteria, fungi and endosulfan in soil microcosm.

    Science.gov (United States)

    Xie, Huijun; Gao, Fuwei; Tan, Wei; Wang, Shu-Guang

    2011-12-15

    Endosulfan is one of the few organic chlorine insecticides still in use today in many developing countries. It has medium toxicity for fish and aquatic invertebrates. In this study, we added different concentrations of endosulfan to a series of soil samples collected from Baihua Park in Jinan, Shandong Province, China. Interactions of exogenous endosulfan, bacteria and fungi were analyzed by monitoring the changes in microbe-specific phospholipid fatty acids (PLFA), residual endosulfan and its metabolites which include; endosulfan sulfate, endosulfan lactone and endosulfan diol during a 9 days incubation period. Our results showed that endosulfan reduced fungi biomass by 47% on average after 9 days, while bacteria biomass increased 76% on average. In addition, we found that endosulfan degraded 8.62% in natural soil (NE), 5.51% in strepolin soil (SSE) and 2.47% in sterile soil (SE). Further analysis of the endosulfan metabolites in NE and SSE, revealed that the amount of endosulfan sulfate (ES) significantly increased and that of endosulfan lactone (EL) slightly decreased in both samples after 9 days. However, that of endosulfan diol (ED) increased in NE and decreased in SSE. After collective analysis our data demonstrated that fungi and bacteria responded differently to exogeous endosulfan, in a way that could promote the formation of endosulfan diol during endosulfan degradation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    Science.gov (United States)

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules. © 2015 IUMS.

  7. Bacteria in decomposing wood and their interactions with wood-decay fungi.

    Science.gov (United States)

    Johnston, Sarah R; Boddy, Lynne; Weightman, Andrew J

    2016-11-01

    The fungal community within dead wood has received considerable study, but far less attention has been paid to bacteria in the same habitat. Bacteria have long been known to inhabit decomposing wood, but much remains underexplored about their identity and ecology. Bacteria within the dead wood environment must interact with wood-decay fungi, but again, very little is known about the form this takes; there are indications of both antagonistic and beneficial interactions within this fungal microbiome. Fungi are hypothesised to play an important role in shaping bacterial communities in wood, and conversely, bacteria may affect wood-decay fungi in a variety of ways. This minireview considers what is currently known about bacteria in wood and their interactions with fungi, and proposes possible associations based on examples from other habitats. It aims to identify key knowledge gaps and pressing questions for future research. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi.

    Science.gov (United States)

    Supreeth, M; Raju, N S

    2017-08-01

    Large quantities of pesticides are applied on crops to protect them from pests in modern agricultural practices around the globe. The two insecticides, chlorpyrifos, belonging to the organophosphorous group and endosulfan, belonging to the organochlorine group, are vastly used insecticides on agricultural crops in the last three decades. Hence, both these insecticides are ubiquitous in the environment. Once applied, these two insecticides undergo transformation in the environment either biologically or non-biologically. Microbial degradation has been considered a safe and cost-effective method for removing contaminants from the environment. Both the insecticides have been subjected to biodegradation studies using various bacteria and fungi by the researchers. Here, in this review, we report on biotransformed products formed during the course of biodegradation of these two insecticides and also discuss about the aftereffects of their transformed metabolites. This is important, because the primary biotransformed metabolites 3,5,6, trichloro-2-pyridinol of chlorpyrifos and endosulfan sulfate of endosulfan are toxic as their parent compounds and are noxious to variety of organisms. In conclusion, it is recommended to obtain microbial cultures capable of mineralizing pesticides completely without formation of any such toxic by-product before adopting bioremediation or bioaugmentation technology.

  9. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Science.gov (United States)

    Newcombe, George; Campbell, Jason; Griffith, David; Baynes, Melissa; Launchbaugh, Karen; Pendleton, Rosemary

    2016-01-01

    Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  10. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    Directory of Open Access Journals (Sweden)

    George Newcombe

    Full Text Available Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  11. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  12. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  13. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Dong, Ke; Go, Rusea; Adams, Jonathan M

    2016-08-01

    Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

  14. enumeration, isolation and identification of bacteria and fungi

    African Journals Online (AJOL)

    userpc

    bioremediation of soil contaminated with petroleum products and possibly other oil polluted ... further processing. .... Table 3: Total fungi count in soil contaminated, amended soil samples (5%, 10%) ..... and Environmental Microbiology, Vol. 4,.

  15. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi

    African Journals Online (AJOL)

    Yomi

    2012-10-09

    Oct 9, 2012 ... Bacillus subtilis exhibited strong antagonism against fungi both from .... around the filter disk. The control .... This is probably due to the production of antibiotic substance .... Mechanisms employed by Trichoderma species in.

  16. In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria.

    Science.gov (United States)

    de Boer, Wietse; Wagenaar, Anne-Marieke; Klein Gunnewiek, Paulien J A; van Veen, Johannes A

    2007-01-01

    We hypothesized that apparently non-antagonistic soil bacteria may contribute to suppression of fungi during competitive interactions with other bacteria. Four soil bacteria (Brevundimonas sp., Luteibacter sp., Pedobacter sp. and Pseudomonas sp.) that exhibited little or no visible antifungal activity on different agar media were prescribed. Single and mixed strains of these species were tested for antagonism on a nutrient-poor agar medium against the plant pathogenic fungi Fusarium culmorum and Rhizoctonia solani and the saprotrophic fungus Trichoderma harzianum. Single bacterial strains caused little to moderate growth reduction of fungi (quantified as ergosterol), most probably due to nutrient withdrawal from the media. Growth reduction of fungi by the bacterial mixture was much stronger than that by the single strains. This appeared to be mostly due to competitive interactions between the Pseudomonas and Pedobacter strains. We argue that cohabitation of these strains triggered antibiotic production via interspecific interactions and that the growth reduction of fungi was a side-effect caused by the sensitivity of the fungi to bacterial secondary metabolites. Induction of gliding behavior in the Pedobacter strain by other strains was also observed. Our results indicate that apparently non-antagonistic soil bacteria may be important contributors to soil suppressiveness and fungistasis when in a community context.

  17. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi.

    Science.gov (United States)

    Chmiel, James F; Aksamit, Timothy R; Chotirmall, Sanjay H; Dasenbrook, Elliott C; Elborn, J Stuart; LiPuma, John J; Ranganathan, Sarath C; Waters, Valerie J; Ratjen, Felix A

    2014-10-01

    Airway infections are a key component of cystic fibrosis (CF) lung disease. Whereas the approach to common pathogens such as Pseudomonas aeruginosa is guided by a significant body of evidence, other infections often pose a considerable challenge to treating physicians. In Part I of this series on the antibiotic management of difficult lung infections, we discussed bacterial organisms including methicillin-resistant Staphylococcus aureus, gram-negative bacterial infections, and treatment of multiple bacterial pathogens. Here, we summarize the approach to infections with nontuberculous mycobacteria, anaerobic bacteria, and fungi. Nontuberculous mycobacteria can significantly impact the course of lung disease in patients with CF, but differentiation between colonization and infection is difficult clinically as coinfection with other micro-organisms is common. Treatment consists of different classes of antibiotics, varies in intensity, and is best guided by a team of specialized clinicians and microbiologists. The ability of anaerobic bacteria to contribute to CF lung disease is less clear, even though clinical relevance has been reported in individual patients. Anaerobes detected in CF sputum are often resistant to multiple drugs, and treatment has not yet been shown to positively affect patient outcome. Fungi have gained significant interest as potential CF pathogens. Although the role of Candida is largely unclear, there is mounting evidence that Scedosporium species and Aspergillus fumigatus, beyond the classical presentation of allergic bronchopulmonary aspergillosis, can be relevant in patients with CF and treatment should be considered. At present, however there remains limited information on how best to select patients who could benefit from antifungal therapy.

  18. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  19. Use of HPLC for the detection of iron chelators in cultures of bacteria, fungi, and algae

    International Nuclear Information System (INIS)

    Boyer, G.L.; Speirs, R.J.; Morse, P.D.

    1990-01-01

    Iron is essential for the growth of living cells. To meet biochemical needs, microorganisms, including algae, produce high affinity chelators termed siderophores. These compounds solubilize Fe and increase its bioavailability. We have developed a new method to study siderophore formation in cultured and natural environments. Based on the fact siderophores tightly bind 55-Fe, the radioactive complexes can be separated by HPLC using an inert PRP-1 column and detected by scintillation counting. This method cleanly resolves several known siderophores, including ferrichrome A, ferrichrome, desferal, and rhodotorulic acid. The optimization of the method and its use for analysis of siderophore formation in bacteria (E. coli, and Bacillus megaterium), fungi (Ustilago sphaerogena), and cyanobacteria (Anabaena flos-aqua UTEX 1444 and Anabaena sp. ATCC 27898) will be presented

  20. Continental-scale distributions of dust-associated bacteria and fungi

    DEFF Research Database (Denmark)

    Barberán, Albert; Ladau, Joshua; Leff, Jonathan W.

    2015-01-01

    It has been known for centuries that microorganisms are ubiquitous in the atmosphere, where they are capable of long-distance dispersal. Likewise, it is well-established that these airborne bacteria and fungi can have myriad effects on human health, as well as the health of plants and livestock...... across the United States to understand the continental-scale distributions of bacteria and fungi in the near-surface atmosphere. The microbial communities were highly variable in composition across the United States, but the geographic patterns could be explained by climatic and soil variables...

  1. Effect of soil moisture content on the radiosensitivity of soil bacteria and fungi

    International Nuclear Information System (INIS)

    Massoud, M.A.; El-Nennah, M.E.; El-Kholi, A.F.; Abd-Elmonem, M.A.

    1982-01-01

    The purpose of this investigation was to study the effect of soil moisture on the radiosensitivity of soil bacteria and fungi. The percentages of survival of soil bacteria and fungi, after exposure to different doses of gamma radiation, were lower in the moistened soil samples than in the dry one, inspite of the observed encouragement of wetting the soil samples, before gamma radiation exposure, on the proliferation of soil micro-organisms. This effect was explained by the indirect action from the breakdown products of radiolysis of water rather than by the direct damage to the cell structure

  2. RNA shotgun metagenomic sequencing of northern California (USA mosquitoes uncovers viruses, bacteria, and fungi

    Directory of Open Access Journals (Sweden)

    James Angus eChandler

    2015-03-01

    Full Text Available Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with

  3. Action of Antimicrobial Copper on Bacteria and Fungi Isolated from Commercial Poultry Hatcheries

    Directory of Open Access Journals (Sweden)

    RFR Depner

    Full Text Available ABSTRACT Since 2008, when the US Environmental Protection Agency (EPA registered copper and its alloys as an antimicrobial agent for contact surfaces, research has demonstrated their antimicrobial activity. The aim of this study was to evaluate the efficacy of antimicrobial copper against bacteria and fungi isolated from commercial poultry hatcheries in order to develop a microbiological control alternative in these environments. Samples were collected from the surfaces of hatcher baskets from two hatcheries. Mesophilic microorganisms and fungi/yeasts were isolated and standardized in concentration of 105 cells/mL. Four copper plates and four stainless steel plates were completely immersed for one minute in bacteria and fungi/yeasts solutions and left to dry for a day at room temperature. Subsequently, samples were collected from the metal plates with the aid of sterile swab and delimiter. These samples were planted onto Plate Count Agar (for mesophilic culture and Sabouraud Dextrose Agar (for fungi and yeast culture and incubated at 36°C for 48 hours and at 25°C for 5-7 days, respectively. After incubation, the colonies recovered from the plates were counted according to IN 62 of the Brazilian Ministry of Agriculture. Almost all contamination was eliminated from the surface of copper plates in a single day, while the stainless steel plates proved to be innocuous to the screened microorganisms. Copper, as a contact surface, proved to have important antimicrobial action on bacteria, fungi and yeasts common to hatcheries.

  4. Biodegradation of mixtures of pesticides by bacteria and white rot fungi

    OpenAIRE

    Gouma, Sofia

    2009-01-01

    The objective of this study was to examine the potential for degradation of mixtures of pesticides (chlorpyrifos, linuron, metribuzin) by a range of bacteria and fungi and to relate this capability to enzyme production and quantify the rates of degradation of the components of the mixture of xenobiotic compounds. Overall, although bacteria (19 Bacillus and 4 Pseudomonas species) exhibited tolerance to the individual and micture of pesticides actual degradation was not eviden...

  5. Effect of root exudates of various plants on composition of bacteria and fungi communities with special regard to pathogenic soil-borne fungi

    OpenAIRE

    Danuta Piętka; Elżbieta Patkowska

    2013-01-01

    The purpose of the studies conducted in the years 1996 - 1998 was to determine the composition of bacteria and fungi populations in the rhizosphere of winter wheat, spring wheat, soybean and potato, and in non-rhizosphere soil. Besides, the effect of root exudates of these plants on the formation of pathogenic fungi communities was established. The microbiological analysis showed that the greatest tolal number of bacteria was found in the rhizospheres of potato and soybean, and the lowest num...

  6. Diversity of bacteria and fungi associated with tarballs: Recent developments and future prospects

    Digital Repository Service at National Institute of Oceanography (India)

    Shinde, V.L.; Suneel, V.; Shenoy, B.D.

    Tarballs are formed by weathering of crude oil in marine environment. They are transported from open ocean to the shores by sea currents and waves. Tarball pollution is a major concern to global marine ecosystem. Microbes such as bacteria and fungi...

  7. The ecological role of type three secretion systems in the interaction of bacteria with fungi in soil and related habitats is diverse and context-dependent

    NARCIS (Netherlands)

    Nazir, Rashid; Mazurier, Sylvie; Yang, Pu; Lemanceau, Philippe; van Elsas, Jan Dirk

    2017-01-01

    Bacteria and fungi constitute important organisms in many ecosystems, in particular terrestrial ones. Both organismal groups contribute significantly to biogeochemical cycling processes. Ecological theory postulates that bacteria capable of receiving benefits from host fungi are likely to evolve

  8. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  9. Spoilage of vegetable crops by bacteria and fungi and related health hazards.

    Science.gov (United States)

    Tournas, V H

    2005-01-01

    After harvest, vegetables are often spoiled by a wide variety of microorganisms including many bacterial and fungal species. The most common bacterial agents are Erwinia carotovora, Pseudomonas spp., Corynebacterium, Xanthomonas campestris, and lactic acid bacteria with E. carotovora being the most common, attacking virtually every vegetable type. Fungi commonly causing spoilage of fresh vegetables are Botrytis cinerea, various species of the genera Alternaria, Aspergillus, Cladosporium, Colletotrichum, Phomopsis, Fusarium, Penicillium, Phoma, Phytophthora, Pythium and Rhizopus spp., Botrytis cinerea, Ceratocystis fimbriata, Rhizoctonia solani, Sclerotinia sclerotiorum, and some mildews. A few of these organisms show a substrate preference whereas others such as Botrytis cinerea, Colletotrichum, Alternaria, Cladosporium, Phytophthora, and Rhizopus spp., affect a wide variety of vegetables causing devastating losses. Many of these agents enter the plant tissue through mechanical or chilling injuries, or after the skin barrier has been broken down by other organisms. Besides causing huge economic losses, some fungal species could produce toxic metabolites in the affected sites, constituting a potential health hazard for humans. Additionally, vegetables have often served as vehicles for pathogenic bacteria, viruses, and parasites and were implicated in many food borne illness outbreaks. In order to slow down vegetable spoilage and minimize the associated adverse health effects, great caution should be taken to follow strict hygiene, good agricultural practices (GAPs) and good manufacturing practices (GMPs) during cultivation, harvest, storage, transport, and marketing.

  10. Nitrogen-fixing bacteria and arbuscular mycorrhizal fungi in Piptadenia gonoacantha (Mart. Macbr.

    Directory of Open Access Journals (Sweden)

    Joel Quintino de Oliveira Júnior

    Full Text Available Abstract The family Leguminosae comprises approximately 20,000 species that mostly form symbioses with arbuscular mycorrhizal fungi (AMF and nitrogen-fixing bacteria (NFB. This study is aimed at investigating and confirming the dependence on nodulation and biological nitrogen fixation in the specie Piptadenia gonoacantha (Mart. Macbr., which belongs to the Piptadenia group. Two consecutive experiments were performed in a greenhouse. The experiments were fully randomized with six replicates and a factorial scheme. For the treatments, the two AMF species and three NFB strains were combined to nodulate P. gonoacantha in addition to the control treatments. The results indicate this species’ capacity for nodulation without the AMF; however, the AMF + NFB combinations yielded a considerable gain in P. gonoacantha shoot weight compared with the treatments that only included inoculating with bacteria or AMF. The results also confirm that the treatment effects among the AMF + NFB combinations produced different shoot dry weight/root dry weight ratios. We conclude that AMF is not necessary for nodulation and that this dependence improves species development because plant growth increases upon co-inoculation.

  11. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  12. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.

    Science.gov (United States)

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.

  13. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  14. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  15. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    Little is known about the contribution of bacteria and fungi to decomposition of different carbon compounds in arctic soils, which are an important carbon store and possibly vulnerable to climate warming. Soil samples from a subarctic tundra heath were incubated with 13C-labeled glucose, acetic...... at concentrations low enough not to affect the total amount of PLFA. The label of glucose and acetic acid was rapidly incorporated into the PLFA in a pattern largely corresponding to the fatty acid concentration profile, while glycine and especially starch were mainly taken up by bacteria and not fungi, showing......, the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...

  16. Aerobic bacteria and fungi from skin lesions of fish in Khartoum state

    Directory of Open Access Journals (Sweden)

    Walaa Hassan Ibrahim

    2016-12-01

    Conclusion: Fishes with skin lesions are harboring many pathogenic bacteria and fungi and may act as a source of zoonotic infections and can transmit several pathogens to workers in fish industry and consumers. Therefore, thorough and strict routine inspection of fish is recommended to ensure safety and that there are no serious risks to consumers. [J Adv Vet Anim Res 2016; 3(4.000: 375-385

  17. Biological and structure-activity evaluation of chalcone derivatives against bacteria and fungi

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wender A.; Andrade, Carlos Kleber Z.; Napolitano, Hamilton B., E-mail: wender@unb.br, E-mail: ckleber@unb.br [Universidade de Brasilia (LaQMOS/UnB), DF (Brazil). Inst. de Quimica; Vencato, Ivo; Castro, Miriam R.C. de; Camargo, Ademir J. [Universidade Estadual de Goias (UEG), Anapolis, GO (Brazil). Ciencias Exatas e Tecnologicas; Lariucci, Carlito [Universidade Estadual de Goias (UEG), Goiania, GO (Brazil). Inst. de Fisica

    2013-01-15

    The present work describes the antibacterial and antifungal activities of several chalcones obtained by a straight Claisen-Schmidt aldol condensation determined by the minimal inhibitory concentration against different microorganisms (Gram-positive and Gram-negative bacteria and fungi). Solid state crystal structures of seven chalcones were determined by X-ray diffraction (XRD) analysis. Chemometric studies were carried out in order to identify a potential structure activity relationship. (author)

  18. Antifungal Rhizosphere Bacteria Can increase as Response to the Presence of Saprotrophic Fungi.

    Directory of Open Access Journals (Sweden)

    Wietse de Boer

    Full Text Available Knowledge on the factors that determine the composition of bacterial communities in the vicinity of roots (rhizosphere is essential to understand plant-soil interactions. Plant species identity, plant growth stage and soil properties have been indicated as major determinants of rhizosphere bacterial community composition. Here we show that the presence of saprotrophic fungi can be an additional factor steering rhizosphere bacterial community composition and functioning. We studied the impact of presence of two common fungal rhizosphere inhabitants (Mucor hiemalis and Trichoderma harzianum on the composition of cultivable bacterial communities developing in the rhizosphere of Carex arenaria (sand sedge in sand microcosms. Identification and phenotypic characterization of bacterial isolates revealed clear shifts in the rhizosphere bacterial community composition by the presence of two fungal strains (M. hiemalis BHB1 and T. harzianum PvdG2, whereas another M. hiemalis strain did not show this effect. Presence of both M. hiemalis BHB1 and T. harzianum PvdG2 resulted in a significant increase of chitinolytic and (in vitro antifungal bacteria. The latter was most pronounced for M. hiemalis BHB1, an isolate from Carex roots, which stimulated the development of the bacterial genera Achromobacter and Stenotrophomonas. In vitro tests showed that these genera were strongly antagonistic against M. hiemalis but also against the plant-pathogenic fungus Rhizoctonia solani. The most likely explanation for fungal-induced shifts in the composition of rhizosphere bacteria is that bacteria are being selected which are successful in competing with fungi for root exudates. Based on the results we propose that measures increasing saprotrophic fungi in agricultural soils should be explored as an alternative approach to enhance natural biocontrol against soil-borne plant-pathogenic fungi, namely by stimulating indigenous antifungal rhizosphere bacteria.

  19. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    Science.gov (United States)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  20. Fungi and bacteria inventory on soybean (Glycine max (L.) merill) planting media applied by local microorganisms

    Science.gov (United States)

    Akhsan, Ni'matuljannah; Vionita

    2017-02-01

    An experiment aimed to determine the effect of application of several types of local microorganisms (MOL) and the number of doses to the development of fungi and bacteria on soybean planting media, have been conducted in Samarinda for 3 (three) months. Factorial experiment arranged in a completely randomized design and repeated three times, was used in this experiment. The first factor was the type of MOL consisted of cow dung (m1), snails (m2), banana peel (m3) and bamboo roots (m4), and the second factor was the dose MOL zero mL (d0), 100 mL (d1), 200 mL (d2), 300 mL (d3), 400 mL (d4) analyzed with Anova and Least Significance Difference (LSD) at 5%. Fungi and bacteria contained in the local microorganisms (cow dung, snails, banana peel and bamboo root) are: fungus Aspergillus sp, Penicillium sp., Trichoderma sp., cellulotic and lignolitic bacteria. An increase in the type and amount of fungus is happened for some genus. The dominant bacteria in the planting medium is a gram-negative bacteria. Cow dung seemed the best source at the dosages level of 400 ml.

  1. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    OpenAIRE

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E.; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments w...

  2. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi.

    Science.gov (United States)

    Swain, Durga Madhab; Yadav, Sunil Kumar; Tyagi, Isha; Kumar, Rahul; Kumar, Rajeev; Ghosh, Srayan; Das, Joyati; Jha, Gopaljee

    2017-09-01

    Some bacteria can feed on fungi, a phenomenon known as mycophagy. Here we show that a prophage tail-like protein (Bg_9562) is essential for mycophagy in Burkholderia gladioli strain NGJ1. The purified protein causes hyphal disintegration and inhibits growth of several fungal species. Disruption of the Bg_9562 gene abolishes mycophagy. Bg_9562 is a potential effector secreted by a type III secretion system (T3SS) and is translocated into fungal mycelia during confrontation. Heterologous expression of Bg_9562 in another bacterial species, Ralstonia solanacearum, confers mycophagous ability in a T3SS-dependent manner. We propose that the ability to feed on fungi conferred by Bg_9562 may help the bacteria to survive in certain ecological niches. Furthermore, considering its broad-spectrum antifungal activity, the protein may be potentially useful in biotechnological applications to control fungal diseases.Some bacteria can feed on live fungi through unclear mechanisms. Here, the authors show that a T3SS-secreted protein, which is homologous to phage tail proteins, allows a Burkholderia gladioli strain to kill and feed on various fungal species.

  3. Mechanisms of action of fungi and bacteria used as biofertilizers in agricultural soils : a systematic review

    Directory of Open Access Journals (Sweden)

    Sara Paulina Restrepo-Correa

    2017-05-01

    Full Text Available Phosphorus, nitrogen, iron and potassium are some compounds necessary for plant growth and development; chemical fertilizers used to increase concentration significantly affect the environment and soil ecosystems. According to the scientific literature, microorganisms with biofertilizer potential have demonstrated various mechanisms of action to solubilize these compounds and thus meet the requirements of plants. This systematic review collects scientific information that describes the mechanisms of action of microbial fertilizers in agricultural soils, published between 2004 and 2014, in three different databases; ScienceDirect, SpringerLink and Scopus,using the search path (biofertilizer AND (bacteria OR fungi AND (effect OR action OR mechanism. After using different inclusion and exclusion criteria, the search displayed a total of 63 original articles, including six unindexed documents. As a result of the systematic review, it indicates that the production of various organic acids allows soil acidification, facilitating absorption of elements. It was also observed that solubilization of P is the most described mechanism, by obtaining a solubilizing of 726.5 mg/L of P due to P. pseudoalcaligenes

  4. Qualitative assessment of bacteria and fungi in the indoor environment of hospitals of Islamabad, Pakistan

    International Nuclear Information System (INIS)

    Tahir, S.S.; Rauf, N.; Batool, A.

    2012-01-01

    This study was conducted to determine the health risks in the indoor air of the four government. hospitals of the Islamabad city, Pakistan. Four different main wards, i.e., general male/female surgical wards, children's ward and microbiology laboratory were included. The sampling was done in the summer season due to the possibility of maximum recovery of microorganisms. Results showed presence of bacterial and fungal pathogens in the air of hospitals especially in surgical wards of all hospitals. Lowest bacterial counts were recorded in microbiology laboratory. Among bacterial isolates Micrococcus and Staphylococcus auleus were abundantly found in all hospitals as 22.09 % and 21.2 %, respectively followed by gram negative group of bacteria i.e, Enterobacteriaceae spp. (Escherichia coil), Pseudomonas spp. were found to be lowest as 6.5 % of the total bacterial load in all hospitals. Among the fungi Aspergillus (fumigatus.niger; flavus) recovery was the most in the environment of all hospitals with the value of 27.7 % and Tricosporon was observed lowest with the value of 1.15 %. p- value for total microbial load among the hospitals sampled was not significant. (author)

  5. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  6. Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata

    Directory of Open Access Journals (Sweden)

    Anthony C Yannarell

    2011-06-01

    Full Text Available The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader-microbe interactions. Lespedeza cuneata (Dum. Cours. G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathetic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant.

  7. Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators

    Directory of Open Access Journals (Sweden)

    Sema Sandikci Altunatmaz

    2012-12-01

    Full Text Available The purpose of this study was to determine the microbiological air quality (psychrotrophic bacteria and airborne fungi and distribution of fungi in different types of ready-to-eat (RTE food-storage refrigerators (n=48 at selected retail stores in the city of Edirne, Turkey. Refrigerators were categorized according to the type of RTE food-storage: meat products, vegetables, desserts, or a mix of food types. Microbiological quality of air samples was evaluated by using a Mas-100 Eco Air Sampler. Four refrigerators (all containing meat products, 8.3% produced air samples with undetectable microorganisms. The highest detected mean value of airborne psychrotrophic bacteria and fungi was 82.3 CFU/m³ and 54.6 CFU/m³, respectively and were found in mixed-food refrigerators. The dominant airborne fungal genera found were Penicillium (29.0%, Aspergillus (12.0%, Mucor (9%, Cladosporium (8%, Botyrtis (7%, and Acremonium (6%. By definition, RTE food does not undergo a final treatment to ensure its safety prior to consumption. Therefore, ensuring a clean storage environment for these foods is important to prevent food-borne disease and other health risks.

  8. Biodegradation of naphthalenesulphonate polymers: the potential of a combined application of fungi and bacteria.

    Science.gov (United States)

    Gullotto, Antonella; Lubello, Claudio; Mannucci, Alberto; Gori, Riccardo; Munz, Giulio; Briganti, Fabrizio

    2015-01-01

    The potential of several fungi and their synergy with bacterial biomasses were evaluated as a solution for the removal of 2-naphthalensulphonic acid polymers (2-NSAPs) from petrochemical wastewater, characterized by a chemical oxygen demand (COD) greater than 9000 mg/L. The ability of fungi to grow on 2-NSAP mixtures was preliminarily investigated using a solid medium, and then the action of the selected strains, both in suspended and immobilized form, was evaluated in terms of degradation, depolymerization, sorption and an increase in biodegradability of 2-NSAP. Among the 25 fungi evaluated two, in particular, Bjerkandera adusta and Pleurotus ostreatus, have been found to significantly depolymerize 2-NSAP yielding to the corresponding monomer (2-naphthalenesulphonic acid, 2-NSA), which has been further degraded by a bacterial consortia selected in a wastewater treatment plant (WWTP). The fungal treatment alone was able to reduce the COD value up to 44%, while activated sludge removed only 9% of the initial COD. In addition, the combined treatment (fungi and bacteria) allowed an increase in the COD removal up to 62%.

  9. Fungi

    DEFF Research Database (Denmark)

    Hajek, Ann E.; Meyling, Nicolai Vitt

    2018-01-01

    been the focus of most ecological research. Some taxa of invertebrate pathogenic fungi have evolved adaptations for utilizing living plants as substrates, and these lifestyles have recently received increased attention from researchers following the initial documentations of such plant associations...

  10. Variations of bacteria and fungi in PM2.5 in Beijing, China

    Science.gov (United States)

    Du, Pengrui; Du, Rui; Ren, Weishan; Lu, Zedong; Zhang, Yang; Fu, Pingqing

    2018-01-01

    Bacteria and fungi present in the airborne fine particulate matter (PM2.5) play important roles in the atmosphere and provide significant impacts on human health. However, variations in the species composition and community structure have not been well understood. In this study, we sampled PM2.5 in suburban Beijing and analyzed the bacterial and fungal composition during different seasons and at different air pollution levels using gene sequencing methods. The results showed that the species richness and diversity of bacterial communities displayed a downtrend with the aggravation of air pollution. Additionally, the bacterial communities in spring samples showed the highest species richness, with average richness estimators, ACE and Chao 1, up to 14,649 and 7608, respectively, followed by winter samples (7690 and 5031, respectively) and autumn samples (4368 and 3438, respectively), whereas summer samples exhibited the lowest average ACE and Chao 1 indexes (2916 and 1900, respectively). The species richness of fungal communities followed the same seasonal pattern. The community structure of bacteria and the species composition of fungi in PM2.5 showed significant seasonal variations. The dominant bacteria were Actinobacteria (33.89%), Proteobacteria (25.72%), Firmicutes (19.87%), Cyanobacteria/Chloroplast (15.34%), and Bacteroidetes (3.19%), and Ascomycota, with an average abundance of 74.68% of all sequences, were the most abundant fungi. At the genus level, as many as 791 bacterial genera and 517 fungal genera were identified in PM2.5. The results advance our understanding of the distribution and variation of airborne microorganisms in the metropolitan surrounding areas.

  11. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  12. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    Science.gov (United States)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  13. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.

    Science.gov (United States)

    Martin, Gaëtan; Guggiari, Matteo; Bravo, Daniel; Zopfi, Jakob; Cailleau, Guillaume; Aragno, Michel; Job, Daniel; Verrecchia, Eric; Junier, Pilar

    2012-11-01

    The oxalate-carbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO(2). In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest.

    Science.gov (United States)

    Maddela, N R; Masabanda, M; Leiva-Mora, M

    2015-01-01

    Isolating new diesel-oil-degrading microorganisms from crude-oil contaminated sites and evaluating their degradation capacities are vitally important in the remediation of oil-polluted environments and crude-oil exploitation. In this research, new hydrocarbon-degrading bacteria and fungi were isolated from the crude-oil contaminated soil of the oil-fields in the Amazon rainforest of north-east Ecuador by using a soil enrichment technique. Degradation analysis was tracked by gas chromatography and a flame ionization detector. Under laboratory conditions, maximum degradability of the total n-alkanes reached up to 77.34 and 62.62 removal ratios after 30 days of incubation for the evaporated diesel oil by fungi (isolate-1) and bacteria (isolate-1), respectively. The 16S/18S rDNA sequence analysis indicated that the microorganisms were most closely (99-100%) related to Bacillus cereus (isolate-1), Bacillus thuringiensis (isolate-2), Geomyces pannorum (isolate-1), and Geomyces sp. (isolate-2). Therefore, these strains enable the degradation of hydrocarbons as the sole carbon source, and these findings will benefit these strains in the remediation of oil-polluted environments and oil exploitation.

  15. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies.

  16. Study of antimicrobial effect of novel Quaternary Ammonium Compounds on bacteria and fungi

    Directory of Open Access Journals (Sweden)

    Maryam Sadrnia

    2014-10-01

    Full Text Available Background: Quarterly Ammonium Compounds (QuAC are the more effective antimicrobial agents in medicine and industry. It needs to produce the new compounds with the wider spectrum and less toxicity, because of microbial resistance. Aim of this study was microbiological Evaluation of the new Quarterly Ammonium Compounds produced by Structural modifications on some bacteria, yeast and fungi. Material and Methods: 16 Quat salts were designed and made in Ethanol or Aceto Nitril. Minimum Inhibitory Concentration (MIC was determined by standard method on Nutrient Broth and Minimal agar culture media for bacteria , Potato Dextrose Agar (PDA for fungi and Nutrient Agar and Saboro Dextrose Agar (SDA for yeasts . Results: Compounds 2,7,8,9,12,13 has the more antimicrobial effect ( minimum of MIC. Furthermore, it was shown that MIC was unrelated to culture compounds. In yeast culture it must to increases the concentration in enriched media. Compounds 9,12 and 13 has the more antibacterial effect as well as antifungal effect. Conclusion: In comparison of structure of produced compounds and results of the study, it was revealed that radical R3 has the most important role in antimicrobial properties of Quats and it could to be substitute any suitable group related to increasing anti microbial effects.

  17. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats.

    Science.gov (United States)

    Will, M E; Sylvia, D M

    1990-07-01

    Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.

  18. The concomitant use of indigenous soil bacteria and fungi to enhance the bioremediation of refinery waste

    Energy Technology Data Exchange (ETDEWEB)

    Campos Carvalho, F.J.P. de [Universidade Federal do Parana, Curitiba (Brazil)

    2001-07-01

    Usually, the use of indigenous soil bacteria for the remediation of petroleum-contaminated soils was restricted to the biodegradation of low-molecular weight petroleum hydrocarbons such as gasoline, diesel, fuel oil and jet fuel. The advantage of using indigenous microorganisms is the minimization of the impact of the treatment on the microbial diversity. As a rule,these techniques are also well accepted by the public. Other studies have shown that fungi is successful for the bioremediation of heavier-weight contaminants. The concomitant transformation of low-molecular weight and heavier recalcitrant oil fractions to inorganic and humic form can be accomplished with the concomitant action of bacteria and fungi. The development of a soil biotreatment program using this concomitant technique was performed by PETROBRAS Petroleo Brasileiro S.A. - Refinaria Presidente Getulio Vargas in conjunction with the Universidade Federal do Parana. It resulted in a full-scale technology that allows the degradation of oil waste. Approximately two years of treatment are required to achieve the desired results. The use of standard analytical methods and bioindicators used on the treated soil indicated that the treated soil met the standards for agricultural soil quality. A recent oil spill occurred in Araucaria, Brazil and a bioremediation area was inoculated, and to date the results prove the beneficial effects to be derived from the use of inoculation. Some results were presented in table format. 3 tabs.

  19. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Science.gov (United States)

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  20. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    Directory of Open Access Journals (Sweden)

    Björn Hoppe

    Full Text Available Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  1. Fungi, beta-Glucan, and Bacteria in Nasal Lavage of Greenhouse Workers and Their Relation to Occupational Exposure

    DEFF Research Database (Denmark)

    Madsen, A. M.; Tendal, K.; Thilsing, T.

    2013-01-01

    occupational exposure to fungi, -glucan, and bacteria and contents of fungi, -glucan, and bacteria in nasal lavage (NAL) of greenhouse workers. We also studied whether contents of microorganisms in NAL were related to gender, time of the work week, and runny nose. NAL samples (n 135) were taken Monday morning....... The ratios of fungi in NAL between Thursday at noon and Monday morning were 14 (median value) for men and 3.5 for women. Gender had no effect on the exposure level but had a significant effect on the content of fungi, -glucan, and bacteria in NAL, with the highest contents in NAL of men. On Thursdays......, the median content of fungi in NAL samples of men without runny noses was 9408 cfu per NAL sample, whereas the same content for women was 595 cfu per NAL sample. Workers with runny noses had fewer fungi in NAL than workers without runny noses. A higher content of -glucan per fungal spore was found in NAL...

  2. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith.

    Science.gov (United States)

    Chávez-Gómez, B; Quintero, R; Esparza-García, F; Mesta-Howard, A M; Zavala Díaz de la Serna, F J; Hernández-Rodríguez, C H; Gillén, T; Poggi-Varaldo, H M; Barrera-Cortés, J; Rodríguez-Vázquez, R

    2003-09-01

    Sixteen co-cultures composed of four bacteria and four fungi grown on sugarcane bagasse pith were tested for phenanthrene degradation in soil. The four bacteria were identified as Pseudomonas aeruginose, Ralstonia pickettii, Pseudomonas sp. and Pseudomonas cepacea. The four fungi were identified as: Penicillium sp., Trichoderma viride, Alternaria tenuis and Aspergillus terrus that were previously isolated from different hydrocarbon-contaminated soils. Fungi had a statistically significant positive (0.0001bacteria removed the compound by an order of 20%. Co-cultures B. cepacea-Penicillium sp., R. pickettii-Penicillium sp., and P. aeruginose-Penicillium sp. exhibited synergism for phenanthrene removal, reaching 72.84+/-3.85%, 73.61+/-6.38% and 69.47+/-4.91%; in 18 days, respectively.

  3. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse

    DEFF Research Database (Denmark)

    Thilsing, T.; Madsen, A. M.; Basinas, I.

    2015-01-01

    BACKGROUND: Greenhouse workers are exposed to dust, endotoxin, fungi, and bacteria potentially causing airway inflammation as well as systemic symptoms. Knowledge about determinants of exposure is a prerequisite for efficient prevention through knowledge-based reduction in exposure. The objective......, Lavandula, Rhipsalideae, and Helleborus. The samples were gravimetrically analysed for inhalable dust. Endotoxin was assessed by the Limulus Amoebocyte Lysate test and culture-based quantification of bacteria and fungi was performed. Information on the performed tasks during sampling was extracted from...... and between 0.84 and 1097 EU m(-3) for endotoxin exposure, with the highest mean levels measured during Lavandula and Campanula handling, respectively. Personal exposure to fungi ranged between 1.8x10(2) and 3.4x10(6) colony-forming units (CFU) m(-3) and to bacteria between 1.6x10(1) and 4.2x10(5) CFU m(-3...

  4. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  5. Antimicrobial Activity of Pigments Extracted from Rhodotorula glutinis Against Some Bacteria and Fungi

    Directory of Open Access Journals (Sweden)

    Mahmoud Yolmeh

    2016-12-01

    Full Text Available Background Nowadays hazards of synthetic additives and preservatives have been identified, so researchers are looking to a natural and safe alternative for them. The aim of this study was to evaluate antimicrobial effect of carotenoids of Rhodotorula glutinis on the some pathogenic bacteria and fungi. Methods This experimental study was done in Gorgan University of Agriculture and Natural Resources. After cultivating R. glutinis in 50 mL YPG broth at 30°C for overnight, cells were harvested by centrifugation at 10,000 rpm for 10 minutes and were washed three times with distilled water. Cells were ruptured 3 times with 12 mL of acetone and broken using homogenizer. Then the suspension was centrifuged and the supernatant collected. The supernatant (contain pigments was powdered using freeze-dryer. Antimicrobial activity was evaluated by disc diffusion method and the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC was determined by using the agar dilution method. Results Giving the results, carotenoids of R. glutinis was effective on the growth of all the tested bacteria, so that Bacillus cereus and Salmonella enteritidis were the lowest and highest sensitivity to this pigment, respectively. The highest MIC and MBC among the tested bacteria were observed for S. enteritidis and Escherichia coli, respectively; whereas MBC was not observed for S. enteritidis at concentrations of the tested pigment. Conclusions Gram-positive bacteria were more sensitive than Gram-negative bacteria against the antimicrobial activity of pigments of R. glutinis. According to the results, pigments of R. glutinis can be used as an inhibitor of bacterial growth.

  6. Inhibition of in vitro growth of soil-borne pathogens by compost-inhabiting indigenous bacteria and fungi

    International Nuclear Information System (INIS)

    Ramzan, N.; Noreen, N.; Shahzad, S.

    2014-01-01

    During the present studies, compost-inhabiting microorganisms including 44 fungi and 15 bacteria isolated from different compost samples were evaluated for their in vitro efficacy against soil-borne pathogens viz., Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani, and Sclerotium rolfsii. Compost inhabiting microbes like Trichoderma harzianum, T. virens, Bacillus cereus, B. pumilus, B. subtilis, Micrococcus varians and Pseudomonas fluorescens were found to inhibit all the test pathogens. Acrophialophora fusispora and Penicillium citrinum reduced the mycelial growth of all the test pathogens except Sclerotium rolfsii. Bacillus licheniformis and Bacillus megaterium showed biocontrol activity against all the pathogens except Rhizoctonia solani. Trichoderma harzianum parasitized mycelia of all the tested pathogens and produced coiling around the mycelium. (author)

  7. A survey of fungi and some indicator bacteria in chlorinated water of indoor public swimming pools

    Energy Technology Data Exchange (ETDEWEB)

    Aho, R.; Hirn, J.

    1981-01-01

    Fifty-four water samples, of volume 500 ml, originating from six public indoor fresh water swimming pools were examined for the presence of fungi and some indicator bacteria by a membrane-filter method. Sabouraud-dextrose agar and selective Candida albicans-medium were used for isolation and identification of fungi. In all but one of the samples the free chlorine content was above 0.40 mg/l. No Candida albicans were detected. Molds and unidentified yeasts were isolated from 29 of the samples. The following species were recorded: Acremonium spp., ALternaria sp., Aspergillus spp., Candida guilliermondii, Chaetomium sp., Cladosporium spp., Clasterosporium sp., Fusarium spp., Geotrichium sp., Penicillium spp., Petriellidium boydii and Phoma spp. Their occurrence was sporadic, each species mostly appearing as single colonies only, with a maximum of 5 colonies. Bacterial growth was noticed in 15 samples, but only in the sample of low free chlorine content did this reach significant proportions. The study indicates that the standard of chlorination is, at least in general, an adequate measure against fungal contamination of swimming pool water. However, the spectrum of mold species encountered encourages a further search for possible indicator species among these organisms.

  8. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    Energy Technology Data Exchange (ETDEWEB)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes, E-mail: fabianocefetrv@yahoo.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Lima, William Cardoso; Soares, Marcos Antonio [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Dept. de Botanica e Ecologia; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena [Universidade de Franca, SP (Brazil). Nucleo de Pesquisa em Ciencias Exatas e Tecnologicas

    2013-10-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes Greek-Small-Letter-Tau -cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3{beta}-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  9. Metabolic response induced by endophytic fungi and bacteria in H. marrubioides Epling in vitro micro plants

    International Nuclear Information System (INIS)

    Vitorino, Luciana Cristina; Silva, Fabiano Guimaraes; Lima, William Cardoso; Soares, Marcos Antonio; Pedroso, Rita Cassia Nascimento; Silva, Maroli Rodrigues; Dias, Herbert Junior; Crotti, Antonio Eduardo Miller; Silva, Marcio Luis Andrade e; Cunha, Wilson Roberto; Pauletti, Patricia Mendonca; Januario, Ana Helena

    2013-01-01

    Hyptis marrubioides Epling is a native plant from Brazilian Cerrado. In this paper, the response of in vitro micro plants of this species to inoculation with bacterial and fungal endophytic isolates is evaluated. HPLC-DAD analysis showed the presence of 3,4-O-(Z)-dicaffeoylquinic acid and quercetin-7-O-glucoside as the main components. GC/MS analysis demonstrated that the sesquiterpenes τ-cadinol and caryophyllene oxide were only produced in micro plants inoculated with endophytic bacteria, while methyl hexadecanoate, methyl heptadecanoate and methyl (Z,Z,Z) 9,12,15-octadecatrienoate and the triterpene methyl 3β-hydroxy-urs-12-en-28-oate were over expressed only when the micro plant was treated with endophytic fungi. (author)

  10. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  11. Protection of the vehicle cab environment against bacteria, fungi and endotoxins in composting facilities.

    Science.gov (United States)

    Schlosser, O; Huyard, A; Rybacki, D; Do Quang, Z

    2012-06-01

    Microbial quality of air inside vehicle cabs is a major occupational health risk management issue in composting facilities. Large differences and discrepancies in protection factors between vehicles and between biological agents have been reported. This study aimed at estimating the mean protection efficiency of the vehicle cab environment against bioaerosols with higher precision. In-cab measurement results were also analysed to ascertain whether or not these protection systems reduce workers' exposure to tolerable levels. Five front-end loaders, one mobile mixer and two agricultural tractors pulling windrow turners were investigated. Four vehicles were fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system. The four others were only equipped with pleated paper filter without pressurisation. Bacteria, fungi and endotoxins were measured in 72 pairs of air samples, simultaneously collected inside the cab and on the outside of the cab with a CIP 10-M sampler. A front-end loader, purchased a few weeks previously, fitted with a pressurisation and high efficiency particulate air (HEPA) filtration system, and with a clean cab, exhibited a mean protection efficiency of between 99.47% CI 95% [98.58-99.97%] and 99.91% [99.78-99.98%] depending on the biological agent. It is likely that the lower protection efficiency demonstrated in other vehicles was caused by penetration through the only moderately efficient filters, by the absence of pressurisation, by leakage in the filter-sealing system, and by re-suspension of particles which accumulated in dirty cabs. Mean protection efficiency in regards to bacteria and endotoxins ranged between 92.64% [81.87-97.89%] and 98.61% [97.41-99.38%], and between 92.68% [88.11-96.08%] and 98.43% [97.44-99.22%], respectively. The mean protection efficiency was the lowest when confronted with fungal spores, from 59.76% [4.19-90.75%] to 94.71% [91.07-97.37%]. The probability that in-cab exposure to fungi

  12. Emission of bacteria and fungi in the air from wastewater treatment plants - a review.

    Science.gov (United States)

    Korzeniewska, Ewa

    2011-01-01

    An increase in global population, coupled with intensive development of industry and agriculture, has resulted in the generation and accumulation of large amounts of waste around the world. The spread of pathogenic microorganisms, endotoxins, odours and dust particles in the air is an inevitable consequence of waste production and waste management. Thus, the risk of infections associated with wastewater treatment plants (WWTPs) has become of a particular importance in recent decades. Sewage and unstable sludge contain various pathogens such as viruses, bacteria, and human and animal parasites. These microorganisms can be transmitted to the ambient air in wastewater droplets, which are generated during aeration or mechanical moving of the sewage. Bioaerosols generated during wastewater treatment may therefore pose a potential health hazard to workers of these plants or to habitants of their surroundings. The degree of human exposure to airborne bacteria, fungi, endotoxin and other allergens may vary significantly depending upon the type and the capacity of a plant, kind of the facilities, performed activities and meteorological conditions.

  13. On the reaction of some bacteria and fungi on coal tar creosote. Zur Verhalten einiger Bakterien und Pilze gegenueber Steinkohlenteeroel

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, O.; Dittberner, D.; Faix, O. (Universitaet Hamburg, Hamburg (Germany). Ordinariat fuer Holzbiologie)

    1991-01-01

    To contribute to the waste management of wood preservatives, the biodegradability of coal tar creosote by bacteria and fungi has been investigated. Microorganisms comprised 24 bacterial strains and 31 fungi from different systematic and ecological groups as well as isolates from contaminated soils. Based on countings of viable cells, the experiments with various nutrient media, methods of cultivation, preservative concentrations, and organic solvents yielded some bacteria which could grow in the presence of creosote: {ital Aeromonas hydrophila}, {ital Flavobacterium} sp., {ital Pseudomonas arvilla}, {ital P. fluorescens}, and {ital P. putida}. The white-rot fungi {ital Bjerkandera adusta}, {ital Heterobasidion annosum}, {ital Hirschioporus abietinus}, {ital Lentinula edodes}, {ital Peniophora gigantea}, {ital Pleurotus ostreatus}, {ital Schizophyllum commune}, and {ital Trametes versicolor}, the brown-rot fungus {ital Lentinus lepideus}, the staining fungi {ital Ceratocystis piceae} and {ital Stereum sanguinolentum}, and the moulds {ital Paecilomyces variotii} and {ital Trichoderma viride} also grew with creosote. To prepare samples for IR-measurements, continuous extraction of creosote from the nutrient liquid by percolation with methylene chloride was suitable. However, the IR-spectra of creosote did not show any measurable changes after incubation with 16 bacterial strains and 6 fungi. 42 refs., 2 figs., 4 tabs.

  14. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse.

    Science.gov (United States)

    Thilsing, Trine; Madsen, Anne Mette; Basinas, Ioannis; Schlünssen, Vivi; Tendal, Kira; Bælum, Jesper

    2015-03-01

    Greenhouse workers are exposed to dust, endotoxin, fungi, and bacteria potentially causing airway inflammation as well as systemic symptoms. Knowledge about determinants of exposure is a prerequisite for efficient prevention through knowledge-based reduction in exposure. The objective of this study was to assess the occupational exposure in a flower greenhouse and to investigate the impact of work tasks on the intensity and variability in exposure. Seventy-six personal full-shift exposure measurements were performed on 38 employees in a Danish flower greenhouse producing Campanula, Lavandula, Rhipsalideae, and Helleborus. The samples were gravimetrically analysed for inhalable dust. Endotoxin was assessed by the Limulus Amoebocyte Lysate test and culture-based quantification of bacteria and fungi was performed. Information on the performed tasks during sampling was extracted from the greenhouse electronic task logging system. Associations between log-transformed exposure outcomes, season, and work tasks were examined in linear mixed-effects regression with worker identity as random effect. Measured concentrations ranged between 0.04 and 2.41mg m(-3) for inhalable dust and between 0.84 and 1097 EU m(-3) for endotoxin exposure, with the highest mean levels measured during Lavandula and Campanula handling, respectively. Personal exposure to fungi ranged between 1.8×10(2) and 3.4×10(6) colony-forming units (CFU) m(-3) and to bacteria between 1.6×10(1) and 4.2×10(5) CFU m(-3). Exposure to dust, endotoxin, fungi, and bacteria differed between seasons. Packing Lavandula, sticking, potting, and grading Rhipsalideae, and all examined tasks related to Campanula production except sticking increased dust exposure. Endotoxin exposure was increased during sticking Campanula and pinching or packing Rhipsalideae, and fungi exposure was elevated by subtasks performed in the research and development area for Campanula, and by potting, packing/dumping Campanula. Sticking and

  15. Distribution of bacteria and fungi in the earthworm Libyodrillus violaceous (Annelida: Oligochaeta, a native earthworm from Nigeria

    Directory of Open Access Journals (Sweden)

    A. B Idowu

    2006-03-01

    Full Text Available Earthworms are soil invertebrates that play a key role in recycling organic matter in soils.In Nigeria, earthworms include Libyodrillus violaceous. Aerobic and anaerobic bacterial counts, as well as fungal counts of viable microorganisms in soils and gut sections, were made on twenty L. violaceous collected from different sites on the campus of the University of Agriculture, Abeokuta, Nigeria. The samples were collected between April and November, 2002. Numbers of microorganisms were higher in castings and gut sections than in uningested soil samples. The guts and their contents also had higher moisture and total nitrogen contents than the uningested soils. Bacteria and fungi isolated from the samples were identified by standard microbiological procedures on the bases of their morphological and biochemical characteristics. Isolated bacteria were identified as Staphylococcus, Bacillus spp., Pseudomonas aeruginosa, Streptococcus mutans, Clostridium, Spirocheata spp., Azotobacter spp., Micrococcus lylae, Acinetobacter spp., Halobacterium for bacteria. Yeast isolates were identified as Candida spp., Zygosaccharomyces spp., Pichia spp., and Saccharomyces spp while molds were identified as, Aspergillus spp., Pytium spp., Penicillium spp., Fusarium spp and Rhizopus spp. Of the five locations examined, the refuse dump area had the highest numbers of both aerobic and anaerobic organisms, followed by the arboretum while the cultivated land area recorded the lowest counts. The higher numbers of microorganisms observed in the gut sections and casts of the earthworms examined in this work reinforce the general concept that the gut and casts of earthworms show higher microbial diversity and activity than the surrounding soil. Rev. Biol. Trop. 54 (1: 49-58. Epub 2006 Mar 31.

  16. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-Glycine and FACE CO2

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Dungait, Jennifer A.J.; Bol, Roland

    2014-01-01

    PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i...

  17. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Science.gov (United States)

    Petatán-Sagahón, Iván; Anducho-Reyes, Miguel Angel; Silva-Rojas, Hilda Victoria; Arana-Cuenca, Ainhoa; Tellez-Jurado, Alejandro; Cárdenas-Álvarez, Isabel Oyuki; Mercado-Flores, Yuridia

    2011-01-01

    Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease. PMID:22016606

  18. Isolation of Bacteria with Antifungal Activity against the Phytopathogenic Fungi Stenocarpella maydis and Stenocarpella macrospora

    Directory of Open Access Journals (Sweden)

    Yuridia Mercado-Flores

    2011-08-01

    Full Text Available Stenocarpella maydis and Stenocarpella macrospora are the causal agents of ear rot in corn, which is one of the most destructive diseases in this crop worldwide. These fungi are important mycotoxin producers that cause different pathologies in farmed animals and represent an important risk for humans. In this work, 160 strains were isolated from soil of corn crops of which 10 showed antifungal activity against these phytopathogens, which, were identified as: Bacillus subtilis, Pseudomonas spp., Pseudomonas fluorescens, and Pantoea agglomerans by sequencing of 16S rRNA gene and the phylogenetic analysis. From cultures of each strain, extracellular filtrates were obtained and assayed to determine antifungal activity. The best filtrates were obtained in the stationary phase of B. subtilis cultures that were stable to the temperature and extreme pH values; in addition they did not show a cytotoxicity effect against brine shrimp and inhibited germination of conidia. The bacteria described in this work have the potential to be used in the control of white ear rot disease.

  19. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    Science.gov (United States)

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests.

    Science.gov (United States)

    McKernan, Kevin; Spangler, Jessica; Helbert, Yvonne; Lynch, Ryan C; Devitt-Lee, Adrian; Zhang, Lei; Orphe, Wendell; Warner, Jason; Foss, Theodore; Hudalla, Christopher J; Silva, Matthew; Smith, Douglas R

    2016-01-01

    Background : The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM) testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR) approach marketed by Medicinal Genomics Corporation. Methods : A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results : Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial) fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions : These findings have important implications for the Cannabis and food safety testing industries.

  1. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.

    Science.gov (United States)

    Liu, Shao-Heng; Zeng, Guang-Ming; Niu, Qiu-Ya; Liu, Yang; Zhou, Lu; Jiang, Lu-Hua; Tan, Xiao-Fei; Xu, Piao; Zhang, Chen; Cheng, Min

    2017-01-01

    In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria--as revealed by different combinations

    Energy Technology Data Exchange (ETDEWEB)

    Jaderlund, Lotta; Arthurson, Veronica; Granhall, Ulf; Jansson, Janet K.

    2008-05-15

    The interactions between two plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177, two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and G. intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; e.g. the two AM fungi react differently when interacting with the same bacteria on plants. G. intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth promoting microorganisms it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to get satisfactory plant growth benefits.

  3. Antimicrobial activity of broccoli (Brassica oleracea var. italica) cultivar Avenger against pathogenic bacteria, phytopathogenic filamentous fungi and yeast.

    Science.gov (United States)

    Pacheco-Cano, R D; Salcedo-Hernández, R; López-Meza, J E; Bideshi, D K; Barboza-Corona, J E

    2018-01-01

    The objective of this study was to show whether the edible part of broccoli has antibacterial and antifungal activity against micro-organism of importance in human health and vegetable spoilage, and to test if this effect was partially due to antimicrobial peptides (AMPs). Crude extracts were obtained from florets and stems of broccoli cultivar Avenger and the inhibitory effect was demonstrated against pathogenic bacteria (Bacillus cereus, Staphylococcus xylosus, Staphylococcus aureus, Shigella flexneri, Shigella sonnei, Proteus vulgaris), phytopathogenic fungi (Colletotrichum gloeosporioides, Asperigillus niger) and yeasts (Candida albicans and Rhodotorula sp.). It was shown that samples treated with proteolytic enzymes had a reduction of approximately 60% in antibacterial activity against Staph. xylosus, suggesting that proteinaceous compounds might play a role in the inhibitory effect. Antimicrobial components in crude extracts were thermoresistant and the highest activity was observed under acidic conditions. It was shown that antifungal activity of broccoli's crude extracts might not be attributed to chitinases. Organic broccoli cultivar Avenger has antimicrobial activity against pathogenic bacteria, yeast and phytophatogenic fungi. Data suggest that this effect is partially due to AMPs. Broccoli's crude extracts have activity not only against pathogenic bacteria but also against phytophatogenic fungi of importance in agriculture. We suggest for first time that the inhibitory effect is probably due to AMPs. © 2017 The Society for Applied Microbiology.

  4. Comparison of phenanthrene removal by Aspergillus niger ATC 16404 (filamentous fungi) and Pseudomonas putida KT2442 (bacteria) in enriched nutrient-liquid medium

    Science.gov (United States)

    Hamzah, N.; Kamil, N. A. F. M.; Singhal, N.; Padhye, L.; Swift, S.

    2018-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) is one of the persistent and carcinogenic pollutants that needs to be eliminated from the environment. The study on degradation of PAHs by bacteria is thoroughly discussed in literature. Many strains of bacteria were chosen in order to eliminate the PAHs compound in the environment. However, there are less study on the filamentous fungi although fungi appears to be an abundant population and as dominant group in PAHs contaminated soil habitats [1], [2]. This study was conducted to determine and compare the Phenanthrene (PHE) removal by fungi and bacteria in excessive nutrient-liquid culture. Then, the survival for both strains was investigated in the presence of PHE and finally, the analysis on the fungi-PHE interaction was carried out. In condition of excessive nutrient, the removal of PHE was evaluated for fungi and bacteria in batch experiment for 5 days. PHE removal for A.niger and P.putida were found to be 97% and 20% respectively after 5 days. The presence of PHE was negatively inhibits the grow of the bacteria and the fungus. The PHE uptake mechanism for A.niger was observed to be a passive transport mechanism with 45 μg per g fungus dry weight within 24 hr of incubation. As a conclusion, filamentous fungi have the potent role in the removal of PHE as well as bacteria but depending on the strains and the condition of the environment. Fungi is known to co-metabolize the PHE meanwhile, PHE can be used as sole carbon for bacteria. This preliminary result is significant in understanding the bacteria-fungi-PHE interaction to enhance the degradation of PAHs for co-culture study in the future.

  5. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  6. A study of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012

    Directory of Open Access Journals (Sweden)

    hatam Godini

    2015-05-01

    Full Text Available Introduction: Particulate matter refers to the combination of atmospheric pollutants that a portion of this particulate is bioaerosol. The aim of this study was the evaluation of bacteria, fungi and biomass in particulate matter in ambient air of Khorramabad during summer and autumn 2012. Materials and Methods: This study was a cross sectional study that conducted in Khorramabad city during summer and fall 2012. Sampling has been done via high-volume sampler. The special cultures were used for cultivation and determination of fungal and Heterotrophic Plate Count (HPC (and Bradford method were used to determine bacteria and protein as biomass indicator, respectively. Relationship between these variables with metrological parameters was evaluated too. Results: The highest PM10 in July (257.18 µg/m3 and lowest in September (92.45 µg/m3 had been recorded. The highest amount of bacteria and fungi were measured as monthly in November (605 No/m3 and December (120 No/m3, respectively. The highest of protein concentration was measured in August, September and December (27-30 µg/m3. With the increase in PM10, biomass concentration in the air showed a meaningful increase. Conclusion: Biomass concentration in the air increased with increasing PM10 but it had no significant effect on the concentration of bacteria and fungi in the air. Meteorological factors such as temperature, humidity, wind speed, solar radiation and the amount of exposure time had a significant impact on bioaerosol concentrations in the air.

  7. Exposure to biohazards in wood dust: bacteria, fungi, endotoxins, and (1-->3)-beta-D-glucans.

    Science.gov (United States)

    Alwis, K U; Mandryk, J; Hocking, A D

    1999-09-01

    Personal exposure to fungi, bacteria, endotoxin, and (1-->3)-beta-D-glucan was determined at different woodworking sites--logging sites, sawmills, woodchipping sites, and joineries. Exposure levels to fungi at logging sites and sawmills were in the range of 10(3)-10(4) cfu/m3, at the woodchipping mill, 10(3)-10(5) cfu/m3, and at joineries, 10(2)-10(4) cfu/m3. Although mean endotoxin levels were lower than the suggested threshold value of 20 ng/m3, some personal exposures at sawmills and a joinery exceeded the standard. The geometric mean personal (1-->3)-beta-D-glucan exposure level at the woodchipping mill was 2.32 ng/m3, at sawmills, 1.37 ng/m3, at logging sites, 2.02 ng/m3, and at joineries, 0.43 ng/m3. Highly significant associations were found between mean personal inhalable endotoxin exposures and Gram-negative bacteria levels (p 3)-beta-D-glucan exposures and fungi levels (p = 0.0003). The prevalence of cough, phlegm, chronic bronchitis, nasal symptoms, frequent headaches, and eye and throat irritations was significantly higher among woodworkers than controls. Dose-response relationships were found between personal exposures and work-related symptoms among joinery workers and sawmill and chip mill workers.

  8. Bioremediation of organophosphates by fungi and bacteria in agricultural soils. A systematic review

    Directory of Open Access Journals (Sweden)

    Gina María Hernández-Ruiz

    2017-01-01

    Full Text Available Organophosphates are a type of pesticides widely used in agriculture for pest control. Since these are highly toxic compounds, their excessive use has caused great deterioration of arable soils, as well as serious damage to ecosystems and human health. Bioremediation is used as an alternative way to transform pesticides into simple, less polluting compounds, using the metabolic potential of microorganisms. Therefore, the objective of this study was to summarize the fungi and bacteria involved in bioremediation of the main organophos-phorus pesticides used in agricultural soils through a systematic review of the scientific literature, in order to provide useful information for conducting further studies. Scientific information was obtained ResumoOs organofosforados são um tipo de praguicidas amplamente utilizados no setor agrícola para o controle de pragas. Dado que estes são compostos químicos altamente tóxicos, o uso excessivo destes há causado grande deterioro nos solos cultiváveis, assim como graves danos contra os ecossistemas e na saúde humana. A biorremediação surge como uma alternativa para transformar os praguicidas em compostos mais simples e pouco contaminantes mediante o uso do potencial metabólico dos micro-rganismos. Pelo anterior, o objetivo desta pesquisa foi descrever os fungos e bactérias envolvidos na biorremediação dos principais praguicidas organo-fosforados empregados em solos agrícolas por meio de uma revisão sistemática da literatura científica, com o fim de aportar informação útil para a through the use of databases such as ScienceDirect and Springer Link and unindexed information was also gathered from Google Scholar, as a result of this study, it was found that the most studied organophosphate pesticide is chlorpyrifos (Toxicity category III and microorganisms most commonly used in the bioremediation of organophosphate pesticides belongs to the genera Serratia, Bacillus and Pseudomonas. It is

  9. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France); Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Roques, Christine; Berge, Mathieu [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France)

    2010-04-15

    Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research. (author)

  10. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil.

    Science.gov (United States)

    Blazewicz, Steven J; Schwartz, Egbert; Firestone, Mary K

    2014-05-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely

  11. Direct quantitation of fatty acids present in bacteria and fungi: stability of the cyclopropane ring to chlorotrimethylsilane.

    Science.gov (United States)

    Eras, Jordi; Oró, Robert; Torres, Mercè; Canela, Ramon

    2008-07-09

    The stability of the cyclopropane ring and the fatty acid composition of microbial cells were determined using chlorotrimethylsilane as reagent with three different conditions 80 degrees C for 1 h, 60 degrees C for 1 h, and 60 degrees C for 2 h. Chlorotrimethylsilane permits a simultaneous extraction and derivatization of fatty acids. A basic method was used as reference. The bacteria, Escherichia coli, Burkholderia cepacia, and Lactobacillus brevis, and fungi Aspergillus niger and Gibberella fujikuroi were used. The stability of the cyclopropane ring on acidic conditions was tested using the cyclopropanecarboxylic acid and a commercial mixture of bacteria fatty acid methyl esters (BAME). Fisher's least significant difference test showed significant differences among the methods. The method using chlorotrimethylsilane and 1-pentanol for 1 h at 80 degrees C gave the best results in cyclopropane, hydroxyl, and total fatty acid recoveries. This procedure allows the fast and easy one-step direct extraction derivatization.

  12. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets

    Directory of Open Access Journals (Sweden)

    Shaopu Wang

    2017-09-01

    Full Text Available Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I, without archaea (–A, without fungi (–F, without protozoa (–P and with bacteria only (–AFP. A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower (Carthamus tinctorius or poppy (Papaver somniferum or camelina (Camelina sativa at 70 g oil kg−1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, –F decreased organic matter (OM degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in –F was greater with camelina seeds (−12 vs.−7% with I, P = 0.06, but smaller with poppy seeds (−4 vs. −8% with I, P = 0.03, and not affected with safflower seeds. With –P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08. Hydrogen recovery was improved with –P in any oilseeds compared to non-supplemented control. No methane emission was detected with the –A and –AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea

  13. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets.

    Science.gov (United States)

    Wang, Shaopu; Giller, Katrin; Kreuzer, Michael; Ulbrich, Susanne E; Braun, Ueli; Schwarm, Angela

    2017-01-01

    Dietary lipids can suppress methane emission from ruminants, but effects are variable. Especially the role of bacteria, archaea, fungi and protozoa in mediating the lipid effects is unclear. In the present in vitro study, archaea, fungi and protozoa were selectively inhibited by specific agents. This was fully or almost fully successful for fungi and protozoa as well as archaeal activity as determined by the methyl-coenzyme M reductase alpha subunit gene. Five different microbial treatments were generated: rumen fluid being intact (I), without archaea (-A), without fungi (-F), without protozoa (-P) and with bacteria only (-AFP). A forage-concentrate diet given alone or supplemented with crushed full-fat oilseeds of either safflower ( Carthamus tinctorius ) or poppy ( Papaver somniferum ) or camelina ( Camelina sativa ) at 70 g oil kg -1 diet dry matter was incubated. This added up to 20 treatments with six incubation runs per treatment. All oilseeds suppressed methane emission compared to the non-supplemented control. Compared to the non-supplemented control, -F decreased organic matter (OM) degradation, and short-chain fatty acid concentration was greater with camelina and safflower seeds. Methane suppression per OM digested in -F was greater with camelina seeds (-12 vs.-7% with I, P = 0.06), but smaller with poppy seeds (-4 vs. -8% with I, P = 0.03), and not affected with safflower seeds. With -P, camelina seeds decreased the acetate-to-propionate ratio and enhanced the methane suppression per gram dry matter (18 vs. 10% with I, P = 0.08). Hydrogen recovery was improved with -P in any oilseeds compared to non-supplemented control. No methane emission was detected with the -A and -AFP treatments. In conclusion, concerning methanogenesis, camelina seeds seem to exert effects only on archaea and bacteria. By contrast, with safflower and poppy seeds methane was obviously reduced mainly through the interaction with protozoa or archaea associated with protozoa. This

  14. Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi

    DEFF Research Database (Denmark)

    Olsson, P.A.; Bååth, E.; Jakobsen, I.

    1996-01-01

    ) pattern. The bacteria specific PLFAs cy17:0 and cy19:0 increased in both experiments in the root compartments. The PLFAs 15:0 and 17:0, which are usually considered to be bacteria specific, also increased due to the presence of roots, but it was shown that these fatty acids were present in aseptically...... grown cucumber roots, and thus not bacteria specific. No bacterial PLFAs were affected by the presence of mycorrhiza....

  15. Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol.

    Science.gov (United States)

    Anisha, C; Radhakrishnan, E K

    2017-06-01

    Endophytic fungi associated with rhizomes of four cultivars of Zingiber officinale were identified by molecular and morphological methods and evaluated for their activity against soft rot pathogen Pythium myriotylum and clinical pathogens. The volatile bioactive metabolites produced by these isolates were identified by GC-MS analysis of the fungal crude extracts. Understanding of the metabolites produced by endophytes is also important in the context of raw consumption of ginger as medicine and spice. A total of fifteen isolates were identified from the four varieties studied. The various genera identified were Acremonium sp., Gliocladiopsis sp., Fusarium sp., Colletotrichum sp., Aspergillus sp., Phlebia sp., Earliella sp., and Pseudolagarobasidium sp. The endophytic community was unique to each variety, which could be due to the varying host genotype. Fungi from phylum Basidiomycota were identified for the first time from ginger. Seven isolates showed activity against Pythium, while only two showed antibacterial activity. The bioactive metabolites identified in the fungal crude extracts include tyrosol, benzene acetic acid, ergone, dehydromevalonic lactone, N-aminopyrrolidine, and many bioactive fatty acids and their derivatives which included linoleic acid, oleic acid, myristic acid, n-hexadecanoic acid, palmitic acid methyl ester, and methyl linoleate. The presence of these varying bioactive endophytic fungi may be one of the reasons for the differences in the performance of the different ginger varieties.

  16. Epizootiological characteristics of viable bacteria and fungi in indoor air from porcine, chicken, or bovine husbandry confinement buildings

    Science.gov (United States)

    Roque, Katharine; Lim, Gyeong-Dong; Jo, Ji-Hoon; Shin, Kyung-Min; Song, Eun-Seob; Gautam, Ravi; Kim, Chang-Yul; Lee, Kyungsuk; Shin, Seungwon; Yoo, Han-Sang; Heo, Yong

    2016-01-01

    Microorganisms found in bioaerosols from animal confinement buildings not only foster the risk of spreading diseases among livestock buildings, but also pose health hazards to farm workers and nearby residents. This study identified the various microorganisms present in the air of swine, chicken, and cattle farms with different kinds of ventilation conditions in Korea. Microbial air samples were collected onto Petri dishes with bacterial or fungal growth media using a cascade impactor. Endotoxin levels in total dust were determined by the limulus amebocyte lysate kinetic QCL method. Prevalent Gram-positive bacteria were Staphylococcus (S.) lentus, S. chromogenes, Bacillus (B.) cereus, B. licheniformis, and Enterococcus faecalis, while the dominant fungi and Gram-negative bacteria were Candida albicans and Sphingomonas paucimobilis, respectively. Considering no significant relationship between the indoor dust endotoxin levels and the isolation of Gram-negative bacteria from the indoor air, monitoring the indoor airborne endotoxin level was found to be also critical for risk assessment on health for animals or workers. The present study confirms the importance of microbiological monitoring and control on animal husbandry indoor air to ensure animal and worker welfare. PMID:27456779

  17. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures

    Directory of Open Access Journals (Sweden)

    Elslahi Randa H.

    2014-03-01

    Full Text Available Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21-240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti, non-symbiotic nitrogen fixers (Azospirillum braziliense or potassium solibilizers (Bacillus circulans, given that the fungicide is applied within the range of the recommended field dose.

  18. Comparative study of the fungicide Benomyl toxicity on some plant growth promoting bacteria and some fungi in pure cultures.

    Science.gov (United States)

    Elslahi, Randa H; Osman, Awad G; Sherif, Ashraf M; Elhussein, Adil A

    2014-03-01

    Six laboratory experiments were carried out to investigate the effect of the fungicide Benomyl on pure cultures of some plant growth promoting bacteria (PGPB) and some fungi. The highest LD50 was recorded for Bacillus circulans and proved to be the most resistant to the fungicide, followed by Azospirillum braziliense, while Penicillium sp. was the most affected microorganism. LD50 values for the affected microorganisms were in 21-240 orders of magnitude lower in comparison with the LD50 value for Azospirillum braziliense. The results indicate a strong selectivity for Benomyl against Rhizobium meliloti and Penicillium sp. when compared to other microorganisms tested. The highest safety coefficient was recorded for Bacillus circulans followed by Azospirillum braziliense, while Rhizobium meliloti, showed the lowest safety coefficient value compared to other bacteria. The lowest toxicity index was recorded for Bacillus circulans and Azospirillum braziliense. The slope of the curves for Bacillus sp. and Rhizobium meliloti was steeper than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. In conclusion, Benomyl could be applied without restriction when using inocula based on growth promoting bacteria such as symbiotic nitrogen fixers (Rhizobium meliloti), non-symbiotic nitrogen fixers (Azospirillum braziliense) or potassium solibilizers (Bacillus circulans), given that the fungicide is applied within the range of the recommended field dose.

  19. Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East.

    Science.gov (United States)

    Niazi, Sadegh; Hassanvand, Mohammad Sadegh; Mahvi, Amir Hossein; Nabizadeh, Ramin; Alimohammadi, Mahmood; Nabavi, Samira; Faridi, Sasan; Dehghani, Asghar; Hoseini, Mohammad; Moradi-Joo, Mohammad; Mokamel, Adel; Kashani, Homa; Yarali, Navid; Yunesian, Masud

    2015-10-01

    Bioaerosol concentration was measured in wastewater treatment units in south of Tehran, the largest wastewater treatment plant in the Middle East. Active sampling was carried out around four operational units and a point as background. The results showed that the aeration tank with an average of 1016 CFU/m(3) in winter and 1973 CFU/m(3) in summer had the greatest effect on emission of bacterial bioaerosols. In addition, primary treatment had the highest impact on fungal emission. Among the bacteria, Micrococcus spp. showed the widest emission in the winter, and Bacillus spp. was dominant in summer. Furthermore, fungi such as Penicillium spp. and Cladosporium spp. were the dominant types in the seasons. Overall, significant relationship was observed between meteorological parameters and the concentration of bacterial and fungal aerosols.

  20. Complete genome sequence of Serratia sp. YD25 (KCTC 42987) presenting strong antagonistic activities to various pathogenic fungi and bacteria.

    Science.gov (United States)

    Su, Chun; Liu, Yibo; Sun, Yan; Li, Zhi

    2017-03-10

    Serratia sp. YD25 (KCTC 42987) was originally isolated from rhizosphere soil in a continuous cropping tobacco-planting farm. Here, we show that its metabolites efficiently suppress the growth of various important pathogenic fungi and bacteria, causing infection in both plants and humans. In addition, Serratia sp. YD25 has a special trait of simultaneous production of both serrawettin W2 and prodigiosin, two important bioactive secondary metabolites produced by Serratia strains. Such co-production has not been reported in other Serratia strains. The complete genome sequence of Serratia sp. YD25 is presented, which is valuable for further exploration of its biotechnological applications in agriculture and medicine. The genome sequence reported here is also useful for understanding the unique regulatory mechanisms underlying biosynthesis of active compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil

    Directory of Open Access Journals (Sweden)

    Mareen Morawe

    2017-07-01

    Full Text Available Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented to (i identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany, (ii assess their substrate range in the soil environment, and (iii evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose, and a lignin-derived aromatic compound (vanillic acid. An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to

  2. Baiting of bacteria with hyphae of common soil fungi revealed a diverse group of potentially mycophagous secondary consumers in the rhizosphere

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J.A.; de Boer, W.

    2015-01-01

    Abstract Fungi and bacteria are primary consumers of plant-derived organic compounds and therefore considered as basal members of soil food webs. Trophic interactions among these microorganisms could, however, induce shifts in food web energy flows. Given increasing evidence for a prominent role of

  3. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Afkhami, Michelle E; Stinchcombe, John R

    2016-10-01

    While all species interact with multiple mutualists, the fitness consequences and molecular mechanisms underlying these interactions remain largely unknown. We combined factorial ecological experiments with genomewide expression analyses to examine the phenotypic and transcriptomic responses of model legume Medicago truncatula to rhizobia and mycorrhizal fungi. We found synergistic effects of these mutualists on plant performance and examined unique features of plant gene expression responses to multiple mutualists. There were genomewide signatures of mutualists and multiple mutualists on expression, with partners often affecting unique sets of genes. Mycorrhizal fungi had stronger effects on plant expression than rhizobia, with 70% of differentially expressed genes affected by fungi. Fungal and bacterial mutualists had joint effects on 10% of differentially expressed genes, including unexpected, nonadditive effects on some genes with important functions such as nutrient metabolism. For a subset of genes, interacting with multiple mutualists even led to reversals in the direction of expression (shifts from up to downregulation) compared to interacting with single mutualists. Rhizobia also affected the expression of several mycorrhizal genes, including those involved in nutrient transfer to host plants, indicating that partner species can also impact each other's molecular phenotypes. Collectively, these data illustrate the diverse molecular mechanisms and transcriptional responses associated with the synergistic benefits of multiple mutualists. © 2016 John Wiley & Sons Ltd.

  4. Identification normal external and internal bacteria and fungi in larvae and pupae Papilio polyetes

    Science.gov (United States)

    Sanjaya, Y.; Suhara; Nurjhani, M.

    2018-05-01

    Interaction between insects and microorganism has been occurring thousands years ago. The numerous ones are bacteria that live inside insect, but there are possibility also to finding other microorganisms like fungus. It can be becoming a good atmosphere. It is also indicating healthy of an insect. If there were existing foreign microbiota, it can be concluded that the insect was sick. The Methods of this research are examining bacteria external and internal with Nutrient Agar (NA) as Media under following the method of Caoili (2003) with investigating external, fore gut, mid gut and hind gut. The result showed that weather in larvae 5th of Papilio polyetes and its pupae on external examine. The appearance of bacteria gram + were more numerous than gram ‑ one. While in the fore gut, mid gut and fore gut were dominated by bacteria gram+, its correlated with the fact that its alkaline. Their presence influenced by habitat, morphology and feeding habits. The conclusion the simbiosism existence between P. polyetes with external and internal microfloral appear to assist from protection and metabolism process.

  5. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots

    DEFF Research Database (Denmark)

    Thirup, L.; Johnsen, K.; Torsvik, V.

    2001-01-01

    in a concentration realistically achieved in field topsoil when using the recommended dose. Over a 56-day period we measured the length of active fungal hyphae, the abundance of total culturable bacteria, the abundance of two culturable subgroups relevant to the soil environment (hyphae-forming actinomycetes...

  6. Initial studies of the populations of fungi and bacteria in the soil under the influence of the cuItivation of spring wheat and winter wheat in a growth chamber

    OpenAIRE

    Danuta Pięta

    2013-01-01

    The purpose of the studies was to determine the populations of fungi and bacteria after the cultivation of spring wheat and winter wheat. As a result of the studies it was found out that winter wheat had a stimulating effect on the total number of bacteria, especially Pseudomonas spp. On the other hand, spring wheat had a smaller influence on the growth of bacteria, while stimulating the growth of the number of fungi. Among the bacteria and saprophytic fungi isolated from the soil after the c...

  7. Oligo-DNA custom macroarray for monitoring major pathogenic and non-pathogenic fungi and bacteria in the phyllosphere of apple trees.

    Science.gov (United States)

    He, Ying-Hong; Isono, Sayaka; Shibuya, Makoto; Tsuji, Masaharu; Adkar Purushothama, Charith-Raj; Tanaka, Kazuaki; Sano, Teruo

    2012-01-01

    To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3) CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in the phyllosphere of apple trees and identify key species

  8. [Study on the inhibitory activity, in vitro, of baicalein and baicalin against skin fungi and bacteria].

    Science.gov (United States)

    Yang, D; Hu, H; Huang, S; Chaumont, J P; Millet, J

    2000-05-01

    In this paper, we concentrated in examining, in vitro, the antiseptic activity of the baicalein and baicalin upon the seventeen pathogenic skin fungal and sixteen skin bacterial strains, these two flavonic compounds were known principally as the biosubstances of a traditional Chinese medicinal plant: Scutellaria baicalensis. In agar media, the baicalein possessed potent specific activity against the pathogenic yeasts with MICs of 70-100 micrograms/ml; But in the same condition, no inhibitory effect was observed upon dermatophytes and filamentous imperfect fungi for baicalein, and upon all used strains for baicalin. According to the antibacterial test of baicalein, a high efficacy was achieved against certain causative specie of axillary and foot's odour such as Micrococcus sedentarius, Staphylococcus epidermidis, S. hominis and C. xerosis with a MICs inferior to 250 micrograms/ml. The good inhibitory activity of baicalein could be linked to the group hydroxyl (-OH) in position seven of the molecule.

  9. The susceptibility of dental plaque bacteria to the herbs included in Longo Vital®

    DEFF Research Database (Denmark)

    Larsen, T.; Fiehn, N. E.; Østergaard, E.

    1996-01-01

    Longo Vital® herbal tablets have been shown to have a protective effect against periodontal bone loss in rats. This may be ascribed either to a previously demonstrated immuno-stimulatory effect of the tablets, to an antimicrobial effect of the herbs or to a combination of both. In the present study...... the in vitro susceptibility of 12 dental plaque bacteria to six individual herbs included in Longo Vital® was determined by a broth dilution method. Paprika, rosemary leaves and peppermint inhibited two thirds of the tested bacteria at 2.8-45 mg/ml, 0.75-12 mg/ml and 3-24 mg/ml corresponding to 0.8-12.5 per...... cent, 1.6-25 per cent and 12.5-100 per cent of the recommended daily dose, respectively. A combination of paprika and rosemary leaves tested towards five susceptible bacteria revealed a decreased inhibitory effect on two of these bacteria, especially of Actinobacillus actinomycetemcomitans to paprika...

  10. The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage.

    Science.gov (United States)

    Garijo, Patrocinio; Santamaría, Pilar; López, Rosa; Sanz, Susana; Olarte, Carmen; Gutiérrez, Ana Rosa

    2008-07-15

    This research studies the presence of microorganisms of enological interest (yeasts, bacteria and molds) and their evolution in the air of a wine cellar. The samples were taken throughout the winemaking campaign (September-December) in a winery of the D.O.Ca. Rioja, Spain. They were collected using an airIDEAL atmosphere sampler from Biomerieux. For the isolation, specific selective media were used for each group of microorganisms. The results obtained indicate that the presence in the winery air of the various different microorganisms studied is directly related to the winemaking processes that are taking place in the winery. Thus, the number of molds present decreases once grapes have ceased to be brought into the winery. The maximum number of yeasts in the air is found when all the vats in the cellar are fermenting, while the lactic bacteria are not detected until the first malolactic fermentation begins. The species of yeasts and molds identified are also related to the winemaking processes. The coincidence of strains of Saccharomyces cerevisiae among those present in the vats during alcoholic fermentation and those isolated from the air, confirms the role of the latter as a transmitter of microorganisms.

  11. Urediospores of rust fungi are ice nucleation active at > -10 °C and harbor ice nucleation active bacteria

    Science.gov (United States)

    Morris, C. E.; Sands, D. C.; Glaux, C.; Samsatly, J.; Asaad, S.; Moukahel, A. R.; Gonçalves, F. L. T.; Bigg, E. K.

    2013-04-01

    Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as -4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > -10

  12. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  13. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  14. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw.

    Science.gov (United States)

    Ferraro, Alberto; Dottorini, Giulia; Massini, Giulia; Mazzurco Miritana, Valentina; Signorini, Antonella; Lembo, Giuseppe; Fabbricino, Massimiliano

    2018-07-01

    Bioaugmentation with anaerobic ruminal fungi and a pool of hydrogen-producing fermenting bacteria was tested on wheat straw (WS) and mushroom spent straw (MSS) with the aim of improving anaerobic digestion performance. Batch tests were set up to simulate a Bioaugmentation Anaerobic Digestion (BAD) treatment comparing single- (I-BAD) and two-stage (II-BAD) process configurations, at two reactor scales, 120 and 1200 ml (×10). In both cases, higher CH 4 cumulative production was obtained in the II-BAD configuration on WS (65.1 ± 8.9 Nml and 922 ± 73.8 Nml respectively). The II-BADx10 tests allowed increasing CH 4 production (≃290% and ≃330% on WS and MSS, respectively) when compared to the unaugmented condition. Final results highlighted the achievable advantages of the two stage configuration in terms of CH 4 production enhancement. Microbial community investigations confirmed the efficiency of the bioaugmentation treatment and revealed that such a result was mainly related to the Methanosarcinales increase, mostly composed by Methanosaeta. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Status and phosphorus solubilization potential of bacteria and arbuscular mycorrhizal fungi isolated from various locations of Khyber Pakhtunkhwa province

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M.

    2016-01-01

    The soils of Pakistan are alkaline calcareous in nature and its high pH makes phosphorus (P) unavailable for plants uptake. Chemical sources of P fertilizers are a costly and detrimental practice. Therefore, investigations were conducted to determine the native status of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) in three different zones of Khyber Pakhtunkhwa province of Pakistan. In order to select the efficient PSB strains for solubility enhancement of P from rock phosphate (RP), rhizosphere soil samples were collected from irrigated and rainfed fields of maize, sorghum, pastures and vegetables. Population density of PSB ranged from 1.7*107 to 2.7*108 CFU g-1 rhizosphere soil. The bacterial strains Coccus, Streptoccocus and Bacillus sp. were identified on the basis of their microscopic, phenotypic and morphological characters. Most of the AM fungal spores identified were belonging to Glomus mosseae and Glomus intradices. A range of 02-35 spores per 20 g air dried soil were recorded. The PSB strains such as Coccus DIM7, Streptococcus PIM6 and Bacillus sp. PIS7 solubilized more P from RP than any other strain in both of the liquid and solid medium. Results show that areas under investigations are rich in P solubilizing micro flora providing a rich source for inoculum production. Moreover, the PSB strains have the capability to solubilize P from RP that can be used as biofertilizers for optimum crop production. (author)

  16. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  17. Comparative evaluation of three impactor samplers for measuring airborne bacteria and fungi concentrations.

    Science.gov (United States)

    Méheust, Delphine; Gangneux, Jean-Pierre; Cann, Pierre Le

    2013-01-01

    Portable microbial samplers are useful for detecting microorganisms in the air. However, limited data are available on their performance when sampling airborne biological agents in a routine practice. We compared bacterial and fungal concentrations obtained in field conditions using three impactor samplers with different designs (AES Chemunex Sampl'Air, bioMérieux Air Ideal, and Sartorius AirPort MD8/BACTair). The linearity of mold collection was tested in the range of 100 L to 1000 L, and all the devices had a correlation coefficient higher than 0.95. For optimal comparison of the samplers, we performed experiments in different hospital rooms with varying levels of air biocontamination. Each sampling procedure was repeated to assess reproducibility. No significant difference between the samplers was observed for the mold concentrations on Sabouraud agar, whereas Sampl'Air collected significantly more bacteria on tryptic soy agar than Air Ideal or BACTair at one of the sites. Impactor location in the room was nevertheless associated with the variability observed with the three samplers at the highest microbial concentration levels. On the basis of their performance, autonomy and simplicity of use, these three impactors are suitable for routine indoor evaluation of microbial air contamination.

  18. Isolation of Corynebacterium Xerosis from Jordanian Soil and a Study on its Antimicrobial Activity against a Range of Bacteria and Fungi

    International Nuclear Information System (INIS)

    El-Banna, Nasser

    2004-01-01

    A bacterial strain which has been identified as Corneybacterium Xerosis NB-2 was isolated from a soil sample from Jerash Private University, Jerash, Jordan. This isolate was found to produce an antimicrobial substance active only against filamentous fungi and yeasts (Aspergillus niger SQ 40, Fusarium oxysporium SQ11, Verticillium dahliae SQ 42, Saccharomyces SQ 46 and Candida albicans SQ 47). However, all tested gram-positive bacteria and gram negative bacteria (Bacillus megaterium SQ5, Bacillus cereus SQ6, Staphylococcus aureus SQ9, Streptococcus pyogens SQ10, Eschericshia coli SQ 22, Klepsiella spp SQ33 and SQ33 and Pseudonomas mallei SQ 34) were found to be resistant. In batch culture, the isolated NB-2 produced the antimicrobial substance late in the growth phase and antimicrobial activity of Corynebacterium Xerosis against filamentous fungi and yeasts which was not previously described. (author)

  19. The antimicrobial potential of algicolous marine fungi for counteracting multidrug-resistant bacteria: phylogenetic diversity and chemical profiling.

    Science.gov (United States)

    Gnavi, Giorgio; Palma Esposito, Fortunato; Festa, Carmen; Poli, Anna; Tedesco, Pietro; Fani, Renato; Monti, Maria Chiara; de Pascale, Donatella; D'Auria, Maria Valeria; Varese, Giovanna Cristina

    2016-01-01

    Marine fungi represent an important but still largely unexplored source of novel and potentially bioactive secondary metabolites. The antimicrobial activity of nine sterile mycelia isolated from the green alga Flabellia petiolata collected from the Mediterranean Sea was tested on four antibiotic-resistant bacterial strains using extracellular and intracellular extracts obtained from each fungal strain. The isolated fungi were identified at the molecular level and assigned to one of the Dothideomycetes, Sordariomycetes or Eurotiomycetes classes. Following assessment of inhibition of bacterial growth (IC50), all crude extracts were subjected to preliminary (1)H NMR and TLC analysis. According to preliminary pharmacologic and spectroscopic/chromatographic results, extracts of fungal strains MUT 4865, classified as Beauveria bassiana, and MUT 4861, classified as Microascacea sp.2, were selected for LC-HRMS analysis. Chemical profiling of antibacterial extracts from MUT 4861 and MUT 4865 by LC HRMS allowed identification of the main components of the crude extracts. Several sphingosine bases were identified, including a compound previously unreported from natural sources, which gave a rationale to the broad spectrum of antibacterial activity exhibited. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria

    DEFF Research Database (Denmark)

    Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J.

    2002-01-01

    Tetracyclines used in veterinary therapy invariably will find their way as parent compound and degradation products to the agricultural field. Major degradation products formed due to the limited stability of parent tetracyclines (tetracycline, chlortetracycline, and oxytetracycline) in aqueous...... at the same concentration level as tetracycline, chlortetracycline, and oxytetracycline on both the sludge and the tetracycline-sensitive soil bacteria. Further, both 5a,6-anhydrotetracychne and 5a,6-anhydrochlortetracycline had potency on tetracycline-resistant bacteria supporting a mode of action different...

  1. Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions

    Science.gov (United States)

    Helin, Aku; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Bäck, Jaana; Riekkola, Marja-Liisa; Parshintsev, Jevgeni

    2017-11-01

    Primary biological aerosol particles (PBAPs) are ubiquitous in the atmosphere and constitute ˜ 30 % of atmospheric aerosol particle mass in sizes > 1 µm. PBAP components, such as bacteria, fungi and pollen, may affect the climate by acting as cloud-active particles, thus having an effect on cloud and precipitation formation processes. In this study, size-segregated aerosol samples ( 10 µm) were collected in boreal forest (Hyytiälä, Finland) during a 9-month period covering all seasons and analysed for free amino acids (FAAs), DNA concentration and microorganism (bacteria, Pseudomonas and fungi). Measurements were performed using tandem mass spectrometry, spectrophotometry and qPCR, respectively. Meteorological parameters and statistical analysis were used to study their atmospheric implication for results. Distinct annual patterns of PBAP components were observed, late spring and autumn being seasons of dominant occurrence. Elevated abundances of FAAs and bacteria were observed during the local pollen season, whereas fungi were observed at the highest level during autumn. Meteorological parameters such as air and soil temperature, radiation and rainfall were observed to possess a close relationship with PBAP abundances on an annual scale.

  2. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    Science.gov (United States)

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Examination of equine glandular stomach lesions for bacteria, including Helicobacter spp by fluorescence in situ hybridisation

    DEFF Research Database (Denmark)

    husted, Louise; Jensen, Tim Kåre; Olsen, Susanne N.

    2010-01-01

    appearing mucosa were obtained from horses slaughtered for human consumption. All samples were tested for urease activity using the Pyloritek® assay, while mucosal bacterial content was evaluated using Fluorescence In Situ Hybridisation. In selected sub samples, bacteria characterisation was pursued further...... by cloning and sequencing. Mucosal lesions were found in 36/63 stomachs and included hyperplastic rugae, polypoid structures and focal erosions. None of the samples were tested positive for urease activity or for FISH using the Helicobacter genus specific probe. In samples of lesions, as well as normal...

  4. Oligo-DNA custom macroarray for monitoring major pathogenic and non-pathogenic fungi and bacteria in the phyllosphere of apple trees.

    Directory of Open Access Journals (Sweden)

    Ying-Hong He

    Full Text Available BACKGROUND: To monitor the richness in microbial inhabitants in the phyllosphere of apple trees cultivated under various cultural and environmental conditions, we developed an oligo-DNA macroarray for major pathogenic and non-pathogenic fungi and bacteria inhabiting the phyllosphere of apple trees. METHODS AND FINDINGS: First, we isolated culturable fungi and bacteria from apple orchards by an agar-plate culture method, and detected 32 fungal and 34 bacterial species. Alternaria, Aureobasidium, Cladosporium, Rhodotorula, Cystofilobasidium, and Epicoccum genera were predominant among the fungi, and Bacillus, Pseudomonas, Sphingomonas, Methylobacterium, and Pantoea genera were predominant among the bacteria. Based on the data, we selected 29 major non-pathogenic and 12 phytopathogenic fungi and bacteria as the targets of macroarray. Forty-one species-specific 40-base pair long oligo-DNA sequences were selected from the nucleotide sequences of rDNA-internal transcribed spacer region for fungi and 16S rDNA for bacteria. The oligo-DNAs were fixed on nylon membrane and hybridized with digoxigenin-labeled cRNA probes prepared for each species. All arrays except those for Alternaria, Bacillus, and their related species, were specifically hybridized. The array was sensitive enough to detect 10(3 CFU for Aureobasidium pullulans and Bacillus cereus. Nucleotide sequencing of 100 each of independent fungal rDNA-ITS and bacterial 16S-rDNA sequences from apple tree was in agreement with the macroarray data obtained using the same sample. Finally, we analyzed the richness in the microbial inhabitants in the samples collected from apple trees in four orchards. Major apple pathogens that cause scab, Alternaria blotch, and Marssonina blotch were detected along with several non-phytopathogenic fungal and bacterial inhabitants. CONCLUSIONS: The macroarray technique presented here is a strong tool to monitor the major microbial species and the community structures in

  5. A comparison of regimen methods for the removal and inactivation of bacteria, fungi and Acanthamoeba from two types of silicone hydrogel lenses.

    Science.gov (United States)

    Kilvington, Simon; Lonnen, James

    2009-04-01

    To compare the antimicrobial efficacy of commercial contact lens solutions when used according to the manufacturers' recommended regimens with two types of silicone hydrogel lenses. Four multipurpose contact lens care solutions were examined, representing manufacturer recommended regimens of "rub & rinse", "no rub, rinse" or "no rub, no rinse". Test organisms were Pseudomonas aeruginosa, Serratia marcescens, Staphylococcus aureus, Fusarium solani, Candida albicans and Acanthamoeba castellanii (trophozoites and cysts). Organisms, in the presence of organic soil, were inoculated on to Acuvue Oasys or Air Optix lenses and subjected to the solution manufacturer's recommended regimen. The number of surviving organisms on the lenses and in the soak solution was enumerated in accordance with ISO 14729. ISO 14729 dictates that for a given organism the combined average number of surviving microbes from the lenses and disinfectant soaking solution must be bacteria, fungi and Acanthamoeba with both lens types. Solutions employing "no rub, rinse" were less satisfactory but significantly better than "no rub, no rinse". Significant differences were found in organism survival on the lenses with greater numbers remaining on the Air Optix compared to Oasys (plenses. Accordingly, it would seem prudent to recommend that contact lens care systems include a rub step as part of the hygiene regimen.

  6. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi.

    Science.gov (United States)

    Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães

    2017-01-01

    The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chemical ecology of fungi.

    Science.gov (United States)

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  8. Variation of airborne bacteria and fungi at Emperor Qin's Terra-Cotta Museum, Xi'an, China, during the "Oct. 1" gold week period of 2006.

    Science.gov (United States)

    Chen, Yi-Ping; Cui, Ying; Dong, Jun-Gang

    2010-02-01

    To stimulate the national economy, a so-called "gold week" comprising May Day and National Day has been put in force by the government, and the first golden-week holiday began on October 1, 1999. Statistical data show that about 15,000 visitors were received each day by Emperor Qin's Terra-Cotta Museum during just such a gold week period. To evaluate the effects of tourism on indoor air, airborne samples were collected by the sedimentation plate method for 5 min during the "Oct. 1" gold week period of 2006, and both composition and changes of airborne bacteria and fungi in indoor/outdoor air in the museums were investigated. Airborne microbes were simultaneously collected by means of gravitational sedimentation on open Petri dishes. Three parallel samples were collected at the same time each day, and samples were subsequently incubated in the lab. Microbiology media were prepared before each experiment by a professional laboratory. Concentrations were calculated and presented as average data of colony-forming units per cubic meter of air (CFU/m(3)). The results show that (1) 13 bacterial genera and eight genera of fungi were identified from indoor and outdoor air at Emperor Qin's Terra-Cotta Museum during "Oct. 1" gold week in 2006. The bacterial groups occupied 61%, the fungi groups occupied 36%, and others occupied 3% of the total number of isolated microorganism genera. (2) As for the comparison of indoor and outdoor samples, the average concentrations of fungi were higher during the afternoon (13:00) than for the morning (09:00). The average concentrations of bacteria in indoor air were higher during the afternoon (13:00) than for the morning (9:00), and in outdoor air, they were lower during the afternoon (13:00) than for the morning (9:00). (3) The average concentrations of five dominant groups of bacteria and three dominant groups of fungi were higher during the afternoon (13:00) than for the morning (9:00) in the indoor air, but the average concentrations

  9. Beverages obtained from soda fountain machines in the U.S. contain microorganisms, including coliform bacteria.

    Science.gov (United States)

    White, Amy S; Godard, Renee D; Belling, Carolyn; Kasza, Victoria; Beach, Rebecca L

    2010-01-31

    Ninety beverages of three types (sugar sodas, diet sodas and water) were obtained from 20 self-service and 10 personnel-dispensed soda fountains, analyzed for microbial contamination, and evaluated with respect to U.S. drinking water regulations. A follow-up study compared the concentration and composition of microbial populations in 27 beverages collected from 9 soda fountain machines in the morning as well as in the afternoon. Ice dispensed from these machines was also examined for microbial contamination. While none of the ice samples exceeded U.S. drinking water standards, coliform bacteria was detected in 48% of the beverages and 20% had a heterotrophic plate count greater than 500cfu/ml. Statistical analyses revealed no difference in levels of microbial contamination between beverage types or between those dispensed from self-service and personnel-dispensed soda fountains. More than 11% of the beverages analyzed contained Escherichia coli and over 17% contained Chryseobacterium meningosepticum. Other opportunistic pathogenic microorganisms isolated from the beverages included species of Klebsiella, Staphylococcus, Stenotrophomonas, Candida, and Serratia. Most of the identified bacteria showed resistance to one or more of the 11 antibiotics tested. These findings suggest that soda fountain machines may harbor persistent communities of potentially pathogenic microorganisms which may contribute to episodic gastric distress in the general population and could pose a more significant health risk to immunocompromised individuals. These findings have important public health implications and signal the need for regulations enforcing hygienic practices associated with these beverage dispensers. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance

    Directory of Open Access Journals (Sweden)

    Nicola Imperiali

    2017-10-01

    Full Text Available In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF, and entomopathogenic nematodes (EPN, were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas, mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy

  11. Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance.

    Science.gov (United States)

    Imperiali, Nicola; Chiriboga, Xavier; Schlaeppi, Klaus; Fesselet, Marie; Villacrés, Daniela; Jaffuel, Geoffrey; Bender, S Franz; Dennert, Francesca; Blanco-Pérez, Ruben; van der Heijden, Marcel G A; Maurhofer, Monika; Mascher, Fabio; Turlings, Ted C J; Keel, Christoph J; Campos-Herrera, Raquel

    2017-01-01

    In agricultural ecosystems, pest insects, pathogens, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Management of belowground pests and diseases remains particularly challenging due to the complex nature of the soil and the limited reach of conventional agrochemicals. Boosting the presence of beneficial rhizosphere organisms is a potentially sustainable alternative and may help to optimize crop health and productivity. Field application of single beneficial soil organisms has shown satisfactory results under optimal conditions. This might be further enhanced by combining multiple beneficial soil organisms, but this remains poorly investigated. Here, we inoculated wheat plots with combinations of three beneficial soil organisms that have different rhizosphere functions and studied their effects on crop performance. Plant beneficial Pseudomonas bacteria, arbuscular mycorrhizal fungi (AMF), and entomopathogenic nematodes (EPN), were inoculated individually or in combinations at seeding, and their effects on plant performance were evaluated throughout the season. We used traditional and molecular identification tools to monitor their persistence over the cropping season in augmented and control treatments, and to estimate the possible displacement of native populations. In three separate trials, beneficial soil organisms were successfully introduced into the native populations and readily survived the field conditions. Various Pseudomonas , mycorrhiza, and nematode treatments improved plant health and productivity, while their combinations provided no significant additive or synergistic benefits compared to when applied alone. EPN application temporarily displaced some of the native EPN, but had no significant long-term effect on the associated food web. The strongest positive effect on wheat survival was observed for Pseudomonas and AMF during a season with heavy natural infestation by

  12. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains.

    Science.gov (United States)

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R

    2015-02-01

    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  14. Effect of media composition, including gelling agents, on isolation of previously uncultured rumen bacteria.

    Science.gov (United States)

    Nyonyo, T; Shinkai, T; Tajima, A; Mitsumori, M

    2013-01-01

    The aim of this study was to develop novel anaerobic media using gellan gum for the isolation of previously uncultured rumen bacteria. Four anaerobic media, a basal liquid medium (BM) with agar (A-BM), a modified BM (MBM) with agar (A-MBM), an MBM with phytagel (P-MBM) and an MBM with gelrite (G-MBM) were used for the isolation of rumen bacteria and evaluated for the growth of previously uncultured rumen bacteria. Of the 214 isolates composed of 144 OTUs, 103 isolates (83 OTUs) were previously uncultured rumen bacteria. Most of the previously uncultured strains were obtained from A-MBM, G-MBM and P-MBM, but the predominant cultural members, isolated from each medium, differed. A-MBM and G-MBM showed significantly higher numbers of different OTUs derived from isolates than A-BM (P rumen bacteria were isolated from all media used, the ratio of previously uncultured bacteria to total isolates was increased in A-MBM, P-MBM and G-MBM. © 2012 The Society for Applied Microbiology.

  15. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M. A.; Khan, S. A.

    2016-01-01

    The beneficial microbes like arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) are known to play an important role in phosphorous (P) supply to plants in a sustainable manner in P deficient soils. In this scenario, a pot experiment was conducted under greenhouse condition to assess the synergistic effect of AMF and PSB strains (Coccus DIM7 Streptococcus PIM6 and Bacillus sp. PIS7) on P solubility from RP and their successive uptake by maize (Zea-mays L. Azam) crop at alkaline soil. The experiment was completely randomized design with three replications having calcareous silty clay loam soil, low in organic matter, nitrogen and phosphorus contents. RP was used as a crude phosphate alone and/or in combination with the native AMF and PSB inoculum. The Results indicated that the rhizosphere interactions between AMF and PSB significantly promote RP mineralization in soil and improved all growth parameters including shoot (56 percent), root yield (52 percent), height (41 percent), N (80 percent) and P (91 percent) uptake by the maize plants as compared to control and single inoculation. A remarkable increase in soil spore density, PSB population and percent root colonization in maize plants were also recorded by the combined inoculation of AMF and PSB with RP. From this study, it is concluded that the combined application of AMF and PSB with RP has the potential to improve maize growth and nutrients uptake. Moreover, AMF and PSB inoculants are recommended as useful biofertilizers for enhancing P solubility and bioavailability in P deficient agricultural soils. (author)

  16. Isolation of Fungi and Bacteria Associated with the Guts of Tropical Wood-Feeding Coleoptera and Determination of Their Lignocellulolytic Activities

    Directory of Open Access Journals (Sweden)

    Keilor Rojas-Jiménez

    2015-01-01

    Full Text Available The guts of beetle larvae constitute a complex system where relationships among fungi, bacteria, and the insect host occur. In this study, we collected larvae of five families of wood-feeding Coleoptera in tropical forests of Costa Rica, isolated fungi and bacteria from their intestinal tracts, and determined the presence of five different pathways for lignocellulolytic activity. The fungal isolates were assigned to three phyla, 16 orders, 24 families, and 40 genera; Trichoderma was the most abundant genus, detected in all insect families and at all sites. The bacterial isolates were assigned to five phyla, 13 orders, 22 families, and 35 genera; Bacillus, Serratia, and Pseudomonas were the dominant genera, present in all the Coleopteran families. Positive results for activities related to degradation of wood components were determined in 65% and 48% of the fungal and bacterial genera, respectively. Our results showed that both the fungal and bacterial populations were highly diverse in terms of number of species and their phylogenetic composition, although the structure of the microbial communities varied with insect host family and the surrounding environment. The recurrent identification of some lignocellulolytic-positive inhabitants suggests that particular microbial groups play important roles in providing nutritional needs for the Coleopteran host.

  17. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    Science.gov (United States)

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  18. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D. and Qing dynasties (1636-1912 A.D. and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  19. Distribution and Diversity of Bacteria and Fungi Colonization in Stone Monuments Analyzed by High-Throughput Sequencing.

    Science.gov (United States)

    Li, Qiang; Zhang, Bingjian; He, Zhang; Yang, Xiaoru

    The historical and cultural heritage of Qingxing palace and Lingyin and Kaihua temple, located in Hangzhou of China, include a large number of exquisite Buddhist statues and ancient stone sculptures which date back to the Northern Song (960-1219 A.D.) and Qing dynasties (1636-1912 A.D.) and are considered to be some of the best examples of ancient stone sculpting techniques. They were added to the World Heritage List in 2011 because of their unique craftsmanship and importance to the study of ancient Chinese Buddhist culture. However, biodeterioration of the surface of the ancient Buddhist statues and white marble pillars not only severely impairs their aesthetic value but also alters their material structure and thermo-hygric properties. In this study, high-throughput sequencing was utilized to identify the microbial communities colonizing the stone monuments. The diversity and distribution of the microbial communities in six samples collected from three different environmental conditions with signs of deterioration were analyzed by means of bioinformatics software and diversity indices. In addition, the impact of environmental factors, including temperature, light intensity, air humidity, and the concentration of NO2 and SO2, on the microbial communities' diversity and distribution was evaluated. The results indicate that the presence of predominantly phototrophic microorganisms was correlated with light and humidity, while nitrifying bacteria and Thiobacillus were associated with NO2 and SO2 from air pollution.

  20. Rumen bacteria

    International Nuclear Information System (INIS)

    McSweeney, C.S.; Denman, S.E.; Mackie, R.I.

    2005-01-01

    The rumen is the most extensively studied gut community and is characterized by its high population density, wide diversity and complexity of interactions. This complex, mixed microbial culture is comprised of prokaryote organisms including methane-producing archaebacteria, eukaryote organisms, such as ciliate and flagellate protozoa, anaerobic phycomycete fungi and bacteriophage. Bacteria are predominant (up to 10 11 viable cells per g comprising 200 species) but a variety of ciliate protozoa occur widely (10 4 -10 6 /g distributed over 25 genera). The anaerobic fungi are also widely distributed (zoospore population densities of 10 2 -10 4 /g distributed over 5 genera). The occurrence of bacteriophage is well documented (10 7 -10 9 particles/g). This section focuses primarily on the widely used methods for the cultivation and the enumeration of rumen microbes, especially bacteria, which grow under anaerobic conditions. Methods that can be used to measure hydrolytic enzymes (cellulases, xylanases, amylases and proteinases) are also described, along with cell harvesting and fractionation procedures. Brief reference is also made to fungi and protozoa, but detailed explanations for culturing and enumerating these microbes is presented in Chapters 2.4 and 2.5

  1. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests.

    Science.gov (United States)

    Kennedy, Nabla M; Robertson, Susan J; Green, D Scott; Scholefield, Scott R; Arocena, Joselito M; Tackaberry, Linda E; Massicotte, Hugues B; Egger, Keith N

    2015-09-01

    Following a pine beetle epidemic in British Columbia, Canada, we investigated the effect of fire severity on rhizosphere soil chemistry and ectomycorrhizal fungi (ECM) and associated denitrifying and nitrogen (N)-fixing bacteria in the root systems of regenerating lodgepole pine seedlings at two site types (wet and dry) and three fire severities (low, moderate, and high). The site type was found to have a much larger impact on all measurements than fire severity. Wet and dry sites differed significantly for almost all soil properties measured, with higher values identified from wet types, except for pH and percent sand that were greater on dry sites. Fire severity caused few changes in soil chemical status. Generally, bacterial communities differed little, whereas ECM morphotype analysis revealed ectomycorrhizal diversity was lower on dry sites, with a corresponding division in community structure between wet and dry sites. Molecular profiling of the fungal ITS region confirmed these results, with a clear difference in community structure seen between wet and dry sites. The ability of ECM fungi to colonize seedlings growing in both wet and dry soils may positively contribute to subsequent regeneration. We conclude that despite consecutive landscape disturbances (mountain pine beetle infestation followed by wildfire), the "signature" of moisture on chemistry and ECM community structure remained pronounced.

  2. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

    Science.gov (United States)

    Hayden, Helen L; Mele, Pauline M; Bougoure, Damian S; Allan, Claire Y; Norng, Sorn; Piceno, Yvette M; Brodie, Eoin L; Desantis, Todd Z; Andersen, Gary L; Williams, Amity L; Hovenden, Mark J

    2012-12-01

    The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, +550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C3 and C4 grasses) and at two soil depths (0-5 cm and 5-10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C4 plant Themeda triandra and decreased for the C3 plant community (P fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate-responsive could show differing trends in the direction of response ('+' or '-') under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Atrazine, chlorpyrifos, and iprodione effect on the biodiversity of bacteria, actinomycetes, and fungi in a pilot biopurification system with a green cover.

    Science.gov (United States)

    Elgueta, Sebastian; Correa, Arturo; Campo, Marco; Gallardo, Felipe; Karpouzas, Dimitrios; Diez, Maria Cristina

    2017-09-02

    The use of biopurification systems can mitigate the effects of pesticide contamination on farms. The primary aim of this study was to evaluate the effect of pesticide dissipation on microbial communities in a pilot biopurification system. The pesticide dissipation of atrazine, chlorpyrifos and iprodione (35 mg kg -1 active ingredient [a.i.]) and biological activity were determined for 40 days. The microbial communities (bacteria, actinomycetes and fungi) were analyzed using denaturing gradient gel electrophoresis (DGGE). In general, pesticide dissipation was the highest by day 5 and reached 95%. The pesticides did not affect biological activity during the experiment. The structure of the actinomycete and bacterial communities in the rhizosphere was more stable during the evaluation than that in the communities in the control without pesticides. The rhizosphere fungal communities, detected using DGGE, showed small and transitory shifts with time. To conclude, rhizosphere microbial communities were not affected during pesticide dissipation in a pilot biopurification system.

  4. Ascorbate oxidase: the unexpected involvement of a 'wasteful enzyme' in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Balestrini, Raffaella; Ott, Thomas; Güther, Mike; Bonfante, Paola; Udvardi, Michael K; De Tullio, Mario C

    2012-10-01

    Ascorbate oxidase (AO, EC 1.10.3.3) catalyzes the oxidation of ascorbate (AsA) to yield water. AO over-expressing plants are prone to ozone and salt stresses, whereas lower expression apparently confers resistance to unfavorable environmental conditions. Previous studies have suggested a role for AO as a regulator of oxygen content in photosynthetic tissues. For the first time we show here that the expression of a Lotus japonicus AO gene is induced in the symbiotic interaction with both nitrogen-fixing bacteria and arbuscular mycorrhizal (AM) fungi. In this framework, high AO expression is viewed as a possible strategy to down-regulate oxygen diffusion in root nodules, and a component of AM symbiosis. A general model of AO function in plants is discussed. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. The effects of various land reclamation scenarios on the succession of soil Bacteria, Archaea, and fungi over the short and long term

    Directory of Open Access Journals (Sweden)

    Junjian eLi

    2016-03-01

    Full Text Available Ecological restoration of mining areas has mainly focused on the succession dynamics of vegetation and the fate of microbial communities remains poorly understood. We examined changes in soil characteristics and plant and microbial communities with increasing reclamation period in an open coal mine. Bacterial, archaeal and fungal communities were assessed by tag-encoded 454 pyrosequencing. At the phylum level, Proteobacteria, Crenarchaeota, and Ascomycota had the highest detected relative abundance within bacteria, archaea, and fungi, respectively. Partial regressions and canonical correspondence analysis demonstrated that vegetation played a major role in bacterial and archaeal diversity and assemblies, and soil characteristics, especially nitrogen, were important for fungal diversity and assemblies. Spearman rank correlation indicated that bacterial and archaeal communities showed synergistic succession with plants; whereas, fungal communities showed no such pattern. Overall, our data suggest that there are different drivers of bacterial, archaeal and fungal succession during secondary succession in a reclaimed open mine.

  6. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants.

    Science.gov (United States)

    Cáceres, A; López, B; González, S; Berger, I; Tada, I; Maki, J

    1998-10-01

    Extracts were prepared from 13 native plants used for the treatment of protozoal infections. Activity against bacteria and fungi was demonstrated by dilution procedures; Trypanosoma cruzi was evaluated in vitro against epimastigote and trypomastigotes and in vivo against trypomastigotes. In active extracts, toxicity was evaluated by Artemia salina nauplii, oral acute toxicity (1-5 g/kg) and oral and intraperitoneal subacute toxicity in mice (500 mg/kg). From the plants screened, six showed activity (Neurolaena lobata and Solanum americanum; in vitro or in vivo activity was shown by Acalypha guatemalensis, Petiveria alliacea and Tridax procumbens. Toxicity studies showed that extracts from S. americanum are toxic to A. salina (aqueous, 160 ppm). None showed acute or oral toxicity to mice; S. americanum showed intraperitoneal subacute toxicity.

  7. Bacteria and Fungi Respond Differently to Multifactorial Climate Change in a Temperate Heathland, Traced with 13C-Glycine and FACE CO2

    Science.gov (United States)

    Andresen, Louise C.; Dungait, Jennifer A. J.; Bol, Roland; Selsted, Merete B.; Ambus, Per; Michelsen, Anders

    2014-01-01

    It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C) dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g−1 soil) of 13C-labeled glycine (13C2, 99 atom %) to soils in situ. Plots were treated with elevated temperature (+1°C, T), summer drought (D) and elevated atmospheric carbon dioxide (510 ppm [CO2]), as well as combined treatments (TD, TCO2, DCO2 and TDCO2). The 13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs) was determined after 24 h. 13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi) was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS). Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated 13C in all treatments, whereas fungi had minor or no glycine derived 13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was 13C-depleted (δ13C = 12.2‰) compared to ambient (δ13C = ∼−8‰), and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal) utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to future

  8. Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, traced with 13C-glycine and FACE CO2.

    Directory of Open Access Journals (Sweden)

    Louise C Andresen

    Full Text Available It is vital to understand responses of soil microorganisms to predicted climate changes, as these directly control soil carbon (C dynamics. The rate of turnover of soil organic carbon is mediated by soil microorganisms whose activity may be affected by climate change. After one year of multifactorial climate change treatments, at an undisturbed temperate heathland, soil microbial community dynamics were investigated by injection of a very small concentration (5.12 µg C g(-1 soil of (13C-labeled glycine ((13C2, 99 atom % to soils in situ. Plots were treated with elevated temperature (+1°C, T, summer drought (D and elevated atmospheric carbon dioxide (510 ppm [CO2], as well as combined treatments (TD, TCO2, DCO2 and TDCO2. The (13C enrichment of respired CO2 and of phospholipid fatty acids (PLFAs was determined after 24 h. (13C-glycine incorporation into the biomarker PLFAs for specific microbial groups (Gram positive bacteria, Gram negative bacteria, actinobacteria and fungi was quantified using gas chromatography-combustion-stable isotope ratio mass spectrometry (GC-C-IRMS. Gram positive bacteria opportunistically utilized the freshly added glycine substrate, i.e. incorporated (13C in all treatments, whereas fungi had minor or no glycine derived (13C-enrichment, hence slowly reacting to a new substrate. The effects of elevated CO2 did suggest increased direct incorporation of glycine in microbial biomass, in particular in G(+ bacteria, in an ecosystem subjected to elevated CO2. Warming decreased the concentration of PLFAs in general. The FACE CO2 was (13C-depleted (δ(13C = 12.2‰ compared to ambient (δ(13C = ∼-8‰, and this enabled observation of the integrated longer term responses of soil microorganisms to the FACE over one year. All together, the bacterial (and not fungal utilization of glycine indicates substrate preference and resource partitioning in the microbial community, and therefore suggests a diversified response pattern to

  9. Biotechnology of marine fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Singh, P.; Raghukumar, S.

    Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still...

  10. Chemical constituents of Helichrysum italicum (Roth G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans

    Directory of Open Access Journals (Sweden)

    Bouzid Djihane

    2017-07-01

    Full Text Available The aerial parts of Helichrysum italicum (Roth G. Don were subjected to hydrodistillation to obtain essential oils which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry and tested for antimicrobial activity against 12 bacteria, two yeasts and four fungi by agar diffusion method. The essential oil yielded 0.44% (v/w and 67 compounds accounting for 99.24% of the oil were identified with a high content of oxygenated sesquiterpenes (61.42%. The most oxygenated sesquiterpene compounds were α-Cedrene (13.61%, α-Curcumene (11.41%, Geranyl acetate (10.05%, Limonene (6.07%, Nerol (5.04%, Neryl acetate (4.91% and α-Pinene (3.78%. The antimicrobial activity of the essential oil was assayed by using the disk diffusion method on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Micrococcus luteus ATCC 4698, Klebsiella pneumonia ATCC 4352, Enterococcus cereus ATCC 2035, Bacillus cereus ATCC 10876, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis ATCC 9372, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 49452, Proteus mirabilis ATCC 35659, Listeria monocytogenes ATCC 15313 and yeasts Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763 and fungi, Fusarium solani var. coeruleum, Aspergillus niger, Alternaria alternata, Ascochyta rabiei. H. italicum inhibited the growth of all the tested microorganisms except three bacteria, E. coli ATCC 25922, K. pneumonia ATCC 4352 and L. monocytogenes ATCC 15313. The most sensitive bacterium was E. cereus ATCC 2035 with minimum inhibitory and bactericidal concentrations of 0.79 μg ml−1. A minimum fungistatic and fungicide concentration of 6.325 μg ml−1 and 12.65 μg ml−1 respectively was obtained with C. albicans ATCC 10231 and S. cerevisiae ATCC 9763. However the four fungi were more resistant with fungistatic minimum concentration ranging from 6.325 μg ml−1 to 50.6 μg ml−1 and a fungicide minimum

  11. Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans.

    Science.gov (United States)

    Djihane, Bouzid; Wafa, Nouioua; Elkhamssa, Soltani; Pedro, De Haro Juan; Maria, Angeles Esteban; Mohamed Mihoub, Zerroug

    2017-07-01

    The aerial parts of Helichrysum italicum (Roth) G. Don were subjected to hydrodistillation to obtain essential oils which had been analyzed by gas chromatography and gas chromatography coupled with mass spectrometry and tested for antimicrobial activity against 12 bacteria, two yeasts and four fungi by agar diffusion method. The essential oil yielded 0.44% (v/w) and 67 compounds accounting for 99.24% of the oil were identified with a high content of oxygenated sesquiterpenes (61.42%). The most oxygenated sesquiterpene compounds were α-Cedrene (13.61%), α-Curcumene (11.41%), Geranyl acetate (10.05%), Limonene (6.07%), Nerol (5.04%), Neryl acetate (4.91%) and α-Pinene (3.78%). The antimicrobial activity of the essential oil was assayed by using the disk diffusion method on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Micrococcus luteus ATCC 4698, Klebsiella pneumonia ATCC 4352, Enterococcus cereus ATCC 2035, Bacillus cereus ATCC 10876, Staphylococcus epidermidis ATCC 12228, Bacillus subtilis ATCC 9372, Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 49452, Proteus mirabilis ATCC 35659, Listeria monocytogenes ATCC 15313 and yeasts Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763 and fungi, Fusarium solani var. coeruleum , Aspergillus niger , Alternaria alternata , Ascochyta rabiei . H. italicum inhibited the growth of all the tested microorganisms except three bacteria, E. coli ATCC 25922, K. pneumonia ATCC 4352 and L. monocytogenes ATCC 15313. The most sensitive bacterium was E. cereus ATCC 2035 with minimum inhibitory and bactericidal concentrations of 0.79 μg ml -1 . A minimum fungistatic and fungicide concentration of 6.325 μg ml -1 and 12.65 μg ml -1 respectively was obtained with C. albicans ATCC 10231 and S. cerevisiae ATCC 9763. However the four fungi were more resistant with fungistatic minimum concentration ranging from 6.325 μg ml -1 to 50.6 μg ml -1 and a fungicide minimum concentration of 50

  12. Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry

    Czech Academy of Sciences Publication Activity Database

    Gryndler, Milan; Vosátka, Miroslav; Hršelová, Hana; Čatská, Vlasta; Chvátalová, Irena; Jansa, Jan

    2002-01-01

    Roč. 25, č. 6 (2002), s. 1341-1358 ISSN 0190-4167 R&D Projects: GA ČR GA502/94/0834; GA MŠk 926125 Keywords : dual * inoculation * bacteria Subject RIV: EE - Microbiology, Virology Impact factor: 0.593, year: 2002

  13. Interactions between stream fungi and bacteria associated with decomposing leaf litter at different levels of nutrient availability

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    We examined the potential for interactions between aquatic hyphomycetes and bacteria isolated from leaves decaying in a headwater stream. In agar plate assays, culture filtrates of each of 28 aquatic hyphomycete isolates tested (5 species) inhibited bacterial growth (16 Gram-negative bacterial isolates belonging to 6 colony morphotypes were tested). Inhibition of...

  14. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi

    NARCIS (Netherlands)

    Höppener-Ogawa, S.; Leveau, J.H.J.; Van Veen, J.A.; De Boer, W.

    2009-01-01

    Bacteria of the genus Collimonas are widely distributed in soils, although at low densities. In the laboratory, they were shown to be mycophagous, that is, they are able to grow at the expense of living hyphae. However, so far the importance of mycophagy for growth and survival of collimonads in

  15. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview

    OpenAIRE

    Taborda, Carlos P.; da Silva, Marcelo B.; Nosanchuk, Joshua D.; Travassos, Luiz R.

    2008-01-01

    Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (“ghosts”) can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic ...

  16. Isolation of high-quality total RNA from rumen anaerobic bacteria and fungi, and subsequent detection of glycoside hydrolases.

    Science.gov (United States)

    Wang, Pan; Qi, Meng; Barboza, Perry; Leigh, Mary Beth; Ungerfeld, Emilio; Selinger, L Brent; McAllister, Tim A; Forster, Robert J

    2011-07-01

    The rumen is one of the most powerful fibrolytic fermentation systems known. Gene expression analyses, such as reverse transcription PCR (RT-PCR), microarrays, and metatranscriptomics, are techniques that could significantly expand our understanding of this ecosystem. The ability to isolate and stabilize representative RNA samples is critical to obtaining reliable results with these procedures. In this study, we successfully isolated high-quality total RNA from the solid phase of ruminal contents by using an improved RNA extraction method. This method is based on liquid nitrogen grinding of whole ruminal solids without microbial detachment and acid guanidinium - phenol - chloroform extraction combined with column purification. Yields of total RNA were as high as 150 µg per g of fresh ruminal content. The typical large subunit/small subunit rRNA ratio ranged from 1.8 to 2.0 with an RNA integrity number (Agilent Technologies) greater than 8.5. By eliminating the detachment step, the resulting RNA was more representative of the complete ecosystem. Our improved method removed a major barrier limiting analysis of rumen microbial function from a gene expression perspective. The polyA-tailed eukaryotic mRNAs obtained have successfully been applied to next-generation sequencing, and metatranscriptomic analysis of the solid fraction of rumen contents revealed abundant sequences related to rumen fungi.

  17. Consortium Application of Endophytic Bacteria and Fungi Improves Grain Yield and Physiological Attributes in Advanced Lines of Bread Wheat

    Directory of Open Access Journals (Sweden)

    Ghulam Muhae-Ud-Din

    2018-02-01

    Full Text Available Increasing human population places pressure on agriculture. To feed this population, two time increase in the current wheat production is needed. Today agriculture is becoming input intensive with more reliance on synthetic fertilizers and agrochemicals to fulfil the feed demand of the growing numbers. Use of synthetic fertilizer since last few years is impacting the soil quality. In this scenario, the use of beneficial endophytic microbes is an attractive strategy to overcome the use of synthetic products. To investigate the effect of consortium application of endophytic bacteria and fungus on plant growth, grain yield moisture status, a pot experiment was conducted in different wheat lines. It comprised four treatments like control, application of bacterial strain Bacillus sp. MN54, fungal strain Trichoderma sp. MN6, and their consortium (Bacillus sp. MN54 + Trichoderma sp. MN6. The effect of consortium application was more prominent and significantly different from the sole application of bacteria and fungus. The results showed that with a consortium application of endophytic bacteria and fungus, there was 28.6, 4.3, -6.3 and -3.7% increases in flag leaf area, chlorophyll content, relative membrane permeability and water content respectively. Consortia of endophytic microbes also resulted in the yield enhancement through the betterment of various yield attributes like number of spikelet’s, grains per spike and grain yield per plant (32.2, 25.8 and 30.8%, respectively. So, consortia of endophytic microbes can greatly promote the progress of plants in dry land agriculture and increase the yield in an environmentally sustainable way.

  18. Fight Fungi with Fungi: Antifungal Properties of the Amphibian Mycobiome

    Directory of Open Access Journals (Sweden)

    Patrick J. Kearns

    2017-12-01

    Full Text Available Emerging infectious diseases caused by fungal taxa are increasing and are placing a substantial burden on economies and ecosystems worldwide. Of the emerging fungal diseases, chytridomycosis caused by the fungus Batrachochytrium dendrobatidis (hereafter Bd is linked to global amphibian declines. Amphibians have innate immunity, as well as additional resistance through cutaneous microbial communities. Despite the targeting of bacteria as potential probiotics, the role of fungi in the protection against Bd infection in unknown. We used a four-part approach, including high-throughput sequencing of bacterial and fungal communities, cultivation of fungi, Bd challenge assays, and experimental additions of probiotic to Midwife Toads (Altyes obstetricans, to examine the overlapping roles of bacterial and fungal microbiota in pathogen defense in captive bred poison arrow frogs (Dendrobates sp.. Our results revealed that cutaneous fungal taxa differed from environmental microbiota across three species and a subspecies of Dendrobates spp. frogs. Cultivation of host-associated and environmental fungi realved numerous taxa with the ability to inhibit or facilitate the growth of Bd. The abundance of cutaneous fungi contributed more to Bd defense (~45% of the fungal community, than did bacteria (~10% and frog species harbored distinct inhibitory communities that were distinct from the environment. Further, we demonstrated that a fungal probiotic therapy did not induce an endocrine-immune reaction, in contrast to bacterial probiotics that stressed amphibian hosts and suppressed antimicrobial peptide responses, limiting their long-term colonization potential. Our results suggest that probiotic strategies against amphibian fungal pathogens should, in addition to bacterial probiotics, focus on host-associated and environmental fungi such as Penicillium and members of the families Chaetomiaceae and Lasiosphaeriaceae.

  19. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J

    2018-04-10

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth\\'s surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  20. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J; Thompson, Luke R; Haroon, Mohamed; Knight, Rob; Aluwihare, Lihini I

    2018-01-01

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  1. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    Science.gov (United States)

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  2. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation.

    Science.gov (United States)

    Xun, Feifei; Xie, Baoming; Liu, Shasha; Guo, Changhong

    2015-01-01

    To investigate the effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on phytoremediation in saline-alkali soil contaminated by petroleum, saline-alkali soil samples were artificially mixed with different amount of oil, 5 and 10 g/kg, respectively. Pot experiments with oat plants (Avena sativa) were conducted under greenhouse condition for 60 days. Plant biomass, physiological parameters in leaves, soil enzymes, and degradation rate of total petroleum hydrocarbon were measured. The result demonstrated that petroleum inhibited the growth of the plant; however, inoculation with PGPR in combination with AMF resulted in an increase in dry weight and stem height compared with noninoculated controls. Petroleum stress increased the accumulation of malondialdehyde (MDA) and free proline and the activities of the antioxidant enzyme such as superoxide dismutase, catalase, and peroxidase. Application of PGPR and AMF augmented the activities of three enzymes compared to their respective uninoculated controls, but decreased the MDA and free proline contents, indicating that PGPR and AMF could make the plants more tolerant to harmful hydrocarbon contaminants. It also improved the soil quality by increasing the activities of soil enzyme such as urease, sucrase, and dehydrogenase. In addition, the degradation rate of total petroleum hydrocarbon during treatment with PGPR and AMF in moderately contaminated soil reached a maximum of 49.73%. Therefore, we concluded the plants treated with a combination of PGPR and AMF had a high potential to contribute to remediation of saline-alkali soil contaminated with petroleum.

  3. Fusarium and other opportunistic hyaline fungi

    Science.gov (United States)

    This chapter focuses on those fungi that grow in tissue in the form of hyaline or lightly colored septate hyphae. These fungi include Fusarium and other hyaline fungi. Disease caused by hyaline fungi is referred to as hyalohyphomycosis. Hyaline fungi described in this chapter include the anamorphic,...

  4. Higher marine fungi from mangroves (Manglicolous fungi)

    Digital Repository Service at National Institute of Oceanography (India)

    ChinnaRaj, S.

    of higher marine fungi which included 23 Ascomycetes, 2 Basidiomycetes and 17 Deuteromycetes (Kohlmeyer and Kohlmeyer, 1979). Hyde (1990a) listed 120 species from 29 mangroves from all over the World this includes 87 Ascomycetes, 2 Basidiomycetes and 31...

  5. Influence of PGPR Bacteria and Arbuscular Mycorrhizal Fungi on Growth and some Physiological Parameters of Onopordon acanthium in a Cd-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    MirHassan Rasouli-Sadaghiani

    2017-02-01

    Full Text Available Introduction: Heavy metals (HMs are serious threat for environment due to their dangerous effects. These metals as contaminants that can be accumulated in soil and after absorption by plants, finally will be found in food chains. Cadmium (Cd is one of the dangerous HMs that threats the health of plants, living organisms and human. Physicochemical remediation methods may cause large changes in different characteristics of soils . Recently environmental-friendly strategies including phytoremediation have been emphasized by researchers. Phytoremediation that refers to the use of plants and their assistance with microorganisms for remediation of contaminated soils is an effective and low cost method for reclamation of heavy metals polluted soils. The most important limitation of phytoremediation is low availability of heavy metals and sensitivity of plants to contamination. There are evidences that soil microbes can help to overcome these limitations through several ways. Plant growth promoting rhizobacteria (PGPR and arbuscular mycorrhizal fungi (AMF are known to enhance plant growth and survival in heavy metal contaminated soils through different mechanisms including producing promoting metabolites, auxin, siderophore and antibiotics. In this study the role of some strains of PGPR (a mixture of Pseudomonas species including P. putida, P. fluorescens, and P. aeruginosa and AMF (a mixture of Glomus species including G. intraradices, G. mosseae and G. fasciculatum, on uptake and accumulation of Cd, Fe, Zn and Cu as well as some physiological properties of Onopordon (Onopordon acanthium L were evaluated. Materials and Methods:This study was carried out under greenhouse condition as a factorial experiment based on a randomized complete block design with two factors including Cd concentration (four levels and microbial treatment (three levels in three replications. Consequently, a soil was selected and spiked uniformly with different concentrations of

  6. Mysterious Mycorrhizae? A Field Trip & Classroom Experiment to Demystify the Symbioses Formed between Plants & Fungi

    Science.gov (United States)

    Johnson, Nancy C.; Chaudhary, V. Bala; Hoeksema, Jason D.; Moore, John C.; Pringle, Anne; Umbanhowar, James A.; Wilson, Gail W. T.

    2009-01-01

    Biology curricula cover fungi in units on bacteria, protists, and primitive plants, but fungi are more closely related to animals than to bacteria or plants. Like animals, fungi are heterotrophs and cannot create their own food; but, like plants, fungi have cell walls, and are for the most part immobile. Most species of fungi have a filamentous…

  7. Filamentous Fungi.

    Science.gov (United States)

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host.

  8. Diallylthiosulfinate (Allicin), a Volatile Antimicrobial from Garlic (Allium sativum), Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor.

    Science.gov (United States)

    Reiter, Jana; Levina, Natalja; van der Linden, Mark; Gruhlke, Martin; Martin, Christian; Slusarenko, Alan J

    2017-10-12

    Garlic ( Allium sativum ) has potent antimicrobial activity due to allicin (diallylthiosulfinate) synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure) by oxidation of diallyl disulfide by H₂O₂ using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas , Streptococcus , and Staphylococcus , including multi-drug resistant (MDR) strains, was demonstrated. Minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST) procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH). Similarly, the sensitivity of rat precision-cut lung slices (PCLS) to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  9. Diallylthiosulfinate (Allicin, a Volatile Antimicrobial from Garlic (Allium sativum, Kills Human Lung Pathogenic Bacteria, Including MDR Strains, as a Vapor

    Directory of Open Access Journals (Sweden)

    Jana Reiter

    2017-10-01

    Full Text Available Garlic (Allium sativum has potent antimicrobial activity due to allicin (diallylthiosulfinate synthesized by enzyme catalysis in damaged garlic tissues. Allicin gives crushed garlic its characteristic odor and its volatility makes it potentially useful for combating lung infections. Allicin was synthesized (>98% pure by oxidation of diallyl disulfide by H2O2 using formic acid as a catalyst and the growth inhibitory effect of allicin vapor and allicin in solution to clinical isolates of lung pathogenic bacteria from the genera Pseudomonas, Streptococcus, and Staphylococcus, including multi-drug resistant (MDR strains, was demonstrated. Minimal inhibitory (MIC and minimal bactericidal concentrations (MBC were determined and compared to clinical antibiotics using standard European Committee on Antimicrobial Susceptibility Testing (EUCAST procedures. The cytotoxicity of allicin to human lung and colon epithelial and murine fibroblast cells was tested in vitro and shown to be ameliorated by glutathione (GSH. Similarly, the sensitivity of rat precision-cut lung slices (PCLS to allicin was decreased by raising the [GSH] to the approximate blood plasma level of 1 mM. Because allicin inhibited bacterial growth as a vapor, it could be used to combat bacterial lung infections via direct inhalation. Since there are no volatile antibiotics available to treat pulmonary infections, allicin, particularly at sublethal doses in combination with oral antibiotics, could make a valuable addition to currently available treatments.

  10. Heteroresistance and fungi.

    Science.gov (United States)

    Ferreira, Gabriella F; Santos, Daniel A

    2017-09-01

    The concept of heteroresistance refers to the heterogeneous susceptibility to an antimicrobial drug in a microorganism population, meaning that some clones may be resistant and others are susceptible. This phenomenon has been widely studied in bacteria, but little attention has been given to its expression in fungi. We review the available literature on heteroresistance in fungi and invite the reader to recognise this phenomenon as a fungal mechanism to adapt to environmental stress, which may interfere both in resistance and virulence. Finally, heteroresistance may explain the treatment failures to eradicate mycosis in some patients treated with a seemingly appropriate antifungal. © 2017 Blackwell Verlag GmbH.

  11. [Microbial resistance to formaldehyde. I. Comparative quantitative studies in some selected species of vegetative bacteria, bacterial spores, fungi, bacteriophages and viruses].

    Science.gov (United States)

    Spicher, G; Peters, J

    1976-12-01

    The resistence of different microorganisms to formaldehyde was determined. As test objects served gram-negative and gram-positive vegetative germs (Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella paratyphi-B, Staphylococcus aureus, Streptococcus faecalis), bacterial spores (Bacillus cereus, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis), fungi (Aspergillus niger, Candida albicans), bacteriophages (Escherichia coli phages, T1, T2, T3), and viruses (adenovirus, poliomyelitis virus, vaccinia virus). For the studies, suspensions of germs were exposed at identical temperature (20 degrees C) and pH (7.0). The microbicidal effect of formaldehyde was measured by the decrease of the proportion of germs capable of multiplication in the suspension (lg (N/N0); where: N0 equals initial number of germs capable of multiplication; N equals number of germs capable of multiplication after exposure to formaldehyde). For all germs the dependence of the microbicidal effect on the concentration of formaldehyde was determined. In all experiments, the duration of exposure was two hours. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella paratyphi-B were found to be more susceptible than Staphylococcus aureus (vf. Fig. 1 A). The strains of Pseudomonas aeruginosa used were widely varying as to their susceptibility. To obtain equal microbicidal effects, concentrations of formaldehyde almost three times as high had to be used for the most resistant strain than were necessary for the most susceptible strain of Pseudomonas aeruginosa. All strains of Klebsiella pneumoniae examined were found to have an identical resistence to formaldehyde. Streptococcus faecalis was even more resistant to formaldehyde than Staphylococcus aureus. In the case of Streptococcus faecalis, a concentration of formaldehyde about three times as high had to be used to obtain microbicidal effects of identical magnitude. For the killing of Candida albicans cells concentrations of

  12. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period.

    Science.gov (United States)

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael; Del Campo, Rosa

    2017-09-26

    Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild ( n = 5), moderate ( n = 9), and severe ( n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients' clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. IMPORTANCE The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were

  14. Necrotizing Enterocolitis in Preterm Pigs Is Associated with Increased Density of Intestinal Mucosa-Associated Bacteria Including Clostridium perfringens

    DEFF Research Database (Denmark)

    Støy, Ann Cathrine Findal; Mølbak, Lars; Delègue, Camilla Lindholm

    2015-01-01

    correlates with NEC severity in preterm pigs and that in vitro infection with increasing densities of Clostridium perfringens, which has been associated with NEC in preterm infants, would lead to a transcriptional response related to the inflammatory conditions of NEC. Methods: First, we determined...... the density of total bacteria and C. perfringens in the distal small intestinal mucosa of 58 NEC and healthy preterm pigs using quantitative PCR. Next, we analyzed in IPEC-J2 cells the effect of different infection densities of C. perfringens type A on the expression of genes related to intestinal function...

  15. [Contribution of fungi to soil nitrous oxide emission and their research methods: a review].

    Science.gov (United States)

    Huang, Ying; Long, Xi-En

    2014-04-01

    Nitrous oxide is an important greenhouse gas. Soil is one major emission source of N2O, which is a by-product of microorganisms-driven nitrification and denitrification processes. Extensive research has demonstrated archaea and bacteria are the predominant contributors in nitrification and denitrification. However, fungi may play a predominant role in the N transformation in a certain soil ecosystem. The fungal contribution to N2O production has been rarely investigated. Here, we reviewed the mechanism of N2O production by soil fungi. The mechanisms of denitrification, autotrophic and heterotrophic nitrification and their key microbes and functional genes were described, respectively. We discriminated the differences in denitrification between bacteria and fungi and discussed the methods being used to determine the contribution of fungi to soil N2O emission, including selective inhibitors, 15N stable isotope probing, isolation and pure culturing and uncultured molecular detection methods. The existing problems and research prospects were also presented.

  16. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and some of their structuring factors

    NARCIS (Netherlands)

    Buée, M.; Boer, de W.; Martin, F.; Overbeek, van L.S.; Jurkevitch, E.

    2009-01-01

    Rhizosphere microorganisms have two faces, like Janus the Roman god of gates and doors who symbolizes changes and transitions, from one condition to another. One face looks at the plant root, the other sees the soil. The ears and the nose sense the other gods around and the mouths are wide open,

  17. The Role of Fungi in the Etiology of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Julián Benito-León

    2017-10-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disorder of the central nervous system. Infectious triggers of MS are being actively investigated. Substantial evidence supports the involvement of the Epstein-Barr virus (EBV, though other viruses, bacteria, protists, and fungi are also being considered. Many links between fungi and diseases involving chronic inflammation have been found recently. Evidence linking MS and fungi is reviewed here. The HLA-DRB1*15 allele group is the most important genetic risk factor of MS, and is a risk factor in several other conditions linked to fungal infections. Many biomarkers of MS are consistent with fungal infections, such as IL-17, chitotriosidase, and antibodies against fungi. Dimethyl fumarate (DMF, first used as an industrial fungicide, was recently repurposed to reduce MS symptoms. Its mechanisms of action in MS have not been firmly established. The low risk of MS during childhood and its moderate association with herpes simplex virus type 2 suggest genital exposure to microbes (including fungi should be investigated as a possible trigger. Molecular and epidemiological evidence support a role for infections such as EBV in MS. Though fungal infections have not been widely studied in MS, many lines of evidence are consistent with a fungal etiology. Future microbiome and serological studies should consider fungi as a possible risk factor for MS, and future clinical studies should consider the effect of fungicides other than DMF on MS symptoms.

  18. Characterization of hydrocarbon utilizing fungi from hydrocarbon ...

    African Journals Online (AJOL)

    Prof. Ogunji

    isolated fungi could be useful in the bioremediation of hydrocarbon polluted sites. Keywords: ... Technologies such as mechanical force, burying, evaporation, dispersant application, and ..... The effects of drilling fluids on marine bacteria from a.

  19. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria.

    Science.gov (United States)

    Barbosa, Lidiane Nunes; Probst, Isabella da Silva; Andrade, Bruna Fernanda Murbach Teles; Alves, Fernanda Cristina Bérgamo; Albano, Mariana; da Cunha, Maria de Lourdes Ribeiro de Souza; Doyama, Julio Toshimi; Rall, Vera Lúcia Mores; Fernandes Júnior, Ary

    2015-01-01

    The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aromaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P. aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.

  20. Solubilization of Australian lignites by fungi and other microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Catcheside, D.E.A.; Mallett, K.J. (Flinders University, Bedford Park, SA (Australia). School of Biological Sciences)

    Lignites (brown coals) from the Latrobe Valley in Victoria are solubilized by {ital Coriolus versicolor}, {ital Phanerochaete chrysosporium}, and five other species known to be active on Leonardite and various acid-treated North America lignites. Run-of-mine coal from Morwell and Loy Yang is refractory but is soluble after pretreatment with acid. A weathered deposit at Loy Yang, like Leonardite, is susceptible to biosolubilization without pretreatment. The white rot fungi {ital Ganoderma applanatum}, {ital Perenniporia tephropora} ({ital Fomes lividus}), {ital Pleurotus ostreatus}, {ital Pycnoporus cinnabarinus}, {ital Rigidoporus ulmarius}, and {ital Xylaria hypoxylon} were found to be capable of solubilizing lignite. In contrast, brown rot fungi were weakly active or inactive under the same test conditions. Lignite-degrading fungi, actinomycetes, and other bacteria, including some active on untreated run-of-mine coal, were isolated from natural lignite exposures and mining sites. 15 refs., 5 tabs.

  1. Effect of postharvest practices including degreening on citrus carpoplane microbial biomes.

    Science.gov (United States)

    Gomba, A; Chidamba, L; Korsten, L

    2017-04-01

    To investigate the effect of commercial citrus packhouse processing steps on the fruit surface microbiome of Clementines and Palmer navel oranges. Viable bacteria, yeast and fungi counts, and the pyrosequencing analysis of the 16S rRNA and ITS were used to evaluate the community structure and population dynamics of phylloepiphytic bacteria and fungi associated with commercial postharvest processing. Drenching significantly reduced microbial counts in all cases except for yeasts on navels, while the extent of degreening effects varied between the citrus varieties. Pyrosequencing analysis showed a total of 4409 bacteria and 5792 fungi nonchimeric unique sequences with an average of 1102 bacteria and 1448 fungi reads per sample. Dominant phyla on the citrus carpoplane were Proteobacteria (53·5%), Actinobacteria (19·9%), Bacteroidetes (5·6%) and Deinococcus-Thermus (5·4%) for bacteria and Ascomycota (80·5%) and Basidiomycota (9·8%) for fungi. Beginning with freshly harvested fruit fungal diversity declined significantly after drenching, but had little effect on bacteria and populations recovered during degreening treatments, including those for Penicillium sp. Packhouse processing greatly influences microbial communities on the citrus carpoplane. A broad orange biome was described with pyrosequencing and gave insight into the likely survival and persistence of pathogens, especially as they may affect the quality and safety of the packed product. A close examination of the microbiota of fruit and the impact of intervention strategies on the ecological balance may provide a more durable approach to reduce losses and spoilage. © 2017 The Society for Applied Microbiology.

  2. Antibacterial and antibiotic resistance modifying activity of the extracts from Allanblackia gabonensis, Combretum molle and Gladiolus quartinianus against Gram-negative bacteria including multi-drug resistant phenotypes.

    Science.gov (United States)

    Fankam, Aimé G; Kuiate, Jules R; Kuete, Victor

    2015-06-30

    Bacterial resistance to antibiotics is becoming a serious problem worldwide. The discovery of new and effective antimicrobials and/or resistance modulators is necessary to tackle the spread of resistance or to reverse the multi-drug resistance. We investigated the antibacterial and antibiotic-resistance modifying activities of the methanol extracts from Allanblackia gabonensis, Gladiolus quartinianus and Combretum molle against 29 Gram-negative bacteria including multi-drug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of the samples meanwhile the standard phytochemical methods were used for the preliminary phytochemical screening of the plant extracts. Phytochemical analysis showed the presence of alkaloids, flavonoids, phenols and tannins in all studied extracts. Other chemical classes of secondary metabolites were selectively presents. Extracts from A. gabonensis and C. molle displayed a broad spectrum of activity with MICs varying from 16 to 1024 μg/mL against about 72.41% of the tested bacteria. The extract from the fruits of A. gabonensis had the best activity, with MIC values below 100 μg/mL on 37.9% of tested bacteria. Percentages of antibiotic-modulating effects ranging from 67 to 100% were observed against tested MDR bacteria when combining the leaves extract from C. molle (at MIC/2 and MIC/4) with chloramphenicol, kanamycin, streptomycin and tetracycline. The overall results of the present study provide information for the possible use of the studied plant, especially Allanblackia gabonensis and Combretum molle in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

  3. Revegetation of oil sands tailings. Growth improvement of silver-berry and buffalo-berry by inoculation with mycorrhizal fungi and N/sub 2/-fixing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Visser, S.; Danielson, R.M.

    1988-01-01

    The ability of actinorhizal shrubs to tolerate inhospitable conditions while improving soil fertility and organic matter status has led to increased usage of these plants for land reclamation and amenity planting purposes. Silver-berry and buffalo-berry are two such shrubs being tested as potential candidates for the revegetation of the oil sands tailings in northeastern Alberta. Associated with the roots of silver-berry and buffalo-berry are two symbiants, the N/sub 2/-fixing actimomycete Frankia and the vesicular-arbuscular mycorrhizal (VAM) fungi. Numerous studies have demonstrated that, particularly in nutrient-limited conditions, mycorrhization and nodulation can result in significantly better plant performance as a consequence of improved N and P nutrition. It was found in this study that in Alberta, silver-berry and buffalo-berry are strictly VA mycorrhizal; that they are highly dependent on their symbiants for optimum growth; and that the VAM inoculum potential of both stockpiled and undisturbed muskeg peak is negligible, due to the absence of VAM hosts. Means to increase the inoculum potential of peat have been studied. The efficacy of inoculating seedlings grown in greenhouses with VAM and Frankia has been demonstrated. Overwinter mortality was higher for inoculated shrubs, but after one growing season, shoot-weights of silver-berry were 3 to 7 times greater than for uninoculated shrubs, and shoot weights of buffalo-berry were 3 to 5 times greater. 122 refs., 12 figs., 31 tabs.

  4. The diversity and distribution of fungi on residential surfaces.

    Directory of Open Access Journals (Sweden)

    Rachel I Adams

    Full Text Available The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea. Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins

  5. Molecular and phenotypic characterization of anamorphic fungi

    OpenAIRE

    Madrid Lorca, Hugo

    2011-01-01

    Anamorphic fungi (those reproducing asexually) are a big part of kingdom Fungi. Most of them occur as saprobes in nature, but numerous species are pathogenic to plants and animals including man. With the aim of contributing to the knowledge of the diversity and distribution of anamorphic fungi, we performed a phenotypic and molecular characterization of environmental and clinical isolates of these fungi. Based on a polyphasic taxonomy approach which included morphology, physiology and DNA seq...

  6. hydroxyalkanoate (PHAs) producing bacteria isolated

    African Journals Online (AJOL)

    SERVER

    2007-07-04

    Jul 4, 2007 ... ium (MSM), having inhibitors for Gram positive bacteria and fungi and a mixed ... Two techniques were used for detecting the presence of polymer: staining ... was saline solution at 600 nm wavelength on VARIAN DSM 100.

  7. Enzyme and biochemical producing fungi

    DEFF Research Database (Denmark)

    Lübeck, Peter Stephensen; Lübeck, Mette; Nilsson, Lena

    2010-01-01

    factories for sustainable production of important molecules. For developing fungi into efficient cell factories, the project includes identification of important factors that control the flux through the pathways using metabolic flux analysis and metabolic engineering of biochemical pathways....

  8. Fungi that Infect Humans.

    Science.gov (United States)

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  9. [Antibacterial actin of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7 (Part 2). Effect of sodium chloride and temperature on bactericidal activity].

    Science.gov (United States)

    Entani, E; Asai, M; Tsujihata, S; Tsukamoto, Y; Ohta, M

    1997-05-01

    Bactericidal effects of various kinds of AWASEZU (processed vinegar, 2.5% acidity) on food-borne pathogenic bacteria including Escherichia coli O157:H7 and other bacteria were examined. the order of bactericidal activities was NIHAIZU (3.5% NaCl was added) > SANBA-IZU (3.5% NaCl and 10% sucrose were added) > plain vinegar (spirit vinegar) > AMAZU (10% sucrose was added). This indicates that their activities were enhanced by the addition of sodium chloride and suppressed by the addition of sugar. On the other hand, when soy sauce was used instead of sodium chloride, the order of bactericidal activities was plain vinegar > AMAZU > NIHAIZU > SANBAIZU. This is mainly because their activities were suppressed by the increase in the pH value. The effect of sodium chloride (0.01-15%) and temperature (10-50 degrees C) on bactericidal activities against E. coli O157:H7 in spirit vinegar (0.5-2.5% acidity) was further examined. When vinegar was used in combination with sodium chloride, predominant synergism on the bactericidal activity was observed. Their activities were markedly enhanced by the addition of sodium chloride in proportion to the concentration. In addition to this, at higher temperatures spirit vinegar killed bacteria much more rapidly. It should be noted that the bactericidal activity of spirit vinegar was extremely enhanced by the combined use of the addition of sodium chloride and the rise of temperature. For example, in 2.5% acidity vinegar, the time required for 3 log decrease in viable cell numbers at 20 degrees C was shortened to 1/140-fold by the addition of 5% sodium chloride, shortened to 1/51-fold by the rise of the reaction temperature at 40 degrees C, and shortened to 1/830-fold; 0.89 minutes by both the addition of 5% sodium chloride and the rise of temperature at 40 degrees C. In order to propose the methods to prevent food poisoning by bacterial infection, bactericidal activities of vinegar solution containing sodium chloride on cooking tools and

  10. Recovery of fermented inulin fiber by lactic acid bacteria (LAB) from inulin hydrolysate using fungi inulinase enzymes of Scopulariopsis sp.-CBS1 and class of Deuteromycetes-CBS4 as cholesterol binder

    Science.gov (United States)

    Susilowati, Agustine; Melanie, Hakiki; Maryati, Yati; Aspiyanto

    2017-01-01

    Fermentation of Lactobacillus Acid Bacteria (LAB) which are mixtures of Lactobacillus acidophilus, Bifidobacteriumbifidum, Lactobacillus bulgaricus and Streptococcus thermophillus on hydrolysate as a result of inulin hydrolysis using inulinase enzymes obtained from endophytic fungi ofScopulariopsis sp.-CBS1 (inulin hydrolysate of S) and Class of Deuteromycetes-CBS4 (inulin hydrolysate of D) generate potential fermented inulin fiber as cholesterol binder. Fermentation process was conducted under concentrations of inulin hydrolysate 50% (w/v), LAB 15% (v/v) and skim milk 12.5% (w/v) at room temperature and 40°C for 0, 12, 24, 36 and 48 hours, respectively. Result of experimental work showed that longer time of LAB fermentation increased total acids, TPC and CBC at pH 2, but decreased total sugar, reducing, IDF, SDF, CBC pH 2 and CBC pH 7. Based on Cholesterol Binding Capacity (CBC), optimization of fermentation process on inulin hydrolysate of S was achieved by combining treatment at 40°C for 24 hours resulted in CBC pH 2 of 19.11 mg/g TDF and inulin hydrolysate of D was achieved by fermentation at 40 °C for 48 hours resulted in CBC pH 2 of 24.28 mg/g TDF. Inulin hydrolysate of class of Deutrymecetes CBS4 fermented by LAB had better functional property as cholesterol binder than that inulin hydrolysate of S fermented by LAB. This is due to cholesterol binder and cholesterol derivatives as a result of degradation of LAB on digestive system (stomach) when compared to higher colon under optimal process condition.

  11. Ocorrência de bactérias diazotróficas e fungos micorrízicos arbusculares na cultura da mandioca Occurrence of diazotrophic bacteria and arbuscular mycorrhizal fungi on the cassava crop

    Directory of Open Access Journals (Sweden)

    Elcio Liborio Balota

    1999-07-01

    Full Text Available Este trabalho teve como objetivo avaliar a ocorrência, isolar e identificar fungos micorrízicos arbusculares associados à cultura da mandioca (Manihot esculenta. Amostras de solo rizosférico e de várias partes da planta (raízes, tubérculos, manivas e folhas de locais nos Estados do Rio de Janeiro, São Paulo e Paraná, foram inoculadas nos meios LGI-P, NFb-malato e NFb-GOC, avaliando-se o número mais provável de células e a atividade de redução de acetileno. Bactérias diazotróficas foram isoladas de todas as partes da planta, com exceção das folhas, sendo identificadas como Klebsiella sp., Azospirillum lipoferum e uma bactéria denominada "E", provavelmente pertencente ao gênero Burkholderia. A Bactéria E acumulou de 7,63 mg a 14,84 mg de N/g de C em meio semi-sólido, isento de N, e conseguiu manter a capacidade de fixação biológica de N, mesmo após uma dezena de repicagens consecutivas. A colonização micorrízica variou de 31% a 69%, e a densidade de esporos de 10 a 384 esporos/100 mL de solo, predominando as espécies Entrophospora colombiana e Acaulospora scrobiculata no Rio de Janeiro, A. scrobiculata e Scutellospora heterogama no Paraná e em Piracicaba (São Paulo e A. appendicula e S. pellucida em Campinas (São Paulo.This study was performed to evaluate the occurrence and to isolate and identify diazotrophic bacteria and arbuscular mycorrhizal fungi associated with the cassava (Manihot esculenta crop. Samples from rhizospherical soil, roots, tubers, stems and leaves from several localities of the States of Rio de Janeiro, São Paulo and Paraná, in Brazil, were inoculated in three media specific for diazotrophic associative bacteria, LGI-P, NFb-malate and NFb-GOC, evaluating the most probable number of cells and the acetylene-reducing activity. Diazotrophic bacteria were detected in all plant parts except for the leaves, and were identified as Klebsiella sp., Azospirillum lipoferum and a bacterium called "E

  12. The identification of fungi collected from the ceca of commercial poultry.

    Science.gov (United States)

    Byrd, J A; Caldwell, D Y; Nisbet, D J

    2017-07-01

    Under normal conditions, fungi are ignored unless a disease/syndrome clinical signs are reported. The scientific communities are largely unaware of the roles fungi play in normal production parameters. Numerous preharvest interventions have demonstrated that beneficial bacteria can play a role in improving productions parameters; however, most researchers have ignored the impact that fungi may have on production. The goal of the present study was to record fungi recovered from commercial broiler and layer houses during production. Over 3,000 cecal samples were isolated using conventional culture methodology and over 890 samples were further characterized using an automated repetitive sequence-based PCR (rep-PCR) methodology. Eighty-eight different fungal and yeast species were identified, including Aspergillus spp., Penicillium spp., and Sporidiobolus spp, and 18 unknown genera were separated using rep-PCR. The results from the present study will provide a normal fungi background genera under commercial conditions and will be a stepping stone for investigating the impact of fungi on the gastrointestinal tract and on the health of poultry. Published by Oxford University Press on behalf of Poultry Science Association 2017.

  13. What we know about arbuscular mycorhizal fungi and associated ...

    African Journals Online (AJOL)

    Mycorrhizal fungi are common soil microorganisms and are well known for their symbiotic association with the roots of host plants. The soil is a complex environment harbouring a wide diversity of microorganisms. The interaction between soil bacteria and arbuscular mycorrhizal fungi has been shown in several studies to ...

  14. Nuclear movement in fungi.

    Science.gov (United States)

    Xiang, Xin

    2017-12-11

    Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle. Published by Elsevier Ltd.

  15. Fungi and fungi-like Oomycetes isolated from affected leaves of rhododendron

    Directory of Open Access Journals (Sweden)

    Maria Kowalik

    2013-12-01

    Full Text Available The aim of the work is to identify fungi and fungi-like Oomycetes occurring on affected leaves of rhododendron Rhododendron L. Mycological analyses were carried out on 200 leaves collected from green areas of Kraków from May till September 2005. Isolated fungi-like Oomycetes belonged to 67 taxa. The most frequently found fungi included: Alternaria alternata, Aspergillus niger, Botrytis cinerea, Coelophoma empetri, Nigrospora sphaerica, Pestalotia sydowiana, Phialophora cyclaminis, Phomopsis archeri, Septoria azalea and Sordaria fimicola. Among fungi-like organisms Phytophthora cinnamomi and P. citricola were isolated.

  16. Toxins of filamentous fungi.

    Science.gov (United States)

    Bhatnagar, Deepak; Yu, Jiujiang; Ehrlich, Kenneth C

    2002-01-01

    Mycotoxins are low-molecular-weight secondary metabolites of fungi. The most significant mycotoxins are contaminants of agricultural commodities, foods and feeds. Fungi that produce these toxins do so both prior to harvest and during storage. Although contamination of commodities by toxigenic fungi occurs frequently in areas with a hot and humid climate (i.e. conditions favorable for fungal growth), they can also be found in temperate conditions. Production of mycotoxins is dependent upon the type of producing fungus and environmental conditions such as the substrate, water activity (moisture and relative humidity), duration of exposure to stress conditions and microbial, insect or other animal interactions. Although outbreaks of mycotoxicoses in humans have been documented, several of these have not been well characterized, neither has a direct correlation between the mycotoxin and resulting toxic effect been well established in vivo. Even though the specific modes of action of most of the toxins are not well established, acute and chronic effects in prokaryotic and eukaryotic systems, including humans have been reported. The toxicity of the mycotoxins varies considerably with the toxin, the animal species exposed to it, and the extent of exposure, age and nutritional status. Most of the toxic effects of mycotoxins are limited to specific organs, but several mycotoxins affect many organs. Induction of cancer by some mycotoxins is a major concern as a chronic effect of these toxins. It is nearly impossible to eliminate mycotoxins from the foods and feed in spite of the regulatory efforts at the national and international levels to remove the contaminated commodities. This is because mycotoxins are highly stable compounds, the producing fungi are ubiquitous, and food contamination can occur both before and after harvest. Nevertheless, good farm management practices and adequate storage facilities minimize the toxin contamination problems. Current research is

  17. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    Science.gov (United States)

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  18. The effect of lactic acid bacteria included as a probiotic or silage inoculant on in vitro rumen digestibility, total gas and methane production

    NARCIS (Netherlands)

    Ellis, J.L.; Bannink, A.; Hindrichsen, I.K.; Kinley, R.D.; Pellikaan, W.F.; Milora, N.L.; Dijkstra, J.

    2016-01-01

    Through alterations in silage and rumen fermentation, lactic acid bacteria (LAB) silage inoculants may affect OM digestibility and methane (CH4) emissions. In order to identify LAB that may have beneficial effects on CH4 emissions and/or OM digestibility in vivo, a series of in vitro gas production

  19. Composition of arbuscular mycorrhizal fungi associated with cassava

    African Journals Online (AJOL)

    SARAH

    2016-02-29

    Feb 29, 2016 ... Objectives: Arbuscular mycorrhizal fungi (AMF) form root symbiotic relationships with higher plants, but .... including growth habit of stem, stem colour, outer and inner root ..... of AM fungi to colonize roots, breaking down their.

  20. Systemic resistance induced by rhizosphere bacteria

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1998-01-01

    Nonpathogenic rhizobacteria can induce a systemic resistance in plants that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Rhizobacteria-mediated induced systemic resistance (ISR) has been demonstrated against fungi, bacteria, and viruses in Arabidopsis, bean,

  1. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria...

  2. Removal of crude petroleum hydrocarbons by heterotrophic bacteria ...

    African Journals Online (AJOL)

    Nitrogenous fertilizer (NPK) plant effluents from NAFCON were used in amending plots of land experimentally polluted with crude oil. Counts of heterotrophic bacteria (THBC) and fungi (TF), and of petroleum utilizing bacteria (PUB) and fungi (PUF) were monitored during an 8 weeks period. Counts obtained showed that ...

  3. Ecological plasticity of Trichoderma fungi in leached chernozem

    Science.gov (United States)

    Svistova, I. D.; Senchakova, T. Yu.

    2010-03-01

    The autecological properties of Trichoderma fungi ecotypes isolated from the leached chernozem of the forest-steppe zone of the European part of Russia have been studied. We were the first who carried out the complex study of the synecological relations of micromycetes of such kinds in a system including the soil, microbial community, and plants, i.e., their relations with soil saprotrophic fungi, bacteria, actinomycetes, plants, and pathogenic fungi. It was shown that the ecological plasticity of the Trichoderma genus in the soil of this zone is determined by its growth rate, the optimum pH and temperature, the biosynthesis of extracellular hydrolytic enzymes, the biological action of mycotoxins, and the ability for parasitism. The efficiency of the introduction of Trichoderma species typical and atypical for the leached chernozem into this soil and their influence on the structure of the microbial community were evaluated. The T. pseudokoningii ecotype, which produces cellulolytic enzymes, is very promising for industrial biotechnology, and the T. harzianum ecotype can be used in soil biotechnology for the biocontrol of chernozem. The addition of a commercial trichodermin preparation into the chernozem damages the structure of its microbial community.

  4. Fungi and mycotoxins: Food contaminants

    Directory of Open Access Journals (Sweden)

    Kocić-Tanackov Sunčica D.

    2013-01-01

    Full Text Available The growth of fungi on food causes physical and chemical changes which, further affect negatively the sensory and nutritive quality of food. Species from genera: Aspergillus, Penicillium, Fusarium, Alternariа, Cladosporium, Mucor, Rhizopus, Eurotium and Emericella are usually found. Some of them are potentially dangerous for humans and animals, due to possible synthesis and excretion of toxic secondary metabolites - mycotoxins into the food. Their toxic syndroms in animals and humans are known as mycotoxicoses. The pathologic changes can be observed in parenhimatic organs, and in bones and central nervous system also. Specific conditions are necessary for mycotoxin producing fungi to synthetize sufficient quantities of these compounds for demonstration of biologic effects. The main biochemical paths in the formation of mycotoxins include the polyketide (aflatoxins, sterigmatocystin, zearalenone, citrinine, patulin, terpenic (trichothecenes, aminoacid (glicotoxins, ergotamines, sporidesmin, malformin C, and carbonic acids path (rubratoxins. Aflatoxins are the most toxigenic metabolites of fungi, produced mostly by Aspergillus flavus and A. parasiticus species. Aflatoxins appear more frequently in food in the tropic and subtropic regions, while the food in Europe is more exposed to also very toxic ochratoxin A producing fungi (A. ochraceus and some Penicillium species. The agricultural products can be contaminated by fungi both before and after the harvest. The primary mycotoxicoses in humans are the result of direct intake of vegetable products contaminated by mycotoxins, while the secondary mycotoxicoses are caused by products of animal origin. The risk of the presence of fungi and mycotoxin in food is increasing, having in mind that some of them are highly thermoresistent, and the temperatures of usual food sterilization is not sufficient for their termination. The paper presents the review of most important mycotoxins, their biologic effects

  5. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  6. Anaerobic bacteria

    Science.gov (United States)

    Anaerobic bacteria are bacteria that do not live or grow when oxygen is present. In humans, these bacteria ... Brook I. Diseases caused by non-spore-forming anaerobic bacteria. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  7. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  8. Marine fungi: A critique

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Raghukumar, C.

    in the sea have been ignored to a large extent. However, several instances of terrestrial species of fungi, active in marine environment have been reported. The arguments to support the view that terrestrial species of fungi by virtue of their physiological...

  9. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  10. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules.

    Science.gov (United States)

    Satari, Behzad; Karimi, Keikhosro

    2018-02-01

    Mucoralean fungi are suitable microorganisms for the sustainable production of food, fodder, and fuels from inexpensive natural resources. Ethanol-producing Mucorales are particularly advantageous for second-generation ethanol production in comparison to the conventional ethanolic yeasts and bacteria. They are able to ferment a wide range of sugars to a range of valuable products, while they are typically resistance against the inhibitors available in different substrates, including untreated lignocellulosic hydrolysates. In addition to a high ethanol yield, the fungi produce several commercially valuable by-products, including chitosan, microbial oil (mainly polyunsaturated fatty acids), and protein. Moreover, the fungal extracts can replace the expensive nutrients required in fermentation. Besides, their morphologies can be altered from filamentous to yeast like and are adjustable based on the process requirement. The focus of this review is on applying Mucorales in producing ethanol and the biomass by-products thereof.

  11. Advances in Genomics of Entomopathogenic Fungi.

    Science.gov (United States)

    Wang, J B; St Leger, R J; Wang, C

    2016-01-01

    Fungi are the commonest pathogens of insects and crucial regulators of insect populations. The rapid advance of genome technologies has revolutionized our understanding of entomopathogenic fungi with multiple Metarhizium spp. sequenced, as well as Beauveria bassiana, Cordyceps militaris, and Ophiocordyceps sinensis among others. Phylogenomic analysis suggests that the ancestors of many of these fungi were plant endophytes or pathogens, with entomopathogenicity being an acquired characteristic. These fungi now occupy a wide range of habitats and hosts, and their genomes have provided a wealth of information on the evolution of virulence-related characteristics, as well as the protein families and genomic structure associated with ecological and econutritional heterogeneity, genome evolution, and host range diversification. In particular, their evolutionary transition from plant pathogens or endophytes to insect pathogens provides a novel perspective on how new functional mechanisms important for host switching and virulence are acquired. Importantly, genomic resources have helped make entomopathogenic fungi ideal model systems for answering basic questions in parasitology, entomology, and speciation. At the same time, identifying the selective forces that act upon entomopathogen fitness traits could underpin both the development of new mycoinsecticides and further our understanding of the natural roles of these fungi in nature. These roles frequently include mutualistic relationships with plants. Genomics has also facilitated the rapid identification of genes encoding biologically useful molecules, with implications for the development of pharmaceuticals and the use of these fungi as bioreactors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mycorrhiza helper bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Labbe, Jessy [ORNL

    2016-10-01

    This chapter focuses on the Mycorrhiza Helper Bacteria (MHB), a generic name given to bacteria which stimulate the formation of mycorrhizal symbiosis. By extension, some bacterial strains that positively impact the functioning of mycorrhizal symbiosis are also called MHB. These bacteria have applicative interests, as they indirectly improve the health and growth of tree seedlings. MHB are not restricted to a specific type of ecosystem, but are rather generalist in the way that they associate with both herbaceous and woody mycorrhizal plants from boreal, temperate, arid and tropical ecosystems. However, understanding the molecular mechanisms and their specificities will help us to know more about the ecology of the MHB. The process of acquisition varies between fungal species; while ectomycorrhizal fungi most probably recurrently acquire them from the environment, the association between bacterial endosymbionts and Glomeromycota probably dates back to very ancient times, and has since been vertically transmitted.

  13. Linking plants, fungi and soil mechanics

    Science.gov (United States)

    Yildiz, Anil; Graf, Frank

    2017-04-01

    Plants provide important functions in respect soil strength and are increasingly considered for slope stabilisation within eco-engineering methods, particularly to prevent superficial soil failure. The protective functions include hydrological regulation through interception and evapo-transpiration as well as mechanical stabilisation through root reinforcement and, to a certain extent, chemical stabilisation through sticky metabolites. The ever-growing application of plants in slope stabilisation demanded more precise information of the vegetation effects and, concomitant, led the models for quantifying the reinforcement shoot up like mushrooms. However, so far, the framework and interrelationships for both the role of plants and the quantification concepts have not been thoroughly analysed and comprehensively considered, respectively, often resulting in unsatisfactory results. Although it seems obvious and is implicitly presupposed that the plant specific functions related to slope stability require growth and development, this is anything but given, particularly under the often hostile conditions dominating on bare and steep slopes. There, the superficial soil layer is often characterised by a lack of fines and missing medium-sized and fine pores due to an unstable soil matrix, predominantly formed by coarse grains. Low water retention capacity and substantial leaching of nutrients are the adverse consequences. Given this general set-up, sustainable plant growth and, particularly, root development is virtually unachievable. At exactly this point mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, come into play. Though, they are probably well-known within the eco-engineering community, mycorrhizal fungi lead a humble existence. This is in spite of the fact that they supply their hosts with water and nutrients, improving the plant's ability to master otherwise unbridgeable environmental conditions. However, in order to support

  14. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  16. Maarja Unduski 'Fungi'

    Index Scriptorium Estoniae

    1999-01-01

    24. nov.-st Linnagaleriis Tallinnas Maarja Unduski kolmas isiknäitus 'Fungi'. Eksponeeritud hiigelseened ja rida värviliste lehtedega ramatuid, mille kaante valmistamisel on autor esmakordselt kasutanud ka lõuendit ja paberreljeefi.

  17. Manglicolous fungi from India

    Digital Repository Service at National Institute of Oceanography (India)

    Chinnaraj, S.; Untawale, A.G.

    This paper deals with nine Ascomycetous fungi viz. Rhizophila marina Hyde et Jones, Trematosphaeria striatispora Hyde, Lineolata rhizophorae (Kohlm. et. Kohlm.) Kohlm. et. Volkm.-Kohlm., Caryosporella rhizophorae Kohlm., Passeriniella savoryellopsis...

  18. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    Science.gov (United States)

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  19. Impedimetric method for physiologically characterisation of fungi

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Petersen, Karina

    1998-01-01

    Fungi are playing an important role in the food and pharmaceutical industry today, both as starter cultures, fermentation organisms, and as contaminants. Characterisation of fungal growth is normally time consuming as it includes measurements and study on a wide range of media at different...... temperatures, pH, water activity and atmosphere composition. Nevertheless is it important information in ecophysiological studies, where the growth potential by fungi are related to composition and storage of food. It is therefore of great interest to device a rapid method for characterisation of fungi.......The objective was to determine the growth phases of various fungi using an impedimetric method and compare this with traditional methods using agar plates, in order to determine if this rapid method can replace the traditional method.The method is based on impedimetric assessment of growth on the Bactometer 128...

  20. Effector proteins of rust fungi.

    Science.gov (United States)

    Petre, Benjamin; Joly, David L; Duplessis, Sébastien

    2014-01-01

    Rust fungi include many species that are devastating crop pathogens. To develop resistant plants, a better understanding of rust virulence factors, or effector proteins, is needed. Thus far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM, RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used to investigate mechanisms of immune receptor activation (avirulence activities) or entry into plant cells, how they work inside host tissues to promote fungal growth remains unknown. The genome sequences of four rust fungi (two Melampsoraceae and two Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small secreted proteins considered as rust candidate secreted effector proteins (CSEPs). The rust community now needs high-throughput approaches (effectoromics) to accelerate effector discovery/characterization and to better understand how they function in planta. However, this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties in culturing these species in vitro. The use of heterologous approaches should be promoted in the future.

  1. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  2. Potential Antiviral Agents from Marine Fungi: An Overview

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2015-07-01

    Full Text Available Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.

  3. Thermophilic fungi in the new age of fungal taxonomy.

    Science.gov (United States)

    de Oliveira, Tássio Brito; Gomes, Eleni; Rodrigues, Andre

    2015-01-01

    Thermophilic fungi are of wide interest due to their potential to produce heat-tolerant enzymes for biotechnological processes. However, the taxonomy of such organisms remains obscure, especially given new developments in the nomenclature of fungi. Here, we examine the taxonomy of the thermophilic fungi most commonly used in industry in light of the recent taxonomic changes following the adoption of the International Code of Nomenclature for Algae, Fungi and Plants and also based on the movement One Fungus = One Name. Despite the widespread use of these fungi in applied research, several thermotolerant fungi still remain classified as thermophiles. Furthermore, we found that while some thermophilic fungi have had their genomes sequenced, many taxa still do not have barcode sequences of reference strains available in public databases. This lack of basic information is a limiting factor for the species identification of thermophilic fungi and for metagenomic studies in this field. Based on next-generation sequencing, such studies generate large amounts of data, which may reveal new species of thermophilic fungi in different substrates (composting systems, geothermal areas, piles of plant material). As discussed in this study, there are intrinsic problems associated with this method, considering the actual state of the taxonomy of thermophilic fungi. To overcome such difficulties, the taxonomic classification of this group should move towards standardizing the commonly used species names in industry and to assess the possibility of including new systems for describing species based on environmental sequences.

  4. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  5. Genetically Engineering Entomopathogenic Fungi.

    Science.gov (United States)

    Zhao, H; Lovett, B; Fang, W

    2016-01-01

    Entomopathogenic fungi have been developed as environmentally friendly alternatives to chemical insecticides in biocontrol programs for agricultural pests and vectors of disease. However, mycoinsecticides currently have a small market share due to low virulence and inconsistencies in their performance. Genetic engineering has made it possible to significantly improve the virulence of fungi and their tolerance to adverse conditions. Virulence enhancement has been achieved by engineering fungi to express insect proteins and insecticidal proteins/peptides from insect predators and other insect pathogens, or by overexpressing the pathogen's own genes. Importantly, protein engineering can be used to mix and match functional domains from diverse genes sourced from entomopathogenic fungi and other organisms, producing insecticidal proteins with novel characteristics. Fungal tolerance to abiotic stresses, especially UV radiation, has been greatly improved by introducing into entomopathogens a photoreactivation system from an archaean and pigment synthesis pathways from nonentomopathogenic fungi. Conversely, gene knockout strategies have produced strains with reduced ecological fitness as recipients for genetic engineering to improve virulence; the resulting strains are hypervirulent, but will not persist in the environment. Coupled with their natural insect specificity, safety concerns can also be mitigated by using safe effector proteins with selection marker genes removed after transformation. With the increasing public concern over the continued use of synthetic chemical insecticides and growing public acceptance of genetically modified organisms, new types of biological insecticides produced by genetic engineering offer a range of environmentally friendly options for cost-effective control of insect pests. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Genome Studies on Nematophagous and Entomogenous Fungi in China

    Science.gov (United States)

    Zhang, Weiwei; Cheng, Xiaoli; Liu, Xingzhong; Xiang, Meichun

    2016-01-01

    The nematophagous and entomogenous fungi are natural enemies of nematodes and insects and have been utilized by humans to control agricultural and forestry pests. Some of these fungi have been or are being developed as biological control agents in China and worldwide. Several important nematophagous and entomogenous fungi, including nematode-trapping fungi (Arthrobotrys oligospora and Drechslerella stenobrocha), nematode endoparasite (Hirsutella minnesotensis), insect pathogens (Beauveria bassiana and Metarhizium spp.) and Chinese medicinal fungi (Ophiocordyceps sinensis and Cordyceps militaris), have been genome sequenced and extensively analyzed in China. The biology, evolution, and pharmaceutical application of these fungi and their interacting with host nematodes and insects revealed by genomes, comparing genomes coupled with transcriptomes are summarized and reviewed in this paper. PMID:29376926

  7. Comparative genome analysis of Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  8. Enumeration of fungi in barley

    CSIR Research Space (South Africa)

    Rabie, CJ

    1997-04-01

    Full Text Available Estimation of fungal contamination of barley grain is important as certain fungi can proliferate during the malting process. The following factors which may affect the enumeration of fungi were evaluated: dilution versus direct plating, pre...

  9. Communities of fungi in decomposed wood of oak and pine

    Directory of Open Access Journals (Sweden)

    Kwaśna Hanna

    2016-09-01

    Full Text Available The abundance and diversity of wood decomposing fungi were investigated by isolating and cultivating filamentous fungi from wood and by detection of fruit bodies of ascomycetous and basidiomycetous fungi. The objective was to study the impact of forest management on fungi in 100-year-old oak and 87-year-old Scots pine forests in Northern Poland. Fungi were found on coarse woody debris of decayed stumps and fallen logs, boughs and branches in each of the three (managed and unmanaged examined stands. In total, 226 species of Oomycota and fungi were recorded. Oak wood was colonized by one species of Oomycota and 141 species of fungi including Zygomycota (19 species, Ascomycota (103 species and Basidiomycota (19 species. Scots pine wood was also colonized by one species of Oomycota and 138 species of fungi including Zygomycota (19 species, Ascomycota (90 species and Basidiomycota (29 species. In the first, second and third stages of decomposition, the oak wood was colonized by 101, 89 and 56 species of fungi respectively and pine wood was colonized by 82, 103 and 47 species respectively. Eighty three of the observed species (37% occurred on both types of wood, while the other species displayed nutritional preferences. A decrease in the number of species with advancing decay indicates the necessity for a continuous supply of dead wood to the forest ecosystem.

  10. LTR retrotransposons in fungi.

    Directory of Open Access Journals (Sweden)

    Anna Muszewska

    Full Text Available Transposable elements with long terminal direct repeats (LTR TEs are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (8000 elements. The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other.

  11. Genera of phytopathogenic fungi

    NARCIS (Netherlands)

    Marin-Felix, Y.; Hernández-Restrepo, Margarita; Wingfield, M.J.; Akulov, A.; Carnegie, A.J.; Cheewangkoon, R.; Gramaje, D.; Groenewald, J.Z.; Guarnaccia, V.; Halleen, F.; Lombard, L.; Luangsa-ard, J.; Marincowitz, S.; Moslemi, A.; Mostert, L.; Quaedvlieg, W.; Schumacher, R.K.; Spies, C.F.J.; Thangavel, R.; Taylor, P.W.J.; Wilson, A.M.; Wingfield, B.D.; Wood, A.R.; Crous, P.W.

    2019-01-01

    This paper represents the second contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information regarding the pathology, distribution, hosts and disease symptoms for the treated genera. In addition, primary and secondary DNA

  12. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  13. Fun with Fungi.

    Science.gov (United States)

    McLure, John W.

    1993-01-01

    Describes hands-on activities with fungi that may provoke the curiosity of early adolescents and increase their enjoyment and understanding of a vast, important portion of botany. Some of the activities may be conducted during the winter months when most fieldwork ceases. (PR)

  14. Philatelic Mycology: Families of Fungi

    NARCIS (Netherlands)

    Marasas, W.F.O.; Marasas, H.M.; Wingfield, M.J.; Crous, P.W.

    2014-01-01

    Philately, the study of postage stamps, and mycology, the study of fungi, are seldom connected by those that practice these very different activities. When associated, philatelic mycology would be considered as the study of fungi on stamps. The Fungi touch every aspect of our daily lives, most

  15. Screening and assessment of laccase producing fungi isolated from ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... enzyme is found in many plant species and is widely distributed in fungi including wood-rotting fungi .... mat and weight of only filter paper represented biomass of fungal mat. ... substrate conversion/s) (Das et al., 1997).

  16. Dermatophytes and other pathogenic fungi from hospital staff ...

    African Journals Online (AJOL)

    hospital staff apparel from protective gown, face- shields and hand gloves were tested for the presence of fungi. Examined samples were collected using the swab culture method. Results: Of a total of 110 swab samples of hospital staff apparel, 56 (51 %) showed fungi contamination including 31 (66 %) of 47 samples from ...

  17. The distribution of vesicular-arbuscular mycorrhizal fungi in India.

    Science.gov (United States)

    Rani, R; Mukerji, K G

    1990-01-01

    Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.

  18. Culturable fungi in potting soils and compost.

    Science.gov (United States)

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  20. The effect of mulching and soil compaction on fungi composition and microbial communities in the rhizosphere of soybean

    Science.gov (United States)

    Frac, M.; Siczek, A.; Lipiec, J.

    2009-04-01

    The soil environment is the habitat of pathogenic and saprotrophic microorganisms. The composition of the microbial community are related to biotic and abiotic factors, such as root exudates, crop residues, climate factors, mulching, mineral fertilization, pesticides introduction and soil compaction. The aim of the study was to determine the effect of the mulching and soil compaction on the microorganism communities in the rhizosphere soil of soybean. The studies were carried out on silty loam soil (Orthic Luvisol) developed from loess (Lublin, Poland). The experiment area was 192m2 divided into 3 sections consisted of 6 micro-plots (7m2). Three levels of soil compaction low, medium and heavy obtained through tractor passes were compared. The soil was compacted and loosened within seedbed layer 2 weeks before sowing. Soybean "Aldana" seeds were inoculated with Bradyrhizobium japonicum and were sown with interrow spacing of 0.3m. Wheat straw (as mulch) was uniformly spread on the half of each micro-plot at an amount of 0.5kg m-1 after sowing. Rhizosphere was collected three times during growing season of soybean. Microbiological analyses were conducted in 3 replications and included the determination of: the total number of bacteria and fungi, the number of bacteria Pseudomonas sp. and Bacillus sp., the genus identification of fungi isolated from rhizosphere of soybean. Results indicated a positive effect of mulching on the increase number of all groups of examined rhizosphere microorganisms (fungi, bacteria, Pseudomonas sp., Bacillus sp.). The highest number of the microorganisms was found in the low and medium compacted soil and markedly decreased in the most compacted soil. Relatively high number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of low and medium compacted soil, particularly in mulched plots. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of

  1. Genera of phytopathogenic fungi: GOPHY 1

    Directory of Open Access Journals (Sweden)

    Y. Marin-Felix

    2017-03-01

    Full Text Available Genera of Phytopathogenic Fungi (GOPHY is introduced as a new series of publications in order to provide a stable platform for the taxonomy of phytopathogenic fungi. This first paper focuses on 21 genera of phytopathogenic fungi: Bipolaris, Boeremia, Calonectria, Ceratocystis, Cladosporium, Colletotrichum, Coniella, Curvularia, Monilinia, Neofabraea, Neofusicoccum, Pilidium, Pleiochaeta, Plenodomus, Protostegia, Pseudopyricularia, Puccinia, Saccharata, Thyrostroma, Venturia and Wilsonomyces. For each genus, a morphological description and information about its pathology, distribution, hosts and disease symptoms are provided. In addition, this information is linked to primary and secondary DNA barcodes of the presently accepted species, and relevant literature. Moreover, several novelties are introduced, i.e. new genera, species and combinations, and neo-, lecto- and epitypes designated to provide a stable taxonomy. This first paper includes one new genus, 26 new species, ten new combinations, and four typifications of older names.

  2. Comparative Genome Analysis of Basidiomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  3. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi.

    Science.gov (United States)

    Toma, Maíra Akemi; Soares de Carvalho, Teotonio; Azarias Guimarães, Amanda; Martins da Costa, Elaine; Savana da Silva, Jacqueline; de Souza Moreira, Fatima Maria

    Sophora tomentosa is a pantropical legume species with potential for recovery of areas degraded by salinization, and for stabilization of sand dunes. However, few studies on this species have been carried out, and none regarding its symbiotic relationship with beneficial soil microorganisms. Therefore, this study aimed to evaluate the diversity of nitrogen-fixing bacteria isolated from nodules of Sophora tomentosa, and to analyze the occurrence of colonization of arbuscular mycorrhizal fungi on the roots of this legume in seafront soil. Thus, seeds, root nodules, and soil from the rhizosphere of Sophora tomentosa were collected. From the soil samples, trap cultures with this species were established to extract spores and to evaluate arbuscular mycorhizal fungi colonization in legume roots, as well as to capture rhizobia. Rhizobia strains were isolated from nodules collected in the field or from the trap cultures. Representative isolates of the groups obtained in the similarity dendrogram, based on phenotypic characteristics, had their 16S rRNA genes sequenced. The legume species showed nodules with indeterminate growth, and reddish color, distributed throughout the root. Fifty-one strains of these nodules were isolated, of which 21 were classified in the genus Bacillus, Brevibacillus, Paenibacillus, Rhizobium and especially Sinorhizobium. Strains closely related to Sinorhizobium adhaerens were the predominant bacteria in nodules. The other genera found, with the exception of Rhizobium, are probably endophytic bacteria in the nodules. Arbuscular mycorrhizal fungi was observed colonizing the roots, but arbuscular mycorhizal fungi spores were not found in the trap cultures. Therefore Sophora tomentosa is associated with both arbuscular mycorhizal fungi and nodulating nitrogen-fixing bacteria. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    Science.gov (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  5. Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development.

    Science.gov (United States)

    Diagne, Nathalie; Diouf, Diegane; Svistoonoff, Sergio; Kane, Aboubacry; Noba, Kandioura; Franche, Claudine; Bogusz, Didier; Duponnois, Robin

    2013-10-15

    Exotic trees were introduced in Africa to rehabilitate degraded ecosystems. Introduced species included several Australian species belonging to the Casuarinaceae family. Casuarinas trees grow very fast and are resistant to drought and high salinity. They are particularly well adapted to poor and disturbed soils thanks to their capacity to establish symbiotic associations with mycorrhizal fungi -both arbuscular and ectomycorrhizal- and with the nitrogen-fixing bacteria Frankia. These trees are now widely distributed in more than 20 African countries. Casuarina are mainly used in forestation programs to rehabilitate degraded or polluted sites, to stabilise sand dunes and to provide fuelwood and charcoal and thus contribute considerably to improving livelihoods and local economies. In this paper, we describe the geographical distribution of Casuarina in Africa, their economic and ecological value and the role of the symbiotic interactions between Casuarina, mycorrhizal fungi and Frankia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, guarea guidonia (meliaceae)

    International Nuclear Information System (INIS)

    Gamboa Gaitan, Miguel A; Wen, Shiyun; Fetcher, Ned; Bayman, Paul

    2005-01-01

    Endophytes are microorganisms that live within healthy plant tissues, and include fungi and bacteria. They can be mutualists, comensals or even latent pathogens. Presence of these endosymbionts may affect host physiology, for example by consuming products of photosynthesis (endophytes are heterotrophs) or producing toxic metabolites. In this work two fungicides were used to eliminate fungal endophytes from seedlings of guarea guidonia. light saturated photosynthesis (Amax) was measured in endophytefree plants and compared with control plants. Each fungicide killed different fungal endosymbionts. phomopsis was more susceptible to benomyl while colletotrichum was more susceptible to propiconazole. Although suggestive, values of Amax were not significantly different for each treatment compared with control plants. No prediction can be made at this point about the final outcome of a given plantendophytic fungi interaction

  7. A study on biological activity of marine fungi from different habitats in coastal regions.

    Science.gov (United States)

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  8. In vitro effectiveness of Castellani solution including various ingredients against different microorganisms

    Directory of Open Access Journals (Sweden)

    Şükran Çopur

    2013-09-01

    Full Text Available Objective: As the external auditory canal is a moisturearea, it facilitates the growth of bacteria and fungi. Infectionsand inflammation due to Staphylococcus aureus,Pseudomonas aeruginosa, Aspergillus spp. and Candidaalbicans can develop in this area. Classical Castellanisolution including boric acid, fenol, fucsin, resorcinol, acetone,and alcohol is used for external ear tract infectionsdue to fungi and bacteria, and also for the superficial dermatophytoses,and eczematous dermatitis of the externalear tract infections.The purpose of this study is to investigate of the in vitroeffectiveness of classical Castellani solution and its differentformulations with different dilutions against the standardyeast and bacteria strains.Methods: C. albicans ATCC 10231, C. krusei ATCC6258, C. dubliniensis CD 36, C. guilliermondii ATCC6260, C. parapsilosis ATCC22019, E. coli ATCC 25922,P. aeruginosa ATCC 27853, MRSA ATCC 43300, Staphylococcusaureus ATCC 25923, and S. epidermidis ATCC12228 strains were included in the study. Broth microdilutionmethod was used for each microorganism and Castellaniformulation. The tests are repeated at least twice.Results: The inhibitory concentration of classical Castellanisolution against bacteria and fungi is 1/64-1/256,1/32-1/64 for fuchsin free solution, 1/32-1/128 for boricacid-free solution and, 1/64-1/128 for resorcinol-free solution.Conclusions: As a conclusion we think that the classicalCastellani solution and its different formulations at variousdilutions may be effective antimicrobial agents for differentpatient populations. J Clin Exp Invest 2013; 4 (3:302-305Key words: Castellani solution, antimicrobial activity, in vitro

  9. Identification of Endophytic Fungi of Medicinal Herbs of Lauraceae and Rutaceae with Antimicrobial Property

    Directory of Open Access Journals (Sweden)

    Min-Yuan Ho

    2012-09-01

    Full Text Available This study was conducted to determine taxonomical features and antimicrobial activities of 156 isolates of endophytic fungi collected from twigs of medicinal plants of Lauraceae (67 isolates and Rutaceae (89 isolates in central and northern Taiwan. The 156 isolates of fungi were classified into 35 genera in 19 families based on morphological characteristics of mycelia and asexual/sexual spores, as well as molecular phylogenetic analysis of rDNA LSU D1/D2 and ITS regions. The most common endophytes were in the taxa of Colletotrichum, Guignardia, Hypoxylon, Nigrospora, Phomopsis and Xylaria, and the most common hosts were Citrus and Zanthoxylum of Rutaceae and Cinnamomum of Lauraceae. Molecular phylogenetic analysis showed that xylariaceous isolates could be separated into Xylaria and Hypoxylon groups based on rDNA of LSU D1/D2 and ITS regions. Four isolates of endophytic fungi including Lasmenia sp. isolate CB10, Ophioceras tenuisporum isolate CI02, Xylaria cubensis isolate LA04 and Cyanodermella sp. isolate TR09 were tested for antimicrobial activities using a dual culture method and Lasmenia sp. isolate CB10 and Cyanodermella sp. isolate TR09 showed better antimicrobial activity against 12 plant pathogens including 9 fungi and 3 bacteria. Spraying Chinese cabbage (Brassica rapa plants with culture filtrates of the endophytic fungus Lasmenia sp. isolate CB10 significantly reduced severity of anthracnose of Chinese cabbage caused by Colletotrichum higginsianum under greenhouse conditions. This study suggests that the Lasmenia sp. isolate CB10 may be of potential for management of anthracnose of Chinese cabbage.

  10. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  11. Activation of Symbiosis Signaling by Arbuscular Mycorrhizal Fungi in Legumes and Rice[OPEN

    Science.gov (United States)

    Sun, Jongho; Miller, J. Benjamin; Granqvist, Emma; Wiley-Kalil, Audrey; Gobbato, Enrico; Maillet, Fabienne; Cottaz, Sylvain; Samain, Eric; Venkateshwaran, Muthusubramanian; Fort, Sébastien; Morris, Richard J.; Ané, Jean-Michel; Dénarié, Jean; Oldroyd, Giles E.D.

    2015-01-01

    Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi. PMID:25724637

  12. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  13. Fungi in the legislation of the Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Ivančević Boris N.

    2012-01-01

    Full Text Available Conservation and protection of fungi have lately been considered as extremely important elements of the environmental conservation, and numerous environmental, scientific, medical, economic, cultural, ethical, and other reasons for such attitude exist today. This paper presents an overview of official regulations on the protection of fungi in the Republic of Serbia from the Act of Protection of 1991 until today. The paper lists and analyses the good and bad provisions of individual legal regulations. It registers the effects of the adopted regulations on the actual efficiency of protection of endangered species of fungi (macrofungi, mushrooms, and considers the impact of chronological development of legislation on the population of fungi in nature, and presents general measures to improve protection of mushrooms in the future. These measures primarily include reliable information and study of fungi as a basis for their effective protection based on scientific knowledge. [Projekat Ministarstva nauke Republike Srbije, br. OI-179079

  14. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  15. Bioactive alkaloids produced by fungi. I. Updates on alkaloids from the species of the genera Boletus, Fusarium and psilocybe.

    Science.gov (United States)

    Mahmood, Zafar Alam; Ahmed, Syed Waseemuddin; Azhar, Iqbal; Sualeh, Mohammad; Baig, Mirza Tasawer; Zoha, Sms

    2010-07-01

    Fungi, in particular, are able in common with the higher plants and bacteria, to produce metabolites, including alkaloids. Alkaloids, along with other metabolites are the most important fungal metabolites from pharmaceutical and industrial point of view. Based on this observation, the authors of this review article have tried to provide an information on the alkaloids produced by the species of genera: Boletus, Fusarium and Psilocybef from 1981-2009. Thus the review would be helpful and provides valuable information for the researchers of the same field.

  16. Fungi isolated from Stewartia pseudocamellia Max. seeds and their pathogenesis

    Directory of Open Access Journals (Sweden)

    Halina Kurzawińska

    2012-12-01

    Full Text Available The aim of studies was to determine typical composition of fungi occurring on seeds of Stewartia pseudocamellia.The studies conducted on 100 disinfected and 100 nondisinfected seeds of these plants.Isolates of Alternaria alternata, Fusarium oxysporum, Cylindrocarpon radicicola and Rhizoctonia solani were characterized by pathogenicity towards the investigated Stewartia pseudocamellia. In the laboratory experiment, 204 isolations of microorganisms were obtained that belonged to 20 species and form of fungi and bacteria. Among fungi there were both of parasite (Alternaria alternata, Botrytis cinerea, Fusarium spp., Rhizoctonia solani and typical saprophytic (Cladosporium spp., Penicillium spp., Aspergillus spp., Epicoccum spp., Mucor spp.. The dominant fungus on seeds was Alternaria alternata. Among the investigated isolates only one isolate (R4 Rhizoctonia solani, was strongly pathogenic, isolates (A1 Alternaria alternata were weakly pathogenic to seedlings of Stewartia pseudocamellia.

  17. Beer spoilage bacteria and hop resistance

    NARCIS (Netherlands)

    Sakamoto, K; Konings, WN

    2003-01-01

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and

  18. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Natural substrata for corticioid fungi

    Directory of Open Access Journals (Sweden)

    Eugene O. Yurchenko

    2013-12-01

    Full Text Available The paper reviews the types of substrata inhabited by non-poroid resupinate Homobasidiomycetes in situ in global scale with both examples from literature sources and from observations on Belarus corticioid fungi biota. The groups of organic world colonized by corticioid basidiomata and vegetative mycelium are arboreous, semi-arboreous, and herbaceous vascular plants, Bryophyta, epiphytic coccoid algae, lichenized and non-lichenized fungi, and occasionally myxomycetes and invertebrates. The fungi occur on living, dying, and dead on all decay stages parts of organisms. Besides, the fungi are known on soil, humus, stones, artificial inorganic and synthetic materials and dung.

  20. Biochemiluminescence of certain fungi

    Directory of Open Access Journals (Sweden)

    Janusz Sławiński

    2014-11-01

    Full Text Available Twelve species of fungi growing on the Sabouraud medium in darkness and illumination in an incubator, were tested to find out their ability to emit the ultra-weak biochemiluminescence. Using a sensitive photon-counling device, it was possible to measure biochemiluminescence intensity during ten days of cultures growth. Boletus edulis, Pestalotia funerea and Microsporum gypseum displayed biochemiluminescence, while Aspergillus nidulans, A. quadrilineatus, Beauveria bassiana, Macrophoma candollei, Mucor lausanensis, Paecilomyces farinosus, Penicillium sp., Trichoderma lignorum and Tricholoma equestre failed to do it. Illumination put down biochemiluminescence and stimulated colour formation in both mycelia and in the medium.

  1. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  2. Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov.

    Science.gov (United States)

    Francis, Isolde M; Jochimsen, Kenneth N; De Vos, Paul; van Bruggen, Ariena H C

    2014-04-01

    The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens, which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas-like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA-DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium, Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1(T) = LMG 17323(T) = ATCC 49355(T)), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9(T) ( = LMG 12560(T) = ATCC 51296(T)), WI4(T) ( = LMG 11032(T) = ATCC 51292(T)) and SP1(T) ( = LMG 12581(T) = ATCC 51289(T)), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas, but none of them were pathogenic.

  3. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Directory of Open Access Journals (Sweden)

    Chengqun Lv

    Full Text Available Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  4. Entomopathogenic fungi on Hemiberlesia pitysophila.

    Science.gov (United States)

    Lv, Chengqun; Huang, Baoling; Qiao, Mengji; Wei, Jiguang; Ding, Bo

    2011-01-01

    Hemiberlesia pitysophila Takagi is an extremely harmful exotic insect in forest to Pinus species, including Pinus massoniana. Using both morphological taxonomy and molecular phylogenetics, we identified 15 strains of entomogenous fungi, which belong to 9 genera with high diversities. Surprisingly, we found that five strains that were classified as species of Pestalotiopsis, which has been considered plant pathogens and endophytes, were the dominant entomopathogenic fungus of H. pitysophila. Molecular phylogenetic tree established by analyzing sequences of ribosomal DNA internal transcribed spacer showed that entomopathogenic Pestalotiopsis spp. were similar to plant Pestalotiopsis, but not to other pathogens and endophytes of its host plant P. massoniana. We were the first to isolate entomopathogenic Pestalotiopsis spp. from H. pitysophila. Our findings suggest a potential and promising method of H. pitysophila bio-control.

  5. Phylogeny of rock-inhabiting fungi related to Dothideomycetes

    NARCIS (Netherlands)

    Ruibal, C.; Gueidan, C.; Selbmann, L.; Gorbushina, A.A.; Crous, P.W.; Groenewald, J.Z.; Muggia, L.; Grube, M.; Isola, D.; Schoch, C.L.; Staley, J.T.; Lutzoni, F.; Hoog, de G.S.

    2009-01-01

    The class Dothideomycetes (along with Eurotiomycetes) includes numerous rock-inhabiting fungi (RIF), a group of ascomycetes that tolerates surprisingly well harsh conditions prevailing on rock surfaces. Despite their convergent morphology and physiology, RIF are phylogenetically highly diverse in

  6. Isolation of Ascomycetous Fungi from a Tertiary Institution Campus ...

    African Journals Online (AJOL)

    The predominant Ascomycetous fungi isolated include among others; Aspergillus niger, Fusarium solani, Fusarium oxysporum, Penicillium italicum, Fusarium acuminatum, Fusarium culmorum, Candida albicans, Botrytis cinerea, Geotrichum candidum, Trichoderma viride, Verticillium lateritum, Curvularia palescens ...

  7. Biodegradation of Crude-oil by Fungi Isolated from Cow ...

    African Journals Online (AJOL)

    ... fungi identified from the contaminated soils include; Bdellospora helicoides, Aspergillus fumigatus, Gonadobotricum apiculata, Aspergillus niger, Trichoderma viridae, Pleurothecium recurvatum, Streptothrix atra, Thysarophora longispora, Candida albicans, Aspergillus flavus, Helminthosporium velutinum, Botrytis cinerea, ...

  8. Hypocrealean fungi from a tropical rainforest in Queensland, Australia

    Science.gov (United States)

    During a weeklong Mycoblitz in the Atherton Tablelands of Queensland, Australia, many hypocrealean fungi were collected. Preliminary identifications indicate that many of these specimens are part of the pantropical hypocrealean biota. Some of the common tropical species collected include: Bionectria...

  9. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  10. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    The colonization of plants by putative endophytes has been visualized by using laser scanning confocal microscope (Coombs and Franco 2003). Endophytes promote the growth of plants in various ways, for example through secretion of plant growth regulators;. e.g. indole-acetic acid (Lee et al 2004), via phosphate-.

  11. GENETIC-BASED ANALYTICAL METHODS FOR BACTERIA AND FUNGI

    Science.gov (United States)

    In the past two decades, advances in high-throughput sequencing technologies have lead to a veritable explosion in the generation of nucleic acid sequence information (1). While these advances are illustrated most prominently by the successful sequencing of the human genome, they...

  12. Bacteria, fungi, and viruses outnumber human cells 10:1

    Indian Academy of Sciences (India)

    Karen Nelson

    Fig 2. The distribution of the number of human cells by cell type. Sender R ... Type 2 diabetes ... Development of new predictive biomarkers so that preventive ... Microbiome, irrespective of lifestyle and age, which is distinct from races and.

  13. Interactions among endophytic bacteria and fungi: effects and ...

    Indian Academy of Sciences (India)

    Madhu

    co-cultures were then prepared. ... From the prepared solution, 0.25, 0.5, 0.75, 1.0 and 1.25 ml of aliquots were mixed .... pathogens and nematodes affecting strawberries; Soil Biol. Biochem. ... P Johnson-Green (Halifax: Atlantic Canada Society for. Microbial ... 1994 Infection of sugar cane by the nitrogen-fixing bacterium.

  14. Biotransformation of limonene by bacteria, fungi, yeasts, and plants

    NARCIS (Netherlands)

    Duetz, W.A.; Bouwmeester, H.J.; Beilen, J.B.; Witholt, B.

    2003-01-01

    The past 5 years have seen significant progress in the field of limonene biotransformation, especially with regard to the regiospecificity of microbial biocatalysts. Whereas earlier only regiospecific biocatalysts for the 1,2 position (limonene-1,2-diol) and the 8-position (¿±-terpineol) were

  15. Moringa, marinade, bacteria, fungi, catfish, smoke-dried

    African Journals Online (AJOL)

    Osondu

    2013-01-16

    Jan 16, 2013 ... spoilage thus limiting economic loss and possible heath risk to consumers ... Ethiopian Journal of Environmental Studies and Management Vol. 6 No.1 2013. 1Department of Animal Production, University of Ilorin, Ilorin, ..... Molluscs by Major Fishing Areas. ... Microbiological quality of smoke-dried mangrove.

  16. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L. = Atividade proteolítica de bactérias, leveduras e fungos filamentosos presentes em grãos de café (Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Mirian Pereira Rodarte

    2011-07-01

    Full Text Available One hundred forty-four microorganisms previously isolated from coffee fruit (Coffea arabica were grown on casein agar to evaluate their proteolytic activities. Fifty percent of filamentous fungi, 52.5% of bacteria and 2.6% of yeasts were able to secrete proteases. Positiveisolates were further examined in liquid culture for their protease activities by hydrolysis of casein at different pH values (5.0, 7.0 and 9.0 at 30 oC. Bacillus megaterium, B. subtilis, Enterobacteragglomerans, Kurthia sp, Pseudomonas paucimobilis and Tatumella ptyseos demonstrated the highest proteolytic activities at pH 9.0. One yeast isolate, Citeromyces matritensis, had a proteolytic activityof 2.40 U at pH 5.0. Aspergillus dimorphicus, A. ochraceus, Fusarium moniliforme, F. solani, Penicillium fellutanum and P. waksmanii showed the highest activities. Of the bacterial isolates, the highestenzyme activities were observed in B. subtilis 333 (27.1 U, Tatumella ptyseos (27.0 U and B. megaterium 817 (26.2 U. Of the filamentous fungi, Aspergillus ochraceus (48.7 U, Fusarium moniliforme 221 (37.5 U and F. solani 359 (37.4 U had the highest activities at pH 9.0. Este trabalho teve por objetivos avaliar a capacidade de secreção de proteases extracelulares por 144 microrganismos, previamente isoladosde grãos de café (Coffea arabica durante fermentação por via seca, e determinar a atividade das enzimas produzidas. Os microrganismos foram cultivados em ágar-caseína para avaliação da produção de enzimas proteolíticas. Dos 40 isolados de bactéria presentes na amostra, 52,5% apresentaram resultado positivo para o teste. Considerando os 66 isolados de fungos filamentosos, 50% foram capazes de secretar proteases, enquanto que dos 38 isolados de leveduras, apenas 2,6% conseguiram promover a hidrólise da caseína do meio. Os isolados que apresentaram capacidade de secreção de proteases foram, posteriormente, cultivados em meio líquido para a determinação da atividade

  17. Big bacteria

    DEFF Research Database (Denmark)

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria...... and by actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria......, the 80 x 600 mum large Epulopiscium sp. from the gut of tropical fish, are presumably living in a very nutrient-rich medium. Many large bacteria contain numerous inclusions in the cells that reduce the volume of active cytoplasm. The most striking examples of competitive advantage from large cell size...

  18. Magnetic Bacteria.

    Science.gov (United States)

    Nelson, Jane Bray; Nelson, Jim

    1992-01-01

    Describes the history of Richard Blakemore's discovery of magnetotaxic organisms. Discusses possible reasons why the magnetic response in bacteria developed. Proposes research experiments integrating biology and physics in which students investigate problems using cultures of magnetotaxic organisms. (MDH)

  19. Hyphae colonizing bacteria associated with Penicillium bilaii

    DEFF Research Database (Denmark)

    Ghodsalavi, Behnoushsadat

    shown that mycorrhizal helper bacteria presenting in mycorrhizal fungi could stimulate fungal growth, promote establishment of root-fungus symbiosis and enhance plant production. But it is unknown if the comparable relationship exist between the non-mycorrhizal fungus P. bilaii and its hyphae associated...... bacteria. In the current PhD thesis, we assumed that hyphae-associated microbiome of P. bilaii might harbor helper bacteria with ability to improve fungal growth and P solubilization performance. Therefore, we aimed to isolate bacteria associated with the P. bilaii hyphae and identify the fungal growth...... stimulating bacteria with the perspective of promoting efficiency of Jumpstart in soil – plant system. For this purpose, most of the work within the current project was carried out by development of suitable model systems by mimicking the natural soil habitat to reach to the reliable performance in soil...

  20. Diagnostic utility of melanin production by fungi: Study on tissue sections and culture smears with Masson-Fontana stain

    Directory of Open Access Journals (Sweden)

    Challa Sundaram

    2014-01-01

    Full Text Available Background: Dematiaceous fungi appear brown in tissue section due to melanin in their cell walls. When the brown color is not seen on routine H and E and culture is not available, differentiation of dematiaceous fungi from other fungi is difficult on morphology alone. Aims and Objective: To study if melanin production by dematiaceous fungi can help differentiate them from other types of fungi. Materials and Methods: Fifty tissue sections of various fungal infections and 13 smears from cultures of different species of fungi were stained with Masson Fontana stain to assess melanin production. The tissue sections included biopsies from 26 culture-proven fungi and 24 biopsies of filamentous fungi diagnosed on morphology alone with no culture confirmation. Results: All culture-proven dematiaceous fungi and Zygomycetes showed strong positivity in sections and culture smears. Aspergillus sp showed variable positivity and intensity. Cryptococcus neoformans showed strong positivity in tissue sections and culture smears. Tissue sections of septate filamentous fungi (9/15, Zygomycetes (4/5, and fungi with both hyphal and yeast morphology (4/4 showed positivity for melanin. The septate filamentous fungi negative for melanin were from biopsy samples of fungal sinusitis including both allergic and invasive fungal sinusitis and colonizing fungal balls. Conclusion: Melanin is produced by both dematiaceous and non-dematiaceous fungi. Masson-Fontana stain cannot reliably differentiate dematiaceous fungi from other filamentous fungi like Aspergillus sp; however, absence of melanin in the hyphae may be used to rule out dematiaceous fungi from other filamentous fungi. In the differential diagnosis of yeast fungi, Cryptococcus sp can be differentiated from Candida sp by Masson-Fontana stain in tissue sections.

  1. Functional amyloids in bacteria.

    Science.gov (United States)

    Romero, Diego; Kolter, Roberto

    2014-06-01

    The term amyloidosis is used to refer to a family of pathologies altering the homeostasis of human organs. Despite having a name that alludes to starch content, the amyloid accumulations are made up of proteins that polymerize as long and rigid fibers. Amyloid proteins vary widely with respect to their amino acid sequences but they share similarities in their quaternary structure; the amyloid fibers are enriched in β-sheets arranged perpendicular to the axis of the fiber. This structural feature provides great robustness, remarkable stability, and insolubility. In addition, amyloid proteins specifically stain with certain dyes such as Congo red and thioflavin-T. The aggregation into amyloid fibers, however, it is not restricted to pathogenic processes, rather it seems to be widely distributed among proteins and polypeptides. Amyloid fibers are present in insects, fungi and bacteria, and they are important in maintaining the homeostasis of the organism. Such findings have motivated the use of the term "functional amyloid" to differentiate these amyloid proteins from their toxic siblings. This review focuses on systems that have evolved in bacteria that control the expression and assembly of amyloid proteins on cell surfaces, such that the robustness of amyloid proteins are used towards a beneficial end. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. Some mycogenous fungi from Poland

    Directory of Open Access Journals (Sweden)

    Andrzej Chlebicki

    2014-08-01

    Full Text Available In the present paper the results of earlier studies on mycogenous fungi which were gathered occasionally are summarized. Fifieen specres. previously Pyrenomycetes s.l., have been found growing on other fungi Immothia hypoxylon and Lophiostoma polyporicola are new species to the Polish mycoflora. Sphaeronaemella Kulczyńskiana described by K. R o u p p e r t (1912 is considered to be Eleuteromyces subultus. Relatively high number of fungi inhabiting stromata of Diatrypella favacea is probably connected with its early colonization of the Polish area.

  3. Marine fungi: Degraders of poly-3-hydroxyalkanoate based plastic materials

    Directory of Open Access Journals (Sweden)

    Matavulj Milan

    2009-01-01

    Full Text Available The search for new biosynthetic and biodegradable materials to save nonrenewable resources and reduce global pollution problems is an urgent task. Recently, materials like thermoplastic poly-3-hydroxyalkanoates (PHA, have been found synthesized by bacteria as storage materials. The major PHAs synthesized are poly-b-hydroxybutyrate (PHB, poly-b-hydroxyvalerate (PHV and their copolymers. They are already commercially produced and used as BIOPOLTM (ICI, England. Their complete degradability by bacteria has already been shown. Today, oceans and estuaries serve as major landfills, and since fungi are an important part of the degrading microbiota, in order to prove their participation in the degradation process, a simple degradation test suitable for fungi and marine conditions had to be developed. Several solid media based on artificial sea water, differing in the content of non-alkanoate organics and supplemented with 0.1% PHA (or BIOPOLTM as a main source of carbon have been tested. The testing principle consists of clearing the turbid medium in test tube or plates caused by suspended granules of PHA. All media tested supported the growth of fungi. For the discrete and transparent clearing of zones, a mineral medium with 0.01% peptone, 0.01% yeast extract, and 0.1% PHB or BIOPOLTM was finally chosen where the fine and evenly distributed turbidity is accomplished by a specific procedure. This method allows the investigation of degradability of PHA-based plastic materials as well as screening for fungal ability to depolymerise pure PHA homopolymers. Using this medium, 32 strains of marine yeasts and 102 strains of marine mycelial fungi belonging to different systematic and ecological groups were tested for their ability to degrade PHAs. Only about 4% of the strains were able to degrade BIOPOLTM and about 6% depolymerised pure PHB homopolymer. This is in sharp contrast to the results of our previous experiments with 143 strains of terrestrial fungi

  4. Role of Fungi in the Biomineralization of Calcite

    Directory of Open Access Journals (Sweden)

    Saskia Bindschedler

    2016-05-01

    Full Text Available In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C and calcium (Ca. It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is

  5. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    Science.gov (United States)

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  6. Secondary Metabolites from Higher Fungi: Discovery, Bioactivity, and Bioproduction

    Science.gov (United States)

    Zhong, Jian-Jiang; Xiao, Jian-Hui

    Medicinal higher fungi such as Cordyceps sinensis and Ganoderma lucidum have been used as an alternative medicine remedy to promote health and longevity for people in China and other regions of the world since ancient times. Nowadays there is an increasing public interest in the secondary metabolites of those higher fungi for discovering new drugs or lead compounds. Current research in drug discovery from medicinal higher fungi involves a multifaceted approach combining mycological, biochemical, pharmacological, metabolic, biosynthetic and molecular techniques. In recent years, many new secondary metabolites from higher fungi have been isolated and are more likely to provide lead compounds for new drug discovery, which may include chemopreventive agents possessing the bioactivity of immunomodulatory, anticancer, etc. However, numerous challenges of secondary metabolites from higher fungi are encountered including bioseparation, identification, biosynthetic metabolism, and screening model issues, etc. Commercial production of secondary metabolites from medicinal mushrooms is still limited mainly due to less information about secondary metabolism and its regulation. Strategies for enhancing secondary metabolite production by medicinal mushroom fermentation include two-stage cultivation combining liquid fermentation and static culture, two-stage dissolved oxygen control, etc. Purification of bioactive secondary metabolites, such as ganoderic acids from G. lucidum, is also very important to pharmacological study and future pharmaceutical application. This review outlines typical examples of the discovery, bioactivity, and bioproduction of secondary metabolites of higher fungi origin.

  7. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  8. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  9. Lactic acid bacteria as functional probiotic isolates for inhibiting the growth of Aspergillus flavus, A. parasiticus, A. niger and Penicillium chrysogenum.

    Science.gov (United States)

    Abbaszadeh, S; Tavakoli, R; Sharifzadeh, A; Shokri, H

    2015-12-01

    The aim of this study was to assess the potential of lactic acid bacteria (LAB) such as Lactobacillus acidophilus, L. rhamnosus, L. casei, L. paracasei and Bifidobacterium bifidum to inhibit the outgrowth of some common food-spoiling fungi including Aspergillus niger, A. flavus, A. parasiticus and Penicillium chrysogenum. Bacterial isolates were cultured on Mann Rogosa Sharpe (MRS) broth and liquid cultures and supernatants were prepared. The antifungal activity was tested using the agar well diffusion method. Both liquid culture and supernatant of L. casei isolate exhibited high antifungal activity, followed by L. acidophilus and L. paracasei isolates. The least activity was recorded for the isolates B. bifidum, while the isolate L. rhamnosus was moderately active against tested fungi. The antifungal activity of the supernatants obtained from all probiotic isolates against fungi was significantly less than that of liquid cultures (Pniger and A. parasiticus. These results suggest that probiotic bacteria strains have the ability to prevent the growth of pathogenic and mycotoxigenic fungi as antifungal agents for various biomedical applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Massive gene swamping among cheese-making Penicillium fungi

    Directory of Open Access Journals (Sweden)

    Jeanne Ropars

    2015-03-01

    Full Text Available Horizontal gene transfers (HGT, i.e., the transmission of genetic material between species not directly attributable to meiotic gene exchange, have long been acknowledged as a major driver of prokaryotic evolution and is increasingly recognized as an important source of adaptation in eukaryotes. In fungi in particular, many convincing examples of HGT have been reported to confer selective advantages on the recipient fungal host, either promoting fungal pathogenicity on plants or increasing their toxicity by the acquisition of secondary metabolic clusters, resulting in adaptation to new niches and in some cases eventually even in speciation. These horizontal gene transfers involve single genes, complete metabolic pathways or even entire chromosomes. A recent study has uncovered multiple recent horizontal transfers of a 575 kb genomic island in cheese Penicillium fungi, representing ca. 2% of the Penicillium roqueforti’s genome, that may confer selective advantage in the competing cheese environment where bacteria and fungi occur. Novel phylogenomic methods are being developed, revealing massive HGT among fungi. Altogether, these recent studies indicate that HGT is a crucial mechanism of rapid adaptation, even among eukaryotes.

  11. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    Science.gov (United States)

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  12. [Isolation of endophytic fungi from medicinal plant Brucea javanica and their microbial inhibition activity].

    Science.gov (United States)

    Liang, Zi-Ning; Zhu, Hua; Lai, Kai-Ping; Chen, Long

    2014-04-01

    To isolate and identify endophytic fungi from Brucea javanica, and to detect the antimicrobial activity of these strains. Endophytic fungi were isolated by tissue inoculation culture and identified by conventional morphological characteristic method. Seven kinds of pathogenic fungi and three kinds of bacteria were used as targeting microbes to test microbial inhibition activities by agar plate antagonistic action and modified agar gel diffusion methods, respectively. A total of 83 endophytic fungi strains were isolated from the root, stem, leaf and fruit of Brucea javanica. 34 strains were obtained from the stem, 32 strains were obtained from the leaf, 15 strains were isolated from the root and 2 strains came from the fruit. These 73 strains which had been identified attribute to 5 orders, 6 families and 12 genera. For the isolated strains, 14 strains had antifungal activities against at least one pathogenic fungi, 9 strains showed antibacterial activities against one or more bacteria. Especially, the strain YJ-17 which belonged to Phomopsis genus showed the best inhibitory effect on the targeting microbes. The endophytic fungi from Brucea javanica show diversity and microbial inhibition activity, and are worthy for further study on plant disease controlling.

  13. Sex and the Imperfect Fungi.

    Science.gov (United States)

    Dyer, Paul S; Kück, Ulrich

    2017-06-01

    Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida , Aspergillus , Penicillium , and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.

  14. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Serena Dollive

    Full Text Available Antibiotic use in humans has been associated with outgrowth of fungi. Here we used a murine model to investigate the gut microbiome over 76 days of treatment with vancomycin, ampicillin, neomycin, and metronidazole and subsequent recovery. Mouse stool was studied as a surrogate for the microbiota of the lower gastrointestinal tract. The abundance of fungi and bacteria was measured using quantitative PCR, and the proportional composition of the communities quantified using 454/Roche pyrosequencing of rRNA gene tags. Prior to treatment, bacteria outnumbered fungi by >3 orders of magnitude. Upon antibiotic treatment, bacteria dropped in abundance >3 orders of magnitude, so that the predominant 16S sequences detected became transients derived from food. Upon cessation of treatment, bacterial communities mostly returned to their previous numbers and types after 8 weeks, though communities remained detectably different from untreated controls. Fungal communities varied substantially over time, even in the untreated controls. Separate cages within the same treatment group showed radical differences, but mice within a cage generally behaved similarly. Fungi increased ∼40-fold in abundance upon antibiotic treatment but declined back to their original abundance after cessation of treatment. At the last time point, Candida remained more abundant than prior to treatment. These data show that 1 gut fungal populations change radically during normal mouse husbandry, 2 fungi grow out in the gut upon suppression of bacterial communities with antibiotics, and 3 perturbations due to antibiotics persist long term in both the fungal and bacterial microbiota.

  15. Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF).

    Science.gov (United States)

    Nagano, Yuriko; Millar, B Cherie; Goldsmith, Colin E; Walker, James M; Elborn, J Stuart; Rendall, Jackie; Moore, John E

    2008-11-01

    Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B(+) were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B(+) allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B(+) to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B(+) had a

  16. Growth of indoor fungi on gypsum.

    Science.gov (United States)

    Segers, F J J; van Laarhoven, K A; Wösten, H A B; Dijksterhuis, J

    2017-08-01

    To have a better understanding of fungal growth on gypsum building materials to prevent indoor fungal growth. Gypsum is acquired by mining or as a by-product of flue-gas desulphurization or treatment of phosphate ore for the production of fertilizer. Natural gypsum, flue-gas gypsum and phosphogypsum therefore have different mineral compositions. Here, growth of fungi on these types of gypsum was assessed. Conidia of the indoor fungi Aspergillus niger, Cladosporium halotolerans and Penicillium rubens were inoculated and observed using microscopic techniques including low-temperature scanning electron microscopy. Elemental analysis of gypsum was done using inductively coupled plasma atomic emission spectroscopy and segmented flow analysis. Moisture content of the gypsum was determined using a dynamic vapour sorption apparatus. Aspergillus niger, C. halotolerans and P. rubens hardly germinated on natural gypsum and flue-gas gypsum. The latter two fungi did show germination, outgrowth, and conidiation on phosphogypsum, while A. niger hardly germinated on this substrate. Other experiments show that C. halotolerans and P. rubens can develop in pure water, but A. niger does not. The observations show that the lack of germination of three indoor fungi is explained by the low amount of phosphor in natural, flue-gas and laboratory-grade gypsum. Additionally, C. halotolerans and P. rubens can develop in pure water, while conidia of A. niger do not show any germination, which is explained by the need for organic molecules of this species to induce germination. Indoor fungal growth is a potential threat to human health and causes damage to building materials. This study possibly helps in the application of the right type of gypsum in buildings. © 2017 The Society for Applied Microbiology.

  17. The Frequency Of Fungi In Doubtful Appendicitis

    Directory of Open Access Journals (Sweden)

    J Hashemi

    2006-06-01

    Full Text Available Background and Aim: While nowadays,great attainments have been achieved in curing and preventing the pathogenic fungal infections, and some how there has been reduction in the number of occurrences, the occurrences of opportunistic infections have been increased. Since the study of fungal infections in various organs (e.g.digestive system is crucial ,and because of few study were done in this field in the world, it is decided to examine the apendectomide tissue for fungal contamination in Iran. Materials and Methods: The work has been done for six months. After oparation sergery the appendix tissue in two media (formalin & normal salin were carried out in the medical mycology laboratory at Tehran University of medical sciences. The specimens were examined directly and cultured in sabourauds dextrose agar with chloramphenicol (sc. In this experiment 200 appendicular tissues were examined. Results: Out of them some fungi were isolated in 10 cases included 4 Candida albican (40%, 2 Candida tropicalis (20%,1 Cryptococcus sp. (10%,1 Candida sp.and 2 Geotrichum sp. Cryptococcus sp. was identified with mycological methods. This isolation related to a young man that has a history for long contact to pigeon.some of the fungi specially yeast can be a part of mycoflora in digestive system but the finding of Cryptococcus is uncommon. Conclusion: In this study the fungi were isolated from 5% of appendisits and with pay attention to this finding that the most patients hadn.t background factors causing the proliferation of the fungal agents in the intestine, so with further studies it is probable to consider the fungi as the agents causing appendicitis in this patients.

  18. Isolation and 16s rdna sequence analysis of bacteria from dieback affected mango orchards in southern pakistan

    International Nuclear Information System (INIS)

    Khan, I.A.; Khan, A.; Asif, H.; Azim, M.K.; Muhlbach, H.P.

    2014-01-01

    A broad range of microorganisms are involved in various mango plant diseases such as fungi, algae and bacteria. In order to study the role of bacteria in mango dieback, a survey of infected mango plants in southern Pakistan was carried out. A number of bacterial isolates were obtained from healthy looking and infected mango trees, and their characterization was undertaken by colony PCR and subsequent sequence analysis of 16S rDNA. These analyses revealed the presence of various genera including Acinetobacter, Bacillus, Burkholderia, Cronobacter, Curtobacterium, Enterobacter, Erwinia, Exiguobacterium, Halotelea, Lysinibacillus, Micrococcus, Microbacterium, Pantoea, Pseudomonas, Salmonella and Staphylococcus. It is noteworthy that several members of these genera have been reported as plant pathogens. The present study provided baseline information regarding the phytopathogenic bacteria associated with mango trees in southern Pakistan. (author)

  19. Entomopathogenic Fungi in Flies Associated with Pastured Cattle in Denmark

    DEFF Research Database (Denmark)

    Steenberg, Tove; Jespersen, Jørgen B.; Jensen, Karl-Martin Vagn

    2001-01-01

    Cattle flies, including Musca autumnalis, Haematobia irritans, and Hydrotaea irritans, are pests of pastured cattle. A 2-year study of the natural occurrence of entomopathogenic fungi in adult cattle flies and other flies associated with pastures showed that the four species included in the Entom......Cattle flies, including Musca autumnalis, Haematobia irritans, and Hydrotaea irritans, are pests of pastured cattle. A 2-year study of the natural occurrence of entomopathogenic fungi in adult cattle flies and other flies associated with pastures showed that the four species included...

  20. Sea salts as a potential source of food spoilage fungi.

    Science.gov (United States)

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  2. Lectins in human pathogenic fungi.

    Science.gov (United States)

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  3. ARBUSCULAR MYCORRHIZA FUNGI AS AN INDICATOR OF SOIL FERTILITY

    Directory of Open Access Journals (Sweden)

    Muhammad Akhid Syibli

    2014-02-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are ubiquitous organism that forms association with the root of most terrestrial plants. AMF association also influence soil fertility through the enhancement of chemical, biological and physical content. In this study, we enumerated AMF spores from rhizosphere of Tithonia difersivolia as an indicator of soil fertility. The results showed that the most fertile soil had the highest AMF spores density. This research has confirmed that AMF has high interaction with organic carbon, organic matter, total phosphorus, cation exchange capacity, water level, soil fungi and soil bacteria. Partial regression analysis revealed the mathematic equation for their interaction. This equation used the abundant of AMF spores as an indicator for chemical, biological and physical fertility of the soil.

  4. Bacteria and archaea paleomicrobiology of the dental calculus: a review.

    Science.gov (United States)

    Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G

    2016-06-01

    Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effect of different concentrations of phenol on growth of some fungi ...

    African Journals Online (AJOL)

    user

    2011-02-21

    Feb 21, 2011 ... that C. tropicalis could degrade 2,000 mg l-1 phenol alone and 350 mg l-1 ... sterile bottles (100 ml) and in plastic bags, respectively, transferred directly to ..... bolism of aromatic compounds in bacteria and fungi has revealed ...

  6. Comparative analysis of programmed cell death pathways in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Wortman Jennifer R

    2005-12-01

    Full Text Available Abstract Background Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Results Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Conclusion Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.

  7. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  8. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review.

    Science.gov (United States)

    Fujiyoshi, So; Tanaka, Daisuke; Maruyama, Fumito

    2017-01-01

    Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%). It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration) with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i) outdoor environments, and (ii) the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne bacteria using

  9. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review

    Directory of Open Access Journals (Sweden)

    So Fujiyoshi

    2017-11-01

    Full Text Available Human health is influenced by various factors including microorganisms present in built environments where people spend most of their lives (approximately 90%. It is therefore necessary to monitor and control indoor airborne microbes for occupational safety and public health. Most studies concerning airborne microorganisms have focused on fungi, with scant data available concerning bacteria. The present review considers papers published from 2010 to 2017 approximately and factors affecting properties of indoor airborne bacteria (communities and concentration with respect to temporal perspective and to multiscale interaction viewpoint. From a temporal perspective, bacterial concentrations in built environments change depending on numbers of human occupancy, while properties of bacterial communities tend to remain stable. Similarly, the bacteria found in social and community spaces such as offices, classrooms and hospitals are mainly associated with human occupancy. Other major sources of indoor airborne bacteria are (i outdoor environments, and (ii the building materials themselves. Indoor bacterial communities and concentrations are varied with varying interferences by outdoor environment. Airborne bacteria from the outdoor environment enter an indoor space through open doors and windows, while indoor bacteria are simultaneously released to the outer environment. Outdoor bacterial communities and their concentrations are also affected by geographical factors such as types of land use and their spatial distribution. The bacteria found in built environments therefore originate from any of the natural and man-made surroundings around humans. Therefore, to better understand the factors influencing bacterial concentrations and communities in built environments, we should study all the environments that humans contact as a single ecosystem. In this review, we propose the establishment of a standard procedure for assessing properties of indoor airborne

  10. Fungi isolated in school buildings

    Directory of Open Access Journals (Sweden)

    Elżbieta Ejdys

    2013-12-01

    Full Text Available The aim of the study was to determine the species composition of fungi occurring on wall surfaces and in the air in school buildings. Fungi isolated from the air using the sedimentation method and from the walls using the surface swab technique constituted the study material. Types of finish materials on wall surfaces were identified and used in the analysis. Samples were collected in selected areas in two schools: classrooms, corridors, men's toilets and women's toilets, cloakrooms, sports changing rooms and shower. Examinations were conducted in May 2005 after the heating season was over. Fungi were incubated on Czapek-Dox medium at three parallel temperatures: 25, 37 and 40°C, for at least three weeks. A total of 379 isolates of fungi belonging to 32 genera of moulds, yeasts and yeast-like fungi were obtained from 321 samples in the school environment. The following genera were isolated most frequently: Aspergillus, Penicillium and Cladosporium. Of the 72 determined species, Cladosporium herbarum, Aspergillus fumigatus and Penicillium chrysogenum occurred most frequently in the school buildings. Wall surfaces were characterised by an increased prevalence of mycobiota in comparison with the air in the buildings, with a slightly greater species diversity. A certain species specificity for rough and smooth wall surfaces was demonstrated. Fungi of the genera Cladosporium and Emericella with large spores adhered better to smooth surfaces while those of the genus Aspergillus with smaller conidia adhered better to rough surfaces. The application of three incubation temperatures helped provide a fuller picture of the mycobiota in the school environment.

  11. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  12. The role of bacteria and mycorrhiza in plant sulfur supply

    Directory of Open Access Journals (Sweden)

    Jacinta Mariea Gahan

    2014-12-01

    Full Text Available Plant growth is highly dependent on bacteria, saprophytic and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.

  13. Money and transmission of bacteria.

    NARCIS (Netherlands)

    Gedik, H.; Voss, T.A.; Voss, A.

    2013-01-01

    Money is one of the most frequently passed items in the world. The aim of this study was to ascertain the survival status of bacteria including Staphylococcus aureus, Escherichia coli, and Vancomycin- Resistant Enterococci (VRE) on banknotes from different countries and the transmission of bacteria

  14. Commensal Fungi in Health and Disease.

    Science.gov (United States)

    Limon, Jose J; Skalski, Joseph H; Underhill, David M

    2017-08-09

    Fungi are increasingly being recognized as common members of the microbiomes found on nearly all mucosal surfaces, and interest is growing in understanding how these organisms may contribute to health and disease. In this review, we investigate recent developments in our understanding of the fungal microbiota or "mycobiota" including challenges faced in characterizing it, where these organisms are found, their diversity, and how they interact with host immunity. Growing evidence indicates that, like the bacterial microbiota, the fungal microbiota is often altered in disease states, and increasingly studies are being designed to probe the functional consequences of such fungal dysbiosis on health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria

    DEFF Research Database (Denmark)

    Battini, Fabio; Grønlund, Mette; Agnolucci, Monica

    2017-01-01

    availability of soil P. This study investigated whether biofertilizers and bioenhancers, such as arbuscular mycorrhizal fungi (AMF) and their associated bacteria could enhance growth and P uptake in maize. Plants were grown with or without mycorrhizas in compartmented pots with radioactive P tracers and were...

  16. Screening of bacteria for antagonistic activity against phytopathogens of avocados

    Science.gov (United States)

    Bacteria and fungi were isolated from the bark of the avocado tree (Persea americana) located in southern Florida. The bacterial strains were subsequently assayed for antagonism activity against Raffaelea lauricola, the causal agent of laurel wilt in avocados. The screen identified no isolates that ...

  17. Bioactive Metabolites from Pathogenic and Endophytic Fungi of Forest Trees.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Scanu, Bruno; Evidente, Antonio; Cimmino, Alessio

    2018-01-01

    Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Diversity of fungi colonizing leaves of Rhododendron (Rhododendron L. cuttings

    Directory of Open Access Journals (Sweden)

    Barbara Kierpiec-Baran

    2014-04-01

    Full Text Available Rhododendrons (Rhododendron L. are shrubs whose attractiveness is determined by their multi-coloured flowers and evergreen leaves. Necroses visible on the leaves of rhododendron cuttings diminish the suitability of nursery material for marketing. These symptoms are most frequently caused by fungi. The investigations were conducted in 2010–2011 in an ornamental shrub nursery to identify fungi colonizing the phyllosphere of rhododendron cuttings and causing leaf necroses. The material for analysis consisted of leaves of 11 rhododendron cultivars. 550 leaves were collected from 110 half-year-old cuttings for mycological analysis. Over 350 fungal colonies belonging to 15 species were isolated from the leaves of rhododendron cuttings. The dominants included: Pestalotiopsis sydowiana, Trichoderma koningii and Alternaria alternata. The influents included: Aspergillus brasiliensis, Mucor hiemalis f. hiemalis, Epicoccum nigrum, Sordaria fimicola and Umbelopsis isabellina. A large majority of the fungi preferred the phyllosphere environment of Yakushima rhododendron (R. yakushimanum cultivars ‘Sneezy’ and ‘Golden Torch’ as well as of the large-flowered cultivars ‘Flautando’, ‘Dominik’, and ‘Simona’. The phyllosphere of the large-flowered cultivars ‘Bernstein’, ‘Nova Zembla’, and ‘Goldbuckett’ was a reservoir for many fungal colonies and fungi species. The cultivars less susceptible to colonization by fungi and the most promising for planting in green areas and home gardens are the large-flowered cultivars ‘Bernstein’, ‘Nova Zembla’, ‘Goldbuckett’, ‘Rasputin’, and ‘Roseum Elegans’.

  19. Fungi as a Source of Food.

    Science.gov (United States)

    Dupont, Joëlle; Dequin, Sylvie; Giraud, Tatiana; Le Tacon, François; Marsit, Souhir; Ropars, Jeanne; Richard, Franck; Selosse, Marc-André

    2017-06-01

    In this article, we review some of the best-studied fungi used as food sources, in particular, the cheese fungi, the truffles, and the fungi used for drink fermentation such as beer, wine, and sake. We discuss their history of consumption by humans and the genomic mechanisms of adaptation during artificial selection.

  20. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  1. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    NARCIS (Netherlands)

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to

  2. Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Poulsen, M; Cafaro, M; Boomsma, J J

    2005-01-01

    Acromyrmex leaf-cutting ants maintain two highly specialized, vertically transmitted mutualistic ectosymbionts: basidiomycete fungi that are cultivated for food in underground gardens and actinomycete Pseudonocardia bacteria that are reared on the cuticle to produce antibiotics that suppress...

  3. Nests of Marsh harrier (Circus aeruginosus L.) as refuges of potentially phytopathogenic and zoopathogenic fungi.

    Science.gov (United States)

    Kornillowicz-Kowalska, Teresa; Kitowski, Ignacy

    2018-01-01

    Birds' nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus , Aspergillus flavus , Scopulariopsis brevicaulis , Chrysosporium keratinophilum and Fusarium poae , Fusarium sporotrichioides . In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  4. Nests of Marsh harrier (Circus aeruginosus L. as refuges of potentially phytopathogenic and zoopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Teresa Kornillowicz-Kowalska

    2018-01-01

    Full Text Available Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72% were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae, Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  5. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  6. Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

    OpenAIRE

    Chee, Hee Youn; Lee, Min Hee

    2007-01-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essen...

  7. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of ...

    African Journals Online (AJOL)

    Most researchers showed that inoculation of plants with mycorrhizal fungi and using salicylic acid increase tolerance of plants due to salinity. In this study, the effect of mycorrhizal fungi, including Glomus mosseae, Glomus intraradices, and salicylic acid (0.2 mM) on tolerance of green basil (Ocimum basilicum L.) to salinity ...

  8. Bacteria-surface interactions.

    Science.gov (United States)

    Tuson, Hannah H; Weibel, Douglas B

    2013-05-14

    The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.

  9. Sequestration of Carbon in Mycorrhizal Fungi Under Nitrogen Fertilization

    Science.gov (United States)

    Treseder, K. K.; Turner, K. M.

    2005-12-01

    Mycorrhizal fungi are root symbionts that facilitate plant uptake of soil nutrients in exchange for plant carbohydrates. They grow in almost every terrestrial ecosystem on earth, form relationships with about 80% of plant species, and receive 10 to 20% of the carbon fixed by their host plants. As such, they could potentially sequester a significant amount of carbon in ecosystems. We hypothesized that nitrogen fertilization would decrease carbon storage in mycorrhizal fungi, because plants should reduce investment of carbon in mycorrhizal fungi when nitrogen availability is high. We measured the abundance of two major groups of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi, in control and nitrogen-fertilized plots within three boreal ecosystems of inland Alaska. The ecosystems represented different recovery stages following severe fire, and comprised a young site dominated by AM fungi, an old site dominated by ECM fungi, and an intermediate site co-dominated by both groups. Pools of mycorrhizal carbon included root-associated AM and ECM structures, soil-associated AM hyphae, and soil-associated glomalin. Glomalin is a glycoprotein produced only by AM fungi. It is present in the cell walls of AM hyphae, and then is deposited in the soil as the hyphae senesce. Nitrogen significantly altered total mycorrhizal carbon pools, but its effect varied by site (site * N interaction, P = 0.05). Under nitrogen fertilization, mycorrhizal carbon was reduced from 99 to 50 g C m2 in the youngest site, was increased from 124 to 203 g C m2 in the intermediate-aged site, and remained at 35 g C m2 in the oldest site. The changes in total mycorrhizal carbon stocks were driven mostly by changes in glomalin (site * N interaction, P = 0.05), and glomalin stocks were strongly correlated with AM hyphal abundance (P stocks within root-associated AM structures increased significantly with nitrogen fertilization across all sites (P = 0.001), as did root

  10. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju).

    Science.gov (United States)

    Jeon, Se Hui; Kim, Nam Hee; Shim, Moon Bo; Jeon, Young Wook; Ahn, Ji Hye; Lee, Soon Ho; Hwang, In Gyun; Rhee, Min Suk

    2015-04-01

    The present study examined 469 commercially available fermented alcoholic beverages (FABs), including beer (draft, microbrewed, and pasteurized), fruit wine (grape and others), refined rice wine, and yakju (raw and pasteurized). Samples were screened for Escherichia coli and eight foodborne pathogens (Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Yersinia enterocolitica), and the aerobic plate count, lactic acid bacteria, acetic acid bacteria, fungi, and total coliforms were also enumerated. Microbrewed beer contained the highest number of microorganisms (average aerobic plate count, 3.5; lactic acid bacteria, 2.1; acetic acid bacteria, 2.0; and fungi, 3.6 log CFU/ml), followed by draft beer and yakju (P beer samples) and B. cereus (detected in all FABs) were present in some products. B. cereus was detected most frequently in microbrewed beer (54.8% of samples) and nonpasteurized yakju (50.0%), followed by pasteurized yakju (28.8%), refined rice wine (25.0%), other fruit wines (12.3%), grape wine (8.6%), draft beer (5.6%), and pasteurized beer (2.2%) (P < 0.05). The finding that spore-forming B. cereus and coliform bacteria can survive the harsh conditions present in alcoholic beverages should be taken into account (alongside traditional quality indicators such as the presence of lactic acid-producing bacteria, acetic acid-producing bacteria, or both) when developing manufacturing systems and methods to prolong the shelf life of high-quality FAB products. New strategic quality management plans for various FABs are needed.

  11. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  12. Impact of arbuscular mycorrhizal fungi on uranium accumulation by plants

    International Nuclear Information System (INIS)

    Dupre de Boulois, H.; Joner, E.J.; Leyval, C.; Jakobsen, I.; Chen, B.D.; Roos, P.; Thiry, Y.; Rufyikiri, G.; Delvaux, B.; Declerck, S.

    2008-01-01

    Contamination by uranium (U) occurs principally at U mining and processing sites. Uranium can have tremendous environmental consequences, as it is highly toxic to a broad range of organisms and can be dispersed in both terrestrial and aquatic environments. Remediation strategies of U-contaminated soils have included physical and chemical procedures, which may be beneficial, but are costly and can lead to further environmental damage. Phytoremediation has been proposed as a promising alternative, which relies on the capacity of plants and their associated microorganisms to stabilize or extract contaminants from soils. In this paper, we review the role of a group of plant symbiotic fungi, i.e. arbuscular mycorrhizal fungi, which constitute an essential link between the soil and the roots. These fungi participate in U immobilization in soils and within plant roots and they can reduce root-to-shoot translocation of U. However, there is a need to evaluate these observations in terms of their importance for phytostabilization strategies

  13. MICROMORPHOLOGICAL AND CHEMICAL ASPECTS OF SOME LICHENIZED FUNGI SPECIES

    Directory of Open Access Journals (Sweden)

    PÎNDARU DIANA-MIHAELA

    2012-12-01

    Full Text Available At present, lichenized fungi are used in biomonitoring studies of air quality, being good receptors in the climate change. This paper aims to investigate surface micromorphology of Xanthoria parietina and Phaeophyscia orbicularis species (Lecanoromycetes, Ascomycota. The study also includes the investigation of selected chemical parameters as pH and conductivity of the lichenized fungi samples collected from various locations in the Iaşi County (Romania. Measurements of the pH provide information on the degree of pollution in the location of interest. Bark trees pH was also investigated in order to see if our matrix substrate influences the pH of the interest lichenized fungi samples.

  14. Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China.

    Science.gov (United States)

    Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie

    2018-06-09

    To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.

  15. Screening of micro-organisms for decolorization of melanins produced by bluestain fungi.

    Science.gov (United States)

    Rättö, M; Chatani, M; Ritschkoff, A C; Viikari, L

    2001-03-01

    A total of 17 fungi and four bacteria were screened for their ability to decolorize melanin, using isolated extracellular melanin of the bluestain fungus Aureobasidium pullulans as substrate. On agar media, decolorization was observed by four fungal strains: Bjerkandera adusta VTT-D-99746, Galactomyces geotrichum VTT-D-84228, Trametes hirsuta VTT-D-95443 and Trametes versicolor VTT-D-99747. The four fungi were more efficient on nitrogen-limited medium than on complete medium. The melanin-decolorizing activity of G. geotrichum appeared to be located on the mycelium and could be liberated into the medium enzymatically.

  16. Evolution of entomopathogenicity in fungi.

    Science.gov (United States)

    Humber, Richard A

    2008-07-01

    The recent completions of publications presenting the results of a comprehensive study on the fungal phylogeny and a new classification reflecting that phylogeny form a new basis to examine questions about the origins and evolutionary implications of such major habits among fungi as the use of living arthropods or other invertebrates as the main source of nutrients. Because entomopathogenicity appears to have arisen or, indeed, have lost multiple times in many independent lines of fungal evolution, some of the factors that might either define or enable entomopathogenicity are examined. The constant proximity of populations of potential new hosts seem to have been a factor encouraging the acquisition or loss of entomopathogenicity by a very diverse range of fungi, particularly when involving gregarious and immobile host populations of scales, aphids, and cicadas (all in Hemiptera). An underlying theme within the vast complex of pathogenic and parasitic ascomycetes in the Clavicipitaceae (Hypocreales) affecting plants and insects seems to be for interkingdom host-jumping by these fungi from plants to arthropods and then back to the plant or on to fungal hosts. Some genera of Entomophthorales suggest that the associations between fungal pathogens and their insect hosts appear to be shifting away from pathogenicity and towards nonlethal parasitism.

  17. Decay fungi of oaks and associated hardwoods for western arborists

    Science.gov (United States)

    Jessie A. Glaeser; Kevin T. Smith

    2010-01-01

    Examination of trees for the presence and extent of decay should be part of any hazard tree assessment. Identification of the fungi responsible for the decay improves prediction of tree performance and the quality of management decisions, including tree pruning or removal. Scouting for Sudden Oak Death (SOD) in the West has drawn attention to hardwood tree species,...

  18. Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi

    NARCIS (Netherlands)

    Bonthond, G.; Sandoval-Denis, M.; Groenewald, J.Z.; Crous, P.W.

    2018-01-01

    The genus Seiridium includes multiple plant pathogenic fungi well-known as causal organisms of cankers on Cupressaceae. Taxonomically, the status of several species has been a topic of debate, as the phylogeny of the genus remains unresolved and authentic ex-type cultures are mostly absent. In the

  19. Lipids from yeasts and fungi: Tomorrow's source of Biodiesel?

    NARCIS (Netherlands)

    Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A.

    2013-01-01

    In the search for new transport fuels from renewable resources, biodiesel from microbial lipids comes into view. We have evaluated the lipid yield and energy use of a process for production of biodiesel from agricultural waste using lipid-accumulating yeast and fungi. We included different

  20. Succession of root-associated fungi in Pisum sativum during a plant growth cycle as examined by 454 pyrosequencing

    DEFF Research Database (Denmark)

    Yu, L.; Nicolaisen, M.; Larsen, J.

    2012-01-01

    Purpose Roots are inhabited by a broad range of fungi, including pathogens and mycorrhizal fungi, with functional traits related to plant health and nutrition. Management of these fungi in agroecosystems requires profound knowledge about their ecology. The main objective of this study was to exam...

  1. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  2. Bacteremias in liver transplant recipients: shift toward gram-negative bacteria as predominant pathogens.

    Science.gov (United States)

    Singh, Nina; Wagener, Marilyn M; Obman, Asia; Cacciarelli, Thomas V; de Vera, Michael E; Gayowski, Timothy

    2004-07-01

    During the 1990s, gram-positive bacteria emerged as major pathogens after liver transplantation. We sought to determine whether the pathogens associated with bacteremias in liver transplant recipients have changed. Patients included 233 liver transplant recipients transplanted between 1989 and 2003. The proportion of all infections due to bacteremias increased significantly over time (P gram-negatives increased from 25% in the period of 1989-1993 to 51.8% in 1998-03, that of gram-positive bacteria decreased from 75% in the period of 1989-93 to 48.2% in the period of 1998-2003. Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most frequent pathogens in bacteremic patients. The incidence of bacteremias due to MRSA and Pseudomonas aeruginosa has remained unchanged (P gram-negative bacteria, particularly Klebsiella pneumoniae has increased (P =.02). Klebsiella pneumoniae isolates in the current quartile were not clonally related. In conclusion, bacteremias as a proportion of all infections in liver transplant recipients have increased significantly over time, due in part to a decline in infections due to other major pathogens, e.g., fungi, primarily Candida species, and CMV. Gram-negative bacteria have emerged as predominant pathogens in bacteremic liver transplant recipients.

  3. Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria

    Science.gov (United States)

    Cote, V.; Ariya, P.

    2004-05-01

    Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.

  4. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops

    Directory of Open Access Journals (Sweden)

    Dimitrios I. TSITSIGIANNIS

    2012-05-01

    Full Text Available Fungi that belong to the genera Aspergillus, Fusarium, and Penicillium pose serious phytopathological and mycotoxicological risks at pre-harvest and post-harvest stages, as well as in processed food products because they can produce several mycotoxins. Mycotoxins pose a serious problem for animal and human health and have a significant economic impact worldwide. The Mediterranean basin is a large geographical region with a temperate climate supporting the cultivation of a wealth of field and greenhouse crops with a high risk of mycotoxin contamination. The most important mycotoxins that occur in the Mediterranean basin are aflatoxins (B1, B2, G1 and G2 in dried fruits and nuts, ochratoxin A in grapes and raisins as well as trichothecenes and fumonisins in cereals. A variety of chemical, biological and physical strategies have been developed to control the mycotoxigenic pathogens; to minimize mycotoxin production at pre- or post-harvest level; to contribute to decontamination and/or detoxification of mycotoxins from contaminated foods and feeds; or to inhibit mycotoxin absorption in the gastrointestinal tract. Biological control using microbial antagonists either alone or as part of an integrated control strategy to reduce pesticide inputs, has emerged as a promising approach for control of mycotoxins in crops, both pre- and post-harvest. Several organisms including atoxigenic Aspergilli, yeasts, bacteria and fungi have been tested for their ability to reduce both fungal infection and mycotoxin contamination. For instance, atoxigenic fungal strains are being used widely to prevent pre-harvest aflatoxin contamination of crops such as peanuts, pistachios, maize, and cottonseed in several parts of the world including the Mediterranean area. Recent advancements in the use of biocontrol strategies have led to registration of commercial products with increased practical applications for the benefit of growers in several countries.

  5. Diversity and antimicrobial activity of culturable fungi from fishscale bamboo (Phyllostachys heteroclada) in China.

    Science.gov (United States)

    Zhou, Ying-Ke; Shen, Xiao-Ye; Hou, Cheng-Lin

    2017-06-01

    An important and useful bamboo species, fishscale bamboo (Phyllostachys heteroclada Oliver), is broadly distributed in Southeast China and has multiple purposes, including uses in cuisine, weaving, Chinese medicine and ecological protection. However, no previous studies have focused on the endophytes of this plant. In our article, a total of 127 fungal strains were first isolated from the healthy branches and leaves of common P. heteroclada. These endophytic fungi could be directly categorized into 50 morphotypes according to their culture characteristics, and their internal transcribed spacer (ITS) regions were analyzed for molecular identification. Using the BLAST search tool of the NCBI database and phylogenetic tree analysis, these isolates were divided into two phyla, Ascomycota (95.28%) and Basidiomycota (4.72%), including at least six orders (Xylariales, Capnodiales, Pleosporales, Hypocreales, Chaetothyriales and Polyporales) and fourteen genera (Arthrinium, Pestalotiopsis, Epicoccum, Cladosporium, Nigrospora, Setophoma, Didymella, Calcarisporium, Preussia, Nemania, Creosphaeria, Ophiobolus, Phialophora and Perenniporia). It is fascinating that four genera, Calcarisporium, Preussia, Creosphaeria and Phialophora were isolated from bamboos for the first time. The inhibitory effects against clinical pathogens were also preliminarily screened, and four isolates FB43 (Calcarisporium arbuscula), FB06 (Preussia minima), FB16 (Setophoma sp.) and FB21 (Perenniporia medulla-pains) among the candidate strains displayed broad-spectrum activities according to the agar diffusion method and the disk diffusion assay. Strain FB16 (Setophoma sp.) especially indicated high bioactivity against both clinical bacteria and yeast. This study is the first report on the diversity and antimicrobial activity of the endophytic fungi associated with P. heteroclada, which could be regarded as a potential source of drug precursors and could be used in biocontrol development.

  6. Fungi isolated from flue-cured tobacco sold in Southeast United States, 1968-1970.

    Science.gov (United States)

    Welty, R E

    1972-09-01

    Flue-cured tobacco leaves, from low- and middle-stalk positions, offered for sale in each of two markets, within each of five tobacco types, were evaluated for moisture content (MC) and filamentous fungi during August through October in 1968, 1969, and 1970. Alternaria alternata, Penicillium cyclopium, Aspergillus niger, Aspergillus repens, and Aspergillus flavus were most frequently isolated from cultured tissue. Other filamentous fungi that grew from the tissue included species from four genera of field fungi and seven species of storage fungi. Although the MC ranged from 11.0 to 22.5%, it averaged 16.4, 16.8, and 15.9% for samples taken in 1968, 1969, and 1970, respectively. Average populations of fungi per sample over the three years ranged from 0 to 1,528,500 colonies/g of tobacco.

  7. Technical Note: Reactivity of C1 and C2 organohalogens formation – from plant litter to bacteria

    Directory of Open Access Journals (Sweden)

    J. J. Wang

    2012-10-01

    Full Text Available C1/C2 organohalogens (organohalogens with one or two carbon atoms can have significant environmental toxicity and ecological impact, such as carcinogenesis, ozone depletion and global warming. Natural halogenation processes have been identified for a wide range of natural organic matter, including soils, plant and animal debris, algae, and fungi. Yet, few have considered these organohalogens generated from the ubiquitous bacteria, one of the largest biomass pools on earth. Here, we report and confirm the formation of chloroform (CHCl3 dichloro-acetonitrile (CHCl2CN, chloral hydrate (CCl3CH(OH2 and their brominated analogues by direct halogenation of seven strains of common bacteria and nine cellular monomers. Comparing different major C stocks during litter decomposition stages in terrestrial ecosystems, from plant litter, decomposed litter, to bacteria, we found increasing reactivity for nitrogenous organohalogen yield with decreasing C/N ratio. Our results raise the possibility that natural halogenation of bacteria represents a significant and overlooked contribution to global organohalogen burdens. As bacteria are decomposers that alter the C quality by transforming organic matter pools from high to low C/N ratio and constitute a large organic N pool, the bacterial activity is expected to affect the C, N, and halogen cycling through natural halogenation reactions.

  8. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    Science.gov (United States)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree

  9. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  10. BIOMODIFICATION OF KENAF USING WHITE ROT FUNGI

    OpenAIRE

    Rasmina Halis,; Hui Rus Tan,; Zaidon Ashaari,; Rozi Mohamed

    2012-01-01

    White rot fungi can be used as a pretreatment of biomass to degrade lignin. It also alters the structure of the lignocellulosic matter, thus increasing its accessibility to enzymes able to convert polysaccharides into simple sugars. This study compares the ability of two species of white rot fungi, Pycnoporous sanguineus and Oxyporus latemarginatus FRIM 31, to degrade lignin in kenaf chips. The white rot fungi were originally isolated from the tropical forest in Malaysia. Kenaf chips were fir...

  11. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  12. The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases.

    Science.gov (United States)

    Bradford, L Latéy; Ravel, Jacques

    2017-04-03

    Most of what is known about fungi in the human vagina has come from culture-based studies and phenotypic characterization of single organisms. Though valuable, these approaches have masked the complexity of fungal communities within the vagina. The vaginal mycobiome has become an emerging field of study as genomics tools are increasingly employed and we begin to appreciate the role these fungal communities play in human health and disease. Though vastly outnumbered by its bacterial counterparts, fungi are important constituents of the vaginal ecosystem in many healthy women. Candida albicans, an opportunistic fungal pathogen, colonizes 20% of women without causing any overt symptoms, yet it is one of the leading causes of infectious vaginitis. Understanding its mechanisms of commensalism and patho-genesis are both essential to developing more effective therapies. Describing the interactions between Candida, bacteria (such as Lactobacillus spp.) and other fungi in the vagina is funda-mental to our characterization of the vaginal mycobiome.

  13. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    Science.gov (United States)

    Hedtke, Shannon M; Blitzer, Eleanor J; Montgomery, Graham A; Danforth, Bryan N

    2015-01-01

    Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  14. Spiral and Rotor Patterns Produced by Fairy Ring Fungi

    Science.gov (United States)

    Karst, N.; Dralle, D.; Thompson, S. E.

    2015-12-01

    Soil fungi fill many essential ecological and biogeochemical roles, e.g. decomposing litter, redistributing nutrients, and promoting biodiversity. Fairy ring fungi offer a rare glimpse into the otherwise opaque spatiotemporal dynamics of soil fungal growth, because subsurface mycelial patterns can be inferred from observations at the soil's surface. These observations can be made directly when the fungi send up fruiting bodies (e.g., mushrooms and toadstools), or indirectly via the effect the fungi have on neighboring organisms. Grasses in particular often temporarily thrive on the nutrients liberated by the fungus, creating bands of rich, dark green turf at the edge of the fungal mat. To date, only annular (the "ring" in fairy ring) and arc patterns have been described in the literature. We report observations of novel spiral and rotor pattern formation in fairy ring fungi, as seen in publically available high-resolution aerial imagery of 22 sites across the continental United States. To explain these new behaviors, we first demonstrate that a well-known model describing fairy ring formation is equivalent to the Gray-Scott reaction-diffusion model, which is known to support a wide range of dynamical behaviors, including annular traveling waves, rotors, spirals, and stable spatial patterns including spots and stripes. Bifurcation analysis and numerical simulation are then used to define the region of parameter space that supports spiral and rotor formation. We find that this region is adjacent to one within which typical fairy rings develop. Model results suggest simple experimental procedures that could potentially induce traditional ring structures to exhibit rotor or spiral dynamics. Intriguingly, the Gray-Scott model predicts that these same procedures could be used to solicit even richer patterns, including spots and stripes, which have not yet been identified in the field.

  15. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  16. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi

    Science.gov (United States)

    Fungi of the phylum Basidiomycota (basidiomycetes) make up some 37% of the described fungi and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To b...

  17. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Science.gov (United States)

    Svahn, K. Stefan; Göransson, Ulf; El-Seedi, Hesham; Bohlin, Lars; Larsson, D.G. Joakim; Olsen, Björn; Chryssanthou, Erja

    2012-01-01

    Background Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules. PMID:22957125

  18. Antimicrobial activity of filamentous fungi isolated from highly antibiotic-contaminated river sediment

    Directory of Open Access Journals (Sweden)

    K. Stefan Svahn

    2012-05-01

    Full Text Available Background: Filamentous fungi are well known for their production of substances with antimicrobial activities, several of which have formed the basis for the development of new clinically important antimicrobial agents. Recently, environments polluted with extraordinarily high levels of antibiotics have been documented, leading to strong selection pressure on local sentinel bacterial communities. In such microbial ecosystems, where multidrug-resistant bacteria are likely to thrive, it is possible that certain fungal antibiotics have become less efficient, thus encouraging alternative strategies for fungi to compete with bacteria. Methods: In this study, sediment of a highly antibiotic-contaminated Indian river was sampled in order to investigate the presence of cultivable filamentous fungi and their ability to produce substances with antimicrobial activity. Results: Sixty one strains of filamentous fungi, predominantly various Aspergillus spp. were identified. The majority of the Aspergillus strains displayed antimicrobial activity against methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase-producing Escherichia coli, vancomycin-resistant Enterococcus faecalis and Candida albicans. Bioassay-guided isolation of the secondary metabolites of A. fumigatus led to the identification of gliotoxin. Conclusion: This study demonstrated proof of principle of using bioassay-guided isolation for finding bioactive molecules.

  19. Insights into the phylogeny or arylamine N-acetyltransferases in fungi.

    Science.gov (United States)

    Martins, Marta; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Silar, Philippe

    2010-08-01

    Previous studies have shown that Eumycetes fungi can acylate arylamine thanks to arylamine N-acetyltransferases, xenobiotic-metabolizing enzymes also found in animals and bacteria. In this article, we present the results of mining 96 available fungal genome sequences for arylamine N-acetyltransferase genes and propose their phylogeny. The filamentous Pezizomycotina are shown to possess many putative N-acetyltransferases, whilst these are often lacking in other fungal groups. The evolution of the N-acetyltransferases is best explained by the presence of at least one gene in the opisthokont ancestor of the fungi and animal kingdoms, followed by recurrent gene losses and gene duplications. A possible horizontal gene transfer event may have occurred from bacteria to the basidiomycetous yeast Malassezia globosa.

  20. Evolutionary Trajectories of Entomopathogenic Fungi ABC Transporters.

    Science.gov (United States)

    Baral, Bikash

    2017-01-01

    The ABC protein superfamily-also called traffic ATPases-are energy-dependent ubiquitous proteins, representing one of the crucial and the largest family in the fungal genomes. The ATP-binding cassette endows a characteristic 200-250 amino acids and is omnipresent in all organisms ranging from prokaryotes to eukaryotes. Unlike in bacteria with nutrient import functions, ABC transporters in fungal entomopathogens serve as effective efflux pumps that are largely involved in the shuttle of metabolites across the biological membranes. Thus, the search for ABC proteins may prove of immense importance in elucidating the functional and molecular mechanism at the host-pathogen (insect-fungus) interface. Their sequence homology, domain topology, and functional traits led to the actual identification of nine different families in fungal entomopathogens. Evolutionary relationships within the ABC superfamily are discussed, concentrating on computational approaches for comparative identification of ABC transporters in insect-pathogenic fungi (entomopathogens) with those of animals, plants, and their bacterial orthologs. Ancestors of some fungal candidates have duplicated extensively in some phyla, while others were lost in one lineage or the other, and predictions for the cause of their duplications and/or loss in some phyla are made. ABC transporters of fungal insect-pathogens serve both defensive and offensive functions effective against land-dwelling and ground foraging voracious insects. This study may help to unravel the molecular cascades of ABC proteins to illuminate the means through which insects cope with fungal infection and fungal-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  2. Phytopathogenic Bacteria

    NARCIS (Netherlands)

    Wolf, van der J.M.; Boer, de S.H.

    2015-01-01

    A few hundred bacterial species, belonging to the Proteobacteria, Mollecutes and Actinomycetes cause a large number of different plant diseases, some of which are devastating for agricultural crops. Symptoms of bacterial plant diseases are diverse and include necrosis, tissue maceration, wilting,

  3. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    Directory of Open Access Journals (Sweden)

    Cui-Ping Miao

    2016-04-01

    Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.

  4. Uptake of elements by fungi in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology; Vinichuk, Mykhaylo M. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences

    2004-10-01

    between CR and pH. Seventeen elements, including P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U were divided into four groups, based on the concentration in bulk soil: very high concentration (>100 mg/kg dw, high concentration (10-100 mg/kg); moderate concentration (1-10 mg/kg) and low concentration (<1 mg/kg). Fungal mycelium accumulated the following elements, listed in decreasing order: P, Cd, Cu, Ca, Zn, Sr, Co, As and Hg. Fruit bodies of fungi accumulate: P, Cd, Cu, Zn, As and Hg. Phosphorus was accumulated by fungal mycelium very efficiently. Concentration ratio for mycelium (mg/kg dw in mycelium divided by mg/kg dw in soil) was found to be 7.4. Even higher accumulation was observed for fruit bodies of fungi, giving CR 8.5. Fungi did not accumulate Ca and this element seemed to be excluded from fungi particularly from the fruit bodies rather efficiently. Concentration ratio for Ca in mycelium was found to be 1.8. In fruit bodies of the studied species CR was about 0.03. Chromium was also excluded from fungi as indicated by low CRs 0.5 for mycelium and 0.02 for fruit bodies. Manganese might also be excluded from fungi, particularly from the fruit bodies. Concentration ratio for Mn in mycelium was 0.9 and in fruit bodies 0.17. Cobalt was only moderately accumulated by fungal mycelium (CR=1.4) and efficiently excluded from fruit bodies, giving CR 0.06. Our data did not show any accumulation of Ni by fungi. Concentration ratios for mycelium and fruit bodies were 0.9 and 0.4 respectively. Concentration ratios of Cu for mycelium were found to be 3.0, and for fruit bodies 5.9, indicating that copper concentration increase in the order soil-mycelium-fruit bodies. Fungi also accumulated zinc. Concentration ratios for zinc were found to be 1.6 in mycelium and 2.3 in fruit bodies. Arsenic was only moderately accumulated by mycelium (CR=1.4) as well as by fruit bodies (CR=1.3). Sr seemed to behave similar as Ca. Concentration ratios of Sr were found to be 1

  5. Uptake of elements by fungi in the Forsmark area

    International Nuclear Information System (INIS)

    Johanson, Karl J.; Nikolova, Ivanka; Taylor, Andy F.S.; Vinichuk, Mykhaylo M.

    2004-10-01

    between CR and pH. Seventeen elements, including P, Ca, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, I, Hg, Pb, Ra, Th and U were divided into four groups, based on the concentration in bulk soil: very high concentration (>100 mg/kg dw, high concentration (10-100 mg/kg); moderate concentration (1-10 mg/kg) and low concentration (<1 mg/kg). Fungal mycelium accumulated the following elements, listed in decreasing order: P, Cd, Cu, Ca, Zn, Sr, Co, As and Hg. Fruit bodies of fungi accumulate: P, Cd, Cu, Zn, As and Hg. Phosphorus was accumulated by fungal mycelium very efficiently. Concentration ratio for mycelium (mg/kg dw in mycelium divided by mg/kg dw in soil) was found to be 7.4. Even higher accumulation was observed for fruit bodies of fungi, giving CR 8.5. Fungi did not accumulate Ca and this element seemed to be excluded from fungi particularly from the fruit bodies rather efficiently. Concentration ratio for Ca in mycelium was found to be 1.8. In fruit bodies of the studied species CR was about 0.03. Chromium was also excluded from fungi as indicated by low CRs 0.5 for mycelium and 0.02 for fruit bodies. Manganese might also be excluded from fungi, particularly from the fruit bodies. Concentration ratio for Mn in mycelium was 0.9 and in fruit bodies 0.17. Cobalt was only moderately accumulated by fungal mycelium (CR=1.4) and efficiently excluded from fruit bodies, giving CR 0.06. Our data did not show any accumulation of Ni by fungi. Concentration ratios for mycelium and fruit bodies were 0.9 and 0.4 respectively. Concentration ratios of Cu for mycelium were found to be 3.0, and for fruit bodies 5.9, indicating that copper concentration increase in the order soil-mycelium-fruit bodies. Fungi also accumulated zinc. Concentration ratios for zinc were found to be 1.6 in mycelium and 2.3 in fruit bodies. Arsenic was only moderately accumulated by mycelium (CR=1.4) as well as by fruit bodies (CR=1.3). Sr seemed to behave similar as Ca. Concentration ratios of Sr were found to be 1

  6. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  7. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  8. Nitrate reduction by fungi in marine oxygen-depleted laboratory microcosms

    Digital Repository Service at National Institute of Oceanography (India)

    Manohar, C.S.; Raghukumar, C.

    in terrestrial soils (Laughlin et al. 2009). Studies on denitrification in wetlands indicate that both bacteria and fungi contribute significantly to denitrification under reducing conditions. However, fungal denitrification might well be of greater ecological... such as grassland soil (Laughlin and Stevens 2002), fumigated soil (Spokas et al. 2006) and woodland (Castaldi and Smith 1998). Mixed cultures of the fungus Fusarium oxysporum and the bacterium Pseudomonas stutzeri (Lehmann and Neumann) Sijderius under anaerobic...

  9. Chemical Investigations of Marine Filamentous and Zoosporic Fungi and Studies in Marine Microbial Chemical Ecology

    OpenAIRE

    Jenkins, Kelly M.

    1998-01-01

    The natural products chemistry of marine microorganisms is an emerging area of organic chemistry with the aim of discovering novel secondary metabolites exhibiting both biomedical and ecological activities. While marine bacteria have proven to be a productive source of new natural products, there are many groups of marine microorganisms which have not been fully investigated. In particular, marine fungi represent an untapped and potentially novel source of bioactive secondary metabolites. Whi...

  10. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    Science.gov (United States)

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  11. Aquatic fungi in the Lake Sejny complex

    OpenAIRE

    Bazyli Czeczuga

    2014-01-01

    The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora).

  12. Aquatic fungi in the Lake Sejny complex

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-08-01

    Full Text Available The mycoflora of the Lake Sejny complex was studied. Samples of water were collected in 1990-1991 for hydrochemical analysis and determination of fungi species. In total 69 species of fungi reported for the first time from Poland (Myzocylium vermicolum, Angulospora aquatica, Zoophthora rhizospora.

  13. Antibacterial activity of marine-derived fungi

    DEFF Research Database (Denmark)

    Christophersen, Carsten; Crescente, Oscar; Frisvad, Jens Christian

    1998-01-01

    A total of 227 marine isolates of ubiqituous fungi were cultivated on different media and the secondary metabolite content of the extracts (ethyl acetate/chlorofonn/methanol 3 : 2 : 1) characterized by HPLC. The fungi were secured from animals, plants and sediments of Venezuelan waters (0-10 m...

  14. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  15. Promising carbons for supercapacitors derived from fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hui; Wang, Xiaolei; Yang, Fan; Yang, Xiurong [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)

    2011-06-24

    Activated carbons with promising performance in capacitors are produced from fungi via a hydrothermal assistant pyrolysis approach. This study introduces a facile strategy to discover carbonaceous materials and triggers interest in exploring fungi for material science applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  17. Fossil evidence of the zygomycetous fungi

    NARCIS (Netherlands)

    Krings, M.; Taylor, T.N.; Dotzler, N.

    2013-01-01

    Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the zygomycetous fungi is compiled, with a focus on structurally preserved

  18. Ancestral state reconstruction infers phytopathogenic origins of sooty blotch and flyspeck fungi on apple.

    Science.gov (United States)

    Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L

    2016-01-01

    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.

  19. Cnidarian-derived filamentous fungi from Brazil: isolation, characterisation and RBBR decolourisation screening.

    Science.gov (United States)

    Da Silva, M; Passarini, M R Z; Bonugli, R C; Sette, L D

    2008-12-01

    Marine-derived fungi represent a valuable source of structurally novel and biologically active metabolites of industrial interest. They also have drawn attention for their capacity to degrade several pollutants, including textile dyes, organochlorides and polycyclic aromatic hydrocarbons (PAHs), among others. The fungal tolerance to higher concentrations of salt might be considered an advantage for bioremediation processes in the marine environment. Therefore, filamentous fungi were isolated from cnidarians (scleractinian coral and zoanthids) collected from the north coast of São Paulo State, Brazil. A total of 144 filamentous fungi were morphologically and molecularly characterised. Among them there were several species of Penicillium and Aspergillus, in addition to Cladosporium spp., Eutypella sp., Fusarium spp., Khuskia sp., Mucor sp., Peacilomyces sp., Phoma sp. and Trichoderma spp. These fungi were tested regarding their decolourisation activity for Remazol Brilliant Blue R (RBBR), a textile dye used as an initial screening for PAH-degrading fungi. The most efficient fungi for RBBR decolourisation after 12 days were Penicillium citrinum CBMAI 853 (100%), Aspergillus sulphureus CBMAI 849 (95%), Cladosporium cladosporioides CBMAI 857 (93%) and Trichoderma sp. CBMAI 852 (89%). Besides its efficiency for dye decolourisation within liquid media, C. cladosporioides CBMAI 857 also decolourised dye on solid media, forming a decolourisation halo. Further research on the biotechnological potential, including studies on PAH metabolism, of these selected fungi are in progress.

  20. Thermophilic Fungi: Their Physiology and Enzymes†

    Science.gov (United States)

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20°C and a maximum temperature of growth extending up to 60 to 62°C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45°C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62°C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and

  1. Occurrence of keratinophilic fungi on Indian birds.

    Science.gov (United States)

    Dixit, A K; Kushwaha, R K

    1991-01-01

    Keratinophilic fungi were isolated from feathers of most common Indian birds, viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28 +/- 2 degrees C. Chrysosporium species were isolated on most of the birds. Chrysosporium lucknowense and Chrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.

  2. Diagnostic accuracy of morphologic identification of filamentous fungi in paraffin embedded tissue sections: Correlation of histological and culture diagnosis

    Directory of Open Access Journals (Sweden)

    Sundaram Challa

    2014-01-01

    Full Text Available Aims and Objectives: The aim was to investigate the correlation between histological and culture diagnosis of filamentous fungi. Materials and Methods: Tissue sections from biopsy samples stained with Hematoxylin and Eosin and special stains from samples of chronic invasive/noninvasive sinusitis and intracranial space occupying lesions during 2005-2011 diagnosed to have infection due to filamentous fungi were reviewed. The histopathology and culture diagnoses were analyzed for correlation and discrepancy. Results: There were 125 samples positive for filamentous fungi on biopsy. Of these 76 (60.8% were submitted for culture and fungi grew in 30 (39.97% samples. There was a positive correlation between histological and culture diagnosis in 25 (83.33% samples that included Aspergillus species (16/19, Zygomycetes species (8/10 and dematiaceous fungi (1/1. The negative yield of fungi was more in Zygomycetes species (20/30 when compared to Aspergillus species (25/44. There was a discrepancy in diagnosis in 5/30 (16.67% samples which included probable dual infection in two, and dematiaceous fungi being interpreted as Aspergillus species in three samples. Conclusion: Histopathology plays a major role in the diagnosis of infection due to filamentous fungi, especially when cultures are not submitted or negative. The discrepancy between histological and culture diagnosis was either due to dematiaceous fungi being interpreted as Aspergillus species or probable dual infection.

  3. Transformation of gram positive bacteria by sonoporation

    Science.gov (United States)

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  4. Isolation and characterization of novel chitinolytic bacteria

    Science.gov (United States)

    Gürkök, Sümeyra; Görmez, Arzu

    2016-04-01

    Chitin, a linear polymer of β-1,4-N-acetylglucosamine units, is one of the most abundant biopolymers widely distributed in the marine and terrestrial environments. It is found as a structural component of insects, crustaceans and the cell walls of fungi. Chitinases, the enzymes degrading chitin by cleaving the β-(1-4) bond, have gained increased attention due to their wide range of biotechnological applications, especially for biocontrol of harmful insects and phytopathogenic fungi in agriculture. In the present study, 200 bacterial isolates from Western Anatolia Region of Turkey were screened for chitinolytic activity on agar media amended with colloidal chitin. Based on the chitin hydrolysis zone, 13 isolates were selected for further study. Bacterial isolates with the highest chitinase activity were identified as Acinetobacter calcoaceticus, Arthrobacter oxydans, Bacillus cereus, Bacillus megaterium, Brevibacillus reuszeri, Kocuria erythromyxa, Kocuria rosea, Novosphingobium capsulatum, Rhodococcus bratislaviensis, Rhodococcus fascians and Staphylococcus cohnii by MIS and BIOLOG systems. The next aims of the study are to compare the productivity of these bacteria quantitatively, to purify the enzyme from the most potent producer and to apply the pure enzyme for the fight against the phytopathogenic fungi and harmful insects.

  5. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function.

    Science.gov (United States)

    Powell, Jeff R; Rillig, Matthias C

    2018-03-30

    Contents Summary I. pathways of influence and pervasiveness of effects II. AM fungal richness effects on ecosystem functions III. Other dimensions of biodiversity IV. Back to basics - primary axes of niche differentiation by AM fungi V. Functional diversity of AM fungi - a role for biological stoichiometry? VI. Past, novel and future ecosystems VII. Opportunities and the way forward Acknowledgements References SUMMARY: Arbuscular mycorrhizal (AM) fungi play important functional roles in ecosystems, including the uptake and transfer of nutrients, modification of the physical soil environment and alteration of plant interactions with other biota. Several studies have demonstrated the potential for variation in AM fungal diversity to also affect ecosystem functioning, mainly via effects on primary productivity. Diversity in these studies is usually characterized in terms of the number of species, unique evolutionary lineages or complementary mycorrhizal traits, as well as the ability of plants to discriminate among AM fungi in space and time. However, the emergent outcomes of these relationships are usually indirect, and thus context dependent, and difficult to predict with certainty. Here, we advocate a fungal-centric view of AM fungal biodiversity-ecosystem function relationships that focuses on the direct and specific links between AM fungal fitness and consequences for their roles in ecosystems, especially highlighting functional diversity in hyphal resource economics. We conclude by arguing that an understanding of AM fungal functional diversity is fundamental to determine whether AM fungi have a role in the exploitation of marginal/novel environments (whether past, present or future) and highlight avenues for future research. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  6. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  7. Fungi in neotropical epiphyte roots.

    Science.gov (United States)

    Bermudes, D; Benzing, D H

    1989-01-01

    Roots of thirty-eight Ecuadoran vascular epiphytes, representing eleven angiosperm families, were examined for the presence of symbiotic microorganisms. Most orchid roots contained fungal endophytes like those that regularly infect terrestrial counterparts. Hyphae were also common in and on nonorchid roots, but assignments of these relationships to known mycorrhizal morphologies was not possible in all cases. Evidence of vesicular-arbuscular mycorrhizae (VAM) existed in a number of subjects while in Ericaceae and Campanulaceae a fungal association similar to the demateaceous surface fungi (DSF) described for alpine and prarie plants was usually present. Some associations were characterized by multicellular propagules on root surfaces. The significance of these findings and the factors likely to influence occurrence and consequences of root-fungus mutualisms in tropical forest canopies are discussed. Facts and considerations that could aid future inquiry on these systems are provided.

  8. Absence of genome reduction in diverse, facultative endohyphal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, David A. [Univ. of Arizona, Tucson, AZ (United States); Dougherty, Kevin [Univ. of Arizona, Tucson, AZ (United States); Arendt, Kayla R. [Univ. of Arizona, Tucson, AZ (United States); Huntemann, Marcel [Joint Genome Institute, Walnut Creek, CA (United States); Clum, Alicia [Joint Genome Institute, Walnut Creek, CA (United States); Pillay, Manoj [Joint Genome Institute, Walnut Creek, CA (United States); Palaniappan, Krishnaveni [Joint Genome Institute, Walnut Creek, CA (United States); Varghese, Neha [Joint Genome Institute, Walnut Creek, CA (United States); Mikhailova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Stamatis, Dimitrios [Joint Genome Institute, Walnut Creek, CA (United States); Reddy, T. B. K. [Joint Genome Institute, Walnut Creek, CA (United States); Ngan, Chew Yee [Joint Genome Institute, Walnut Creek, CA (United States); Daum, Chris [Joint Genome Institute, Walnut Creek, CA (United States); Shapiro, Nicole [Joint Genome Institute, Walnut Creek, CA (United States); Markowitz, Victor [Joint Genome Institute, Walnut Creek, CA (United States); Ivanova, Natalia [Joint Genome Institute, Walnut Creek, CA (United States); Kyrpides, Nikos [Joint Genome Institute, Walnut Creek, CA (United States); Woyke, Tanja [Joint Genome Institute, Walnut Creek, CA (United States); Arnold, A. Elizabeth [Univ. of Arizona, Tucson, AZ (United States)

    2017-02-28

    Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

  9. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  10. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  11. In situ hybridization for the detection of rust fungi in paraffin embedded plant tissue sections.

    Science.gov (United States)

    Ellison, Mitchell A; McMahon, Michael B; Bonde, Morris R; Palmer, Cristi L; Luster, Douglas G

    2016-01-01

    Rust fungi are obligate pathogens with multiple life stages often including different spore types and multiple plant hosts. While individual rust pathogens are often associated with specific plants, a wide range of plant species are infected with rust fungi. To study the interactions between these important pathogenic fungi and their host plants, one must be able to differentiate fungal tissue from plant tissue. This can be accomplished using the In situ hybridization (ISH) protocol described here. To validate reproducibility using the ISH protocol, samples of Chrysanthemum × morifolium infected with Puccinia horiana, Gladiolus × hortulanus infected with Uromyces transversalis and Glycine max infected with Phakopsora pachyrhizi were tested alongside uninfected leaf tissue samples. The results of these tests show that this technique clearly distinguishes between rust pathogens and their respective host plant tissues. This ISH protocol is applicable to rust fungi and potentially other plant pathogenic fungi as well. It has been shown here that this protocol can be applied to pathogens from different genera of rust fungi with no background staining of plant tissue. We encourage the use of this protocol for the study of plant pathogenic fungi in paraffin embedded sections of host plant tissue.

  12. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  13. Fungi and mycotoxins in cocoa: from farm to chocolate.

    Science.gov (United States)

    Copetti, Marina V; Iamanaka, Beatriz T; Pitt, John I; Taniwaki, Marta H

    2014-05-16

    Cocoa is an important crop, as it is the raw material from which chocolate is manufactured. It is grown mainly in West Africa although significant quantities also come from Asia and Central and South America. Primary processing is carried out on the farm, and the flavour of chocolate starts to develop at that time. Freshly harvested pods are opened, the beans, piled in heaps or wooden boxes, are fermented naturally by yeasts and bacteria, then dried in the sun on wooden platforms or sometimes on cement or on the ground, where a gradual reduction in moisture content inhibits microbial growth. Beans are then bagged and marketed. In processing plants, the dried fermented beans are roasted, shelled and ground, then two distinct processes are used, to produce powdered cocoa or chocolate. Filamentous fungi may contaminate many stages in cocoa processing, and poor practices may have a strong influence on the quality of the beans. Apart from causing spoilage, filamentous fungi may also produce aflatoxins and ochratoxin A. This review deals with the growth of fungal species and formation of mycotoxins during the various steps in cocoa processing, as well as reduction of these contaminants by good processing practices. Methodologies for fungal and mycotoxin detection and quantification are discussed while current data about dietary exposure and regulation are also presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).

    Science.gov (United States)

    Liang, Hanqiao; Xing, Yongmei; Chen, Juan; Zhang, Dawei; Guo, Shunxing; Wang, Chunlan

    2012-11-28

    Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

  16. Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi

    Science.gov (United States)

    Daniel L. Lindner; Tor Carlsen; Henrik Nilsson; Marie Davey; Trond Schumacher; Havard. Kauserud

    2013-01-01

    The rDNA internal transcribed spacer (ITS) region has been accepted as a DNA barcoding marker for fungi and is widely used in phylogenetic studies; however, intragenomic ITS variability has been observed in a broad range of taxa, including prokaryotes, plants, animals, and fungi, and this variability has the potential to inflate species richness estimates in molecular...

  17. Antibacterial activity of Achillea tenuifolia Lam. extract against standard bacteria and isolated strains

    Directory of Open Access Journals (Sweden)

    Sahar Omidpanah

    2016-12-01

    Full Text Available Researchers have been trying to develop new broad-spectrum antibiotics against the infectious diseases caused by bacteria, fungi, viruses, and parasites for many decades. Prolonged usage of the antibiotics has led to the emergence of drug resistance among bacteria; therefore, there is a tremendous need for novel antimicrobial agents from different sources such as plants which are used in traditional medicine. The aim of this study was to evaluate antibacterial effect of Achillea tenuifolia. The plant material was extracted by maceration method using methanol three times at room temperature. The extract was concentrated after removing the solvent by rotary evaporator and then lyophilized using freeze dryer. Inhibitory effect of the extract was examined against four standard bacteria strains and two isolated strains from diseased hen using disk diffusion method and microdilution method to evaluate their inhibition zone diameter (IZD and minimum inhibitory concentration (MIC, respectively. The results showed that the extract of the plant was active against standard strains including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis with IZDs of 10.3±0.5, 14±0.0, 12±0.0 and 11.6±0.5, respectively. However, growths of isolated strains were not inhibited in the presence of the extract. Although, the growths of isolated strains were not inhibited by the plant extract, the standard strains were moderately susceptible to the extract; among those P. aeroginosa was more sensible than other tested strains

  18. Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants

    Science.gov (United States)

    Chang, Ying; Wang, Sishuo; Sekimoto, Satoshi; Aerts, Andrea L.; Choi, Cindy; Clum, Alicia; LaButti, Kurt M.; Lindquist, Erika A.; Yee Ngan, Chew; Ohm, Robin A.; Salamov, Asaf A.; Grigoriev, Igor V.; Spatafora, Joseph W.; Berbee, Mary L.

    2015-01-01

    As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant–fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya. PMID:25977457

  19. Structural basis of nonribosomal peptide macrocyclization in fungi.

    Science.gov (United States)

    Zhang, Jinru; Liu, Nicholas; Cacho, Ralph A; Gong, Zhou; Liu, Zhu; Qin, Wenming; Tang, Chun; Tang, Yi; Zhou, Jiahai

    2016-12-01

    Nonribosomal peptide synthetases (NRPSs) in fungi biosynthesize important pharmaceutical compounds, including penicillin, cyclosporine and echinocandin. To understand the fungal strategy of forging the macrocyclic peptide linkage, we determined the crystal structures of the terminal condensation-like (C T ) domain and the holo thiolation (T)-C T complex of Penicillium aethiopicum TqaA. The first, to our knowledge, structural depiction of the terminal module in a fungal NRPS provides a molecular blueprint for generating new macrocyclic peptide natural products.

  20. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  1. Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.

    Science.gov (United States)

    Chee, Hee Youn; Lee, Min Hee

    2007-12-01

    Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

  2. Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae)

    OpenAIRE

    Braun, Uwe; Crous, Pedro W.; Nakashima, Chiharu

    2014-01-01

    Cercosporoid fungi (formerly Cercospora s. lat.) represent one of the largest groups of hyphomycetes belonging to the Mycosphaerellaceae (Ascomycota). They include asexual morphs, asexual holomorphs, or species with mycosphaerella-like sexual morphs. Most of them are leaf-spotting plant pathogens with special phytopathological relevance. In the first part of a new monographic work, cercosporoid hyphomycetes occurring on other fungi (fungicolous species), on ferns (pteridophytes) and gymnosper...

  3. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  4. Methylotrophic bacteria in sustainable agriculture.

    Science.gov (United States)

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  5. Research advance on stable mechanism of endophytic fungi to red wine colour during the aging

    Science.gov (United States)

    Nan, Lijun; Li, Yashan; Cui, Changwei; Ning, Na; Huang, Jing; Xu, Chengdong; Tao, Fang; Zhang, Jinyong

    2018-04-01

    Based on the fact that persistent mutation of vinous color was not conducive to the stabilization of vinous quality during the aging, research advance on the stable mechanism of endophytic fungi to colour of red wine during the aging, including investigative status and developmental dynamic at home and abroad, endophytes and pigment of materials in wine, including effect of endophyte on vinaceous color, and even the application of tracer method in wine was summarized, respectively. The relationship between diversity of community the endophytic fungi and the main pigment material in wine was existent objectively, also included the response mechanism on colony dynamic of endophytic fungi to the various pigment as well as substance related to color, which laid the foundation for exploring the relationships between endophytic fungi and wine color, and the variational mechanism of the color under endophytic fungi during the aging period of wine. Color as an important reference index of wine quality influenced not only the sensory evaluation of consumer, but also the quality of wine because of the self-aggregation or combination of phenolic composition with other substances under the endophytic fungi during the storage. Only steady wine in the color could guarantee the security of quality.

  6. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    Directory of Open Access Journals (Sweden)

    Zhicheng Shen

    2003-08-01

    Full Text Available Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L., and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  7. Some aspects of interrelations between fungi and other biota in forest soil.

    Science.gov (United States)

    Krivtsov, Vladimir; Griffiths, Bryan S; Salmond, Ross; Liddell, Keith; Garside, Adam; Bezginova, Tanya; Thompson, Jacqueline A; Staines, Harry J; Watling, Roy; Palfreyman, John W

    2004-08-01

    Interrelations of fungal mycelium with other soil biota are of paramount importance in forestry and soil ecology. Here we present the results of statistical analysis of a comprehensive data set collected in the first (and the only) British fungus sanctuary over a period of four months. The variables studied included a number of soil properties, bacteria, protozoan flagellates, ciliates and amoebae, microbial and plant feeding nematodes, various microarthropods, and two fungal biomarkers--glomalin and ergosterol. One way ANOVA showed that the dynamics of the microbiota studied was influenced by seasonal changes. Superimposed on these changes, however, was variability due to biological interactions and habitat characteristics. Two fungal biomarkers, ergosterol and glomalin, were differently influenced by other biota and abiotic variables. The results indicate that the dynamics of soil fungi is influenced not only by soil microarthropods, but also by those found in forest litter. The overall outcome, therefore, is likely to be very complex and will depend upon specific conditions of any particular ecosystem.

  8. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  9. Distribution of sterigmatocystin in filamentous fungi

    DEFF Research Database (Denmark)

    Rank, Christian; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld

    2011-01-01

    . Six new ST producing fungi were discovered: Aspergillus asperescens, Aspergillus aureolatus, Aspergillus eburneocremeus, Aspergillus protuberus, Aspergillus tardus, and Penicillium inflatum and one new aflatoxin producer: Aspergillus togoensis (=Stilbothamnium togoense). ST was confirmed in 23...

  10. FUNGI ASSOCIATED WITH AFRICAN MUDFISH (Clarias gariepinus ...

    African Journals Online (AJOL)

    userpc

    Clarias gariepinus (African mudfish) and 144 fish holding water samples were collected from ... Finding these fungi in the fish holding water might have occurred through the use ... This increased .... microbial profile of some fish ponds in the.

  11. Thraustochytrid fungi associated with marine algae

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    Many of the diatoms collected from Arabian Sea were found to harbour thraustochytrid fungi on them. The fungus was identified as Ulkenia visurgensis and it could be grown on pine pollen in seawater. The fungus never infected healthy growing cultures...

  12. Isolation of peat swamp forest foliar endophyte fungi as biofertilizer

    Directory of Open Access Journals (Sweden)

    Safinah Surya Hakim

    2017-01-01

    Full Text Available Peatland restoration activity is facing many obstacles, particularly in planting techniques and poor nutrient in peat soil. Naturally, endophytic fungi are abundant and have great potential as biofertilizer. This research investigates the potential endophytic fungi isolated from leaves of peat swamp tree species for biofertilizer. Research activities include: exploration, in vitro test to examine the phosphate solubilization and identification. Result showed that there were 360 leave segments collected from 4 sampling locations. The colonization percentage of 222 isolates ranged from 52.17% - 60.17%. Fifty seven morphospecies were selected from 222 isolates. Twelve isolates demonstrated ability to produce clear zones and ten isolates were selected for identification. It is concluded that twelve isolated demonstrated potential ability to produce clear zone and Penicillum citrinum isolate P3.10 was identified as an isolate that show the highest potential ability as a biofertilizer

  13. Comparison of media for detection of fungi on spacecraft

    Science.gov (United States)

    Herring, C. M.; Brandsberg, J. W.; Oxborrow, G. S.; Puleo, J. R.

    1974-01-01

    Five media, including Trypticase soy agar (TSA; BBL) pour plates, spread plates of TSA, Mycophil agar with chloromycetin, Mycophil agar with chloromycetin and Actidione, and cornmeal agar with chloromycetin were quantitatively and qualitatively compared for the detection of fungi on spacecraft. Cornmeal agar with chloromycetin yielded the highest number of fungal colonies, although not always significantly higher than Mycophil agar with chloromycetin or TSA spread plates. Cornmeal agar with chloromycetin also gave the best qualitative representation of fungi on the spacecraft, recovering 68% of the genera found from all media. This medium yielded 10 times the number of fungal colonies and 3 times the number of genera found on TSA pour plates as currently used for spacecraft assay.

  14. Toxicity of Lanthanum to Pathogenic Fungi and Its Morphological Characteristics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The inhibitory effects of La on the mycelial growth of several soil-borne pathogenic fungi including Rhizoctonia solani , Pythium sp . , Fusarium solani , Selerotinia sclerotiorum , and Fusarium oxyspoxum were studied in vitro. The results show that the mycelial growth was inhibited strongly by the La, with EC50 of 130 ~ 320 mg· L-1 and EC95 of about 550 ~ 40007 mg· L- 1 respectively. In addition, the morphological toxicity of La was studied by using the scanning electronic microscope. Treated by La, the mycelial growth of pathogenic fungi was significantly restrained, and the morphological characteristics were found to be abnormal, such as increased ramification, malformation, partial swelling and shrinking, and irregularly entangled mycelial block or rhizomorph.

  15. Chromatography in characterization of polysaccharides from medicinal plants and fungi.

    Science.gov (United States)

    Hu, De-jun; Cheong, Kit-leong; Zhao, Jing; Li, Shao-ping

    2013-01-01

    Polysaccharides isolated from medicinal plants and fungi exhibit multiple pharmacological activities. The biological activities of polysaccharides depend on their chemical characteristics. However, characterization of polysaccahrides is a challenge because of their complicated structure and macromolecular mass. In this review, chromatography in characterization of polysaccharides, including physicochemical characterization (purity, molecular mass, and distribution), structural characterization (constituent monosaccharide composition and the ratio, the features of glycosidic linkages), and fingerprint of polysaccharides (acidic and enzymatic hydrolysates), from medicinal plants and fungi were reviewed and discussed according to the publications collected in Web of Science since 2007. The perspective for characterization of polysaccharides has also been described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Classification and infection mechanism of entomopathogenic fungi

    OpenAIRE

    Mora, Margy Alejandra Esparza; Castilho, Alzimiro Marcelo Conteiro; Fraga, Marcelo Elias

    2018-01-01

    ABSTRACT: Entomopathogenic fungi are important biological control agents throughout the world, have been the subject of intensive research for more than 100 years, and can occur at epizootic or enzootic levels in their host populations. Their mode of action against insects involves attaching a spore to the insect cuticle, followed by germination, penetration of the cuticle, and dissemination inside the insect. Strains of entomopathogenic fungi are concentrated in the following orders: Hypocre...

  17. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  18. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  19. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    OpenAIRE

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested ...

  20. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  1. STUDY OF THE ANTIMICROBIAL PROPERTIES OF CERTAIN SAPROPHYTIC OBLIGATE MARINE FUNGI

    Directory of Open Access Journals (Sweden)

    Kalyuzhnaya O.S.

    2015-05-01

    Full Text Available Today promising area of the development and introduction of new antimicrobial agents is to search for new antibiotics from natural sources, namely among marine organisms - microscopic fungi. Such saprophytic fungi as Ascomycota (families Arenariomyces, Ceriosporopsis, Corollospora, Halosphaeria and Basidiomycota (family Nia, which are widely spreaded in Ukraine (salty estuaries and the coast of the Black Sea, are the objects of the study of this work. These types of marine organisms have been provided by the Odessa Branch of the Institute of Biology of the Southern Seas after collecting samples of water, sediment, cellulose substrates and subsequent isolation and obtain pure cultures by accumulation in the form fruiting bodies of Ascomycetes and Basidiomycetes - ascocarps and basidiocarps that can be stored 3-5 months in sterile seawater. The aim of this study was to investigate the presence of antimicrobial properties of saprophytic fungi obligate marine, which are characteristic for residents in Ukraine, namely the Black Sea. Materials and methods. At this stage the study of antimicrobial activity was performed by agar diffusion method and method of cocultivation of marine fungi with test strains in liquid culture medium. We have used reference strains of microorganisms: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 6896, Pseudomonas aeruginosa ATCC 27853 and opportunistic fungus Candida albicans ATCC 885-653. Results and Discussion. Determination of antimicrobial activity by agar diffusion method showed that all samples had antimicrobial activity against the Gram-positive test strains (S. aureus and B. subtilis, effect for the Gramnegative bacteria (E. coli, P. vulgaris, P. aeruginosa was much smaller or non-existent, and it isn’t observed against C. albicans (exclusion Nia vibrissa with zone of growth inhibition – 6.2 mm. The results of the counting of cells test strains

  2. THE ROLE FUNGI AND YEAST IN MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Abe, M.; Johnson, B.; Simpson, W.; Mckinsey, P.

    2010-01-26

    Fungi and yeast have been characterized as important components in the bioremediation of organic contaminants in soil and water including polyaromatic hydrocarbons (PAHs); however, research into their ability to metabolize these compounds in extreme environments has been limited. In this work forty-three fungi and yeasts were isolated from a PAH-contaminated sludge waste lagoon in Poland. The lagoon was part of a monitored natural attenuation (MNA) study where natural reduction of PAHs and associated toxicity over time in non-disturbed areas of the sludge lagoon indicated MNA activity. The microorganisms were initially isolated on minimal medium containing naphthalene as the sole carbon and energy source. Fungal isolates were then maintained on MEA and identified based on microscopic examination and BIOLOG{reg_sign}. The analysis identified several of the fungal isolates as belonging to the genera Penicillium, Paecilomyces, Aspergillus, and Eupenicillium. Yeasts included Candida parapsilosis and C. fluvialitis. Further microbial characterization revealed that several isolates were capable of rowing on acidified media of pH 4, 3, and 2.5. Over twenty percent of the fungi demonstrated growth as low as pH 2.5. Of the 43 isolates examined, 24 isolates exhibited growth at 5 C. Nine of the fungal isolates exhibiting growth at 5 C were then examined for metabolic activity using a respirometer testing metabolic activity at pH 3. Microcosm studies confirmed the growth of the fungi on PAH contaminated sediment as the sole carbon and energy source with elevated metabolic rates indicating evidence of MNA. Our findings suggest that many of the Poland fungal isolates may be of value in the bioremediation processes in acidic waste sites in northern climates typical of Northern Europe.

  3. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products.

    Science.gov (United States)

    Oliveira, Pedro M; Zannini, Emanuele; Arendt, Elke K

    2014-02-01

    Lactic acid bacteria (LAB) metabolites are a reliable alternative for reducing fungal infections pre-/post-harvest with additional advantages for cereal-base products which convene the food market's trend. Grain industrial use is in expansion owing to its applicability in generating functional food. The food market is directed towards functional natural food with clear health benefits for the consumer in detriment to chemical additives. The food market chain is becoming broader and more complex, which presents an ever-growing fungal threat. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. Cereal infections may occur in the field or post-processing, along the food chain. Consequently, the investigation of LAB metabolites with antifungal activity has gained prominence in the scientific research community. LAB bioprotection retards the development of fungal diseases in the field and inhibit pathogens and spoilage fungi in food products. In addition to the health safety improvement, LAB metabolites also enhance shelf-life, organoleptic and texture qualities of cereal-base foods. This review presents an overview of the fungal impact through the cereal food chain leading to investigation on LAB antifungal compounds. Applicability of LAB in plant protection and cereal industry is discussed. Specific case studies include Fusarium head blight, malting and baking. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bacteria, some permanent tenants Space Station; Bacteria, unos inquilinos permanentes de la estacion espacial

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, B.

    2015-07-01

    Vacuum cleaners to operate the vacuum or rags with ethanol they are the products of cleaning of the astronauts. Is there tight spaces fully sterilized? It seems not, even in the Space Station International (ISS). When it comes to bacteria, they are able to travel more than 400 kilometers housed in costumes, bodies and interior of the astronauts themselves and settle in a enclosed space where-unlike in a {sup c}leanroom 'terrestre- the air is not recycled. A NASA study has found an abundance of bacteria 'opportunists' which, although harmless on Earth, they might derivasen cause infections in inflammations or skin irritations. Not forgetting those fungi that could damage or affect the infrastructure equipment space. (Author)

  5. Synthetic Biology in Streptomyces Bacteria

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Actinomycete bacteria of the genus Streptomyces are major producers of bioactive compounds for the biotechnology industry. They are the source of most clinically used antibiotics, as well as of several widely used drugs against common diseases, including cancer . Genome sequencing has revealed that

  6. Vita activa in biotechnology: what we do with fungi and what fungi do with us.

    Science.gov (United States)

    Weinhold, Martin; Mast-Gerlach, Edeltraud; Meyer, Vera

    2017-01-01

    Filamentous fungi are fascinating microorganisms. One of the reasons why it is so worthwhile to take a closer look at them is their capacity to produce secondary metabolites. Some of these substances have the potential to be of great use for mankind, such as it was the case with penicillin and its discovery in 1928. Almost a century later, the situation in healthcare could possibly turn back to the state before the development of the first antibiotics. Due to an overuse of antibiotics we are facing a surge of multiresistant bacteria that are not inhibited by any of the currently known drugs. That was part of the background why a European research project was launched in October 2013, titled "Quantitative Biology for Fungal Secondary Metabolite Producers", or "QuantFung". Fifteen young scientists embarked on a new phase in their career, moving to new work environments within Europe and dedicating their work lives intensively to the quest for useful secondary metabolites. After 4 years, the QuantFung project concluded in October this year. In this commentary, we aim to convey what it means to work in this field of fungal biotechnology and how important it is to improve the efficiency of the research therein. We introduce five out of the fifteen fellows at length and let them have their say about the adventure of science, euphoric moments, prospects and doubts. We also raise questions about the current state of research in academia, something the QuantFung fellows experienced first-hand. Being a scientist often goes beyond earning money to make one's living. This is why we also reflect on aspects of the meaning of work in our western society, where production for profit's sake is a main driver. For that we refer to one of the most distinguished thinkers of the twentieth century, to Hannah Arendt.

  7. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    Science.gov (United States)

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  8. Stimulation of nitrogen fixation in soddy-podzolic soils with fungi

    Science.gov (United States)

    Kurakov, A. V.; Prokhorov, I. S.; Kostina, N. V.; Makhova, E. G.; Sadykova, V. S.

    2006-09-01

    Stimulation of nitrogen fixation in soddy-podzolic soils is related to the hydrolytic activity of fungi decomposing plant polymers. It was found that the rate of nitrogen fixation upon the simultaneous inoculation of the strains of nitrogen-fixing bacteria Bacillus cereus var. mycoides and the cellulolytic fungus Trichoderma asperellum into a sterile soil enriched with cellulose or Jerusalem artichoke residues is two to four times higher than upon the inoculation of the strains of Bacillus cereus var. mycoides L1 only. The increase in the nitrogen fixation depended on the resistance of the substrates added into the soil to fungal hydrolysis. The biomass of the fungi decomposing plant polymers increased by two-four times. The nitrogen-fixing activity of the soil decreased when the growth of the fungi was inhibited with cycloheximide, which attested to a close correlation between the intensity of the nitrogen fixation and the decomposition of the plant polymers by fungi. The introduction of an antifungal antibiotic, together with starch or with plant residues, significantly (by 60-90%) decreased the rate of nitrogen fixation in the soll.

  9. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?

    NARCIS (Netherlands)

    Rudnick, M.B.; van Veen, J. A.; De Boer, Wietse

    2015-01-01

    Mycophagous (=fungus feeding) soil bacteria of the genus Collimonas have been shown to colonize and grow on hyphae of different fungal hosts as the only source of energy and carbon. The ability to exploit fungal nutrient resources might require a strategy for collimonads to sense fungi in the soil

  10. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.

    Science.gov (United States)

    Paterson, Robert Russell M; Lima, Nelson

    2017-02-17

    Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF) will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a) thermotolerant and (b) present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  11. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming

    Directory of Open Access Journals (Sweden)

    Robert Russell M. Paterson

    2017-02-01

    Full Text Available Certain filamentous fungi produce mycotoxins that contaminate food. Mycotoxin contamination of crops is highly influenced by environmental conditions and is already affected by global warming, where there is a succession of mycotoxigenic fungi towards those that have higher optimal growth temperatures. Aflatoxigenic fungi are at the highest limit of temperature although predicted increases in temperature are beyond that constraint. The present paper discusses what will succeed these fungi and represents the first such consideration. Aflatoxins are the most important mycotoxins and are common in tropical produce, much of which is exported to temperate regions. Hot countries may produce safer food under climate change because aflatoxigenic fungi will be inhibited. The same situation will occur in previously temperate regions where these fungi have recently appeared, although decades later. Existing thermotolerant and thermophilic fungi (TTF will dominate, in contrast to the conventional mycotoxigenic fungi adapting or mutating, as it will be quicker. TTF produce a range of secondary metabolites, or potential mycotoxins and patulin which may become a new threat. In addition, Aspergillus fumigatus will appear more frequently, a serious human pathogen, because it is (a thermotolerant and (b present on crops: hence this is an even greater problem. An incubation temperature of 41 °C needs employing forthwith to detect TTF. Finally, TTF in crops requires study because of the potential for diseases in humans and animals under climate change.

  12. Observing meiosis in filamentous fungi: Sordaria and Neurospora.

    Science.gov (United States)

    Zickler, Denise

    2009-01-01

    The filamentous fungi Neurospora crassa and Sordaria macrospora are materials of choice for recombination studies because each of the DNA strands involved in meiosis can be visually analyzed using spore-color mutants. Well-advanced molecular genetic methodologies have been developed for each of these fungi, and several mutants defective in recombination and/or pairing are available. Moreover, the complete genome sequence of N. crassa has made it possible to clone virtually any gene involved in their life cycle. Both fungi provide also a particularly attractive experimental system for cytological analysis of meiosis: stages can be determined independently of chromosomal morphology and their seven chromosomes are easily identified. The techniques for light, immunofluorescence and electron microscopy presented here have been used, with success, for monitoring of chromosome behavior during both meiotic and sporulation processes. They have also proved useful for the analysis of mitochondria and peroxisomes as well as cytoskeleton and spindle pole-body components. Moreover, all techniques of this chapter can be easily applied to other filamentous ascomycetes, including other Sordaria and Neurospora species as well as Podospora, Ascobolus, Ascophanus, Fusarium, Neotiella, and Aspergillus species.

  13. Human-associated fungi in deep subseafloor sediment?

    Science.gov (United States)

    Fulfer, V. M.; Kirkpatrick, J. B.; D'Hondt, S.

    2015-12-01

    Recent studies have reported fungi in marine sediment samples from depths as great as 1740 meters below seafloor (mbsf) (Rédou et al., 2014). Such studies have utilized a variety of techniques to identify fungi, including cultivation of isolates, amplicon sequencing, and metagenomics. Six recent studies of marine sediment collectively identify nearly 100 fungal taxa at the genus and species levels (Damare et al., 2006; Lai et al., 2007; Edgcomb et al., 2010; Singh et al., 2010; Orsi et al., 2013; Rédou et al., 2014). Known marine taxa are rarely identified by these studies. For individual studies with more than two taxa, between 16% and 57% of the fungal taxa are human microflora or associated with human environments (e.g., human skin or indoor air). For example, three of the six studies identified Malassezia species that are common skin inhabitants of humans and dogs. Although human-associated taxa have been identified in both shallow and deep sediment, they pose a particularly acute problem for deep subseafloor samples, where claims of a eukaryotic deep biosphere are most striking; depending on the study, 25% to 38% of species identified in sediment taken at depths greater than 40 meters are human-associated. Only one to three species have been reported from each of the four samples taken at depths greater than one km (eight species total; Rédou et al., 2014). Of these eight species, three are human-associated. This ubiquity of human-associated microflora is very problematic for interpretations of an indigenous deep subseafloor fungal community; either human-associated taxa comprise a large fraction of marine sedimentary fungi, or sample and analytical contamination is so widespread that the extent and ubiquity of a deep subseafloor fungal community remains uncertain. This highlights the need for stringent quality control measures throughout coring, sampling, and recovery of marine sediment, and when cultivating, extracting, and/or sequencing fungi from

  14. Diversity of endophytic fungi in Glycine max.

    Science.gov (United States)

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  15. Developing new bacteria subroutines in the SWAT model

    Science.gov (United States)

    Fecal bacteria observations from four different sites in Korea and the US demonstrate seasonal variability, showing a significant relationship with temperature (Figure 1); fecal indicator bacteria (FIB) concentrations are relatively higher in summer and lower in winter , including Stillwater river (...

  16. Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis.

    Science.gov (United States)

    Dolch, Michael E; Janitza, Silke; Boulesteix, Anne-Laure; Graßmann-Lichtenauer, Carola; Praun, Siegfried; Denzer, Wolfgang; Schelling, Gustav; Schubert, Sören

    2016-12-01

    Identification of microorganisms in positive blood cultures still relies on standard techniques such as Gram staining followed by culturing with definite microorganism identification. Alternatively, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or the analysis of headspace volatile compound (VC) composition produced by cultures can help to differentiate between microorganisms under experimental conditions. This study assessed the efficacy of volatile compound based microorganism differentiation into Gram-negatives and -positives in unselected positive blood culture samples from patients. Headspace gas samples of positive blood culture samples were transferred to sterilized, sealed, and evacuated 20 ml glass vials and stored at -30 °C until batch analysis. Headspace gas VC content analysis was carried out via an auto sampler connected to an ion-molecule reaction mass spectrometer (IMR-MS). Measurements covered a mass range from 16 to 135 u including CO2, H2, N2, and O2. Prediction rules for microorganism identification based on VC composition were derived using a training data set and evaluated using a validation data set within a random split validation procedure. One-hundred-fifty-two aerobic samples growing 27 Gram-negatives, 106 Gram-positives, and 19 fungi and 130 anaerobic samples growing 37 Gram-negatives, 91 Gram-positives, and two fungi were analysed. In anaerobic samples, ten discriminators were identified by the random forest method allowing for bacteria differentiation into Gram-negative and -positive (error rate: 16.7 % in validation data set). For aerobic samples the error rate was not better than random. In anaerobic blood culture samples of patients IMR-MS based headspace VC composition analysis facilitates bacteria differentiation into Gram-negative and -positive.

  17. Litter decomposing fungi in sal (Shorea robusta forests of central India

    Directory of Open Access Journals (Sweden)

    RAM KEERTI VERMA

    2011-11-01

    Full Text Available Soni KK, Pyasi A, Verma RK. 2011. Litter decomposing fungi in sal (Shorea robusta forests of central India. Nusantara Bioscience 3: 136-144. The present study aim on isolation and identification of fungi associated with decomposition of litter of sal forest in central India. Season wise successional changes in litter mycoflora were determined for four main seasons of the year namely, March-May, June-August, September-November and December-February. Fungi like Aspergillus flavus, A. niger and Rhizopus stolonifer were associated with litter decomposition throughout the year, while Aspergillus fumigatus, Cladosporium cladosporioides, C. oxysporum, Curvularia indica, and C. lunata were recorded in three seasons. Some fungi including ectomycorrhiza forming occur only in the rainy season (June-August these are Astraeus hygrometricus, Boletus fallax, Calvatia elata, Colletotrichum dematium, Corticium rolfsii, Mycena roseus, Periconia minutissima, Russula emetica, Scleroderma bovista, S. geaster, S. verrucosum, Scopulariopsis alba and four sterile fungi. Fungi like Alternaria citri, Gleocladium virens, Helicosporium phragmitis and Pithomyces cortarum were rarely recorded only in one season.

  18. Dermatophytes and saprobe fungi isolated from dogs and cats in the city of Fortaleza, Brazil

    Directory of Open Access Journals (Sweden)

    Paixão G.C.

    2001-01-01

    Full Text Available The possible involvement of saprobe fungi in dermatomycoses, as well as the determination of the incidence of dermatophytes in dogs and cats were studied. During a period of one year, 74 dogs and 18 cats, with cutaneous lesions suggesting mycoses were included in this study. The mycological analyses were conducted by direct microscopy and by fungal culture on Sabouraud agar, chloramphenicol Sabouraud agar and mycosel agar. Of the 92 samples, 21 resulted in positive cultures for dermatophytes. Dermatophyte fungi pure cultures were obtained from 13 samples. A simultaneous growth of dermatophytes plus saprobe fungi was observed in 8 of the samples. Of the remaining 71 samples, no fungal growth was observed in 10 samples, and at minimum the growth of one saprobe fungi in 61. One, two and three genera of saprobe fungi were isolated in 29, 30 and 2 samples, respectively. Microsporum canis was isolated in 6 (28.6 % and 10 samples (47.6 % from cats and dogs, respectively, and Trichophyton mentagrophytes in 2 (9.5 % and 3 samples (14.3 % from cats and dogs, respectively. The following genera of saprobe fungi were also isolated: Alternaria sp (1.9%, Chaetomium sp (1.9%, Rhizopus sp (2.9%, Curvularia sp (3.9%, Candida sp (6.8%, Trichoderma sp (6.8%, Fusarium sp (7.8%, Cladosporium sp (8.7%, Penicillium sp (21.4% and Aspergillus sp (37.9%.

  19. Invert emulsion: Method of preparation and application as proper formulation of entomopathogenic fungi.

    Science.gov (United States)

    Batta, Yacoub A

    2016-01-01

    The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.

  20. The Phytochemical and Antimicrobial Properties of Entomopathogenic Fungi in Nueva Vizcaya, Philippines

    Directory of Open Access Journals (Sweden)

    Fitzgerald L. Fabelico

    2015-12-01

    Full Text Available Entomopathogenicfungi (EPF are potential biocontrol agents against agricultural pests and insects. These fungi are also known to be a source of secondary metabolites and could be a potential source of antibiotic drugs in the future. This study aims to determine the phytochemical and antimicrobial properties of EPF isolated from different host insects and their larvae in the province of Nueva Vizcaya.The method employed in this study includes the collection of EPF from dead insects and their larvae, isolation and mass production of the fungi, identification of the different fungi, extraction of secondary metabolites from the fungi, phytochemical screening, and antimicrobial assay. The results revealed that the antimicrobial properties of the different EPF could be explained by their phytochemical properties.When compared to the positive control, the significantly high antifungal activities of the Pandora neoaphidis(EPF 1 against the Candida albicans can be due to the presence of sterols. Conversely, the significantly high antibacterial activities of Beauveria alba (EPF 5 against Bacillus subtiliscould be due to the presence ofsteroids, triterpenoids, glycosides, and fatty acids.These findings indicate that entomopathogenic fungi could be a potential source of antibiotic drugs against pathogenic microorganism in the near future. To realize this, future research is highly recommended for the isolation, elucidation, and evaluation of the safety of the bioactive compounds of entomopathogenic fungi responsible for the antimicrobial activities, prior to their use in humans.

  1. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  2. Polyextremotolerant black fungi: oligotrophism, adaptive potential and a link to lichen symbioses

    Directory of Open Access Journals (Sweden)

    Cene eGostinčar

    2012-11-01

    Full Text Available Black meristematic fungi can survive high doses of radiation and are resistant to desiccation. These adaptations help them to colonize harsh oligotrophic habitats, e.g. on the surface and subsurface of rocks. One of their most characteristic stress-resistance mechanisms is the accumulation of melanin in the cell walls. This, production of other protective molecules and a plastic morphology further contribute to ecological flexibility of black fungi. Increased growth rates of some species after exposure to ionizing radiation even suggest yet unknown mechanisms of energy production. Other unusual metabolic strategies may include harvesting UV or visible light or gaining energy by forming facultative lichen-like associations with algae or cyanobacteria. The latter is not entirely surprising, since certain black fungal lineages are phylogenetically related to clades of lichen-forming fungi. Similar to black fungi, lichen-forming fungi are adapted to growth on exposed surfaces with low availability of nutrients. They also efficiently use protective molecules to tolerate frequent periods of extreme stress. Traits shared by both groups of fungi may have been important in facilitating the evolution and radiation of lichen-symbioses.

  3. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants.

    Science.gov (United States)

    Sen, Ruchira; Ishak, Heather D; Estrada, Dora; Dowd, Scot E; Hong, Eunki; Mueller, Ulrich G

    2009-10-20

    In many host-microbe mutualisms, hosts use beneficial metabolites supplied by microbial symbionts. Fungus-growing (attine) ants are thought to form such a mutualism with Pseudonocardia bacteria to derive antibiotics that specifically suppress the coevolving pathogen Escovopsis, which infects the ants' fungal gardens and reduces growth. Here we test 4 key assumptions of this Pseudonocardia-Escovopsis coevolution model. Culture-dependent and culture-independent (tag-encoded 454-pyrosequencing) surveys reveal that several Pseudonocardia species and occasionally Amycolatopsis (a close relative of Pseudonocardia) co-occur on workers from a single nest, contradicting the assumption of a single pseudonocardiaceous strain per nest. Pseudonocardia can occur on males, suggesting that Pseudonocardia could also be horizontally transmitted during mating. Pseudonocardia and Amycolatopsis secretions kill or strongly suppress ant-cultivated fungi, contradicting the previous finding of a growth-enhancing effect of Pseudonocardia on the cultivars. Attine ants therefore may harm their own cultivar if they apply pseudonocardiaceous secretions to actively growing gardens. Pseudonocardia and Amycolatopsis isolates also show nonspecific antifungal activities against saprotrophic, endophytic, entomopathogenic, and garden-pathogenic fungi, contrary to the original report of specific antibiosis against Escovopsis alone. We conclude that attine-associated pseudonocardiaceous bacteria do not exhibit derived antibiotic properties to specifically suppress Escovopsis. We evaluate hypotheses on nonadaptive and adaptive functions of attine integumental bacteria, and develop an alternate conceptual framework to replace the prevailing Pseudonocardia-Escovopsis coevolution model. If association with Pseudonocardia is adaptive to attine ants, alternate roles of such microbes could include the protection of ants or sanitation of the nest.

  4. Genomics of Probiotic Bacteria

    Science.gov (United States)

    O'Flaherty, Sarah; Goh, Yong Jun; Klaenhammer, Todd R.

    Probiotic bacteria from the Lactobacillus and Bifidobacterium species belong to the Firmicutes and the Actinobacteria phylum, respectively. Lactobacilli are members of the lactic acid bacteria (LAB) group, a broadly defined family of microorganisms that ferment various hexoses into primarily lactic acid. Lactobacilli are typically low G + C gram-positive species which are phylogenetically diverse, with over 100 species documented to date. Bifidobacteria are heterofermentative, high G + C content bacteria with about 30 species of bifidobacteria described to date.

  5. Susceptibility of ectomycorrhizal fungi to soil heating.

    Science.gov (United States)

    Kipfer, Tabea; Egli, Simon; Ghazoul, Jaboury; Moser, Barbara; Wohlgemuth, Thomas

    2010-01-01

    Ectomycorrhizal (EcM) fungi are an important biotic factor for successful tree recruitment because they enhance plant growth and alleviate drought stress of their hosts. Thus, EcM propagules are expected to be a key factor for forest regeneration after major disturbance events such as stand-replacing forest fires. Yet the susceptibility of soil-borne EcM fungi to heat is unclear. In this study, we investigated the heat tolerance of EcM fungi of Scots pine (Pinus sylvestris L., Pinaceae). Soil samples of three soil depths were heated to the temperature of 45, 60 and 70 °C, respectively, and surviving EcM fungi were assessed by a bioassay using Scots pine as an experimental host plant. EcM species were identified by a combination of morphotyping and sequencing of the ITS region. We found that mean number of species per sample was reduced by the 60 and 70 °C treatment, but not by the 45 °C treatment. Species composition changed due to heat. While some EcM fungi species did not survive heating, the majority of species was also found in the heated samples. The most frequent species in the heat treatment were Rhizopogon roseolus, Cenococcum geophilum and several unidentified species. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Airborne fungi in an intensive care unit

    Directory of Open Access Journals (Sweden)

    C. L. Gonçalves

    2017-07-01

    Full Text Available Abstract The presence of airborne fungi in Intensive Care Unit (ICUs is associated with increased nosocomial infections. The aim of this study was the isolation and identification of airborne fungi presented in an ICU from the University Hospital of Pelotas – RS, with the attempt to know the place’s environmental microbiota. 40 Petri plates with Sabouraud Dextrose Agar were exposed to an environment of an ICU, where samples were collected in strategic places during morning and afternoon periods for ten days. Seven fungi genera were identified: Penicillium spp. (15.18%, genus with the higher frequency, followed by Aspergillus spp., Cladosporium spp., Fusarium spp., Paecelomyces spp., Curvularia spp., Alternaria spp., Zygomycetes and sterile mycelium. The most predominant fungi genus were Aspergillus spp. (13.92% in the morning and Cladosporium spp. (13.92% in the afternoon. Due to their involvement in different diseases, the identified fungi genera can be classified as potential pathogens of inpatients. These results reinforce the need of monitoring the environmental microorganisms with high frequency and efficiently in health institutions.

  7. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria

    Directory of Open Access Journals (Sweden)

    André Horta

    2014-03-01

    Full Text Available Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1 extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging activity and oxygen radical absorbance capacity (ORAC. Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%, Alteromonas sp. (12.82%, Shewanella sp. (12.26%, Serratia sp. (2.56%, Citricoccus sp. (2.56%, Cellulophaga sp. (2.56%, Ruegeria sp. (2.56% and Staphylococcus sp. (2.56%. Six (15.38% of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis was exhibited by strain 16 (Shewanella sp.. Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  8. Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria.

    Science.gov (United States)

    Horta, André; Pinteus, Susete; Alves, Celso; Fino, Nádia; Silva, Joana; Fernandez, Sara; Rodrigues, Américo; Pedrosa, Rui

    2014-03-24

    Surface-associated marine bacteria are an interesting source of new secondary metabolites. The aim of this study was the isolation and identification of epiphytic bacteria from the marine brown alga, Bifurcaria bifurcata, and the evaluation of the antioxidant and antimicrobial activity of bacteria extracts. The identification of epiphytic bacteria was determined by 16S rRNA gene sequencing. Bacteria extracts were obtained with methanol and dichloromethane (1:1) extraction. The antioxidant activity of extracts was performed by quantification of total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Antimicrobial activities were evaluated against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella enteritidis, Staphylococcus aureus, Saccharomyces cerevisiae and Candida albicans. A total of 39 Bifurcaria bifurcata-associated bacteria were isolated and 33 were identified as Vibrio sp. (48.72%), Alteromonas sp. (12.82%), Shewanella sp. (12.26%), Serratia sp. (2.56%), Citricoccus sp. (2.56%), Cellulophaga sp. (2.56%), Ruegeria sp. (2.56%) and Staphylococcus sp. (2.56%). Six (15.38%) of the 39 bacteria Bifurcaria bifurcata-associated bacteria presented less than a 90% Basic Local Alignment Search Tool (BLAST) match, and some of those could be new. The highest antioxidant activity and antimicrobial activity (against B. subtilis) was exhibited by strain 16 (Shewanella sp.). Several strains also presented high antimicrobial activity against S. aureus, mainly belonging to Alteromonas sp. and Vibrio sp. There were no positive results against fungi and Gram-negative bacteria. Bifurcaria bifurcata epiphytic bacteria were revealed to be excellent sources of natural antioxidant and antimicrobial compounds.

  9. Antimicrobial and enzymatic activity of anemophilous fungi of a public university in Brazil

    Directory of Open Access Journals (Sweden)

    LAUREANA V. SOBRAL

    2017-10-01

    Full Text Available ABSTRACT To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%, Penicillium (21%, Talaromyces (14%, Curvularia and Paecilomyces (7% each. Aspergillus sydowii (Bainier & Sartory Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.

  10. Production of Antagonistic Compounds by Bacillus sp. with Antifungal Activity against Heritage Contaminating Fungi

    Directory of Open Access Journals (Sweden)

    Mara Silva

    2018-03-01

    Full Text Available In recent years, the population has become acutely aware of the need to conserve the world’s resources. The study of new compounds produced by natural means is important in the search for alternative green solutions that act against biodeteriogenic fungi, which promote biodeterioration of built cultural heritage sites. The present paper reports new solutions, derived from Bacillus sp. CCLBH 1053 cultures, to produce lipopeptides (LPP that can act as green biocides to promote the safeguarding of stone artwork. In the stationary phases of bacteria growth, peptone supplementation and sub-lethal heat activation improve the second cycle of sporulation, greatly enhancing LPP production. The bioactive compounds produced by Bacillus cultures suppress biodeteriogenic fungi growth on stone materials, and, hence, provide an important contribution to the development of new biocides for cultural heritage rehabilitation.

  11. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover...

  12. Bioprospecting of antimicrobial activity of extracts of endophytic fungi from Bauhinia guianensis.

    Science.gov (United States)

    Pinheiro, Eduardo A A; Pina, Jeferson R S; Feitosa, André O; Carvalho, Josiwander M; Borges, Fábio C; Marinho, Patrícia S B; Marinho, Andrey M R

    Antibiotic resistance results in higher medical costs, prolonged hospital stays and increased mortality and is rising to dangerously high levels in all parts of the world. Therefore, this study aims to search for new antimicrobial agents through bioprospecting of extracts of endophytic fungi from Bauhinia guianensis, a typical Amazonian plant used in combating infections. Seventeen (17) fungi were isolated and as result the methanolic extract of the fungus Exserohilum rostratum showed good activity against the bacteria tested. The polyketide monocerin was isolated by the chromatographic technique, identified by NMR and MS, showing broad antimicrobial spectrum. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  14. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  15. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi.

    Directory of Open Access Journals (Sweden)

    Shannon M Hedtke

    Full Text Available Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons. We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic fungal species in the genus Ascosphaera (chalkbrood, an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.

  16. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    Science.gov (United States)

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-05-27

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.

  17. Diversity and Antibacterial Activities of Fungi Derived from the Gorgonian Echinogorgia rebekka from the South China Sea

    Directory of Open Access Journals (Sweden)

    Chang-Yun Wang

    2011-08-01

    Full Text Available The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium, Pleosporales (Alternaria, Capnodiales (Cladosporium, Trichosphaeriales (Nigrospora and Hypocreales (Hypocrea and Nectria. Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.

  18. Diversity and antibacterial activities of fungi derived from the Gorgonian Echinogorgia rebekka from the South China Sea.

    Science.gov (United States)

    Wang, Ya-Nan; Shao, Chang-Lun; Zheng, Cai-Juan; Chen, Yi-Yan; Wang, Chang-Yun

    2011-01-01

    The diversity of symbiotic fungi associated with the gorgonian coral Echinogorgia rebekka from the Weizhou coral reef in the South China Sea was investigated. Combined with morphologic traits, ITS-rDNA sequences revealed 18 fungal strains from this gorgonian. All of the 18 fungi belonged to the phylum Ascomycota and were distributed among seven genera in five orders: Eurotiales (Aspergillus and Penicillium), Pleosporales (Alternaria), Capnodiales (Cladosporium), Trichosphaeriales (Nigrospora) and Hypocreales (Hypocrea and Nectria). Antibacterial activities of these fungal strains were investigated with five pathogenic bacteria. All of the 18 fungal strains displayed different levels of antibacterial activities, most of which exhibited moderate to high antibacterial activities to the Gram-positive pathogens Staphylococcus aureus and Micrococcus tetragenus, and showed relatively low bioactivities to other three pathogenic bacteria. Several fungal strains in the genera Penicillium and Cladosporium with strong antibacterial activities provide potential for further research on isolation of bioactive secondary metabolites.

  19. MICROSCOPIC FUNGI ISOLATED FROM POLISH HONEY

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2012-12-01

    Full Text Available The characterization of some honey samples from Poland was carried out on the basis of their microbiological (fungi and yeasts analysis. Most of the samples contained less than 20 % water. The amount of fungi found in the honey samples was less than 1 x 102 CFU.g-1 but 19 % of the samples had more yeasts than 1 x 102 CFU.g-1 – up to 5.7 x 102 CFU.g-1. The isolated fungi were Alternaria spp., Aspergillus spp., Cladosporium spp., Fusarium spp., Mycelia sterilia, Rhizopus spp. and Penicillium spp. The last genus was isolated very frequently. A total number of eight fungal Penicillium species were identified namely, Penicillium brevicompactum, P. commune, P. corylophilum, P. crustosum, P. expansum, P. griseofulvum, P. chrysogenum and P. polonicum. They were isolated using dilution plate method. The results showed that honeys produced in this region are of good microbiological quality.

  20. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  1. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Science.gov (United States)

    Rodrigues, P.; Venâncio, A.; Lima, N.

    2012-01-01

    Aflatoxin contamination of nuts is an increasing concern to the consumer's health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B), 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G), and 29 as A. tamarii (all nonaflatoxigenic). Aflatoxins were detected in only one sample at 4.97 μg/kg. PMID:22666128

  2. Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds

    Directory of Open Access Journals (Sweden)

    P. Rodrigues

    2012-01-01

    Full Text Available Aflatoxin contamination of nuts is an increasing concern to the consumer’s health. Portugal is a big producer of almonds, but there is no scientific knowledge on the safety of those nuts, in terms of mycotoxins. The aim of this paper was to study the incidence of aflatoxigenic fungi and aflatoxin contamination of 21 samples of Portuguese almonds, and its evolution throughout the various stages of production. All fungi belonging to Aspergillus section Flavi were identified and tested for their aflatoxigenic ability. Almond samples were tested for aflatoxin contamination by HPLC-fluorescence. In total, 352 fungi belonging to Aspergillus section Flavi were isolated from Portuguese almonds: 127 were identified as A. flavus (of which 28% produced aflatoxins B, 196 as typical or atypical A. parasiticus (all producing aflatoxins B and G, and 29 as A. tamarii (all nonaflatoxigenic. Aflatoxins were detected in only one sample at 4.97 μg/kg.

  3. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes

    Directory of Open Access Journals (Sweden)

    Evelina Y. Basenko

    2018-03-01

    Full Text Available FungiDB (fungidb.org is a free online resource for data mining and functional genomics analysis for fungal and oomycete species. FungiDB is part of the Eukaryotic Pathogen Genomics Database Resource (EuPathDB, eupathdb.org platform that integrates genomic, transcriptomic, proteomic, and phenotypic datasets, and other types of data for pathogenic and nonpathogenic, free-living and parasitic organisms. FungiDB is one of the largest EuPathDB databases containing nearly 100 genomes obtained from GenBank, Aspergillus Genome Database (AspGD, The Broad Institute, Joint Genome Institute (JGI, Ensembl, and other sources. FungiDB offers a user-friendly web interface with embedded bioinformatics tools that support custom in silico experiments that leverage FungiDB-integrated data. In addition, a Galaxy-based workspace enables users to generate custom pipelines for large-scale data analysis (e.g., RNA-Seq, variant calling, etc.. This review provides an introduction to the FungiDB resources and focuses on available features, tools, and queries and how they can be used to mine data across a diverse range of integrated FungiDB datasets and records.

  4. How honey kills bacteria

    NARCIS (Netherlands)

    Kwakman, Paulus H. S.; te Velde, Anje A.; de Boer, Leonie; Speijer, Dave; Vandenbroucke-Grauls, Christina M. J. E.; Zaat, Sebastian A. J.

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria

  5. Patogenic fungi associated with blue lupine seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Over 10% ofseeds harvested in 1991 and 1992 (50 samples, 400 seeds in each sample proved to be infested with various fungi. Fusarium spp. and Botrytis cinerea were the most common pathogens isolated. Fusarium avenaceum was the most common and highIy pathogenic species. Fusarium semitectum and F. tricinctum were highly pathogenic to lupin seedlings but they were the least common Fusarium isolated from seeds. Similarily, Sclerotinia sclerotiorum was isolated only from 0,2% seeds tested but this fungus was highly pathogenic to lupin seedlings. Some other fungi know as lupin pathogens (F. oxysporum, Stemphylium botryosum, Pleiochaeta setosa and Phomopsis leptostromiformis were also noted in tested seeds.

  6. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants

    DEFF Research Database (Denmark)

    Currie, Cameron R; Poulsen, Michael; Mendenhall, John

    2006-01-01

    Attine ants engage in a quadripartite symbiosis with fungi they cultivate for food, specialized garden parasites, and parasite-inhibiting bacteria. Molecular phylogenetic evidence supports an ancient host-pathogen association between the ant-cultivar mutualism and the garden parasite. Here we show...... that ants rear the antibiotic-producing bacteria in elaborate cuticular crypts, supported by unique exocrine glands, and that these structures have been highly modified across the ants' evolutionary history. This specialized structural evolution, together with the absence of these bacteria and modifications...

  7. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    Science.gov (United States)

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Disease-Causing Fungi in Homes and Yards in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2016-04-01

    Full Text Available A number of fungal pathogens that may result in a variety of human diseases are found in residential homes and yards. The growth of these microscopic fungi is often favored by particular characteristics of the dwelling and nearby outdoor environment. Evolved virulence factors or increased ability of specific fungi to grow in diverse, and sometimes harsh, microenvironments presented by the domestic environment may promote growth and pathogenesis. Infection may occur by inhalation or direct inoculation and include endemic fungi in addition to opportunistic or emerging species. Systemic or locally aggressive fungal infections are particularly likely and may be life-threatening in those with compromised immune systems. Allergic disease may include sinusitis, pneumonitis and immediate hypersensitivity. Controversial topics include mycotoxins, volatile organic compounds and sick building syndrome. This narrative review describes the usual presentations, domestic environmental sources, prevention techniques and risk of acquiring these diseases in the Midwestern United States.

  10. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Rabie, G H

    1998-01-01

    Infection of Vicia faba with Bothytis fabae causes significant decreases in growth vigour, total nitrogen content, number of nodules and nutrient accumulation. Na-uptake and phenolics concentration increased compared to that of noninfected plants. In contrast, dual inoculation of Rhizobium and VA mycorrhizae increased all above parameters suggesting a distinct improvement of the plants. The results also revealed that an inverse correlation may exist between phenolic, calcium, magnesium and zinc concentrations in mycorrhizal plant tissues grown in presence of rhizobial bacteria and the disease severity. From these findings we conclude a possible role of both VA mycorrhizal fungi and rhizobial bacteria in the decrease of susceptibility of plants.

  11. A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants

    NARCIS (Netherlands)

    Kirk, P.M.; Stalpers, J.A.; Braun, U.; Crous, P.W.; Hansen, K.; Hawksworth, D.L.; Hyde, K.D.; Lücking, R.; Lumbsch, T.H.; Rossman, A.Y.; Seifert, K.A.; Stadler, M.

    2013-01-01

    As a first step towards the production of a List of Protected Generic Names for Fungi, a without-prejudice list is presented here as a basis for future discussion and the production of a List for formal adoption. We include 6995 generic names out of the 17072 validly published names proposed for

  12. Biodegradation of PAHs by fungi in contaminated-soil containing ...

    African Journals Online (AJOL)

    PAH) benzo(a)anthracene, benzo(a) fluoranthene, benzo(a) pyrene, chrysene and phenanthrene in a soil that was sterilized and inoculated with the nonligninolytic fungi, Fusarium flocciferum and Trichoderma spp. and the ligninolytic fungi, ...

  13. Aflatoxins Associated with Storage Fungi in Fish Feed

    African Journals Online (AJOL)

    Timothy Ademakinwa

    This study investigates storage fungi and aflatoxin in fish feed stored under three different ... secondary metabolites of fungi which are formed ... Department of Marine Sciences, Faculty of ... antibiotic is to inhibit the growth of any bacterial.

  14. Biodegrading effects of some rot fungi on Pinus caribaea wood ...

    African Journals Online (AJOL)

    morelet) in Ijaiye Forest Reserve, 38 km northwest of Ibadan, Nigeria. The wood samples were inoculated separately with two species of white-rot fungi; Corioliopsis polyzona and Pleurotus squarrosulus, and two species of brownrot fungi; ...

  15. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and

  16. Bacteria associated with cultures of psathyrella atroumbonata (Pleger)

    African Journals Online (AJOL)

    These bacteria include Bacillus licheniformis, Bacillus subtilis, Leuconostoc mesenteroides, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus. The average bacteria count was 1.0 x 106 cfu/ml and these bacteria grew within pH range of 5.0 and 9.0. the optimum temperature range of growth lied ...

  17. Common wood decay fungi found in the Caribbean Basin

    Science.gov (United States)

    D. Jean. Lodge

    2016-01-01

    There are hundreds of wood-decay fungi in the Caribbean Basin, but relatively few of these are likely to grow on manmade structures built of wood or wood-composites. The wood-decay fungi of greatest concern are those that cause brown-rot, and especially brown-rot fungi that are resistant to copper-based wood preservatives. Some fungi that grow in the Caribbean and...

  18. New or otherwise interesting lichenized and lichenicolous fungi from Montenegro

    Science.gov (United States)

    Bilovitz, Peter O.; Knežević, Branka; Stešević, Danijela; Vitikainen, Orvo; Dragićević, Snežana; Mayrhofer, Helmut

    2011-01-01

    A list of 256 taxa of lichens (252 species) and 2 species of lichenicolous fungi from Montenegro is presented, including 58 taxa (57 species) new to Montenegro. The list is based on specimens kept in the lichen collections of the herbaria GZU, H, Podgorica, and in the private herbarium of Klaus Kalb, and on recent field work in various parts of the country. The genera Biatoridium, Carbonea, Cercidospora, Heppia, Hyperphyscia, Hypocenomyce, Leprocaulon, Lethariella, Megalospora, Orphniospora, Psorinia and Vahliella are reported from Montenegro for the first time. PMID:22102779

  19. Aspergilli: Models for systems biology in filamentous fungi

    DEFF Research Database (Denmark)

    Brandl, Julian; Andersen, Mikael Rørdam

    2017-01-01

    and proteomics where outstanding contributions are highlighted. From past developments it becomes apparent that CRISPR technology will speed up genetic research in the Aspergillus field. This speed up will allow for an increase in systems biology targeted research by accelerating data generation. The increase......Aspergillus is a diverse genus of filamentous fungi including common house hold mold as well as human pathogens. More than 350 species are currently part of this genus and all their genomes are soon to be sequenced. The availability of this vast amount of data will allow for more in...

  20. Plants and fungi in the era of heterogeneous plasma membranes.

    Science.gov (United States)

    Opekarová, M; Malinsky, J; Tanner, W

    2010-09-01

    Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.