WorldWideScience

Sample records for include fgf notch

  1. Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling.

    Science.gov (United States)

    Kantarci, Husniye; Edlund, Renee K; Groves, Andrew K; Riley, Bruce B

    2015-03-01

    Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data

  2. Opposing Actions of Fgf8a on Notch Signaling Distinguish Two Muller Glial Cell Populations that Contribute to Retina Growth and Regeneration

    Directory of Open Access Journals (Sweden)

    Jin Wan

    2017-04-01

    Full Text Available The teleost retina grows throughout life and exhibits a robust regenerative response following injury. Critical to both these events are Muller glia (or, Muller glial cells; MGs, which produce progenitors for retinal growth and repair. We report that Fgf8a may be an MG niche factor that acts through Notch signaling to regulate spontaneous and injury-dependent MG proliferation. Remarkably, forced Fgf8a expression inhibits Notch signaling and stimulates MG proliferation in young tissue but increases Notch signaling and suppresses MG proliferation in older tissue. Furthermore, cessation of Fgf8a signaling enhances MG proliferation in both young and old retinal tissue. Our study suggests that multiple MG populations contribute to retinal growth and regeneration, and it reveals a previously unappreciated role for Fgf8a and Notch signaling in regulating MG quiescence, activation, and proliferation.

  3. Opposing actions of Fgf8a on Notch signaling distinguish two Muller glial cell populations that contribute to retina growth and regeneration

    Science.gov (United States)

    Wan, Jin; Goldman, Daniel

    2017-01-01

    Summary The teleost retina grows throughout life and exhibits a robust regenerative response following injury. Critical to both these events are Muller glia (MG) that produce progenitors for retinal growth and repair. We report that Fgf8a may be a MG niche factor that acts through Notch signaling to regulate spontaneous and injury-dependent MG proliferation. Remarkably, forced Fgf8a expression inhibits Notch signaling and stimulates MG proliferation in young tissue, but increases Notch signaling and suppresses MG proliferation in older tissue. Furthermore, cessation of Fgf8a signaling enhances MG proliferation in both young and old retinal tissue. Our study suggests multiple MG populations contribute to retinal growth and regeneration, and reveals a previously unappreciated role for Fgf8a and Notch signaling in regulating MG quiescence, activation and proliferation. PMID:28445734

  4. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed the s...

  5. Transcriptomic analysis of chicken cochleae after gentamicin damage and the involvement of four signaling pathways (Notch, FGF, Wnt and BMP) in hair cell regeneration.

    Science.gov (United States)

    Jiang, Lingling; Xu, Jincao; Jin, Ran; Bai, Huanju; Zhang, Meiguang; Yang, Siyuan; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2018-04-01

    Unlike mammalian hair cells, which are essentially unable to regenerate after damage, avian hair cells have a robust capacity for regeneration. The prerequisite for understanding the above difference is knowing the genetic programming of avian hair cell regeneration. Although the major processes have been known, the precise molecular signaling that induces regeneration remains unclear. To address this issue, we performed a high-throughput transcriptomic analysis of gene expression during hair cell regeneration in the chick cochlea after antibiotic injury in vivo. A total of 16,588 genes were found to be expressed in the cochlea, of which about 1000 genes were differentially expressed among the four groups studied, i.e., 2 days (d) or 3 d post-treatment with gentamicin or physiological saline. The differentially expressed genes were distributed across approximately one hundred signaling pathways, including the Notch, MAPK (FGF), Wnt and TGF-β (BMP) pathways that have been shown to play important roles in embryonic development. Some differentially expressed genes (2-3 in each pathway) were further verified by qRT-PCR. After blocking Notch, FGF or BMP signaling, the number of regenerating hair cells and mitotic supporting cells increased. However, the opposite effect was observed after suppressing the Wnt pathway or enhancing BMP signaling. To our knowledge, the present study provided a relatively complete dataset of candidate genes and signaling pathways most likely involved in hair cell regeneration and should be a useful start in deciphering the genetic circuitry for inducing hair cell regeneration in the chick cochlea. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The original family revisited after 37 years: odontoma-dysphagia syndrome is most likely caused by a microduplication of chromosome 11q13.3, including the FGF3 and FGF4 genes.

    Science.gov (United States)

    Ziebart, Thomas; Draenert, Florian G; Galetzka, Danuta; Babaryka, Gregor; Schmidseder, Ralf; Wagner, Wilfried; Bartsch, Oliver

    2013-01-01

    Fibroblast growth factors consist of receptor tyrosine kinase binding proteins involved in growth, differentiation, and regeneration of a variety of tissues of the head and neck. Their role in the development of teeth has been documented, and their presence in human odontogenic cysts and tumors has previously been investigated. Odontoma–dysphagia syndrome (OMIM 164330) is a very rare disorder characterized by clustering of teeth as compound odontoma, dysplasia and aplasia of teeth, slight craniofacial abnormalities, and dysphagia. We have followed the clinical course of the disease in a family over more than 30 years and have identified a genetic abnormality segregating with the disorder. We evaluated clinical data from nine different family members and obtained venous blood probes for genetic studies from three family members (two affected and one unaffected). The present family with five patients in two generations has remained one out of only two known cases with this very rare syndrome. All those affected showed teeth dysplasia, oligodontia, and dysplasia and odontoma of the upper and lower jaw. Additional signs included dysphagia and strictures of the oesophagus. Comorbidity in one patient included aortic stenosis and coronary artery disease, requiring coronary bypasses and aortic valve replacement. Genome-wide SNP array analyses in three family members (two affected and one unaffected) revealed a microduplication of chromosome 11q13.3 spanning 355 kilobases (kb) and including two genes in full length, fibroblast growth factors 3 (FGF3) and 4 (FGF4). The microduplication identified in this family represents the most likely cause of the odontoma–dysphagia syndrome and implies that the syndrome is caused by a gain of function of the FGF3 and FGF4 genes. Mutations of FGF receptor genes can cause craniofacial syndromes such as odontoma–dysphagia syndrome. Following this train of thought, an evaluation of FGF gene family in sporadic odontoma could be

  7. Fgf10+

    Science.gov (United States)

    Fu, Travis; Towers, Matthew; Placzek, Marysia A

    2017-09-15

    Classical descriptions of the hypothalamus divide it into three rostro-caudal domains but little is known about their embryonic origins. To investigate this, we performed targeted fate-mapping, molecular characterisation and cell cycle analyses in the embryonic chick. Presumptive hypothalamic cells derive from the rostral diencephalic ventral midline, lie above the prechordal mesendoderm and express Fgf10 Fgf10 + progenitors undergo anisotropic growth: those displaced rostrally differentiate into anterior cells, then those displaced caudally differentiate into mammillary cells. A stable population of Fgf10 + progenitors is retained within the tuberal domain; a subset of these gives rise to the tuberal infundibulum - the precursor of the posterior pituitary. Pharmacological approaches reveal that Shh signalling promotes the growth and differentiation of anterior progenitors, and also orchestrates the development of the infundibulum and Rathke's pouch - the precursor of the anterior pituitary. Together, our studies identify a hypothalamic progenitor population defined by Fgf10 and highlight a role for Shh signalling in the integrated development of the hypothalamus and pituitary. © 2017. Published by The Company of Biologists Ltd.

  8. Waveform frequency notching

    Science.gov (United States)

    Doerry, Armin W.; Andrews, John

    2017-05-09

    The various technologies presented herein relate to incorporating one or more notches into a radar spectrum, whereby the notches relate to one or more frequencies for which no radar transmission is to occur. An instantaneous frequency is monitored and if the frequency is determined to be of a restricted frequency, then a radar signal can be modified. Modification can include replacing the signal with a signal having a different instantaneous amplitude, a different instantaneous phase, etc. The modification can occur in a WFS prior to a DAC, as well as prior to a sin ROM component and/or a cos ROM component. Further, the notch can be dithered to enable formation of a deep notch. The notch can also undergo signal transitioning to enable formation of a deep notch. The restricted frequencies can be stored in a LUT against which an instantaneous frequency can be compared.

  9. Understanding the Physiology of FGF21.

    Science.gov (United States)

    Fisher, Ffolliott Martin; Maratos-Flier, Eleftheria

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a peptide hormone that is synthesized by several organs and regulates energy homeostasis. Excitement surrounding this relatively recently identified hormone is based on the documented metabolic beneficial effects of FGF21, which include weight loss and improved glycemia. The biology of FGF21 is intrinsically complicated owing to its diverse metabolic functions in multiple target organs and its ability to act as an autocrine, paracrine, and endocrine factor. In the liver, FGF21 plays an important role in the regulation of fatty acid oxidation both in the fasted state and in mice consuming a high-fat, low-carbohydrate ketogenic diet. FGF21 also regulates fatty acid metabolism in mice consuming a diet that promotes hepatic lipotoxicity. In white adipose tissue (WAT), FGF21 regulates aspects of glucose metabolism, and in susceptible WAT depots, it can cause browning. This peptide is highly expressed in the pancreas, where it appears to play an anti-inflammatory role in experimental pancreatitis. It also has an anti-inflammatory role in cardiac muscle. Although typically not expressed in skeletal muscle, FGF21 is induced in situations of muscle stress, particularly mitochondrial myopathies. FGF21 has been proposed as a novel therapeutic for metabolic complications such as diabetes and fatty liver disease. This review aims to interpret and delineate the ever-expanding complexity of FGF21 physiology.

  10. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear.

    Science.gov (United States)

    Olaya-Sánchez, Daniel; Sánchez-Guardado, Luis Óscar; Ohta, Sho; Chapman, Susan C; Schoenwolf, Gary C; Puelles, Luis; Hidalgo-Sánchez, Matías

    2017-01-01

    The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.

  11. Fibroblast growth factor (FGF) signaling in development and skeletal diseases.

    Science.gov (United States)

    Teven, Chad M; Farina, Evan M; Rivas, Jane; Reid, Russell R

    2014-12-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development.

  12. Fgf3 and Fgf10a work in concert to promote maturation of the epibranchial placodes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Matthew N McCarroll

    Full Text Available Essential cellular components of the paired sensory organs of the vertebrate head are derived from transient thickenings of embryonic ectoderm known as cranial placodes. The epibranchial (EB placodes give rise to sensory neurons of the EB ganglia that are responsible for relaying visceral sensations form the periphery to the central nervous system. Development of EB placodes and subsequent formation of EB ganglia is a multistep process regulated by various extrinsic factors, including fibroblast growth factors (Fgfs. We discovered that two Fgf ligands, Fgf3 and Fgf10a, cooperate to promote EB placode development. Whereas EB placodes are induced in the absence of Fgf3 and Fgf10a, they fail to express placode specific markers Pax2a and Sox3. Expression analysis and mosaic rescue experiments demonstrate that Fgf3 signal is derived from the endoderm, whereas Fgf10a is emitted from the lateral line system and the otic placode. Further analyses revealed that Fgf3 and Fgf10a activities are not required for cell proliferation or survival, but are required for placodal cells to undergo neurogenesis. Based on these data, we conclude that a combined loss of these Fgf factors results in a failure of the EB placode precursors to initiate a transcriptional program needed for maturation and subsequent neurogenesis. These findings highlight the importance and complexity of reiterated Fgf signaling during cranial placode formation and subsequent sensory organ development.

  13. Notch signaling influences neuroprotective and proliferative properties of mature Müller glia.

    Science.gov (United States)

    Ghai, Kanika; Zelinka, Christopher; Fischer, Andy J

    2010-02-24

    Notch signaling is known to play important roles during retinal development. Recently, Notch signaling has been shown to be active in proliferating Müller glia in acutely damaged chick retina (Hayes et al., 2007). However, the roles of Notch in mature, undamaged retina remain unknown. Thus, the purpose of this study was to determine the role of the Notch-signaling pathway in the postnatal retina. Here we show that components of the Notch-signaling pathway are expressed in most Müller glia at low levels in undamaged retina. The expression of Notch-related genes varies during early postnatal development and across regions, with higher expression in peripheral versus central retina. Blockade of Notch activity with a small molecule inhibitor before damage was protective to retinal interneurons (amacrine and bipolar cells) and projection neurons (ganglion cells). In the absence of damage, Notch is upregulated in retinas treated with insulin and FGF2; the combination of these factors is known to stimulate the proliferation and dedifferentiation of Müller glia (Fischer et al., 2002b). Inhibition of Notch signaling during FGF2 treatment reduces levels of the downstream effectors of the MAPK-signaling pathway-p38 MAPK and pCREB in Müller glia. Further, inhibition of Notch activity potently inhibits FGF2-induced proliferation of Müller glia. Together, our data indicate that Notch signaling is downstream of, and is required for, FGF2/MAPK signaling to drive the proliferation of Müller glia. In addition, our data suggest that low levels of Notch signaling in Müller glia diminish the neuroprotective activities of these glial cells.

  14. FGF21 Administration Suppresses Retinal and Choroidal Neovascularization in Mice

    Directory of Open Access Journals (Sweden)

    Zhongjie Fu

    2017-02-01

    Full Text Available Pathological neovascularization, a leading cause of blindness, is seen in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. Using a mouse model of hypoxia-driven retinal neovascularization, we find that fibroblast growth factor 21 (FGF21 administration suppresses, and FGF21 deficiency worsens, retinal neovessel growth. The protective effect of FGF21 against neovessel growth was abolished in adiponectin (APN-deficient mice. FGF21 administration also decreased neovascular lesions in two models of neovascular age-related macular degeneration: very-low-density lipoprotein-receptor-deficient mice with retinal angiomatous proliferation and laser-induced choroidal neovascularization. FGF21 inhibited tumor necrosis α (TNF-α expression but did not alter Vegfa expression in neovascular eyes. These data suggest that FGF21 may be a therapeutic target for pathologic vessel growth in patients with neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration.

  15. Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration.

    Science.gov (United States)

    Wang, Shen; Lin, Haipeng; Zhao, Tiantian; Huang, Sisi; Fernig, David G; Xu, Nuo; Wu, Fenfang; Zhou, Mi; Jiang, Chao; Tian, Haishan

    2017-11-01

    Fibroblast growth factor (FGF) 9 has oncogenic activity and plays an important role in the development of ovarian, lung, prostate, and gastric cancers. In the present study, with the aim of reducing the cost of utilizing growth factors in cancer research, a simple and efficient method for the preparation of recombinant human (rh)FGF9 in Escherichia coli was established. The rhFGF9 fusion protein (6 × His-TEV-rhFGF9) and the native protein released by tobacco etch virus (TEV) protease were obtained using a Ni-NTA system, with > 95% purity. Both purified forms of rhFGF9, with and without fusion tags, significantly stimulated the proliferation of NIH3T3 cells. The FGF9 subfamily, including FGF9, FGF16, and FGF20, in addition to rhFGF16, rhFGF9, and rhFGF20, were shown to stimulate the proliferation and migration of HuH7 human hepatocellular carcinoma (HCC) cells. Mechanistic studies revealed that the stimulation of HuH7 cell proliferation and migration with rhFGF9 and rhFGF20 were associated with the activation of the extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) pathways and matrix metalloproteinase-26 (MMP26). Inhibition of the ERK and NF-κB pathways blocked cell migration, and NF-κB was demonstrated to be regulated by ERK. Therefore, the present study demonstrates a simple method for the preparation of biologically active rhFGF9 protein. Furthermore, the results indicate that exogenous rhFGF9- and rhFGF20-activated ERK/NF-κB signal transduction pathways play important roles in the regulation of HCC cell proliferation and migration, and this discovery helps to find the potential for new solutions of the treatment of liver cancer.

  16. Metabolic actions of FGF21: molecular mechanisms and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Xuan Ge

    2012-08-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an atypical member of the FGF family that functions as an endocrine factor. In obese animals, elevation of plasma FGF21 levels by either pharmacological or genetic approaches reduces body weight, decreases hyperglycemia and hyperlipidemia, alleviates fatty liver and increases insulin sensitivity. FGF21 exerts its pleiotropic metabolic effects through its actions on multiple targets, including adipose tissue, liver, brain and pancreas. The expression of FGF21 is under the control of both peroxisome proliferator-activated receptor gamma (PPARγ and peroxisome proliferator-activated receptor alpha (PPARα. A growing body of evidence suggests that the metabolic benefits of these two nuclear receptors are mediated in part by induction of FGF21. In humans, plasma levels of FGF21 are elevated in obese subjects and patients with type 2 diabetes, but are reduced in patients with autoimmune diabetes. This review summarizes recent advances in understanding the physiological roles of FGF21 and the molecular pathways underlying its actions, and also discusses the future prospective of developing FGF21 or its agonists as therapeutic agents for obesity-related medical complications.

  17. FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease.

    Science.gov (United States)

    Itoh, Nobuyuki

    2016-04-01

    The FGF family comprises 22 members with diverse functions in development and health. FGF10 specifically activates FGFR2b in a paracrine manner with heparan sulfate as a co-factor. FGF10and FGFR2b are preferentially expressed in the mesenchyme and epithelium, respectively. FGF10 is a mesenchymal signaling molecule in the epithelium. FGF10 knockout mice die shortly after birth due to the complete absence of lungs as well as fore- and hindlimbs. FGF10 is also essential for the development of multiple organs. The phenotypes of Fgf10 knockout mice are very similar to those of FGFR2b knockout mice, indicating that FGF10 acts as a ligand that is specific to FGFR2b in mouse multi-organ development. FGF10 also plays roles in epithelial-mesenchymal transition, the repair of tissue injury, and embryonic stem cell differentiation. In humans, FGF10 loss-of-function mutations result in inherited diseases including aplasia of lacrimal and salivary gland, lacrimo-auriculo-dento-digital syndrome, and chronic obstructive pulmonary disease. FGF10 is also involved in the oncogenicity of pancreatic and breast cancers. Single nucleotide polymorphisms in FGF10 are also potential risk factors for limb deficiencies, cleft lip and palate, and extreme myopia. These findings indicate that FGF10 is a crucial paracrine signal from the mesenchyme to epithelium for development, health, and disease. Copyright © 2015. Published by Elsevier Ltd.

  18. Interplay between FGF21 and insulin action in the liver regulates metabolism

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Vienberg, Sara G; Smyth, Graham

    2014-01-01

    on reducing glucose levels, the effects of FGF21 on reducing circulating cholesterol and hepatic triglycerides and regulating the expression of key genes involved in cholesterol and lipid metabolism in liver were disrupted in LIRKO mice. Thus, FGF21 corrects hyperglycemia in diabetic mice independently......The hormone FGF21 regulates carbohydrate and lipid homeostasis as well as body weight, and increasing FGF21 improves metabolic abnormalities associated with obesity and diabetes. FGF21 is thought to act on its target tissues, including liver and adipose tissue, to improve insulin sensitivity...... and reduce adiposity. Here, we used mice with selective hepatic inactivation of the IR (LIRKO) to determine whether insulin sensitization in liver mediates FGF21 metabolic actions. Remarkably, hyperglycemia was completely normalized following FGF21 treatment in LIRKO mice, even though FGF21 did not reduce...

  19. FGF21 and cardiac physiopathology

    Directory of Open Access Journals (Sweden)

    Anna ePlanavila

    2015-08-01

    Full Text Available The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21 production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action. FGF21 has been demonstrated to protect against cardiac hypertrophy, cardiac inflammation, and oxidative stress. FGF21 expression in the heart is induced in response to cardiac insults, such as experimental cardiac hypertrophy and myocardial infarction in rodents, as well as in failing human hearts. Intracellular mechanisms involving PPARα and Sirt1 mediate transcriptional regulation of the FGF21 gene in response to exogenous stimuli. In humans, circulating FGF21 levels are elevated in coronary heart disease and atherosclerosis, and are associated with a higher risk of cardiovascular events in patients with type 2 diabetes. These findings provide new insights into the role of FGF21 in the heart and may offer potential therapeutic strategies for cardiac disease.

  20. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors.

    Directory of Open Access Journals (Sweden)

    Miguel Aste-Amézaga

    2010-02-01

    Full Text Available Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD, and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR. The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC(50 values as low as 5+/-3 nM and 0.13+/-0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR "class I" point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL. In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare "class II" or "class III" mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell

  1. Multiple cranial organ defects after conditionally knocking out Fgf10 in the neural crest

    Directory of Open Access Journals (Sweden)

    Tathyane H.N. Teshima

    2016-10-01

    Full Text Available Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands and ocular glands, highlighting the neural crest origin of the Fgf10 expressing mesenchyme surrounding these organs. In contrast tissues such as the limbs and lungs, where Fgf10 is expressed by the surrounding mesoderm, were unaffected, as was the pituitary gland where Fgf10 is expressed by the neuroepithelium. The circumvallate papilla of the tongue formed but was hypoplastic in the conditional and Fgf10 null embryos, suggesting that other sources of FGF can compensate in development of this structure. The tracheal cartilage rings showed normal patterning in the conditional knockout, indicating that the source of Fgf10 for this tissue is mesodermal, which was confirmed using Wnt1cre-dtTom to lineage trace the boundary of the neural crest in this region. The thyroid, thymus and parathyroid glands surrounding the trachea were present but hypoplastic in the conditional mutant, indicating that a neighbouring source of mesodermal Fgf10 might be able to partially compensate for loss of neural crest derived Fgf10.

  2. Cloning, molecular characterization, and expression pattern of FGF5 in Cashmere goat (Capra hircus).

    Science.gov (United States)

    Bao, W L; Yao, R Y; He, Q; Guo, Z X; Bao, C; Wang, Y F; Wang, Z G

    2015-09-22

    Fibroblast growth factor 5 (FGF5) is a secreted signaling protein that belongs to the FGF family, and was found to be associated with hair growth in humans and other animals. The Inner Mongolia Cashmere goat (Capra hircus) is a goat breed that provides superior cashmere; this breed was formed by spontaneous mutation in China. Here, we report the cloning, molecular characterization, and expression pattern of the Cashmere goat FGF5. The cloned FGF5 cDNA was 813 base pairs (KM596772), including an open reading frame encoding a 270-amino-acid polypeptide. The nucleotide sequence shared 99% homology with Ovis aries FGF5 (NM_001246263.1). Bioinformatic analysis revealed that FGF5 contained a signal peptide, an FGF domain, and a heparin-binding growth factor/FGF family signature. There was 1 cAMP- and cGMP-dependent protein kinase phosphorylation site, 11 protein kinase C phosphorylation sites, 4 casein kinase II phosphorylation sites, 1 amidation site, 1 N-glycosylation site, and 1 tyrosine kinase phosphorylation site in FGF5. Real-time polymerase chain reaction showed that FGF5 mRNA levels were higher in testis than in the pancreas and liver. These data suggest that FGF5 may play a crucial role in Cashmere goat hair growth.

  3. Research perspectives on the regulation and physiological functions of FGF21 and its association with NAFLD

    Directory of Open Access Journals (Sweden)

    Takeshi eInagaki

    2015-09-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is a metabolic hormone primarily secreted from the liver and functions in multiple tissues. Various transcription factors induce FGF21 expression in the liver, which indicates that FGF21 is a mediator of multiple environmental cues. FGF21 alters metabolism under starvation conditions, protects the body from energy depletion, and extends life span. Pharmacological administration of FGF21 alleviates dyslipidemia and induces weight loss in obese animals. In addition to the well-studied functions of FG21, several lines of recent evidence indicate a possible link between FGF21 and nonalcoholic fatty liver disease (NAFLD. High serum levels of FGF21 are associated with NAFLD and its risk factors such as endoplasmic reticulum stress and chronic inflammation. In addition, FGF21 alleviates the major risk factors of NAFLD including obesity, dyslipidemia and insulin insensitivity. Thus, FGF21 is a potential drug candidate for diseases such as NAFLD, dyslipidemia, and type 2 diabetes. In this review, the research perspectives of FGF21 and therapeutic potencies of FGF21 as a modulator of NAFLD are summarized.

  4. Nanoparticle optical notch filters

    Science.gov (United States)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  5. FGF21 and Cardiac Physiopathology

    OpenAIRE

    Planavila, Anna; Redondo-Angulo, Ibon; Villarroya, Francesc

    2015-01-01

    The heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21) production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific resp...

  6. FGF-2 in Astroglial Cells during Vertebrate Spinal Cord Recovery

    Directory of Open Access Journals (Sweden)

    Gehan H Fahmy

    2010-11-01

    Full Text Available FGF-2 is a pleiotrophic cytokine with neurotrophic and gliogenic properties. It is known to regulate CNS injury responses, which include transformation of reactive astrocytes, neurogenesis and promotion of neurotrophic activities. In the brain, it is localized in astrocytes and discrete neuronal populations. Following both central and peripheral nervous system injury, astrocytes become reactive. These activated cells undergo hypertrophy. A key indicator of astrocyte activation is the increased accumulation of intermediate filaments composed of glial fibrillary acidic protein (GFAP. Following physical insult of brain or spinal cord, reactive astrocytes show increased FGF-2 immunoreactivity. Thus, FGF-2 appears to participate in astrocytic differentiation and proliferation and a good candidate for astrocytic function regulation in healthy, injured, or diseased CNS. To further investigate the cellular mechanisms underlying FGF-2 restorative actions and to analyze the changes within astroglial cells, we studied the localization of GFAP and FGF-2 in adult intact and injured Pleurodeles CNS. Our results show that spinal cord injury triggers a significant increase in FGF-2 immunoreactivity in reactive astrocytes at sites of insult. In addition, these results were time-dependent. Increase in FGF-2 immunoreactivity along the CNS axis, starting 1-week post-injury, was long-lasting extending to 6 weeks. This increase was accompanied by an increase in GFAP immunoreactivity in the same spatial pattern except in SC3 where its level was almost similar to sham-operated animals. Therefore, we suggest that FGF-2 may be involved in cell proliferation and/or astroglial cells differentiation after body spinal cord transection, and could thus play an important role in locomotion recovery.

  7. Notch3 signalling promotes tumour growth in colorectal cancer.

    Science.gov (United States)

    Serafin, Valentina; Persano, Luca; Moserle, Lidia; Esposito, Giovanni; Ghisi, Margherita; Curtarello, Matteo; Bonanno, Laura; Masiero, Massimo; Ribatti, Domenico; Stürzl, Michael; Naschberger, Elisabeth; Croner, Roland S; Jubb, Adrian M; Harris, Adrian L; Koeppen, Hartmut; Amadori, Alberto; Indraccolo, Stefano

    2011-08-01

    Increased Notch1 activity has been observed in intestinal tumours, partially accomplished by β-catenin-mediated up-regulation of the Notch ligand Jagged-1. Whether further mechanisms of Notch activation exist and other Notch receptors might be involved is unclear. Microarray data indicated that Notch3 transcript levels are significantly up-regulated in primary and metastatic CRC samples compared to normal mucosa. Moreover, Notch3 protein was expressed at strong/moderate levels by 19.7% of 158 CRC samples analysed, and at weak levels by 51.2% of the samples. Intrigued by these findings, we sought to investigate whether Notch3 modulates oncogenic features of CRC cells. By exploiting xenografts of CRC cells with different tumourigenic properties in mice, we found that the aggressive phenotype was associated with altered expression of components of the Notch pathway, including Notch3, Delta-like 4 (DLL4), and Jagged-1 ligands. Stimulation with immobilized recombinant DLL4 or transduction with DLL4-expressing vectors dramatically increased Notch3 expression in CRC cells, associated with accelerated tumour growth. Forced expression of an active form of Notch3 mirrored the effects of DLL4 stimulation and increased tumour formation. Conversely, attenuation of Notch3 levels by shRNA resulted in perturbation of the cell cycle followed by reduction in cell proliferation, clonogenic capacity, and inhibition of tumour growth. Altogether, these findings indicate that Notch3 can modulate the tumourigenic properties of CRC cells and contributes to sustained Notch activity in DLL4-expressing tumours. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. FGF1 - a new weapon to control type 2 diabetes mellitus.

    Science.gov (United States)

    Gasser, Emanuel; Moutos, Christopher P; Downes, Michael; Evans, Ronald M

    2017-10-01

    A hypercaloric diet combined with a sedentary lifestyle is a major risk factor for the development of insulin resistance, type 2 diabetes mellitus (T2DM) and associated comorbidities. Standard treatment for T2DM begins with lifestyle modification, and includes oral medications and insulin therapy to compensate for progressive β-cell failure. However, current pharmaceutical options for T2DM are limited in that they do not maintain stable, durable glucose control without the need for treatment intensification. Furthermore, each medication is associated with adverse effects, which range from hypoglycaemia to weight gain or bone loss. Unexpectedly, fibroblast growth factor 1 (FGF1) and its low mitogenic variants have emerged as potentially safe candidates for restoring euglycaemia, without causing overt adverse effects. In particular, a single peripheral injection of FGF1 can lower glucose to normal levels within hours, without the risk of hypoglycaemia. Similarly, a single intracerebroventricular injection of FGF1 can induce long-lasting remission of the diabetic phenotype. This Review discusses potential mechanisms by which centrally administered FGF1 improves central glucose-sensing and peripheral glucose uptake in a sustained manner. Specifically, we explore the potential crosstalk between FGF1 and glucose-sensing neuronal circuits, hypothalamic neural stem cells and synaptic plasticity. Finally, we highlight therapeutic considerations of FGF1 and compare its metabolic actions with FGF15 (rodents), FGF19 (humans) and FGF21.

  9. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality.

    Science.gov (United States)

    Shalhoub, Victoria; Shatzen, Edward M; Ward, Sabrina C; Davis, James; Stevens, Jennitte; Bi, Vivian; Renshaw, Lisa; Hawkins, Nessa; Wang, Wei; Chen, Ching; Tsai, Mei-Mei; Cattley, Russell C; Wronski, Thomas J; Xia, Xuechen; Li, Xiaodong; Henley, Charles; Eschenberg, Michael; Richards, William G

    2012-07-01

    Chronic kidney disease-mineral and bone disorder (CKD-MBD) is associated with secondary hyperparathyroidism (HPT) and serum elevations in the phosphaturic hormone FGF23, which may be maladaptive and lead to increased morbidity and mortality. To determine the role of FGF23 in the pathogenesis of CKD-MBD and development of secondary HPT, we developed a monoclonal FGF23 antibody to evaluate the impact of chronic FGF23 neutralization on CKD-MBD, secondary HPT, and associated comorbidities in a rat model of CKD-MBD. CKD-MBD rats fed a high-phosphate diet were treated with low or high doses of FGF23-Ab or an isotype control antibody. Neutralization of FGF23 led to sustained reductions in secondary HPT, including decreased parathyroid hormone, increased vitamin D, increased serum calcium, and normalization of bone markers such as cancellous bone volume, trabecular number, osteoblast surface, osteoid surface, and bone-formation rate. In addition, we observed dose-dependent increases in serum phosphate and aortic calcification associated with increased risk of mortality in CKD-MBD rats treated with FGF23-Ab. Thus, mineral disturbances caused by neutralization of FGF23 limited the efficacy of FGF23-Ab and likely contributed to the increased mortality observed in this CKD-MBD rat model.

  10. FGF23 neutralization improves chronic kidney disease–associated hyperparathyroidism yet increases mortality

    Science.gov (United States)

    Shalhoub, Victoria; Shatzen, Edward M.; Ward, Sabrina C.; Davis, James; Stevens, Jennitte; Bi, Vivian; Renshaw, Lisa; Hawkins, Nessa; Wang, Wei; Chen, Ching; Tsai, Mei-Mei; Cattley, Russell C.; Wronski, Thomas J.; Xia, Xuechen; Li, Xiaodong; Henley, Charles; Eschenberg, Michael; Richards, William G.

    2012-01-01

    Chronic kidney disease–mineral and bone disorder (CKD-MBD) is associated with secondary hyperparathyroidism (HPT) and serum elevations in the phosphaturic hormone FGF23, which may be maladaptive and lead to increased morbidity and mortality. To determine the role of FGF23 in the pathogenesis of CKD-MBD and development of secondary HPT, we developed a monoclonal FGF23 antibody to evaluate the impact of chronic FGF23 neutralization on CKD-MBD, secondary HPT, and associated comorbidities in a rat model of CKD-MBD. CKD-MBD rats fed a high-phosphate diet were treated with low or high doses of FGF23-Ab or an isotype control antibody. Neutralization of FGF23 led to sustained reductions in secondary HPT, including decreased parathyroid hormone, increased vitamin D, increased serum calcium, and normalization of bone markers such as cancellous bone volume, trabecular number, osteoblast surface, osteoid surface, and bone-formation rate. In addition, we observed dose-dependent increases in serum phosphate and aortic calcification associated with increased risk of mortality in CKD-MBD rats treated with FGF23-Ab. Thus, mineral disturbances caused by neutralization of FGF23 limited the efficacy of FGF23-Ab and likely contributed to the increased mortality observed in this CKD-MBD rat model. PMID:22728934

  11. ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Xiao-shan Wan

    2014-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an important endogenous regulator involved in the regulation of glucose and lipid metabolism. FGF21 expression is strongly induced in animal and human subjects with metabolic diseases, but little is known about the molecular mechanism. Endoplasmic reticulum (ER stress plays an essential role in metabolic homeostasis and is observed in numerous pathological processes, including type 2 diabetes, overweight, nonalcoholic fatty liver disease (NAFLD. In this study, we investigate the correlation between the expression of FGF21 and ER stress. We demonstrated that TG-induced ER stress directly regulated the expression and secretion of FGF21 in a dose- and time-dependent manner. FGF21 is the target gene for activating transcription factor 4 (ATF4 and CCAAT enhancer binding protein homologous protein (CHOP. Suppression of CHOP impaired the transcriptional activation of FGF21 by TG-induced ER stress in CHOP−/− mouse primary hepatocytes (MPH, and overexpression of ATF4 and CHOP resulted in FGF21 promoter activation to initiate the transcriptional programme. In mRNA stability assay, we indicated that ER stress increased the half-life of mRNA of FGF21 significantly. In conclusion, FGF21 expression is regulated by ER stress via ATF- and CHOP-dependent transcriptional mechanism and posttranscriptional mechanism, respectively.

  12. Fgf10 expression patterns in the developing chick inner ear.

    Science.gov (United States)

    Sánchez-Guardado, Luis Óscar; Puelles, Luis; Hidalgo-Sánchez, Matías

    2013-04-01

    The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. It originates from the otic placode, which invaginates, forming the otic vesicle; the latter gives rise to neurosensory and nonsensory elements of the adult membranous labyrinth. A hypothesis based on descriptive and experimental evidence suggests that the acquisition of discrete sensory patches during evolution of this primordium may be related to subdivision of an early pansensory domain. In order to gain insight into this developmental mechanism, we carried out a detailed analysis of the spatial and temporal expression pattern of the gene Fgf10, by comparing different markers of otic patterning and hair cell differentiation. Fgf10 expression labels a sensory-competent domain included in a Serrate-positive territory from which most of the sensory epithelia arise. Our data show that Fgf10 transcripts are present initially in a narrow ventromedial band of the rudimentary otocyst, extending between its rostral and caudal poles. During development, this Fgf10-expressing area splits repetitively into several separate subareas, creating six of the eight sensory organs present in birds. Only the lateral crista and the macula neglecta were initially Fgf10 negative, although they activated Fgf10 expression after their specification as sensory elements. These results allowed us to determine a timetable of sensory specification in the developing chick inner ear. The comparison of the expression pattern of Fgf10 with those of other markers of sensory differentiation contributes to our understanding of the mechanism by which vertebrate inner ear prosensory domains have arisen during evolution. Copyright © 2012 Wiley Periodicals, Inc.

  13. Stress concentration at notches

    CERN Document Server

    Savruk, Mykhaylo P

    2017-01-01

    This book compiles solutions of linear theory of elasticity problems for isotropic and anisotropic bodies with sharp and rounded notches. It contains an overview of established and recent achievements, and presents the authors’ original solutions in the field considered with extensive discussion. The volume demonstrates through numerous, useful examples the effectiveness of singular integral equations for obtaining exact solutions of boundary problems of the theory of elasticity for bodies with cracks and notches. Incorporating analytical and numerical solutions of the problems of stress concentrations in solid bodies with crack-like defects, this volume is ideal for scientists and PhD students dealing with the problems of theory of elasticity and fracture mechanics. Stands as a modern and extensive compendium of solutions to the problems of linear theory of elasticity of isotropic and anisotropic bodies with sharp and rounded notches; Adopts a highly reader-friendly layout of tables, charts, approximation ...

  14. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.

    Science.gov (United States)

    Ferjentsik, Zoltan; Hayashi, Shinichi; Dale, J Kim; Bessho, Yasumasa; Herreman, An; De Strooper, Bart; del Monte, Gonzalo; de la Pompa, Jose Luis; Maroto, Miguel

    2009-09-01

    Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.

  15. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites.

    Directory of Open Access Journals (Sweden)

    Zoltan Ferjentsik

    2009-09-01

    Full Text Available Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM. The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng, Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2, and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.

  16. Stage-specific effects of FGF2 on the differentiation of dental pulp cells

    Science.gov (United States)

    Sagomonyants, Karen; Mina, Mina

    2015-01-01

    Dentinogenesis is a complex and multistep process, which is regulated by various growth factors, including members of the Fibroblast Growth Factor (FGF) family. Both positive and negative effects of FGFs on dentinogenesis have been reported but the underlying mechanisms of these conflicting results are still unclear. To gain better insight into the role of FGF2 in dentinogenesis, we used dental pulp cells from various transgenic mice, in which fluorescent protein expression identifies cells at different stages of odontoblast differentiation. Our results showed that continuous exposure of pulp cells to FGF2 inhibited mineralization and revealed both stimulatory and inhibitory effects of FGF2 on expression of markers of dentinogenesis and various transgenes. During the proliferation phase of in vitro growth FGF2 increased expression of markers of dentinogenesis and the percentages of DMP1-GFP+ functional odontoblasts and DSPP-Cerulean+ odontoblasts. Additional exposure to FGF2 during the differentiation/mineralization phase of in vitro growth decreased the extent of mineralization, expression of markers of dentinogenesis, and expression of DMP1-GFP and DSPP-Cerulean transgenes. Recovery experiments showed that the inhibitory effects of FGF2 on dentinogenesis were related to the blocking of differentiation of cells into mature odontoblasts. These observations together showed stage-specific effects of FGF2 on dentinogenesis by dental pulp cells and provide critical information for the development of improved treatments for vital pulp therapy and dentin regeneration. PMID:25823776

  17. FGF14 N-Terminal Splice Variants Differentially Modulate Nav1.2 and Nav1.6-Encoded Sodium Channels

    Science.gov (United States)

    Laezza, Fernanda; Lampert, Angelika; Kozel, Marie A.; Gerber, Benjamin R.; Rush, Anthony M.; Nerbonne, Jeanne M.; Waxman, Stephen G.; Dib-Hajj, Sulayman D.; Ornitz, David M.

    2009-01-01

    The Intracellular Fibroblast Growth Factor (iFGF) subfamily includes four members (FGFs 11–14) of the structurally related FGF superfamily. Previous studies showed that the iFGFs interact directly with the pore-forming (α) subunits of voltage-gated sodium (Nav) channels and regulate the functional properties of sodium channel currents. Sequence heterogeneity among the iFGFs is thought to confer specificity to this regulation. Here, we demonstrate that the two N-terminal alternatively spliced FGF14 variants, FGF14-1a and FGF14-1b, differentially regulate currents produced by Nav1.2-and Nav1.6 channels. FGF14-1b, but not FGF14-1a, attenuates both Nav1.2 and Nav1.6 current densities. In contrast, co-expression of an FGF14 mutant, lacking the N-terminus, increased Nav1.6 current densities. In neurons, both FGF14-1a and FGF14-1b localized at the axonal initial segment, and deletion of the N-terminus abolished this localization. Thus, the FGF14 N-terminus is required for targeting and functional regulation of Nav channels, suggesting an important function for FGF14 alternative splicing in regulating neuronal excitability. PMID:19465131

  18. Notch signaling and progenitor/ductular reaction in steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Carola M Morell

    Full Text Available Persistent hepatic progenitor cells (HPC activation resulting in ductular reaction (DR is responsible for pathologic liver repair in cholangiopathies. Also, HPC/DR expansion correlates with fibrosis in several chronic liver diseases, including steatohepatitis. Increasing evidence indicates Notch signaling as a key regulator of HPC/DR response in biliary and more in general liver injuries. Therefore, we aimed to investigate the role of Notch during HPC/DR activation in a mouse model of steatohepatitis.Steatohepatitis was generated using methionine-choline deficient (MCD diet. For hepatocyte lineage tracing, R26R-YFP mice were infected with AAV8-TBG-Cre.MCD diet promoted a strong HPC/DR response that progressively diffused in the lobule, and correlated with increased fibrosis and TGF-β1 expression. Notch signaling was unchanged in laser-capture microdissected HPC/DR, whereas Notch receptors were down regulated in hepatocytes. However, in-vivo lineage tracing experiments identified discrete hepatocytes showing Notch-1 activation and expressing (the Notch-dependent Sox9. Stimulation of AML-12 hepatocyte-cell line with immobilized Jag1 induced Sox9 and down-regulated albumin and BSEP expression. TGF-β1 treatment in primary hepatic stellate cells (HSC induced Jag1 expression. In MCD diet-fed mice, αSMA-positive HSC were localized around Sox9 expressing hepatocytes, suggesting that Notch activation in hepatocytes was promoted by TGF-β1 stimulated HSC. In-vivo Notch inhibition reduced HPC response and fibrosis progression.Our data suggest that Notch signaling is an important regulator of DR and that in steatohepatitis, hepatocytes exposed to Jag1-positive HSC, contribute to pathologic DR by undergoing Notch-mediated differentiation towards an HPC-like phenotype. Given the roles of Notch in fibrosis and liver cancer, these data suggest mesenchymal expression of Jag1 as an alternative therapeutic target.

  19. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  20. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal.

    Directory of Open Access Journals (Sweden)

    Sung-Ho Huh

    2012-01-01

    Full Text Available A large proportion of age-related hearing loss is caused by loss or damage to outer hair cells in the organ of Corti. The organ of Corti is the mechanosensory transducing apparatus in the inner ear and is composed of inner hair cells, outer hair cells, and highly specialized supporting cells. The mechanisms that regulate differentiation of inner and outer hair cells are not known. Here we report that fibroblast growth factor 20 (FGF20 is required for differentiation of cells in the lateral cochlear compartment (outer hair and supporting cells within the organ of Corti during a specific developmental time. In the absence of FGF20, mice are deaf and lateral compartment cells remain undifferentiated, postmitotic, and unresponsive to Notch-dependent lateral inhibition. These studies identify developmentally distinct medial (inner hair and supporting cells and lateral compartments in the developing organ of Corti. The viability and hearing loss in Fgf20 knockout mice suggest that FGF20 may also be a deafness-associated gene in humans.

  1. Inland notches micromorphology

    Science.gov (United States)

    Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit

    2017-04-01

    Inland notches are well known phenomenon in Israel and can be found mostly along the mountainous backbone, developed in hard limestone or dolomite rocks within the Mediterranean climate zone and up to the desert fringe. LiDAR technology presents an opportunity to study the fine scale rock surface within the notch and its texture patterns. De-trending of the LiDAR reconstructed DEM to a local trend, surface roughness, was achieved by fitting a normalized surface to all measured ground points within the roughness neighborhood. Micro-topography plays an important role for modelling geomorphology dynamics, resulting in improved estimates for micro stream lines network and topographic erosion as well as mineral accumulation or deposition. Clearly, dissolution occurs whenever rock and solvent meet; thus water and moisture's crucial role in the decay of carbonate rocks results in texture and roughness variability. Study aims is to generate high resolution normalized DEM models using a terrestrial LiDAR, redefining the texture and roughness within the notch while assessing weathering processes caused by water. Plan curvature is the second derivative of slope taken perpendicular to its direction. It influences convergence and divergence of flow and it emphasizes the ridges and valleys across the surface. Concaved classified areas were tested against all planar curvature areas to distinguish them as unique areas based on their texture co-occurrence measures (GLCM). Overall negative curvature pixels show poor separability, in both TD and JM separation tests, while classes of curvature degree describe a positive trend showing medium and high concavity as unique areas. Study aims to link classified areas as the basic micro infrastructure for water flow, potential runoff flow and further accumulation of minerals. On the other hand, positive values of Plan curvature present the convexity of rock surface to imply diverging flow, thus describing the watershed line within the micro

  2. FGF growth factor analogs

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Fabbri, Giulia; Holmes, Antony B; Viganotti, Mara; Scuoppo, Claudio; Belver, Laura; Herranz, Daniel; Yan, Xiao-Jie; Kieso, Yasmine; Rossi, Davide; Gaidano, Gianluca; Chiorazzi, Nicholas; Ferrando, Adolfo A; Dalla-Favera, Riccardo

    2017-04-04

    Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.

  4. Hyper-activation of Notch3 amplifies the proliferative potential of rhabdomyosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Maria De Salvo

    Full Text Available Rhabdomyosarcoma (RMS is a pediatric myogenic-derived soft tissue sarcoma that includes two major histopathological subtypes: embryonal and alveolar. The majority of alveolar RMS expresses PAX3-FOXO1 fusion oncoprotein, associated with the worst prognosis. RMS cells show myogenic markers expression but are unable to terminally differentiate. The Notch signaling pathway is a master player during myogenesis, with Notch1 activation sustaining myoblast expansion and Notch3 activation inhibiting myoblast fusion and differentiation. Accordingly, Notch1 signaling is up-regulated and activated in embryonal RMS samples and supports the proliferation of tumor cells. However, it is unable to control their differentiation properties. We previously reported that Notch3 is activated in RMS cell lines, of both alveolar and embryonal subtype, and acts by inhibiting differentiation. Moreover, Notch3 depletion reduces PAX3-FOXO1 alveolar RMS tumor growth in vivo. However, whether Notch3 activation also sustains the proliferation of RMS cells remained unclear. To address this question, we forced the expression of the activated form of Notch3, Notch3IC, in the RH30 and RH41 PAX3-FOXO1-positive alveolar and in the RD embryonal RMS cell lines and studied the proliferation of these cells. We show that, in all three cell lines tested, Notch3IC over-expression stimulates in vitro cell proliferation and prevents the effects of pharmacological Notch inhibition. Furthermore, Notch3IC further increases RH30 cell growth in vivo. Interestingly, knockdown of Notch canonical ligands JAG1 or DLL1 in RMS cell lines decreases Notch3 activity and reduces cell proliferation. Finally, the expression of Notch3IC and its target gene HES1 correlates with that of the proliferative marker Ki67 in a small cohort of primary PAX-FOXO1 alveolar RMS samples. These results strongly suggest that high levels of Notch3 activation increase the proliferative potential of RMS cells.

  5. FAP finds FGF21 easy to digest

    DEFF Research Database (Denmark)

    Gillum, Matthew P; Potthoff, Matthew J

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that regulates carbohydrate and lipid metabolism. In humans, circulating FGF21 is inactivated by proteolytic cleavage of its C-terminus, thereby preventing signalling through a receptor complex. The mechanism for this cleavage event and ...

  6. Band-notched spiral antenna

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jae; Chang, John

    2018-03-13

    A band-notched spiral antenna having one or more spiral arms extending from a radially inner end to a radially outer end for transmitting or receiving electromagnetic radiation over a frequency range, and one or more resonance structures positioned adjacent one or more segments of the spiral arm associated with a notch frequency band or bands of the frequency range so as to resonate and suppress the transmission or reception of electromagnetic radiation over said notch frequency band or bands.

  7. Control of the adrenocortical cell cycle: interaction between FGF2 and ACTH

    Directory of Open Access Journals (Sweden)

    H.A. Armelin

    1999-07-01

    Full Text Available FGF2 elicits a strong mitogenic response in the mouse Y-1 adrenocortical tumor cell line, that includes a rapid and transient activation of the ERK-MAPK cascade and induction of the c-Fos protein. ACTH, itself a very weak mitogen, blocks the mitogenic response effect of FGF2 in the early and middle G1 phase, keeping both ERK-MAPK activation and c-Fos induction at maximal levels. Probing the mitogenic response of Y-1 cells to FGF2 with ACTH is likely to uncover reactions underlying the effects of this hormone on adrenocortical cell growth.

  8. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    International Nuclear Information System (INIS)

    Kim, Kook Hwan; Jeong, Yeon Taek; Kim, Seong Hun; Jung, Hye Seung; Park, Kyong Soo; Lee, Hae-Youn; Lee, Myung-Shik

    2013-01-01

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin

  9. Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Qi; Chen, Liang-Long, E-mail: xhzlyx@126.com; Fan, Lin; Fang, Jun; Chen, Zhao-Yang; Li, Wei-Wei

    2014-04-25

    Highlights: • BFGF exists only in the cytoplasm of live cells. • BFGF cannot be secreted into the extracellular space to promote cell growth. • We combine the secretion-promoting signal peptide of FGF4. • We successfully modified BMSCs with the fused genes of FGF4-bFGF. • We promoted the therapeutic effects of transplanted BMSCs in myocardial infarction. - Abstract: The aim of this study was to investigate whether the modification of bone marrow-derived mesenchymal stem cells (BMSCs) with the fused FGF4 (fibroblast growth factor 4)-bFGF (basic fibroblast growth factor) gene could improve the expression and secretion of BFGF, and increase the efficacies in repairing infarcted myocardium. We used In-Fusion technique to construct recombinant lentiviral vectors containing the individual gene of bFGF, enhanced green fluorescent protein (EGFP), or genes of FGF4-bFGF and EGFP, and then transfected these lentiviruses into rat BMSCs. We conducted an in vitro experiment to compare the secretion of bFGF in BMSCs infected by these lentiviruses and also examined their therapeutic effects in the treatment of myocardial infraction in a rodent study. Sixty rats were tested in the following five conditions: Group-SHAM received only sham operation as controls; Group-AMI received only injection of placebo PBS buffer; Group-BMSC, Group-bFGF and Group-FGF4-bFGF received implantation of BMSCs with empty lentivirus, bFGF lentivirus, and FGF4-bFGF lentivirus, respectively. Our results found out that the transplanted FGF4-bFGF BMSCs had the highest survival rate, and also the highest myocardial expression of bFGF and microvascular density as evidenced by Western blotting and immunohistochemistry, respectively. As compared to other groups, the Group-FGF4-BFGF rats had the lowest myocardial fibrotic fraction, and the highest left ventricular ejection fraction. These results suggest that the modification of BMSCs with the FGF4-bFGF fused gene can not only increase the expression of

  10. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development.

    Science.gov (United States)

    Wright, Kevin D; Mahoney Rogers, Amanda A; Zhang, Jian; Shim, Katherine

    2015-10-06

    In multiple vertebrate organisms, including chick, Xenopus, and zebrafish, Fibroblast Growth Factor (FGF) and Wnt signaling cooperate during formation of the otic placode. However, in the mouse, although FGF signaling induces Wnt8a expression during induction of the otic placode, it is unclear whether these two signaling pathways functionally cooperate. Sprouty (Spry) genes encode intracellular antagonists of receptor tyrosine kinase signaling, including FGF signaling. We previously demonstrated that the Sprouty1 (Spry1) and Sprouty2 (Spry2) genes antagonize FGF signaling during induction of the otic placode. Here, we investigate cross talk between FGF/SPRY and Wnt signaling during otic placode induction and assess whether these two signaling pathways functionally cooperate during early inner ear development in the mouse. Embryos were generated carrying combinations of a Spry1 null allele, Spry2 null allele, β-catenin null allele, or a Wnt reporter transgene. Otic phenotypes were assessed by in situ hybridization, semi-quantitative reverse transcriptase PCR, immunohistochemistry, and morphometric analysis of sectioned tissue. Comparison of Spry1, Spry2, and Wnt reporter expression in pre-otic and otic placode cells indicates that FGF signaling precedes and is active in more cells than Wnt signaling. We provide in vivo evidence that FGF signaling activates the Wnt signaling pathway upstream of TCF/Lef transcriptional activation. FGF regulation of Wnt signaling is functional, since early inner ear defects in Spry1 and Spry2 compound mutant embryos can be genetically rescued by reducing the activity of the Wnt signaling pathway. Interestingly, we find that although the entire otic placode increases in size in Spry1 and Spry2 compound mutant embryos, the size of the Wnt-reporter-positive domain does not increase to the same extent as the Wnt-reporter-negative domain. This study provides genetic evidence that FGF and Wnt signaling cooperate during early inner ear

  11. Modifiers of notch transcriptional activity identified by genome-wide RNAi

    Directory of Open Access Journals (Sweden)

    Firnhaber Christopher B

    2010-10-01

    Full Text Available Abstract Background The Notch signaling pathway regulates a diverse array of developmental processes, and aberrant Notch signaling can lead to diseases, including cancer. To obtain a more comprehensive understanding of the genetic network that integrates into Notch signaling, we performed a genome-wide RNAi screen in Drosophila cell culture to identify genes that modify Notch-dependent transcription. Results Employing complementary data analyses, we found 399 putative modifiers: 189 promoting and 210 antagonizing Notch activated transcription. These modifiers included several known Notch interactors, validating the robustness of the assay. Many novel modifiers were also identified, covering a range of cellular localizations from the extracellular matrix to the nucleus, as well as a large number of proteins with unknown function. Chromatin-modifying proteins represent a major class of genes identified, including histone deacetylase and demethylase complex components and other chromatin modifying, remodeling and replacement factors. A protein-protein interaction map of the Notch-dependent transcription modifiers revealed that a large number of the identified proteins interact physically with these core chromatin components. Conclusions The genome-wide RNAi screen identified many genes that can modulate Notch transcriptional output. A protein interaction map of the identified genes highlighted a network of chromatin-modifying enzymes and remodelers that regulate Notch transcription. Our results open new avenues to explore the mechanisms of Notch signal regulation and the integration of this pathway into diverse cellular processes.

  12. miR-194 Inhibits Innate Antiviral Immunity by Targeting FGF2 in Influenza H1N1 Virus Infection

    Directory of Open Access Journals (Sweden)

    Keyu Wang

    2017-11-01

    Full Text Available Fibroblast growth factor 2 (FGF2 or basic FGF regulates a wide range of cell biological functions including proliferation, angiogenesis, migration, differentiation, and injury repair. However, the roles of FGF2 and the underlying mechanisms of action in influenza A virus (IAV-induced lung injury remain largely unexplored. In this study, we report that microRNA-194-5p (miR-194 expression is significantly decreased in A549 alveolar epithelial cells (AECs following infection with IAV/Beijing/501/2009 (BJ501. We found that miR-194 can directly target FGF2, a novel antiviral regulator, to suppress FGF2 expression at the mRNA and protein levels. Overexpression of miR-194 facilitated IAV replication by negatively regulating type I interferon (IFN production, whereas reintroduction of FGF2 abrogated the miR-194-induced effects on IAV replication. Conversely, inhibition of miR-194 alleviated IAV-induced lung injury by promoting type I IFN antiviral activities in vivo. Importantly, FGF2 activated the retinoic acid-inducible gene I signaling pathway, whereas miR-194 suppressed the phosphorylation of tank binding kinase 1 and IFN regulatory factor 3. Our findings suggest that the miR-194-FGF2 axis plays a vital role in IAV-induced lung injury, and miR-194 antagonism might be a potential therapeutic target during IAV infection.

  13. VEGF and bFGF Gene Polymorphisms in Patients with Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Tomasz Wróbel

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are important in the proliferation and survival of the malignant hematopoietic neoplasms, including non-Hodgkin’s lymphomas (NHLs. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF play an important role in the initiation of angiogenesis. Both VEGF and bFGF have been reported to have prognostic significance in NHL. The present study aimed to determine an association between the VEGF and bFGF gene polymorphisms and disease susceptibility and progression. VEGF (rs3025039; 936 C>T and bFGF (rs308395, −921 G>C variants were determined in 78 NHL patients and 122 healthy individuals by PCR-RFLP technique. The presence of the VEGF 936T allele was found to significantly associate with worse prognosis of the disease (expressed by the highest International Prognostic Index (IPI (0.41 versus 0.20, for IPI 4 among patients having and lacking the T allele. The VEGF 936T variant was also more frequent among patients with IPI 4 than in controls (OR = 3.37, . The bFGF −921G variant was more frequently detected among patients with aggressive as compared to those with indolent histological subtype (0.37 versus 0.18, and healthy individuals (0.37 versus 0.19, OR = 2.51, . These results imply that VEGF and bFGF gene polymorphisms have prognostic significance in patients with NHL.

  14. A FGF3 mutation associated with differential inner ear malformation, microtia, and microdontia.

    Science.gov (United States)

    Ramsebner, Reinhard; Ludwig, Martin; Parzefall, Thomas; Lucas, Trevor; Baumgartner, Wolf-Dieter; Bodamer, Olaf; Cengiz, Filiz Basak; Schoefer, Christian; Tekin, Mustafa; Frei, Klemens

    2010-02-01

    Analysis of association between genotype and phenotype. Prospective genetic study in a family. Auditory investigations, computer tomography, and genetic sequencing of the fibroblast growth factor 3 (FGF3) gene were performed on a Somali family presenting with autosomal recessive, hearing impairment, microdontia, and outer ear morphologies ranging from normal auricle development to microtia assessed as type 1 Weerda dysplasia in affected individuals. Computed tomography imaging identified differential inter- and intraindividual malformations of the inner ear including labyrinth aplasia, development of a common cavity to the presence of a cochlear with 1.5 windings (Mondini malformation) in affected individuals, symptoms similar to those described as labyrinth aplasia, microtia, and microdontia (LAMM) syndrome, caused by mutations in FGF3. Genetic sequencing revealed the presence of a novel p.R95W missense mutation in FGF3 segregating with pathology. The p.R95W mutation substitutes a positively charged arginine for a polar tryptophan in the highly conserved RYLAM consensus of the beta 6 sheet of FGF3 that interacts with FGFR2. These findings describe, for the first time, variable inner ear malformations and outer ear dysplasia in the presence of constant microdontia, associated with homozygous inheritance of the p.R95W mutation in FGF3, mirroring phenotypes observed in mouse models ablating FGF3/FGFR2 signaling.

  15. Dimerization effect of sucrose octasulfate on rat FGF1

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Artur

    2008-01-01

    signalling pathways. The structure of rat FGF1 crystallized in the presence of SOS has been determined at 2.2 A resolution. SOS-mediated dimerization of FGF1 was observed, which was further supported by gel-filtration experiments. The major contributors to the sulfate-binding sites in rat FGF1 are Lys113......, Lys118, Arg122 and Lys128. An arginine at position 116 is a consensus residue in mammalian FGF molecules; however, it is a serine in rat FGF1. This difference may be important for SOS-mediated FGF1 dimerization in rat....

  16. Disparity Expression of Notch1 in Benign and Malignant Colorectal Diseases

    Science.gov (United States)

    Huang, Rui; Tang, Qingchao; You, Qi; Liu, Zheng; Wang, Guiyu; Chen, Yinggang; Sun, Yuwen; Muhammad, Shan; Wang, Xishan

    2013-01-01

    Background and Objectives Although there was growing evidence supporting the hypothesis that Notch1 was one of the few candidate genes linked with colorectal cancer (CRC) susceptibility, the precise level of Notch1 protein expression in benign and malignant colorectal diseases was still unknown. Our study has investigated the Notch1 expression in benign and malignant colorectal diseases as well as to investigate the role and clinicopathological significance of aberrant expression of Notch1 in CRC. Methods The protein expression of Notch1 was examined by immunohistochemistry in 901 clinical specimens with colorectal diseases, including 220 patients with ulcerative colitis, 232 patients with colorectal adenoma and 449 patients with colorectal cancer. Associations between the expression of Notch1 and various clinicopathological features, as well as survival status, were studied. Results Cytoplasmic Notch1 was expressed in 7.7% of patients with ulcerative colitis, 14.7% of patients with colorectal adenoma and 58.0% of patients with colorectal cancer, respectively. Colorectal cancer patients with high expression levels of Notch1 showed lower overall survival (OS) and disease-free survival (DFS) rates than those patients with low Notch1 expression. Conclusions Expression level of Notch1 was gradually increased from precancerous lesions to cancer. It might play as an oncogene in the CRC development, and might be potentially used as a biomarker for prognosis of CRCs. PMID:24312514

  17. Expression of FGF7, FGF10 and FGFR2Ⅲb in the process of development of mouse kidney

    Directory of Open Access Journals (Sweden)

    Kun WANG

    2012-08-01

    Full Text Available Objective To observe the expressions of fibroblast growth factor 7 and 10 (FGF7, FGF10 and fibroblast growth factor receptor 2Ⅲb (FGFR2Ⅲb in kidney tissue of mice during different development stages, and investigate the relationship between FGF7, FGF10, FGFR2Ⅲb and renal development. Methods The kidneys of mice of fetal age 12, 14, 16 and 18d and neonatal age of 1, 3, 7, 14, 21 and 42d were selected. The expressions of FGF7, FGF10 and FGFR2Ⅲb were determined with immunohistochemistry and Western blotting, and qualitatively and quantitatively analyzed with stereological method. Results Immunohistochemical staining showed that FGF7, FGF10 and FGFR2Ⅲb were weakly expressed in the ureteric buds at the fetal age of 12d (E12d, and then, along with the renal development, they expressed mainly in distal tubules and collecting ducts. FGF 10 was expressed in the proximal convoluted tubule, but not in the proximal straight tubule, while no expression of FGF7 or FGFR2Ⅲb was found in the proximal tubule. No expressions of FGF7, FGF10 and FGFR2Ⅲb were found in the metanephrogenic tissue and corpuscular renis in each development stage. Western blotting and stereological analysis revealed that the expressions of FGF7, FGF10 and FGFR2Ⅲb increased obviously from E14 to N7, and then decreased gradually from N7 to N42. Conclusions FGF7, FGF10 and FGFR2Ⅲb might play an important role in the renal development. FGF10 plays its role mainly in proximal convoluted tubule, distal tubule and collecting duct, while FGF7 and FGFR2Ⅲb play their roles dominantly in distal tubule and collecting duct.

  18. Notch 1 impairs osteoblastic cell differentiation.

    Science.gov (United States)

    Sciaudone, Maria; Gazzerro, Elisabetta; Priest, Leah; Delany, Anne M; Canalis, Ernesto

    2003-12-01

    Notch receptors are single pass transmembrane receptors activated by membrane-bound ligands with a role in cell proliferation and differentiation. As Notch 1 and 2 mRNAs are expressed by osteoblasts and induced by cortisol, we postulated that Notch could regulate osteoblastogenesis. We investigated the effects of retroviral vectors directing the constitutive expression of the Notch 1 intracellular domain (NotchIC) in murine ST-2 stromal and in MC3T3 cells. NotchIC overexpression was documented by increased Notch 1 transcripts and activity of the Notch-dependent Hairy Enhancer of Split promoter. In the presence of bone morphogenetic protein-2 (BMP-2), ST-2 cells differentiated toward osteoblasts forming mineralized nodules, and Notch 1 opposed this effect and decreased the expression of osteocalcin, type I collagen, and alkaline phosphatase transcripts and Delta2Delta FosB protein. Further, NotchIC decreased Wnt/beta-catenin signaling. As cells differentiated in the presence of BMP-2, they underwent apoptosis, and Notch opposed this event. In the presence of cortisol, NotchIC induced the formation of mature adipocytes and enhanced the effect of cortisol on adipsin, peroxisome proliferator-activated receptor-gamma2 and CCAAT enhancer binding protein alpha and delta mRNA levels. NotchIC also opposed MC3T3 cell differentiation and the expression of a mature osteoblastic phenotype. In conclusion, NotchIC impairs osteoblast differentiation and enhances adipogenesis in stromal cell cultures.

  19. FGF23 fails to inhibit uremic parathyroid glands.

    Science.gov (United States)

    Canalejo, Rocío; Canalejo, Antonio; Martinez-Moreno, Julio Manuel; Rodriguez-Ortiz, M Encarnacion; Estepa, Jose C; Mendoza, Francisco Javier; Munoz-Castaneda, Juan Rafael; Shalhoub, Victoria; Almaden, Yolanda; Rodriguez, Mariano

    2010-07-01

    Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D(3). FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal-regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signal-regulated kinase 1/2-mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition.

  20. AKAP200 promotes Notch stability by protecting it from Cbl/lysosome-mediated degradation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Neeta Bala Tannan

    2018-01-01

    Full Text Available AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.

  1. Equivalent configurations for notch and fretting fatigue

    Directory of Open Access Journals (Sweden)

    J. A. Araújo

    2015-07-01

    Full Text Available Under the typical partial slip conditions under which fretting fatigue takes place, the amount of superficial damage is small. Therefore, the substantial reduction in fatigue life caused by fretting, when compared to plain fatigue, may well be more associated with the stress concentration and the stress gradient phenomena generated by the contact problem than to the superficial loss of material. In this setting, notch stress-based methodologies could, in principle, be applied to fretting in the medium/high cycle fatigue regime. The aim of this work was to investigate whether it is possible to design fretting and notch fatigue configurations, which are nominally identical in terms of damage measured by a multiaxial fatigue model. The methodology adopted to carry out this search considered a cylindrical on flat contact and a V-notch. Load and geometry dimensions of both configurations were adjusted in order to try to obtain the “same” decay of the Multiaxial Fatigue Index from the hot spot up to a critical distance. Positive results of such simulations can lead us to design an experimental program that can bring more firm conclusions on the use of pure stress-based approaches, which do not include the wear damage, in the modeling of fretting fatigue.

  2. Periostin associates with Notch1 precursor to maintain Notch1 expression under a stress condition in mouse cells.

    Directory of Open Access Journals (Sweden)

    Hideyuki Tanabe

    Full Text Available BACKGROUND: Matricellular proteins, including periostin, modulate cell-matrix interactions and cell functions by acting outside of cells. METHODS AND FINDINGS: In this study, however, we reported that periostin physically associates with the Notch1 precursor at its EGF repeats in the inside of cells. Moreover, by using the periodontal ligament of molar from periostin-deficient adult mice (Pn-/- molar PDL, which is a constitutively mechanically stressed tissue, we found that periostin maintained the site-1 cleaved 120-kDa transmembrane domain of Notch1 (N1 level without regulating Notch1 mRNA expression. N1 maintenance in vitro was also observed under such a stress condition as heat and H(2O(2 treatment in periostin overexpressed cells. Furthermore, we found that the expression of a downstream effector of Notch signaling, Bcl-xL was decreased in the Pn-/- molar PDL, and in the molar movement, cell death was enhanced in the pressure side of Pn-/- molar PDL. CONCLUSION: These results suggest the possibility that periostin inhibits cell death through up-regulation of Bcl-xL expression by maintaining the Notch1 protein level under the stress condition, which is caused by its physical association with the Notch1 precursor.

  3. Evidence of non-canonical NOTCH signaling

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads

    2016-01-01

    suggested to interact with NOTCH1 and act as an antagonist. This non-canonical interaction is, however controversial, and evidence for a direct interaction, still lacking in mammals. In this study, we elucidated the putative DLK1-NOTCH1 interaction in a mammalian context. Taking a global approach and using...... this interaction to occur between EGF domains 5 and 6 of DLK1 and EGF domains 10-15 of NOTCH1. Thus, our data provide the first evidence for a direct interaction between DLK1 and NOTCH1 in mammals, and substantiate that non-canonical NOTCH ligands exist, adding to the complexity of NOTCH signaling....

  4. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus.

    Science.gov (United States)

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Horita, Nobukatsu; Todisco, Andrea; Turgeon, D Kim; Siebel, Christian W; Samuelson, Linda C

    2017-02-01

    The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem

  5. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95% confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.Conclusion:Our results suggest...

  6. Subcutaneous basic FGF-Injection accelerates the development of mandibular condyle of newborn mice during lactation period

    OpenAIRE

    Aoyama, Yuki; Ochiai, Takanaga; Shen, FA-Chin; Hasegawa, Hiromasa

    2012-01-01

    To elucidate the effect of local bFGF administration, we administered a total of 0.3μg rhbFGF was to the left mandibular condyle by three injections of 0.1μl bFGF solution for 3 days after birth. The contralateral condyles with three injections of 0.1μl physiologic saline served as controls. Serial sections including the widest condyle were evaluated with H-E staining and immunostaining for PCNA. The maximum width of condyle, proliferative zone thickness, proliferative zone thickness ratio an...

  7. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  8. Impact of Annexin A 7 Deficiency on FGF23 Plasma Concentrations

    Directory of Open Access Journals (Sweden)

    Anja T. Umbach

    2016-11-01

    Full Text Available Background/Aims: The release of fibroblast growth factor FGF23, a powerful regulator of 1,25(OH2D3 formation and mineral metabolism, is stimulated by store-operated Ca2+ entry (SOCE, which is accomplished by the pore forming Ca2+ release activated channel protein Orai1. Regulators of Orai1 and thus FGF23 release include serum & glucocorticoid inducible kinase SGK1, a kinase up-regulated by glucocorticosteroids. Some effects of glucocorticoids require the presence of annexin A7, such as suppression of prostaglandin E2 in gastric glands. The present study thus explored whether annexin A7 impacts on FGF23 plasma levels. Methods: Comparisons were made between gene targeted mice lacking functional annexin A7 (Anx7-/- and their wild type littermates (Anx7+/+. Serum C-terminal-FGF23, intact FGF23, 1,25(OH2D3 and PTH concentrations were measured by ELISA or EIA. The serum and urinary phosphate concentrations were measured by colorimetry, the serum Ca2+ concentration and the urinary Ca2+ concentration by flame photometry. Results: Serum C-terminal FGF23 levels and corticosterone levels were significantly higher and serum 1,25(OH2 D3 and PTH levels were significantly lower in Anx7-/- than in Anx7+/+ mice. Water intake was slightly but significantly higher in Anx7-/- mice than in Anx7+/+ mice. No significant difference was observed between Anx7-/- and Anx7+/+ mice in urinary fluid excretion, plasma Ca2+ concentration, plasma phosphate concentration and urinary Ca2+ output. The urinary phosphate output was significantly lower in Anx7-/- mice than in Anx7+/+ mice. Conclusion: Annexin A7 deficiency upregulates FGF23 plasma levels, an effect paralleled by increased corticosterone plasma levels, as well as decreased 1,25(OH2 D3 and PTH plasma levels.

  9. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...

  10. Delta/Notch-Like EGF-Related Receptor (DNER Is Not a Notch Ligand.

    Directory of Open Access Journals (Sweden)

    Maxwell Greene

    Full Text Available Delta/Notch-like EGF-related receptor (DNER has been reported to act as a Notch ligand, despite lacking a Delta/Serrate/Lag (DSL binding domain common to all other known ligands. The established Notch ligand Delta-like 1 (DLL1, but not DNER, activated Notch1 in a luciferase assay, prevented the differentiation of myoblasts through Notch signaling, and bound Notch-fc in a cell-based assay. DNER is not a Notch ligand and its true function remains unknown.

  11. Endodermal Hedgehog signals modulate Notch pathway activity in the developing digestive tract mesenchyme.

    Science.gov (United States)

    Kim, Tae-Hee; Kim, Byeong-Moo; Mao, Junhao; Rowan, Sheldon; Shivdasani, Ramesh A

    2011-08-01

    The digestive tract epithelium and its adjoining mesenchyme undergo coordinated patterning and growth during development. The signals they exchange in the process are not fully characterized but include ligands of the Hedgehog (Hh) family, which originate in the epithelium and are necessary for mesenchymal cells to expand in number and drive elongation of the developing gut tube. The Notch signaling pathway has known requirements in fetal and adult intestinal epithelial progenitors. We detected Notch pathway activity in the embryonic gut mesenchyme and used conditional knockout mice to study its function. Selective disruption of the Notch effector gene RBP-Jκ (Rbpj) in the mesenchyme caused progressive loss of subepithelial fibroblasts and abbreviated gut length, revealing an unexpected requirement in this compartment. Surprisingly, constitutive Notch activity also induced rapid mesenchymal cell loss and impaired organogenesis, probably resulting from increased cell death and suggesting the need for a delicate balance in Notch signaling. Because digestive tract anomalies in mouse embryos with excess Notch activity phenocopy the absence of Hh signaling, we postulated that endodermal Hh restrains mesenchymal Notch pathway activity. Indeed, Hh-deficient embryos showed Notch overactivity in their defective gut mesenchyme and exposure to recombinant sonic hedgehog could override Notch-induced death of cultured fetal gut mesenchymal cells. These results reveal unexpected interactions between prominent signals in gastrointestinal development and provide a coherent explanation for Hh requirements in mesenchymal cell survival and organ growth.

  12. Hepatitis B Virus HBx Activates Notch Signaling via Delta-Like 4/Notch1 in Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Pornrat Kongkavitoon

    Full Text Available Hepatitis virus B (HBV infection is one of the major causes of hepatocellular carcinomas (HCC. HBx protein encoded in HBV genome is one of the key viral factors leading to malignant transformation of infected cells. HBx functions by interfering with cellular functions, causing aberration in cellular behaviour and transformation. Notch signalling is a well-conserved pathway involved in cellular differentiation, cell survival and cell death operating in various types of cells. Aberration in the Notch signalling pathways is linked to various tumors, including HCC. The role of HBx on the Notch signalling in HCC, however, is still controversial. In this study, we reported that HBV genome-containing HCC cell line HepG2 (HepG2.2.15 expressed higher Notch1 and Delta-like 4 (Dll4, compared to the control HepG2 without HBV genome. This upregulation coincided with increased appearance of the cleavage of Notch1, indicating constitutively activated Notch signalling. Silencing of HBx specifically reduced the level of Dll4 and cleaved Notch1. The increase in Dll4 level was confirmed in clinical specimens of HCC lesion, in comparison with non-tumor lesions. Using specific signalling pathway inhibitors, we found that MEK1/2, PI3K/AKT and NF-κB pathways are critical for HBx-mediated Dll4 upregulation. Silencing of HBx clearly decreased the level of phosphorylation of Akt and Erk1/2. Upon silencing of Dll4 in HepG2.2.15, decreased cleaved Notch1, increased apoptosis and cell cycle arrest were observed, suggesting a critical role of HBx-Dll4-Notch1 axis in regulating cell survival in HCC. Furthermore, clonogenic assay confirmed the important role of Dll4 in regulating cell survival of HBV-genome containing HCC cell line. Taken together, we reported a link between HBx and the Notch signalling in HCC that affects cell survival of HCC, which can be a potential target for therapy.

  13. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  14. Leptin as a Potential Regulator of FGF21

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    2016-03-01

    Full Text Available Background/Aims: Fibroblast growth factor 21 (FGF21, a potent metabolic regulator, has been shown to improve insulin sensitivity in animal models of insulin resistance. Several studies have focused on identifying mediators of FGF21 effects. However, the identification of factors involved in FGF21 regulation is far from complete. As leptin is a potent metabolic modulator as well, we aimed at characterizing whether leptin may regulate FGF21. Methods: We investigated a potential regulation of FGF21 by leptin in vivo in Wistar rats and in vitro using human derived hepatocarcinoma HepG2 cells. This model was chosen as the liver is considered the main FGF21 expression site. Results: We found that leptin injections increased plasma FGF21 levels in adult Wistar rats. This was confirmed in vitro, as leptin increased FGF21 expression in HepG2 cells. We also showed that the leptin effect on FGF21 expression was mediated by STAT3 activation in HepG2 cells. Conclusion: New findings regarding a leptin-STAT3-FGF21 axis were provided in this study, although investigating the exact mechanisms linking leptin and FGF21 are still needed. These results are of great interest in the context of identifying potential new clinical approaches to treat metabolic diseases associated with insulin resistance, such as obesity and type 2 diabetes.

  15. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans.

    Science.gov (United States)

    Søberg, Susanna; Sandholt, Camilla H; Jespersen, Naja Z; Toft, Ulla; Madsen, Anja L; von Holstein-Rathlou, Stephanie; Grevengoed, Trisha J; Christensen, Karl B; Bredie, Wender L P; Potthoff, Matthew J; Solomon, Thomas P J; Scheele, Camilla; Linneberg, Allan; Jørgensen, Torben; Pedersen, Oluf; Hansen, Torben; Gillum, Matthew P; Grarup, Niels

    2017-05-02

    The liking and selective ingestion of palatable foods-including sweets-is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas knockout of Fgf21 increases sugar consumption in mice. To investigate the relevance of these findings in humans, we genotyped variants in the FGF21 locus in participants from the Danish Inter99 cohort (n = 6,514) and examined their relationship with a detailed range of food and ingestive behaviors. This revealed statistically significant associations between FGF21 rs838133 and increased consumption of candy, as well as nominal associations with increased alcohol intake and daily smoking. Moreover, in a separate clinical study, plasma FGF21 levels increased acutely after oral sucrose ingestion and were elevated in fasted sweet-disliking individuals. These data suggest the liver may secrete hormones that influence eating behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch s...

  17. Notch signaling in cerebrovascular diseases (Review).

    Science.gov (United States)

    Cai, Zhiyou; Zhao, Bin; Deng, Yanqing; Shangguan, Shouqin; Zhou, Faming; Zhou, Wenqing; Li, Xiaoli; Li, Yanfeng; Chen, Guanghui

    2016-10-01

    The Notch signaling pathway is a crucial regulator of numerous fundamental cellular processes. Increasing evidence suggests that Notch signaling is involved in inflammation and oxidative stress, and thus in the progress of cerebrovascular diseases. In addition, Notch signaling in cerebrovascular diseases is associated with apoptosis, angiogenesis and the function of blood‑brain barrier. Despite the contradictory results obtained to date as to whether Notch signaling is harmful or beneficial, the regulation of Notch signaling may provide a novel strategy for the treatment of cerebrovascular diseases.

  18. Genetic screens to identify new Notch pathway mutants in Drosophila.

    Science.gov (United States)

    Giagtzoglou, Nikolaos

    2014-01-01

    Notch signaling controls a wide range of developmental processes, including proliferation, apoptosis, and cell fate specification during both development and adult tissue homeostasis. The functional versatility of the Notch signaling pathway is tightly linked with the complexity of its regulation in different cellular contexts. To unravel the complexity of Notch signaling, it is important to identify the different components of the Notch signaling pathway. A powerful strategy to accomplish this task is based on genetic screens. Given that the developmental context of signaling is important, these screens should be customized to specific cell populations or tissues. Here, I describe how to perform F1 clonal forward genetic screens in Drosophila to identify novel components of the Notch signaling pathway. These screens combine a classical EMS (ethyl methanesulfonate) chemical mutagenesis protocol along with clonal analysis via FRT-mediated mitotic recombination. These F1 clonal screens allow rapid phenotypic screening within clones of mutant cells induced at specific developmental stages and in tissues of interest, bypassing the pleiotropic effects of isolated mutations. More importantly, since EMS mutations have been notoriously difficult to map to specific genes in the past, I briefly discuss mapping methods that allow rapid identification of the causative mutations.

  19. Suprascapular Notch Asymmetry: A Study on 311 Patients

    Directory of Open Access Journals (Sweden)

    Michał Polguj

    2014-01-01

    Full Text Available The most important risk factor of suprascapular nerve entrapment is probably the shape of the suprascapular notch (SSN. The aim of the study was to perform a radiological study of the symmetry of SSN. Included in the study were 311 patients (137 women and 174 men who underwent standard computed tomography investigation of the chest. A total of 622 computed tomography scans of scapulae were retrospectively analyzed to classify suprascapular notches into five types. Suprascapular notch was recognized as a symmetrical feature in 53.45% of the patients. Symmetry was more frequently seen in females (54.0% versus 52.9%, but not to any significant degree (P=0.8413. Type III was the most commonly noted symmetrical feature (66.9% and type II was less common (0.6%. Type III was the most symmetrical type of suprascapular notch, occurring significantly more often as a symmetrical feature in comparison with type I (P<0.0001, type II (P=0.00137, or type IV (P=0.001. Our investigation did not show that the suprascapular notch is a symmetrical feature. However, symmetry was recognized more frequently in the case of type III SSN. No significant differences in symmetry were found with regard to sex.

  20. Notch signaling in the epididymal epithelium regulates sperm motility and is transferred at a distance within epididymosomes.

    Science.gov (United States)

    Murta, D; Batista, M; Silva, E; Trindade, A; Henrique, D; Duarte, A; Lopes-da-Costa, L

    2016-03-01

    Spermatozoa undergo sequential maturation changes during their transit along the epididymis. These changes are modulated by the epididymal epithelium and require a finely tuned gene expression. The Notch cell signaling pathway is a major regulator of cell fate decisions in several tissues, including the testis. Here, we evaluated the transcription and expression patterns of Notch components (Notch1-3, Dll1, Dll4, and Jagged1) and effectors (Hes1-2 and Hes5) in the adult mouse epididymis, and evaluated the role of Notch signaling in the epididymis through its in vivo blockade following administration of an inhibitor (DAPT). Notch components and effectors were dynamically transcribed and expressed in the epididymis and vas deferens, each segment exhibiting a specific combination of epithelial receptor/ligand/effector expression patterns. Nuclear detection of Notch effectors indicates that Notch signaling was active. Notch components (but not effectors) were identified in the cytoplasmic droplet of spermatozoa, in a dynamic and specific pattern along the epididymis. In addition, Notch components were identified within large and small vesicles in the epididymal lumen. A purified population of these membranous vesicles from different epididymal segments was obtained, and through dot blot analysis, it was confirmed that Notch components were carried within these vesicles in a dynamic pattern along the epididymal lumen. We hypothesize that these vesicles (epididymosomes) allow Notch signaling at distance from epididymal epithelial cells to spermatozoa. DAPT-induced in vivo Notch signaling blockade, although showing a low efficiency, disrupted the expression patterns of Notch components and effectors in the epididymal epithelium and in spermatozoa, and significantly decreased sperm motility, although not affecting male fertility. These results prompt for a regulatory role of Notch signaling in epididymal epithelial function and sperm maturation. © 2016 American Society of

  1. Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Sonne, David P; van Nierop, F Samuel; Kulik, Willem

    2016-01-01

    controls, but differences were not statistically significant due to considerable variation. CONCLUSION: Postprandial plasma patterns of bile acids with FXR agonistic properties (CDCA, DCA, and CA) and FXR antagonistic properties (UDCA) in T2D patients support the notion of a "T2D-bile acid-FGF-19......CONTEXT: Bile acids regulate lipid and carbohydrate metabolism by interaction with membrane or intracellular proteins including the nuclear farnesoid X receptor (FXR). Postprandial activation of ileal FXR leads to secretion of fibroblast growth factor 19 (FGF-19), a gut hormone that may...... be implicated in postprandial glucose metabolism. OBJECTIVE: To describe postprandial plasma concentrations of 12 individual bile acids and FGF-19 in patients with type 2 diabetes (T2D) and healthy controls. DESIGN AND SETTING: Descriptive study, performed at the Center for Diabetes Research, Gentofte Hospital...

  2. The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Garcia-Haro, Luisa; Sabio, Guadalupe; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Xu, Jia; Shulha, Hennady P.; Garber, Manuel; Gao, Guangping; Davis, Roger J.

    2014-01-01

    The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver. PMID:25043817

  3. Planar Ultrawideband Antenna with Photonically Controlled Notched Bands

    Directory of Open Access Journals (Sweden)

    Drasko Draskovic

    2013-01-01

    Full Text Available A design of a planar microstrip-fed ultrawideband (UWB printed circular monopole antenna with optically controlled notched bands is presented. The proposed antenna is composed of a circular ultrawideband patch, with an etched T-shaped slot controlled by an integrated silicon switch. The slot modifies the frequency response of the antenna suppressing 3.5–5 GHz band when the switch is in open state. The optical switch is controlled by a low-power near-infrared (808 nm laser diode, which causes the change in the frequency response of the antenna generating a frequency notch. This solution could be expanded to include several notches in the antenna frequency response achieving a fully reconfigurable UWB antenna. The antenna could be remotely controlled at large distances using optical fiber. The prototype antenna has been fully characterized to verify these design concepts.

  4. The roles of Notch1 expression in the migration of intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Zhou, Qi; Wang, Yafeng; Peng, Baogang; Liang, Lijian; Li, Jiaping

    2013-05-20

    Notch signaling, a critical pathway for tissue development, contributes to tumorigenesis in many tissues; however, the roles of Notch signaling in Intrahepatic Cholangiocarcinoma (ICC) remains unclear. In this study, we evaluated the expression and effects of Notch1 on cell migration in ICC. Multiple cellular and molecular approaches were performed including gene transfection, siRNA transfection, RT-PCR, Western blotting, Rac activation assays and immunofluorescence. We found that Notch1 was up-regulated in ICC tissues and cell lines. The exogenous expression of Notch1 in glioma cells increased their migratory and invasive capacity. Similarly, the suppression of Notch1 expression inactivated Rac1 and inhibited ICC cell migration. Notch1 over expression induced an Epithelial-to-mesenchymal transition (EMT) phenotype that included enhanced expression of α-SMA and Vimentin, loss of E-cadherin expression, morphological changes and cytoskeletal reorganization in ICC cells. Notch1 may induce a migratory effect in ICC by causing an epithelial-mesenchymal transition and activating Rac1 and could serve as a novel diagnostic and therapeutic target in patients with ICC.

  5. NOTCH1 Mutations in Aortic Stenosis: Association with Osteoprotegerin/RANK/RANKL

    Directory of Open Access Journals (Sweden)

    Olga Irtyuga

    2017-01-01

    Full Text Available Background. The NOTCH pathway is known to be important in the pathogenesis of calcific aortic valve disease, possibly through regulators of osteoprotegerin (OPG, receptor activator of nuclear factor κB (RANK, and its ligand (RANKL system. The purpose of the present study was to search for possible associations between NOTCH1 gene mutations and circulating levels of OPG and soluble RANKL (sRANKL in patients with aortic stenosis (AS. Methods. The study was performed on 61 patients with AS including 31 with bicuspid and 30 with tricuspid aortic valves. We applied a strategy of targeted mutation screening for 10 out of 34 exons of the NOTCH1 gene by direct sequencing. Serum OPG and sRANKL levels were assessed. Results. In total, 6 genetic variants of the NOTCH1 gene including two new mutations were identified in the study group. In an age- and arterial hypertension-adjusted multivariable regression analysis, the serum OPG levels and the OPG/sRANKL ratio were correlated with NOTCH1 missense variants. All studied missense variants in NOTCH1 gene were found in Ca(2+-binding EGF motif of the NOTCH extracellular domain bound to Delta-like 4. Conclusion. Our results suggest that the OPG/RANKL/RANK system might be directly influenced by genetic variants of NOTCH1 in aortic valve calcification.

  6. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL.

    Science.gov (United States)

    Monet-Leprêtre, Marie; Haddad, Iman; Baron-Menguy, Céline; Fouillot-Panchal, Maï; Riani, Meriem; Domenga-Denier, Valérie; Dussaule, Claire; Cognat, Emmanuel; Vinh, Joelle; Joutel, Anne

    2013-06-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross

  7. Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner.

    Science.gov (United States)

    Schouwey, Karine; Delmas, Véronique; Larue, Lionel; Zimber-Strobl, Ursula; Strobl, Lothar J; Radtke, Freddy; Beermann, Friedrich

    2007-01-01

    The Notch signaling pathway is involved in diverse biological processes such as cell fate decisions or stem cell maintenance. In this study, we assessed the role of this pathway for melanocyte development and hair pigmentation using RBP-Jkappa, Notch1, and Notch2 conditional knockout mice. Disruption of the Notch pathway by inactivating RBP-Jkappa in the melanocyte lineage using Tyr::Cre mice led to a severe coat color dilution. Similarly, hair graying was observed when Notch1 and/or Notch2 receptors were ablated in melanocytes. This phenotype was proportional to the number of floxed Notch alleles, with the most pronounced effect seen in Tyr::Cre/degrees; Notch1(flox/flox); Notch2(flox/flox) mice. Deletion of Notch1 and/or Notch2 in melanoblasts did not induce a congenital defect. The number of Dct-expressing cells at embryonic stages was not affected, but melanocytes located within the hair matrix progressively disappeared during the first regeneration of the hair follicle. In contrast, non-follicular melanocytes and pigmentation in the dermis and in the choroid were not affected. We suggest that both Notch1 and Notch2 receptors contribute to the maintenance of melanoblasts and melanocyte stem cells, and are essential for proper hair pigmentation.

  8. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  9. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.

    Directory of Open Access Journals (Sweden)

    Bethany T Nelson

    Full Text Available Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3-10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs. The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21 promote fat utilization, reduce body temperature, and readily enter torpor-all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.

  10. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  11. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.

    Science.gov (United States)

    Nelson, Bethany T; Ding, Xunshan; Boney-Montoya, Jamie; Gerard, Robert D; Kliewer, Steven A; Andrews, Matthew T

    2013-01-01

    Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3-10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor-all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.

  12. Metabolic effects of FGF-21: thermoregulation and beyond

    Directory of Open Access Journals (Sweden)

    Bin eNi

    2015-09-01

    Full Text Available FGF-21, a member of the fibroblast growth factor (FGF family, is a novel hormone involved in the control of metabolism by modulating glucose homeostasis, insulin sensitivity, ketogenesis, and promoting adipose tissue browning. Recent studies demonstrated that brown adipose tissue is not only a target for, but is also a potentially important source of systemic FGF-21. These findings support the hypothesis that FGF-21 plays a physiologic role in thermogenesis and thermogenic recruitment of white adipose tissue by an autocrine-paracrine axis. This review examines the role of FGF-21 in thermogenesis from the perspective of cell-based, animal model, and human studies. We also present recent advances in the characterization of FGF-21’s regulation of metabolism.

  13. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans

    DEFF Research Database (Denmark)

    Søberg, Susanna; Sandholt, Camilla Helene; Z. Jespersen, Naja

    2017-01-01

    The liking and selective ingestion of palatable foods—including sweets—is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas...... elevated in fasted sweet-disliking individuals. These data suggest the liver may secrete hormones that influence eating behavior....

  14. The Sweetest Thing: Regulation of Macronutrient Preference by FGF21.

    Science.gov (United States)

    Adams, Andrew C; Gimeno, Ruth E

    2016-02-09

    Links between FGF21 and carbohydrate consumption have recently been described, with both genomic associations and elevated FGF21 levels in healthy subjects following sugar ingestion. In this issue, von Holstein-Rathlou et al. (2016) and Talukdar et al. (2016) demonstrate a mechanistic role for FGF21 in the regulation of macronutrient preference. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. HIV Tat Impairs Neurogenesis through Functioning As a Notch Ligand and Activation of Notch Signaling Pathway.

    Science.gov (United States)

    Fan, Yan; Gao, Xiang; Chen, Jinhui; Liu, Ying; He, Johnny J

    2016-11-02

    Alterations in adult neurogenesis have been noted in the brain of HIV-infected individuals and are likely linked to HIV-associated neurocognitive deficits, including those in learning and memory. But the underlying molecular mechanisms are not fully understood. In the study, we took advantage of doxycycline-inducible and astrocyte-specific HIV-1 Tat transgenic mice (iTat) and determined the relationship between Tat expression and neurogenesis. Tat expression in astrocytes was associated with fewer neuron progenitor cells (NPCs), fewer immature neurons, and fewer mature neurons in the dentate gyrus of the hippocampus of the mouse brain. In vitro NPC-derived neurosphere assays showed that Tat-containing conditioned media from astrocytes or recombinant Tat protein inhibited NPC proliferation and migration and altered NPC differentiation, while immunodepletion of Tat from Tat-containing conditioned media or heat inactivation of recombinant Tat abrogated those effects. Notch signaling downstream gene Hes1 promoter-driven luciferase reporter gene assay and Western blotting showed that recombinant Tat or Tat-containing conditioned media activated Hes1 transcription and protein expression, which were abrogated by Tat heat inactivation, immunodepletion, and cysteine mutation at position 30. Last, Notch signaling inhibitor N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) significantly rescued Tat-impaired NPC differentiation in vitro and neurogenesis in vivo Together, these results show that Tat adversely affects NPCs and neurogenesis through Notch signaling and point to the potential of developing Notch signaling inhibitors as HIV/neuroAIDS therapeutics. HIV infection of the CNS causes cognitive and memory deficits, which have become more prevalent in the era of combination antiretroviral therapy (cART). Neurogenesis is impaired in HIV-infected individuals. But the underlying molecular mechanisms remain largely unknown. In this study, we have

  16. Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse.

    Science.gov (United States)

    Porntaveetus, Thantrira; Oommen, Shelly; Sharpe, Paul T; Ohazama, Atsushi

    2010-06-01

    Fgf signalling plays critical roles in the development of many ectodermal organs. Palatal rugae are ectodermal corrugated structures of the hard palate and in common with other ectodermal appendages, their development is initiated as epithelial thickenings that form placodes as the underlying mesenchymal cells condense. The placode regions then bulge towards to oral cavity to form an overall corrugated appearance. We carried out comparative in situ hybridization analysis of 18 Fgf ligands (Fgf1-Fgf10, Fgf15-Fgf18, Fgf20-Fgf23), four Fgf receptors (Fgfr1-Fgfr4) and four other Fgf signalling related molecules (Spry1, Spry2, Spry4 and Etv5) during murine palatal rugae development. Fgfr1 and Etv5 showed restricted expression in the interplacode epithelium whereas Fgf18 expression was localized to mesenchyme underneath the interplacode epithelium. The expression of Fgf9 was restricted to epithelial ruga placodes whereas Spry4 expression was observed in mesenchyme underneath the placodes. The localized expression of Fgf2, Fgf8, Fgf16, Fgfr4 and Spry1 were found in bulge mesenchyme. Fgf3, Fgf6, Fgfr2 and Spry2 showed expression in the entire epithelium whereas Fgf10 was expressed throughout the mesenchyme. Fgf signalling thus shows dynamic temporo-spatial expression in murine palatal rugae development. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Activated Notch1 expression is associated with angiogenesis in cutaneous melanoma.

    Science.gov (United States)

    Murtas, Daniela; Piras, Franca; Minerba, Luigi; Maxia, Cristina; Ferreli, Caterina; Demurtas, Paolo; Lai, Simone; Mura, Ester; Corrias, Michela; Sirigu, Paola; Perra, Maria Teresa

    2015-08-01

    An early event in melanocytic tumor growth is the upregulation of Notch signaling. When an active form of Notch1 is overexpressed in primary human melanocytes, it increases cell growth, survival and invasive properties, promoting melanoma progression. Recent evidence suggested that tumor initiation and growth are driven by a subset of tumor-initiating cells termed cancer stem cells. Notch1 plays a predominant role in the maintenance of melanoblasts, including melanocyte stem cells, by preventing initiation of apoptosis. Moreover, the importance of Notch1 in the regulation of tumor angiogenesis is supported by growing evidence in various cancers. Nestin has been widely used as a marker for melanocyte stem cells as well as an angiogenic marker to evaluate neovascularity of endothelial cells in tumors. To gain an insight into the impact of Notch1 activation on the maintenance of melanocyte stem cells and angiogenesis in melanoma, the expression levels of activated Notch1 and nestin were analyzed by immunohistochemistry in 114 primary cutaneous melanomas and 35 lymph node metastases. Activated Notch1 and nestin expression was also evaluated in four dysplastic melanocytic nevi. This study provides evidence that activated Notch1 is overexpressed in cutaneous melanoma, in tumor cells as well as in microvessel endothelium, and that it can promote tumor angiogenesis. Indeed, the overexpression of activated Notch1 in both tumor and vascular endothelial cells was significantly associated with microvascular density in melanoma samples. Thus, activated Notch1 inhibitors may provide a therapeutic strategy in the treatment of melanoma by blocking tumor-associated vascularization.

  18. Mifepristone inhibits MPA-and FGF2-induced mammary tumor growth but not FGF2-induced mammary hyperplasia

    Directory of Open Access Journals (Sweden)

    Juan P. Cerliani

    2010-12-01

    Full Text Available We have previously demonstrated a crosstalk between fibroblast growth factor 2 (FGF2 and progestins inducing experimental breast cancer growth. The aim of the present study was to compare the effects of FGF2 and of medroxyprogesterone acetate (MPA on the mouse mammary glands and to investigate whether the antiprogestin RU486 was able to reverse the MPA- or FGF2-induced effects on both, mammary gland and tumor growth. We demonstrate that FGF2 administered locally induced an intraductal hyperplasia that was not reverted by RU486, suggesting that FGF2-induced effects are progesterone receptor (PR-independent. However, MPA-induced paraductal hyperplasia was reverted by RU486 and a partial agonistic effect was observed in RU486-treated glands. Using C4-HD tumors which only grow in the presence of MPA, we showed that FGF2 administered intratumorally was able to stimulate tumor growth as MPA. The histology of FGF2-treated tumors showed different degrees of gland differentiation. RU486 inhibited both, MPA or FGF2 induced tumor growth. However, only complete regression was observed in MPA-treated tumors. Our results support the hypothesis that stromal FGF2 activates PR inducing hormone independent tumor growth.

  19. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.

    Directory of Open Access Journals (Sweden)

    Zhousheng Xiao

    Full Text Available Increases in fibroblastic growth factor 23 (FGF23 or Fgf23 production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH. Fibroblastic growth factor (FGF signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1 in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO-null mice (Hyp;Fgfr1Dmp1-cKO with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost, phosphate regulating endopeptidase on X chromosome (PHEX or Phex, matrix extracellular phosphoglycoprotein (Mepe, and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml, an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl and 1,25(OH2D (121±23 to 192±34 pg/ml levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK-, PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF

  20. Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development.

    Science.gov (United States)

    Manfroid, Isabelle; Delporte, François; Baudhuin, Ariane; Motte, Patrick; Neumann, Carl J; Voz, Marianne L; Martial, Joseph A; Peers, Bernard

    2007-11-01

    In amniotes, the pancreatic mesenchyme plays a crucial role in pancreatic epithelium growth, notably through the secretion of fibroblast growth factors. However, the factors involved in the formation of the pancreatic mesenchyme are still largely unknown. In this study, we characterize, in zebrafish embryos, the pancreatic lateral plate mesoderm, which is located adjacent to the ventral pancreatic bud and is essential for its specification and growth. We firstly show that the endoderm, by expressing the fgf24 gene at early stages, triggers the patterning of the pancreatic lateral plate mesoderm. Based on the expression of isl1, fgf10 and meis genes, this tissue is analogous to the murine pancreatic mesenchyme. Secondly, Fgf10 acts redundantly with Fgf24 in the pancreatic lateral plate mesoderm and they are both required to specify the ventral pancreas. Our results unveil sequential signaling between the endoderm and mesoderm that is critical for the specification and growth of the ventral pancreas, and explain why the zebrafish ventral pancreatic bud generates the whole exocrine tissue.

  1. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Sung Hee Choi

    Full Text Available Notch is a major oncogenic driver in T cell acute lymphoblastic leukemia (T-ALL, in part because it binds to an enhancer that increases expression of MYC. Here, we exploit the capacity of activated NOTCH1 and NOTCH3 to induce T-ALL, despite substantial divergence in their intracellular regions, as a means to elucidate a broad, common Notch-dependent oncogenomic program through systematic comparison of the transcriptomes and Notch-bound genomic regulatory elements of NOTCH1- and NOTCH3-dependent T-ALL cells. ChIP-seq studies show a high concordance of functional NOTCH1 and NOTCH3 genomic binding sites that are enriched in binding motifs for RBPJ, the transcription factor that recruits activated Notch to DNA. The interchangeability of NOTCH1 and NOTCH3 was confirmed by rescue of NOTCH1-dependent T-ALL cells with activated NOTCH3 and vice versa. Despite remarkable overall similarity, there are nuanced differences in chromatin landscapes near critical common Notch target genes, most notably at a Notch-dependent enhancer that regulates MYC, which correlates with responsiveness to Notch pathway inhibitors. Overall, a common oncogenomic program driven by binding of either Notch is sufficient to maintain T-ALL cell growth, whereas cell-context specific differences appear to influence the response of T-ALL cells to Notch inhibition.

  2. Dimerization effect of sucrose octasulfate on rat FGF1

    International Nuclear Information System (INIS)

    Kulahin, N.; Kiselyov, V.; Kochoyan, A.; Kristensen, O.; Kastrup, Jette S.; Berezin, V.; Bock, E.; Gajhede, M.

    2008-01-01

    The work describes the sucrose octasulfate-mediated dimerization of rat FGF1 by gel-filtration experiments and crystal structure determination. Fibroblast growth factors (FGFs) constitute a family of at least 23 structurally related heparin-binding proteins that are involved in regulation of cell growth, survival, differentiation and migration. Sucrose octasulfate (SOS), a chemical analogue of heparin, has been demonstrated to activate FGF signalling pathways. The structure of rat FGF1 crystallized in the presence of SOS has been determined at 2.2 Å resolution. SOS-mediated dimerization of FGF1 was observed, which was further supported by gel-filtration experiments. The major contributors to the sulfate-binding sites in rat FGF1 are Lys113, Lys118, Arg122 and Lys128. An arginine at position 116 is a consensus residue in mammalian FGF molecules; however, it is a serine in rat FGF1. This difference may be important for SOS-mediated FGF1 dimerization in rat

  3. Association of Fibroblast Growth Factor (Fgf-21) as a Screening ...

    African Journals Online (AJOL)

    24 control samples by enzyme-linked immunosorbent assay (ELISA) and determined the deletion of mitochondrial genome by multiplex polymerase chain reaction (PCR). Results: FGF-21 concentration in 50 % of CPEO patients showed notable differences from that in control subjects. FGF-21 concentration ratio in patient ...

  4. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  5. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...

  6. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Yusuke Murata

    2011-01-01

    Full Text Available The FGF family comprises twenty-two structurally related proteins with functions in development and metabolism. The Fgf21 gene was generated early in vertebrate evolution. FGF21 acts as an endocrine regulator in lipid metabolism. Hepatic Fgf21 expression is markedly induced in mice by fasting or a ketogenic diet. Experiments with Fgf21 transgenic mice and cultured cells indicate that FGF21 exerts pharmacological effects on glucose and lipid metabolism in hepatocytes and adipocytes via cell surface FGF receptors. However, experiments with Fgf21 knockout mice indicate that FGF21 inhibits lipolysis in adipocytes during fasting and attenuates torpor induced by a ketogenic diet but maybe not a physiological regulator for these hepatic functions. These findings suggest the pharmacological effects to be distinct from the physiological roles. Serum FGF21 levels are increased in patients with metabolic diseases having insulin resistance, indicating that FGF21 is a metabolic regulator and a biomarker for these diseases.

  7. Identification and characterization of VEGF and FGF from Hydra.

    Science.gov (United States)

    Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra

    2013-01-01

    Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.

  8. Muscle atrophy in patients wirh ckd results from fgf23/klotho-mediated supression of insulin/igf-i signaling

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    2012-06-01

    Full Text Available Muscle atrophy is a significant consequence of chronic kidney disease (CKD that increases a patient’s risk of mortality and decrease their quality of life. In CKD patients, the circulation levels of FGF23 are significantly increased, but the exact pathological significance of the increase and relationship between FGF23 and muscle atrophy are not clear. Because of Klohto, acts as a co-receptor of FGF23 is detectable in limited tissues including in kidney and brain, but not in skeletal muscles. In contrast, recently reports indicated that the extracellular domain of klohto is cleavage for some reason on the cell surface and detected in the blood in animals. In this study, we attempted to identify the causative factors responsible for the shedding of Klotho, and whether both FGF23 and Klohto induced muscle atrophy via reduction of insulin/IGF-I signaling. We first investigated by treating kidney cells with various factors related in pathological factors in CKD. As a result, we found that advanced glycation endproducts (AGEs, an accumulated in patients with CKD and diabetes mellitus, increases shedding of Klohto in kidney cells. It is common knowledge that insulin/IGF-I signaling is necessary for normal skeletal growth. As a result, we showed that both FGF23 and Klohto inhibited differentiation of cultured skeletal muscle cells through down-regulation of insulin/IGF-I signaling. These observations suggested a divergent role of FGF23 and soluble klohto in the regulation of skeletal muscle differentiation and thereby muscle atrophy under pathological conditioned in CKD patients. Our results further imply that FGF23/Klohto may serve a new therapeutic target for CKD-induced muscle atrophy.

  9. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    Energy Technology Data Exchange (ETDEWEB)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki, E-mail: yasukiishizaki@gunma-u.ac.jp

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  10. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    Energy Technology Data Exchange (ETDEWEB)

    Kabiri, Azadeh, E-mail: z_kabiri@resident.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esfandiari, Ebrahim, E-mail: esfandiari@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Hashemibeni, Batool, E-mail: hashemibeni@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Kazemi, Mohammad, E-mail: m_kazemi@med.mui.ac.i [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Mardani, Mohammad, E-mail: mardani@med.mui.ac.ir [Department of Anatomical Sciences and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences (Iran, Islamic Republic of); Esmaeili, Abolghasem, E-mail: abesmaeili@yahoo.com [Cell, Molecular and Developmental Biology Division, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  11. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice

    Science.gov (United States)

    Zhou, Mei; Learned, R. Marc; Rossi, Stephen J.; DePaoli, Alex M.; Tian, Hui

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent chronic liver disease for which no approved therapies are available. Despite intensive research, the cellular mechanisms that mediate NAFLD pathogenesis and progression are poorly understood. Although obesity, diabetes, insulin resistance, and related metabolic syndrome, all consequences of a Western diet lifestyle, are well‐recognized risk factors for NAFLD development, dysregulated bile acid metabolism is emerging as a novel mechanism contributing to NAFLD pathogenesis. Notably, NAFLD patients exhibit a deficiency in fibroblast growth factor 19 (FGF19), an endocrine hormone in the gut–liver axis that controls de novo bile acid synthesis, lipogenesis, and energy homeostasis. Using a mouse model that reproduces the clinical progression of human NAFLD, including the development of simple steatosis, nonalcoholic steatohepatitis (NASH), and advanced “burnt‐out” NASH with hepatocellular carcinoma, we demonstrate that FGF19 as well as an engineered nontumorigenic FGF19 analogue, M70, ameliorate bile acid toxicity and lipotoxicity to restore liver health. Mass spectrometry‐based lipidomics analysis of livers from mice treated with FGF19 or M70 revealed significant reductions in the levels of toxic lipid species (i.e., diacylglycerols, ceramides and free cholesterol) and an increase in levels of unoxidized cardiolipins, an important component of the inner mitochondrial membrane. Furthermore, treatment with FGF19 or M70 rapidly and profoundly reduced levels of liver enzymes, resolved the histologic features of NASH, and enhanced insulin sensitivity, energy homeostasis, and lipid metabolism. Whereas FGF19 induced hepatocellular carcinoma formation following prolonged exposure in these mice, animals expressing M70 showed no evidence of liver tumorigenesis in this model. Conclusion: We have engineered an FGF19 hormone that is capable of regulating multiple pathways to deliver antisteatotic

  12. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    International Nuclear Information System (INIS)

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-01-01

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture

  13. Parathyroid Klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients.

    Science.gov (United States)

    Krajisnik, Tijana; Olauson, Hannes; Mirza, Majd A I; Hellman, Per; Akerström, Göran; Westin, Gunnar; Larsson, Tobias E; Björklund, Peyman

    2010-11-01

    Current studies suggest that short-term exposure of parathyroid glands to fibroblast growth factor 23 (FGF23) reduces parathyroid hormone secretion. However, patients with chronic kidney disease (CKD) develop secondary hyperparathyroidism despite high levels of serum FGF23, indicating a parathyroid FGF23 'resistance'. Here we analyzed the expression of the FGF23 receptors Klotho and FGF receptor 1 (FGFR1) in 88 hyperplastic parathyroid glands from 31 patients with CKD (including 21 renal allograft recipients), and their regulation in isolated bovine and human hyperplastic parathyroid cells. Glandular expression was variable, yet the Klotho and FGFR1 mRNA levels declined in parallel with the decreasing glomerular filtration rate, significantly decreasing over CKD stages. We found no association between the expression of Klotho, FGFR1, and the proliferation marker Ki67. In vitro treatment of bovine cells with FGF23 or calcium reduced the Klotho level, whereas active vitamin D(3) compounds increased its expression. Phosphate and parathyroid hormone had no effect. Treatment had less impact on Klotho in cultured human cells than in the bovine healthy cell model, whereas FGFR1 expression was induced in the hyperplastic cells. Thus parathyroid Klotho and FGFR1 decrease with declining renal function, possibly because of alterations in mineral metabolism related to the failing kidney. This could explain the observed parathyroid resistance to FGF23 in late CKD.

  14. Process development of a FGF21 protein-antibody conjugate.

    Science.gov (United States)

    Dirksen, Anouk; Davis, Keith A; Collins, Joe T; Bhattacharya, Keshab; Finneman, Jari I; Pepin, Erin L; Ryczek, Jeffrey S; Brown, Paul W; Wellborn, William B; Mangalathillam, Ratish; Evans, Brad P; Pozzo, Mark J; Finn, Rory F

    2017-09-26

    A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21 A129C dimerization and stabilizing the FGF21 A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21 A129C dimerization through disulfide formation was eliminated. FGF21 A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21 A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21 A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21 A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21 A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21 A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance

  15. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  16. Notch3/Jagged1 Circuitry Reinforces Notch Signaling and Sustains T-ALL

    Directory of Open Access Journals (Sweden)

    Maria Pelullo

    2014-12-01

    Full Text Available Deregulated Notch signaling has been extensively linked to T-cell acute lymphoblastic leukemia (T-ALL. Here, we show a direct relationship between Notch3 receptor and Jagged1 ligand in human cell lines and in a mouse model of T-ALL. We provide evidence that Notch-specific ligand Jagged1 is a new Notch3 signaling target gene. This essential event justifies an aberrant Notch3/Jagged1 cis-expression inside the same cell. Moreover, we demonstrate in Notch3-IC–overexpressing T lymphoma cells that Jagged1 undergoes a raft-associated constitutive processing. The proteolytic cleavage allows the Jagged1 intracellular domain to empower Notch signaling activity and to increase the transcriptional activation of Jagged1 itself (autocrine effect. On the other hand, the release of the soluble Jagged1 extracellular domain has a positive impact on activating Notch signaling in adjacent cells (paracrine effect, finally giving rise to a Notch3/Jagged1 auto-sustaining loop that supports the survival, proliferation, and invasion of lymphoma cells and contributes to the development and progression of Notch-dependent T-ALL. These observations are also supported by a study conducted on a cohort of patients in which Jagged1 expression is associated to adverse prognosis.

  17. Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis.

    Science.gov (United States)

    Kumano, Keiki; Masuda, Shigeo; Sata, Masataka; Saito, Toshiki; Lee, Suk-Young; Sakata-Yanagimoto, Mamiko; Tomita, Taisuke; Iwatsubo, Takeshi; Natsugari, Hideaki; Kurokawa, Mineo; Ogawa, Seishi; Chiba, Shigeru

    2008-02-01

    Notch signaling affects a variety of mammalian stem cells, but there has been limited evidence that a specific Notch molecule regulates adult stem cells. Recently, it was reported that the reduced Notch signaling initiated at the embryonic stage results in a gradual hair graying phenotype after birth. Here we demonstrate that the oral administration of a gamma-secretase inhibitor (GSI) to wild-type adult C57/Bl6 mice led to a gradual increase in gray spots, which remained unchanged for at least 20 weeks after discontinuing the GSI. In GSI-treated mice, there was a severe decrease in unpigmented melanocytes in the bulge/subbulge region where melanocyte stem cells are located. While we confirmed that Notch1+/-Notch2+/- double heterozygous mice with a C57/Bl6 background were born with a normal hair color phenotype and gradually turned gray after the second hair cycle, in the c-kit mutant Wv background, Notch1+/- and Notch2+/- mice had larger white spots on the first appearance of hair than did the Wv/+ mice, which did not change throughout life. Notch1+/-Notch2+/-Wv/+ mice had white hair virtually all over the body at the first appearance of hair and the depigmentation continued to progress thereafter. Using a neural crest organ culture system, GSI blocked the generation of pigmented melanocytes when added to the culture during the period of melanoblast proliferation, but not during the period of differentiation. These observations imply roles of Notch signaling in both development of melanocyte during embryogenesis and maintenance of melanocyte stem cells in adulthood, while the degree of requirement is distinct in these settings: the latter is more sensitive than the former to the reduced Notch signaling. Furthermore, Notch1 and Notch2 cooperates with c-kit signaling during embryogenesis, and they cooperate with each other to regulate melanocyte homeostasis after birth.

  18. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese.

    Directory of Open Access Journals (Sweden)

    Zhuofeng Lin

    Full Text Available BACKGROUND: Fibroblast growth factor 21 (FGF21 is a hepatic hormone involved in the regulation of lipid and carbohydrate metabolism. This study aims to test the hypothesis that elevated FGF21 concentrations are associated with the change of renal function and the presence of left ventricular hypertrophy (LVH in the different stages of chronic kidney disease (CKD progression. METHODOLOGY/PRINCIPAL FINDINGS: 240 subjects including 200 CKD patients (146 outpatients and 54 long-term hemodialytic patients and 40 healthy control subjects were recruited. All CKD subjects underwent echocardiograms to assess left ventricular mass index. Plasma FGF21 levels and other clinical and biochemical parameters in all subjects were obtained based on standard clinical examination methods. Plasma FGF21 levels were significantly increased with the development of CKD from early- and end-stage (P<0.001 for trend, and significantly higher in CKD subjects than those in healthy subjects (P<0.001. Plasma FGF21 levels in CKD patients with LVH were higher than those in patients without LVH (P = 0.001. Furthermore, plasma FGF21 level correlated positively with creatinine, blood urea nitrogen (BUN, β2 microglobulin, systolic pressure, adiponectin, phosphate, proteinuria, CRP and triglyceride, but negatively with creatinine clearance rate (CCR, estimated glomerular filtrate rate (eGFR, HDL-c, LDL-c, albumin and LVH after adjusting for BMI, gender, age and the presence of diabetes mellitus. Multiple stepwise regression analyses indicated that FGF21 was independently associated with BUN, Phosphate, LVMI and β2 microglobulin (all P<0.05. CONCLUSION: Plasma FGF21 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with renal function and adverse lipid profiles in Chinese population. Understanding whether increased FGF21 is associated with myocardial hypertrophy in CKD requires further study.

  19. Pdlim7 is required for maintenance of the mesenchymal/epidermal Fgf signaling feedback loop during zebrafish pectoral fin development

    Directory of Open Access Journals (Sweden)

    Klosowiak Julian

    2010-10-01

    Full Text Available Abstract Background Vertebrate limb development involves a reciprocal feedback loop between limb mesenchyme and the overlying apical ectodermal ridge (AER. Several gene pathways participate in this feedback loop, including Fgf signaling. In the forelimb lateral plate mesenchyme, Tbx5 activates Fgf10 expression, which in turn initiates and maintains the mesenchyme/AER Fgf signaling loop. Recent findings have revealed that Tbx5 transcriptional activity is regulated by dynamic nucleocytoplasmic shuttling and interaction with Pdlim7, a PDZ-LIM protein family member, along actin filaments. This Tbx5 regulation is critical in heart formation, but the coexpression of both proteins in other developing tissues suggests a broader functional role. Results Knock-down of Pdlim7 function leads to decreased pectoral fin cell proliferation resulting in a severely stunted fin phenotype. While early gene induction and patterning in the presumptive fin field appear normal, the pectoral fin precursor cells display compaction and migration defects between 18 and 24 hours post-fertilization (hpf. During fin growth fgf24 is sequentially expressed in the mesenchyme and then in the apical ectodermal ridge (AER. However, in pdlim7 antisense morpholino-treated embryos this switch of expression is prevented and fgf24 remains ectopically active in the mesenchymal cells. Along with the lack of fgf24 in the AER, other critical factors including fgf8 are reduced, suggesting signaling problems to the underlying mesenchyme. As a consequence of perturbed AER function in the absence of Pdlim7, pathway components in the fin mesenchyme are misregulated or absent, indicating a breakdown of the Fgf signaling feedback loop, which is ultimately responsible for the loss of fin outgrowth. Conclusion This work provides the first evidence for the involvement of Pdlim7 in pectoral fin development. Proper fin outgrowth requires fgf24 downregulation in the fin mesenchyme with subsequent

  20. Transgenic expression of nonclassically secreted FGF suppresses kidney repair.

    Directory of Open Access Journals (Sweden)

    Aleksandr Kirov

    Full Text Available FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair, inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced transgenic mice expressing FGF1 in endothelial cells (EC, which allowed the detection of FGF1 export to the vasculature, and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal peptide-less FGFs.

  1. FGF-21: promising biomarker for detecting ketosis in dairy cows.

    Science.gov (United States)

    Xu, Chuang; Xu, Qiushi; Chen, Yuanyuan; Yang, Wei; Xia, Cheng; Yu, Hongjiang; Zhu, Kuilin; Shen, Taiyu; Zhang, Ziyang

    2016-03-01

    The objective of this study was to investigate the measurement of serum fibroblast growth factor-21 (FGF-21), a protein mainly synthesized by the liver, as a sensitive biomarker for diagnosis of ketosis in dairy cows. Ninety Holstein-Friesian dairy cows (60 healthy and 30 ketosis cases) were selected and divided into a Ketosis group (K), and a Control group (C). We measured serum FGF-21 and other biochemical parameters by commercial ELISA kits. In a combined population of all 90 cows, we found that serum FGF-21 level was lower (P ketosis. When the β-hydroxybutyric acid (BHBA) level increased over 1.2 mmol/L, the FGF-21 level tended to decline below 300.85 pg/ml. The area under the receiver operating characteristic curve (AUC-ROC) for serum FGF-21 for diagnosis of fatty liver was 0.952-0.025 [95% confidence interval (CI) 0.904, 1.000] which was higher than the AUC-ROC for glucose (Glc) and other tested parameters. We concluded that FGF-21 could be a diagnostic parameter in the evaluation and auxiliary diagnosis of changes in the energy metabolism state, and serum FGF-21 measurement would have a considerable clinical impact and lead to greater profitability in the dairy industry.

  2. Notch down-regulation in regenerated epidermis contributes to enhanced expression of interleukin-36α and suppression of keratinocyte differentiation during wound healing.

    Science.gov (United States)

    Takazawa, Yuko; Ogawa, Eisaku; Saito, Rumiko; Uchiyama, Ryuhei; Ikawa, Shuntaro; Uhara, Hisashi; Okuyama, Ryuhei

    2015-07-01

    Notch signaling controls a number of cellular processes, including cell fate decisions, proliferation, differentiation, and survival/apoptosis, in multiple tissues. In the epidermis, Notch1 functions as a molecular switch that controls the transition of cells from an undifferentiated state into a differentiated state. To clarify the functions of Notch in the regenerated epidermis during wound healing. Wounds on mouse skin were immunostained. To investigate the functions of Notch, Notch was inhibited in primary keratinocytes by treatment with a γ-secretase inhibitor and by small interfering RNA-mediated knockdown, and was activated by a recombinant adenovirus approach. Notch1 and Notch2 were down-regulated in the regenerated epidermis during wound healing. To clarify the significance of this down-regulation, we examined its effect on expression of the interleukin (IL)-1 family of proinflammatory cytokines because wounds are exposed to pathogens from the outside world. Among the IL-1 family, IL-36α expression was induced by Notch inhibition. This was consistent with the decreased IL-36α expression in Notch-overexpressing keratinocytes. Notch down-regulation in the regenerated epidermis may reinforce defense against stress from the outside world by inducing IL-36α expression. Next, we examined the effects of Notch down-regulation on keratinocyte growth and differentiation. Notch down-regulation did not alter keratinocyte proliferation. On the other hand, Notch1 down-regulation suppressed induction of spinous layer-specific keratins (keratin1 and keratin10) in keratinocytes, which was consistent with the decreased expression of these keratins in the regenerated epidermis. The reduced levels of these keratins would increase cellular flexibility. Notch down-regulation in the epidermis appears to contribute to tissue regeneration during wound healing. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights

  3. Notch and the awesome power of genetics.

    Science.gov (United States)

    Greenwald, Iva

    2012-07-01

    Notch is a receptor that mediates cell-cell interactions in animal development, and aberrations in Notch signal transduction can cause cancer and other human diseases. Here, I describe the major advances in the Notch field from the identification of the first mutant in Drosophila almost a century ago through the elucidation of the unusual mechanism of signal transduction a little over a decade ago. As an essay for the GENETICS Perspectives series, it is my personal and critical commentary as well as an historical account of discovery.

  4. Exploiting Surface Plasmon Resonance (SPR Technology for the Identification of Fibroblast Growth Factor-2 (FGF2 Antagonists Endowed with Antiangiogenic Activity

    Directory of Open Access Journals (Sweden)

    Marco Presta

    2009-08-01

    Full Text Available Angiogenesis, the process of new blood vessel formation, is implicated in various physiological/pathological conditions, including embryonic development, inflammation and tumor growth. Fibroblast growth factor-2 (FGF2 is a heparin-binding angiogenic growth factor involved in various physiopathological processes, including tumor neovascularization. Accordingly, FGF2 is considered a target for antiangiogenic therapies. Thus, numerous natural/synthetic compounds have been tested for their capacity to bind and sequester FGF2 in the extracellular environment preventing its interaction with cellular receptors. We have exploited surface plasmon resonance (SPR technique in search for antiangiogenic FGF2 binders/antagonists. In this review we will summarize our experience in SPR-based angiogenesis research, with the aim to validate SPR as a first line screening for the identification of antiangiogenic compounds.

  5. PILOTSTUDY TO EVALUATE THE EFFECT OF PHOSPHORUSBINDERS ON FGF23

    Directory of Open Access Journals (Sweden)

    A.Bouma de Krijger

    2012-06-01

    Results are as follows; phosphorus binding by sevelamer significantly lowered urinary phosphate excretion, from a median of 26.25 mmol/24 h to 17.5 mmol/l. Other parameters showed no sgnificant association with urinary phosphate excretion. The serum phosphate was unchanged during treatment. Creatinin clearance was significantly associated with FGF23 (p0.03. FGF23 did not change significant following phosphorus binding therapy. In conclusion; although 8 weeks sevelamer treatment significantly lowered 24 h urinary phosphate excretion, there was no reduction in FGF23 levels in this group of CKD stage 3 patients.

  6. 76 FR 22745 - Three Notch Railway, LLC-Acquisition and Operation Exemption-Three Notch Railroad Co., Inc.

    Science.gov (United States)

    2011-04-22

    ... Surface Transportation Board Three Notch Railway, LLC--Acquisition and Operation Exemption-- Three Notch Railroad Co., Inc. Three Notch Railway, LLC (TNRW), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Three Notch Railroad Co., Inc. (TNHR) and to operate approximately...

  7. Notch activation is dispensable for D, L-sulforaphane-mediated inhibition of human prostate cancer cell migration.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available D, L-Sulforaphane (SFN, a synthetic racemic analog of broccoli constituent L-sulforaphane, is a highly promising cancer chemopreventive agent with in vivo efficacy against chemically-induced as well as oncogene-driven cancer in preclinical rodent models. Cancer chemopreventive effect of SFN is characterized by G(2/M phase cell cycle arrest, apoptosis induction, and inhibition of cell migration and invasion. Moreover, SFN inhibits multiple oncogenic signaling pathways often hyperactive in human cancers, including nuclear factor-κB, Akt, signal transducer and activator of transcription 3, and androgen receptor. The present study was designed to determine the role of Notch signaling, which is constitutively active in many human cancers, in anticancer effects of SFN using prostate cancer cells as a model. Exposure of human prostate cancer cells (PC-3, LNCaP, and/or LNCaP-C4-2B to SFN as well as its naturally-occurring thio-, sulfinyl-, and sulfonyl-analogs resulted in cleavage (activation of Notch1, Notch2, and Notch4, which was accompanied by a decrease in levels of full-length Notch forms especially at the 16- and 24-hour time points. The SFN-mediated cleavage of Notch isoforms was associated with its transcriptional activation as evidenced by RBP-Jk-, HES-1A/B- and HEY-1 luciferase reporter assays. Migration of PC-3 and LNCaP cells was decreased significantly by RNA interference of Notch1 and Notch2, but not Notch4. Furthermore, SFN-mediated inhibition of PC-3 and LNCaP cell migration was only marginally affected by knockdown of Notch1 and Notch2. Strikingly, SFN administration to Transgenic Adenocarcinoma of Mouse Prostate transgenic mice failed to increase levels of cleaved Notch1, cleaved Notch2, and HES-1 proteins in vivo in prostatic intraepithelial neoplasia, well-differentiated carcinoma or poorly-differentiated prostate cancer lesions. These results indicate that Notch activation is largely dispensable for SFN-mediated inhibition of cell

  8. Roles of Notch1 Signaling in Regulating Satellite Cell Fates Choices and Postnatal Skeletal Myogenesis.

    Science.gov (United States)

    Shan, Tizhong; Xu, Ziye; Wu, Weiche; Liu, Jiaqi; Wang, Yizhen

    2017-11-01

    Adult skeletal muscle stem cells, also called satellite cells, are indispensable for the growth, maintenance, and regeneration of the postnatal skeletal muscle. Satellite cells, predominantly quiescent in mature resting muscles, are activated after skeletal muscle injury or degeneration. Notch1 signaling is an evolutionarily conserved pathway that plays crucial roles in satellite cells homeostasis and postnatal skeletal myogenesis and regeneration. Activation of Notch1 signaling promotes the muscle satellite cells quiescence and proliferation, but inhibits differentiation of muscle satellite cells. Notably, the new roles of Notch1 signaling during late-stage of skeletal myogenesis including in post-differentiation myocytes and post-fusion myotubes have been recently reported. Here, we mainly review and discuss the regulatory roles of Notch1 in regulating satellite cell fates choices and skeletal myogenesis. J. Cell. Physiol. 232: 2964-2967, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Notch signaling in embryology and cancer

    National Research Council Canada - National Science Library

    Reichrath, J; Reichrath, Sandra

    2012-01-01

    "The goal of this volume is to comprehensively cover a highly readable overview on our present knowledge of the role of Notch signalling for embryology and cancer, with a focus on new findings in molecular biology...

  10. Notch and VEGF Interactions in Breast Cancer

    National Research Council Canada - National Science Library

    Shawber, Carrie J

    2006-01-01

    The proposal objective is to define Notch and VEGFR-3 in breast cancer. We investigated this relationship in primary endothelial cell cultures, mouse embryos, human breast tumors, and mouse mammary tumor xenografts...

  11. Fermoral Intercondylar Notch Geometry Of Nigerians | Didia ...

    African Journals Online (AJOL)

    The sex differences in notch depth were statistically insignificant (P>0.05). The diameter of the distal end of femur was 7.98 +0.60 for male bones and 7.85 + 0.55 for female bones and the difference between male and female proved statistically significant (P<0.05). The Notch width as measured was 2.31 + 0.21 for males ...

  12. Dose-dependent response of FGF-2 for lymphangiogenesis.

    Science.gov (United States)

    Chang, Lynn K; Garcia-Cardeña, Guillermo; Farnebo, Filip; Fannon, Michael; Chen, Emy J; Butterfield, Catherine; Moses, Marsha A; Mulligan, Richard C; Folkman, Judah; Kaipainen, Arja

    2004-08-10

    Spatio-temporal studies on the growth of capillary blood vessels and capillary lymphatic vessels in tissue remodeling have suggested that lymphangiogenesis is angiogenesis-dependent. We revisited this concept by using fibroblast growth factor 2 (FGF-2) (80 ng) to stimulate the growth of both vessel types in the mouse cornea. When we lowered the dose of FGF-2 in the cornea 6.4-fold (12.5 ng), the primary response was lymphangiogenic. Further investigation revealed that vascular endothelial growth factor-C and -D are required for this apparent lymphangiogenic property of FGF-2, and when the small amount of accompanying angiogenesis was completely suppressed, lymphangiogenesis remained unaffected. Our findings demonstrate that there is a dose-dependent response of FGF-2 for lymphangiogenesis, and lymphangiogenesis can occur in the absence of a preexisting or developing vascular bed, i.e., in the absence of angiogenesis, in the mouse cornea.

  13. Differentiation of stem cells upon deprivation of exogenous FGF2

    DEFF Research Database (Denmark)

    Kjartansdóttir, Kristín Rós; Gabrielsen, Anette; Reda, Ahmed

    2012-01-01

    Establishing a model for in vitro differentiation of human embryonic stem cells (hESCs) towards the germ cell lineage could be used to identify molecular mechanisms behind germ cell differentiation that may help in understanding human infertility. Here, we evaluate whether a lack of exogenous...... fibroblast growth factor 2 (FGF2) is supporting spontaneous differentiation of hESCs cultured on human foreskin fibroblast (hFF) monolayers towards germ cell lineage. Additionally to depriving the hESCs of exogenous FGF2, cells were stimulated with all-trans retinoic acid (ATRA). To get a more comprehensive...... impression on effects of removal of FGF2 and stimulation with ATRA, we combined the results of three cell lines for each experimental setting. When combining gene expression profiles of three cell lines for 96 genes, only 6 genes showed a significant up-regulation in all cell lines, when no FGF2 was added...

  14. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    International Nuclear Information System (INIS)

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-01-01

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  15. Phosphate and FGF-23 homeostasis after kidney transplantation

    NARCIS (Netherlands)

    Baia, Leandro C.; Heilberg, Ita Pfeferman; Navis, Gerjan; de Borst, Martin H.

    2015-01-01

    Dysregulated phosphate metabolism is a common consequence of chronic kidney disease, and is characterized by a high circulating level of fibroblast growth factor (FGF)-23, hyperparathyroidism, and hyperphosphataemia. Kidney transplantation can elicit specific alterations to phosphate metabolism that

  16. Notch signaling and the developing inner ear.

    Science.gov (United States)

    Murata, Junko; Ikeda, Katsuhisa; Okano, Hideyuki

    2012-01-01

    Sensory hair cells (HCs) and their associated nonsensory supporting cells (SCs) exhibit a typical mosaic pattern in each of the sensory patches in the inner ear. Notch signaling has been considered to conduct the formation of this mosaic pattern through one of its famous functions, known as 'lateral inhibition'. The two Notch ligands Delta-like1 and Jagged2 are believed to act synergistically at the stage of cell diversification in mammals. In addition, many current studies suggest that Notch signaling has another inductive, but not inhibiting, role in the determination of the prosensory region, which precedes the cell diversification of HCs and SCs and Jagged1 is thought to be an essential ligand in this process. Earlier in ear development, the first cell fate determination begins with the delamination of the neuroblasts from the otic epithelium. The delaminated neuroblasts migrate and coalesce to form cochleovestibular ganglion. Notch signaling pathway is thought to function during the delamination through its lateral inhibitory mechanism. Recently, many experiments examining Notch-related gene expression patterns and direct functional analyses of genes have revealed multiple important functions of Notch in inner ear development. Here, we survey a series of studies and discuss the issues that remain to be elucidated in the future.

  17. Dose-dependent response of FGF-2 for lymphangiogenesis

    OpenAIRE

    Chang, Lynn K.; Garcia-Cardeña, Guillermo; Farnebo, Filip; Fannon, Michael; Chen, Emy J.; Butterfield, Catherine; Moses, Marsha A.; Mulligan, Richard C.; Folkman, Judah; Kaipainen, Arja

    2004-01-01

    Spatio-temporal studies on the growth of capillary blood vessels and capillary lymphatic vessels in tissue remodeling have suggested that lymphangiogenesis is angiogenesis-dependent. We revisited this concept by using fibroblast growth factor 2 (FGF-2) (80 ng) to stimulate the growth of both vessel types in the mouse cornea. When we lowered the dose of FGF-2 in the cornea 6.4-fold (12.5 ng), the primary response was lymphangiogenic. Further investigation revealed that vascular endothelial gro...

  18. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    International Nuclear Information System (INIS)

    Baladron, Victoriano; Ruiz-Hidalgo, Maria Jose; Nueda, Maria Luisa; Diaz-Guerra, Maria Jose M.; Garcia-Ramirez, Jose Javier; Bonvini, Ezio; Gubina, Elena; Laborda, Jorge

    2005-01-01

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  19. Effect of notch dimension on the fatigue life of V-notched structure

    International Nuclear Information System (INIS)

    Cheng Changzheng; Naman, Recho; Niu Zhongrong; Zhou Huanlin

    2011-01-01

    Highlights: → A novel method is proposed to calculate the SIFs of crack at notch tip. → Effect of notch opening angle on the crack extension and propagation is studied. → Influence of notch depth on the crack extension and propagation is analyzed. → The fatigue life of a welded joint is analyzed by the present method. - Abstract: The stress singularity degree associated to a V-notch has a great influence on the fatigue life of V-notched structure. The growth rate of the crack initiated at the tip of a V-notch depends on the stress singularity of the V-notch. The fatigue life accompanying with this small crack will represent a large amount of the total fatigue life. In this work, boundary element method (BEM) is used to study the propagation of the crack emanating from a V-notch tip under fatigue loading. A comparison of the fatigue life between the crack initiated from V-notch tip and a lateral crack is done by a crack propagation law until these two cracks have the same stress intensity factors (SIFs). The effect of initial crack length, notch opening angle and notch depth on the crack extension and propagation is analyzed. As an example of engineering application, the fatigue life of a welded joint is investigated by the present method. The influence of weld toe angle and initial crack length on the fatigue life of the welded structure is studied. Some suggestions are given as an attempt to improve the fatigue life of welded structures at the end.

  20. CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk.

    Science.gov (United States)

    Peters, Nils; Opherk, Christian; Zacherle, Simone; Capell, Anja; Gempel, Petra; Dichgans, Martin

    2004-10-01

    Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL. Copyright 2004 Elsevier Inc.

  1. Silybin-mediated inhibition of Notch signaling exerts antitumor activity in human hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Song Zhang

    Full Text Available Hepatocellular carcinoma (HCC is a global health burden that is associated with limited treatment options and poor patient prognoses. Silybin (SIL, an antioxidant derived from the milk thistle plant (Silybum marianum, has been reported to exert hepatoprotective and antitumorigenic effects both in vitro and in vivo. While SIL has been shown to have potent antitumor activity against various types of cancer, including HCC, the molecular mechanisms underlying the effects of SIL remain largely unknown. The Notch signaling pathway plays crucial roles in tumorigenesis and immune development. In the present study, we assessed the antitumor activity of SIL in human HCC HepG2 cells in vitro and in vivo and explored the roles of the Notch pathway and of the apoptosis-related signaling pathway on the activity of SIL. SIL treatment resulted in a dose- and time-dependent inhibition of HCC cell viability. Additionally, SIL exhibited strong antitumor activity, as evidenced not only by reductions in tumor cell adhesion, migration, intracellular glutathione (GSH levels and total antioxidant capability (T-AOC but also by increases in the apoptotic index, caspase3 activity, and reactive oxygen species (ROS. Furthermore, SIL treatment decreased the expression of the Notch1 intracellular domain (NICD, RBP-Jκ, and Hes1 proteins, upregulated the apoptosis pathway-related protein Bax, and downregulated Bcl2, survivin, and cyclin D1. Notch1 siRNA (in vitro or DAPT (a known Notch1 inhibitor, in vivo further enhanced the antitumor activity of SIL, and recombinant Jagged1 protein (a known Notch ligand in vitro attenuated the antitumor activity of SIL. Taken together, these data indicate that SIL is a potent inhibitor of HCC cell growth that targets the Notch signaling pathway and suggest that the inhibition of Notch signaling may be a novel therapeutic intervention for HCC.

  2. Prognostic value of Notch-1 expression in hepatocellular carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu T

    2015-10-01

    Full Text Available Tao Wu,1 Min Jiao,1 Li Jing,1 Min-Cong Wang,1 Hai-Feng Sun,2 Qing Li,1 Yi-Yang Bai,1 Yong-Chang Wei,1 Ke-Jun Nan,1 Hui Guo1 1Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, 2Department of Oncology, Shaanxi Cancer Hospital, Xi’an, People’s Republic of China Abstract: Association of Notch-1 expression with prognosis of patients with hepatocellular carcinoma (HCC remains controversial. We conducted a meta-analysis to reevaluate the association of Notch-1 expression with clinicopathological characteristics and prognosis of HCC. PubMed, Embase, Web of Science, and China National Knowledge Infrastructure were searched to look for relevant studies. The association between Notch-1 expression and clinicopathological parameters and overall survival (OS was then reassessed using the meta-analysis for odds ratio (OR or hazard ratio (HR and 95% confidence interval (CI. A total of seven studies, including 810 HCC patients, were eligible for the meta-analysis. Our data showed that high Notch-1 expression was able to predict poor OS (HR 1.50, 95% CI 1.17–1.83, P=0.0001. The pooled OR showed that high Notch-1 expression was significantly associated with tumor metastasis (OR 0.37, 95% CI 0.16–0.86, P=0.02 and tumor size >5 cm (OR 0.48, 95% CI 0.26–0.88, P=0.02. In contrast, there was no association between high Notch-1 expression and tumor differentiation, late TNM stage, tumor number, and portal vein invasion of HCC. In conclusion, Notch-1 overexpression might predict poorer survival and more aggressive behavior in patients with HCC. Keywords: hepatocellular carcinoma, Notch-1, prognosis, clinicopathological features, meta-analysis

  3. Lower cerebrospinal fluid/plasma fibroblast growth factor 21 (FGF21 ratios and placental FGF21 production in gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Bee K Tan

    Full Text Available OBJECTIVES: Circulating Fibroblast Growth Factor 21 (FGF21 levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM. In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants. DESIGN: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26-47 years, BMI: 24.3-36.3 kg/m(2 and 12 controls (age: 22-40 years, BMI: 30.1-37.0 kg/m(2]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA. RESULTS: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2-352.7 vs. 115.5 (60.5-188.7 pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3-0.6 vs. 0.8 (0.5-1.6; P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05. CONCLUSIONS: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points.

  4. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation.

    Directory of Open Access Journals (Sweden)

    Yuan Hu Xuan

    Full Text Available One of the major symptoms of diabetes mellitus (DM is delayed wound healing, which affects large populations of patients worldwide. However, the underlying mechanism behind this illness remains elusive. Skin wound healing requires a series of coordinated processes, including fibroblast cell proliferation and migration. Here, we simulate DM by application of high glucose (HG in human foreskin primary fibroblast cells to analyze the molecular mechanism of DM effects on wound healing. The results indicate that HG, at a concentration of 30 mM, delay cell migration, but not cell proliferation. bFGF is known to promote cell migration that partially rescues HG effects on cell migration. Molecular and cell biology studies demonstrated that HG enhanced ROS production and repressed JNK phosphorylation, but did not affect Rac1 activity. JNK and Rac1 activation were known to be important for bFGF regulated cell migration. To further confirm DM effects on skin repair, a type 1 diabetic rat model was established, and we observed the efficacy of bFGF on both normal and diabetic rat skin repair. Furthermore, proteomic studies identified an increase of Annexin A2 protein nitration in HG-stressed fibroblasts and the nitration was protected by activation of bFGF signaling. Treatment with FGFR1 and JNK inhibitors delayed cell migration and increased Annexin A2 nitration levels, indicating that Annexin A2 nitration is modulated by bFGF signaling via activation of JNK. Together with these results, our data suggests that the HG-mediated delay of cell migration is linked to the inhibition of bFGF signaling, specifically through JNK suppression.

  5. Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas.

    Science.gov (United States)

    Naye, François; Voz, Marianne L; Detry, Nathalie; Hammerschmidt, Matthias; Peers, Bernard; Manfroid, Isabelle

    2012-03-01

    In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10(-/-); fgf24(-/-) embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.

  6. Human FGF1 promoter is active in ependymal cells and dopaminergic neurons in the brains of F1B-GFP transgenic mice.

    Science.gov (United States)

    Chen, Mei-Shu; Lin, Hua-Kuo; Chiu, Hsun; Lee, Don-Ching; Chung, Yu-Fen; Chiu, Ing-Ming

    2015-03-01

    FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B-GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (-540 to +31). Using the fresh brain sections of F1B-GFP transgenic mice, we found that the F1B-GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B-GFP(+) cells existed in the brains of F1B-GFP transgenic mice. We demonstrated that one population of F1B-GFP(+) cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B-GFP(+) cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B-GFP(+) cells and tyrosine hydroxylase indicated that a subpopulation of F1B-GFP(+) -neuronal cells was dopaminergic neurons. Importantly, these F1B-GFP(+) /TH(+) cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B-GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. © 2014 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.

  7. Osteomalacia por tumor secretor de FGF-23

    Directory of Open Access Journals (Sweden)

    Ariel Sánchez

    2013-02-01

    Full Text Available Se presenta un caso de osteomalacia oncogénica en un varón de 50 años, con fuertes dolores óseos y gran debilidad muscular durante 4 años. Tenía varias deformidades vertebrales dorsales en cuña, fracturas en ambas ramas iliopubianas y en una rama isquiopubiana, y una zona de Looser en la meseta tibial derecha. Se localizó un tumor de 2 cm de diámetro en el hueco poplíteo derecho mediante centellograma con octreótido marcado con tecnecio. El tumor fue extirpado quirúrgicamente. La microscopía mostró un tumor mesenquimático fosfatúrico, de tejido conectivo mixto. La inmunotinción demostró FGF-23. Hubo rápida mejoría, con consolidación de las fracturas pelvianas y de la pseudofractura tibial y normalización de las alteraciones bioquímicas.

  8. FGF and BMP signaling are required for specifying pre-chondrogenic identity in neural crest derived mesenchyme and initiating the chondrogenic program

    Science.gov (United States)

    Kumar, Megha; Ray, Poulomi; Chapman, Susan C.

    2012-01-01

    Summary The pharyngeal endoderm is hypothesized as the source of local signals that specify the identity of neural crest-derived mesenchyme in the arches. Sox9 is induced and maintained in pre-chondrogenic cells during condensation formation and endochondral ossification. Using explant culture we determined that pharyngeal endoderm was sufficient, but not necessary for specifying pre-chondrogenic identity, as surrounding tissues including the otic vesicle can compensate for signals from the pharyngeal endoderm. Multiple Fgf genes are expressed specifically in the pharyngeal endoderm subjacent to the neural crest-derived mesenchyme. FGF signaling is both sufficient and required for specification of Sox9 expression and specification of pre-chondrogenic identity, as demonstrated by the addition of recombinant FGF protein or the FGF receptor inhibitor (SU5402) to explanted tissue, respectively. However, FGF signaling cannot maintain Sox9 expression or initiate the chondrogenic program as indicated by the absence of Col2a1 transcripts. BMP4 signaling can induce and maintain Sox9 expression in isolated mesenchyme, but only in combination with FGF signaling induce Col2a1 expression, and thus, chondrogenesis. Given the spatio-temporal expression patterns of FGFs and BMPs in the pharyngeal arches, we suggest that this may represent a general mechanism of local signals specifying pre-chondrogenic identity and initiation of the chondrogenic program. PMID:22411638

  9. Kidney development in the absence of Gdnf and Spry1 requires Fgf10.

    Directory of Open Access Journals (Sweden)

    Odyssé Michos

    2010-01-01

    Full Text Available GDNF signaling through the Ret receptor tyrosine kinase (RTK is required for ureteric bud (UB branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf-/-;Spry1-/- or Ret-/-;Spry1-/- double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role, as removal of even one copy of Fgf10 in Gdnf-/-;Spry1-/- mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to GDNF or FGF10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals.

  10. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

    Science.gov (United States)

    Lu, Qian; Wang, Chong; Pan, Rong; Gao, Xinghua; Wei, Zhifeng; Xia, Yufeng; Dai, Yue

    2013-05-01

    Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. Copyright © 2012 Wiley Periodicals, Inc.

  11. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  12. Is notch sensitivity a stress analysis problem?

    Directory of Open Access Journals (Sweden)

    Jaime Tupiassú Pinho de Castro

    2013-07-01

    Full Text Available Semi–empirical notch sensitivity factors q have been widely used to properly account for notch effects in fatigue design for a long time. However, the intrinsically empirical nature of this old concept can be avoided by modeling it using sound mechanical concepts that properly consider the influence of notch tip stress gradients on the growth behavior of mechanically short cracks. Moreover, this model requires only well-established mechanical properties, as it has no need for data-fitting or similar ill-defined empirical parameters. In this way, the q value can now be calculated considering the characteristics of the notch geometry and of the loading, as well as the basic mechanical properties of the material, such as its fatigue limit and crack propagation threshold, if the problem is fatigue, or its equivalent resistances to crack initiation and to crack propagation under corrosion conditions, if the problem is environmentally assisted or stress corrosion cracking. Predictions based on this purely mechanical model have been validated by proper tests both in the fatigue and in the SCC cases, indicating that notch sensitivity can indeed be treated as a stress analysis problem.

  13. Trastuzumab Resistance: Role for Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kinnari Mehta

    2009-01-01

    Full Text Available Epidermal growth factor receptor-2 (ErbB-2/HER2 is a potent breast oncogene that has been shown to be amplified in 20% of breast cancers. Overexpression of ErbB-2 predicts for aggressive tumor behavior, resistance to some cytotoxic and antihormonal therapies, and poor overall survival. Trastuzumab, the humanized, monoclonal antibody directed against ErbB-2 has shown tremendous efficacy and improved overall survival for women when combined with a taxane-based chemotherapy. However, resistance to trastuzumab remains a major concern, most notably in women with metastatic breast cancer. Numerous mechanisms that include overexpression of alternate receptor tyrosine kinases and/or loss of critical tumor suppressors have been proposed in the last several years to elucidate trastuzumab resistance. Here we review the many possible mechanisms of action that could contribute to resistance, and novel therapies to prevent or reverse the resistant phenotype. Moreover, we provide a critical role for Notch signaling cross-talk with overlapping or new signaling networks in trastuzumab-resistant breast.

  14. A study of the activity and effectiveness of recombinant fibroblast growth factor (Q40P/S47I/H93G rFGF-1) in anti-aging treatment.

    Science.gov (United States)

    Żerańska, Justyna; Pasikowska, Monika; Szczepanik, Barbara; Mlosek, Krzysztof; Malinowska, Sylwia; Dębowska, Renata M; Eris, Irena

    2016-02-01

    Fibroblast growth factor 1 (FGF-1) is a powerful mitogen involved in the stimulation of DNA synthesis and the proliferation of a wide variety of cell types. Fibroblast growth factor 1 was genetically modified to improve its thermal stability and resistance to protease degradation without losing its biological activity. To study the impact of Q40P/S47I/H93G rFGF-1 on skin cells, its penetration through the skin and the evaluation of the rFGF-1-cosmetic product properties. In vitro studies included the examination of primary fibroblast and keratinocyte viability after the incubation with rFGF-1. The penetration abilities of rFGF-1 in various formulations and carrier systems were examined ex vivo by the Raman spectroscopy. In vivo studies - HF Ultrasound and 3D Imaging System - were used to evaluate the anti-aging properties of creams containing rFGF-1. In vitro studies demonstrated that rFGF-1 strongly enhanced the viability of the treated cells. The Raman Spectroscopy analysis indicated that rFGF-1 encapsulated in lipid spheres penetrate through the stratum corneum to the depth of 60 µm, and added to the o/w formulation - could penetrate to a depth of 90 µm. The results obtained from Primos revealed the reduction of the volume and the depth of the wrinkles. Changes in the skin structure in the analyzed areas were evaluated by HF Ultrasonography. Recombinant FGF-1 strongly stimulated fibroblast and keratinocyte proliferation. However, the transition of this protein through the SC required an appropriate carrier system - lipid spheres. All tests - in vitro, ex vivo and in vivo - have proved that rFGF-1 is a substance with a potentially wide spectrum of use.

  15. A study of the activity and effectiveness of recombinant fibroblast growth factor (Q40P/S47I/H93G rFGF-1 in anti-aging treatment

    Directory of Open Access Journals (Sweden)

    Justyna Żerańska

    2016-02-01

    Full Text Available Introduction : Fibroblast growth factor 1 (FGF-1 is a powerful mitogen involved in the stimulation of DNA synthesis and the proliferation of a wide variety of cell types. Fibroblast growth factor 1 was genetically modified to improve its thermal stability and resistance to protease degradation without losing its biological activity. Aim : To study the impact of Q40P/S47I/H93G rFGF-1 on skin cells, its penetration through the skin and the evaluation of the rFGF-1-cosmetic product properties. Material and methods : In vitro studies included the examination of primary fibroblast and keratinocyte viability after the incubation with rFGF-1. The penetration abilities of rFGF-1 in various formulations and carrier systems were examined ex vivo by the Raman spectroscopy. In vivo studies – HF Ultrasound and 3D Imaging System – were used to evaluate the anti-aging properties of creams containing rFGF-1. Results : In vitro studies demonstrated that rFGF-1 strongly enhanced the viability of the treated cells. The Raman Spectroscopy analysis indicated that rFGF-1 encapsulated in lipid spheres penetrate through the stratum corneum to the depth of 60 μm, and added to the o/w formulation – could penetrate to a depth of 90 μm. The results obtained from Primos revealed the reduction of the volume and the depth of the wrinkles. Changes in the skin structure in the analyzed areas were evaluated by HF Ultrasonography. Conclusions : Recombinant FGF-1 strongly stimulated fibroblast and keratinocyte proliferation. However, the transition of this protein through the SC required an appropriate carrier system – lipid spheres. All tests – in vitro , ex vivo and in vivo – have proved that rFGF-1 is a substance with a potentially wide spectrum of use.

  16. Compact microstrip bandpass filter with tunable notch

    DEFF Research Database (Denmark)

    Christensen, Silas; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    notch filter ensures an attenuation level of 19.3 dB to 27.3 dB in the frequency range from 360–480 MHz. The measured passband ripple of the combined filter is less than 0.5 dB, while the insertion loss for the simplest design is less than 1.7 dB only 10 MHz from the notch frequency. Even though......Two different designs combining a bandpass and a notch filter are developed to operate in the receiving band from 350–470 MHz. The bandpass filter is designed from a simple structure, by use of only four short circuited stubs and a half wavelength transmission line connecting the stubs. The tunable...... the wavelength on the selected substrate (εr = 3.55) is approximately 45 cm, the outer dimensions of the final filter only measure 10×10 cm2....

  17. Magnetoresistance effect in permalloy nanowires with various types of notches

    Science.gov (United States)

    Gao, Y.; You, B.; Wang, J.; Yuan, Y.; Wei, L. J.; Tu, H. Q.; Zhang, W.; Du, J.

    2018-05-01

    Suppressing the stochastic domain wall (DW) motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR) measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller) change of resistance always corresponds to larger (smaller) depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  18. Biochemical characterization and cellular effects of CADASIL mutants of NOTCH3.

    Directory of Open Access Journals (Sweden)

    He Meng

    Full Text Available Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL is the best understood cause of dominantly inherited stroke and results from NOTCH3 mutations that lead to NOTCH3 protein accumulation and selective arterial smooth muscle degeneration. Previous studies show that NOTCH3 protein forms multimers. Here, we investigate protein interactions between NOTCH3 and other vascular Notch isoforms and characterize the effects of elevated NOTCH3 on smooth muscle gene regulation. We demonstrate that NOTCH3 forms heterodimers with NOTCH1, NOTCH3, and NOTCH4. R90C and C49Y mutant NOTCH3 form complexes which are more resistant to detergents than wild type NOTCH3 complexes. Using quantitative NOTCH3-luciferase clearance assays, we found significant inhibition of mutant NOTCH3 clearance. In coculture assays of NOTCH function, overexpressed wild type and mutant NOTCH3 significantly repressed NOTCH-regulated smooth muscle transcripts and potently impaired the activity of three independent smooth muscle promoters. Wildtype and R90C recombinant NOTCH3 proteins applied to cell cultures also blocked canonical Notch fuction. We conclude that CADASIL mutants of NOTCH3 complex with NOTCH1, 3, and 4, slow NOTCH3 clearance, and that overexpressed wild type and mutant NOTCH3 protein interfere with key NOTCH-mediated functions in smooth muscle cells.

  19. DOL behaviour of end-notched beams

    DEFF Research Database (Denmark)

    Gustafsson, P.J.; Hoffmeyer, Preben; Valentin, G.

    1998-01-01

    The long-term loading strength of end-notched beams made of glulam and LVL was tested. The beams were of various sizes, with and without a moisture sealing at the notch. Tests were conducted in open shelter climates, and at constant and cyclic relative humidity. The short-term strength was tested...... by the magnitude of the humidity, if this was kept constant. Duration of load strength reduction factors were evaluated for six months of loading. Average reduction in ultimate failure strength ranged from 0.68 for small LVL beams without moisture sealing tested during spring and summer to 0.81 for large glulam...

  20. Solution notches, earthquakes, and sea level, Haiti

    Science.gov (United States)

    Schiffman, C. R.; Mildor, B. S.; Bilham, R. G.

    2010-12-01

    Shortly after the 12 January 2010 Haiti earthquake, we installed an array of five tide gauges to determine sea level and its variability in the region of uplifted corals on the coast SW of Leogane, Haiti, that had been uplift ≤30 cm during the earthquake. Each gauge consists of a pressure transducer bolted 50-80 cm below mean sea level, which samples the difference between atmospheric pressure and sea pressure every 10 minutes. The data are transmitted via the Iridium satellite and are publically available with a latency of 10 minutes to 2 hours. The measurements reveal a maximum tidal range of ≈50 cm with 2-4 week oscillations in mean sea level of several cm. Sea slope, revealed by differences between adjacent gauges, varies 2-5 cm per 10 km at periods of 2-5 weeks, which imposes a disappointing limit to the utility of the gauges in estimating post seismic vertical motions. A parallel study of the form and elevation of coastal notches and mushroom rocks (rocks notched on all sides, hence forming a mushroom shape), along the coast west of Petit Goave suggests that these notches may provide an uplift history of the region over the past several hundreds of years. Notch sections in two areas were contoured, digitized, and compared to mean sea level. The notches mimic the histogram of sea level, suggesting that they are formed by dissolution by acidic surface waters. Notches formed two distinct levels, one approximately 58 cm above mean sea level, and the other approximately 157 cm above mean sea level. Several landslide blocks fell into the sea during the 2010 earthquake, and we anticipate these are destined for conversion to future mushroom rocks. Surfaces have been prepared on these blocks to study the rate of notch formation in situ, and samples are being subjected to acid corrosion in laboratory conditions, with the hope that the depth of notches may provide an estimate of the time of fall of previous rocks to help constrain the earthquake history of this area

  1. Fatigue crack growth from blunt notches

    International Nuclear Information System (INIS)

    Rhodes, D.

    1982-01-01

    A number of methods have been proposed, by which the formation and early growth of fatigue cracks at blunt notches may be predicted. In this report, four methods are compared - i.e. analysis of the crack tip plastic deformation, the cyclic contour integral, δJ, the strain in a critical volume of material, and the notch root plastic strain range. It is shown that these approaches have fundamental elements in common, and that all are compatable with linear elastic fracture mechanics. Early results from a continuing experimental programme are reported. (orig.) [de

  2. The Challenge of Targeting Notch in Hematologic Malignancies

    Directory of Open Access Journals (Sweden)

    Fiorela N Hernandez Tejada

    2014-06-01

    Full Text Available Notch signaling can play oncogenic and tumor suppressor roles depending on cell type. Hematologic malignancies encompass a wide range of transformed cells, and consequently the roles of Notch are diverse in these diseases. For example Notch is a potent T cell oncogene, with >50% of T cell acute lymphoblastic leukemia (T-ALL cases carry activating mutations in the Notch1 receptor. Targeting Notch signaling in T-ALL with gamma secretase inhibitors, which prevent Notch receptor activation, has shown pre-clinical activity, and is under evaluation clinically. In contrast, Notch signaling inhibits acute myeloblastic leukemia growth and survival, and although targeting Notch signaling in AML with Notch activators appears to have pre-clinical activity, no Notch agonists are clinically available at this time. As such, despite accumulating evidence about the biology of Notch signaling in different hematologic cancers, which provide compelling clinical promise, we are only beginning to target this pathway clinically, either on or off. In this review we will summarize the evidence for oncogenic and tumor suppressor roles of Notch in a wide range of leukemias and lymphomas, and describe therapeutic opportunities for now and the future.

  3. Hes1 potentiates T cell lymphomagenesis by up-regulating a subset of notch target genes.

    Directory of Open Access Journals (Sweden)

    Darryll D Dudley

    2009-08-01

    Full Text Available Hairy/Enhancer of Split (Hes proteins are targets of the Notch signaling pathway and make up a class of basic helix-loop-helix (bHLH proteins that function to repress transcription. Data from Hes1 deficient mice suggested that Hes1, like Notch1, is necessary for the progression of early T cell progenitors. Constitutive activation of Notch is known to cause T cell leukemia or lymphoma but whether Hes1 has any oncogenic activity is not known.We generated mice carrying a Hes1 transgene under control of the proximal promote of the lck gene. Hes1 expression led to a reduction in numbers of total thymocytes, concomitant with the increased percentage and number of immature CD8+ (ISP T cells and sustained CD25 expression in CD4+CD8+ double positive (DP thymocytes. Hes1 transgenic mice develop thymic lymphomas at about 20 weeks of age with a low penetrance. However, expression of Hes1 significantly shortens the latency of T cell lymphoma developed in Id1 transgenic mice, where the function of bHLH E proteins is inhibited. Interestingly, Hes1 increased expression of a subset of Notch target genes in pre-malignant ISP and DP thymocytes, which include Notch1, Notch3 and c-myc, thus suggesting a possible mechanism for lymphomagenesis.We have demonstrated for the first time that Hes1 potentiates T cell lymphomagenesis, by up-regulating a subset of Notch target genes and by causing an accumulation of ISP thymocytes particularly vulnerable to oncogenic transformation.

  4. Osteomalacia por tumor secretor de FGF-23 Ostemalacia due to a tumor secreting FGF-23

    Directory of Open Access Journals (Sweden)

    Ariel Sánchez

    2013-02-01

    Full Text Available Se presenta un caso de osteomalacia oncogénica en un varón de 50 años, con fuertes dolores óseos y gran debilidad muscular durante 4 años. Tenía varias deformidades vertebrales dorsales en cuña, fracturas en ambas ramas iliopubianas y en una rama isquiopubiana, y una zona de Looser en la meseta tibial derecha. Se localizó un tumor de 2 cm de diámetro en el hueco poplíteo derecho mediante centellograma con octreótido marcado con tecnecio. El tumor fue extirpado quirúrgicamente. La microscopía mostró un tumor mesenquimático fosfatúrico, de tejido conectivo mixto. La inmunotinción demostró FGF-23. Hubo rápida mejoría, con consolidación de las fracturas pelvianas y de la pseudofractura tibial y normalización de las alteraciones bioquímicas.A case of oncogenic osteomalacia in a 50-year-old male is here presented. He suffered severe bone pain and marked muscular weakness of 4 years' duration. There were several vertebral deformities in the thoracic spine, bilateral fractures of the iliopubic branches, another fracture in the left ischiopubic branch, and a Looser's zone in the right proximal tibia. An octreotide-Tc scan allowed to identify a small tumor in the posterior aspect of the right knee. It was surgically removed. Microscopically, it was a phosphaturic mesenchymal tumor-mixed connective tissue (PMT-MCT. Expression of FGF-23 was documented by immune-peroxidase staining. There was rapid improvement, with consolidation of the pelvic fractures and the tibial pseudo-fracture. The laboratory values returned to normal.

  5. FGF-23: estado da arte FGF-23: state of the art

    Directory of Open Access Journals (Sweden)

    Rodrigo Bueno de Oliveira

    2010-09-01

    Full Text Available Há aproximadamente 10 anos descobriuse um hormônio denominado FGF-23 (fator de crescimento de fibroblastos 23, um membro da família dos fatores de crescimento de fibroblastos, cujas funções atualmente conhecidas envolvem o metabolismo do fósforo (P e a inibição da 1α hidroxilase, enzima responsável pela síntese de calcitriol. Tal descoberta possibilitou um novo entendimento sobre os mecanismos de controle do P, um elemento associado com mortalidade, especialmente na doença renal crônica (DRC. Nesta revisão descreveremos diversos aspectos deste hormônio, desde a sua descoberta, função, produção, mecanismo de ação, até os últimos estudos clínicos envolvendo o mesmo. Posteriormente, abordaremos as possíveis repercussões destes estudos na prática clínica.Approximately 10 years ago, a member of the family of the fibroblast growth factors, the hormone FGF-23 (fibroblast growth factor 23 was discovered. Its currently known functions involve phosphorus (P metabolism and inhibition of 1αhydroxylase, the enzyme responsible for the synthesis of calcitriol. That discovery led to a better understanding of the mechanisms of P control, an element associated with mortality, especially in chronic kidney disease. This study reviews several aspects of that hormone, such as its discovery, function, production, mechanism of action, and the most recent clinical studies about it. Afterwards, a discussion about the possible effects of those studies on clinical practice will be presented.

  6. bFGF rescues imatinib/STI571-induced apoptosis of sis-NIH3T3 fibroblasts.

    Science.gov (United States)

    Ohshima, Mitsuhiro; Yamaguchi, Yoko; Kappert, Kai; Micke, Patrick; Otsuka, Kichibee

    2009-04-03

    PDGF-B-transfected, sis-NIH3T3 fibroblasts serve as a model system for examining the role of PDGF signaling in tumors. We have found that imatinib/STI571, a tyrosine kinase inhibitor targeting PDGF receptors, induces apoptosis of sis-NIH3T3 fibroblasts cultured under serum free conditions, which was rescued by the addition of 10% newborn calf serum (NCS). Therefore, growth factors included in serum were tested with regard to their ability to rescue imatinib-induced apoptosis. While PDGF-AB, EGF, and IGF-I failed to protect imatinib-induced sis-NIH3T3 cell apoptosis, bFGF rescued it. The effects of bFGF were confirmed by both cell viability assays and Bax/Bcl-2 gene expression ratio. An FGF receptor inhibitor, PD166866, invalidated the protective effect of bFGF. However, combination of imatinib and PD166866 failed to induce cell death of sis-NIH3T3 cells when cultured in 10% NCS. These results indicate that synergistic administration of some types of tyrosine kinase inhibitors need to be tested under in vivo-like conditions to establish novel strategies in anti-cancer therapy.

  7. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.

    Directory of Open Access Journals (Sweden)

    Jingyue Xu

    2016-01-01

    Full Text Available Cleft palate is among the most common birth defects in humans. Previous studies have shown that Shh signaling plays critical roles in palate development and regulates expression of several members of the forkhead-box (Fox family transcription factors, including Foxf1 and Foxf2, in the facial primordia. Although cleft palate has been reported in mice deficient in Foxf2, whether Foxf2 plays an intrinsic role in and how Foxf2 regulates palate development remain to be elucidated. Using Cre/loxP-mediated tissue-specific gene inactivation in mice, we show that Foxf2 is required in the neural crest-derived palatal mesenchyme for normal palatogenesis. We found that Foxf2 mutant embryos exhibit altered patterns of expression of Shh, Ptch1, and Shox2 in the developing palatal shelves. Through RNA-seq analysis, we identified over 150 genes whose expression was significantly up- or down-regulated in the palatal mesenchyme in Foxf2-/- mutant embryos in comparison with control littermates. Whole mount in situ hybridization analysis revealed that the Foxf2 mutant embryos exhibit strikingly corresponding patterns of ectopic Fgf18 expression in the palatal mesenchyme and concomitant loss of Shh expression in the palatal epithelium in specific subdomains of the palatal shelves that correlate with where Foxf2, but not Foxf1, is expressed during normal palatogenesis. Furthermore, tissue specific inactivation of both Foxf1 and Foxf2 in the early neural crest cells resulted in ectopic activation of Fgf18 expression throughout the palatal mesenchyme and dramatic loss of Shh expression throughout the palatal epithelium. Addition of exogenous Fgf18 protein to cultured palatal explants inhibited Shh expression in the palatal epithelium. Together, these data reveal a novel Shh-Foxf-Fgf18-Shh circuit in the palate development molecular network, in which Foxf1 and Foxf2 regulate palatal shelf growth downstream of Shh signaling, at least in part, by repressing Fgf18

  8. FGF23 is elevated in Gambian children with rickets.

    Science.gov (United States)

    Prentice, Ann; Ceesay, Mustapha; Nigdikar, Shailja; Allen, Stephen J; Pettifor, John M

    2008-04-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic factor that is elevated in several diseases associated with hypophosphatemia and rickets. Rickets in the absence of vitamin D deficiency has been reported in African and Asian populations with a low calcium intake but the definition of risk factors has proved elusive. The aim of the study was to characterize the biochemical profile and measure FGF23 in a series of Gambian children who had presented with rickets of unknown etiology and a plasma 25-hydroxyvitamin D (25OHD) above the range typical of vitamin D-deficiency rickets. The 46 patients (30 males, 16 females) had bone deformities typical of rickets and were 1.1-16.4 years old (geometric mean, 3.4 years). Active rickets (on radiographs and/or elevated plasma alkaline phosphatase) was present in 28%. Plasma 25-hydroxyvitamin D was above 20 nmol/l in all patients. Concentrations of plasma FGF23, phosphate and other relevant biochemical analytes were measured in stored samples of fasting, early morning plasma and compared with those measured in samples collected from local children and stored under similar conditions. The rickets patients had lower plasma phosphate, lower 25-hydroxyvitamin D, higher 1,25-dihydroxyvitamin D and elevated total alkaline phosphatase than local children. Those with active rickets had raised parathyroid hormone concentration. The patients had significantly higher FGF23 concentration than local children (geometric mean (-1SD, +1SD, range) RU/ml: 367 (87, 1552, 46-7052, n=39) vs 51 (23, 112, 3-130, n=30), pchildren, some grossly so (up to 50-fold). There was no significant difference in FGF23 concentration between those with active rickets and the other patients. Plasma phosphate was significantly and inversely correlated with FGF23 concentration. Some clinical improvements were noted after 6-12 months, during which time calcium and vitamin D had been prescribed, but FGF23 remained elevated in many patients. These data suggest that

  9. FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Marie, Melanie; Hafner, Sophie; Moratille, Sandra; Vaigot, Pierre; Rigaud, Odile; Martin, Michele T.; Mine, Solene

    2012-01-01

    Fibroblast growth factor 2 (FGF2) is a well-known survival factor. However, its role in DNA repair is poorly documented. The present study was designed to investigate in epidermoid carcinoma cells the potential role of FGF2 in DNA repair. The side population (SP) with cancer stem cell-like properties and the main population (MP) were isolated from human A431 squamous carcinoma cells. Radiation-induced DNA damage and repair were assessed using the alkaline comet assay. FGF2 expression was quantified by enzyme linked immunosorbent assay (ELISA). SP cells exhibited rapid repair of radiation induced DNA damage and a high constitutive level of nuclear FGF2. Blocking FGF2 signaling abrogated the rapid DNA repair. In contrast, in MP cells, a slower repair of damage was associated with low basal expression of FGF2. Moreover, the addition of exogenous FGF2 accelerated DNA repair in MP cells. When irradiated, SP cells secreted FGF2, whereas MP cells did not. FGF2 was found to mediate DNA repair in epidermoid carcinoma cells. We postulate that carcinoma stem cells would be intrinsically primed to rapidly repair DNA damage by a high constitutive level of nuclear FGF2. In contrast, the main population with a low FGF2 content exhibits a lower repair rate which can be increased by exogenous FGF2. (authors)

  10. Jagged1 immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis.

    Science.gov (United States)

    Dishowitz, Michael I; Zhu, Fengchang; Sundararaghavan, Harini G; Ifkovits, Jamie L; Burdick, Jason A; Hankenson, Kurt D

    2014-05-01

    Treatment of nonunion fractures is a significant problem. Common therapeutics, including autologous bone grafts and bone morphogenetic proteins, show well-established limitations. Therefore, a need persists for the identification of novel clinical therapies to promote healing. The Notch signaling pathway regulates bone development. Clinically, loss-of-function mutations to the Notch ligand Jagged1 decrease bone mass and increase fracture risk. Jagged1 is also the most highly upregulated ligand during fracture repair, identifying it as a potential target to promote bone formation. Therefore, the objective of this study was to develop a clinically translatable construct comprised of Jagged1 and an osteoconductive scaffold, and characterize its activity in human mesenchymal stem cells (hMSC). We first evaluated the effects of Jagged1 directly immobilized to a novel poly(β-amino ester) relative to indirect coupling via antibody. Direct was more effective at activating hMSC Notch target gene expression and osteogenic activity. We then found that directly immobilized Jagged1 constructs induced osteoblast differentiation. This is the first study to demonstrate that Jagged1 delivery transiently activates Notch signaling and increases osteogenesis. A positive correlation was found between Jagged1-induced Notch and osteogenic expression. Collectively, these results indicate that Jagged1 coupled to an osteogenic biomaterial could promote bone tissue formation during fracture healing. Copyright © 2013 Society of Plastics Engineers.

  11. The (CTGn polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals

    Directory of Open Access Journals (Sweden)

    Okubo Takehito

    2001-06-01

    Full Text Available Abstract Background The human NOTCH4 gene is a candidate gene for schizophrenia due to its chromosomal location and neurobiological roles. In a British linkage study, NOTCH4 gene polymorphisms were highly associated with schizophrenia. In a Japanese case-control association study, however, these polymorphisms did not show significant associations with schizophrenia. We conducted a case-control study with Japanese subjects to explore an association between the triplet repeat polymorphism in the NOTCH4 gene and schizophrenia, including subtypes of schizophrenia, longitudinal disease course characteristics, and a positive family history for psychoses. Methods We examined the (CTGn repeat polymorphism in the NOTCH4 gene among 100 healthy Japanese individuals and 102 patients with schizophrenia (22 paranoid, 38 disorganized, 29 residual, 64 episodic, 31 continuous, 42 with prominent negative symptoms, and 46 with positive family histories using a polymerase chain reaction-based, single-strand conformational polymorphism analysis. Results Five different alleles consisting of 6, 9, 10, 11, and 13 repeats of CTG (Leu in patients with schizophrenia, and 4 alleles consisting of 6, 9, 10, and 11 repeats in controls were found. No significant differences in genotype or allele frequencies of repeat numbers were found between controls and patients. In addition, there were no associations between the polymorphism and schizophrenia subtypes, longitudinal disease course characteristics, or positive family history of the patients. Conclusions Our data suggest a lack of association between the NOTCH4 gene triplet repeat polymorphism and schizophrenia in Japanese individuals.

  12. Significance of a notch in the otoacoustic emission stimulus spectrum.

    Science.gov (United States)

    Grenner, J

    2012-09-01

    To explain a clinical observation: a notch in the stimulus spectrum during transient evoked otoacoustic emission measurement in ears with secretory otitis media. The effects of tympanic under-pressure were investigated using a pressure chamber. A model of the ear canal was also studied. Tympanic membrane reflectance increased as a consequence of increased stiffness, causing a notch in the stimulus spectrum. In an adult, the notch could be clearly distinguished at an under-pressure of approximately -185 daPa. The sound frequency of the notch corresponded to a wavelength four times the ear canal length. The ear canal of infants was too short to cause a notch within the displayed frequency range. The notch was demonstrated using both Otodynamics and Madsen equipment. A notch in the otoacoustic emission stimulus spectrum can be caused by increased stiffness of the tympanic membrane, raising suspicion of low middle-ear pressure or secretory otitis media. This finding is not applicable to infants.

  13. Fibroblast growth factor 2 (FGF2) is present in human spermatozoa and is related with sperm motility. The use of recombinant FGF2 to improve motile sperm recovery.

    Science.gov (United States)

    Garbarino Azúa, D J; Saucedo, L; Giordana, S; Magri, M L; Buffone, M G; Neuspiller, F; Vazquez-Levin, M H; Marín-Briggiler, C I

    2017-09-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate several functions of somatic cells. In a previous work, we reported FGFR expression in human spermatozoa and their involvement in motility. This study aimed to evaluate the presence and localization of fibroblast growth factor 2 (FGF2) in human spermatozoa, to determine the relationship of FGF2 levels with conventional semen parameters and to assess the effect of recombinant FGF2 (rFGF2) on sperm recovery in a selection procedure. Western immunoblotting analysis using an antibody against FGF2 revealed an 18-kDa band in sperm protein extracts. The protein was immunolocalized in the sperm flagellum and acrosomal region, as well as in all germ cells. Sperm FGF2 levels, assessed by flow cytometry, showed a positive (p recoveries, and increased (p recovery in selection techniques. © 2017 American Society of Andrology and European Academy of Andrology.

  14. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells

    Directory of Open Access Journals (Sweden)

    Zou Jie

    2013-01-01

    Full Text Available Abstract Background Notch1 is a potent regulator known to play an oncogenic role in many malignancies including T-cell acute lymphoblastic leukemia (T-ALL. Tumor hypoxia and increased hypoxia-inducible factor-1α (HIF-1α activity can act as major stimuli for tumor aggressiveness and progression. Although hypoxia-mediated activation of the Notch1 pathway plays an important role in tumor cell survival and invasiveness, the interaction between HIF-1α and Notch1 has not yet been identified in T-ALL. This study was designed to investigate whether hypoxia activates Notch1 signalling through HIF-1α stabilization and to determine the contribution of hypoxia and HIF-1α to proliferation, invasion and chemoresistance in T-ALL. Methods T-ALL cell lines (Jurkat, Sup-T1 transfected with HIF-1α or Notch1 small interference RNA (siRNA were incubated in normoxic or hypoxic conditions. Their potential for proliferation and invasion was measured by WST-8 and transwell assays. Flow cytometry was used to detect apoptosis and assess cell cycle regulation. Expression and regulation of components of the HIF-1α and Notch1 pathways and of genes related to proliferation, invasion and apoptosis were assessed by quantitative real-time PCR or Western blot. Results Hypoxia potentiated Notch1 signalling via stabilization and activation of the transcription factor HIF-1α. Hypoxia/HIF-1α-activated Notch1 signalling altered expression of cell cycle regulatory proteins and accelerated cell proliferation. Hypoxia-induced Notch1 activation increased the expression of matrix metalloproteinase-2 (MMP2 and MMP9, which increased invasiveness. Of greater clinical significance, knockdown of Notch1 prevented the protective effect of hypoxia/HIF-1α against dexamethasone-induced apoptosis. This sensitization correlated with losing the effect of hypoxia/HIF-1α on Bcl-2 and Bcl-xL expression. Conclusions Notch1 signalling is required for hypoxia/HIF-1α-induced proliferation

  15. Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule.

    Directory of Open Access Journals (Sweden)

    Katiuscia Pagano

    Full Text Available Fibroblast growth factors (FGFs are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs, and heparan sulphate proteoglycans (HSPGs is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.

  16. Mapping of FGF1 in the Medulla Oblongata of Macaca fascicularis

    International Nuclear Information System (INIS)

    Bisem, Naomi J.; Takeuchi, Shigeko; Imamura, Toru; Abdelalim, Essam M.; Tooyama, Ikuo

    2012-01-01

    FGF1 is highly expressed in neurons and it has been proposed to play a role in the neuroprotection and in regeneration. Low FGF1 expression in neurons has been linked to increased vulnerability in cholinergic neurons. Previous reports have shown that the expression of FGF1 in rat brain is localized to the cholinergic nuclei of the medulla oblongata, with low ratio of neurons positive for FGF1 in the dorsal motor nucleus of the vagus (DMNV). The role of FGF1 in the primate brain has yet to be clarified. In this study, we mapped FGF1 immunoreactivity in the medulla oblongata of cynomolgus monkey brainstems. Our results demonstrated that FGF1 immunoreactivity follows the pattern of distribution of cholinergic nuclei in the medulla oblongata; with strong localization of FGF1 to cholinergic neurons of the hypoglossal nucleus, the facial nucleus and the nucleus ambiguus. In contrast, the DMNV shows markedly lower FGF1 immunoreactivity. Localization of FGF1 to cholinergic neurons was only observed in the lateral region of the DMNV, with higher immunoreactivity in the rostral ventral-lateral region of the DMNV. These findings are consistent with the distribution of FGF1 immunoreactivity in previous studies of the rat brain

  17. Increased FGF21 plasma levels in humans with sepsis and SIRS.

    Science.gov (United States)

    Gariani, Karim; Drifte, Geneviève; Dunn-Siegrist, Irène; Pugin, Jérôme; Jornayvaz, François R

    2013-01-01

    Fibroblast growth factor 21 (FGF21) is a key regulator in glucose and lipid metabolism and its plasma levels have been shown to be increased not only in humans in different situations such as type 2 diabetes, obesity, and nonalcoholic fatty liver disease but also in animal models of sepsis and pancreatitis. FGF21 is considered as a pharmacological candidate in conditions associated with insulin resistance. The aim of this study was to compare FGF21 plasma levels in patients with sepsis, in patients with systemic inflammatory response syndrome (SIRS), and in healthy controls. We measured FGF21 plasma concentrations in 22 patients with established sepsis, in 11 with SIRS, and in 12 healthy volunteers. Here, we show that FGF21 levels were significantly higher in plasma obtained from patients with sepsis and SIRS in comparison with healthy controls. Also, FGF21 levels were significantly higher in patients with sepsis than in those with noninfectious SIRS. FGF21 plasma levels measured at study entry correlated positively with the APACHE II score, but not with procalcitonin levels, nor with C-reactive protein, classical markers of sepsis. Plasma concentrations of FGF21 peaked near the onset of shock and rapidly decreased with clinical improvement. Taken together, these results indicate that circulating levels of FGF21 are increased in patients presenting with sepsis and SIRS, and suggest a role for FGF21 in inflammation. Further studies are needed to explore the potential role of FGF21 in sepsis as a potential therapeutic target.

  18. Peptides derived from specific interaction sites of the fibroblast growth factor 2 - FGF receptor complexes induce receptor activation and signaling

    DEFF Research Database (Denmark)

    Manfè, Valentina; Kochoyan, Artur; Bock, Elisabeth

    2010-01-01

    J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06718.x Abstract Basic fibroblast growth factor (FGF2, bFGF) is the most extensively studied member of the FGF family and is involved in neurogenesis, differentiation, neuroprotection, and synaptic plasticity in the CNS. FGF2 executes its pleiotropic...

  19. First experience with FGF-3 (INT-2) amplification in women with epithelial ovarian cancer.

    Science.gov (United States)

    Rosen, A; Sevelda, P; Klein, M; Dobianer, K; Hruza, C; Czerwenka, K; Hanak, H; Vavra, N; Salzer, H; Leodolter, S

    1993-05-01

    Estimation of FGF-3 oncogene amplification in DNA samples extracted from paraffin embedded sections of 136 ovarian cancer samples was carried out by a quantitative PCR method. The aim of this study was to elucidate a possible association of FGF-3 copy numbers with established prognostic factors such as age, histology, FIGO stage, grading, postoperative residual tumour mass, ascites, hormone receptor content and preoperative CA 125 serum levels. In addition, correlation of FGF-3 amplification with overall survival of the patients was assessed. There was a borderline positive correlation between preoperative CA 125 serum levels and the degree of amplification of the FGF-3 gene (P = 0.06). A statistically significant association of FIGO-stage with FGF-3 copy number could be found (P = 0.008). No correlation between FGF-3 amplification and overall survival was noted. The data combine to suggest that FGF-3 is an indicator of aggressiveness of ovarian cancer.

  20. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification.

    Science.gov (United States)

    Qin, Yingyan; Zhu, Yi; Luo, Furong; Chen, Chuan; Chen, Xiaoyun; Wu, Mingxing

    2017-07-13

    The most common complication after cataract surgery is postoperative capsular opacification, which includes anterior capsular opacification (ACO) and posterior capsular opacification (PCO). Increased adhesion of lens epithelial cells (LECs) to the intraocular lens material surface promotes ACO formation, whereas proliferation and migration of LECs to the posterior capsule lead to the development of PCO. Cell adhesion is mainly mediated by the binding of integrin to extracellular matrix proteins, while cell proliferation and migration are regulated by fibroblast growth factor (FGF). Syndecan-4 (SDC-4) is a co-receptor for both integrin and FGF signaling pathways. Therefore, SDC-4 may be an ideal therapeutic target for the prevention and treatment of postoperative capsular opacification. However, how SDC-4 contributes to FGF-mediated proliferation, migration, and integrin-mediated adhesion of LECs is unclear. Here, we found that downregulation of SDC-4 inhibited FGF signaling through the blockade of ERK1/2 and PI3K/Akt/mTOR activation, thus suppressing cell proliferation and migration. In addition, downregulation of SDC-4 suppressed integrin-mediated cell adhesion through inhibiting focal adhesion kinase (FAK) phosphorylation. Moreover, SDC-4 knockout mice exhibited normal lens morphology, but had significantly reduced capsular opacification after injury. Finally, SDC-4 expression level was increased in the anterior capsule LECs of age-related cataract patients. Taken together, we for the first time characterized the key regulatory role of SDC-4 in FGF and integrin signaling in human LECs, and provided the basis for future pharmacological interventions of capsular opacification.

  1. Discrete shear-transformation-zone plasticity modeling of notched bars

    Science.gov (United States)

    Kondori, Babak; Amine Benzerga, A.; Needleman, Alan

    2018-02-01

    Plane strain tension analyses of un-notched and notched bars are carried out using discrete shear transformation zone plasticity. In this framework, the carriers of plastic deformation are shear transformation zones (STZs) which are modeled as Eshelby inclusions. Superposition is used to represent a boundary value problem solution in terms of discretely modeled Eshelby inclusions, given analytically for an infinite elastic medium, and an image solution that enforces the prescribed boundary conditions. The image problem is a standard linear elastic boundary value problem that is solved by the finite element method. Potential STZ activation sites are randomly distributed in the bars and constitutive relations are specified for their evolution. Results are presented for un-notched bars, for bars with blunt notches and for bars with sharp notches. The computed stress-strain curves are serrated with the magnitude of the associated stress-drops depending on bar size, notch acuity and STZ evolution. Cooperative deformation bands (shear bands) emerge upon straining and, in some cases, high stress levels occur within the bands. Effects of specimen geometry and size on the stress-strain curves are explored. Depending on STZ kinetics, notch strengthening, notch insensitivity or notch weakening are obtained. The analyses provide a rationale for some conflicting findings regarding notch effects on the mechanical response of metallic glasses.

  2. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing

    Directory of Open Access Journals (Sweden)

    Andrew S. Kimball

    2017-06-01

    Full Text Available Macrophages are essential immune cells necessary for regulated inflammation during wound healing. Recent studies have identified that Notch plays a role in macrophage-mediated inflammation. Thus, we investigated the role of Notch signaling on wound macrophage phenotype and function during normal and diabetic wound healing. We found that Notch receptor and ligand expression are dynamic in wound macrophages during normal healing. Mice with a myeloid-specific Notch signaling defect (DNMAMLfloxedLyz2Cre+ demonstrated delayed early healing (days 1–3 and wound macrophages had decreased inflammatory gene expression. In our physiologic murine model of type 2 diabetes (T2D, Notch receptor expression was significantly increased in wound macrophages on day 6, following the initial inflammatory phase of wound healing, corresponding to increased inflammatory cytokine expression. This increase in Notch1 and Notch2 was also observed in human monocytes from patients with T2D. Further, in prediabetic mice with a genetic Notch signaling defect (DNMAMLfloxedLyz2Cre+ on a high-fat diet, improved wound healing was seen at late time points (days 6–7. These findings suggest that Notch is critical for the early inflammatory phase of wound healing and directs production of macrophage-dependent inflammatory mediators. These results identify that canonical Notch signaling is important in directing macrophage function in wound repair and define a translational target for the treatment of non-healing diabetic wounds.

  3. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  4. Targeting Notch signaling as a novel therapy for retinoblastoma.

    Science.gov (United States)

    Asnaghi, Laura; Tripathy, Arushi; Yang, Qian; Kaur, Harpreet; Hanaford, Allison; Yu, Wayne; Eberhart, Charles G

    2016-10-25

    Retinoblastoma is the most common intraocular malignancy of childhood. Notch plays a key role in retinal cells from which retinoblastomas arise, and we therefore studied the role of Notch signaling in promoting retinoblastoma proliferation. Moderate or strong nuclear expression of Hes1 was found in 10 of 11 human retinoblastoma samples analyzed immunohistochemically, supporting a role for Notch in retinoblastoma growth. Notch pathway components were present in WERI Rb1 and Y79 retinoblastoma lines, with Jag2 and DLL4 more highly expressed than other ligands, and Notch1 and Notch2 more abundant than Notch3. The cleaved/active form of Notch1 was detectable in both lines. Inhibition of the pathway, achieved using a γ-secretase inhibitor (GSI) or by downregulating Jag2, DLL4 or CBF1 using short hairpin RNA, potently reduced growth, proliferation and clonogenicity in both lines. Upregulation of CXCR4 and CXCR7 and downregulation of PI3KC2β were identified by microarray upon Jag2 suppression. The functional importance of PI3KC2β was confirmed using shRNA. Synergy was found by combining GSI with Melphalan at their IC50. These findings indicate that Notch pathway is active in WERI Rb1 and Y79, and in most human retinoblastoma samples, and suggest that Notch antagonists may represent a new approach to more effectively treat retinoblastoma.

  5. Polyguluronate sulfate and its oligosaccharides but not heparin promotes FGF19/FGFR1c signaling

    Science.gov (United States)

    Lan, Ying; Zeng, Xuan; Guo, Zhihua; Zeng, Pengjiao; Hao, Cui; Zhao, Xia; Yu, Guangli; Zhang, Lijuan

    2017-06-01

    Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor (FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1c signaling-dependent BaF3 cell proliferation assay, we discovered that polyguluronate sulfate (PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate (PG), a natural marine polysaccharide, enhanced FGF19/FGFR1c signaling better than that of heparin based on 3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1c and FGF19/FGFR1c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1c and FGF19/FGFR1c signaling in future.

  6. Developing an ancient epithelial appendage: FGF signalling regulates early tail denticle formation in sharks

    Directory of Open Access Journals (Sweden)

    Rory L. Cooper

    2017-05-01

    Full Text Available Abstract Background Vertebrate epithelial appendages constitute a diverse group of organs that includes integumentary structures such as reptilian scales, avian feathers and mammalian hair. Recent studies have provided new evidence for the homology of integumentary organ development throughout amniotes, despite their disparate final morphologies. These structures develop from conserved molecular signalling centres, known as epithelial placodes. It is not yet certain whether this homology extends beyond the integumentary organs of amniotes, as there is a lack of knowledge regarding their development in basal vertebrates. As the ancient sister lineage of bony vertebrates, extant chondrichthyans are well suited to testing the phylogenetic depth of this homology. Elasmobranchs (sharks, skates and rays possess hard, mineralised epithelial appendages called odontodes, which include teeth and dermal denticles (placoid scales. Odontodes constitute some of the oldest known vertebrate integumentary appendages, predating the origin of gnathostomes. Here, we used an emerging model shark (Scyliorhinus canicula to test the hypothesis that denticles are homologous to other placode-derived amniote integumentary organs. To examine the conservation of putative gene regulatory network (GRN member function, we undertook small molecule inhibition of fibroblast growth factor (FGF signalling during caudal denticle formation. Results We show that during early caudal denticle morphogenesis, the shark expresses homologues of conserved developmental gene families, known to comprise a core GRN for early placode morphogenesis in amniotes. This includes conserved expression of FGFs, sonic hedgehog (shh and bone morphogenetic protein 4 (bmp4. Additionally, we reveal that denticle placodes possess columnar epithelial cells with a reduced rate of proliferation, a conserved characteristic of amniote skin appendage development. Small molecule inhibition of FGF signalling revealed

  7. Effect of notches on fatigue crack growth

    International Nuclear Information System (INIS)

    Rhodes, D.

    1986-01-01

    Detailed results are given of the theoretical and experimental programme outline in the first report, GKSS 82/E/44. It is concluded that, in specimens of commercial engineering alloys (Steel DIN 1.6310 = 20MnMoNi 55, Al alloys) containing blunt, machined notches, the fatigue life depends on the time taken to propagate a crack from a surface defect, and the propagation rate depends on the plastic deformation range at the crack tip, which is characterised by the stress intensity range, once the crack has extended beyond the notch strain field. Areas in which this work may be extended, and refined, are discussed in detail. In particular, crack closure and environmental effects are considered, and the effect of cyclic softening is discussed. (orig./HP) [de

  8. Notch signalling in cancer stem cells.

    Science.gov (United States)

    Bolós, V; Blanco, M; Medina, V; Aparicio, G; Díaz-Prado, S; Grande, E

    2009-01-01

    A new theory about the development of solid tumours is emerging from the idea that solid tumours, like normal adult tissues, contain stem cells (called cancer stem cells) and arise from them. Genetic mutations encoding for proteins involved in critical signalling pathways for stem cells such as BMP, Notch, Hedgehog and Wnt would allow stem cells to undergo uncontrolled proliferation and form tumours. Taking into account that cancer stem cells (CSCs) would represent the real driving force behind tumour growth and that they may be drug resistant, new agents that target the above signalling pathways could be more effective than current anti-solid tumour therapies. In the present paper we will review the molecular basis of the Notch signalling pathway. Additionally, we will pay attention to their role in adult stem cell self-renewal, and cell fate specification and differentiation, and we will also review evidence that supports their implication in cancer.

  9. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Xinxia Zhang

    Full Text Available The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3% diffuse large B-cell lymphomas (DLBCLs exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.

  10. The Present SP Tests for Determining the Transition Temperature TSPon "U" Notch Disc Specimens.

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-05-03

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy E SP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature T SP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a "U" shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests T SP , determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing.

  11. Genetic disruption of uncoupling protein 1 in mice renders brown adipose tissue a significant source of FGF21 secretion

    Directory of Open Access Journals (Sweden)

    Susanne Keipert

    2015-07-01

    Conclusions: Here we show that the genetic ablation of UCP1 increases FGF21 gene expression in adipose tissue. The removal of adaptive nonshivering thermogenesis renders BAT a significant source of endogenous FGF21 under thermal stress. Thus, the thermogenic competence of BAT is not a requirement for FGF21 secretion. Notably, high endogenous FGF21 levels in UCP1-deficient models and subjects may confound pharmacological FGF21 treatments.

  12. Relationships between serum selenium and zinc concentrations versus profibrotic and proangiogenic cytokines (FGF-19 and endoglin) in patients with alcoholic liver cirrhosis.

    Science.gov (United States)

    Prystupa, Andrzej; Kiciński, Paweł; Luchowska-Kocot, Dorota; Błażewicz, Anna; Kurys-Denis, Ewa; Niedziałek, Jarosław; Sak, Jarosław; Panasiuk, Lech

    2017-09-21

    Liver cirrhosis is a disease involving the liver parenchyma, which is characterised by fibrosis and impaired architectonics of the parenchyma with regenerative nodules. The aim of the study was to determine the relationship between stage of alcoholic liver cirrhosis, concentrations of selenium, zinc and profibrotic and proangiogenic cytokines (FGF-19, ENG). The study included 99 patients with alcoholic cirrhosis and 20 healthy subjects. Ion chromatography with UV/VIS detection was used for determination of zinc ions in the previously mineralized serum samples. The measurements of selenium were performed with the ContrAA700 high-resolution continuum source graphite tube atomic absorption spectrometer. ELISA was used to determine concentration of FGF-19 and ENG in serum samples. Concentrations of zinc and selenium were significantly decreased in cirrhotic patients (pzinc and selenium in serum of patients with alcoholic liver cirrhosis are not independently related to concentrations of FGF-19 and ENG.

  13. Investigation of Notch Signaling during Spontaneous Regeneration of Cochlear Hair Cells

    Science.gov (United States)

    2016-10-01

    and /or rehabilitation of a disease , injury or condition, or to improve the quality of life. Examples include: • data or databases; • physical...from Dr. Wegner who made the mice) 4) University of Pennsylvania, Philadelphia, PA, in-kind support: supplied TetO-NICD mice Investigation of Notch

  14. Notch Activation Induces Endothelial Cell Senescence and Pro-inflammatory Response: Implication of Notch Signaling in Atherosclerosis

    Science.gov (United States)

    Liu, Zhao-Jun; Tan, Yurong; Beecham, Gary W.; Seo, David M.; Tian, Runxia; Li, Yan; Vazquez-Padron, Roberto I.; Pericak-Vance, Margaret; Vance, Jeffery M.; Goldschmidt-Clermont, Pascal J.; Livingstone, Alan S.; Velazquez, Omaida C.

    2012-01-01

    Objective Notch signaling plays pivotal roles in the pathogenesis of vascular disease. However, little is known about its role in atherosclerosis. We sought to investigate the potential involvement of the Notch signaling in atherosclerosis. Methods Expression of Notch pathway components in mouse and human aorta with or without atherosclerosis plaque was examined by immuno-histochemistry. Expression of Notch target genes in young versus aged human endothelial cells (EC) was examined by PCRArray and immunoblot. In vitro loss- and gain-of-function approaches were utilized to evaluate the role of Notch signaling in inducing EC senescence and secretion of pro-inflammatory cytokines by ProteinArray. Notch gene profile was studied in 1054 blood samples of patients with coronary artery disease (CAD). Genotyping was performed using the Genome-Wide Single Nucleotide Polymorphism (SNP) Array. Results Notch pathway components were upregulated in luminal EC at atherosclerotic lesions from mouse and human aortas. In addition, the Notch pathway was activated in aged but not young human EC. Enforced Notch activation resulted in EC senescence and significantly upregulated expression of several molecules implicated in the inflammatory response (IL-6/IL-8/IL-1α/RANTES/ICAM-1). The upregulated IL-6 was partially responsible for mediating leukocyte transendothelial migration. Genetic association analysis detected, of 82 SNPs across 6 Notch pathway genes analyzed, 4 SNPs with nominal association with CAD burden. Conclusion Notch pathway is activated in luminal EC at atherosclerotic plaques and results in pro-inflammatory response and senescence of EC. Notch signaling may be linked to human CAD risk. These findings implicate a potential involvement of Notch signaling in atherosclerosis. PMID:23078884

  15. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma.

    Science.gov (United States)

    Park, Myoung-Ja; Taki, Tomohiko; Oda, Megumi; Watanabe, Tomoyuki; Yumura-Yagi, Keiko; Kobayashi, Ryoji; Suzuki, Nobuhiro; Hara, Junichi; Horibe, Keizo; Hayashi, Yasuhide

    2009-04-01

    Mutation analysis of FBXW7 and NOTCH1 genes was performed in 55 T cell acute lymphoblastic leukaemia (T-ALL) and 14 T cell non-Hodgkin lymphoma (T-NHL) patients who were treated on the Japan Association of Childhood Leukaemia Study (JACLS) protocols ALL-97 and NHL-98. FBXW7 and/or NOTCH1 mutations were found in 22 (40.0%) of 55 T-ALL and 7 (50.0%) of 14 T-NHL patients. FBXW7 mutations were found in 8 (14.6%) of 55 T-ALL and 3 (21.4%) of 14 T-NHL patients, and NOTCH1 mutations in 17 (30.9%) of 55 T-ALL and 6 (42.9%) of 14 T-NHL patients. Three (5.4%) T-ALL and two (1.4%) T-NHL patients had mutations in both FBXW7 and NOTCH1. FBXW7 mutations included one insertion, one deletion, one deletion/insertion and nine missense mutations. NOTCH1 mutations were detected in the heterodimerization domain (HD) in 15 cases, in the PEST domain in seven cases, and in both the HD and PEST domains in one case. Five-year event-free survival and overall survival for patients with FBXW7 and/or NOTCH1 mutations were 95.5% (95% CI, 71.9-99.4%) and 100% respectively, suggesting that T-ALL patients with FBXW7 and/or NOTCH1 mutation represent a good prognosis compared to those without FBXW7 and/or NOTCH1 mutations (63.6%, P = 0.007 and 78.8%, P = 0.023, respectively).

  16. A Serrate-Notch-Canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development.

    Science.gov (United States)

    Pérez-Gómez, Raquel; Slováková, Jana; Rives-Quinto, Noemí; Krejci, Alena; Carmena, Ana

    2013-11-01

    It is firmly established that interactions between neurons and glia are fundamental across species for the correct establishment of a functional brain. Here, we found that the glia of the Drosophila larval brain display an essential non-autonomous role during the development of the optic lobe. The optic lobe develops from neuroepithelial cells that proliferate by dividing symmetrically until they switch to asymmetric/differentiative divisions that generate neuroblasts. The proneural gene lethal of scute (l'sc) is transiently activated by the epidermal growth factor receptor (EGFR)-Ras signal transduction pathway at the leading edge of a proneural wave that sweeps from medial to lateral neuroepithelium, promoting this switch. This process is tightly regulated by the tissue-autonomous function within the neuroepithelium of multiple signaling pathways, including EGFR-Ras and Notch. This study shows that the Notch ligand Serrate (Ser) is expressed in the glia and it forms a complex in vivo with Notch and Canoe, which colocalize at the adherens junctions of neuroepithelial cells. This complex is crucial for interactions between glia and neuroepithelial cells during optic lobe development. Ser is tissue-autonomously required in the glia where it activates Notch to regulate its proliferation, and non-autonomously in the neuroepithelium where Ser induces Notch signaling to avoid the premature activation of the EGFR-Ras pathway and hence of L'sc. Interestingly, different Notch activity reporters showed very different expression patterns in the glia and in the neuroepithelium, suggesting the existence of tissue-specific factors that promote the expression of particular Notch target genes or/and a reporter response dependent on different thresholds of Notch signaling.

  17. Band-Notched UWB Antenna with Switchable and Tunable Performance

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2016-01-01

    Full Text Available A band-notched UWB antenna is presented, which can switch between two notch bands and tune the central frequency simultaneously. It is the first time that the switchable and tunable behaviours are combined together in band-notched UWB antennas. In the band-notched structure, PIN diodes are used to switch the lower and upper frequency bands, while varactors could vary the central frequency of each notch band continuously. Measurement results show that the notch bands could switch between 4.2 GHz and 5.8 GHz when the state of varactors is fixed, and the ranges of tuning are 4.2–4.8 GHz and 5.8–6.5 GHz when the state of PIN diodes is ON and OFF, respectively.

  18. Notch signaling inhibitor DAPT provides protection against acute craniocerebral injury.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available Notch signaling pathway is involved in many physiological and pathological processes. The γ-secretase inhibitor DAPT inhibits Notch signaling pathway and promotes nerve regeneration after cerebral ischemia. However, neuroprotective effects of DAPT against acute craniocerebral injury remain unclear. In this study, we established rat model of acute craniocerebral injury, and found that with the increase of damage grade, the expression of Notch and downstream protein Hes1 and Hes5 expression gradually increased. After the administration of DAPT, the expression of Notch, Hes1 and Hes5 was inhibited, apoptosis and oxidative stress decreased, neurological function and cognitive function improved. These results suggest that Notch signaling can be used as an indicator to assess the severity of post-traumatic brain injury. Notch inhibitor DAPT can reduce oxidative stress and apoptosis after acute craniocerebral injury, and is a potential drug for the treatment of acute craniocerebral injury.

  19. Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish.

    Science.gov (United States)

    Nakahara, Yoshinari; Muto, Akihiko; Hirabayashi, Ryo; Sakuma, Tetsushi; Yamamoto, Takashi; Kume, Shoen; Kikuchi, Yutaka

    2016-05-01

    The adenohypophysis (AH) consists of six distinct types of hormone-secreting cells. In zebrafish, although proper differentiation of all AH cell types has been shown to require Notch signaling within a period of 14-16 h postfertilization (hpf), the mechanisms underlying this process remain to be elucidated. Herein, we observed using the Notch inhibitor dibenzazepine (DBZ) that Notch signaling also contributed to AH cell specification beyond 16 hpf. Specification of distinct cell types was perturbed by DBZ treatment for different time frames, suggesting that AH cells are specified by Notch-dependent and cell-type-specific mechanisms. We also found that two hes-family genes, her4.1 and hey1, were expressed in the developing AH under the influence of Notch signaling. her4.1 knockdown reduced expression of proopiomelanocortin a (pomca), growth hormone (gh), and prolactin, whereas hey1 was responsible only for gh expression. Simultaneous loss of both Her4.1 and Hey1 produced milder phenotypes than that of DBZ-treated embryos. Moreover, DBZ treatment from 18 hpf led to a significant down-regulation of both gh and pomca genes only when combined with injection of a subthreshold level of her4.1-morpholino. These observations suggest that multiple downstream effectors, including Her4.1 and Hey1, mediate Notch signaling during AH cell specification. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Notch signaling is significantly suppressed in basal cell carcinomas and activation induces basal cell carcinoma cell apoptosis.

    Science.gov (United States)

    Shi, Feng-Tao; Yu, Mei; Zloty, David; Bell, Robert H; Wang, Eddy; Akhoundsadegh, Noushin; Leung, Gigi; Haegert, Anne; Carr, Nicholas; Shapiro, Jerry; McElwee, Kevin J

    2017-04-01

    A subset of basal cell carcinomas (BCCs) are directly derived from hair follicles (HFs). In some respects, HFs can be defined as 'ordered' skin appendage growths, while BCCs can be regarded as 'disordered' skin appendage growths. The aim of the present study was to examine HFs and BCCs to define the expression of common and unique signaling pathways in each skin appendage. Human nodular BCCs, along with HFs and non‑follicular skin epithelium from normal individuals, were examined using microarrays, qPCR, and immunohistochemistry. Subsequently, BCC cells and root sheath keratinocyte cells from HFs were cultured and treated with Notch signaling peptide Jagged1 (JAG1). Gene expression, protein levels, and cell apoptosis susceptibility were assessed using qPCR, immunoblotting, and flow cytometry, respectively. Specific molecular mechanisms were found to be involved in the process of cell self‑renewal in the HFs and BCCs, including Notch and Hedgehog signaling pathways. However, several key Notch signaling factors showed significant differential expression in BCCs compared with HFs. Stimulating Notch signaling with JAG1 induced apoptosis of BCC cells by increasing Fas ligand expression and downstream caspase-8 activation. The present study showed that Notch signaling pathway activity is suppressed in BCCs, and is highly expressed in HFs. Elements of the Notch pathway could, therefore, represent targets for the treatment of BCCs and potentially in hair follicle engineering.

  1. Prolactin signaling enhances colon cancer stemness by modulating Notch signaling in a Jak2-STAT3/ERK manner

    Science.gov (United States)

    Anant, Shrikant

    2014-01-01

    Prolactin (PRL) is a secretory cytokine produced by various tissues. Binding to the cognate PRL receptor (PRLR), it activates intracellular signaling via janus kinase (JAK), extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription (STAT) proteins. PRL regulates diverse activities under normal and abnormal conditions, including malignancies. Previous clinical data suggest serum PRL levels are elevated in colorectal cancer (CRC) patients. In this study, we first determined the expression of PRL and PRLR in colon cancer tissue and cell lines. Higher levels of PRLR expression were observed in the cancer cells and cell lines compared with normal colonic epithelial cells. Incubation of colon cancer cells with PRL-induced JAK2, STAT3 and ERK1/2 phosphorylation and increased expression of Jagged 1, which is a Notch-1 receptor ligand. Notch signaling regulates CRC stem cell population. We observed increased accumulation of the cleaved/active form of Notch-1 receptor (Notch intracellular domain) and increased expression of Notch responsive genes HEY1, HES1 and stem cell marker genes DCLK1, LGR5, ALDH1 and CD44. Finally, inhibiting PRL induced JAK2-STAT3 and JAK2-ERK1/2 using AG490 and PD98059, respectively, leads to complete abrogation of Notch signaling, suggesting a role for this pathway in regulating CRC stem cells. Together, our results demonstrate that cytokine signaling induced by PRL is active in colorectal cancers and may provide a novel target for therapeutic intervention. PMID:24265293

  2. Genome-wide identification and characterization of Notch transcription complex-binding sequence paired sites in leukemia cells

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.

    2018-01-01

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412

  3. Knockdown of MALAT1 enhances chemosensitivity of ovarian cancer cells to cisplatin through inhibiting the Notch1 signaling pathway.

    Science.gov (United States)

    Bai, Lin; Wang, Aihua; Zhang, Yali; Xu, Xiaofeng; Zhang, Xiao

    2018-05-15

    Long non-coding RNAs (lncRNAs) are critical regulators in chemoresistance of various tumors including ovarian cancer. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been reported to be upregulated and contributed to ovarian cancer tumorigenesis. The aim of this study was to explore the roles of MALAT1 and the underlying molecular regulatory mechanism in the chemoresistance of ovarian cancer cells. Our data demonstrated that MALAT1 and Notch1 mRNA were upregulated in ovarian cancer tissues, as well as cisplatin (CDDP)-resistant ovarian cancer cells. A positive correlation between MALAT1 and Notch1 mRNA expression was observed. MALAT1 knockdown significantly attenuated CDDP resistance, and enhanced CDDP-induced apoptosis in CDDP-resistant ovarian cancer cells. MALAT1 knockdown enhanced CDDP-induced apoptosis in vivo, as indicated by upregulation of Bax protein expression and downregulation of Bcl-2 protein expression. Additionally, MALAT1 knockdown inhibited the Notch1 pathway and ABCC1 expression in CDDP-resistant ovarian cancer cells. MALAT1 was demonstrated to interact with Notch1. Notch1 knockdown attenuated CDDP resistance, and downregulated the protein expression of ABCC1 in ovarian cancer cells. Taken together, our findings suggested that knockdown of MALAT-1 enhanced chemosensitivity of ovarian cancer cells to CDDP through inhibiting Notch1 signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Genome-wide identification and characterization of Notch transcription complex-binding sequence-paired sites in leukemia cells.

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S; Shirley Liu, X; Blacklow, Stephen C; Aster, Jon C

    2017-05-02

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and have been linked to the Notch responsiveness of a few genes. To assess the overall contribution of SPSs to Notch-dependent gene regulation, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay and applied insights from these in vitro studies to Notch-"addicted" T cell acute lymphoblastic leukemia (T-ALL) cells. We found that SPSs contributed to the regulation of about a third of direct Notch target genes. Although originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5 expression. Our work provides a general method for identifying SPSs in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. Copyright © 2017, American Association for the Advancement of Science.

  5. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats.

    Science.gov (United States)

    He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin

    2016-01-10

    To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. FGF23 modulates the effects of erythropoietin on gene expression in renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Yashiro M

    2018-04-01

    Full Text Available Mitsuru Yashiro,1 Masaki Ohya,1 Toru Mima,1 Yumi Ueda,2 Yuri Nakashima,1 Kazuki Kawakami,1 Yohei Ishizawa,2 Shuto Yamamoto,1 Sou Kobayashi,1 Takurou Yano,1 Yusuke Tanaka,1 Kouji Okuda,1 Tomohiro Sonou,1 Tomohiro Shoshihara,1 Yuko Iwashita,1 Yu Iwashita,1 Kouichi Tatsuta,1 Ryo Matoba,2 Shigeo Negi,1 Takashi Shigematsu1 1Department of Nephrology, Wakayama Medical University, Wakayama, Japan; 2DNA Chip Research Inc., Minato, Japan Background: FGF23 plays an important role in calcium–phosphorus metabolism. Other roles of FGF23 have recently been reported, such as commitment to myocardium enlargement and immunological roles in the spleen. In this study, we aimed to identify the roles of FGF23 in the kidneys other than calcium–phosphorus metabolism. Methods: DNA microarrays and bioinformatics tools were used to analyze gene expression in mIMCD3 mouse renal tubule cells following treatment with FGF23, erythropoietin and/or an inhibitor of ERK. Results: Three protein-coding genes were upregulated and 12 were downregulated in response to FGF23. Following bioinformatics analysis of these genes, PPARγ and STAT3 were identified as candidate transcript factors for mediating their upregulation, and STAT1 as a candidate for mediating their downregulation. Because STAT1 and STAT3 also mediate erythropoietin signaling, we investigated whether FGF23 and erythropoietin might show interactive effects in these cells. Of the 15 genes regulated by FGF23, 11 were upregulated by erythropoietin; 10 of these were downregulated following cotreatment with FGF23. Inhibition of ERK, an intracellular mediator of FGF23, reversed the effects of FGF23. However, FGF23 did not influence STAT1 phosphorylation, suggesting that it impinges on erythropoietin signaling through other mechanisms. Conclusion: Our results suggest cross talk between erythropoietin and FGF23 signaling in the regulation of renal epithelial cells. Keywords: FGF23, STAT1, PPARγ, DNA microarray

  7. FGF21-based pharmacotherapy--potential utility for metabolic disorders.

    Science.gov (United States)

    Gimeno, Ruth E; Moller, David E

    2014-06-01

    Currently available therapies for diabetes or obesity produce modest efficacy and are usually used in combination with agents targeting cardiovascular risk factors. Fibroblast growth factor 21 (FGF21) is a circulating protein with pleiotropic metabolic actions; pharmacological doses of FGF21 produce anti-diabetic, lipid-lowering, and weight-reducing effects in rodents. Several potential benefits have translated to non-human primates and obese humans with type 2 diabetes (T2D). Accumulating results point to a specific receptor complex and actions in adipose tissue, liver, and brain; several pathways lead to enhanced fatty acid oxidation, increased insulin sensitivity, and augmented energy expenditure. A range of strategies are being explored to derive potent, safe, and convenient therapies which could potentially represent novel approaches to prevent and treat a variety of metabolic disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Notch1 mutations are drivers of oral tumorigenesis

    Science.gov (United States)

    Jones, Sian; Brait, Mariana; Agrawal, Nishant; Koch, Wayne; McCord, Christine L.; Riley, David R.; Angiuoli, Samuel V.; Velculescu, Victor E.; Jiang, Wei-Wen; Sidransky, David

    2014-01-01

    Disruption of NOTCH1 signaling was recently discovered in head and neck cancer. This study aims to evaluate NOTCH1 alterations in the progression of oral squamous cell carcinoma (OSCC) and compare the occurrence of these mutations in Chinese and Caucasian populations. We used a high-throughput-PCR-based enrichment technology and next generation sequencing (NGS) to sequence NOTCH1 in 144 samples collected in China. Forty nine samples were normal oral mucosa from patients undergoing oral surgery, 45 were oral leukoplakia biopsies and 50 were chemoradiation naïve OSCC samples with 22 paired-normal tissues from the adjacent unaffected areas. NOTCH1 mutations were found in 54% of primary OSCC and 60% of pre-malignant lesions. Importantly, almost 60% of leukoplakia patients with mutated NOTCH1 carried mutations that were also identified in OSCC, indicating an important role of these clonal events in the progression of early neoplasms. We then compared all known NOTCH1 mutations identified in Chinese OSCC patients with those reported in Caucasians to date. Although we found obvious overlaps in critical regulatory NOTCH1 domains alterations and identified specific mutations shared by both groups, possible gain-of-function mutations were predominantly seen in Chinese population. Our findings demonstrate that pre-malignant lesions display NOTCH1 mutations at an early stage and are thus bona fide drivers of OSCC progression. Moreover, our results reveal that NOTCH1 promotes distinct tumorigenic mechanisms in patients from different ethnical populations. PMID:25406187

  9. FGF Signaling and Dietary Factors in the Prostate

    Science.gov (United States)

    2006-09-01

    2003). c. The FGF signaling axis in prostate homeostasis and tumorigenesis. Department of Molecular and Cellular Biology, Baylor College of Medicine...Pharmacology, Washington University, School of Medicine, 660 South Euclid Avenue, Saint Louis, MO, 63110; 4, Department of Surgery, University of Western...dilution) from Sigma Co ( Saint Louis, MO); mouse anti-P63 (1:150 dilution) and mouse anti-AR (1:150 dilution) from Santa Cruz (Santa Cruz, CA); rabbit anti

  10. Prediction formulas for a notched frequency response of a printed ultra-wideband antenna loaded with notching resonators

    Directory of Open Access Journals (Sweden)

    Ayman Ayd R. Saad

    2013-12-01

    Full Text Available This Letter presents closed-form formulas for fast approximate determination of frequency band notches of ultra-wideband (UWB antennas loaded with nearly quarter-/half- or even full-wavelength notches resonators. The formulas are derived using the curve-fitting technique. They describe the influences of the physical length of these notches resonators on the corresponding frequency notches in the UWB of 3.1–10.6 GHz. The calculated results obtained using these new formulas show good correlation with the reported electromagnetic simulation results elsewhere.

  11. Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Sørensen, Rikke Kruse; Vienberg, Sara Gry; Vind, Birgitte F

    2017-01-01

    that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established. METHODS...... was evaluated by quantitative real-time PCR (qPCR). RESULTS: Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p......: The effects of insulin during euglycaemic-hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies...

  12. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization.

    Science.gov (United States)

    Fajol, Abul; Honisch, Sabina; Zhang, Bingbing; Schmidt, Sebastian; Alkahtani, Saad; Alarifi, Saud; Lang, Florian; Stournaras, Christos; Föller, Michael

    2016-03-01

    FGF23 regulates renal phosphate and vitamin D metabolism. Loss of FGF23 results in massive calcification and rapid aging. FGF23 production is stimulated by 1,25(OH)2D3 and NFκB signaling. Here, we report that treatment of UMR106 osteoblast-like cells with 1,25(OH)2D3, inducing Fgf23 transcription, resulted in actin polymerization which was blocked by NFκB inhibitor wogonin. Interestingly, 1,25(OH)2D3-induced Fgf23 gene transcription was abolished by the actin microfilament-disrupting agent cytochalasin B, as well as by the inhibition of actin-regulating Rac1/PAK1 signaling. Our results provide strong evidence that actin redistribution regulated by the Rac1/PAK1 pathway participates in 1,25(OH)2D3-induced Fgf23 gene transcription. © 2016 Federation of European Biochemical Societies.

  13. Fibroblast Growth Factor 23 (FGF23 and Disorders of Phosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Tasuku Saito

    2009-01-01

    Full Text Available Derangements in serum phosphate level result in rickets/osteomalacia or ectopic calcification indicating that healthy people without these abnormalities maintain serum phosphate within certain ranges. These results indicate that there must be a regulatory mechanism of serum phosphate level. Fibroblast growth factor 23 (FGF23 was identified as the last member of FGF family. FGF23 is produced by bone and reduces serum phosphate level by suppressing phosphate reabsorption in proximal tubules and intestinal phosphate absorption through lowering 1,25-dihydroxyvitamin D level. It has been shown that excess and deficient actions of FGF23 result in hypophosphatemic rickets/osteomalacia and hyperphosphatemic tumoral calcinosis, respectively. These results indicate that FGF23 works as a hormone, and several disorders of phosphate metabolism can be viewed as endocrine diseases. It may become possible to treat patients with abnormal phosphate metabolism by pharmacologically modifying the activity of FGF23.

  14. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.

    Science.gov (United States)

    Wang, Jingxiao; Dong, Mingjie; Xu, Zhong; Song, Xinhua; Zhang, Shanshan; Qiao, Yu; Che, Li; Gordan, John; Hu, Kaiwen; Liu, Yan; Calvisi, Diego F; Chen, Xin

    2018-03-16

    Liver cancer comprises a group of malignant tumors, among which hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common. ICC is especially pernicious and associated with poor clinical outcome. Studies have shown that a subset of human ICCs may originate from mature hepatocytes. However, the mechanisms driving the trans-differentiation of hepatocytes into malignant cholangiocytes remain poorly defined. We adopted lineage tracing techniques and an established murine hepatocyte-derived ICC model by hydrodynamic injection of activated forms of AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes. Wild-type, Notch1 flox/flox , and Notch2 flox/flox mice were used to investigate the role of canonical Notch signaling and Notch receptors in AKT/Yap-driven ICC formation. Human ICC and HCC cell lines were transfected with siRNA against Notch2 to determine whether Notch2 regulates biliary marker expression in liver tumor cells. We found that AKT/Yap-induced ICC formation is hepatocyte derived and this process is strictly dependent on the canonical Notch signaling pathway in vivo. Deletion of Notch2 in AKT/Yap-induced tumors switched the phenotype from ICC to hepatocellular adenoma-like lesions, while inactivation of Notch1 in hepatocytes did not result in significant histomorphological changes. Finally, in vitro studies revealed that Notch2 silencing in ICC and HCC cell lines down-regulates the expression of Sox9 and EpCAM biliary markers. Notch2 is the major determinant of hepatocyte-derived ICC formation in mice.

  15. Growth factors FGF8 and FGF2 and their receptor FGFR1, transcriptional factors Msx-1 and MSX-2, and apoptotic factors p19 and RIP5 participate in the early human limb development.

    Science.gov (United States)

    Becic, Tina; Kero, Darko; Vukojevic, Katarina; Mardesic, Snjezana; Saraga-Babic, Mirna

    2018-04-01

    The expression pattern of fibroblast growth factors FGF8 and FGF2 and their receptor FGFR1, transcription factors MSX-1 and MSX-2, as well as cell proliferation (Ki-67) and cell death associated caspase-3, p19 and RIP5 factors were analyzed in histological sections of eight 4th-9th-weeks developing human limbs by immunohistochemistry and semi-thin sectioning. Increasing expression of all analyzed factors (except FGF8) characterized both the multilayered human apical ectodermal ridge (AER), sub-ridge mesenchyme (progress zone) and chondrocytes in developing human limbs. While cytoplasmic co-expression of MSX-1 and MSX-2 was observed in both limb epithelium and mesenchyme, p19 displayed strong cytoplasmic expression in non-proliferating cells. Nuclear expression of Ki-67 proliferating cells, and partly of MSX-1 and MSX-2 was detected in the whole limb primordium. Strong expression of factors p19 and RIP5, both in the AER and mesenchyme of human developing limbs indicates their possible involvement in control of cell senescence and cell death. In contrast to animal studies, expression of FGFR1 in the surface ectoderm and p19 in the whole limb primordium might reflect interspecies differences in limb morphology. Expression of FGF2 and downstream RIP5 gene, and transcription factors Msx-1 and MSX-2 did not show human-specific changes in expression pattern. Based on their spatio-temporal expression during human limb development, our study indicates role of FGFs and Msx genes in stimulation of cell proliferation, limb outgrowth, digit elongation and separation, and additionally MSX-2 in control of vasculogenesis. The cascade of orchestrated gene expressions, including the analyzed developmental factors, jointly contribute to the complex human limb development. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. First experience with FGF-3 (INT-2) amplification in women with epithelial ovarian cancer.

    OpenAIRE

    Rosen, A.; Sevelda, P.; Klein, M.; Dobianer, K.; Hruza, C.; Czerwenka, K.; Hanak, H.; Vavra, N.; Salzer, H.; Leodolter, S.

    1993-01-01

    Estimation of FGF-3 oncogene amplification in DNA samples extracted from paraffin embedded sections of 136 ovarian cancer samples was carried out by a quantitative PCR method. The aim of this study was to elucidate a possible association of FGF-3 copy numbers with established prognostic factors such as age, histology, FIGO stage, grading, postoperative residual tumour mass, ascites, hormone receptor content and preoperative CA 125 serum levels. In addition, correlation of FGF-3 amplification ...

  17. Chemical Control of FGF-2 Release for Promoting Calvarial Healing with Adipose Stem Cells*

    OpenAIRE

    Kwan, Matthew D.; Sellmyer, Mark A.; Quarto, Natalina; Ho, Andrew M.; Wandless, Thomas J.; Longaker, Michael T.

    2011-01-01

    Chemical control of protein secretion using a small molecule approach provides a powerful tool to optimize tissue engineering strategies by regulating the spatial and temporal dimensions that are exposed to a specific protein. We placed fibroblast growth factor 2 (FGF-2) under conditional control of a small molecule and demonstrated greater than 50-fold regulation of FGF-2 release as well as tunability, reversibility, and functionality in vitro. We then applied conditional control of FGF-2 se...

  18. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis

    DEFF Research Database (Denmark)

    Cao, Renhai; Ji, Hong; Feng, Ninghan

    2012-01-01

    Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading...... endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting...

  19. Molecular characterization and mapping of Fgf21 gene in a foodfish species asian seabass.

    Directory of Open Access Journals (Sweden)

    Le Wang

    Full Text Available Fgf21 is a newly discovered fibroblast growth factor. It is typically induced by fasting and plays important roles in the regulation of glucose and lipid metabolisms and energy balance in mammals, whereas potential functions of this gene in teleosts are still unknown. We identified the Fgf21 gene and studied its functions in Asian seabass (Lates calcarifer. The cDNA of the Fgf21 encoded a protein with 206 amino acids. Analysis of DNA and amino acid sequences of Fgf21 genes revealed that the sequences and structure of the Fgf21 genes were highly conserved in vertebrates. Real-time PCR revealed that Fgf21 was exclusively expressed in the intestine and kidney, which was different from the expression profiles of mammals. Fgf21 was down-regulated under fasting, whereas it was significantly increased during the LPS challenge. Exogenous recombinant FGF21 significantly suppressed the appetite of Asian seabass. Our data suggest that Fgf21 plays a role in energy regulation and acute phase response in Asian seabass, and may have different functions in fish and mammals. In addition, we identified one SNP in Fgf21. By using this SNP, the gene was mapped on the linkage group 23, where a suggestive QTL for growth was mapped previously. Association mapping identified significant associations between Fgf21 genotypes at the SNP and growth traits. These results not only provide important information of the functions of Fgf21, but also suggest that the SNP in this gene can be used as a marker in selecting fast-growing individuals of Asian seabass.

  20. Altered FGF Signaling Pathways Impair Cell Proliferation and Elevation of Palate Shelves.

    Directory of Open Access Journals (Sweden)

    Weijie Wu

    Full Text Available In palatogenesis, palatal shelves are patterned along the mediolateral axis as well as the anteroposterior axis before the onset of palatal fusion. Fgf10 specifically expressed in lateral mesenchyme of palate maintains Shh transcription in lateral epithelium, while Fgf7 activated in medial mesenchyme by Dlx5, suppressed the expansion of Shh expression to medial epithelium. How FGF signaling pathways regulate the cell behaviors of developing palate remains elusive. In our study, we found that when Fgf8 is ectopically expressed in the embryonic palatal mesenchyme, the elevation of palatal shelves is impaired and the posterior palatal shelves are enlarged, especially in the medial side. The palatal deformity results from the drastic increase of cell proliferation in posterior mesenchyme and decrease of cell proliferation in epithelium. The expression of mesenchymal Fgf10 and epithelial Shh in the lateral palate, as well as the Dlx5 and Fgf7 transcription in the medial mesenchyme are all interrupted, indicating that the epithelial-mesenchymal interactions during palatogenesis are disrupted by the ectopic activation of mesenchymal Fgf8. Besides the altered Fgf7, Fgf10, Dlx5 and Shh expression pattern, the reduced Osr2 expression domain in the lateral mesenchyme also suggests an impaired mediolateral patterning of posterior palate. Moreover, the ectopic Fgf8 expression up-regulates pJak1 throughout the palatal mesenchyme and pErk in the medial mesenchyme, but down-regulates pJak2 in the epithelium, suggesting that during normal palatogenesis, the medial mesenchymal cell proliferation is stimulated by FGF/Erk pathway, while the epithelial cell proliferation is maintained through FGF/Jak2 pathway.

  1. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  2. Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders.

    Science.gov (United States)

    Chiang, Mark Y; Radojcic, Vedran; Maillard, Ivan

    2016-07-01

    This article highlights recent discoveries about Notch activation and its oncogenic functions in lymphoid malignancies, and discusses the therapeutic potential of Notch inhibition. NOTCH mutations arise in a broad spectrum of lymphoid malignancies and are increasingly scrutinized as putative therapeutic targets. In T-cell acute lymphoblastic leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B-cell malignancies truncate the C-terminal proline (P), glutamic acid (E), serine (S), threonine (T)-rich (PEST) domain, leading to decreased Notch degradation after ligand-mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that influenced contemporary thinking on the challenges of targeting Notch in cancer. We review advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven metabolome, and the sophisticated protein-protein interactions at Notch-dependent superenhancers that underlie oncogenic Notch functions. Notch signaling is a recurrent oncogenic pathway in multiple T- and B-cell lymphoproliferative disorders. Understanding the complexity and consequences of Notch activation is critical to define optimal therapeutic strategies targeting the Notch pathway.

  3. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  4. Molecular alterations in signal pathways of melanoma and new personalized treatment strategies: Targeting of Notch

    Directory of Open Access Journals (Sweden)

    Julija Mozūraitienė

    2015-01-01

    Full Text Available Despite modern achievements in therapy of malignant melanomas new treatment strategies are welcomed in clinics for survival of patients. Now it is supposed that personalized molecular therapies for each patient are needed concerning a specificity of molecular alterations in patient's tumors. In human melanoma, Notch signaling interacts with other pathways, including MAPK, PI3K-AKT, NF-kB, and p53. This article discusses mutated genes and leading aberrant signal pathways in human melanoma which are of interest concerning to their perspective for personalized treatment strategies in melanoma. We speculate that E3 ubiquitin ligases MDM2 and MDM4 can be attractive therapeutic target for p53 and Notch signaling pathways in malignant melanoma by using small molecule inhibitors. It is possible that restoration of p53-MDM2-NUMB complexes in melanoma can restore wild type p53 function and positively modulate Notch pathway. In this review we summarize recent data about novel US Food and Drug Administration approved target drugs for metastatic melanoma treatment, and suppose model for treatment strategy by targeting Notch.

  5. Specification of Drosophila corpora cardiaca neuroendocrine cells from mesoderm is regulated by Notch signaling.

    Directory of Open Access Journals (Sweden)

    Sangbin Park

    2011-08-01

    Full Text Available Drosophila neuroendocrine cells comprising the corpora cardiaca (CC are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism.

  6. Crucial role of Notch signaling in osteogenic differentiation of periodontal ligament stem cells in osteoporotic rats.

    Science.gov (United States)

    Li, Ying; Li, S Q; Gao, Y M; Li, Jin; Zhang, Bin

    2014-06-01

    Estrogen deficiency-induced osteoporosis typically occurs in postmenopausal women and has been strongly associated with periodontal diseases. Periodontal ligament stem cells (PDLSCs) isolated from the periodontal ligament can differentiate into many types of specialized cells, including osteoblast-like cells that contribute to periodontal tissue repair. The Notch signaling pathway is highly conserved and associated with self-renewal potential and cell-fate determination. Recently, several studies have focused on the relationship between Notch signaling and osteogenic differentiation. However, the precise mechanisms underlying this relationship are largely unknown. We have successfully isolated PDLSCs from both ovariectomized (OVX) and sham-operated rats. Both the mRNA and protein levels of Notch1 and Jagged1 were upregulated when PDLSCs were cultured in osteogenic induction media. Mineralization assays showed decreased calcium deposits in OVX-PDLSCs treated with a γ-secretase inhibitor compared with control cells. Thus Notch signaling is important in maintaining the osteogenic differentiation of PDLSCs in osteoporotic rats, which help in the development of a potential therapeutic strategy for periodontal disease in postmenopausal women. © 2014 International Federation for Cell Biology.

  7. Fibre Optic Notch Filter For The Antiproton Decelerator Stochastic Cooling System

    CERN Document Server

    Simmonds, Max Vincent John

    2016-01-01

    The project scope included reverse engineering, upgrading, and recovering the operational conditions of an existing fibre optic notch filter. Once operational, tests were to be preformed to confirm the performance of the temperature stabilisation. The end goal is to use said notch filter in the Antiproton Decelerator (AD) facility at CERN to help aid antimatter research. The notch filter was successfully reverse engineered and then documented. Changes were made in order to increase performance and reliability, and also allow easy integration into the AD. An additional phase was added whereby the notch filter was to be controller via a touchscreen computer, situated next to the filter, allowing engineers to set-up each of the electronic devices used. While one of the devices (Motorised Delay Line) can be controlled by the touchscreen computer, the other two cannot.Due to time constraints and difficulties with the Beckhoff TwincatII programming language, the USB devices were not able to be controlled via the To...

  8. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Regulation of mineral metabolism and mineralization by FGF23].

    Science.gov (United States)

    Fukumoto, Seiji

    2015-05-01

    Fibroblast growth factor 23 (FGF23) decreases serum phosphate by inhibiting proximal tubular phosphate reabsorption and intestinal phosphate absorption through the reduction of serum 1,25-dihydroxyvitamin D [1,25 (OH) (2)D] levels. Excessive actions of FGF23 cause hypophosphatemic diseases with impaired mineralization of bone. On the other hand, impaired actions of FGF23 result in hyperphosphatemic familial tumoral calcinosis characterized by hyperphosphatemia and high 1,25 (OH) (2)D levels. Ectopic calcification around large joints and in blood vessels can be observed in patients with this disease. Therefore, FGF23 plays essential roles in the regulation of bone mineralization and prevention of ectopic calcification.

  9. Model-Based Analysis of FGF23 Regulation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Hiroki Yokota

    2010-06-01

    Full Text Available The mechanism of FGF23 action in calcium/phosphorus metabolism of patients with chronic kidney disease (CKD was studied using a mathematical model and clinical data in a public domain. We have previously built a physiological model that describes interactions of PTH, calcitriol, and FGF23 in mineral metabolism encompassing organs such as bone, intestine, kidney, and parathyroid glands. Since an elevated FGF23 level in serum is a characteristic symptom of CKD patients, we evaluate herein potential metabolic alterations in response to administration of a neutralizing antibody against FGF23. Using the parameters identified from available clinical data, we observed that a transient decrease in the FGF23 level elevated the serum concentrations of PTH, calcitriol, and phosphorus. The model also predicted that the administration reduced a urinary output of phosphorous. This model-based prediction indicated that the therapeutic reduction of FGF23 by the neutralizing antibody did not reduce phosphorus burden of CKD patients and decreased the urinary phosphorous excretion. Thus, the high FGF23 level in CKD patients was predicted to be a failure of FGF23-mediated phosphorous excretion. The results herein indicate that it is necessary to understand the mechanism in CKD in which the level of FGF23 is elevated without effectively regulating phosphorus.

  10. Thrombin induces rapid PAR1-mediated non-classical FGF1 release

    International Nuclear Information System (INIS)

    Duarte, Maria; Kolev, Vihren; Soldi, Raffaella; Kirov, Alexander; Graziani, Irene; Oliveira, Silvia Marta; Kacer, Doreen; Friesel, Robert; Maciag, Thomas; Prudovsky, Igor

    2006-01-01

    Thrombin induces cell proliferation and migration during vascular injury. We report that thrombin rapidly stimulated expression and release of the pro-angiogenic polypeptide fibroblast growth factor 1 (FGF1). Thrombin failed to induce FGF1 release from protease-activated receptor 1 (PAR1) null fibroblasts, indicating that this effect was dependent on PAR1. Similarly to thrombin, FGF1 expression and release were induced by TRAP, a specific oligopeptide agonist of PAR1. These results identify a novel aspect of the crosstalk between FGF and thrombin signaling pathways which both play important roles in tissue repair and angiogenesis

  11. Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein

    Directory of Open Access Journals (Sweden)

    Yang Ting

    2008-11-01

    Full Text Available Abstract Background Deposition of amyloid-β protein (Aβ is a major pathological hallmark of Alzheimer's disease (AD. Aβ is generated from γ-secretase cleavage of amyloid precursor protein (APP. In addition to APP, γ-secretase also cleaves other type I integral membrane proteins, including the Notch receptor, a key molecule involved in embryonic development. Results To explore selective γ-secretase inhibitors, a combination of five methods was used to systematically determine these inhibitors' profiles on the γ-secretase cleavage of APP and Notch. When two potent γ-secretase inhibitors, compound E (cpd E and DAPT, were used in a conventional in vitro γ-secretase activity assay, cpd E completely blocked Aβ generation from the cleavage of substrate APP C100, but only had a minor effect on Notch cleavage and NICD generation. Next, cpd E and DAPT were applied to HEK293 cells expressing a truncated Notch substrate NotchΔE. Both cpd E and DAPT were more potent in blocking Aβ generation than NICD generation. Third, a reporter construct was created that carried the NICD targeting promoter with three Su(H binding sequences followed by the luciferase gene. We found that the inhibition of NICD generation by cpd E and DAPT was consistent with the reduced expression of luciferase gene driven by this Notch targeting promoter. Fourth, levels of "Notch-Aβ-like" (Nβ* peptide derived from two previously reported chimeric APP with its transmembrane domain or the juxtamembrane portion replaced by the Notch sequence were quantified. Measurement of Nβ* peptides by ELISA confirmed that EC50's of cpd E were much higher for Nβ* than Aβ. Finally, the expression levels of Notch target gene her6 in cpd E or DAPT-treated zebrafish were correlated with the degree of tail curvature due to defective somitogenesis, a well characterized Notch phenotype in zebrafish. Conclusion Our ELISA-based quantification of Aβ and Nβ* in combination with the test in

  12. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification.

    Science.gov (United States)

    Ahn, Sung-Min; Jang, Se Jin; Shim, Ju Hyun; Kim, Deokhoon; Hong, Seung-Mo; Sung, Chang Ohk; Baek, Daehyun; Haq, Farhan; Ansari, Adnan Ahmad; Lee, Sun Young; Chun, Sung-Min; Choi, Seongmin; Choi, Hyun-Jeung; Kim, Jongkyu; Kim, Sukjun; Hwang, Shin; Lee, Young-Joo; Lee, Jong-Eun; Jung, Wang-Rim; Jang, Hye Yoon; Yang, Eunho; Sung, Wing-Kin; Lee, Nikki P; Mao, Mao; Lee, Charles; Zucman-Rossi, Jessica; Yu, Eunsil; Lee, Han Chu; Kong, Gu

    2014-12-01

    Hepatic resection is the most curative treatment option for early-stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early-stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high-copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer-specific and recurrence-free survival after resection (multivariate P = 0.038 and P = 0.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (P = 0.017). RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti-FGF19 treatment in these patients. © 2014 by the American Association for the Study of Liver Diseases.

  13. A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development

    Science.gov (United States)

    Han, Dong; Zhao, Hu; Parada, Carolina; Hacia, Joseph G.; Bringas, Pablo; Chai, Yang

    2012-01-01

    The tongue is a muscular organ and plays a crucial role in speech, deglutition and taste. Despite the important physiological functions of the tongue, little is known about the regulatory mechanisms of tongue muscle development. TGFβ family members play important roles in regulating myogenesis, but the functional significance of Smad-dependent TGFβ signaling in regulating tongue skeletal muscle development remains unclear. In this study, we have investigated Smad4-mediated TGFβ signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis through tissue-specific inactivation of Smad4 (using Myf5-Cre;Smad4flox/flox mice). During the initiation of tongue development, cranial neural crest (CNC) cells occupy the tongue buds before myogenic progenitors migrate into the tongue primordium, suggesting that CNC cells play an instructive role in guiding tongue muscle development. Moreover, ablation of Smad4 results in defects in myogenic terminal differentiation and myoblast fusion. Despite compromised muscle differentiation, tendon formation appears unaffected in the tongue of Myf5-Cre;Smad4flox/flox mice, suggesting that the differentiation and maintenance of CNC-derived tendon cells are independent of Smad4-mediated signaling in myogenic cells in the tongue. Furthermore, loss of Smad4 results in a significant reduction in expression of several members of the FGF family, including Fgf6 and Fgfr4. Exogenous Fgf6 partially rescues the tongue myoblast fusion defect of Myf5-Cre;Smad4flox/flox mice. Taken together, our study demonstrates that a TGFβ-Smad4-Fgf6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis. PMID:22438570

  14. Notch signal strength controls cell fate in the haemogenic endothelium

    DEFF Research Database (Denmark)

    Gama-Norton, Leonor; Ferrando, Eva; Ruiz-Herguido, Cristina

    2015-01-01

    distinguishes and executes these different programmes in response to particular ligands is poorly understood. By using two Notch1 activation trap mouse models with different sensitivity, here we show that arterial endothelial cells and HSCs originate from distinct precursors, characterized by different Notch1...

  15. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  16. Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.

    Science.gov (United States)

    Alaña, Lide; Sesé, Marta; Cánovas, Verónica; Punyal, Yolanda; Fernández, Yolanda; Abasolo, Ibane; de Torres, Inés; Ruiz, Cristina; Espinosa, Lluís; Bigas, Anna; Y Cajal, Santiago Ramón; Fernández, Pedro L; Serras, Florenci; Corominas, Montserrat; Thomson, Timothy M; Paciucci, Rosanna

    2014-03-31

    PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this

  17. Scalable Notch Antenna System for Multiport Applications

    Directory of Open Access Journals (Sweden)

    Abdurrahim Toktas

    2016-01-01

    Full Text Available A novel and compact scalable antenna system is designed for multiport applications. The basic design is built on a square patch with an electrical size of 0.82λ0×0.82λ0 (at 2.4 GHz on a dielectric substrate. The design consists of four symmetrical and orthogonal triangular notches with circular feeding slots at the corners of the common patch. The 4-port antenna can be simply rearranged to 8-port and 12-port systems. The operating band of the system can be tuned by scaling (S the size of the system while fixing the thickness of the substrate. The antenna system with S: 1/1 in size of 103.5×103.5 mm2 operates at the frequency band of 2.3–3.0 GHz. By scaling the antenna with S: 1/2.3, a system of 45×45 mm2 is achieved, and thus the operating band is tuned to 4.7–6.1 GHz with the same scattering characteristic. A parametric study is also conducted to investigate the effects of changing the notch dimensions. The performance of the antenna is verified in terms of the antenna characteristics as well as diversity and multiplexing parameters. The antenna system can be tuned by scaling so that it is applicable to the multiport WLAN, WIMAX, and LTE devices with port upgradability.

  18. A New Method of Fatigue Life Prediction for Notched Specimen

    Directory of Open Access Journals (Sweden)

    JIN Dan

    2017-04-01

    Full Text Available The simulations of the notched specimens under multiaxial loading were conducted by finite element method. The simulation results show that the stress gradient increases with the decrease in notch radius for the same strain path. The equivalent strain method is used to predict the fatigue life based on the strain at the notched root. The prediction results are more conservative with the decrease in notch radius. The effective distance is determinated by the stress gradient method, and the effective distances are decreased with the decrease of notch radius for the same strain path. The fatigue life is predicted based on the strain at the effective distance, and the predictions are scattered and unconservative. Combining the test results and simulations, a new method determinating the effective distance is presented considering the strain gradient. Most prediction results are in a factor-2 scatter band.

  19. Engineering, expression, and renaturation of a collagen-targeted human bFGF fusion protein.

    Science.gov (United States)

    Andrades, J A; Wu, L T; Hall, F L; Nimni, M E; Becerra, J

    2001-01-01

    Basic fibroblast growth factor (bFGF) is a potent in vitro mitogen for capillary endothelial cells, stimulates angiogenesis in vivo, and may participate in tissue repair. Basic FGF is found in abundance in tissues such as brain, kidney and cartilage. This study reports the expression, purification, and renaturation of a biologically active human basic fibroblast growth factor fusion protein (hbFGF-F1) from Escherichia coli. A prokaryotic expression vector was engineered to produce a tripartite fusion protein consisting of (i) a purification tag, (ii) a protease-sensitive linker/collagen-binding domain, and (iii) cDNA sequence encoding the active fragment of hbFGF. The expressed hbFGF-F1 and hbFGF-F2 (it contains a collagen-binding domain), located in inclusion bodies, were solubilized with 6 M guanidine-HCl and renatured using a glutathione redox system and protracted dialysis under various experimental conditions. The purification of the recombinant proteins was achieved by binding the His-tag of the fusion protein on a Ni-NTA metal chelate column. The biological activity of the recombinant growth factors was demonstrated by their ability to stimulate proliferation of human vein endothelial cells (HVEC), monitored by [3H]-thymidine incorporation, where commercial recombinant human bFGF (rhbFGF) served as a positive control. Purified rhbFGF-F1 and rhbFGF-F2 constructs exhibited proliferative activity comparable to commercial rhbFGF. Binding of the renatured hbFGF-F2 fusion protein to collagen was demonstrated by stable binding on a collagen-conjugated Sephadex-G15 column. The high affinity binding was also demonstrated by the binding of [3H]-collagen to the rhbFGF-F2 protein immobilized on a Ni-NTA column. The rhbFGF-F2 fusion protein bound to collagen coated surfaces with high affinity but exhibited comparatively lower biological activity than the fusion protein in solution, suggesting a potentially latent configuration. Taken together, these results demonstrate

  20. Gauging NOTCH1 Activation in Cancer Using Immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Michael J Kluk

    Full Text Available Fixed, paraffin-embedded (FPE tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1 in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors, but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of

  1. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications.

    Science.gov (United States)

    Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong

    2017-09-25

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.

  2. Calorie restriction and Roux-en-Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects.

    Science.gov (United States)

    Lips, Mirjam A; de Groot, Gerrit H; Berends, Frits J; Wiezer, Renee; van Wagensveld, Bart A; Swank, Dingeman J; Luijten, Arijan; van Dijk, Ko Willems; Pijl, Hanno; Jansen, Peter L M; Schaap, Frank G

    2014-12-01

    To study the effect of different weight loss strategies on levels of the metabolic regulator FGF21 in morbidly obese females with normal glucose tolerance (NGT) or type 2 diabetes mellitus (T2DM). Observational intervention trial. Weight reduction was achieved by Gastric Banding (GB, n = 11) or Roux-en-Y Gastric Bypass (RYGB, n = 16) in subjects with NGT, and by RYGB (n = 15) or a very-low-calorie diet (VLCD, n = 12) in type 2 diabetics. Fasted and/or postprandial levels of FGF21, FGF19 (an FGF21-related postprandial hormone) and bile salts (implicated in regulation of FGF21 and FGF19 expression) were measured before, and 3 and 12 weeks after intervention. Fasted FGF21 levels were elevated in T2DM subjects. Calorie restriction by either GB or VLCD lowered bile salt and FGF21 levels. In contrast, RYGB surgery was associated with elevated bile salt and FGF21 levels. Calorie restriction and RYGB have opposite effects on serum bile salt and FGF21 levels. Calorie restriction results in FGF21 approaching nonobese control levels, suggesting that this intervention is effective in reducing the "nutritional crisis" that appears to underly FGF21 elevation in obesity. FGF21 elevation after RYGB may contribute to the beneficial effect of this procedure. © 2014 John Wiley & Sons Ltd.

  3. FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis

    Directory of Open Access Journals (Sweden)

    Hajihosseini Mohammad K

    2005-06-01

    Full Text Available Abstract Background Analyses of Fgf10 and Fgfr2b mutant mice, as well as human studies, suggest that FGF10/FGFR2b signaling may play an essential, nonredundant role during embryonic SMG development. To address this question, we have analyzed the SMG phenotype in Fgf10 and Fgfr2b heterozygous and null mutant mice. In addition, although previous studies suggest that the FGF10/FGFR2b and FGF8/FGFR2c signaling pathways are functionally interrelated, little is known about the functional relationship between these two pathways during SMG development. We have designed in vivo and in vitro experiments to address this question. Results We analyzed Fgf10 and Fgfr2b heterozygous mutant and null mice and demonstrate dose-dependent SMG phenotypic differences. Hypoplastic SMGs are seen in Fgf10 and Fgfr2b heterozygotes whereas SMG aplasia is seen in Fgf10 and Fgfr2b null embryos. Complementary in vitro studies further indicate that FGF10/FGFR2b signaling regulates SMG epithelial branching and cell proliferation. To delineate the functional relationship between the FGF10/FGFR2b and FGF8/FGFR2c pathways, we compared the SMG phenotype in Fgfr2c+/Δ/Fgf10+/- double heterozygous mice to that seen in wildtype, Fgf10+/- (Fgfr2c+/+/Fgf10+/- and Fgfr2c+/Δ (Fgfr2c+/Δ/Fgf10+/+ single heterozygous mutant littermates and demonstrate genotype-specific SMG phenotypes. In addition, exogenous FGF8 was able to rescue the abnormal SMG phenotype associated with abrogated FGFR2b signaling in vitro and restore branching to normal levels. Conclusion Our data indicates that FGF10/FGFR2b signaling is essential for the SMG epithelial branching and histodifferentiation, but not earliest initial bud formation. The functional presence of other endogenous signaling pathways could not prevent complete death of embryonic SMG cells in Fgf10 and Fgfr2b null mice. Though we were able to rescue the abnormal phenotype associated with reduced in vitro FGF10/FGFR2b signaling with exogenous FGF8

  4. Hypoxia promotes uveal melanoma invasion through enhanced Notch and MAPK activation.

    Directory of Open Access Journals (Sweden)

    Laura Asnaghi

    Full Text Available The transcriptional response promoted by hypoxia-inducible factors has been associated with metastatic spread of uveal melanoma. We found expression of hypoxia-inducible factor 1α (HIF-1α protein in well-vascularized tumor regions as well as in four cell lines grown in normoxia, thus this pathway may be important even in well-oxygenated uveal melanoma cells. HIF-1α protein accumulation in normoxia was inhibited by rapamycin. As expected, hypoxia (1% pO2 further induced HIF-1α protein levels along with its target genes VEGF and LOX. Growth in hypoxia significantly increased cellular invasion of all 5 uveal melanoma lines tested, as did the introduction of an oxygen-insensitive HIF-1α mutant into Mel285 cells with low HIF-1α baseline levels. In contrast, HIF-1α knockdown using shRNA significantly decreased growth in hypoxia, and reduced by more than 50% tumor invasion in four lines with high HIF-1α baseline levels. Pharmacologic blockade of HIF-1α protein expression using digoxin dramatically suppressed cellular invasion both in normoxia and in hypoxia. We found that Notch pathway components, including Jag1-2 ligands, Hes1-Hey1 targets and the intracellular domain of Notch1, were increased in hypoxia, as well as the phosphorylation levels of Erk1-2 and Akt. Pharmacologic and genetic inhibition of Notch largely blocked the hypoxic induction of invasion as did the pharmacologic suppression of Erk1-2 activity. In addition, the increase in Erk1-2 and Akt phosphorylation by hypoxia was partially reduced by inhibiting Notch signaling. Our findings support the functional importance of HIF-1α signaling in promoting the invasive capacity of uveal melanoma cells in both hypoxia and normoxia, and suggest that pharmacologically targeting HIF-1α pathway directly or through blockade of Notch or Erk1-2 pathways can slow tumor spread.

  5. Tyrosine phosphorylation and proteolytic cleavage of Notch are required for non-canonical Notch/Abl signaling inDrosophilaaxon guidance.

    Science.gov (United States)

    Kannan, Ramakrishnan; Cox, Eric; Wang, Lei; Kuzina, Irina; Gu, Qun; Giniger, Edward

    2018-01-17

    Notch signaling is required for the development and physiology of nearly every tissue in metazoans. Much of Notch signaling is mediated by transcriptional regulation of downstream target genes, but Notch controls axon patterning in Drosophila by local modulation of Abl tyrosine kinase signaling, via direct interactions with the Abl co-factors Disabled and Trio. Here, we show that Notch-Abl axonal signaling requires both of the proteolytic cleavage events that initiate canonical Notch signaling. We further show that some Notch protein is tyrosine phosphorylated in Drosophila , that this form of the protein is selectively associated with Disabled and Trio, and that relevant tyrosines are essential for Notch-dependent axon patterning but not for canonical Notch-dependent regulation of cell fate. Based on these data, we propose a model for the molecular mechanism by which Notch controls Abl signaling in Drosophila axons. © 2018. Published by The Company of Biologists Ltd.

  6. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies.

    Science.gov (United States)

    Bernasconi-Elias, P; Hu, T; Jenkins, D; Firestone, B; Gans, S; Kurth, E; Capodieci, P; Deplazes-Lauber, J; Petropoulos, K; Thiel, P; Ponsel, D; Hee Choi, S; LeMotte, P; London, A; Goetcshkes, M; Nolin, E; Jones, M D; Slocum, K; Kluk, M J; Weinstock, D M; Christodoulou, A; Weinberg, O; Jaehrling, J; Ettenberg, S A; Buckler, A; Blacklow, S C; Aster, J C; Fryer, C J

    2016-11-24

    Notch receptors have been implicated as oncogenic drivers in several cancers, the most notable example being NOTCH1 in T-cell acute lymphoblastic leukemia (T-ALL). To characterize the role of activated NOTCH3 in cancer, we generated an antibody that detects the neo-epitope created upon gamma-secretase cleavage of NOTCH3 to release its intracellular domain (ICD3), and sequenced the negative regulatory region (NRR) and PEST (proline, glutamate, serine, threonine) domain coding regions of NOTCH3 in a panel of cell lines. We also characterize NOTCH3 tumor-associated mutations that result in activation of signaling and report new inhibitory antibodies. We determined the structural basis for receptor inhibition by obtaining the first co-crystal structure of a NOTCH3 antibody with the NRR protein and defined two distinct epitopes for NRR antibodies. The antibodies exhibit potent anti-leukemic activity in cell lines and tumor xenografts harboring NOTCH3 activating mutations. Screening of primary T-ALL samples reveals that 2 of 40 tumors examined show active NOTCH3 signaling. We also identified evidence of NOTCH3 activation in 12 of 24 patient-derived orthotopic xenograft models, 2 of which exhibit activation of NOTCH3 without activation of NOTCH1. Our studies provide additional insights into NOTCH3 activation and offer a path forward for identification of cancers that are likely to respond to therapy with NOTCH3 selective inhibitory antibodies.

  7. The FGF21 response to fructose predicts metabolic health and persists after bariatric surgery in obese humans

    Directory of Open Access Journals (Sweden)

    Kasper W. ter Horst

    2017-11-01

    Conclusions: Fructose ingestion in obese humans stimulates FGF21 secretion, and this response is related to systemic metabolism. Further studies are needed to establish if FGF21 signaling is (pathophysiologically involved in fructose metabolism and metabolic health.

  8. An FGF21-Adiponectin-Ceramide Axis Controls Energy Expenditure and Insulin Action in Mice

    Science.gov (United States)

    Holland, William L.; Adams, Andrew C.; Brozinick, Joseph T.; Bui, Hai H.; Miyauchi, Yukiko; Kusminski, Christine M.; Bauer, Steven M.; Wade, Mark; Singhal, Esha; Cheng, Christine C.; Volk, Katherine; Kuo, Ming-Shang; Gordillo, Ruth; Kharitonenkov, Alexei; Scherer, Philipp E.

    2013-01-01

    SUMMARY FGF21, a member of the fibroblast growth factor (FGF) superfamily has recently emerged as a novel regulator of metabolism and energy utilization. However, the exact mechanism(s) whereby FGF21 mediates its actions have not been elucidated. There is considerable evidence that insulin resistance may arise from aberrant accumulation of intracellular lipids in insulin responsive tissues due to lipotoxicity. In particular the sphingolipid ceramide has been implicated in this process. Here, we show that FGF21 rapidly and robustly stimulates adiponectin secretion in rodents, while diminishing accumulation of ceramides in obese animals. Importantly, adiponectin knockout mice are refractory to changes in energy expenditure and ceramide-lowering effects evoked by FGF21 administration. Moreover, FGF21 lowers blood glucose levels and enhances insulin sensitivity in diabetic Lepob/ob mice and diet-induced obese (DIO) mice, only when adiponectin is functionally present. Collectively, these data suggest that FGF21 is a potent regulator of adiponectin secretion, and that FGF21 critically depends on adiponectin to exert its glycemic and insulin sensitizing effects. PMID:23663742

  9. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    DEFF Research Database (Denmark)

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Ther...

  10. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination.

    Directory of Open Access Journals (Sweden)

    Yuna Kim

    2006-06-01

    Full Text Available The genes encoding members of the wingless-related MMTV integration site (WNT and fibroblast growth factor (FGF families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9 and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch--Sry in the case of mammals--is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.

  11. FGF: a web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) progr...... is freely available on a web server at http://fgf.genomics.org.cn/...

  12. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) progr...... is freely available on a web server at http://fgf.genomics.org.cn/...

  13. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    DEFF Research Database (Denmark)

    Gravesen, Eva; Hofman-Bang, Jacob; Mace, Maria L.

    2013-01-01

    High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortal...

  14. Cellular Dichotomy Between Anchorage-Independent Growth Responses to bFGF and TA Reflects Molecular Switch in Commitment to Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Tan, Ruimin; Opresko, Lee K.; Quesenberry, Ryan D.; Bandyopadhyay, Somnath; Chrisler, William B.; Weber, Thomas J.

    2009-11-01

    We have investigated gene expression patterns underlying reversible and irreversible anchorage-independent growth (AIG) phenotypes to identify more sensitive markers of cell transformation for studies directed at interrogating carcinogenesis responses. In JB6 mouse epidermal cells, basic fibroblast growth factor (bFGF) induces an unusually efficient and reversible AIG response, relative to 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced AIG which is irreversible. The reversible and irreversible AIG phenotypes are characterized by largely non-overlapping global gene expression profiles. However, a subset of differentially expressed genes were identified as common to reversible and irreversible AIG phenotypes, including genes regulated in a reciprocal fashion. Hepatic leukemia factor (HLF) and D-site albumin promoter-binding protein (DBP) were increased in both bFGF and TPA soft agar colonies and selected for functional validation. Ectopic expression of human HLF and DBP in JB6 cells resulted in a marked increase in TPA- and bFGF-regulated AIG responses. HLF and DBP expression were increased in soft agar colonies arising from JB6 cells exposed to gamma radiation and in a human basal cell carcinoma tumor tissue, relative to paired non-tumor tissue. Subsequent biological network analysis suggests that many of the differentially expressed genes that are common to bFGF- and TPA-dependent AIG are regulated by c-Myc, SP-1 and HNF-4 transcription factors. Collectively, we have identified a potential molecular switch that mediates the transition from reversible to irreversible AIG.

  15. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Lei He

    2017-01-01

    Full Text Available Liver biopsy still remains the gold standard for diagnosing nonalcoholic steatohepatitis (NASH, but with limitations. There is an urgent need to develop noninvasive tests that accurately distinguish NASH from simple steatosis. The purpose of this meta-analysis was to evaluate the diagnostic value of serum biomarkers including cytokeratin 18 (CK-18, fibroblast growth factor 21 (FGF-21, and combined biomarker panel (CBP in the diagnosis of NAFLD, especially NASH. A total of 25 studies met the inclusion criteria. Pooled sensitivity and specificity values for chosen serum markers for diagnosing NASH are as follows: CK-18 (M30, 0.75 and 0.77; CK-18 (M65, 0.71 and 0.77; FGF-21, 0.62 and 0.78; and CBP, 0.92 and 0.85. CBP demonstrated better accuracy with higher sensitivity and specificity than those tested individually. Furthermore, the AUROC of CBP was 0.94 (95% CI, 0.92–0.96, compared to CK-18 or FGF-21 assay, which showed the most significant ability to distinguish NASH from simple steatosis. The results suggest that increased circulating CK-18 and FGF-21 are associated with NASH and may be used for initial assessment, but not enough. Importantly, CBP is potentially used as accurate diagnostic tools for NASH. Further prospective designed studies are warranted to confirm our findings.

  16. The Notch pathway: hair graying and pigment cell homeostasis.

    Science.gov (United States)

    Schouwey, Karine; Beermann, Friedrich

    2008-05-01

    The Notch signaling pathway is an essential cell-cell interaction mechanism, which regulates processes such as cell proliferation, cell fate decisions, differentiation or stem cell maintenance. Pigmentation in mammals is provided by melanocytes, which are derived from the neural crest, and by the retinal pigment epithelium (RPE), which is part of the optic cup and hence orginates from neuroectoderm. The importance of functional Notch signaling in melanocytes has been unveiled recently. Here, the pathway is essential for the maintenance of proper hair pigmentation. Deletion of Notch1 and Notch2 or RBP-Jkappa in the melanocyte lineage resulted in a gene dosage-dependent precocious hair graying, due to the elimination of melanoblasts and melanocyte stem cells. Expression data support the idea that Notch signaling might equally be involved in development of the RPE. Furthermore, recent analyses indicate a possible role of Notch signaling in the development of melanoma. In this review, we address the essential role of Notch signaling in the regeneration of the melanocyte population during hair follicle cycles, and discuss data supporting the implication of this signaling pathway in RPE development and melanoma.

  17. Involvement of Notch1/Hes signaling pathway in ankylosing spondylitis.

    Science.gov (United States)

    Xu, Wei; Liang, Chao-Ge; Li, Yi-Fan; Ji, Yun-Han; Qiu, Wen-Jun; Tang, Xian-Zhong

    2015-01-01

    We aimed to investigate the role of Notch1/Hes signaling pathway in the pathogenesis of abnormal ossification of hip ligament in patients with ankylosing spondylitis (AS). 22 AS patients scheduled for artificial hip arthroplasty were randomly chosen as AS group. As controls, we used 4 patients diagnosed with transcervical fracture who underwent hip replacement surgery. Notch1 and Hes mRNA expressions were detected by real-time fluorescent quantitative polymerase chain reaction (RFQ-PCR). Immunohistochemistry (IHC) was used to detect Notch1 and Hes protein expression. Correlation analyses of Notch-l and Hes with AS-related clinical factors were conducted with spearman's correlation analysis and partial correlation analysis. RFQ-PCR results showed significant differences in Notch1 and Hes mRNA expressions between AS group and the control group (all Ppathways. Semi-quantitative IHC showed a higher Notch1 and Hes expression levels in AS group compared to the control group (all Ppathways mediated by Notch1-Hes may contribute to ligament ossification of hip joints in AS patients.

  18. Notch3 drives development and progression of cholangiocarcinoma.

    Science.gov (United States)

    Guest, Rachel V; Boulter, Luke; Dwyer, Benjamin J; Kendall, Timothy J; Man, Tak-Yung; Minnis-Lyons, Sarah E; Lu, Wei-Yu; Robson, Andrew J; Gonzalez, Sofia Ferreira; Raven, Alexander; Wojtacha, Davina; Morton, Jennifer P; Komuta, Mina; Roskams, Tania; Wigmore, Stephen J; Sansom, Owen J; Forbes, Stuart J

    2016-10-25

    The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.

  19. miR-135b Stimulates Osteosarcoma Recurrence and Lung Metastasis via Notch and Wnt/β-Catenin Signaling

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-09-01

    Full Text Available Cancer stem cells (CSCs play an important role in osteosarcoma (OS metastasis and recurrence, and both Wnt/β-catenin and Notch signaling are essential for the development of the biological traits of CSCs. However, the mechanism that underlies the simultaneous hyperactivation of both Wnt/β-catenin and Notch signaling in OS remains unclear. Here, we report that expression of miR-135b correlates with the overall and recurrence-free survival of OS patients, and that miR-135b has an activating effect on both Wnt/β-catenin and Notch signaling. The overexpression of miR-135b simultaneously targets multiple negative regulators of the Wnt/β-catenin and Notch signaling pathways, including glycogen synthase kinase-3 beta (GSK3β, casein kinase 1a (CK1α, and ten-eleven translocation 3 (TET3. Therefore, upregulated miR-135b promotes CSC traits, lung metastasis, and tumor recurrence in OS. Notably, antagonizing miR-135b potently inhibits OS lung metastasis, cancer cell stemness, CSC-induced tumor formation, and recurrence in xenograft animal models. These findings suggest that miR-135b mediates the constitutive activation of Wnt/β-catenin and Notch signaling, and that the inhibition of miR-135b is a novel strategy to inhibit tumor metastasis and prevent CSC-induced recurrence in OS. Keywords: osteosarcoma, miR-135b, metastasis, recurrence, Wnt/β-catenin

  20. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding.

    Directory of Open Access Journals (Sweden)

    Steven Lotz

    Full Text Available An essential aspect of stem cell culture is the successful maintenance of the undifferentiated state. Many types of stem cells are FGF2 dependent, and pluripotent stem cells are maintained by replacing FGF2-containing media daily, while tissue-specific stem cells are typically fed every 3rd day. Frequent feeding, however, results in significant variation in growth factor levels due to FGF2 instability, which limits effective maintenance due to spontaneous differentiation. We report that stabilization of FGF2 levels using controlled release PLGA microspheres improves expression of stem cell markers, increases stem cell numbers and decreases spontaneous differentiation. The controlled release FGF2 additive reduces the frequency of media changes needed to maintain stem cell cultures, so that human embryonic stem cells and induced pluripotent stem cells can be maintained successfully with biweekly feedings.

  1. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Rigbolt, Kristoffer T.G.; Emdal, Kristina B

    2013-01-01

    The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation......, whereas FGF-10 promotes receptor recycling and cell migration. By combining mass-spectrometry-based quantitative proteomics with fluorescence microscopy and biochemical methods, we find that FGF-10 specifically induces the rapid phosphorylation of tyrosine (Y) 734 on FGFR2b, which leads to PI3K and SH3BP4...... recruitment. This complex is crucial for FGFR2b recycling and responses, given that FGF-10 stimulation of either FGFR2b_Y734F mutant- or SH3BP4-depleted cells switches the receptor endocytic route to degradation, resulting in decreased breast cancer cell migration and the inhibition of epithelial branching...

  2. Functions and Mechanisms of Fibroblast Growth Factor (FGF Signalling in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Hans-Arno J. Müller

    2013-03-01

    Full Text Available Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl and Breathless (Btl is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.

  3. Band-notched reconfigurable CPW-fed UWB antenna

    Science.gov (United States)

    Majid, H. A.; Rahim, M. K. A.; Hamid, M. R.; Murad, N. A.; Samsuri, N. A.; Yusof, M. F. M.; Kamarudin, M. R.

    2016-04-01

    A reconfigurable band-notched CPW-fed UWB antenna using electromagnetic bandgap (EBG) structure is proposed. Two structures are positioned adjacent to the transmission line of the UWB antenna. The band-notched characteristic can be disabled by switching the state of switch place at the strip line. The EBG structure produces reconfigurable band notched at 4.0 GHz, which covers C-band satellite communication (3.625-4.2 GHz) systems. The proposed antenna is suitable for UWB systems, which requires reconfigurable band reject function.

  4. Notch-1 mediates hypoxia-induced angiogenesis in rheumatoid arthritis.

    Science.gov (United States)

    Gao, Wei; Sweeney, Catherine; Connolly, Mary; Kennedy, Aisling; Ng, Chin Teck; McCormick, Jennifer; Veale, Douglas J; Fearon, Ursula

    2012-07-01

    To examine the effect of hypoxia on Notch-1 signaling pathway components and angiogenesis in inflammatory arthritis. The expression and regulation of Notch-1, its ligand delta-like protein 4 (DLL-4) and downstream signaling components (hairy-related transcription factor 1 [HRT-1], HRT-2), and hypoxia-inducible factor 1α (HIF-1α) under normoxic and hypoxic conditions (1-3%) were assessed in synovial tissue specimens from patients with inflammatory arthritis and controls and in human dermal microvascular endothelial cells (HDMECs) by immunohistology, dual immunofluorescence staining (Notch-1/factor VIII), Western blotting, and real-time polymerase chain reaction. In vivo synovial tissue oxygen levels (tissue PO2) were measured under direct visualization at arthroscopy. HDMEC activation under hypoxic conditions in the presence of Notch-1 small interfering RNA (siRNA), the γ-secretase inhibitor DAPT, or dimethyloxalylglycine (DMOG) was assessed by Matrigel tube formation assay, migration assay, invasion assay, and matrix metalloproteinase 2 (MMP-2)/MMP-9 zymography. Expression of Notch-1, its ligand DLL-4, and HRT-1 was demonstrated in synovial tissue, with the strongest expression localized to perivascular/vascular regions. Localization of Notch-1 to synovial endothelium was confirmed by dual immunofluorescence staining. Notch-1 intracellular domain (NICD) expression was significantly higher in synovial tissue from patients with tissue PO2 of PO2 of >20 mm Hg (>3% O2). Exposure of HDMECs to 3% hypoxia induced HIF-1α and NICD protein expression and DLL-4, HRT-1, and HRT-2 messenger RNA expression. DMOG directly induced NICD expression, while Notch-1 siRNA inhibited hypoxia-induced HIF-1α expression, suggesting that Notch-1/HIF-1α signaling is bidirectional. Finally, 3% hypoxia-induced angiogenesis, endothelial cell migration, endothelial cell invasion, and proMMP-2 and proMMP-9 activities were inhibited by Notch-1 siRNA and/or the γ-secretase inhibitor DAPT. Our

  5. Combined use of bFGF and GDF-5 enhances the healing of medial collateral ligament injury

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Kenta [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Yoshida, Aki; Masuda, Shin; Takihira, Shota [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Abe, Nobuhiro [Department of Intelligent Orthopaedic System Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2010-11-12

    Research highlights: {yields} bFGF/GDF-5 treatment increases cellular proliferation and migration of MCL fibroblasts. {yields} bFGF/GDF-5 hydrogels stimulate the healing of MCL injury in vivo. {yields} bFGF/GDF-5 hydrogels stimulate Col1a1 expression and type I collagen synthesis. {yields} Combined use of bFGF/GDF-5 enhances MCL healing. -- Abstract: Basic fibroblast growth factor (bFGF) and growth and differentiation factor (GDF)-5 stimulate the healing of medial collateral ligament (MCL) injury. However, the effect of isolated and combined use of bFGF/GDF-5 remains still unclear. We investigated cellular proliferation and migration responding to bFGF/GDF-5 using rabbit MCL fibroblasts. Rabbit MCL injury was treated by bFGF and/or GDF-5 with peptide hydrogels. Gene expression and deposition of collagens in healing tissues were evaluated. bFGF/GDF-5 treatment additively enhanced cell proliferation and migration. bFGF/GDF-5 hydrogels stimulated Col1a1 expression without increasing Col3a1 expression. Combined use of bFGF/GDF-5 stimulated type I collagen deposition and the reorganization of fiber alignment, and induced better morphology of fibroblasts in healing MCLs. Our study indicates that combined use of bFGF/GDF-5 might enhance MCL healing by increasing proliferation and migration of MCL fibroblasts, and by regulating collagen synthesis and connective fiber alignment.

  6. Schwann Cells Transduced with a Lentiviral Vector Encoding Fgf-2 Promote Motor Neuron Regeneration Following Sciatic Nerve Injury

    NARCIS (Netherlands)

    Allodi, I.; Mecollari, V.; Gonzalez-Perez, F.; Eggers, R.; Hoyng, S.; Verhaagen, J.; Navarro, X.; Udina, E.

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential

  7. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury

    NARCIS (Netherlands)

    Allodi, Ilary; Mecollari, Vasil; González-Pérez, Francisco; Eggers, R.; Hoyng, S.; Verhaagen, J.; Navarro, Xavier; Udina, Esther

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential

  8. Klotho expression in long bones regulates FGF23 production during renal failure.

    Science.gov (United States)

    Kaludjerovic, Jovana; Komaba, Hirotaka; Sato, Tadatoshi; Erben, Reinhold G; Baron, Roland; Olauson, Hannes; Larsson, Tobias E; Lanske, Beate

    2017-05-01

    Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type ( KL fl/fl ) and knockout ( Prx1-Cre;KL fl/fl ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of Prx1-Cre;KL fl/fl mice but not their axial skeleton failed to increase FGF23 expression as observed in uremic KL fl/fl mice. Consequently, Prx1-Cre;KL fl/fl mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-α-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than KL fl/fl mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase FGF23 mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure. © FASEB.

  9. Clinical efficacy of basic fibroblast growth factor (bFGF) for diabetic ulcer.

    Science.gov (United States)

    UCHI, Hiroshi; IGARASHI, Atsuyuki; URABE, Kazunori; KOGA, Tetsuya; NAKAYAMA, Juichiro; KAWAMORI, Ryuzo; TAMAKI, Kunihiko; HIRAKATA, Hideki; OHURA, Takehiko; FURUE, Masutaka

    2009-01-01

    Basic fibroblast growth factor (bFGF) has been shown to promote wound healing. The present trial evaluated the clinical efficacy of bFGF for diabetic ulcer, a type of refractory skin ulcer, and the dose-response relationship. This was designed as a randomized, double-blind, dose-ranging, placebo-controlled trial. A total of 150 patients with non-ischaemic diabetic ulcers measuring 900 mm2 or less were randomized into a placebo group (n = 51), a 0.001% bFGF group (n = 49) and a 0.01% bFGF group (n = 50), and 148 of these patients received treatment for 8 weeks or less. The efficacy evaluation was carried out on 139 patients who met the protocol in this trial. The primary outcome was the percentage of patients showing 75% or greater reductions in the area of ulcer. The area of ulcer decreased by 75% or more in 57.5% (27/47), 72.3% (34/47), and 82.2% (37/45) in the placebo, 0.001% bFGF and 0.01% bFGF groups, respectively, and differences were significant between the 0.01% bFGF and placebo groups (p = 0.025). The cure rate was 46.8% (22/47), 57.4% (27/47), and 66.7% (30/45) in the placebo, 0.001% bFGF and 0.01% bFGF groups, respectively. The findings obtained in this trial showed wound healing accelerating effects of bFGF on diabetic ulcers.

  10. Serum FGF21 increases with hepatic fat accumulation in pediatric onset intestinal failure.

    Science.gov (United States)

    Mutanen, Annika; Heikkilä, Päivi; Lohi, Jouko; Raivio, Taneli; Jalanko, Hannu; Pakarinen, Mikko P

    2014-01-01

    Previously, FGF21 has been related to glucose and lipid metabolism and liver steatosis. Our aim was to evaluate serum FGF21 levels in pediatric onset intestinal failure (IF). Serum FGF21 was measured in 35 IF patients at median age of 7.8 years (range 0.2-27) and 59 matched healthy controls. Thirty patients underwent liver biopsy. Serum FGF21 levels were increased in patients compared to controls [229 pg/ml (21-20,345) vs. 133 pg/ml (7-1607), p=0.018]. Frequency of liver steatosis (60% vs. 50%, p=0.709) was similar during (6/10) and after (10/20) weaning off parenteral nutrition (PN). Patients with steatosis had markedly higher serum FGF21 concentration [626 pg/ml (21-20,345) vs. 108 pg/ml (32-568), p=0.002] and more advanced liver fibrosis [Metavir stage 1.6 (0-4) vs. 0.7 (0-3), p=0.020] without associated inflammation or Mallory body formation. Serum FGF21 levels reflected the degree of steatosis [FGF21 in grade 3 vs. grades 0-2, pliver steatosis grade (β=0.630, p=0.001) predicted serum FGF21 concentration. In pediatric IF increased serum FGF21 levels reflect liver steatosis, while both are exclusively associated with duration of PN and extent of small intestinal resection. Liver steatosis is coupled with progression of fibrosis without accompanying inflammation. Serum FGF21 assay may be useful for diagnosing liver steatosis in IF patients. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation.

    Science.gov (United States)

    Zhao, Yixia; Cao, Fengqi; Yu, Xiaohua; Chen, Chuyan; Meng, Jiao; Zhong, Ran; Zhang, Yong; Zhu, Dahai

    2018-01-24

    Myogenic differentiation of skeletal muscle stem cells, also known satellite cells, is tightly orchestrated by extrinsic and intrinsic regulators. Basic fibroblast growth factor (FGF2) is well documented to be implicated in satellite cell self-renewal and differentiation by repressing MyoD. We recently identified a MyoD-regulated and skeletal muscle-specifically expressed long non-coding RNA Linc-RAM which enhances myogenic differentiation by facilitating MyoD/Baf60c/Brg1 complex assembly. Herein, we investigated the transcriptional regulation and intracellular signaling pathway in mediating Linc-RAM gene expression during muscle cell differentiation. Firstly, we demonstrate Linc-RAM is negatively regulated by FGF2 via Ras/Raf/Mek/Erk signaling pathway in muscle cells. Overexpression of MyoD significantly attenuates repression of Linc-RAM promoter activities in C2C12 cells treated with FGF2. Knockout of MyoD abolishes FGF2-mediated repression of Linc-RAM gene transcription in satellite cells sorted from skeletal muscle of MyoD - / - ;Pax7-nGFP mice, suggesting inhibition of MyoD is required for FGF2-mediated expression of Linc-RAM. For the functional significance, we show that overexpression of Linc-RAM rescues FGF2-induced inhibition of C2C12 cell differentiation, indicating inhibition of Linc-RAM is required for FGF2-mediated suppression of myogenic differentiation. Consistently, we are able to further corroborate the requirement of Linc-RAM inhibition for FGF2-modulated repression of myogenic differentiation by using an ex vivo cultured single fiber system and satellite cells sorted from Linc-RAM - / - ;Pax7-nGFP knockout mice. Collectively, the present study not only reveals the intracellular signaling in FGF2-mediated Linc-RAM gene expression but also demonstrate the functional significance of Linc-RAM in FGF2-mediated muscle cell differentiation.

  12. Synchronized Targeting of Notch and ERBB Signaling Suppresses Melanoma Tumor Growth through Inhibition of Notch1 and ERBB3.

    Science.gov (United States)

    Zhang, Keman; Wong, Poki; Salvaggio, Christine; Salhi, Amel; Osman, Iman; Bedogni, Barbara

    2016-02-01

    Despite significant advances in melanoma therapy, melanoma remains the deadliest form of skin cancer, with a 5-year survival rate of only 15%. Thus, novel treatments are required to address this disease. Notch and ERBB are evolutionarily conserved signaling cascades required for the maintenance of melanocyte precursors. We show that active Notch1 (Notch1(NIC)) and active (phosphorylated) ERBB3 and ERBB2 correlate significantly and are similarly expressed in both mutated and wild-type BRAF melanomas, suggesting these receptors are co-reactivated in melanoma to promote survival. Whereas blocking either pathway triggers modest effects, combining a ?-secretase inhibitor to block Notch activation and a tyrosine kinase inhibitor to inhibit ERBB3/2 elicits synergistic effects, reducing cell viability by 90% and hampering melanoma tumor growth. Specific inhibition of Notch1 and ERBB3 mimics these results, suggesting these are the critical factors triggering melanoma tumor expansion. Notch and ERBB inhibition blunts AKT and NF?B signaling. Constitutive expression of NF?B partially rescues cell death. Blockade of both Notch and ERBB signaling inhibits the slow cycling JARID1B-positive cell population, which is critical for long-term maintenance of melanoma growth. We propose that blocking these pathways is an effective approach to treatment of melanoma patients regardless of whether they carry mutated or wild-type BRAF. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Deep lateral notch sign and double notch sign in complete tears of the anterior cruciate ligament: MR imaging evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grimberg, Alexandre [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Universidade Federal de Sao Paulo, Department of Diagnostic Imaging, Sao Paulo, SP (Brazil); Shirazian, Hoda; Torshizy, Hamid; Smitaman, Edward; Resnick, Donald L. [University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States); Chang, Eric Y. [Veterans Administrations San Diego Healthcare Systems, Osteoradiology Section, Department of Radiology, San Diego, CA (United States); University of California, San Diego School of Medicine, Division of Musculoskeletal Radiology, Department of Radiology, San Diego, CA (United States)

    2014-11-20

    To systematically compare the notches of the lateral femoral condyle (LFC) in patients with and without complete tears of the anterior cruciate ligament (ACL) in MR studies by (1) evaluating the dimensions of the lateral condylopatellar sulcus; (2) evaluating the presence and appearance of an extra or a double notch and its association with such tears. This retrospective study was approved by our institutional review board, and informed written patient consent was waived. In 58 cases of complete ACL tears and 37 control cases with intact ACL, the number of notches on the LFC was determined, and the depth and anteroposterior (AP) length of each notch were measured in each third of the LFC. The chi-square test, t-test, and logistic regression model were used to analyze demographic data and image findings, as appropriate. Presence of more than one notch demonstrated a sensitivity of 17.2 %, specificity of 100 %, positive predictive value of 100 %, and negative predictive value of 43.5 % for detecting a complete ACL tear. Lateral third depth measurement (p = 0.028) was a significant associated finding with a complete ACL tear. A deep notch in the lateral third of the LFC is a significant associated finding with a complete ACL tear when compared with an ACL-intact control group, and the presence of more than one notch is a specific but insensitive sign of such a tear. (orig.)

  14. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs.

    Science.gov (United States)

    Parker, Heidi G; VonHoldt, Bridgett M; Quignon, Pascale; Margulies, Elliott H; Shao, Stephanie; Mosher, Dana S; Spady, Tyrone C; Elkahloun, Abdel; Cargill, Michele; Jones, Paul G; Maslen, Cheryl L; Acland, Gregory M; Sutter, Nathan B; Kuroki, Keiichi; Bustamante, Carlos D; Wayne, Robert K; Ostrander, Elaine A

    2009-08-21

    Retrotransposition of processed mRNAs is a common source of novel sequence acquired during the evolution of genomes. Although the vast majority of retroposed gene copies, or retrogenes, rapidly accumulate debilitating mutations that disrupt the reading frame, a small percentage become new genes that encode functional proteins. By using a multibreed association analysis in the domestic dog, we demonstrate that expression of a recently acquired retrogene encoding fibroblast growth factor 4 (fgf4) is strongly associated with chondrodysplasia, a short-legged phenotype that defines at least 19 dog breeds including dachshund, corgi, and basset hound. These results illustrate the important role of a single evolutionary event in constraining and directing phenotypic diversity in the domestic dog.

  15. [Construction and evaluation of the tissue engineered nerve of bFGF-PLGA sustained release microspheres].

    Science.gov (United States)

    Wang, Guanglin; Lin, Wei; Gao, Weiqiang; Xiao, Yuhua; Dong, Changchao

    2008-12-01

    To study the outcomes of nerve defect repair with the tissue engineered nerve, which is composed of the complex of SCs, 30% ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable poly (D, L-lactic acid) (PDLLA) catheters. SCs were cultured and purified from the sciatic nerves of 1-day-old neonatal SD rats. The 1st passage cells were compounded with bFGF-PLGA sustained release microspheres and ECM gel, and then were injected into permeable PDLLA catheters with PLGA microfilaments inside. In this way, the tissue engineered nerve was constructed. Sixty SD rats were included. The model of 15-mm sciatic nerve defects was made, and then the rats were randomly divided into 5 groups, with 12 rats in each. In group A, autograft was adopted. In group B, the blank PDLLA catheters with PBS inside were used. In group C, PDLLA catheters, with PLGA microfilaments and 30% ECM gel inside, were used. In group D, PDLLA catheters, with PLGA microfilaments, SCs and 30% ECM gel inside, were used. In group E, the tissue engineered nerve was applied. After the operation, observation was made for general conditions of the rats. The sciatic function index (SFI) analysis was performed at 12, 16, 20 and 24 weeks after the operation, respectively. Electrophysiological detection and histological observation were performed at 12 and 24 weeks after the operation, respectively. All rats survived to the end of the experiment. At 12 and 16 weeks after the operation, group E was significantly different from group B in SFI (P fibers in group E were significantly differents from those in groups A, B and C (P fibers in group E were smaller than those in group A (P fibers in group E was significantly different from those in groups A, B, C (P fibers in group E were bigger than those in groups B and C (P < 0.05). The tissue engineered nerve with the complex of SCs, ECM gel, bFGF-PLGA sustained release microspheres, PLGA microfilaments and permeable PDLLA catheters promote

  16. NOTCH4 signaling controls EFNB2-induced endothelial progenitor cell dysfunction in preeclampsia.

    Science.gov (United States)

    Liu, Xiaoxia; Luo, Qingqing; Zheng, Yanfang; Liu, Xiaoping; Hu, Ying; Liu, Weifang; Luo, Minglian; Zhao, Yin; Zou, Li

    2016-07-01

    Preeclampsia is a serious complication of pregnancy and is closely related to endothelial dysfunction, which can be repaired by endothelial progenitor cells (EPCs). The DLL4/NOTCH-EFNB2 (ephrinB2) cascade may be involved in the pathogenesis of preeclampsia by inhibiting the biological activity of EPCs. In addition, both NOTCH1 and NOTCH4, which are specific receptors for DLL4/NOTCH, play critical roles in the various steps of angiogenesis. However, it has not been determined which receptor (NOTCH1, NOTCH4, or both) is specific for the DLL4/NOTCH-EFNB2 cascade. Accordingly, we performed a series of investigations to evaluate it. EFNB2 expression was examined when NOTCH4 or NOTCH1 was downregulated, with or without DLL4 treatment. Then, the effects of NOTCH4 on EPC function were detected. Additionally, we analyzed NOTCH4 and EFNB2 expression in the EPCs from preeclampsia and normal pregnancies. Results showed that NOTCH4 downregulation led to decreased expression of EFNB2, which maintained the same level in the presence of DLL4/NOTCH activation. By contrast, NOTCH1 silencing resulted in a moderate increase in EFNB2 expression, which further increased in the presence of DLL4/NOTCH activation. The downregulation of NOTCH4 resulted in an increase of EPC biological activity, which was similar to EFNB2 silencing. NOTCH4 expression, consistent with the EFNB2 level, increased notably in preeclampsia EPCs compared with the controls. These findings suggest that NOTCH4, not NOTCH1, is the specific receptor for the DLL4/NOTCH-EFNB2 cascade. Blockade of this cascade may enhance the angiogenic property of EPCs, and act as a potential target to promote angiogenesis in patients with preeclampsia. © 2016 Society for Reproduction and Fertility.

  17. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway.

    Science.gov (United States)

    Wang, Zhong Q; Zhang, Xian H; Yu, Yongmei; Tipton, Russell C; Raskin, Ilya; Ribnicky, David; Johnson, William; Cefalu, William T

    2013-09-01

    Nonalcoholic fatty liver disease (NAFLD) is a common liver disease which has no standard treatment. In this regard, we sought to evaluate the effects of extracts of Artemisia santolinaefolia (SANT) and Artemisia scoparia (SCO) on hepatic lipid deposition and cellular signaling in a diet-induced obesity (DIO) animal model. DIO C57/B6J mice were randomly divided into three groups, i.e. HFD, SANT and SCO. Both extracts were incorporated into HFD at a concentration of 0.5% (w/w). Fasting plasma glucose, insulin, adiponectin, and FGF21 concentrations were measured. At the end of the 4-week intervention, liver tissues were collected for analysis of insulin, AMPK, and FGF21 signaling. SANT and SCO supplementation significantly increased plasma adiponectin levels when compared with the HFD mice (Pliver IRS-2 content, phosphorylation of IRS-1, IR β, Akt1 and Akt2, AMPK α1 and AMPK activity and significantly reduced PTP 1B abundance when compared with the HFD group. SCO also significantly decreased fatty acid synthase (FAS), HMG-CoA Reductase (HMGR), and Sterol regulatory element-binding protein 1c (SREBP1c), but not Carnitine palmitoyltransferase I (CPT-1) when compared with HFD group. Neither SANT nor SCO significantly altered plasma FGF21 concentrations and liver FGF21 signaling. This study suggests that SCO may attenuate liver lipid accumulation in DIO mice. Contributing mechanisms were postulated to include promotion of adiponectin expression, inhibition of hepatic lipogenesis, and/or enhanced insulin and AMPK signaling independent of FGF21 pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Experimental data for insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) in prevention of radiation myelopathy

    International Nuclear Information System (INIS)

    Nieder, C.; Price, R.E.; Rivera, B.; Andratschke, N.; Kian Ang, K.

    2002-01-01

    Background: Current models of radiation myelopathy provide a rationale for growth factor-based prevention strategies. Thus, we tested whether insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) alone or in combination modulate radiation tolerance of the rat cervical spinal cord. Materials and Methods: The cervical spinal cord of 68 adult Fisher F344 rats received a total dose of 30-36 Gy, given as a single fraction of 16 Gy followed by a second radiation dose of 14-20 Gy. Continuous intrathecal infusion of bFGF (44 rats) or saline (24 rats) into the cisterna magna was given concomitantly. A further experiment included 14 additional rats which were treated with subcutaneous injection of IGF-1 parallel to irradiation with a total dose of 34 Gy or 36 Gy. 20 rats received combined treatment, i.e. intrathecal infusion of bFGF plus subcutaneous injection of IGF-1, starting 24 hours before irradiation (total dose 33 Gy or 36 Gy) for a total of 4 days. Animals were followed until myelopathy developed or for a maximum of 12 months. Histopathologic examinations were performed post mortem. Results: Treatment with bFGF alone or IGF-1 alone increased the median time to myelopathy significantly. In the 36-Gy group, after combination treatment a comparable prolongation of latency was seen. Moreover, rats treated with 33 Gy and combined bFGF plus IGF-1 showed a significantly reduced risk of myelopathy, too (p = 0.0015). (orig.) [de

  19. A Compact Printed Quadruple Band-Notched UWB Antenna

    Directory of Open Access Journals (Sweden)

    Xiaoyin Li

    2013-01-01

    Full Text Available A novel compact coplanar waveguide- (CPW- fed ultrawideband (UWB printed planar volcano-smoke antenna (PVSA with four band-notches for various wireless applications is proposed and demonstrated. The low-profile antenna consists of a C-shaped parasitic strip to generate a notched band at 8.01~8.55 GHz for the ITU band, two C-shaped slots, and an inverted U-shaped slot etched in the radiator patch to create three notched bands at 5.15~5.35 GHz, 5.75~5.85 GHz, and 7.25~7.75 GHz for filtering the WLAN and X-band satellite signals. Simulated and measured results both confirm that the proposed antenna has a broad bandwidth of 3.1~12 GHz with VSWR < 2 and good omnidirectional radiation patterns with four notched-bands.

  20. Can Sonography Distinguish a Supraorbital Notch From a Foramen?

    Science.gov (United States)

    Garg, Ravi K; Lee, Kenneth S; Kohn, Sarah C; Baskaya, Mustafa K; Afifi, Ahmed M

    2015-11-01

    Diagnostic tools for evaluating the supraorbital rim in preparation for nerve decompression surgery in patients with chronic headaches are currently limited. We evaluated the use of sonography to diagnose the presence of a supraorbital notch or foramen in 11 cadaver orbits. Sonographic findings were assessed by dissecting cadaver orbits to determine whether a notch or foramen was present. Sonography correctly diagnosed the presence of a supraorbital notch in 7 of 7 cases and correctly diagnosed a supraorbital foramen in 4 of 4 cases. We found that sonography had 100% sensitivity in diagnosing a supraorbital notch and foramen. This tool may therefore be helpful in characterizing the supraorbital rim preoperatively and may influence the decision to use a transpalpebral or endoscopic approach for supraorbital nerve decompression as well as the decision to use local or general anesthesia. © 2015 by the American Institute of Ultrasound in Medicine.

  1. Complete Absence of Suprascapular Notch: A Case Report

    Directory of Open Access Journals (Sweden)

    Rohini Mohan Pawar

    2015-10-01

    Full Text Available Suprascapular Nerve Entrapment (SSNE is an acquired neuropathy secondary to compression of suprascapular nerve in the Suprascapular Notch (SSN. Complete ossification of superior transverse scapular ligament may be a cause for suprascapular nerve entrapment. The absence of suprascapular notch is not very common condition, though its prevalence was quoted by Indian authors to be varying from 1.36% to 32.46% in different parts of the country. It is considered to be a predisposing factor for suprascapular nerve entrapment neuropathy. We noticed a male scapula without suprascapular notch in osteology section of Forensic Medicine department. In this case we observed costal and dorsal surfaces of the left scapula of a male without suprascapular notch at its superior border. The details of the said scapula are discussed in this report.

  2. Constitutive Notch2 signaling induces hepatic tumors in mice.

    Science.gov (United States)

    Dill, Michael T; Tornillo, Luigi; Fritzius, Thorsten; Terracciano, Luigi; Semela, David; Bettler, Bernhard; Heim, Markus H; Tchorz, Jan S

    2013-04-01

    Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCC) are the most common liver tumors and a leading cause for cancer-related death in men. Notch2 regulates cellular differentiation in the developing and adult liver. Although aberrant Notch signaling is implicated in various cancers, it is still unclear whether Notch2 regulates proliferation and differentiation in liver carcinogenesis and thereby contributes to HCC and CCC formation. Here, we investigated the oncogenic potential of constitutive Notch2 signaling in the liver. We show that liver-specific expression of the intracellular domain of Notch2 (N2ICD) in mice is sufficient to induce HCC formation and biliary hyperplasia. Specifically, constitutive N2ICD signaling in the liver leads to up-regulation of pro-proliferative genes and proliferation of hepatocytes and biliary epithelial cells (BECs). Using the diethylnitrosamine (DEN) HCC carcinogenesis model, we further show that constitutive Notch2 signaling accelerates DEN-induced HCC formation. DEN-induced HCCs with constitutive Notch2 signaling (DEN(N2ICD) HCCs) exhibit a marked increase in size, proliferation, and expression of pro-proliferative genes when compared with HCCs from DEN-induced control mice (DEN(ctrl) HCCs). Moreover, DEN(N2ICD) HCCs exhibit increased Sox9 messenger RNA (mRNA) levels and reduced Albumin and Alpha-fetoprotein mRNA levels, indicating that they are less differentiated than DEN(ctrl) HCCs. Additionally, DEN(N2ICD) mice develop large hepatic cysts, dysplasia of the biliary epithelium, and eventually CCC. CCC formation in patients and DEN(N2ICD) mice is accompanied by re-expression of hepatocyte nuclear factor 4α(HNF4α), possibly indicating dedifferentiation of BECs. Our data establish an oncogenic role for constitutive Notch2 signaling in liver cancer development. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. NK-like homeodomain proteins activate NOTCH3-signaling in leukemic T-cells

    International Nuclear Information System (INIS)

    Nagel, Stefan; Scherr, Michaela; MacLeod, Roderick AF; Venturini, Letizia; Przybylski, Grzegorz K; Grabarczyk, Piotr; Meyer, Corinna; Kaufmann, Maren; Battmer, Karin; Schmidt, Christian A; Drexler, Hans G

    2009-01-01

    Homeodomain proteins control fundamental cellular processes in development and in cancer if deregulated. Three members of the NK-like subfamily of homeobox genes (NKLs), TLX1, TLX3 and NKX2-5, are implicated in T-cell acute lymphoblastic leukemia (T-ALL). They are activated by particular chromosomal aberrations. However, their precise function in leukemogenesis is still unclear. Here we screened further NKLs in 24 T-ALL cell lines and identified the common expression of MSX2. The subsequent aim of this study was to analyze the role of MSX2 in T-cell differentiation which may be disturbed by oncogenic NKLs. Specific gene activity was examined by quantitative real-time PCR, and globally by expression profiling. Proteins were analyzed by western blot, immuno-cytology and immuno-precipitation. For overexpression studies cell lines were transduced by lentiviruses. Quantification of MSX2 mRNA in primary hematopoietic cells demonstrated higher levels in CD34+ stem cells as compared to peripheral blood cells and mature CD3+ T-cells. Furthermore, analysis of MSX2 expression levels in T-cell lines after treatment with core thymic factors confirmed their involvement in regulation. These results indicated that MSX2 represents an hematopoietic NKL family member which is downregulated during T-cell development and may functionally substituted by oncogenic NKLs. For functional analysis JURKAT cells were lentivirally transduced, overexpressing either MSX2 or oncogenic TLX1 and NKX2-5, respectively. These cells displayed transcriptional activation of NOTCH3-signaling, including NOTCH3 and HEY1 as analyzed by gene expression profiling and quantitative RT-PCR, and consistently attenuated sensitivity to gamma-secretase inhibitor as analyzed by MTT-assays. Furthermore, in addition to MSX2, both TLX1 and NKX2-5 proteins interacted with NOTCH-pathway repressors, SPEN/MINT/SHARP and TLE1/GRG1, representing a potential mechanism for (de)regulation. Finally, elevated expression of NOTCH3

  4. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagadec, Chann [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Vlashi, Erina [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Pajonk, Frank, E-mail: fpajonk@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  6. A three-dimensional analysis of the sigmoid notch

    Directory of Open Access Journals (Sweden)

    Evan D. Collins

    2011-12-01

    Full Text Available Fractures of the distal radius are among the most common injuries of the upper extremity, though treatment has traditionally focused on restoration of the radiocarpal joint and late sequelae may persist. X-ray imaging underestimates sigmoid notch involvement following distal radius fractures. No classification system exists for disruption patterns of the sigmoid notch of the radius associated with distal radius fractures. This study quantifies the anatomy of the sigmoid notch and identifies the landmarks of the articular surface and proximal boundaries of the distal radioulnar joint (DRUJ capsule. Computed tomography scans of freshly frozen cadaveric hands were used - followed by dissection, and three-dimensional reconstruction of the distal radius and sigmoid notch. The sigmoid notch surface was divided into two surfaces and measured. The Anterior Posterior (AP and Proximal Distal (PD widths of the articulating surface were reviewed, along with the radius of curvature, version angle and depth. The study showed that the sigmoid notch is flatter than previously believed - and only the distal 69% of its surface is covered by cartilage. On average, it has about nine degrees of retroversion, and its average inclination is almost parallel to the anatomical axis of the radius. Clinical implications exist for evaluation of the DRUJ involvement in distal radius fractures or degenerative diseases and for future development and evaluation of hemiarthroplasty replacement of the distal radius.

  7. FGF2 and FAM201A affect the development of osteonecrosis of the femoral head after femoral neck fracture.

    Science.gov (United States)

    Huang, Gangyong; Zhao, Guanglei; Xia, Jun; Wei, Yibing; Chen, Feiyan; Chen, Jie; Shi, Jingsheng

    2018-04-30

    Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease associated with high disability, and femoral neck fracture (FNF) is one of the most common reasons for traumatic ONFH. This study was designed to reveal the mechanisms underlying ONFH. Using fastx_toolkit and prinseq-lite tools, quality control was conducted for the sequencing data. The differentially expressed genes (DEGs, including both mRNAs and lncRNAs) between ONFH and FNF samples were identified using the edgeR package in R, and were then subjected to enrichment analysis using the BioCloud platform. Subsequently, protein-protein interaction (PPI) networks were constructed using Cytoscape software. After the target genes of DE-lncRNAs were predicted based on Spearman's rank correlation coefficient, lncRNA-gene coexpression network was visualized using the Cytoscape software. Furthermore, functional enrichment analysis was carried out for the target genes using the clusterprofiler package in R. Additionally, the key genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 2965 DEGs were identified from the ONFH samples, including 602 DE-lncRNAs (such as downregulated FAM201A). In the PPI networks, eight upregulated genes (including FGF2, IGF1, SOX9, and COL2A1) and 11 downregulated genes were among the top 20 genes according to all of the scores, such as degree centrality, closeness centrality, and betweenness centrality scores. Functional enrichment analysis showed that IGF1, SOX9, and COL2A1 were significantly enriched during skeletal system development. Moreover, qRT-PCR experiments detected the upregulation of FGF2 and downregulation of FAM201A in ONFH samples. FGF2 and FAM201A were correlated with the development of ONFH. Besides, IGF1, SOX9, and COL2A1 might also affect the pathogenesis of ONFH. Copyright © 2018. Published by Elsevier B.V.

  8. FGF23 is synthesised locally by renal tubules and activates injury-primed fibroblasts.

    Science.gov (United States)

    Smith, Edward R; Tan, Sven-Jean; Holt, Stephen G; Hewitson, Tim D

    2017-06-13

    In kidney disease, higher circulating levels of the mineral-regulating hormone fibroblast growth factor (FGF)-23 are predictive of disease progression but direct pathogenic effects on the kidney are unknown. We sought evidence of local renal synthesis in response to unilateral ureteric obstruction in the mouse, and pro-fibrotic actions of FGF23 on the fibroblast in vitro. Acute tubulointerstitial injury due to unilateral ureteric obstruction stimulated renal FGF23 synthesis by tubules, and downregulated inactivating proprotein convertases, without effects on systemic mineral metabolism. In vitro, FGF23 had divergent effects on fibroblast activation in cells derived from normal and obstructed kidneys. While FGF23 failed to stimulate fibrogenesis in normal fibroblasts, in those primed by injury, FGF23 induced pro-fibrotic signalling cascades via activation of TGF-β pathways. Effects were independent of α-klotho. Tubule-derived FGF23 may amplify myofibroblast activation in acute renal injury, and might provide a novel therapeutic target in renal fibrosis.

  9. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon.

    Science.gov (United States)

    Ganz, Julia; Kaslin, Jan; Hochmann, Sarah; Freudenreich, Dorian; Brand, Michael

    2010-08-15

    Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.

  10. FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression.

    Science.gov (United States)

    Ikpegbu, Ekele; Basta, Lena; Clements, Dylan N; Fleming, Robert; Vincent, Tonia L; Buttle, David J; Pitsillides, Andrew A; Staines, Katherine A; Farquharson, Colin

    2018-07-01

    E11/podoplanin is critical in the early stages of osteoblast-to-osteocyte transitions (osteocytogenesis), however, the upstream events which regulate E11 expression are unknown. The aim of this study was to examine the effects of FGF-2 on E11-mediated osteocytogenesis and to reveal the nature of the underlying signaling pathways regulating this process. Exposure of MC3T3 osteoblast-like cells and murine primary osteoblasts to FGF-2 (10 ng/ml) increased E11 mRNA and protein expression (p 70% reduction of basal E11 mRNA expression (p < 0.05) and effectively abrogated FGF-2-related changes in E11 expression and dendrite formation. FGF-2 strongly activated the ERK signaling pathway in osteoblast-like cells but inhibition of this pathway did not block the ability of FGF-2 to enhance E11 expression or to promote acquisition of the osteocyte phenotype. The results of this study highlight a novel mechanism by which FGF-2 can regulate osteoblast differentiation and osteocyte formation. Specifically, the data suggests that FGF-2 promotes osteocytogenesis through increased E11 expression and further studies will identify if this regulatory pathway is essential for bone development and maintenance in health and disease. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  11. Expression and function of FGF10 in mammalian inner ear development

    Science.gov (United States)

    Pauley, Sarah; Wright, Tracy J.; Pirvola, Ulla; Ornitz, David; Beisel, Kirk; Fritzsch, Bernd

    2003-01-01

    We have investigated the expression of FGF10 during ear development and the effect of an FGF10 null mutation on ear development. Our in situ hybridization data reveal expression of FGF10 in all three canal crista sensory epithelia and the cochlea anlage as well as all sensory neurons at embryonic day 11.5 (E11.5). Older embryos (E18.5) displayed strong graded expression in all sensory epithelia. FGF10 null mutants show complete agenesis of the posterior canal crista and the posterior canal. The posterior canal sensory neurons form initially and project rather normally by E11.5, but they disappear within 2 days. FGF10 null mutants have no posterior canal system at E18.5. In addition, these mutants have deformations of the anterior and horizontal cristae, reduced formation of the anterior and horizontal canals, as well as altered position of the remaining sensory epithelia with respect to the utricle. Hair cells form but some have defects in their cilia formation. No defects were detected in the organ of Corti at the cellular level. Together these data suggest that FGF10 plays a major role in ear morphogenesis. Most of these data are consistent with earlier findings on a null mutation in FGFR2b, one of FGF10's main receptors. Copyright 2003 Wiley-Liss, Inc.

  12. FGF2 Attenuates Neural Cell Death via Suppressing Autophagy after Rat Mild Traumatic Brain Injury.

    Science.gov (United States)

    Tang, Chonghui; Shan, Yudong; Hu, Yilan; Fang, Zhanjian; Tong, Yun; Chen, Mengdan; Wei, Xiaojie; Fu, Xiaojun; Xu, Xinlong

    2017-01-01

    Traumatic brain injury (TBI) can lead to physical and cognitive deficits, which are caused by the secondary injury process. Effective pharmacotherapies for TBI patients are still lacking. Fibroblast growth factor-2 (FGF2) is an important neurotrophic factor that can stimulate neurogenesis and angiogenesis and has been shown to have neuroprotective effects after brain insults. Previous studies indicated that FGF2's neuroprotective effects might be related to its function of regulating autophagy. The present study investigated FGF2's beneficial effects in the early stage of rat mild TBI and the underlying mechanisms. One hundred and forty-four rats were used for creating controlled cortical impact (CCI) models to simulate the pathological damage after TBI. Our results indicated that pretreatment of FGF2 played a neuroprotective role in the early stage of rat mild TBI through alleviating brain edema, reducing neurological deficits, preventing tissue loss, and increasing the number of surviving neurons in injured cortex and the ipsilateral hippocampus. FGF2 could also protect cells from various forms of death such as apoptosis or necrosis through inhibition of autophagy. Finally, autophagy activator rapamycin could abolish the protective effects of FGF2. This study extended our understanding of FGF2's neuroprotective effects and shed lights on the pharmacological therapy after TBI.

  13. FGF signaling pathway in the developing chick lung: expression and inhibition studies.

    Directory of Open Access Journals (Sweden)

    Rute S Moura

    Full Text Available BACKGROUND: Fibroblast growth factors (FGF are essential key players during embryonic development. Through their specific cognate receptors (FGFR they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18 signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. METHODOLOGY/PRINCIPAL FINDINGS: In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402 presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. CONCLUSIONS/SIGNIFICANCE: This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth and validate the avian embryo as a good model for pulmonary studies, namely to explore the FGF pathway as a therapeutic target.

  14. Pbx1 activates Fgf10 in the mesenchyme of developing lungs.

    Science.gov (United States)

    Li, Wei; Lin, Chieh-Yu; Shang, Ching; Han, Pei; Xiong, Yiqin; Lin, Chien-Jung; Yang, Jing; Selleri, Licia; Chang, Ching-Pin

    2014-05-01

    Insufficiency of surfactants is a core factor in respiratory distress syndrome, which causes apnea and neonatal death, particularly in preterm infants. Surfactant proteins are secreted by alveolar type II cells in the lung epithelium, the differentiation of which is regulated by Fgf10 elaborated by the adjacent mesenchyme. However, the molecular regulation of mesenchymal Fgf10 during lung development has not been fully understood. Here, we show that Pbx1, a homeodomain transcription factor, is required in the lung mesenchyme for the expression of Fgf10. Mouse embryos lacking Pbx1 in the lung mesenchyme show compact terminal saccules and perinatal lethality with failure of postnatal alveolar expansion. Mutant embryos had severely reduced expression of Fgf10 and surfactant genes (Spa, Spb, Spc, and Spd) that are essential for alveolar expansion for gas exchange at birth. Molecularly, Pbx1 directly binds to the Fgf10 promoter and cooperates with Meis and Hox proteins to transcriptionally activate Fgf10. Our results thus show how Pbx1 controls Fgf10 in the developing lung. © 2014 Wiley Periodicals, Inc.

  15. Regulatory module involving FGF13, miR-504, and p53 regulates ribosomal biogenesis and supports cancer cell survival

    Science.gov (United States)

    Bublik, Débora R.; Bursać, Slađana; Sheffer, Michal; Oršolić, Ines; Shalit, Tali; Tarcic, Ohad; Kotler, Eran; Mouhadeb, Odelia; Hoffman, Yonit; Fuchs, Gilad; Levin, Yishai; Volarević, Siniša; Oren, Moshe

    2017-01-01

    The microRNA miR-504 targets TP53 mRNA encoding the p53 tumor suppressor. miR-504 resides within the fibroblast growth factor 13 (FGF13) gene, which is overexpressed in various cancers. We report that the FGF13 locus, comprising FGF13 and miR-504, is transcriptionally repressed by p53, defining an additional negative feedback loop in the p53 network. Furthermore, we show that FGF13 1A is a nucleolar protein that represses ribosomal RNA transcription and attenuates protein synthesis. Importantly, in cancer cells expressing high levels of FGF13, the depletion of FGF13 elicits increased proteostasis stress, associated with the accumulation of reactive oxygen species and apoptosis. Notably, stepwise neoplastic transformation is accompanied by a gradual increase in FGF13 expression and increased dependence on FGF13 for survival (“nononcogene addiction”). Moreover, FGF13 overexpression enables cells to cope more effectively with the stress elicited by oncogenic Ras protein. We propose that, in cells in which activated oncogenes drive excessive protein synthesis, FGF13 may favor survival by maintaining translation rates at a level compatible with the protein quality-control capacity of the cell. Thus, FGF13 may serve as an enabler, allowing cancer cells to evade proteostasis stress triggered by oncogene activation. PMID:27994142

  16. The Present SP Tests for Determining the Transition Temperature TSP on “U” Notch Disc Specimens

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-01-01

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy ESP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature TSP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a “U” shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests TSP, determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing. PMID:28772851

  17. Dynamic expression of a Hydra FGF at boundaries and termini.

    Science.gov (United States)

    Lange, Ellen; Bertrand, Stephanie; Holz, Oliver; Rebscher, Nicole; Hassel, Monika

    2014-12-01

    Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.

  18. Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate.

    Science.gov (United States)

    Ashikari-Hada, Satoko; Habuchi, Hiroko; Sugaya, Noriko; Kobayashi, Takashi; Kimata, Koji

    2009-06-01

    In fibroblast growth factor (FGF)-2 signaling, the formation of a ternary complex of FGF-2, tyrosine-kinase fibroblast growth factor receptor (FGFR)-1, and cell surface heparan sulfate (HS) proteoglycan is known to be critical for the activation of FGFR-1 and downstream signal transduction. Exogenous heparin polymer and some octasaccharides inhibited FGF-2-induced phosphorylation both of FGFR-1 and of extracellular signal-regulated kinase (ERK1/2) in Chinese hamster ovary (CHO)-K1 cells transfected with FGFR-1, which present HS on their cell surface. The inhibitory effect of octasaccharide was dependent on the number of 2-O-sulfate groups within a molecule but independent of the number of 6-O-sulfate groups. Sulfation at the 2-O-position was a prerequisite not only for the binding of HS to FGF-2 but also for regulation of FGF-2 signaling and competitive inhibition with endogenous HS. Interestingly, FGF-4-induced phosphorylation was impeded only by specific octasaccharides containing both 2-O- and 6-O-sulfated groups, which were necessary for binding FGF-4. In CHO-677 cells deficient in HS biosynthesis, heparin enhanced FGF-2-induced phosphorylation of ERK1/2. On the other hand, an FGF-2-binding octasaccharide inhibited the phosphorylation. Our data suggest that the activity of particular heparin-binding factors can be inhibited by distinctive oligosaccharides that can bind the factors but cannot form functional signaling complexes irrespective of whether cells have a normal complement of HS or lack HS.

  19. Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice.

    Directory of Open Access Journals (Sweden)

    Panos Ziros

    Full Text Available Fibroblast growth factor 21 (Fgf21 is a hormone with emerging beneficial roles in glucose and lipid homeostasis. The interest in Fgf21 as a potential antidiabetic drug and the factors that regulate its production and secretion is growing. Statins are the most widely prescribed drug for the treatment of dyslipidemia. However, the function of statins is not limited to the lowering of cholesterol as they are associated with pleiotropic actions such as antioxidant, anti-inflammatory and cytoprotective effects. The recently described effect of statins on mitochondrial function and the induction of Fgf21 by mitochondrial stress prompted us to investigate the effect of statin treatment on Fgf21 expression in the liver. To this end, C57BL6J male mice and primary mouse hepatocytes were treated with simvastatin, and Fgf21 expression was subsequently assessed by immunoblotting and quantitative real-time PCR. Hepatic Fgf21 protein and mRNA and circulating levels of FGF21significantly decreased in mice that had received simvastatin in their food (0.1% w/w for 1 week. This effect was also observed with simvastatin doses as low as 0.01% w/w for 1 week or following 2 intraperitoneal injections within a single day. The reduction in Fgf21 mRNA levels was further verified in primary mouse hepatocytes, indicating that the effect of simvastatin is cell autonomous. In conclusion, simvastatin treatment reduced the circulating and hepatic Fgf21 levels and this effect warrants further investigation with reference to its role in metabolism.

  20. FGF18 as a potential biomarker in serous and mucinous ovarian tumors.

    Science.gov (United States)

    El-Gendi, Saba; Abdelzaher, Eman; Mostafa, Mohamed Farouk; Sheasha, Ghada Abu

    2016-03-01

    Fibroblast growth factor 18 (FGF18) has been suggested to play important roles in promoting progression of ovarian high-grade serous carcinoma. Our aim was to investigate FGF18 expression in the whole spectrum of serous and mucinous ovarian tumors, highlighting differences in expression within the adenoma-carcinoma sequence and differences between type I and type II tumors. We also aimed to test the prognostic significance of this expression and its relation to microvessel density (MVD). We evaluated the immunohistochemical expression of FGF18 and CD31 in 103 ovarian tumors and statistically analyzed their association with clinicopathological variables and patients' outcome. FGF18 score increased significantly within the adenoma-carcinoma sequence for serous and mucinous tumors. MVD increased significantly only among serous tumors. FGF18 and MVD correlated significantly (overall and among serous tumors only) and were significantly higher in type II than type I tumors. Cox regression models were built. Independent predictors could not be determined due to multicollinearity between the predictors. However, the combination of International Federation of Gynecology and Obstetrics (FIGO) stage, ovarian carcinoma type, and/or FGF18 score achieved the highest predictability of poor prognosis. FGF18 could play a role within the adenoma-carcinoma sequence in type I tumors and might modulate angiogenesis among serous tumors. Our findings further augment the differences between type I and type II tumors. The combination of FIGO stage, ovarian carcinoma type, and/or FGF18 score could predict poor prognosis among ovarian carcinoma patients. Our work identifies FGF18 in ovarian neoplasia as a promising field of research, although evaluation of the performance of the developed models is still needed.

  1. Compact printed high rejection triple band-notch UWB antenna with multiple wireless applications

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    2016-09-01

    Full Text Available In this paper, small printed urn-shape triple notch ultra-wideband (UWB monopole antenna with diverse wireless applications is presented. Notch bands include WiMAX (IEEE802.16 3.30–3.80 GHz, WLAN IEEE802.11a/h/j/n (5.15–5.35 GHz, 5.25–5.35 GHz, 5.47–5.725 GHz, 5.725–5.825 GHz, and X-band downlink satellite system (7.25–7.75 GHz and other multiple wireless services as close range radar (8–12 GHz in X-band & satellite communication (12–18 GHz in Ku-band. By including T-shape stub and etching two C-shaped slots on the radiating patch, triple band-notch function is obtained with measured high band rejection (VSWR = 16.54 at 3.60 GHz, VSWR = 22.35 at 5.64 GHz and VSWR = 6.38 at 7.64 GHz and covers a wide useable fractional bandwidth of 154.56% (2.49–19.41 GHz. In short the antenna offers triple band-notch UWB systems as a compact multifunctional antenna to reduce the number of antennas installed in wireless devices for accessing multiple wireless networks with wide radiation pattern.

  2. Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning

    NARCIS (Netherlands)

    Falix, Farah A.; Weeda, Víola B.; Labruyere, Wilhelmina T.; Poncy, Alexis; de Waart, Dirk R.; Hakvoort, Theodorus B. M.; Lemaigre, Frédéric; Gaemers, Ingrid C.; Aronson, Daniël C.; Lamers, Wouter H.

    2014-01-01

    Notch signaling plays an acknowledged role in bile-duct development, but its involvement in cholangiocyte-fate determination remains incompletely understood. We investigated the effects of early Notch2 deletion in Notch2(fl/fl)/Alfp-Cre(tg/-) ("Notch2-cKO") and Notch2(fl/fl)/Alfp-Cre(-/-)

  3. Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6(ethylene-propylene rubber) blends

    NARCIS (Netherlands)

    Dijkstra, Krijn; Dijkstra, K.; ter Laak, J.A.; ter Laak, J.; Gaymans, R.J.

    1994-01-01

    The deformation and fracture behaviour of nylon-6/EPR (ethylene-propylene rubber) blends is studied as a function of strain rate and rubber content. Therefore, tensile experiments are conducted on notched specimens over a broad range of draw speeds (including strain rates as encountered in normal

  4. Increased osteopontin contributes to inhibition of bone mineralization in FGF23-deficient mice

    Science.gov (United States)

    Yuan, Quan; Jiang, Yan; Zhao, Xuefeng; Sato, Tadatoshi; Densmore, Michael; Schüler, Christiane; Erben, Reinhold G.; McKee, Marc D.; Lanske, Beate

    2013-01-01

    Excessive FGF23 has been identified as a pivotal phosphaturic factor leading to renal phosphate-wasting, and the subsequent development of rickets and osteomalacia. In contrast, loss of FGF23 in mice (Fgf23−/−) leads to high serum phosphate, calcium and 1,25-vitamin-D levels resulting in early lethality attributable to severe ectopic soft-tissue calcifications and organ-failure. Paradoxically, Fgf23−/− mice exhibit a severe defect in skeletal mineralization despite high levels of systemic mineral ions and abundant ectopic mineralization, an abnormality that remains largely unexplained. Through use of in situ hybridization, immunohistochemistry and immunogold labeling coupled with electron microscopy of bone samples we discovered that expression and accumulation of osteopontin (Opn/OPN) was markedly increased in Fgf23−/− mice. These results were confirmed by qPCR-analyses of Fgf23−/− bones and ELISA measurements of serum OPN. To investigate whether elevated OPN levels were contributing to the bone mineralization defect in Fgf23−/− mice, we generated Fgf23−/−/Opn−/− double-knockout mice (DKO). Biochemical analyses showed that the hypercalcemia and hyperphosphatemia observed in Fgf23−/− mice remained unchanged in DKO mice, however µCT and histomorphometric analyses showed a significant improvement in total mineralized bone-volume. The severe osteoidosis was markedly reduced and a normal mineral apposition rate was present in DKO mice, indicating that increased OPN levels in Fgf23−/− mice are at least in part responsible for the osteomalacia. Moreover, the increased OPN levels were significantly decreased upon lowering serum phosphate by feeding low phosphate diet or deletion NaPi2a, indicating phosphate attributes in part to the high OPN levels in Fgf23−/− mice. In summary, our results suggest that increased OPN is an important pathogenic factor mediating the mineralization defect and the alterations in bone metabolism observed

  5. Direct effects of FGF21 on glucose uptake in human skeletal muscle

    DEFF Research Database (Denmark)

    Mashili, Fredirick L; Austin, Reginald L; Deshmukh, Atul S

    2011-01-01

    21 were determined in normal glucose tolerant (n = 40) and type 2 diabetic (T2D; n = 40) subjects. We determined whether FGF21 has direct effects on glucose metabolism in cultured myotubes (n = 8) and extensor digitorum longus skeletal muscle. RESULTS: Serum FGF21 levels increased 20% in T2D versus...... and insulin-stimulated glucose uptake in human myotubes, coincident with increased glucose transporter 1 mRNA, and enhanced glucose transporter 1 abundance at the plasma membrane. In isolated extensor digitorum longus muscle, FGF21 potentiated insulin-stimulated glucose transport, without altering...

  6. JIP1 binding to RBP-Jk mediates cross-talk between the Notch1 and JIP1-JNK signaling pathway.

    Science.gov (United States)

    Kim, M-Y; Ann, E-J; Mo, J-S; Dajas-Bailador, F; Seo, M-S; Hong, J-A; Jung, J; Choi, Y-H; Yoon, J-H; Kim, S-M; Choi, E-J; Hoe, H-S; Whitmarsh, A J; Park, H-S

    2010-11-01

    Notch1 signaling has a critical function in maintaining a balance among cell proliferation, differentiation, and apoptosis. Our earlier work showed that the Notch1 intracellular domain interferes with the scaffolding function of c-Jun N-terminal kinase (JNK)-interacting protein-1 (JIP1), yet the effect of JIP1 for Notch1-recombining binding protein suppressor of hairless (RBP-Jk) signaling remains unknown. Here, we show that JIP1 suppresses Notch1 activity. JIP1 was found to physically associate with either intracellular domain of Notch1 or RBP-Jk and interfere with the interaction between them. Furthermore, we ascertained that JIP1 caused the cytoplasmic retention of RBP-Jk through an interaction between the C-terminal region of JIP1 including Src homology 3 domain and the proline-rich domain of RBP-Jk. We also found that RBP-Jk inhibits JIP1-mediated activation of the JNK1 signaling cascade and cell death. Our results suggest that direct protein-protein interactions coordinate cross-talk between the Notch1-RBP-Jk and JIP1-JNK pathways.

  7. Chemotherapeutic treatment is associated with Notch1 induction in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Kamstrup, Maria R; Biskup, Edyta; Manfè, Valentina

    2017-01-01

    The Notch pathway is important for survival of cutaneous T-cell lymphoma (CTCL) cells. We investigated the effect of chemotherapy (doxorubicin, etoposide, and gemcitabine) and radiation modalities on Notch signaling in CTCL cell lines. Chemotherapy induced Notch1 expression at the mRNA and protein...... level in MyLa2000 and Hut78. Upregulation of well-established Notch targets supported the functional activity of Notch1. Transfection of Notch1 siRNA into MyLa2000 cells was not able to suppress the effects of chemotherapy on Notch1 activation significantly. Notch1 knockdown in combination...... with doxorubicin, etoposide, or gemcitabine compared to chemotherapy alone decreased cell viability by 12, 20, and 26%, respectively (p MyLa2000 but not SeAx) and psoralen plus UVA (PUVA) (in MyLa2000, Hut78, and SeAx) increased the expression of Notch1 family members. Our results...

  8. Crosstalk between PKCα and Notch-4 in endocrine-resistant breast cancer cells

    Science.gov (United States)

    Yun, J; Pannuti, A; Espinoza, I; Zhu, H; Hicks, C; Zhu, X; Caskey, M; Rizzo, P; D'Souza, G; Backus, K; Denning, M F; Coon, J; Sun, M; Bresnick, E H; Osipo, C; Wu, J; Strack, P R; Tonetti, D A; Miele, L

    2013-01-01

    The Notch pathway is functionally important in breast cancer. Notch-1 has been reported to maintain an estrogen-independent phenotype in estrogen receptor α (ERα)+ breast cancer cells. Notch-4 expression correlates with Ki67. Notch-4 also plays a key role in breast cancer stem-like cells. Estrogen-independent breast cancer cell lines have higher Notch activity than estrogen-dependent lines. Protein kinase Cα (PKCα) overexpression is common in endocrine-resistant breast cancers and promotes tamoxifen (TAM)-resistant growth in breast cancer cell lines. We tested whether PKCα overexpression affects Notch activity and whether Notch signaling contributes to endocrine resistance in PKCα-overexpressing breast cancer cells.Analysis of published microarray data from ERα+ breast carcinomas shows that PKCα expression correlates strongly with Notch-4. Real-time reverse transcription PCR and immunohistochemistry on archival specimens confirmed this finding. In a PKCα-overexpressing, TAM-resistant T47D model, PKCα selectively increases Notch-4, but not Notch-1, expression in vitro and in vivo. This effect is mediated by activator protein-1 (AP-1) occupancy of the Notch-4 promoter. Notch-4 knockdown inhibits estrogen-independent growth of PKCα-overexpressing T47D cells, whereas Notch-4IC expression stimulates it. Gene expression profiling shows that multiple genes and pathways associated with endocrine resistance are induced in Notch-4IC- and PKCα-expressing T47D cells. In PKCα-overexpressing T47D xenografts, an orally active γ-secretase inhibitor at clinically relevant doses significantly decreased estrogen-independent tumor growth, alone and in combination with TAM. In conclusion, PKCα overexpression induces Notch-4 through AP-1. Notch-4 promotes estrogen-independent, TAM-resistant growth and activates multiple pathways connected with endocrine resistance and chemoresistance. Notch inhibitors should be clinically evaluated in PKCα- and Notch-4-overexpressing

  9. Skull mechanics and the evolutionary patterns of the otic notch closure in capitosaurs (Amphibia: Temnospondyli).

    Science.gov (United States)

    Fortuny, Josep; Marcé-Nogué, Jordi; Gil, Lluis; Galobart, Angel

    2012-07-01

    Capitosaurs were among the largest amphibians that have ever lived. Their members displayed an amphibious lifestyle. We provide new information on functional morphology data, using finite element analysis (FEA) which has palaeoecological implications for the group. Our analyses included 17 taxa using (2D) plate models to test four loading cases (bilateral, unilateral and lateral bitings and skull raising system simulation). Our results demonstrates that, when feeding, capitosaurs concentrated the stress at the circumorbital region of the capitosaur skull and cranial sutures probably played a key role in dissipating and absorbing the stress generated during biting. Basal members (as Wetlugasaurus) were probably less specialized forms, while during Middle- and Late Triassic the group radiated into different ecomorphotypes with closed otic notch forms (as Cyclotosaurus) resulting in the strongest skulls during biting. Previous interpretations discussed a trend from an open to closed otic notch associated with lateral repositioning of the tabular horns, but the analysis of the skull-raising system reveals that taxa exhibiting posteriorly directed tabular horns display similar results during skull raising to those of closed otic notch taxa. Our results suggest that various constraints besides otic notch morphology, such as the elongation of the tabular horns, snout length, skull width and position, and size of the orbits affect the function of the skull. On the light of our results, capitosaur skull showed a trend to reduce the stresses and deformation during biting. Capitosaurs could be considered crocodilian analogues as they were top-level predators in fluvial and brackish Triassic ecosystems. Copyright © 2012 Wiley Periodicals, Inc.

  10. Laser weld reconstitution of conventional Charpy and Miniaturized Notch Test (MNT) specimens

    International Nuclear Information System (INIS)

    Manahan, M.P.; Williams, J.; Martukanitz, R.P.

    1993-01-01

    As nuclear power plants approach end-of-license (EOL) and consideration is given to license renewal, there is an ever increasing need to expand the amount of data obtainable from the original surveillance specimens. A laser welding technique to reconstitute broken Charpy specimens is being developed to produce both conventional and miniaturized Charpy specimens. This paper reports on early laser welding development efforts and summarizes previous proof-of-principle experiments on a 1/16 scale miniaturized Charpy test. In order to benchmark the laser welding procedure, the laser-reconstituted specimen data have been compared with the original specimen data. In addition, the microstructure after welding has been examined to ensure that the material in the vicinity of the notch is essentially unchanged after the welding process. Data which characterize the thermal transient during welding are obtained by attaching thermocouples to the specimens. Other important considerations include perturbation of the stress field near the notch, dynamic stress waves, and contact of the weld region with the tup. Precise control of welding parameters has been demonstrated, heat-affected zones as small as 0.25 mm can be achieved, and sufficient penetration depth can be obtained to enable welding thick sections (1T or greater) to yield conventional Charpy specimens or fracture toughness specimens and thin sections (∼5 mm) to yield Miniaturized Notch Test (MNT) specimens

  11. The positional identity of iPSC-derived neural progenitor cells along the anterior-posterior axis is controlled in a dosage-dependent manner by bFGF and EGF

    DEFF Research Database (Denmark)

    Zhou, Shuling; Ochalek, Anna; Szczesna, Karolina

    2016-01-01

    Neural rosettes derived from human induced pluripotent stem cells (iPSCs) have been claimed to be a highly robust in vitro cellular model for biomedical application. They are able to propagate in vitro in the presence of mitogens, including basic fibroblast growth factor (bFGF) and epidermal growth...... factor (EGF). However, these two mitogens are also involved in anterior-posterior patterning in a gradient dependent manner along the neural tube axis. Here, we compared the regional identity of neural rosette cells and specific neural subtypes of their progeny propagated with low and high concentrations...... of bFGF and EGF. We observed that low concentrations of bFGF and EGF in the culturing system were able to induce forebrain identity of the neural rosettes and promote subsequent cortical neuronal differentiation. On the contrary, high concentrations of these mitogens stimulate a mid-hindbrain fate...

  12. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    2009-10-01

    Full Text Available Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define.To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation.We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  13. Notch Filtering Suitable for Real Time Removal of Power Line Interference

    Directory of Open Access Journals (Sweden)

    P. Zahradnik

    2013-04-01

    Full Text Available This paper presents a high performance notch filtering for real time suppression of power line interference in a general signal. The disturbing signal is suppressed using an optimal notch FIR filter with tunable notch frequency. The tuning of the filter preserves its selectivity, most importantly the specified attenuation at the notch frequency. One example and two Matlab functions demonstrate the performance, robustness and usefulness of the proposed procedure for the design and tuning of optimal notch FIR filters suitable in the real time notch filtering.

  14. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: development of an FGF19-based chimeric molecule to promote fatty liver regeneration.

    Science.gov (United States)

    Alvarez-Sola, Gloria; Uriarte, Iker; Latasa, M Ujue; Fernandez-Barrena, Maite G; Urtasun, Raquel; Elizalde, Maria; Barcena-Varela, Marina; Jiménez, Maddalen; Chang, Haisul C; Barbero, Roberto; Catalán, Victoria; Rodríguez, Amaia; Frühbeck, Gema; Gallego-Escuredo, José M; Gavaldà-Navarro, Aleix; Villarroya, Francesc; Rodriguez-Ortigosa, Carlos M; Corrales, Fernando J; Prieto, Jesus; Berraondo, Pedro; Berasain, Carmen; Avila, Matias A

    2017-10-01

    Fibroblast growth factor 15/19 (FGF15/19), an enterokine that regulates synthesis of hepatic bile acids (BA), has been proposed to influence fat metabolism. Without FGF15/19, mouse liver regeneration after partial hepatectomy (PH) is severely impaired. We studied the role of FGF15/19 in response to a high fat diet (HFD) and its regulation by saturated fatty acids. We developed a fusion molecule encompassing FGF19 and apolipoprotein A-I, termed Fibapo, and evaluated its pharmacological properties in fatty liver regeneration. Fgf15 -/- mice were fed a HFD. Liver fat and the expression of fat metabolism and endoplasmic reticulum (ER) stress-related genes were measured. Influence of palmitic acid (PA) on FGF15/19 expression was determined in mice and in human liver cell lines. In vivo half-life and biological activity of Fibapo and FGF19 were compared. Hepatoprotective and proregenerative activities of Fibapo were evaluated in obese db/db mice undergoing PH. Hepatosteatosis and ER stress were exacerbated in HFD-fed Fgf15 -/- mice. Hepatic expression of Pparγ2 was elevated in Fgf15 -/- mice, being reversed by FGF19 treatment. PA induced FGF15/19 expression in mouse ileum and human liver cells, and FGF19 protected from PA-mediated ER stress and cytotoxicity. Fibapo reduced liver BA and lipid accumulation, inhibited ER stress and showed enhanced half-life. Fibapo provided increased db/db mice survival and improved regeneration upon PH. FGF15/19 is essential for hepatic metabolic adaptation to dietary fat being a physiological regulator of Pparγ2 expression . Perioperative administration of Fibapo improves fatty liver regeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF

    Directory of Open Access Journals (Sweden)

    Ziebura Thomas

    2010-12-01

    Full Text Available Abstract Background Hyperbaric oxygen (HBO therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF and vascular endothelial growth factor (VEGF; their in-vivo function is still not fully understood. Methods Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO. Results There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature. Conclusions A significant effect of HBO on serum

  16. Circulating FGF21 in humans is potently induced by short term overfeeding of carbohydrates

    DEFF Research Database (Denmark)

    Lundsgaard, Annemarie; Fritzen, Andreas Mæchel; Sjøberg, Kim Anker

    2017-01-01

    be increased to meet eucaloric balance. This raises the possibility that intake of a diet rich in carbohydrates may induce an increase in plasma FGF21 levels per se. Here we studied the role of dietary carbohydrates on the levels of circulating FGF21 and concomitant physiologic effects by feeding healthy men......OBJECTIVE: Fibroblast-growth factor 21 (FGF21) is thought to be important in metabolic regulation. Recently, low protein diets have been shown to increase circulating FGF21 levels. However, when energy contribution from dietary protein is lowered, other macronutrients, such as carbohydrates, must...... a carbohydrate rich diet without reducing protein intake. METHODS: A diet enriched in carbohydrates (80 E% carbohydrate; CHO) and a eucaloric control diet (CON) were provided to nine healthy men for three days. The energy intake during the CHO diet was increased (+75% energy) to ensure similar dietary protein...

  17. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    NARCIS (Netherlands)

    Ost, Mario; Coleman, Verena; Voigt, Anja; Schothorst, van E.M.; Keipert, Susanne; Stelt, van der Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, A.P.; Jastroch, Martin; Schulz, T.J.; Keijer, Jaap; Klaus, Susanne

    2016-01-01

    Objective: Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise

  18. Fibroblast Growth Factor 21 (FGF-21 in Peritoneal Dialysis Patients: Natural History and Metabolic Implications.

    Directory of Open Access Journals (Sweden)

    Elena González

    Full Text Available Human fibroblast growth factor 21 (FGF-21 is an endocrine liver hormone that stimulates adipocyte glucose uptake independently of insulin, suppresses hepatic glucose production and is involved in the regulation of body fat. Peritoneal dialysis (PD patients suffer potential interference with FGF-21 status with as yet unknown repercussions.The aim of this study was to define the natural history of FGF-21 in PD patients, to analyze its relationship with glucose homeostasis parameters and to study the influence of residual renal function and peritoneal functional parameters on FGF-21 levels and their variation over time.We studied 48 patients with uremia undergoing PD. Plasma samples were routinely obtained from each patient at baseline and at 1, 2 and 3 years after starting PD therapy.Plasma FGF-21 levels substantially increased over the first year and were maintained at high levels during the remainder of the study period (253 pg/ml (59; 685 at baseline; 582 pg/ml (60.5-949 at first year and 647 pg/ml (120.5-1116.6 at third year (p<0.01. We found a positive correlation between time on dialysis and FGF-21 levels (p<0.001, and also, those patients with residual renal function (RRF had significantly lower levels of FGF-21 than those without RRF (ρ -0.484, p<0.05. Lastly, there was also a significant association between FGF-21 levels and peritoneal protein losses (PPL, independent of the time on dialysis (ρ 0.410, p<0.05.Our study shows that FGF-21 plasma levels in incident PD patients significantly increase during the first 3 years. This increment is dependent on or is associated with RRF and PPL (higher levels in patients with lower RRF and higher PPL. FGF-21 might be an important endocrine agent in PD patients and could act as hormonal signaling to maintain glucose homeostasis and prevent potential insulin resistance. These preliminary results suggest that FGF-21 might play a protective role as against the development of insulin resistance over

  19. Coastal dune dynamics in response to excavated foredune notches

    Science.gov (United States)

    Ruessink, B. G.; Arens, S. M.; Kuipers, M.; Donker, J. J. A.

    2018-04-01

    Dune management along developed coasts has traditionally focussed on the suppression of the geomorphic dynamics of the foredune to improve its role in sea defence. Because a stabilized foredune acts as an almost total barrier to aeolian transport from the beach, the habitat diversity in the more landward dunes has degraded. With the overarching objective to mitigate this undesirable loss in biodiversity, dune management projects nowadays increasingly intend to restore aeolian dynamics by reconnecting the beach-dune system with notches excavated through the foredune. Here, we use repeat topographic survey data to examine the geomorphic response of a coastal dune system in the Dutch National Park Zuid-Kennemerland to five notches excavated in 2012-2013 within an 850-m stretch of the 20-m high established foredune. The notches were dug in a V-shape (viewed onshore), with a width between approximately 50 and 100 m at the top, a (cross-dune) length between 100 and 200 m, and excavation depths between 9 and 12.5 m. The 1 × 1 m digital terrain models, acquired with airborne Lidar and UAV photogrammetry, illustrate that during the 3-year survey period the notches developed into a U-shape because of wall deflation, and that up to 8-m thick and 150-m long depositional lobes formed landward of the notches. Sand budget computations showed that the sand volume of the entire study area increased by about 22,750 m3/year, which, given the 850-m width of the study area, corresponds to an aeolian input from the beach of approximately 26.5 m3/m/year. Between 2006 and 2012 all wind-blown beach sand deposited on the seaward side of the foredune; since 2013, the notches have caused 75% of the sand to be deposited landward of the foredune. This highlights that the notches are highly effective conduits for aeolian transport into the back dunes. Future monitoring is required to determine for how long the notches will stimulate aeolian dynamics and if (and when) vegetation eventually

  20. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells.

    Directory of Open Access Journals (Sweden)

    Fang Zong

    Full Text Available Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1.

  1. The role of rhFGF-2 soaked polymer membrane for enhancement of guided bone regeneration.

    Science.gov (United States)

    Lee, Sang-Hoon; Park, Young-Bum; Moon, Hong-Seok; Shim, June-Sung; Jung, Han-Sung; Kim, Hyung Jun; Chung, Moon-Kyu

    2017-08-02

    The purposes of this study are to confirm the role of Fibroblast Growth Factor-2 (FGF-2) in bone regeneration by adding various concentrations of FGF-2 to the collagen membrane and applying it to the Biphasic Calcium Phosphate (BCP) bone graft site for guided bone regeneration, to explore the potential of collagen membrane as FGF-2 carrier, and to determine the optimum FGF concentration for enhancement of bone regeneration. Four bone defects of 8 mm in diameter were created in 18 New Zealand rabbit calvaria. After BCP bone graft, graft material was covered with collagen membranes adding various concentration of FGF-2. The concentration of FGF-2 was set at 1.0, 0.5, 0.1 mg/ml, and same amount of saline was used in the control group. To confirm the bone regeneration over time, six New Zealand rabbits were sacrificed each at 2, 4, and 12 weeks, and the amounts of new bone and residual bone graft material were analyzed by histologic and histomorphometric analysis. Qualitative analyses are also conducted through immunohistochemistry, Tetrate-resistant acid phosphatase (TRAP) stain and Russell-Movat pentachrome stain. As the healing period increased, the formation of new bone increased and the amount of residual graft material decreased in all experimental groups. Immunohistochemistry, TRAP staining and pentachrome staining further showed that the addition of FGF-2 promoted bone regeneration in all experimental groups. It was also confirmed that polymer collagen membrane can be used as a useful carrier of FGF-2 when enhanced early stage of new bone formation is required.

  2. FGF23 Regulates Bone Mineralization in a 1,25(OH)2 D3 and Klotho-Independent Manner.

    Science.gov (United States)

    Murali, Sathish Kumar; Roschger, Paul; Zeitz, Ute; Klaushofer, Klaus; Andrukhova, Olena; Erben, Reinhold G

    2016-01-01

    Fibroblast growth factor-23 (Fgf23) is a bone-derived hormone, suppressing phosphate reabsorption and vitamin D hormone (1,25(OH)2 D3 ) production in the kidney. It has long been an enigma why lack of Fgf23 or of Klotho, the coreceptor for Fgf23, leads to severe impairment in bone mineralization despite the presence of hypercalcemia and hyperphosphatemia. Using Fgf23(-/-) or Klotho(-/-) mice together with compound mutant mice lacking both Fgf23 or Klotho and a functioning vitamin D receptor, we show that in Klotho(-/-) mice the mineralization defect is solely driven by 1,25(OH)2 D3 -induced upregulation of the mineralization-inhibiting molecules osteopontin and pyrophosphate in bone. In Fgf23(-/-) mice, the mineralization defect has two components, a 1,25(OH)2 D3 -driven component similar to Klotho(-/-) mice and a component driven by lack of Fgf23, causing additional accumulation of osteopontin. We found that FGF23 regulates osteopontin secretion indirectly by suppressing alkaline phosphatase transcription and phosphate production in osteoblastic cells, acting through FGF receptor-3 in a Klotho-independent manner. Hence, FGF23 secreted from osteocytes may form an autocrine/paracrine feedback loop for the local fine-tuning of bone mineralization. © 2015 American Society for Bone and Mineral Research.

  3. Genetic Ablation of Fgf23 or Klotho Does not Modulate Experimental Heart Hypertrophy Induced by Pressure Overload.

    Science.gov (United States)

    Slavic, Svetlana; Ford, Kristopher; Modert, Magalie; Becirovic, Amarela; Handschuh, Stephan; Baierl, Andreas; Katica, Nejla; Zeitz, Ute; Erben, Reinhold G; Andrukhova, Olena

    2017-09-12

    Left ventricular hypertrophy (LVH) ultimately leads to heart failure in conditions of increased cardiac pre- or afterload. The bone-derived phosphaturic and sodium-conserving hormone fibroblast growth factor-23 (FGF23) and its co-receptor Klotho have been implicated in the development of uremic LVH. Using transverse aortic constriction (TAC) in gene-targeted mouse models, we examine the role of Fgf23 and Klotho in cardiac hypertrophy and dysfunction induced by pressure overload. TAC profoundly increases serum intact Fgf23 due to increased cardiac and bony Fgf23 transcription and downregulation of Fgf23 cleavage. Aldosterone receptor blocker spironolactone normalizes serum intact Fgf23 levels after TAC by reducing bony Fgf23 transcription. Notably, genetic Fgf23 or Klotho deficiency does not influence TAC-induced hypertrophic remodelling, LV functional impairment, or LV fibrosis. Despite the profound, aldosterone-mediated increase in circulating intact Fgf23 after TAC, our data do not support an essential role of Fgf23 or Klotho in the pathophysiology of pressure overload-induced cardiac hypertrophy.

  4. Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts.

    Directory of Open Access Journals (Sweden)

    Vanlata Patel

    Full Text Available Fibroblast growth factor 21 (FGF21 is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia.FGF21, FGF21-receptor 1 (FGFR1 and beta-Klotho (βKlotho were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt, ERK1/2(extracellular signal-regulated kinase and AMPK (AMP-activated protein kinase pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased.In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia.

  5. Action Mechanism of Fibroblast Growth Factor-2 (FGF-2 in the Promotion of Periodontal Regeneration in Beagle Dogs.

    Directory of Open Access Journals (Sweden)

    Toshie Nagayasu-Tanaka

    Full Text Available Fibroblast growth factor-2 (FGF-2 enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3% or the vehicle (hydroxypropyl cellulose only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2 and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum

  6. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    International Nuclear Information System (INIS)

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-01-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression

  7. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Vispute, Saurabh G. [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Cheng, Christine; Kharitonenkov, Alexei [Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285 (United States); Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States)

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  8. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Wang, Lin; Adams, Ralf H.

    2014-03-01

    Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.

  9. Why does necking ignore notches in dynamic tension?

    Directory of Open Access Journals (Sweden)

    Rotbaum Y.

    2015-01-01

    Full Text Available Recent experimental work has revealed that necking of tensile specimens, subjected to dynamic loading, is a deterministic phenomenon, governed by the applied boundary conditions. Furthermore it was shown that the potential sited, dictated by the boundary conditions, may prevail even in the presence of a notch, thus necking may occur away of the notched region. The present paper combines experimental and numerical work to address this issue. Specifically, it is shown that the dynamic tensile failure locus is dictated by both the applied velocity boundary condition and the material mechanical properties, specifically strain-rate sensitivity and strain-rate hardening. It is shown that at sufficiently high impact velocities, the flows stress in the notch vicinity becomes quite higher than in the rest of the specimen, so that while the former resists deformation, it transfers the load to the latter, resulting in the formation of a local neck and failure away from the notch. Small local perturbations in the material properties are shown to be sufficient to stabilize the structure under local failure until a neck forms elsewhere. While the physical observations are quite counterintuitive with respect to the engineering views of stress concentrator's effect, the present work rationalizes those observations and also provides information for the designers of dynamically tensioned structures that may contain notches or similar flaws.

  10. Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders

    2018-01-01

    The calcium and phosphate homeostasis is regulated by a complex interplay between parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and calcitriol. Experimental studies have demonstrated an inhibitory effect of FG23 on PTH production and secretion; the physiological role...... of this regulation is however not well understood. Surprisingly, in uremia, concomitantly elevated FGF23 and PTH levels are observed. The parathyroid gland rapidly loses its responsiveness to extracellular calcium in vitro and a functional parathyroid cell line has currently not been established. Therefore, the aim...

  11. Genome-wide SNP scan of pooled DNA reveals nonsense mutation in FGF20 in the scaleless line of featherless chickens

    Directory of Open Access Journals (Sweden)

    Wells Kirsty L

    2012-06-01

    Full Text Available Abstract Background Scaleless (sc/sc chickens carry a single recessive mutation that causes a lack of almost all body feathers, as well as foot scales and spurs, due to a failure of skin patterning during embryogenesis. This spontaneous mutant line, first described in the 1950s, has been used extensively to explore the tissue interactions involved in ectodermal appendage formation in embryonic skin. Moreover, the trait is potentially useful in tropical agriculture due to the ability of featherless chickens to tolerate heat, which is at present a major constraint to efficient poultry meat production in hot climates. In the interests of enhancing our understanding of feather placode development, and to provide the poultry industry with a strategy to breed heat-tolerant meat-type chickens (broilers, we mapped and identified the sc mutation. Results Through a cost-effective and labour-efficient SNP array mapping approach using DNA from sc/sc and sc/+ blood sample pools, we map the sc trait to chromosome 4 and show that a nonsense mutation in FGF20 is completely associated with the sc/sc phenotype. This mutation, common to all sc/sc individuals and absent from wild type, is predicted to lead to loss of a highly conserved region of the FGF20 protein important for FGF signalling. In situ hybridisation and quantitative RT-PCR studies reveal that FGF20 is epidermally expressed during the early stages of feather placode patterning. In addition, we describe a dCAPS genotyping assay based on the mutation, developed to facilitate discrimination between wild type and sc alleles. Conclusions This work represents the first loss of function genetic evidence supporting a role for FGF ligand signalling in feather development, and suggests FGF20 as a novel central player in the development of vertebrate skin appendages, including hair follicles and exocrine glands. In addition, this is to our knowledge the first report describing the use of the chicken SNP array to

  12. LPS infusion suppresses serum FGF21 levels in healthy adult volunteers.

    Science.gov (United States)

    Lauritzen, Esben S; Rittig, Nikolaj; Bach, Ermina; Møller, Niels; Bjerre, Mette

    2017-01-01

    During the inflammatory acute phase response, plasma glucose and serum triglycerides are increased in humans. Fibroblast growth factor (FGF) 21 has plasma glucose and lipid-reducing actions, but its role in the acute inflammatory response in human is unknown. To investigate circulating levels of FGF21 after lipopolysaccharide (LPS) infusion. Two randomized, single-blinded, placebo-controlled crossover trials were used. The studies were performed at a university hospital clinical research center. Study 1 (LPS bolus): Eight young, healthy, lean males were investigated two times: (1) after isotonic saline injection and (2) after LPS injection (bolus of 1 ng/kg). Each study day lasted 4 h. Study 2 (continuous LPS infusion): Eight, healthy males were investigated two times: (1) during continuously isotonic saline infusion and (2) during continuous LPS infusion (0.06 ng/kg/h). Each study day lasted 4 h. Circulating FGF21 levels were quantified every second hour by an immunoassay. A LPS bolus resulted in a late suppression (t = 240 min) of serum FGF21 (P = 0.035). Continuous LPS infusion revealed no significant effects on FGF21 levels (P = 0.82). Our studies show that a bolus of LPS results in decreased FGF21 levels 4 h from exposure. © 2017 The authors.

  13. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice.

    Science.gov (United States)

    Dono, R; Texido, G; Dussel, R; Ehmke, H; Zeller, R

    1998-08-03

    Fibroblast growth factor-2 (FGF-2) has been implicated in various signaling processes which control embryonic growth and differentiation, adult physiology and pathology. To analyze the in vivo functions of this signaling molecule, the FGF-2 gene was inactivated by homologous recombination in mouse embryonic stem cells. FGF-2-deficient mice are viable, but display cerebral cortex defects at birth. Bromodeoxyuridine pulse labeling of embryos showed that proliferation of neuronal progenitors is normal, whereas a fraction of them fail to colonize their target layers in the cerebral cortex. A corresponding reduction in parvalbumin-positive neurons is observed in adult cortical layers. Neuronal defects are not limited to the cerebral cortex, as ectopic parvalbumin-positive neurons are present in the hippocampal commissure and neuronal deficiencies are observed in the cervical spinal cord. Physiological studies showed that FGF-2-deficient adult mice are hypotensive. They respond normally to angiotensin II-induced hypertension, whereas neural regulation of blood pressure by the baroreceptor reflex is impaired. The present genetic study establishes that FGF-2 participates in controlling fates, migration and differentiation of neuronal cells, whereas it is not essential for their proliferation. The observed autonomic dysfunction in FGF-2-deficient adult mice uncovers more general roles in neural development and function.

  14. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth.

    Science.gov (United States)

    Kim, Jc; Park, J C; Kim, S H; Im, G I; Kim, B S; Lee, J B; Choi, E Y; Song, J S; Cho, K S; Kim, C S

    2014-03-01

    The purposes of this study were to isolate and characterize stem cells from inflamed pulp tissue of human functional deciduous teeth (iSHFD) and to evaluate the influence of fibroblastic growth factor-2 (FGF-2) on the regenerative potential. We successfully isolated mesenchymal stem cells (MSCs) from the inflamed dental pulp tissue of human deciduous teeth and demonstrated that their regenerative potential could be enhanced by the application of FGF-2 (20 ng ml(-1)) during ex vivo expansion. Isolated stem cells expanded in FGF-2 were characterized using a colony-forming assay, proliferation, migration, in vitro differentiation, in vivo ectopic transplantation assay, and gene expression profiling. MSCs isolated from the inflamed pulp tissue of functional deciduous teeth potentially possess the qualities of those from human exfoliated deciduous teeth. FGF-2 applied to iSHFD during expansion enhanced the colony-forming efficiency of these cells, increased their proliferation and migration potential, and reduced their differentiation potential in vitro. However, the ectopic transplantation of iSHFD/FGF-2 in vivo increased the formation of dentin-like material. FGF-2 expansion of stem cells from inflamed pulp tissues of human deciduous teeth can be a good source of stem cells for future clinical applications and a novel way of using discarded inflamed tissues. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity.

    Science.gov (United States)

    Li, A W; Too, C K; Knee, R; Wilkinson, M; Murphy, P R

    1997-10-20

    Bidirectional transcription of the basic fibroblast growth factor (FGF-2) gene gives rise to multiple polyadenylated sense mRNAs and a unique 1.5 kb antisense transcript (FGF-AS) which is complementary to the 3'-untranslated region of the FGF-2 mRNA. The rat FGF-AS cDNA encodes a novel 35 kDa nuclear protein (GFG) with homology to the MutT family of antimutator NTPases. Antibodies against the deduced amino acid sequence of GFG detected intense immunoreactivity in the nuclei of adult rat hepatocytes. Subcellular fractionation and Western blotting confirmed the presence of a 35 kDa immunoreactive protein in the nuclear fraction and, to a lesser extent, in the mitochondrial fractions of rat liver homogenates. Recombinant GFG suppressed the spontaneous mutation rate of MutT-deficient E. coli in a complementation assay. In-frame deletion of the 53 amino acids encompassing the MutT domain eliminated this activity, confirming the catalytic function of this region in the FGF antisense gene product. These findings demonstrate for the first time that the FGF-AS transcript encodes a functional nuclear protein with MutT-related enzymatic activity.

  16. Outcomes of regenerative treatment with rhPDGF-BB and rhFGF-2 for periodontal intra-bony defects: a systematic review and meta-analysis.

    Science.gov (United States)

    Khoshkam, Vahid; Chan, Hsun-Liang; Lin, Guo-Hao; Mailoa, James; Giannobile, William V; Wang, Hom-Lay; Oh, Tae-Ju

    2015-03-01

    The aim was to evaluate the effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human fibroblast growth factor-2 (rhFGF-2) on treating periodontal intra-bony defects, compared to the control (carrier alone). Electronic and hand searches were performed to identify eligible studies. The weighed mean differences of linear defect fill (LDF), probing depth (PD) reduction, clinical attachment level (CAL) gain and gingival recession (GR) were calculated using random effect meta-analysis. The searches yielded 1018 articles, of which seven studies were included. Only one included study was considered at low risk of bias. The outcomes that reached statistical significance in comparison to carriers alone included: LDF (0.95 mm, 95% CI: 0.62-1.28 mm or 20.17%, 95% CI: 11.81-28.54%) and CAL gain (0.34 mm, 95% CI: 0.03-0.65 mm) for PDGF, and LDF (21.22%, 95% CI: 5.82-36.61%) for FGF-2. Within the limits of this review, rhPDGF-BB demonstrated significantly more LDF and CAL gain; rhFGF-2 resulted in significantly higher percentage of LDF. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Digital notch filter based active damping for LCL filters

    DEFF Research Database (Denmark)

    Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin

    2015-01-01

    LCL filters are widely used in Pulse Width Modulation (PWM) inverters. However, it also introduces a pair of unstable resonant poles that may challenge the controller stability. The passive damping is a convenient possibility to tackle the resonance problem at the cost of system overall efficiency....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated......, which has revealed that negative variations of the resonant frequency can seriously affect the system stability. In order to make the controller more robust against grid impedance variations, the notch filter frequency is thus designed smaller than the LCL filter resonant frequency, which is done...

  18. Band-notched ultrawide band antenna loaded with ferrite slab

    Science.gov (United States)

    Wang, Hao; Zong, Weihua; Sun, Nian X.; Lin, Hwaider; Li, Shandong

    2017-05-01

    In this paper, a novel technique to design a band-notched UWB antenna by using Yttrium Iron Garnet (YIG) ferrite is proposed. A printed slot UWB antenna with size of 21mm×26 mm×0.8 mm is adopted as a basic antenna. A piece of ferrite slab with size of 5 mm×10 mm×2 mm is attached on the feeding layer of the antenna to achieve band-notched characteristics. The measured -10 dB bandwidth of the antenna without ferrite slab is 2.91-10.98 GHz. With loading of ferrite slab, the bandwidth turns to 2.73-5.12 and 5.87-10.78 GHz. A band notch of 5.12- 5.87 GHz is achieved to filter WLAN 5 GHz (5.15-5.825 GHz) band. The proposed technique has virtue of easy fabrication and keeping antenna miniaturization.

  19. A Small UWB Antenna with Dual Band-Notched Characteristics

    Directory of Open Access Journals (Sweden)

    J. Xu

    2012-01-01

    Full Text Available A small novel ultrawideband (UWB antenna with dual band-notched functions is proposed. The dual band rejection is achieved by etching two C-shaped slots on the radiation patch with limited area. A single band-notched antenna is firstly presented, and then an optimized dual band-notched antenna is presented and analyzed. The measured VSWR shows that the proposed antenna could operate from 3.05 to 10.7 GHz with VSWR less than 2, except two stopbands at 3.38 to 3.82 GHz and 5.3 to 5.8 GHz for filtering the WiMAX and WLAN signals. Radiation patterns are simulated by HFSS and verified by CST, and quasiomnidirectional radiation patterns in the H-plane could be observed. Moreover, the proposed antenna has a very compact size and could be easily integrated into portable UWB devices.

  20. Broadband notch filter design for millimeter-wave plasma diagnostics.

    Science.gov (United States)

    Furtula, V; Michelsen, P K; Leipold, F; Salewski, M; Korsholm, S B; Meo, F; Nielsen, S K; Stejner, M; Moseev, D; Johansen, T

    2010-10-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE(11). The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.

  1. The notch effect on fracture of polyurethane materials

    Directory of Open Access Journals (Sweden)

    T. Voiconi

    2014-10-01

    Full Text Available This paper investigates the fracture properties and notch effect of PUR materials with four different densities. The asymmetric semi-circular bend specimen was adapted to perform mixed mode fracture toughness tests. This semi-circular specimen with radius R, which contains an edge crack of length a oriented normal to the specimen edge, loaded with a three point bending fixture, was proved to give wide range of mixed modes from pure mode I to pure mode II, only by changing the position of one support. Different types of notched specimens were considered for notch effect investigations and the Theory of Critical Distances was applied. It could be seen that the critical distances are influenced by the cellular structure of investigated materials

  2. Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation.

    Science.gov (United States)

    de Oliveira, Felipe Leite; Dos Santos, Sofia Nascimento; Ricon, Lauremilia; da Costa, Thayse Pinheiro; Pereira, Jonathas Xavier; Brand, Camila; Fermino, Marise Lopes; Chammas, Roger; Bernardes, Emerson Soares; El-Cheikh, Márcia Cury

    2018-02-22

    Galectin-3 (Gal-3) is a β-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3 -/- mice) was evidenced by elevated numbers of B220 + CD19 + c-Kit + IL-7R + progenitor B cells. In parallel, CD45 - bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3 -/- mice was hallmarked by marginal zone disorganization, high number of IgM + IgD + B cells and CD138 + plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM + IgD + B cells and B220 + CD138 + CXCR4 + plasmablasts were significantly increased in the BM and blood of Lgals3 -/- mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.

  3. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.

    Science.gov (United States)

    Iwata, Jun-ichi; Tung, Lily; Urata, Mark; Hacia, Joseph G; Pelikan, Richard; Suzuki, Akiko; Ramenzoni, Liza; Chaudhry, Obaid; Parada, Carolina; Sanchez-Lara, Pedro A; Chai, Yang

    2012-01-20

    Cleft palate represents one of the most common congenital birth defects. Transforming growth factor β (TGFβ) signaling plays crucial functions in regulating craniofacial development, and loss of TGFβ receptor type II in cranial neural crest cells leads to craniofacial malformations, including cleft palate in mice (Tgfbr2(fl/fl);Wnt1-Cre mice). Here we have identified candidate target genes of TGFβ signaling during palatal formation. These target genes were selected based on combining results from gene expression profiles of embryonic day 14.5 palates from Tgfbr2(fl/fl);Wnt1-Cre mice and previously identified cleft palate phenotypes in genetically engineered mouse models. We found that fibroblast growth factor 9 (Fgf9) and transcription factor pituitary homeobox 2 (Pitx2) expressions are significantly down-regulated in the palate of Tgfbr2(fl/fl);Wnt1-Cre mice, and Fgf9 and Pitx2 loss of function mutations result in cleft palate in mice. Pitx2 expression is down-regulated by siRNA knockdown of Fgf9, suggesting that Fgf9 is upstream of Pitx2. We detected decreased expression of both cyclins D1 and D3 in the palates of Tgfbr2(fl/fl);Wnt1-Cre mice, consistent with the defect in cell proliferation. Significantly, exogenous FGF9 restores expression of cyclins D1 and D3 in a Pitx2-dependent manner and rescues the cell proliferation defect in the palatal mesenchyme of Tgfbr2(fl/fl);Wnt1-Cre mice. Our study indicates that a TGFβ-FGF9-PITX2 signaling cascade regulates cranial neural crest cell proliferation during palate formation.

  4. Activation of the Notch signaling pathway promotes neurovascular repair after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Qi-shan Ran

    2015-01-01

    Full Text Available The Notch signaling pathway plays a key role in angiogenesis and endothelial cell formation, but it remains unclear whether it is involved in vascular repair by endothelial progenitor cells after traumatic brain injury. Therefore, in the present study, we controlled the Notch signaling pathway using overexpression and knockdown constructs. Activation of the Notch signaling pathway by Notch1 or Jagged1 overexpression enhanced the migration, invasiveness and angiogenic ability of endothelial progenitor cells. Suppression of the Notch signaling pathway with Notch1 or Jagged1 siRNAs reduced the migratory capacity, invasiveness and angiogenic ability of endothelial progenitor cells. Activation of the Notch signaling pathway in vivo in a rat model of mild traumatic brain injury promoted neurovascular repair. These findings suggest that the activation of the Notch signaling pathway promotes blood vessel formation and tissue repair after brain trauma.

  5. Radial notch labralization for proximal radioulnar joint dysplasia.

    Science.gov (United States)

    Bellato, Enrico; O'Driscoll, Shawn W

    2017-07-01

    Chronic posterior subluxation or dislocation of the radial head is uncommon and difficult to treat. To restore radiocapitellar alignment, procedures such as deepening of the notch using a high-speed burr have been described, but they can result in cartilage damage. We hypothesized that a radial notch labralization using soft tissue could improve radiocapitellar tracking without violating the joint surface. A radial notch labralization was performed in 3 patients with chronic posterior subluxation of the radial head and developmental dysplasia of the radial notch in the setting of complex recurrent instability of the elbow. A soft tissue graft (typically a portion of an allograft hamstring tendon) was used to create a meniscus-like bumper posteriorly, thereby deepening the radial notch and reducing its radius of curvature. A corrective anterior opening wedge ulnar osteotomy was also performed to realign the radial head with the capitellum. At a mean follow-up of 32 months, all 3 patients were pain free and had maintained a stable joint, with a functional range of motion. Each patient gave a rating of either "Greatly Improved" or "Almost Normal" on the Summary Outcome Determination scale. Radiographs performed during the last follow-up showed improved radiocapitellar alignment. Chronic posterior subluxation or dislocation of the radial head can occur subsequent to developmental joint changes. The radial notch labralization using a soft tissue graft associated with a corrective ulnar osteotomy was successful in restoring radial head stability and avoiding cartilage damage. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle.

    Science.gov (United States)

    Allera-Moreau, Camille; Delluc-Clavières, Aurélie; Castano, Caroline; Van den Berghe, Loïc; Golzio, Muriel; Moreau, Marc; Teissié, Justin; Arnal, Jean-François; Prats, Anne-Catherine

    2007-10-28

    Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs) allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV) IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals. Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection. These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the FGF-1 IRES. The use of a cellular IRES over one of viral

  7. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle

    Directory of Open Access Journals (Sweden)

    Van den Berghe Loïc

    2007-10-01

    Full Text Available Abstract Background Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals. Results Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection. Conclusion These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the

  8. Ultra-Wideband Notched Characteristic Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Rastanto Hadinegoro

    2015-02-01

    Full Text Available In this paper, a novel Ultra-Wide Band (UWB notch patch antenna with co-planar waveguide (CPW fed is presented. This antenna only used one layer and the patch antenna is constructed on the first layer and back to back with CPW fed and bottom part is ground plane. The width notch is used to achieve the UWB characteristic. The results shown that the impedance bandwidth is 1130 MHz (1.662–2.792 GHz or about 50.7% for VSWR <2.

  9. Compact Size UWB Monopole Antenna with Triple Band-Notches

    OpenAIRE

    Ali, W.; Ibrahim, A. A.; Machac, J.

    2017-01-01

    This paper presents triple band notched ultra wide band (UWB) monopole antenna with overall size of 36 × 32 mm2 fed by microstrip transmission line. In order to achieve a good impedance matching from 2.7 GHz to 13.4 GHz, a tapered transition between the rectangular patch and the feeding line is utilized. The three notched frequency bands are accomplished by a defected microstrip structure (DMS) which is inserted in the microstrip feeding line and by an open loop slot etched in the radiating p...

  10. Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip

    Science.gov (United States)

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0087 Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip Benjamin Eggleton UNIVERSITY OF SYDNEY Final Report 10...REPORT TYPE      Final 3.  DATES COVERED (From - To)      14 May 2014 to 13 May 2016 4.  TITLE AND SUBTITLE Frequency Agile Microwave Photonic Notch Filter...in a Photonic Chip 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-14-1-4030 5c.  PROGRAM ELEMENT NUMBER 61102F 6.  AUTHOR(S) Benjamin Eggleton, David

  11. An approximate method of analysis for notched unidirectional composites

    Science.gov (United States)

    Zweben, C.

    1974-01-01

    An approximate method is proposed for the analysis of unidirectional, filamentary composite materials having slit notches perpendicular to the fibers and subjected to tension parallel to the fibers. The approach is based on an engineering model which incorporates important effects of material heterogeneity by considering average extensional stresses in the fibers and average shear stresses in the matrix. Effects of interfacial failure and matrix plasticity at the root of the notch are considered. Predictions of the analysis are in reasonably good agreement with previous analytical models and experimental data for graphite/epoxy.

  12. The functional role of Notch signaling in human gliomas

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...... have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...

  13. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...... thickness. We use numerical simulations to study the sensitivity of the notch filter performance to changes in geometry and in material conductivity within a bandwidth of ±10 GHz. The constructed filter is tested successfully using a vector network analyzer monitoring a total bandwidth of 20 GHz....... The typical insertion loss in the passband is...

  14. Analysis of the Charpy V-notch test for welds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    softening accounted for. The onset of cleavage is taken to occur when a critical value of the maximum principal stress is attained. The effect of weld strength undermatch or overmatch is investigated for a comparison material, and analyses are also carried out based on experimentally determined flow...... strength variations in a weldment in a HY100 steel. The predicted work to fracture shows a strong sensitivity to the location of the notch relative to the weld, with the most brittle behavior for a notch close to the narrow heat affected zone. The analyses illustrate the strong dependence of the transition...

  15. Notch receptor expression in neurogenic regions of the adult zebrafish brain.

    Directory of Open Access Journals (Sweden)

    Vanessa de Oliveira-Carlos

    Full Text Available The adult zebrash brain has a remarkable constitutive neurogenic capacity. The regulation and maintenance of its adult neurogenic niches are poorly understood. In mammals, Notch signaling is involved in stem cell maintenance both in embryonic and adult CNS. To better understand how Notch signaling is involved in stem cell maintenance during adult neurogenesis in zebrafish we analysed Notch receptor expression in five neurogenic zones of the adult zebrafish brain. Combining proliferation and glial markers we identified several subsets of Notch receptor expressing cells. We found that 90 [Formula: see text] of proliferating radial glia express notch1a, notch1b and notch3. In contrast, the proliferating non-glial populations of the dorsal telencephalon and hypothalamus rarely express notch3 and about half express notch1a/1b. In the non-proliferating radial glia notch3 is the predominant receptor throughout the brain. In the ventral telencephalon and in the mitotic area of the optic tectum, where cells have neuroepithelial properties, notch1a/1b/3 are expressed in most proliferating cells. However, in the cerebellar niche, although progenitors also have neuroepithelial properties, only notch1a/1b are expressed in a high number of PCNA [Formula: see text] cells. In this region notch3 expression is mostly in Bergmann glia and at low levels in few PCNA [Formula: see text] cells. Additionally, we found that in the proliferation zone of the ventral telencephalon, Notch receptors display an apical high to basal low gradient of expression. Notch receptors are also expressed in subpopulations of oligodendrocytes, neurons and endothelial cells. We suggest that the partial regional heterogeneity observed for Notch expression in progenitor cells might be related to the cellular diversity present in each of these neurogenic niches.

  16. Regulation of Notch1 signaling by the APP intracellular domain facilitates degradation of the Notch1 intracellular domain and RBP-Jk.

    Science.gov (United States)

    Kim, Mi-Yeon; Mo, Jung-Soon; Ann, Eun-Jung; Yoon, Ji-Hye; Jung, Jane; Choi, Yun-Hee; Kim, Su-Man; Kim, Hwa-Young; Ahn, Ji-Seon; Kim, Hangun; Kim, Kwonseop; Hoe, Hyang-Sook; Park, Hee-Sae

    2011-06-01

    The Notch1 receptor is a crucial controller of cell fate decisions, and is also a key regulator of cell growth and differentiation in a variety of contexts. In this study, we have demonstrated that the APP intracellular domain (AICD) attenuates Notch1 signaling by accelerated degradation of the Notch1 intracellular domain (Notch1-IC) and RBP-Jk, through different degradation pathways. AICD suppresses Notch1 transcriptional activity by the dissociation of the Notch1-IC-RBP-Jk complex after processing by γ-secretase. Notch1-IC is capable of forming a trimeric complex with Fbw7 and AICD, and AICD enhances the protein degradation of Notch1-IC through an Fbw7-dependent proteasomal pathway. AICD downregulates the levels of RBP-Jk protein through the lysosomal pathway. AICD-mediated degradation is involved in the preferential degradation of non-phosphorylated RBP-Jk. Collectively, our results demonstrate that AICD functions as a negative regulator in Notch1 signaling through the promotion of Notch1-IC and RBP-Jk protein degradation.

  17. A network of transcriptional and signaling events is activated by FGF to induce chondrocyte growth arrest and differentiation

    OpenAIRE

    Dailey, Lisa; Laplantine, Emmanuel; Priore, Riccardo; Basilico, Claudio

    2003-01-01

    Activating mutations in FGF receptor 3 (FGFR3) cause several human dwarfism syndromes by affecting both chondrocyte proliferation and differentiation. Using microarray and biochemical analyses of FGF-treated rat chondrosarcoma chondrocytes, we show that FGF inhibits chondrocyte proliferation by initiating multiple pathways that result in the induction of antiproliferative functions and the down-regulation of growth-promoting molecules. The initiation of growth arrest is characterized by the r...

  18. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Huang Yadong

    2010-02-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21 is a promising drug candidate to combat metabolic diseases. However, high-level expression and purification of recombinant FGF21 (rFGF21 in Escherichia coli (E. coli is difficult because rFGF21 forms inclusion bodies in the bacteria making it difficult to purify and obtain high concentrations of bioactive rFGF21. To overcome this problem, we fused the FGF21 with SUMO (Small ubiquitin-related modifier by polymerase chain reaction (PCR, and expressed the fused gene in E. coli BL21(DE3. Results By inducing with IPTG, SUMO-FGF21 was expressed at a high level. Its concentration reached 30% of total protein, and exceeded 95% of all soluble proteins. The fused protein was purified by DEAE sepharose FF and Ni-NTA affinity chromatography. Once cleaved by the SUMO protease, the purity of rFGF21 by high performance liquid chromatography (HPLC was shown to be higher than 96% with low endotoxin level (in vivo animal experiments showed that rFGF21 produced by using this method, could decrease the concentration of plasma glucose in diabetic rats by streptozotocin (STZ injection. Conclusions This study demonstrated that SUMO, when fused with FGF21, was able to promote its soluble expression of the latter in E. coli, making it more convenient to purify rFGF21 than previously. This may be a better method to produce rFGF21 for pharmaceutical research and development.

  19. FGF23 activates injury-primed renal fibroblasts via FGFR4-dependent signalling and enhancement of TGF-β autoinduction.

    Science.gov (United States)

    Smith, Edward R; Holt, Stephen G; Hewitson, Tim D

    2017-11-01

    Bone-derived fibroblast growth factor 23 (FGF23) is an important endocrine regulator of mineral homeostasis with effects transduced by cognate FGF receptor (FGFR)1-α-Klotho complexes. Circulating FGF23 levels rise precipitously in patients with kidney disease and portend worse renal and cardiovascular outcomes. De novo expression of FGF23 has been found in the heart and kidney following injury but its significance remains unclear. Studies showing that exposure to chronically high FGF23 concentrations activates hypertrophic gene programs in the cardiomyocyte has spawned intense interest in other pathological off-target effects of FGF23 excess. In the kidney, observational evidence points to a concordance of ectopic renal FGF23 expression and the activation of local transforming growth factor (TGF)-β signalling. Although we have previously shown that FGF23 activates injury-primed renal fibroblasts in vitro, our understanding of the mechanism underpinning these effects was incomplete. Here we show that in the absence of α-Klotho, FGF23 augments pro-fibrotic signalling cascades in injury-primed renal fibroblasts via activation of FGFR4 and upregulation of the calcium transporter, transient receptor potential cation channel 6. The resultant rise in intracellular calcium and production of mitochondrial reactive oxygen species induced expression of NFAT responsive-genes and enhanced TGF-β1 autoinduction through non-canonical JNK-dependent pathways. Reconstitution with transmembrane α-Klotho, or its soluble ectodomain, restored classical Egr signalling and antagonised FGF23-driven myofibroblast differentiation. Thus, renal FGF23 may amplify local myofibroblast activation in injury and perpetuate pro-fibrotic signalling. These findings strengthen the rationale for exploring therapeutic inhibition of FGFR4 or restoration of α-Klotho as upstream regulators of off-target FGF23 effects. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile.

    Directory of Open Access Journals (Sweden)

    Zhuofeng Lin

    Full Text Available BACKGROUND: Fibroblast growth factor 21 (FGF-21 is a metabolic regulator with multiple beneficial effects on glucose homeostasis and lipid metabolism in animal models. The relationship between plasma levels of FGF-21 and coronary heart disease (CHD in unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study aimed to investigate the correlation of serum FGF-21 levels and lipid metabolism in the patients with coronary heart disease. We performed a logistic regression analysis of the relation between serum levels of FGF-21 and CHD patients with and without diabetes and hypertension. This study was conducted in the Departments of Endocrinology and Cardiovascular Diseases at two University Hospitals. Participants consisted of one hundred and thirty-five patients who have been diagnosed to have CHD and sixty-one control subjects. Serum FGF-21 level and levels of fasting blood glucose; triglyceride; apolipoprotein B100; HOMA-IR; insulin; total cholesterol; HDL-cholesterol; LDL-cholesterol; and C-reactive protein were measured. We found that median serum FGF-21 levels were significantly higher in CHD than that of control subjects (P<0.0001. Serum FGF-21 levels in CHD patients with diabetes, hypertension, or both were higher than that of patients without these comorbidities. Serum FGF-21 levels correlated positively with triglycerides, fasting blood glucose, apolipoprotein B100, insulin and HOMA-IR but negatively with HDL-C and apolipoprotein A1 after adjusting for BMI, diabetes and hypertension. Logistic regression analysis demonstrated that FGF-21 showed an independent association with triglyceride and apolipoprotein A1. CONCLUSIONS/SIGNIFICANCE: High levels of FGF-21 are associated with adverse lipid profiles in CHD patients. The paradoxical increase of serum FGF-21 in CHD patients may indicate a compensatory response or resistance to FGF-21.

  1. Down-regulation of Notch-1 by γ-secretase inhibitor suppress the ...

    African Journals Online (AJOL)

    Notch-1 signaling is crucial for stem cell maintenance and in a variety of tissues. Previous research has demonstrated that Notch-1 activity plays a key role in prostate tumorigenesis. However, the function of Notch-1 signaling in tumorigenesis can be either oncogene or suppressor gene. In our paper, γ- secretase inhibitor ...

  2. Role of Notch signalling pathway in cancer and its association with ...

    Indian Academy of Sciences (India)

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organisms as diverse as humans and fruit flies. It plays a pivotal role in cell fate determination. Dysregulated Notch signalling is oncogenic, inhibits apoptosis and promotes cell survival. Abnormal Notch ...

  3. Experimental analysis of compressive notch strengthening in closed-cell aluminum alloy foam

    NARCIS (Netherlands)

    Antoniou, A; Onck, PR; Bastawros, Ashraf F.

    2004-01-01

    The notch strengthening effect is studied experimentally in closed cell aluminum foams. The limit loads, net section strength were found for a set of double-edge-notched (DEN) and single-edge-notched (SEN) specimens loaded in compression. In addition, the evolution of the deformation is monitored

  4. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  5. Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-κB crosstalk.

    Science.gov (United States)

    Thounaojam, Menaka C; Dudimah, Duafalia F; Pellom, Samuel T; Uzhachenko, Roman V; Carbone, David P; Dikov, Mikhail M; Shanker, Anil

    2015-10-20

    The immunosuppressive tumor microenvironment usurps host antitumor immunity by multiple mechanisms including interference with the Notch system, which is important for various metazoan cell fate decisions and hematopoietic cell differentiation and function. We observed that treatment with the proteasome inhibitor bortezomib in mice bearing various solid tumors resulted in an upregulated expression of various Notch signaling components in lymphoid tissues, thereby increasing CD8+T-lymphocyte IFNγ secretion and expression of effector molecules, perforin and granzyme B, as well as the T-box transcription factor eomesodermin. Bortezomib also neutralized TGFβ-mediated suppression of IFNγ and granzyme B expression in activated CD8+T-cells. Of note, bortezomib reversed tumor-induced downregulation of Notch receptors, Notch1 and Notch2, as well as increased the levels of cleaved Notch intracellular domain (NICD) and downstream targets Hes1 and Hey1 in tumor-draining CD8+T-cells. Moreover, bortezomib promoted CD8+T-cell nuclear factor-κB (NFκB) activity by increasing the total and phosphorylated levels of the IκB kinase and IκBα as well as the cytoplasmic and nuclear levels of phosphorylated p65. Even when we blocked NFκB activity by Bay-11-7082, or NICD cleavage by γ-secretase inhibitor, bortezomib significantly increased expression of Notch Hes1 and Hey1 genes as well as perforin, granzyme B and eomesodermin in activated CD8+T-cells. Data suggest that bortezomib can rescue tumor-induced dysfunction of CD8+T-cells by its intrinsic stimulatory effects promoting NICD-NFκB crosstalk. These findings provide novel insights on using bortezomib not only as an agent to sensitize tumors to cell death but also to provide lymphocyte-stimulatory effects, thereby overcoming immunosuppressive actions of tumor on anti-tumor T-cell functions.

  6. Notch signaling pathway dampens tumor-infiltrating CD8+T cells activity in patients with colorectal carcinoma.

    Science.gov (United States)

    Yu, Weifeng; Wang, Yanjun; Guo, Peng

    2018-01-01

    CD8 + T cells play critical role in controlling the metastasis and prognosis of cancer. Controversy remains as to the contribution of Notch signaling pathway in modulation of CD8 + T cells activity and development of tumorigenesis. Thus, the aim of the current study was to investigate the immunoregulatory role of Notch signaling pathway to peripheral and tumor-infiltrating CD8 + T cells in patients with colorectal carcinoma. A total of 46 patients with colorectal carcinoma and 20 health individuals were enrolled, and CD8 + T cells were purified from both peripheral bloods and carcinoma specimens. Cytolytic and noncytolytic functions of CD8 + T cells in response to Notch signaling inhibition were evaluated by measurements of lactate dehydrogenase release and proinflammatory cytokines production in both direct and indirect contact co-culture system to target HT29 cells. Cellular proliferation and inhibitory receptors expression in CD8 + T cells were also assessed by CCK-8 method and flow cytometry. There was no remarkable difference in percentage of CD8 + T cells between healthy individuals and patients with colorectal carcinoma. Notch1/2 and Hes1/5 mRNAs were elevated expressed in tumor-infiltrating CD8 + T cells in patients with colorectal carcinoma, however, did not correlated with tumor differentiation or stages. CD8 + T cells from healthy individuals presented stronger cytotoxicity, which was not affected by Notch signaling inhibitor. Inhibition of Notch signaling pathway not only promoted cytotoxicity of tumor-infiltrating CD8 + T cells, but also enhanced proinflammatory cytokines (including IFN-γ, TNF-α, IL-1β, IL-6, and IL-8) production by CD8 + T cells from patients with colorectal carcinoma. This process was accompanied by decreased expression of PD-1 in CD8 + T cells without influencing cellular proliferation. Our results indicated a potential immunosuppressive property of Notch signaling pathway, which dampened both cytolytic and noncytolytic functions

  7. FGF-9 accelerates epithelial invagination for ectodermal organogenesis in real time bioengineered organ manipulation

    Directory of Open Access Journals (Sweden)

    Tai Yun-Yuan

    2012-11-01

    Full Text Available Abstract Background Epithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS, a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9 on epithelial invagination in bioengineered ectodermal organs. We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model. Results Measurement of bioengineered ectodermal organ thickness showed that Fibroblast growth factor-9 (FGF-9 accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis. Conclusions This is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the ‘FGF-BMP balancing system’ is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising method for ectodermal organ engineering and regeneration research.

  8. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    Science.gov (United States)

    2013-01-01

    Background High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortality in the chronic kidney disease (CKD) population. CKD patients are often treated with iv iron therapy in order to maintain iron stores and erythropoietin responsiveness, also in the case of not being iron depleted. Therefore, the effect of a single high iv dose of two different iron preparations, iron isomaltoside 1000 (IIM) and ferric carboxymaltose (FCM), on plasma levels of FGF23 and phosphate was examined in normal and uremic iron repleted rats. Methods Iron was administered iv as a single high dose of 80 mg/kg bodyweight and the effects on plasma levels of iFGF23, phosphate, Ca2+, PTH, transferrin, ferritin and iron were examined in short and long term experiments (n = 99). Blood samples were obtained at time 0, 30, 60, 180 minutes, 24 and 48 hours and in a separate study after 1 week. Uremia was induced by 5/6-nephrectomy. Results Nephrectomized rats had significant uremia, hyperparathyroidism and elevated FGF23. Iron administration resulted in significant increases in plasma ferritin levels. No significant differences were seen in plasma levels of iFGF23, phosphate and PTH between the experimental groups at any time point within 48 hours or at 1 week after infusion of the iron compounds compared to vehicle. Conclusions In non-iron depleted normal and uremic rats a single high dose of either of two intravenous iron preparations, iron isomaltoside 1000, and ferric carboxymaltose, had no effect on plasma levels of iFGF23 and phosphate for up to seven days. PMID:24373521

  9. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.

    Science.gov (United States)

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A; Chin, Ai L; Yates, Charles R; Carrick, Jesse D; Smith, Jeremy C; Baudry, Jerome; Quarles, L Darryl

    2016-11-22

    Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23. Copyright © 2016, American Association for the Advancement of Science.

  10. A Specific ChREBP and PPARα Cross-Talk Is Required for the Glucose-Mediated FGF21 Response

    Directory of Open Access Journals (Sweden)

    Alison Iroz

    2017-10-01

    Full Text Available While the physiological benefits of the fibroblast growth factor 21 (FGF21 hepatokine are documented in response to fasting, little information is available on Fgf21 regulation in a glucose-overload context. We report that peroxisome-proliferator-activated receptor α (PPARα, a nuclear receptor of the fasting response, is required with the carbohydrate-sensitive transcription factor carbohydrate-responsive element-binding protein (ChREBP to balance FGF21 glucose response. Microarray analysis indicated that only a few hepatic genes respond to fasting and glucose similarly to Fgf21. Glucose-challenged Chrebp−/− mice exhibit a marked reduction in FGF21 production, a decrease that was rescued by re-expression of an active ChREBP isoform in the liver of Chrebp−/− mice. Unexpectedly, carbohydrate challenge of hepatic Pparα knockout mice also demonstrated a PPARα-dependent glucose response for Fgf21 that was associated with an increased sucrose preference. This blunted response was due to decreased Fgf21 promoter accessibility and diminished ChREBP binding onto Fgf21 carbohydrate-responsive element (ChoRE in hepatocytes lacking PPARα. Our study reports that PPARα is required for the ChREBP-induced glucose response of FGF21.

  11. High Expression of HIF1a Is a Predictor of Clinical Outcome in Patients with Pancreatic Ductal Adenocarcinomas and Correlated to PDGFA, VEGF, and bFGF

    Directory of Open Access Journals (Sweden)

    Andreas-Claudius Hoffmann

    2008-07-01

    Full Text Available PURPOSE: Pancreatic cancer still has one of the worst prognoses in gastrointestinal cancers with a 5-year survival rate of 5%, making it necessary to find markers or gene sets that would further classify patients into different risk categories and thus allow more individually adapted multimodality treatment regimens. In this study, we investigated the prognostic values of HIF1a, bFGF, VEGF, and PDGFA gene expressions as well as their interrelationships. EXPERIMENTAL DESIGN: Formalin-fixed paraffin-embedded tissue samples were obtained from 41 patients with pancreatic adenocarcinoma (age, 65; range, 34–85 years. After laser capture microdissection, direct quantitative real-time reverse transcription-polymerase chain reaction assays were performed in triplicates to determine HIF1a, PDGFA, VEGF, and bFGF gene expression levels. Multivariate Cox proportional hazards regression analysis was used to assess the impact of HIF1a gene expression on prognosis. RESULTS:HIF1a was significantly correlated to every gene we tested: bFGF (P = .04, VEGF (P = .02, and PDGFA (P = .03. Tumor size, P = .04, and high HIF1a mRNA expression (cutoff, 75th percentile had a significant impact on survival, P = .009 (overall model fit, P = .02. High HIF1a expression had a sensitivity of 87.1% and a specificity of 55.6% for the diagnosis short (<6 months versus long (6–60 months survival. CONCLUSIONS: Measuring PDGFA, bFGF, and HIF1a expression may contribute to a better understanding of the prognosis of patients with pancreatic cancer and may even play a crucial role for the distribution of patients to multimodal therapeutic regimens. Larger studies including patients treated with actual chemotherapeutics seem to be warranted.

  12. Olfactory Ensheathing Cells Inhibit Gliosis in Retinal Degeneration by Downregulation of the Müller Cell Notch Signaling Pathway.

    Science.gov (United States)

    Xie, Jing; Huo, Shujia; Li, Yijian; Dai, Jiaman; Xu, Haiwei; Yin, Zheng Qin

    2017-06-09

    Retinal regeneration and self-repair, whether in response to injury or degenerative disease, are severely impeded by glial scar formation by Müller cells (specialized retinal macroglia). We have previously demonstrated that the activation of Müller cells and gliosis in the degenerative retina are significantly suppressed by the subretinal transplantation of a mixture of olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts. However, the underlying molecular mechanism has remained elusive. Here we transplanted purified rat OECs into the subretinal space of pigmented Royal College of Surgeons (RCS) rats, a classic rodent model of retinal degeneration. Using behavioral testing and electroretinography, we confirmed that the grafted OECs preserved the visual function of rats for 8 weeks, relative to vehicle controls (phosphate-buffered saline). Histological evaluation of outer nuclear layer thickness and composition demonstrated that more photoreceptors and ON-bipolar cells were preserved in the retinas of OEC-treated RCS rats than in controls. The grafted OECs migrated into the outer plexiform layer, inner nuclear layer, and inner plexiform layer. They interacted directly with Müller cells in the retina of RCS rats, in three distinct patterns, and secreted matrix metalloproteinases 2 and 3. Previous studies have demonstrated that rat OECs express delta-like ligand (DLL), while Müller cells express Notch3, the receptor for DLL. Here we found that the grafted OECs significantly decreased the expression, by retinal cells, of Notch signaling pathway components (including Notch3, Notch4, DLL1, DLL4, Jagged1, Hes1, and Hes5) 2 weeks after the cell transplantation and that this effect persisted for a further 2 weeks. Based on these findings, we suggest that transplanted OECs inhibit the activation of Müller cells and the associated gliosis, at least partly through suppression of the Notch pathway.

  13. Soluble Forms of the Notch Ligands Delta1 and Jagged1 Promote in Vivo Tumorigenicity in NIH3T3 Fibroblasts with Distinct Phenotypes

    Science.gov (United States)

    Urs, Sumithra; Roudabush, Alice; O'Neill, Christine F.; Pinz, Ilka; Prudovsky, Igor; Kacer, Doreen; Tang, Yuefang; Liaw, Lucy; Small, Deena

    2008-01-01

    We previously found that soluble forms of the Notch ligands Jagged1 and Delta1 induced fibroblast growth factor receptor-dependent cell transformation in NIH3T3 fibroblasts. However, the phenotypes of these lines differed, indicating distinct functional differences among these Notch ligands. In the present study, we used allografts to test the hypothesis that NIH3T3 fibroblasts that express soluble forms of Delta1 and Jagged1 accelerate tumorigenicity in vivo. With the exception of the full-length Jagged1 transfectant, all other cell lines, including the control, generated tumors when injected subcutaneously in athymic mice. Suppression of Notch signaling by the soluble ligands significantly increased tumor onset and growth, whereas full-length Jagged1 completely suppressed tumor development. In addition, there were striking differences in tumor pathology with respect to growth kinetics, vascularization, collagen content, size and number of necrotic foci, and invasiveness into the underlying tissue. Further, the production of angiogenic factors, including vascular endothelial growth factor, also differed among the tumor types. Lastly, both Jagged1- and Delta1-derived tumors contained phenotypically distinct populations of lipid-filled cells that corresponded with increased expression of adipocyte markers. The divergence of tumor phenotype may be attributed to ligand-specific alterations in Notch receptor responses in exogenous and endogenous cell populations within the allographs. Our findings demonstrate distinct functional properties for these Notch ligands in the promotion of tumorigenicity in vivo. PMID:18688026

  14. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies.

    Science.gov (United States)

    Cooper, W James; Wirgau, Rachel M; Sweet, Elly M; Albertson, R Craig

    2013-01-01

    The processes that direct skull remodeling are of interest to both human-oriented studies of cranial dysplasia and evolutionary studies of skull divergence. There is increasing awareness that these two fields can be mutually informative when natural variation mimics pathology. Here we describe a zebrafish mutant line, devoid of blastema (dob), which does not have a functional fgf20a protein, and which also presents cranial defects similar to both adaptive and clinical variation. We used geometric morphometric methods to provide quantitative descriptions of the effects of the dob mutation on skull morphogenesis. In combination with "whole-mount in situ hybridization" labeling of normal fgf20a expression and assays for osteoblast and osteoclast activity, the results of these analyses indicate that cranial dysmorphologies in dob zebrafish are generated by aberrations in post-embryonic skull remodeling via decreased osteoblasotgenesis and increased osteoclastogenesis. Mutational effects include altered skull vault geometries and midfacial hypoplasia that are consistent with key diagnostic signs for multiple human craniofacial syndromes. These phenotypic shifts also mimic changes in the functional morphology of fish skulls that have arisen repeatedly in several highly successful radiations (e.g., damselfishes and East-African rift-lake cichlids). Our results offer the dob/fgf20a mutant as an experimentally tractable model with which to examine post-embryonic skull development as it relates to human disease and vertebrate evolution. © 2013 Wiley Periodicals, Inc.

  15. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank

    2010-01-01

    of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  16. Impacts of wildlife viewing at Dixville Notch Wildlife Viewing Area

    Science.gov (United States)

    Judith K. Silverberg; Peter J. Pekins; Robert A. Robertson

    2002-01-01

    Dixville Notch Wildlife Viewing Area provided an opportunity to examine the motivations, knowledge level and attitudes of wildlife viewers as well as the response of wildlife to observation and other human caused stimuli at a designated wildlife viewing site. Using integrated social science and biological information allowed recommendations to be made for managing...

  17. Morphometric Study of the Supraorbital Notches and Foramina in ...

    African Journals Online (AJOL)

    Alasia Datonye

    Methods: A morphometric study of the supraorbital foramen/notch was carried out on 120 human skulls (72 male, 48 female) from the Departments of Anatomy of the. University of Benin, University of Calabar, Niger Delta. University and University of Port Harcourt all in south- south Nigeria. A pair of dividers and a meter rule ...

  18. On-line identification, flutter testing and adaptive notching of ...

    Indian Academy of Sciences (India)

    New algorithms and results are presented for flutter testing and adaptive notching of structural modes in V-22 tiltrotor aircraft based on simulated and flight-test data from Bell Helicopter Textron, Inc. (BHTI). For flutter testing and the identification of structural mode frequencies, dampings and mode shapes, time domain state ...

  19. Dual Mechanism of Action of Resveratrol in Notch Signaling ...

    African Journals Online (AJOL)

    Results: The results revealed that resveratrol treatment exhibited dual mechanisms of action on the activation of Notch signaling in osteosarcoma cells. The osteosarcoma cell lines, MG-63 and U2OS, when exposed to 20 μM concentration of resveratrol for 48 h showed significant toxicity compared to untreated cells.

  20. Femoral Intercondylar Notch (ICN) width in Nigerians: Its ...

    African Journals Online (AJOL)

    It is suggested that the difference could be the result of dominant use of one foot over the other or to occupational habit. This needs further investigation. The Femoral Intercondylar Notch (ICN) width is not related to Femur length as no relationship was found to exist between the two (p > 0.05). We conclude that since ...

  1. Mechano sorptive behaviour of notched beams in bending

    DEFF Research Database (Denmark)

    Jensen, Signe Kamp; Hoffmeyer, Preben

    1996-01-01

    and by neglecting deformation due to shear. Compression stresses perpendicular to grain in excess of 6 MPa were found in the vicinity of the notch following a period of adsorption. Similarly, small tension stresses of the order 1 MPa were registered in this area when the specimens were at their most dry condition...

  2. On-line identification, flutter testing and adaptive notching of ...

    Indian Academy of Sciences (India)

    1 Scientific Systems Company, Inc. (SSCI), 500 West Cummings Park, Suite. 3000, Woburn, MA, 01801, ... notch filters in the feedback path to avoid those structural modes that destabilize the system through the ... filters are meant to suppress all the structural vibrations that may affect the stability of the closed loop system.

  3. Notch inhibits Yorkie activity in Drosophila wing discs.

    Directory of Open Access Journals (Sweden)

    Alexandre Djiane

    Full Text Available During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and growth potentials. We show that the Notch signaling pathway is both required and sufficient to inhibit the activity of Yorkie (Yki, the Salvador/Warts/Hippo (SWH pathway terminal transcription activator, but only in the central regions of the wing disc, where the TEAD factor and Yki partner Scalloped (Sd is expressed. We show that this cross-talk between the Notch and SWH pathways is mediated, at least in part, by the Notch target and Sd partner Vestigial (Vg. We propose that, by altering the ratios between Yki, Sd and Vg, Notch pathway activation restricts the effects of Yki mediated transcription, therefore contributing to define a zone of low proliferation in the central wing discs.

  4. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Science.gov (United States)

    2011-01-01

    Background Recessive mutations of fibroblast growth factor 3 (FGF3) can cause LAMM syndrome (OMIM 610706), characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W) and one family segregated a novel mutation (p.R132GfsX26) of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in association with the

  5. A Randomized Clinical Trial Evaluating rh-FGF-2/β-TCP in Periodontal Defects.

    Science.gov (United States)

    Cochran, D L; Oh, T-J; Mills, M P; Clem, D S; McClain, P K; Schallhorn, R A; McGuire, M K; Scheyer, E T; Giannobile, W V; Reddy, M S; Abou-Arraj, R V; Vassilopoulos, P J; Genco, R J; Geurs, N C; Takemura, A

    2016-05-01

    Biological mediators have been used to enhance periodontal regeneration. The aim of this prospective randomized controlled study was to evaluate the safety and effectiveness of 3 doses of fibroblast growth factor 2 (FGF-2) when combined with a β-tricalcium phosphate (β-TCP) scaffold carrier placed in vertical infrabony periodontal defects in adult patients. In this double-blinded, dose-verification, externally monitored clinical study, 88 patients who required surgical intervention to treat a qualifying infrabony periodontal defect were randomized to 1 of 4 treatment groups-β-TCP alone (control) and 0.1% recombinant human FGF-2 (rh-FGF-2), 0.3% rh-FGF-2, and 0.4% rh-FGF-2 with β-TCP-following scaling and root planing of the tooth prior to a surgical appointment. Flap surgery was performed with EDTA conditioning of the root prior to device implantation. There were no statistically significant differences in patient demographics and baseline characteristics among the 4 treatment groups. When a composite outcome of gain in clinical attachment of 1.5 mm was used with a linear bone growth of 2.5 mm, a dose response pattern detected a plateau in the 0.3% and 0.4% rh-FGF-2/β-TCP groups with significant improvements over control and 0.1% rh-FGF-2/β-TCP groups. The success rate at 6 mo was 71% in the 2 higher-concentration groups, as compared with 45% in the control and lowest treatment groups. Percentage bone fill in the 2 higher-concentration groups was 75% and 71%, compared with 63% and 61% in the control and lowest treatment group. No increases in specific antibody to rh-FGF-2 were detected, and no serious adverse events related to the products were reported. The results from this multicenter trial demonstrated that the treatment of infrabony vertical periodontal defects can be enhanced with the addition of rh-FGF-2/β-TCP (ClinicalTrials.gov NCT01728844). © International & American Associations for Dental Research 2016.

  6. FGF23 inhibits extra-renal synthesis of 1,25-dihydroxyvitamin D in human monocytes

    Science.gov (United States)

    Bacchetta, Justine; Sea, Jessica L; Chun, Rene F; Lisse, Thomas S; Wesseling-Perry, Katherine; Gales, Barbara; Adams, John S.; Salusky, Isidro B; Hewison, Martin

    2012-01-01

    Vitamin D is a potent stimulator of monocyte innate immunity, with this effect being mediated via intracrine conversion of 25-hydroxyvitamin D (25OHD) to 1,25-dihydroxyvitamin D (1,25(OH)2D). In the kidney synthesis of 1,25(OH)2D is suppressed by fibroblast growth factor 23 (FGF23), via transcriptional suppression of the vitamin D-activating enzyme 1α-hydroxylase (CYP27B1). We hypothesized that FGF23 also suppresses CYP27B1 in monocytes, with concomitant effects on intracrine responses to 1,25(OH)2D. Monocytes from healthy donor peripheral blood mononuclear cells (PBMCm) and from peritoneal dialysate effluent from kidney disease patients (PDm) were assessed at baseline to confirm the presence of mRNA for FGF23 receptors (FGFRs), with Klotho and FGFR1 being more strongly expressed than FGFR2/3/4 in both cell types. Immunohistochemistry showed co-expression of Klotho and FGFR1 in PBMCm and PDm, with this effect being enhanced following treatment with FGF23 in PBMCm but not PDm. Treatment with FGF23 activated MAP kinase (MAPK) and Akt pathways in PBMCm, demonstrating functional FGFR signaling in these cells. FGF23 treatment of PBMCm and PDm decreased expression of mRNA for CYP27B1. In PBMCm this was associated with downregulation of 25OHD to 1,25(OH)2D metabolism, and concomitant suppression of intracrine induced 24-hydroxylase (CYP24A1) and antibacterial cathelicidin (LL37). FGF23 suppression of CYP27B1 was particularly pronounced in PBMCm treated with interleukin-15 to stimulate synthesis of 1,25(OH)2D. These data indicate that FGF23 can inhibit extra-renal expression of CYP27B1 and subsequent intracrine responses to 1,25(OH)2D in two different human monocyte models. Elevated expression of FGF23 may therefore play a crucial role in defining immune responses to vitamin D and this, in turn, may be a key determinant of infection in patients with CKD. PMID:22886720

  7. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Directory of Open Access Journals (Sweden)

    Griffith Andrew J

    2011-02-01

    Full Text Available Abstract Background Recessive mutations of fibroblast growth factor 3 (FGF3 can cause LAMM syndrome (OMIM 610706, characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W and one family segregated a novel mutation (p.R132GfsX26 of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in

  8. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis.

    Science.gov (United States)

    Mohammadi, M; Dionne, C A; Li, W; Li, N; Spivak, T; Honegger, A M; Jaye, M; Schlessinger, J

    1992-08-20

    Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.

  9. Rush to the fire: FGF21 extinguishes metabolic stress, metaflammation and tissue damage.

    Science.gov (United States)

    Luo, Yongde; Ye, Sheng; Chen, Xiong; Gong, Fanghua; Lu, Weiqin; Li, Xiaokun

    2017-12-01

    FGF21 is a master regulator of homeostasis of local and systemic lipid, glucose and energy metabolism. Since its discovery a decade ago, significant progress has been made in understanding the basic molecular, cellular and physiological mechanisms underlying its metabolic roles, and characterizing its beneficial pharmacological activities and possible pathological roles in obesity, diabetes, dyslipidemia, fatty liver disease and their collateral complications and tissue damage. Under basal or normal conditions, FGF21 appears to play a dispensable role in metabolism. However, in response to a variety of cellular and metabolic stress, FGF21 is significantly upregulated to serve as a potent catabolic factor leading to the clearance of excessive lipids and glucose, and therefore, antagonizes metabolic and energy imbalance in a negative fashion. Furthermore, FGF21 treatment ameliorates tissue damage resulted from the harmful effects of metabolic abnormalities, which often ensue an oxidative, pro-inflammatory, inflammatory and/or immune stress state, the so-called metaflammation. Most notably, studies focusing on the liver, pancreas, cardio-vasculature and kidney have revealed its significant protective effects against the structural and functional damages induced by the obese, diabetic or other abnormal metabolic conditions. In this review, we will summarize the current progress on the roles of FGF21 against metaflammation and metabolic tissue damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Salivary Gland Dysplasia in Fgf10 Heterozygous Mice: A New Mouse Model of Xerostomia

    Science.gov (United States)

    May, A.J.; Chatzeli, L.; Proctor, G.B.; Tucker, A.S.

    2017-01-01

    Xerostomia, or chronic dry mouth, is a common syndrome caused by a lack of saliva that can lead to severe eating difficulties, dental caries and oral candida infections. The prevalence of xerostomia increases with age and affects approximately 30% of people aged 65 or older. Given the large numbers of sufferers, and the potential increase in incidence given our aging population, it is important to understand the complex mechanisms that drive hyposalivation and the consequences for the dentition and oral mucosa. From this study we propose the Fgf10 +/- mouse as a model to investigate xerostomia. By following embryonic salivary gland development, in vivo and in vitro, we show that a reduction in Fgf10 causes a delay in branching of salivary glands. This leads to hypoplasia of the glands, a phenotype that is not rescued postnatally or by adulthood in both male and female Fgf10 +/- mice. Histological analysis of the glands showed no obvious defect in cellular differentiation or acini/ductal arrangements, however there was a significant reduction in their size and weight. Analysis of saliva secretion showed that hypoplasia of the glands led to a significant reduction in saliva production in Fgf10 +/- adults, giving rise to a reduced saliva pellicle in the oral cavity of these mice. Mature mice were shown to drink more and in many cases had severe tooth wear. The Fgf10 +/- mouse is therefore a useful model to explore the causes and effects of xerostomia. PMID:26321752

  11. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  12. Cell transformation by kFGF requires secretion but not glycosylation.

    Science.gov (United States)

    Fuller-Pace, F; Peters, G; Dickson, C

    1991-10-01

    The Kfgf gene, which encodes a member of the fibroblast growth factor family, was originally discovered by assaying human tumor DNA for dominantly transforming oncogenes. The 22-kD kFGF product contains a single site for asparagine-linked glycosylation and an amino-terminal signal peptide for vectorial synthesis into the endoplasmic reticulum and eventual secretion. To determine whether these features are necessary for transformation, we have constructed mutants of kFGF that are impaired for glycosylation or secretion. All mutants retained the ability to induce DNA synthesis when added to quiescent cells, and the absence of glycosylation had no appreciable effect on the transformation efficiency on NIH3T3 cells. In contrast, mutants of kFGF that remain in the cytoplasm or are retained in the secretory pathway, through addition of a KDEL motif, score negative in standard transformation assays. Since transformation by either the glycosylated or unglycosylated form of kFGF can be reversed by addition of suramin, the data imply that secretion of kFGF, or surface localization of the ligand/receptor complex, is a prerequisite for transformation.

  13. Strain redistribution around holes and notches in fiber-reinforced cross-woven brittle matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, Torben Krogsdal; Brøndsted, Povl

    1997-01-01

    A study of the strain redistribution around holes in two different cross-woven ceramic matrix composites is presented. The strain redistribution around holes in C-f/SiCm and SiCf/SiCm has been measured experimentally under plane stress conditions. Using micro-mechanics and Continuum Damage...... Mechanics, and an identification procedure based on a uni-axial tensile test and a shear test the strain redistribution around a hole or a notch due to matrix cracking can be predicted. Damage due to fiber breakage is not included in the model. Initial matrix damage in the C-f/SiCm material has...

  14. Residual Stress State in Single-Edge Notched Tension Specimen Caused by the Local Compression Technique

    Directory of Open Access Journals (Sweden)

    Huang Yifan

    2016-12-01

    Full Text Available Three-dimensional (3D finite element analyses (FEA are performed to simulate the local compression (LC technique on the clamped single-edge notched tension (SE(T specimens. The analysis includes three types of indenters, which are single pair of cylinder indenters (SPCI, double pairs of cylinder indenters (DPCI and single pair of ring indenters (SPRI. The distribution of the residual stress in the crack opening direction in the uncracked ligament of the specimen is evaluated. The outcome of this study can facilitate the use of LC technique on SE(T specimens.

  15. Multiaxial fatigue assessment of welded joints using the notch stress approach

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters

    2016-01-01

    This paper presents an evaluation of the safety involved when performing fatigue assessment of multiaxially loaded welded joints. The notch stress approach according to the IIW is used together with 8 different multiaxial criteria, including equivalent stress-, interaction equation- and critical...... plane approaches. The investigation is carried out by testing the criteria on a large amount of fatigue test results collected from the literature (351 specimens total). Subsequently, the probability of achieving a non-conservative fatigue assessment is calculated in order to evaluate the different...... criteria quantitatively. Large variation in safety is observed, especially for non-proportional loading....

  16. Standard test methods for conducting time-for-rupture notch tension tests of materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover the determination of the time for rupture of notched specimens under conditions of constant load and temperature. These test methods also includes the essential requirements for testing equipment. 1.2 The values stated in inch-pound units are to be regarded as the standard. The units in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease.

    Science.gov (United States)

    Stubbs, Jason R; He, Nan; Idiculla, Arun; Gillihan, Ryan; Liu, Shiguang; David, Valentin; Hong, Yan; Quarles, L Darryl

    2012-01-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic and vitamin D-regulatory hormone of putative bone origin that is elevated in patients with chronic kidney disease (CKD). The mechanisms responsible for elevations of FGF23 and its role in the pathogenesis of chronic kidney disease-mineral bone disorder (CKD-MBD) remain uncertain. We investigated the association between FGF23 serum levels and kidney disease progression, as well as the phenotypic features of CKD-MBD in a Col4a3 null mouse model of human autosomal-recessive Alport syndrome. These mice exhibited progressive renal failure, declining 1,25(OH)(2)D levels, increments in parathyroid hormone (PTH) and FGF23, late-onset hypocalcemia and hyperphosphatemia, high-turnover bone disease, and increased mortality. Serum levels of FGF23 increased in the earliest stages of renal damage, before elevations in blood urea nitrogen (BUN) and creatinine. FGF23 gene transcription in bone, however, did not increase until late-stage kidney disease, when serum FGF23 levels were exponentially elevated. Further evaluation of bone revealed trabecular osteocytes to be the primary cell source for FGF23 production in late-stage disease. Changes in FGF23 mirrored the rise in serum PTH and the decline in circulating 1,25(OH)(2)D. The rise in PTH and FGF23 in Col4a3 null mice coincided with an increase in the urinary fractional excretion of phosphorus and a progressive decline in sodium-phosphate cotransporter gene expression in the kidney. Our findings suggest elevations of FGF23 in CKD to be an early marker of renal injury that increases before BUN and serum creatinine. An increased production of FGF23 by bone may not be responsible for early increments in FGF23 in CKD but does appear to contribute to FGF23 levels in late-stage disease. Elevations in FGF23 and PTH coincide with an increase in urinary phosphate excretion that likely prevents the early onset of hyperphosphatemia in the face of increased bone turnover and a

  18. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve.

    Directory of Open Access Journals (Sweden)

    Jia-Xin Xie

    Full Text Available Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs with basic fibroblast growth factor (bFGF gene, preliminarily investigating its effect on transected optic nerve.A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs were observed and counted by employing biotin dextran amine (BDA and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43 within the injury site was examined with immunohistochemical staining.The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group.AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.

  19. FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice.

    Science.gov (United States)

    Stemmer, Kerstin; Zani, Fabio; Habegger, Kirk M; Neff, Christina; Kotzbeck, Petra; Bauer, Michaela; Yalamanchilli, Suma; Azad, Ali; Lehti, Maarit; Martins, Paulo J F; Müller, Timo D; Pfluger, Paul T; Seeley, Randy J

    2015-10-01

    Ketogenic diets (KDs) have increasingly gained attention as effective means for weight loss and potential adjunctive treatment of cancer. The metabolic benefits of KDs are regularly ascribed to enhanced hepatic secretion of fibroblast growth factor 21 (FGF21) and its systemic effects on fatty-acid oxidation, energy expenditure (EE) and body weight. Ambiguous data from Fgf21-knockout animal strains and low FGF21 concentrations reported in humans with ketosis have nevertheless cast doubt regarding the endogenous function of FGF21. We here aimed to elucidate the causal role of FGF21 in mediating the therapeutic benefits of KDs on metabolism and cancer. We established a dietary model of increased vs decreased FGF21 by feeding C57BL/6J mice with KDs, either depleted of protein or enriched with protein. We furthermore used wild-type and Fgf21-knockout mice that were subjected to the respective diets, and monitored energy and glucose homeostasis as well as tumour growth after transplantation of Lewis lung carcinoma cells. Hepatic and circulating, but not adipose tissue, FGF21 levels were profoundly increased by protein starvation, independent of the state of ketosis. We demonstrate that endogenous FGF21 is not essential for the maintenance of normoglycaemia upon protein and carbohydrate starvation and is therefore not needed for the effects of KDs on EE. Furthermore, the tumour-suppressing effects of KDs were independent of FGF21 and, rather, driven by concomitant protein and carbohydrate starvation. Our data indicate that the multiple systemic effects of KD exposure in mice, previously ascribed to increased FGF21 secretion, are rather a consequence of protein malnutrition.

  20. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor.

    Directory of Open Access Journals (Sweden)

    Cristina Zanchi

    Full Text Available Fibroblast growth factor 23 (FGF23 is a phosphaturic hormone mainly produced by bone that acts in the kidney through FGF receptors and Klotho. Here we investigated whether the kidney was an additional source of FGF23 during renal disease using a model of type 2 diabetic nephropathy. Renal expression of FGF23 and Klotho was assessed in Zucker diabetic fatty (ZDF and control lean rats at 2, 4, 6, 8 months of age. To evaluate whether the renoprotective effect of angiotensin converting enzyme (ACE inhibitor in this model was associated with changes in FGF23 and Klotho, ZDF rats received ramipril from 4, when proteinuric, to 8 months of age. FGF23 mRNA was not detectable in the kidney of lean rats, nor of ZDF rats at 2 months of age. FGF23 became measurable in the kidney of diabetic rats at 4 months and significantly increased thereafter. FGF23 protein localized in proximal and distal tubules. Renal Klotho mRNA and protein decreased during time in ZDF rats. As renal disease progressed, serum phosphate levels increased in parallel with decline of fractional phosphorus excretion. Ramipril limited proteinuria and renal injury, attenuated renal FGF23 upregulation and ameliorated Klotho expression. Ramipril normalized serum phosphate levels and tended to increase fractional phosphorus excretion. These data indicate that during progressive renal disease the kidney is a site of FGF23 production which is limited by ACE inhibition. Interfering pharmacologically with the delicate balance of FGF23 and phosphorus in diabetes may have implications in clinics.

  1. NOTCH2 and FLT3 gene mis-splicings are common events in patients with acute myeloid leukemia (AML): new potential targets in AML.

    Science.gov (United States)

    Adamia, Sophia; Bar-Natan, Michal; Haibe-Kains, Benjamin; Pilarski, Patrick M; Bach, Christian; Pevzner, Samuel; Calimeri, Teresa; Avet-Loiseau, Herve; Lode, Laurence; Verselis, Sigitas; Fox, Edward A; Galinsky, Ilene; Mathews, Steven; Dagogo-Jack, Ibiayi; Wadleigh, Martha; Steensma, David P; Motyckova, Gabriela; Deangelo, Daniel J; Quackenbush, John; Tenen, Daniel G; Stone, Richard M; Griffin, James D

    2014-05-01

    Our previous studies revealed an increase in alternative splicing of multiple RNAs in cells from patients with acute myeloid leukemia (AML) compared with CD34(+) bone marrow cells from normal donors. Aberrantly spliced genes included a number of oncogenes, tumor suppressor genes, and genes involved in regulation of apoptosis, cell cycle, and cell differentiation. Among the most commonly mis-spliced genes (>70% of AML patients) were 2, NOTCH2 and FLT3, that encode myeloid cell surface proteins. The splice variants of NOTCH2 and FLT3 resulted from complete or partial exon skipping and utilization of cryptic splice sites. Longitudinal analyses suggested that NOTCH2 and FLT3 aberrant splicing correlated with disease status. Correlation analyses between splice variants of these genes and clinical features of patients showed an association between NOTCH2-Va splice variant and overall survival of patients. Our results suggest that NOTCH2 and FLT3 mis-splicing is a common characteristic of AML and has the potential to generate transcripts encoding proteins with altered function. Thus, splice variants of these genes might provide disease markers and targets for novel therapeutics.

  2. The histone deacetylase HDAC1 positively regulates Notch signaling during Drosophila wing development

    Directory of Open Access Journals (Sweden)

    Zehua Wang

    2018-02-01

    Full Text Available The Notch signaling pathway is highly conserved across different animal species and plays crucial roles in development and physiology. Regulation of Notch signaling occurs at multiple levels in different tissues and cell types. Here, we show that the histone deacetylase HDAC1 acts as a positive regulator of Notch signaling during Drosophila wing development. Depletion of HDAC1 causes wing notches on the margin of adult wing. Consistently, the expression of Notch target genes is reduced in the absence of HDAC1 during wing margin formation. We further provide evidence that HDAC1 acts upstream of Notch activation. Mechanistically, we show that HDAC1 regulates Notch protein levels by promoting Notch transcription. Consistent with this, the HDAC1-associated transcriptional co-repressor Atrophin (Atro is also required for transcriptional activation of Notch in the wing disc. In summary, our results demonstrate that HDAC1 positively regulates Notch signaling and reveal a previously unidentified function of HDAC1 in Notch signaling.

  3. Delta activity independent of its activity as a ligand of Notch

    Directory of Open Access Journals (Sweden)

    Ahimou Francois

    2005-03-01

    Full Text Available Abstract Background Delta, Notch, and Scabrous often function together to make different cell types and refine tissue patterns during Drosophila development. Delta is known as the ligand that triggers Notch receptor activity. Scabrous is known to bind Notch and promote Notch activity in response to Delta. It is not known if Scabrous binds Delta or Delta has activity other than its activity as a ligand of Notch. It is very difficult to clearly determine this binding or activity in vivo as all Notch, Delta, and Scabrous activities are required simultaneously or successively in an inter-dependent manner. Results Using Drosophila cultured cells we show that the full length Delta promotes accumulation of Daughterless protein, fringe RNA, and pangolin RNA in the absence of Scabrous or Notch. Scabrous binds Delta and suppresses this activity even though it increases the level of the Delta intracellular domain. We also show that Scabrous can promote Notch receptor activity, in the absence of Delta. Conclusion Delta has activity that is independent of its activity as a ligand of Notch. Scabrous suppresses this Delta activity. Scabrous also promotes Notch activity that is dependent on Delta's ligand activity. Thus, Notch, Delta, and Scabrous might function in complex combinatorial or mutually exclusive interactions during development. The data reported here will be of significant help in understanding these interactions in vivo.

  4. Structure-function analysis of Drosophila Notch using genomic rescue transgenes.

    Science.gov (United States)

    Leonardi, Jessica; Jafar-Nejad, Hamed

    2014-01-01

    One of the evolutionarily conserved posttranslational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a specific consensus sequence by the protein O-glucosyltransferase Rumi (POGLUT1 in human). Loss of rumi in flies results in a temperature-sensitive loss of Notch signaling. To demonstrate that the Notch receptor itself is the biologically relevant target of Rumi in flies, and to determine the role of the 18 Rumi target sites on Notch in regulating Notch signaling, we have performed an in vivo structure-function analysis of Drosophila Notch. In this chapter, we provide a detailed protocol for this analysis. To avoid the potential artifacts associated with overexpression of Notch and random insertion of transgenes, we have used recombineering and site-specific integration technologies, which have been adapted for usage in Drosophila in recent years. Using gene synthesis and site-directed mutagenesis, we generated a series of Notch genomic transgenes which harbor mutations in all or specific subsets of Notch O-glucose sites. Gene dosage and rescue experiments in animals raised at various temperatures allowed us to dissect the contribution of O-glucosylation sites to the regulation of the Notch signaling strength. The reagents and methods presented here can be used to address similar questions about other posttranslational modifications of Notch or other Drosophila proteins.

  5. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Yao, Shen; Qiao, Rui-Fang; Levine, Alice C. [Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Kirschenbaum, Alexander [Department of Urology, Mount Sinai School of Medicine, New York, NY 10029 (United States); Pan, Jiangping; Wu, Yong [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Qin, Weiping [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Bauman, William A. [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Cardozo, Christopher P., E-mail: chris.cardozo@mssm.edu [Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States); Rehabilitation Medicine, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2011-10-14

    Highlights: {yields} Nerve transection increased Notch signaling in paralyzed muscle. {yields} Nandrolone prevented denervation-induced Notch signaling. {yields} Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. {yields} Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  6. Nandrolone reduces activation of Notch signaling in denervated muscle associated with increased Numb expression

    International Nuclear Information System (INIS)

    Liu, Xin-Hua; Yao, Shen; Qiao, Rui-Fang; Levine, Alice C.; Kirschenbaum, Alexander; Pan, Jiangping; Wu, Yong; Qin, Weiping; Bauman, William A.; Cardozo, Christopher P.

    2011-01-01

    Highlights: → Nerve transection increased Notch signaling in paralyzed muscle. → Nandrolone prevented denervation-induced Notch signaling. → Nandrolone induced the expression of an inhibitor of the Notch signaling, Numb. → Reduction of denervation-induced Notch signaling by nandrolone is likely through upregulation of Numb. -- Abstract: Nandrolone, an anabolic steroid, slows denervation-atrophy in rat muscle. The molecular mechanisms responsible for this effect are not well understood. Androgens and anabolic steroids activate Notch signaling in animal models of aging and thereby mitigate sarcopenia. To explore the molecular mechanisms by which nandrolone prevents denervation-atrophy, we investigated the effects of nandrolone on Notch signaling in denervated rat gastrocnemius muscle. Denervation significantly increased Notch activity reflected by elevated levels of nuclear Notch intracellular domain (NICD) and expression of Hey1 (a Notch target gene). Activation was greatest at 7 and 35 days after denervation but remained present at 56 days after denervation. Activation of Notch in denervated muscle was prevented by nandrolone associated with upregulated expression of Numb mRNA and protein. These data demonstrate that denervation activates Notch signaling, and that nandrolone abrogates this response associated with increased expression of Numb, suggesting a potential mechanism by which nandrolone reduces denervation-atrophy.

  7. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis.

    Science.gov (United States)

    Ishimura, Norihisa; Bronk, Steven F; Gores, Gregory J

    2005-05-01

    Inflammatory mediators and cell fate genes, such as the Notch gene family, both have been implicated in cancer biology. Because cholangiocarcinomas arise in a background of inflammation and express the inflammatory mediator inducible nitric oxide synthase (iNOS), we aimed to determine whether iNOS expression alters Notch expression and signaling. Notch receptor and ligand expression in human liver was evaluated by immunohistochemistry. The effect of iNOS and NO on Notch-1 expression was examined in cell lines. Notch-1, but not other Notch receptors, were up-regulated by cholangiocytes in primary sclerosing cholangitis and cholangiocarcinoma. The colocalization of Notch-1 and iNOS also was observed in large bile ducts from the hilar region of primary sclerosing cholangitis patients. Notch-1 expression in murine cholangiocytes was iNOS dependent. iNOS expression also facilitated Notch signaling by inducing the nuclear translocation of its intracellular domain and the expression of a transcriptional target, hairy and enhancer of split (Hes)-1. The gamma-secretase inhibitor N-[N-(3,5-Difluorophenacetyl-L-alanyl)-S-phenylglycine]-t-butyl ester, which blocks Notch signaling, enhanced tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cholangiocarcinoma cells. These data implicate a direct link between the inflammatory mediator iNOS and Notch signaling, and have implications for the development and progression of cholangiocarcinoma.

  8. Stress intensity factors and weight functions for cracks in front of notches

    International Nuclear Information System (INIS)

    Fett, T.

    1993-12-01

    The knowledge of stress intensity factors for cracks at notch roots is important for the fracture mechanical treatment of real components. Stress intensity factor solutions are available only for special notches and externally applied loads. For the treatment of more complex loadings as thermal stresses near the notch root the weight function is needed in addition. In the first part of this report weight functions for cracks in front of internal notches are derived from stress intensity factor solutions under external loading available in the literature. The second part deals with cracks in front of edge notches. Limit cases of stress intensity factors are derived which allow to estimate stress intensity factors for cracks in front of internal elliptical notches with arbitrary aspect ratio of the ellipse and for external notches. (orig.) [de

  9. Chronic sustained inflammation links to left ventricular hypertrophy and aortic valve sclerosis: a new link between S100/RAGE and FGF23.

    Science.gov (United States)

    Yan, Ling; Bowman, Marion A Hofmann

    Cardiovascular disease including left ventricular hypertrophy, diastolic dysfunction and ectopic valvular calcification are common in patients with chronic kidney disease (CKD). Both S100A12 and fibroblast growth factor 23 (FGF23) have been identified as biomarkers of cardiovascular morbidity and mortality in patients with CKD. We tested the hypothesis that human S100/calgranulin would accelerate cardiovascular disease in mice subjected to CKD. This review paper focuses on S100 proteins and their receptor for advanced glycation end products (RAGE) and summarizes recent findings obtained in novel developed transgenic hBAC-S100 mice that express S100A12 and S100A8/9 proteins. A bacterial artificial chromosome of the human S100/calgranulin gene cluster containing the genes and regulatory elements for S100A8, S100A9 and S100A12 was expressed in C57BL/6J mice (hBAC-S100). CKD was induced by ureteral ligation, and hBAC-S100 mice and WT mice were studied after 10 weeks of chronic uremia. hBAC-S100 mice with CKD showed increased FGF23 in the heart, left ventricular hypertrophy (LVH), diastolic dysfunction, focal cartilaginous metaplasia and calcification of the mitral and aortic valve annulus together with aortic valve sclerosis. This phenotype was not observed in WT mice with CKD or in hBAC-S100 mice lacking RAGE with CKD, suggesting that the inflammatory milieu mediated by S100/RAGE promotes pathological cardiac hypertrophy in CKD. In vitro, inflammatory stimuli including IL-6, TNFα, LPS, or serum from hBAC-S100 mice up regulated FGF23 mRNA and protein in primary murine neonatal and adult cardiac fibroblasts. Taken together, our study shows that myeloid-derived human S100/calgranulin is associated with the development of cardiac hypertrophy and ectopic cardiac calcification in a RAGE dependent manner in a mouse model of CKD. We speculate that FGF23 produced by cardiac fibroblasts in response to cytokines may act in a paracrine manner to accelerate LVH and diastolic

  10. LPS infusion suppresses serum FGF21 levels in healthy adult volunteers

    DEFF Research Database (Denmark)

    Lauritzen, Esben Stistrup; Rittig, Nikolaj; Bach, Ermina

    2017-01-01

    circulating levels of FGF21 after lipopolysaccharide (LPS) infusion. DESIGN: Two randomized, single blinded, placebo-controlled crossover trials were used. SETTING: The studies were performed at a university hospital clinical research center. PATIENTS AND INTERVENTIONS: Study 1 (LPS bolus): Eight young......, healthy, lean males were investigated two times: 1) after isotonic saline injection, and 2) after LPS injection (bolus of 1 ng/kg). Each study day lasted 4 hours. Study 2 (continuous LPS infusion): Eight, healthy males were investigated two times: 1) during continuously isotonic saline infusion, and 2......) during continuously LPS infusion (0.06 ng/kg/h). Each study day lasted 4 hours. Circulating FGF21 levels were quantified every second hour by an immunoassay. RESULTS: A LPS bolus resulted in a late suppression (t = 240 minutes) of serum FGF21 (P=0.035). Continuous LPS infusion revealed no significant...

  11. Fgf8-related secondary organizers exert different polarizing planar instructions along the mouse anterior neural tube.

    Directory of Open Access Journals (Sweden)

    Ivan Crespo-Enriquez

    Full Text Available Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO and the anterior neural ridge (anr but not on zona limitans intrathalamica (zli. Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.

  12. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  13. FGF8 Signaling Alters the Osteogenic Cell Fate in the Hard Palate.

    Science.gov (United States)

    Xu, J; Huang, Z; Wang, W; Tan, X; Li, H; Zhang, Y; Tian, W; Hu, T; Chen, Y P

    2018-01-01

    Fibroblast growth factor (FGF) signaling has been implicated in the regulation of osteogenesis in both intramembranous and endochondral ossifications. In the developing palate, the anterior bony palate forms by direct differentiation of cranial neural crest (CNC)-derived mesenchymal cells, but the signals that regulate the osteogenic cell fate in the developing palate remain unclear. In the present study, we investigated the potential role of FGF signaling in osteogenic fate determination of the palatal mesenchymal cells. We showed that locally activated FGF8 signaling in the anterior palate using a Shox2 Cre knock-in allele and an R26R Fgf8 allele leads to a unique palatal defect: a complete loss of the palatine process of the maxilla as well as formation of ectopic cartilaginous tissues in the anterior palate. This aberrant developmental process was accompanied by a significantly elevated level of cell proliferation, which contributes to an abnormally thickened palatal tissue, where the palatine process of the maxilla would normally form, and by a complete inhibition of Osterix expression, which accounts for the lack of bone formation. The coexpression of Runx2 initially with Sox9 and subsequently with Col II in the ectopic cartilaginous tissues indicates a conversion of osteogenic fate to a chondrogenic one. Consistent with the unique palatal phenotype, RNA-Sequencing analysis revealed that the augmented FGF8 signaling downregulated genes involved in ossification, biomineral tissue development, and bone mineralization but upregulated genes involved in cell proliferation, cartilage development, and cell fate commitment, which was further supported by quantitative real-time reverse transcription polymerase chain reaction validation of selected genes. Our results demonstrate that FGF8 signaling functions as a negative regulator of osteogenic fate and is sufficient to convert a subset of CNC cell-derived mesenchymal cells into cartilage in the anterior hard palate

  14. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.

    Directory of Open Access Journals (Sweden)

    Camille I Petersen

    2011-06-01

    Full Text Available The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP. Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-;Spry2(-/- embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.

  15. FGF-2 promotes initial osseointegration and enhances stability of implants with low primary stability.

    Science.gov (United States)

    Nagayasu-Tanaka, Toshie; Nozaki, Takenori; Miki, Koji; Sawada, Keigo; Kitamura, Masahiro; Murakami, Shinya

    2017-03-01

    The aim of this study was to examine the effect of basic fibroblast growth factor (FGF-2) on osseointegration of dental implants with low primary stability in a beagle dog model. Customized titanium implants that were designed to have low contact with the existing bone were installed into the edentulous mandible of beagle dogs. To degrade the primary stability of the implants, the diameters of the bone sockets exceeded the implant diameters. FGF-2 (0.3%) plus vehicle (hydroxypropyl cellulose) or vehicle alone was topically applied to the sockets in the FGF-2 and control groups, respectively. In Study 1, the new bone area and length of new bone-to-implant contact (BIC) were evaluated at 4, 8, and 12 weeks after installation using histomorphometry and scanning electron microscopy. In Study 2, the implant stability quotient (ISQ) values were sequentially measured for 16 weeks using an Osstell system. The histomorphometric analysis revealed that the new bone area and length of BIC in the FGF-2 group were significantly larger than those in the control group at 4 weeks. Electron microscopic observation showed intimate contact between the mature lamellar bone and the implant surfaces, osseointegration, in both groups. The ISQ values in the FGF-2 group were significantly increased from 6 to 16 weeks compared with those in the control group. Taken together, our study demonstrates that FGF-2 promoted new bone formation around the dental implants and subsequent osseointegration, resulting in promotion of stability of implants with low primary stability. © 2016 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.

  16. Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease.

    Science.gov (United States)

    Zhang, Shiqin; Gillihan, Ryan; He, Nan; Fields, Timothy; Liu, Shiguang; Green, Troy; Stubbs, Jason R

    2013-10-01

    Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone that in end-stage renal disease is markedly increased in serum; however, the mechanisms responsible for this increase are unclear. Here, we tested whether phosphate retention in chronic kidney disease (CKD) is responsible for the elevation of FGF23 in serum using Col4α3 knockout mice, a murine model of Alport disease exhibiting CKD. We found a significant elevation in serum FGF23 in progressively azotemic 8- and 12-week-old CKD mice along with an increased fractional excretion of phosphorus. Both moderate and severe phosphate restriction reduced fractional excretion of phosphorus by 8 weeks, yet serum FGF23 levels remained strikingly elevated. By 12 weeks, FGF23 levels were further increased with moderate phosphate restriction, while severe phosphate restriction led to severe bone mineralization defects and decreased FGF23 production in bone. CKD mice on a control diet had low serum 1,25-dihydroxyvitamin D (1,25(OH)(2)D) levels and 3-fold higher renal Cyp24α1 gene expression compared to wild-type mice. Severe phosphate restriction increased 1,25(OH)(2)D levels in CKD mice by 8 weeks and lowered renal Cyp24α1 gene expression despite persistently elevated serum FGF23. Renal klotho gene expression declined in CKD mice on a control diet, but improved with severe phosphate restriction. Thus, dietary phosphate restriction reduces the fractional excretion of phosphorus independent of serum FGF23 levels in mice with CKD.

  17. Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling Pathway That Regulates PTH Secretion

    Science.gov (United States)

    Olauson, Hannes; Lindberg, Karolina; Amin, Risul; Sato, Tadatoshi; Jia, Ting; Goetz, Regina; Mohammadi, Moosa; Andersson, Göran; Lanske, Beate; Larsson, Tobias E.

    2013-01-01

    Klotho acts as a co-receptor for and dictates tissue specificity of circulating FGF23. FGF23 inhibits PTH secretion, and reduced Klotho abundance is considered a pathogenic factor in renal secondary hyperparathyroidism. To dissect the role of parathyroid gland resident Klotho in health and disease, we generated mice with a parathyroid-specific Klotho deletion (PTH-KL−/−). PTH-KL−/− mice had a normal gross phenotype and survival; normal serum PTH and calcium; unaltered expression of the PTH gene in parathyroid tissue; and preserved PTH response and sensitivity to acute changes in serum calcium. Their PTH response to intravenous FGF23 delivery or renal failure did not differ compared to their wild-type littermates despite disrupted FGF23-induced activation of the MAPK/ERK pathway. Importantly, calcineurin-NFAT signaling, defined by increased MCIP1 level and nuclear localization of NFATC2, was constitutively activated in PTH-KL−/− mice. Treatment with the calcineurin-inhibitor cyclosporine A abolished FGF23-mediated PTH suppression in PTH-KL−/− mice whereas wild-type mice remained responsive. Similar results were observed in thyro-parathyroid explants ex vivo. Collectively, we present genetic and functional evidence for a novel, Klotho-independent, calcineurin-mediated FGF23 signaling pathway in parathyroid glands that mediates suppression of PTH. The presence of Klotho-independent FGF23 effects in a Klotho-expressing target organ represents a paradigm shift in the conceptualization of FGF23 endocrine action. PMID:24348262

  18. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition.

    Directory of Open Access Journals (Sweden)

    Hendrik B Tiedemann

    2014-10-01

    Full Text Available While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM. The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.

  19. Fast synchronization of ultradian oscillators controlled by delta-notch signaling with cis-inhibition.

    Science.gov (United States)

    Tiedemann, Hendrik B; Schneltzer, Elida; Zeiser, Stefan; Wurst, Wolfgang; Beckers, Johannes; Przemeck, Gerhard K H; Hrabě de Angelis, Martin

    2014-10-01

    While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN) forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes) genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM). The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N) signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its 'birth' to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.

  20. Notch and Ras promote sequential steps of excretory tube development in C. elegans.

    Science.gov (United States)

    Abdus-Saboor, Ishmail; Mancuso, Vincent P; Murray, John I; Palozola, Katherine; Norris, Carolyn; Hall, David H; Howell, Kelly; Huang, Kai; Sundaram, Meera V

    2011-08-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.

  1. Role of architecture in the function and specificity of two Notch-regulated transcriptional enhancer modules.

    Science.gov (United States)

    Liu, Feng; Posakony, James W

    2012-07-01

    In Drosophila melanogaster, cis-regulatory modules that are activated by the Notch cell-cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type-specific factors called "local activators." The use of different "Su(H) plus local activator" motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer "architecture"--the number, order, spacing, and orientation of its component transcription factor binding motifs--in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the "non-SOP" cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor-factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities.

  2. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  3. The significance of Notch ligand expression in the peripheral blood of children with hand, foot and mouth disease (HFMD)

    OpenAIRE

    Bai, Zhen Jiang; Li, Yi Ping; Huang, Jie; Xiang, Yong Jun; Lu, Chun Yu; Kong, Xiao Xing; Tian, Jian Mei; Wang, Jiang Huai; Wang, Jian

    2014-01-01

    BACKGROUND: Hand, foot and mouth disease (HFMD), a virus-induced infectious disease that usually affects infants and children, has an increased incidence in China in recent years. This study attempted to investigate the role of the Notch signaling pathway in the pathogenesis of HFMD. METHODS: Eighty-two children diagnosed with HFMD were enrolled into this study. The HFMD group was further divided into the uncomplicated HFMD and HFMD with encephalitis groups. The control group included 40 chil...

  4. Circulating FGF21 levels are related to nutritional status and metabolic but not hormonal disturbances in polycystic ovary syndrome.

    Science.gov (United States)

    Olszanecka-Glinianowicz, Magdalena; Madej, Paweł; Wdowczyk, Michał; Owczarek, Aleksander; Chudek, Jerzy

    2015-02-01

    The aim of this study was to analyse relationships between plasma fibroblast growth factor 21 (FGF21) levels and nutritional status, and metabolic and hormonal disturbances in polycystic ovary syndrome (PCOS) women. A cross-sectional study involving 85 PCOS (48 obese) and 72 non-PCOS women (41 obese) was conducted to evaluate the relationship between FGF21 levels and PCOS. Anthropometric parameters and body composition were determined. In the fasting state; serum concentrations of glucose, androgens, FSH, LH, SHBG, insulin and FGF21 were measured. Plasma FGF21 levels were significantly higher in obese women compared with normal-weight women in both PCOS and non-PCOS subgroups (120.3 (18.2-698) vs 62.3 (16.4-323.6) pg/ml, Pnutritional status and insulin resistance independent of PCOS. Increased FGF21 is associated with metabolic but not hormonal disturbances. © 2015 European Society of Endocrinology.

  5. Oil Body-Bound Oleosin-rhFGF-10: A Novel Drug Delivery System that Improves Skin Penetration to Accelerate Wound Healing and Hair Growth in Mice.

    Science.gov (United States)

    Li, Wenqing; Yang, Jing; Cai, Jingbo; Wang, Hongyu; Tian, Haishan; Huang, Jian; Qiang, Weidong; Zhang, Linbo; Li, Haiyan; Li, Xiaokun; Jiang, Chao

    2017-10-18

    Recombinant human fibroblast growth factor 10 (rhFGF-10) is frequently used to treat patients with skin injuries. It can also promote hair growth. However, the effective application of rhFGF-10 is limited because of its poor stability and transdermal absorption. In this study, polymerase chain reaction (PCR) and Southern blotting were used to identify transgenic safflowers carrying a gene encoding an oleosin-rhFGF-10 fusion protein. The size and structural integrity of oleosin-rhFGF-10 in oil bodies extracted from transgenic safflower seeds was characterized by polyacrylamide gel electrophoresis and western blotting. Oil body extracts containing oleosin-rhFGF-10 were topically applied to mouse skin. The absorption of oleosin-rhFGF-10 was studied by immunohistochemistry. Its efficiency in promoting wound healing and hair regeneration were evaluated in full thickness wounds and hair growth assays. We identified a safflower line that carried the transgene and expressed a 45 kDa oleosin-rhFGF-10 protein. Oil body-bound oleosin-rhFGF-10 was absorbed by the skin with higher efficiency and speed compared with prokaryotically-expressed rhFGF-10. Oleosin-rhFGF-10 also enhanced wound closure and promoted hair growth better than rhFGF-10. The application of oleosin-rhFGF-10 in oil bodies promoted its delivery through the skin, providing a basis for improved therapeutic effects in enhancing wound healing and hair growth.

  6. Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer.

    Science.gov (United States)

    Yi, Fuming; Amarasinghe, Baru; Dang, Thao P

    2013-01-01

    Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation.

  7. In-situ tensile testing of notched poly- and oligocrystalline 316L wires

    Energy Technology Data Exchange (ETDEWEB)

    Mitevski, Bojan [Materials Science and Engineering (ITM), Duisburg (Germany); Weiss, Sabine [Brandenburg Technical Univ., Cottbus-Senftenberg (Germany). Chair of Physical Metallurgy and Materials Science.; Fischer, Alfons [Duisburg-Essen Univ. (Germany). Materials Science and Engineering; Rush Univ. Medical Center, Chicago, IL (United States). Dept. of Orthopedics

    2017-03-01

    In-situ testing inside a scanning electron microscope is a helpful tool for detailed analyses of small sized specimens with respect to their mechanical properties and the correlated microstructural alterations. Thus, this test method is used to analyze the tensional properties of thin 316L (1.4441) wires used for microscale components, e.g., like coronary artery stents. Tensile tests were conducted on unnotched and circularly notched 316L wires (oe 0.95 mm) with a special focus on the number of grains within the cross section as well as the notch geometry. Four combinations of notch width (2 and 4 mm) and notch depth (diameter at notch root: 0.5 and 0.75 mm) were chosen. Notch depth and notch shape were adjusted by means of electrochemical polishing. Previous investigations showed, that oligocrystalline structures exhibit a different mechanical behavior compared to polycrystalline ones or single crystals. There are only a few data available on mechanical testing of oligocrystalline structures with respect to varying notch geometries. Depending on the notch geometry, grain size and, therefore, the number of grains within the notch cross section widely scattering yield- and tensile strength as well as failure elongation values were measured. However, the transition criterion between poly- and oligocrystalline behavior could be quantified to be 6 to 7 grains within the cross section.

  8. Endothelium and NOTCH specify and amplify aorta-gonad-mesonephros-derived hematopoietic stem cells.

    Science.gov (United States)

    Hadland, Brandon K; Varnum-Finney, Barbara; Poulos, Michael G; Moon, Randall T; Butler, Jason M; Rafii, Shahin; Bernstein, Irwin D

    2015-05-01

    Hematopoietic stem cells (HSCs) first emerge during embryonic development within vessels such as the dorsal aorta of the aorta-gonad-mesonephros (AGM) region, suggesting that signals from the vascular microenvironment are critical for HSC development. Here, we demonstrated that AGM-derived endothelial cells (ECs) engineered to constitutively express AKT (AGM AKT-ECs) can provide an in vitro niche that recapitulates embryonic HSC specification and amplification. Specifically, nonengrafting embryonic precursors, including the VE-cadherin-expressing population that lacks hematopoietic surface markers, cocultured with AGM AKT-ECs specified into long-term, adult-engrafting HSCs, establishing that a vascular niche is sufficient to induce the endothelial-to-HSC transition in vitro. Subsequent to hematopoietic induction, coculture with AGM AKT-ECs also substantially increased the numbers of HSCs derived from VE-cadherin⁺CD45⁺ AGM hematopoietic cells, consistent with a role in supporting further HSC maturation and self-renewal. We also identified conditions that included NOTCH activation with an immobilized NOTCH ligand that were sufficient to amplify AGM-derived HSCs following their specification in the absence of AGM AKT-ECs. Together, these studies begin to define the critical niche components and resident signals required for HSC induction and self-renewal ex vivo, and thus provide insight for development of defined in vitro systems targeted toward HSC generation for therapeutic applications.

  9. Notch3 is essential for regulation of the renal vascular tone.

    Science.gov (United States)

    Boulos, Nada; Helle, Frank; Dussaule, Jean-Claude; Placier, Sandrine; Milliez, Paul; Djudjaj, Sonja; Guerrot, Dominique; Joutel, Anne; Ronco, Pierre; Boffa, Jean-Jacques; Chatziantoniou, Christos

    2011-06-01

    The Notch3 receptor participates in the development and maturation of vessels. Mutations of Notch3 in humans are associated with defective regulation of cerebral blood flow. To investigate the role of Notch3 in the regulation of renal hemodynamics, we used mice lacking expression of the Notch3 gene (Notch3-/- mice). Bolus injections of norepinephrine and angiotensin II increased renal vascular resistance and decreased renal blood flow in a dose-dependent manner in wild-type mice. In sharp contrast, renal vascular resistance of Notch3-/- mice varied little after boluses of norepinephrine and angiotensin II. Inversely, bradykinin and prostacyclin relaxed renal vasculature in wild-type mice. Both vasodilators had a negligible effect on renal vascular resistance of Notch3-/- mice. Afferent arterioles freshly isolated from Notch3-/- mice displayed decreased thickness of vascular wall compared with wild -type mice and showed a deficient contractile response to angiotensin II. To examine the physiopathological consequences of the above-described deficiency, hypertension was induced by continuous infusion of angiotensin II. Angiotensin II gradually increased blood pressure in both strains, but this increase was lesser in the Notch3-/- mice. Despite this blunted systemic effect, Notch3-/- mice displayed high mortality rates (65%) attributed to heart failure. In the kidney, the surviving Notch3-/- mice showed focal structural alterations characteristic of nephroangiosclerosis. These data show that Notch3 is necessary for the adaptive response of the renal vasculature to vasoactive systems. A deficiency in the expression of Notch3 could have important physiopathological consequences in the adaptation of the cardiac and renal function to chronic increase of blood pressure.

  10. A pro-angiogenic degradable Mg-poly(lactic-co-glycolic acid) implant combined with rhbFGF in a rat limb ischemia model.

    Science.gov (United States)

    Bao, Hanmei; Lv, Feng; Liu, Tianjun

    2017-12-01

    Site-specific controlled release of exogenous angiogenic growth factors, such as recombinant human basic fibroblast growth factor (rhbFGF), has become a promising approach to improve peripheral vascular disease. Here, we have developed an implant composed of spiral magnesium (Mg) and a coating made using poly(lactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The encapsulated protein could release continually for 4weeks with well preserved bioactivity. We compared the angiogenic effect produced by Mg-PLGA-rhbFGF with that of a PLGA implant loaded with rhbFGF (PLGA-rhbFGF). The incorporation of Mg in the implant raised the microclimate pH in the polymer, which preserved the stability of rhbFGF. Mg-PLGA-rhbFGF exhibited advantages over PLGA-rhbFGF implant in terms of a cytocompatibility evaluation. An in vivo angiogenesis test further confirmed the efficacy of released rhbFGF. HE, CD31 and α-SMA staining revealed that the controlled release of rhbFGF from the Mg-PLGA-rhbFGF implant was superior in promoting angiogenesis compared with that of the PLGA-rhbFGF implant. Four weeks post-implantation, the capillary density of the Mg-PLGA-rhbFGF group was significantly higher than that of the PLGA-rhbFGF, control and the normal group (plactic-co-glycolic acid) (PLGA) with encapsulated rhbFGF (Mg-PLGA-rhbFGF). The preparation method does not involve any complex processes and results in a high encapsulation efficiency (approximately 100%). The degradation of metal Mg raise the microclimate pH in the PLGA polymer, which could well preserve the bioactivity of rhbFGF incorporated in the implant. Mg-PLGA-based, sustained local delivery of rhbFGF promotes post-ischemic angiogenesis and blood flow recovery in rat limb ischemic model. This work marks the first report for controlled release of rhbFGF in combination with metal Mg, and suggests potential therapeutic usefulness of Mg-PLGA-rhbFGF for tissue ischemia. Copyright © 2017 Acta Materialia Inc

  11. Very compact quad band-notched UWB monopole antenna

    Science.gov (United States)

    Wu, Ling; Xia, Yingqing; Ye, Lei; Li, Lingzhi

    2016-10-01

    A very compact UWB antenna with four notched bands is proposed. The antenna consists of a rectangular radiating patch with a half circle at bottom, a tapered microstrip feed-line, and a semielliptical ground plane. With a pair of Lshaped slots, complementary co-directional SRR on the patch and a pair of L-shaped slots on the ground plane, four notched bands are created to prevent interference from WiMAX /WLAN/X-band. Experimental results show that the designed antenna, with compact size 20×30mm2, has an operating band(VSWR<2) from 2.7 to 20GHz,except four stop bands of 3.1 3.7GHz, 5.13 5.48GHz, 5.74 6.04GHz, 7.3 7.96GHz. And good radiation patterns within the operating band have been observed.

  12. J-integral approximation for cracks in circular notches

    International Nuclear Information System (INIS)

    Dankert, M.; Seeger, T.

    1994-01-01

    In the present contribution, approximation formulas for the calculation of the J-integral of cracks in circular notches were developed, which contain the special case of unnotched structures. For this purpose, it was at first necessary to calculate numerically the J-integrals for a series of significant cases as support values with the help of two- and three-dimensional elastic-plastic finite element calculations by variation of crack length, notch radius, the contour of the crack front, the crack type (surface-, corner, and through-crack) and the material behaviour (elasticity module, poisson ratio, strain-hardening exponent, strain-hardening coefficient). The results of the approximation formulas for the J-integral were compared with the results of the two- and three-dimensional elastic-plastic FE calculations. Good to very good agreements were achieved. (orig.) [de

  13. Effect of notch depth of modified current collector on internal-short-circuit mitigation for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu

    2018-01-01

    Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.

  14. Xanthohumol inhibits Notch signaling and induces apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Selvi Kunnimalaiyaan

    Full Text Available Despite improvement in therapeutic strategies, median survival in advanced hepatocellular carcinoma (HCC remains less than one year. Therefore, molecularly targeted compounds with less toxic profiles are needed. Xanthohumol (XN, a prenylated chalcone has been shown to have anti-proliferative effects in various cancers types in vitro. XN treatment in healthy mice and humans yielded favorable pharmacokinetics and bioavailability. Therefore, we determined to study the effects of XN and understand the mechanism of its action in HCC. The effects of XN on a panel of HCC cell lines were assessed for cell viability, colony forming ability, and cellular proliferation. Cell lysates were analyzed for pro-apoptotic (c-PARP and cleaved caspase-3 and anti-apoptotic markers (survivin, cyclin D1, and Mcl-1. XN concentrations of 5 μM and above significantly reduced the cell viability, colony forming ability and also confluency of all four HCC cell lines studied. Furthermore, growth suppression due to apoptosis was evidenced by increased expression of pro-apoptotic and reduced expression of anti-apoptotic proteins. Importantly, XN treatment inhibited the Notch signaling pathway as evidenced by the decrease in the expression of Notch1 and HES-1 proteins. Ectopic expression of Notch1 in HCC cells reverses the anti-proliferative effect of XN as evidenced by reduced growth suppression compared to control. Taken together these results suggested that XN mediated growth suppression is appeared to be mediated by the inhibition of the Notch signaling pathway. Therefore, our findings warrants further studies on XN as a potential agent for the treatment for HCC.

  15. Hierarchical object class representation using holes and notches

    Energy Technology Data Exchange (ETDEWEB)

    Osbourn, G.C.

    1989-01-01

    A general representation approach is described which employs a hierarchy of holes and notches. A matching procedure is also described which allows non-ideal image hierarchies to be matched to class representations. The representation and matching methods are demonstrated on a set of handgun photographs. Examples of handguns which are different in detail are shown to exhibit the same class characteristics, while other similarly shaped objects are correctly distinguished from the handgun class. 6 refs., 8 figs.

  16. Notch sensitivity of cast AZ31 magnesium alloy

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Estrin, Y.; Zúberová, Z.

    2005-01-01

    Roč. 12, č. 3 (2005), s. 88-91 ISSN 1335-0803. [Degradácia konštrukčných materiálov 2005. Terchová - Biely Potok, 05.09.2005-07.09.2005] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : notch sensitivity * magnesium alloy * fatigue lifetime Subject RIV: JG - Metallurgy

  17. Pseudointercondylar notch sign: manifestation of osteochondritis dissecans of the trochlea

    International Nuclear Information System (INIS)

    Pruthi, Sumit; Parnell, Shawn E.; Thapa, Mahesh M.

    2009-01-01

    Osteochondritis dissecans (OCD) is an idiopathic condition affecting the articular epiphysis. Initially described in the knee, this entity affects several other parts of the body such as the talar dome, tarsal navicular, and femoral capital epiphysis. OCD of the elbow primarily involves the capitellum. OCD involving the trochlea has rarely been reported. We describe an unusual and interesting case of OCD affecting the trochlea, mimicking a pseudointercondylar notch. (orig.)

  18. Comment on «Tidal notches in the Mediterranean Sea: A comprehensive analysis» by Fabrizio Antonioli, Valeria Lo Presti, Alessio Rovere, Luigi Ferranti, Marco Anzidei, Stefano Furlani, Giuseppe Mastronuzzi, Paolo E. Orru, Giovanni Scicchitano, Gianmaria Sannino, Cecilia R. Spampinato, Rossella Pagliarulo, Giacomo Deiana, Eleonora de Sabata, Paolo Sansò, Matteo Vacchi and Antonio Vecchio. Quaternary Science Reviews 119 (2015) 66-84

    Science.gov (United States)

    Evelpidou, Niki; Pirazzoli, Paolo

    2016-01-01

    The paper of Antonioli et al. (2015) presents observations of 73 sites with erosion notches, which are called tidal notches, which in fact appear to be of various genetic origins, because a combination of several physical chemical and biological processes of formation is considered including, in addition to intertidal bioerosion, also carbonate rock solution, wetting and drying and wave abrasion that would produce different types of notches. Among the erosion notches, some «roof notches», in which the notch lacks a floor, are distinguished. For these isolated roofs, we would tend to ascribe erosion to dissolution by a freshwater spring undercutting a limestone cliff at sea level. Accompanying a rise in sea level, dissolution by freshwater will tend to continuously displace the roof of the notch upwards, while the base of the notch, dissolved, will tend to be missing. For such isolated roof of a solution notch, protruding above the waterline, the term «visor» has been proposed by Evelpidou et al. (2011).

  19. Ruptured Arteriovenous Malformation Presenting with Kernohan’s Notch

    Directory of Open Access Journals (Sweden)

    Christopher F. Dibble

    2015-01-01

    Full Text Available AVMs are congenital lesions that predispose patients to intracranial hemorrhage and resultant neurological deficits. These deficits are often focal and due to the presence of local neurologic disruption from hemorrhage in the contralateral cerebral hemisphere. We present a rare case of a patient with ipsilateral neurological deficits due to Kernohan’s Notch phenomenon resulting from hemorrhage from an AVM. A 31-year-old woman with seizures underwent MR and angiographic imaging which confirmed an unruptured left parietal AVM. The patient declined treatment and presented with obtundation 4 years later. Imaging revealed an acute left parietal ICH and SDH with significant mass effect. The patient underwent emergent hemicraniectomy and hematoma evacuation. Postoperatively, she made significant improvement and was following commands contralaterally with ipsilateral hemiplegia. MR imaging revealed right Kernohan’s Notch. The patient had significant rehabilitation with neurological improvement. She eventually underwent elective embolization followed by subsequent surgical resection and bone replacement. Three years from the initial hemorrhage, the patient had only mild left-sided weakness and ambulates without assistance. A false localizing sign, Kernohan’s Notch phenomenon, should be considered in the setting of AVM hemorrhage with paradoxical motor impairment and can be identified through MRI.

  20. Compact Size UWB Monopole Antenna with Triple Band-Notches

    Directory of Open Access Journals (Sweden)

    W. Ali

    2017-04-01

    Full Text Available This paper presents triple band notched ultra wide band (UWB monopole antenna with overall size of 36 × 32 mm2 fed by microstrip transmission line. In order to achieve a good impedance matching from 2.7 GHz to 13.4 GHz, a tapered transition between the rectangular patch and the feeding line is utilized. The three notched frequency bands are accomplished by a defected microstrip structure (DMS which is inserted in the microstrip feeding line and by an open loop slot etched in the radiating patch. The three band notches are 3.15-4 GHz, 5.7-6.3 GHz and 7.9-8.6 GHz. They prevent the receiving of the signals of IEEE 802.16 WiMAX band, WLAN band, and ITU applications respectively. The UWB antenna was designed and simulated then fabricated and tested in order to investigate its impedance and radiation characteristics. Good agreement between the simulated and measured data is achieved. The obtained results show that the proposed antenna is convenient for UWB applications.

  1. FGF7 supports hematopoietic stem and progenitor cells and niche-dependent myeloblastoma cells via autocrine action on bone marrow stromal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Ruri; Minami, Kaori; Tanaka, Satowa [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Nagai, Mami [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Matsui, Keiji; Hasegawa, Natsumi [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Roeder, Robert G. [Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Asano, Shigetaka [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Ito, Mitsuhiro, E-mail: itomi@med.kobe-u.ac.jp [Laboratory of Hematology, Division of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142 (Japan); Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States); Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 159-8555 (Japan); Department of Family and Community Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 654-0142 (Japan)

    2013-10-11

    Highlights: •FGF7 is downregulated in MED1-deficient mesenchymal cells. •FGF7 produced by mesenchymal stromal cells is a novel hematopoietic niche molecule. •FGF7 supports hematopoietic progenitor cells and niche-dependent leukemia cells. •FGF7 activates FGFR2IIIb of bone marrow stromal cells in an autocrine manner. •FGF7 indirectly acts on hematopoietic cells lacking FGFR2IIIb via stromal cells. -- Abstract: FGF1 and FGF2 support hematopoietic stem and progenitor cells (HSPCs) under stress conditions. In this study, we show that fibroblast growth factor (FGF7) may be a novel niche factor for HSPC support and leukemic growth. FGF7 expression was attenuated in mouse embryonic fibroblasts (MEFs) deficient for the MED1 subunit of the Mediator transcriptional coregulator complex. When normal mouse bone marrow (BM) cells were cocultured with Med1{sup +/+} MEFs or BM stromal cells in the presence of anti-FGF7 antibody, the growth of BM cells and the number of long-time culture-initiating cells (LTC-ICs) decreased significantly. Anti-FGF7 antibody also attenuated the proliferation and cobblestone formation of MB1 stromal cell-dependent myeloblastoma cells. The addition of recombinant FGF7 to the coculture of BM cells and Med1{sup −/−} MEFs increased BM cells and LTC-ICs. FGF7 and its cognate receptor, FGFR2IIIb, were undetectable in BM cells, but MEFs and BM stromal cells expressed both. FGF7 activated downstream targets of FGFR2IIIb in Med1{sup +/+} and Med1{sup −/−} MEFs and BM stromal cells. Taken together, we propose that FGF7 supports HSPCs and leukemia-initiating cells indirectly via FGFR2IIIb expressed on stromal cells.

  2. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  3. Direct FGF receptor 1 activation through an anti-idiotypic strategy mimicks the biological activity of FGF-2 and inhibits the progression of the bladder carcinoma derived from NBT-II cells.

    Science.gov (United States)

    Malavaud, Bernard; Pedron, Sandrine; Sordello, Sylvie; Mazerolles, Catherine; Billottet, Clotilde; Thiery, Jean-Paul; Jouanneau, Jacqueline; Plouët, Jean

    2004-09-02

    The hypothesis that tumor growth is angiogenesis-dependent has been documented by a considerable body of direct and indirect experimental data. Since the discovery of the vascular endothelial growth factor (VEGF), most attention has been focused on the VEGF system. Although fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) can exert a strong angiogenic activity when they are supplied as a single pharmacological agent, their role in pathological angiogenesis in preclinical models remains controversial. To decipher the contribution of FGF receptors in various models of angiogenesis, we took advantage of the anti-idiotypic strategy to obtain circulating agonists specific for FGFR-1 and FGFR-2 (AIdF-1 and AIdF-2). They mimicked FGF-1 and FGF-2 for receptor binding, signal transduction, proliferation of endothelial cells and differentiation of the bladder carcinoma cell NBT-II which expresses FGFR-2b but not FGFR-1. The constitutive expression of FGFR-1 allowed binding of FGF-2 and AIdF-2 and inhibition of the proliferation of NBT-II cells. AIdF-1 and AIdF-2 induced angiogenesis in the corneal pocket assay. Although FGFR-1 dimerization achieved by AIdF-2 injection led to highly differentiated and smaller NBT-II tumors, no sign of reduction of tumor angiogenesis was observed, thus suggesting that endothelial cells are resistant to FGF.

  4. Analysis of coding-polymorphisms in NOTCH-related genes reveals NUMBL poly-glutamine repeat to be associated with schizophrenia in Brazilian and Danish subjects

    DEFF Research Database (Denmark)

    Passos Gregorio, Sheila; Gattaz, Wagner F; Tavares, Hildeberto

    2006-01-01

    Abnormality in neurodevelopment is one of the most robust hypotheses on the etiology of schizophrenia and has found substantial support from brain imaging and genetic studies. Neurodevelopmental processes involve several signaling pathways, including the Notch, but little is known at present...

  5. Analysis of coding-polymorphisms in NOTCH-related genes reveals NUMBL poly-glutamine repeat to be associated with schizophrenia in Brazilian and Danish subjects

    DEFF Research Database (Denmark)

    Passos Gregorio, Sheila; Gattaz, Wagner F; Tavares, Hildeberto

    2006-01-01

    Abnormality in neurodevelopment is one of the most robust hypotheses on the etiology of schizophrenia and has found substantial support from brain imaging and genetic studies. Neurodevelopmental processes involve several signaling pathways, including the Notch, but little is known at present rega...

  6. High molecular weight FGF2: the biology of a nuclear growth factor

    Czech Academy of Sciences Publication Activity Database

    Chlebová, K.; Bryja, Vítězslav; Dvořák, Petr; Kozubík, Alois; Wilcox, W.R.; Krejčí, Pavel

    2009-01-01

    Roč. 66, č. 2 (2009), s. 225-235 ISSN 1420-682X Grant - others:GA MŠk(CZ) LC06077 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : high molecular weight * FGF2 * nuclear Subject RIV: BO - Biophysics Impact factor: 6.090, year: 2009

  7. Engineered FGF-2 expression induces glandular epithelial hyperplasia in the murine prostatic dorsal lobe.

    NARCIS (Netherlands)

    Takahashi, N.; Takeuchi, T.; Nishimatsu, H.; Kamijo, T.; Tomita, K.; Schalken, J.A.; Teshima, S.; Kitamura, T.

    2004-01-01

    OBJECTIVE: It is known that androgens and stromal-epithelial interactions are required for the formation and growth of the prostate. FGF-2 is overexpressed in prostatic stromal cells in benign prostatic hypertrophy (BPH)/prostate cancer. This supports the paracrine/autocrine growth of prostatic

  8. Dynamic relationship of the epithelium and mesenchyme during salivary gland initiation: the role of Fgf10

    Czech Academy of Sciences Publication Activity Database

    Wells, K. L.; Gaete, M.; Matalová, Eva; Deutsch, D.; Rice, D.; Tucker, A. S.

    2013-01-01

    Roč. 2, č. 10 (2013), s. 981-989 ISSN 2046-6390 R&D Projects: GA ČR GAP304/11/1418 Grant - others:AV ČR(CZ) M200451201 Institutional support: RVO:67985904 Keywords : salivary gland * Fgf10 * epithelial-mesenchymal interactions Subject RIV: EI - Biotechnology ; Bionics

  9. Sprouty Genes Control Diastema Tooth Development via Bidirectional Antagonism of Epithelial-Mesenchymal FGF Signaling

    Czech Academy of Sciences Publication Activity Database

    Klein, O.D.; Minowada, G.; Peterková, Renata; Kangas, A.; Yu, B.D.; Lesot, H.; Peterka, Miroslav; Jernvall, J.; Martin, G.R.

    2006-01-01

    Roč. 11, - (2006), s. 181-190 ISSN 1534-5807 R&D Projects: GA ČR GA304/05/2665; GA MŠk OC B23.002 Institutional research plan: CEZ:AV0Z50390512 Keywords : Sprouty Genes * FGF Sognaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.523, year: 2006

  10. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling.

    Science.gov (United States)

    Liu, Chao; Gu, Shuping; Sun, Cheng; Ye, Wenduo; Song, Zhongchen; Zhang, Yanding; Chen, YiPing

    2013-11-01

    Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.

  11. Muscle mitochondrial stress-induced metabolic adaptations do not require FGF21 action

    NARCIS (Netherlands)

    Schothorst, van Evert; Ost, Mario; Stelt, van der Inge; Klaus, Susanne; Keijer, Jaap

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which was recently discovered as stress-induced myokine and common denominator of muscle mitochondrial disease. However, its precise function and pathophysiological relevance remains unknown. Here we demonstrate that white adipose

  12. FGF signaling refines Wnt gradients to regulate the patterning of taste papillae

    Czech Academy of Sciences Publication Activity Database

    Procházková, Michaela; Hakkinen, T.J.; Procházka, Jan; Špoutil, František; Jheon, A.H.; Ahn, Y.; Krumlauf, R.; Jernvall, J.; Klein, O. D.

    2017-01-01

    Roč. 144, č. 12 (2017), s. 2212-2221 ISSN 0950-1991 R&D Projects: GA MŠk(CZ) LM2015040 Institutional support: RVO:68378050 Keywords : FGF * Wnt * Tongue * Taste papilla Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 5.843, year: 2016

  13. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  14. The effects of income on mental health: evidence from the social security notch.

    Science.gov (United States)

    Golberstein, Ezra

    2015-03-01

    Mental health is a key component of overall wellbeing and mental disorders are relatively common, including among older adults. Yet the causal effect of income on mental health status among older adults is poorly understood. This paper considers the effects of a major source of transfer income, Social Security retirement benefits, on the mental health of older adults. The Social Security benefit "Notch" is as a large, permanent, and exogenous shock to Social Security income in retirement. The "Notch" is used to identify the causal effect of Social Security income on mental health among older ages using data from the AHEAD cohort of the Health and Retirement Study. We find that increases in Social Security income significantly improve mental health status and the likelihood of a psychiatric diagnosis for women, but not for men. The effects of income on mental health for older women are statistically significant and meaningful in magnitude. While this is one of the only studies to use plausibly exogenous variation in household income to identify the effect of income on mental health, a limitation of this work is that the results only directly pertain to lower-education households. Public policy proposals that alter retirement benefits for the elderly may have important effects on the mental health of older adults.

  15. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Espinoza I

    2013-09-01

    Full Text Available Ingrid Espinoza,1,2 Radhika Pochampally,1,2 Fei Xing,1 Kounosuke Watabe,1,3 Lucio Miele1,4 1Cancer Institute, 2Department of Biochemistry, 3Department of Microbiology, 4Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. Keywords: Notch signaling, EMT, cancer stem cells, mesenchymal stem cells, metastases, Notch inhibitors

  16. Optical stress investigations of notched bars with superimposed types of loads

    International Nuclear Information System (INIS)

    Richard, H.A.; Theis, W.

    1982-01-01

    Starting from the notch effect for various types of load, notch stresses are determined by optical methods for superimposed tensile and shearing stress and for superimposed tensile and bending stress. The superimposed stresses are induced by a device developed at the Technical Mechanics Department of Kaiserslautern University; only tensile stress needs to be applied to this testing device. The investigations have shown that in notched bars subject to superimposed tensile and shearing stress, stress increases will be higher than the maximum values of the two types of stress. For superimposed tensile and bending stress, notches on the outer side of the test piece and eccentric notches on the inner side may lead to a considerable stress increase. However, the stress distribution can be improved by an optimum arrangement of notches. (orig.) [de

  17. Fibroblast growth factor 21 (FGF21 is robustly induced by ethanol and has a protective role in ethanol associated liver injury

    Directory of Open Access Journals (Sweden)

    Bhavna N. Desai

    2017-11-01

    Conclusions: Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.

  18. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242.

    Science.gov (United States)

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia.

  19. Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning

    Science.gov (United States)

    Nutt, Stephen L.; Dingwell, Kevin S.; Holt, Christine E.; Amaya, Enrique

    2001-01-01

    Signal transduction through the FGF receptor is essential for the specification of the vertebrate body plan. Blocking the FGF pathway in early Xenopus embryos inhibits mesoderm induction and results in truncation of the anterior–posterior axis. The Drosophila gene sprouty encodes an antagonist of FGF signaling, which is transcriptionally induced by the pathway, but whose molecular functions are poorly characterized. We have cloned Xenopus sprouty2 and show that it is expressed in a similar pattern to known FGFs and is dependent on the FGF/Ras/MAPK pathway for its expression. Overexpression of Xsprouty2 in both embryos and explant assays results in the inhibition of the cell movements of convergent extension. Although blocking FGF/Ras/MAPK signaling leads to an inhibition of mesodermal gene expression, these markers are unaffected by Xsprouty2, indicating that mesoderm induction and patterning occurs normally in these embryos. Finally, using Xenopus oocytes we show that Xsprouty2 is an intracellular antagonist of FGF-dependent calcium signaling. These results provide evidence for at least two distinct FGF-dependent signal transduction pathways: a Sprouty-insensitive Ras/MAPK pathway required for the transcription of most mesodermal genes, and a Sprouty-sensitive pathway required for coordination of cellular morphogenesis. PMID:11331610

  20. The FGF-4 promoter is required for transformation and is active in both embryonal and somatic cells.

    Science.gov (United States)

    Lucas, J M; Bryans, M; Lo, K; Wilkie, N M; Freshney, M; Thornton, D; Lang, J C

    1994-01-01

    We report the independent isolation of a rearranged FGF-4 gene from a patient with chronic myeloid leukaemia. We show that the FGF-4 gene has been truncated 30 nucleotides 3' to the coding sequence and has been fused to the RNA processing signals from a putative unknown gene on chromosome 15. We demonstrate that the promoter region of the FGF-4 gene is active in NIH3T3 cells and is indeed necessary for transformation. Using the luciferase reporter assay we have shown that the FGF-4 5' flanking sequences possess easily detectable promoter activity in both F9 and HeLa cell lines. 5' deletion analysis of the FGF-4 promoter has delineated regions containing cis-acting elements of functional importance. These regulatory regions are common to both embryonal and somatic cell lines. Electrophoretic mobility shift assay, using nuclear extracts from F9 and HeLa cells, has allowed detection of DNA-protein interactions occurring in the functionally significant regions. Subsequent comparison of the human and murine FGF-4 promoters show that the regions of functional significance are highly conserved. We suggest that the FGF-4 gene may be suppressed through a distal suppressor locus and becomes active when separated from this suppressor.

  1. Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints.

    Science.gov (United States)

    Hill, Cristal M; Laeger, Thomas; Albarado, Diana C; McDougal, David H; Berthoud, Hans-Rudolf; Münzberg, Heike; Morrison, Christopher D

    2017-08-15

    Dietary protein restriction increases adipose tissue uncoupling protein 1 (UCP1), energy expenditure and food intake, and these effects require the metabolic hormone fibroblast growth factor 21 (FGF21). Here we test whether the induction of energy expenditure during protein restriction requires UCP1, promotes a resistance to cold stress, and is dependent on the concomitant hyperphagia. Wildtype, Ucp1-KO and Fgf21-KO mice were placed on control and low protein (LP) diets to assess changes in energy expenditure, food intake and other metabolic endpoints. Deletion of Ucp1 blocked LP-induced increases in energy expenditure and food intake, and exacerbated LP-induced weight loss. While LP diet increased energy expenditure and Ucp1 expression in an FGF21-dependent manner, neither LP diet nor the deletion of Fgf21 influenced sensitivity to acute cold stress. Finally, LP-induced energy expenditure occurred even in the absence of hyperphagia. Increased energy expenditure is a primary metabolic effect of dietary protein restriction, and requires both UCP1 and FGF21 but is independent of changes in food intake. However, the FGF21-dependent increase in UCP1 and energy expenditure by LP has no effect on the ability to acutely respond to cold stress, suggesting that LP-induced increases in FGF21 impact metabolic but not thermogenic endpoints.

  2. FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia

    Directory of Open Access Journals (Sweden)

    Kobberup Sune

    2008-01-01

    Full Text Available Abstract Background Interaction with the surrounding mesenchyme is necessary for development of endodermal organs, and Fibroblast growth factors have recently emerged as mesenchymal-expressed morphogens that direct endodermal morphogenesis. The fibroblast growth factor 10 (Fgf10 null mouse is characterized by the absence of lung bud development. Previous studies have shown that this requirement for Fgf10 is due in part to its role as a chemotactic factor during branching morphogenesis. In other endodermal organs Fgf10 also plays a role in regulating differentiation. Results Through gain-of-function analysis, we here find that FGF10 inhibits differentiation of the lung epithelium and promotes distalization of the embryonic lung. Ectopic expression of FGF10 in the lung epithelium caused impaired lung development and perinatal lethality in a transgenic mouse model. Lung lobes were enlarged due to increased interlobular distance and hyperplasia of the airway epithelium. Differentiation of bronchial and alveolar cell lineages was inhibited. The transgenic epithelium consisted predominantly of proliferating progenitor-like cells expressing Pro-surfactant protein C, TTF1, PEA3 and Clusterin similarly to immature distal tip cells. Strikingly, goblet cells developed within this arrested epithelium leading to goblet cell hyperplasia. Conclusion We conclude that FGF10 inhibits terminal differentiation in the embryonic lung and maintains the distal epithelium, and that excessive levels of FGF10 leads to metaplastic differentiation of goblet cells similar to that seen in chronic inflammatory diseases.

  3. Ex vivo analysis of the contribution of FGF10+cells to airway smooth muscle cell formation during early lung development.

    Science.gov (United States)

    El Agha, Elie; Kheirollahi, Vahid; Moiseenko, Alena; Seeger, Werner; Bellusci, Saverio

    2017-07-01

    Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10 + ) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10 + progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) c