WorldWideScience

Sample records for include fault systems

  1. ECH system developments including the design of an intelligent fault processor on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Ponce, D.; Lohr, J.; Tooker, J.F.; O'Neill, R.C.; Moeller, C.P.; Doane, J.L.; Noraky, S.; Dubovenko, K.; Gorelov, Y.A.; Cengher, M.; Penaflor, B.G.; Ellis, R.A.

    2011-01-01

    A new generation fault processor is in development which is intended to increase fault handling flexibility and reduce the number of incomplete DIII-D shots due to gyrotron faults. The processor, which is based upon a field programmable gate array device, will analyze signals for aberrant operation and ramp down high voltage to try to avoid hard faults. The processor will then attempt to ramp back up to an attainable operating point. The new generation fault processor will be developed during an expansion of the electron cyclotron heating (ECH) areas that will include the installation of a depressed collector gyrotron and associated equipment. Existing systems will also be upgraded. Testing of real-time control of the ECH launcher poloidal drives by the DIII-D plasma control system will be completed. The ECH control system software will be upgraded for increased scalability and to increase operator productivity. Resources permitting, all systems will receive an extra layer of interlocks for the filament and magnet power supplies, added shielding for the tank electronics, programmable filament boost shape for long pulses, and electronics upgrades for the installation of the advanced fault processor.

  2. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  3. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...... isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated...

  4. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  5. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  6. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...... in a standard setup and a synthesis method for fault detectors is given. Further, fault detection problems with both parametric faults and faults described by external input signals are also shortly considered....

  7. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  8. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  9. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  10. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  11. Fault analysis of multichannel spacecraft power systems

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center proposes to implement computer-controlled fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Elements under study include the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power system faults is being performed to yield a list of the most common power system faults. The results of this study will be applied to a multichannel high-voltage DC spacecraft power system called the large autonomous spacecraft electrical power system (LASEPS) breadboard. The results of the power system fault study and the planned implementation of these faults into the LASEPS breadboard are described.

  12. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  13. A master system for power system fault phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Myung Ho; Jang, Sang Ho; Hong, Joon Hee; Min, Wan Ki; Yoo, Chang Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    This report includes as follows - Real time digital simulator - Remote measuring, analyzing and reproducing system of power system fault data -Power system reduction method program using EMTP -Test system for protection device. (author). 22 refs., 38 figs.

  14. Row fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  15. Estimation of Faults in DC Electrical Power System

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper demonstrates a novel optimizationbased approach to estimating fault states in a DC power system. The model includes faults changing the circuit topology...

  16. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  17. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec......This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture...... in connection with faulty systems including input saturation gives an additional YJBK transfer function related to the input saturation. In the fault free case, this additional YJBK transfer function can be applied directly for optimizing the feedback loop around the input saturation. In the faulty case......, the design problem is a mixed design problem involved both parametric faults and input saturation....

  18. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    Directory of Open Access Journals (Sweden)

    YANG GYUN OH

    2013-11-01

    Full Text Available For the improvement of APR1400 Diverse Protection System (DPS design, the Advanced DPS (ADPS has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF within the safety I&C systems, several fault avoidance design features have been applied in the ADPS. The fault avoidance design features include the changes to the system software classification, communication methods, equipment platform, MMI equipment, etc. In addition, the fault detection, location, containment, and recovery processes have been incorporated in the ADPS design. Therefore, it is expected that the ADPS can provide an enhanced fault tolerance capability against the possible faults within the system and its input/output equipment, and the CCF of safety systems.

  19. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based o...

  20. Expert System Detects Power-Distribution Faults

    Science.gov (United States)

    Walters, Jerry L.; Quinn, Todd M.

    1994-01-01

    Autonomous Power Expert (APEX) computer program is prototype expert-system program detecting faults in electrical-power-distribution system. Assists human operators in diagnosing faults and deciding what adjustments or repairs needed for immediate recovery from faults or for maintenance to correct initially nonthreatening conditions that could develop into faults. Written in Lisp.

  1. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  2. Fault detection and isolation for complex system

    Science.gov (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  3. Transient Faults in Computer Systems

    Science.gov (United States)

    Masson, Gerald M.

    1993-01-01

    A powerful technique particularly appropriate for the detection of errors caused by transient faults in computer systems was developed. The technique can be implemented in either software or hardware; the research conducted thus far primarily considered software implementations. The error detection technique developed has the distinct advantage of having provably complete coverage of all errors caused by transient faults that affect the output produced by the execution of a program. In other words, the technique does not have to be tuned to a particular error model to enhance error coverage. Also, the correctness of the technique can be formally verified. The technique uses time and software redundancy. The foundation for an effective, low-overhead, software-based certification trail approach to real-time error detection resulting from transient fault phenomena was developed.

  4. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    Science.gov (United States)

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Architecting Fault-Tolerant Software Systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are

  6. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  7. Method and system for environmentally adaptive fault tolerant computing

    Science.gov (United States)

    Copenhaver, Jason L. (Inventor); Jeremy, Ramos (Inventor); Wolfe, Jeffrey M. (Inventor); Brenner, Dean (Inventor)

    2010-01-01

    A method and system for adapting fault tolerant computing. The method includes the steps of measuring an environmental condition representative of an environment. An on-board processing system's sensitivity to the measured environmental condition is measured. It is determined whether to reconfigure a fault tolerance of the on-board processing system based in part on the measured environmental condition. The fault tolerance of the on-board processing system may be reconfigured based in part on the measured environmental condition.

  8. Fault Diagnosis for Electrical Distribution Systems using Structural Analysis

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Blanke, Mogens; Østergaard, Jacob

    2014-01-01

    Fault-tolerance in electrical distribution relies on the ability to diagnose possible faults and determine which components or units cause a problem or are close to doing so. Faults include defects in instrumentation, power generation, transformation and transmission. The focus of this paper...... is the design of efficient diagnostic algorithms, which is a prerequisite for fault-tolerant control of power distribution. Diagnosis in a grid depend on available analytic redundancies, and hence on network topology. When topology changes, due to earlier fault(s) or caused by maintenance, analytic redundancy...... analysis of power systems, it demonstrates detection and isolation of failures in a network, and shows how typical faults are diagnosed. Nonlinear fault simulations illustrate the results....

  9. Guideliness for system modeling: fault tree [analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon; Kang, Dae Il; Hwang, Mee Jeong

    2004-07-01

    This document, the guidelines for system modeling related to Fault Tree Analysis(FTA), is intended to provide the guidelines with the analyzer to construct the fault trees in the level of the capability category II of ASME PRA standard. Especially, they are to provide the essential and basic guidelines and the related contents to be used in support of revising the Ulchin 3 and 4 PSA model for risk monitor within the capability category II of ASME PRA standard. Normally the main objective of system analysis is to assess the reliability of system modeled by Event Tree Analysis (ETA). A variety of analytical techniques can be used for the system analysis, however, FTA method is used in this procedures guide. FTA is the method used for representing the failure logic of plant systems deductively using AND, OR or NOT gates. The fault tree should reflect all possible failure modes that may contribute to the system unavailability. This should include contributions due to the mechanical failures of the components, Common Cause Failures (CCFs), human errors and outages for testing and maintenance. This document identifies and describes the definitions and the general procedures of FTA and the essential and basic guidelines for reving the fault trees. Accordingly, the guidelines for FTA will be capable to guide the FTA to the level of the capability category II of ASME PRA standard.

  10. Solar Dynamic Power System Fault Diagnosis

    Science.gov (United States)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  11. Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs.

    Science.gov (United States)

    Zhong, Guang-Xin; Yang, Guang-Hong

    2015-09-01

    This paper addresses the fault detection problem of switched systems with servo inputs and sensor stuck faults. The attention is focused on designing a switching law and its associated fault detection filters (FDFs). The proposed switching law uses only the current states of FDFs, which guarantees the residuals are sensitive to the servo inputs with known frequency ranges in faulty cases and robust against them in fault-free case. Thus, the arbitrarily small sensor stuck faults, including outage faults can be detected in finite-frequency domain. The levels of sensitivity and robustness are measured in terms of the finite-frequency H- index and l2-gain. Finally, the switching law and FDFs are obtained by the solution of a convex optimization problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  13. Release fault: A variety of cross fault in linked extensional fault systems, in the Sergipe-Alagoas Basin, NE Brazil

    Science.gov (United States)

    Destro, Nivaldo

    1995-05-01

    Two types of cross faults are herein recognized: transfer faults and the newly termed release faults. Transfer faults form where cross faults connect distinct normal faults and horizontal displacements predominate over vertical ones. In contrast, release faults form where cross faults associated with individual normal faults die out within the hangingwall before connecting to other normal faults, and have predominantly vertical displacements. Release faults are geometrically required to accommodate variable displacements along the strike of a normal fault. Thus, they form to release the bending stresses in the hangingwall, and do not cut normal fault planes nor detachment surfaces at depth. Release faults have maximum throws adjacent to normal faults, and may be nearly perpendicular or obliquely oriented to the strike of the latter. Such geometry appears not to depend upon pre-existing weaknesses, but such variable orientation to normal faults is an inherent property of release faults. Release faults commonly appear as simple normal faults in seismic sections, without implying extension along the strike of rift and basins. Three-dimensional strain deformation occurs in the hangingwall only between the terminations of an individual normal fault, but regionally, release faulting is associated with plane strain deformation in linked extensional fault systems.

  14. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  15. Fault Severity Evaluation and Improvement Design for Mechanical Systems Using the Fault Injection Technique and Gini Concordance Measure

    Directory of Open Access Journals (Sweden)

    Jianing Wu

    2014-01-01

    Full Text Available A new fault injection and Gini concordance based method has been developed for fault severity analysis for multibody mechanical systems concerning their dynamic properties. The fault tree analysis (FTA is employed to roughly identify the faults needed to be considered. According to constitution of the mechanical system, the dynamic properties can be achieved by solving the equations that include many types of faults which are injected by using the fault injection technique. Then, the Gini concordance is used to measure the correspondence between the performance with faults and under normal operation thereby providing useful hints of severity ranking in subsystems for reliability design. One numerical example and a series of experiments are provided to illustrate the application of the new method. The results indicate that the proposed method can accurately model the faults and receive the correct information of fault severity. Some strategies are also proposed for reliability improvement of the spacecraft solar array.

  16. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  17. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  18. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  19. Investigation of fault interaction and growth in Mygdonia basin (Greece) fault system

    Science.gov (United States)

    Gkarlaouni, Charikleia; Kilias, Adamantios; Papadimitriou, Eleftheria; Lasocki, Stanislaw; Karakostas, Vasileios

    2013-04-01

    Nowadays there is a scientific debate upon the strong correlation that exists between the earthquake clusters and the active seismogenic fault systems since they both constitute populations that participate in processes that include different states of initiation, interaction and coalescence. Since faults grow by the increase in their displacement and their length, the degree of fault interaction between two neighbour segments is expressed by scaling laws describing the fault dimensions, such as the displacement and the length. The distribution of the displacement along the fault trace, follows a bell-shaped pattern according to Dugdale model and is often a key to quantify the degree of interaction between two different fault segments since it gives an insight to the stage of growth and linkage between faults. In our case the fault attributes of Mygdonia basin that is located in the northern part of the Greek mainland are investigated under the prism of the scaling properties of its major active faults. Important seismogenic fault segments such as Lagina - Agios Vasilios, Gerakarou - Stivos and Sohos fault that define the boundaries of the basin and have generated important earthquakes in the past are investigated. Displacement - length profiles were constrained for the major fault segments, using digital elevation models (DEMs) since intense tectonics is etched upon the topography of the area such as to provide valuable seismotectonic information. In our case scarp heights are used for the approximation of fault displacement. Structural information, concerning displacement measurements on active fault scarps, and slip lineaments onto fault expressions are collected in-situ from field surveys. The information based on the field observations, justify the results coming out from the D.E.M. analysis. The final results are compared to conclusions derived from the investigation of different fault systems and the influence on the hazard assessment is discussed. This work

  20. Model-based fault diagnosis in PEM fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Escobet, T.; de Lira, S.; Puig, V.; Quevedo, J. [Automatic Control Department (ESAII), Universitat Politecnica de Catalunya (UPC), Rambla Sant Nebridi 10, 08222 Terrassa (Spain); Feroldi, D.; Riera, J.; Serra, M. [Institut de Robotica i Informatica Industrial (IRI), Consejo Superior de Investigaciones Cientificas (CSIC), Universitat Politecnica de Catalunya (UPC) Parc Tecnologic de Barcelona, Edifici U, Carrer Llorens i Artigas, 4-6, Planta 2, 08028 Barcelona (Spain)

    2009-07-01

    In this work, a model-based fault diagnosis methodology for PEM fuel cell systems is presented. The methodology is based on computing residuals, indicators that are obtained comparing measured inputs and outputs with analytical relationships, which are obtained by system modelling. The innovation of this methodology is based on the characterization of the relative residual fault sensitivity. To illustrate the results, a non-linear fuel cell simulator proposed in the literature is used, with modifications, to include a set of fault scenarios proposed in this work. Finally, it is presented the diagnosis results corresponding to these fault scenarios. It is remarkable that with this methodology it is possible to diagnose and isolate all the faults in the proposed set in contrast with other well known methodologies which use the binary signature matrix of analytical residuals and faults. (author)

  1. Remote online machine fault diagnostic system

    Science.gov (United States)

    Pan, Min-Chun; Li, Po-Ching

    2004-07-01

    The study aims at implementing a remote online machine fault diagnostic system built up in the architecture of both the BCB software-developing environment and Internet transmission communication. Variant signal-processing computation schemes for signal analysis and pattern recognition purposes are implemented in the BCB graphical user interface. Hence, machine fault diagnostic capability can be extended by using the socket application program interface as the TCP/IP protocol. In the study, the effectiveness of the developed remote diagnostic system is validated by monitoring a transmission-element test rig. A complete monitoring cycle includes data acquisition, signal processing, feature extraction, pattern recognition through the ANNs, and online video monitoring, is demonstrated.

  2. Expert systems for real-time monitoring and fault diagnosis

    Science.gov (United States)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  3. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  4. Results of an electrical power system fault study

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  5. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  6. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon

    2004-02-01

    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  7. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...... frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...

  8. Iterative Self Organized Data Algorithm for Fault Classification of Mechanical System

    OpenAIRE

    Jayamala K. Patil; P. B. Ghewari; S. S. Nagtilak

    2011-01-01

    The challenging issue for mechanical industry is to develop fast & reliable fault diagnosis systems before total breakdown of machine. Fault diagnosis & classification of faults of mechanical systems is a difficult task. It improves productivity & reduces cost of production. This paper presents an approach for classification of commonly observed faults in gears of mechanical system. These faults include weared gear, gear with one tooth broken & gear with crack on one tooth. The Power Spectral...

  9. Fault Diagnosis of Power Systems Using Intelligent Systems

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E. , Jr.

    1996-01-01

    The power system operator's need for a reliable power delivery system calls for a real-time or near-real-time Al-based fault diagnosis tool. Such a tool will allow NASA ground controllers to re-establish a normal or near-normal degraded operating state of the EPS (a DC power system) for Space Station Alpha by isolating the faulted branches and loads of the system. And after isolation, re-energizing those branches and loads that have been found not to have any faults in them. A proposed solution involves using the Fault Diagnosis Intelligent System (FDIS) to perform near-real time fault diagnosis of Alpha's EPS by downloading power transient telemetry at fault-time from onboard data loggers. The FDIS uses an ANN clustering algorithm augmented with a wavelet transform feature extractor. This combination enables this system to perform pattern recognition of the power transient signatures to diagnose the fault type and its location down to the orbital replaceable unit. FDIS has been tested using a simulation of the LeRC Testbed Space Station Freedom configuration including the topology from the DDCU's to the electrical loads attached to the TPDU's. FDIS will work in conjunction with the Power Management Load Scheduler to determine what the state of the system was at the time of the fault condition. This information is used to activate the appropriate diagnostic section, and to refine if necessary the solution obtained. In the latter case, if the FDIS reports back that it is equally likely that the faulty device as 'start tracker #1' and 'time generation unit,' then based on a priori knowledge of the system's state, the refined solution would be 'star tracker #1' located in cabinet ITAS2. It is concluded from the present studies that artificial intelligence diagnostic abilities are improved with the addition of the wavelet transform, and that when such a system such as FDIS is coupled to the Power Management Load Scheduler, a faulty device can be located and isolated

  10. Estimation of Faults in DC Electrical Power System

    Science.gov (United States)

    Gorinevsky, Dimitry; Boyd, Stephen; Poll, Scott

    2009-01-01

    This paper demonstrates a novel optimization-based approach to estimating fault states in a DC power system. Potential faults changing the circuit topology are included along with faulty measurements. Our approach can be considered as a relaxation of the mixed estimation problem. We develop a linear model of the circuit and pose a convex problem for estimating the faults and other hidden states. A sparse fault vector solution is computed by using 11 regularization. The solution is computed reliably and efficiently, and gives accurate diagnostics on the faults. We demonstrate a real-time implementation of the approach for an instrumented electrical power system testbed, the ADAPT testbed at NASA ARC. The estimates are computed in milliseconds on a PC. The approach performs well despite unmodeled transients and other modeling uncertainties present in the system.

  11. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  12. Comprehensive Analysis of Fault Diagnosis Methods for Aluminum Electrolytic Control System

    Directory of Open Access Journals (Sweden)

    Jie-jia Li

    2014-01-01

    Full Text Available This paper established the fault diagnosis system of aluminum electrolysis, according to the characteristics of the faults in aluminum electrolysis. This system includes two subsystems; one is process fault subsystem and the other is fault subsystem. Process fault subsystem includes the subneural network layer and decision fusion layer. Decision fusion neural network verifies the diagnosis result of the subneural network by the information transferring over the network and gives the decision of fault synthetically. EMD algorithm is used for data preprocessing of current signal in stator of the fault subsystem. Wavelet decomposition is used to extract feature on current signal in the stator; then, the system inputs the feature to the rough neural network for fault diagnosis and fault classification. The rough neural network gives the results of fault diagnosis. The simulation results verify the feasibility of the method.

  13. Software fault tolerance in computer operating systems

    Science.gov (United States)

    Iyer, Ravishankar K.; Lee, Inhwan

    1994-01-01

    This chapter provides data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.

  14. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  15. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  16. Fault diagnosis system for tapped power transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A.; Talaat, H.A. [Elect. Power and Machines Dept., Ain Shams Univ., Cairo (Egypt); Khamis, E.A. [EEA, Nasr City, Cairo (Egypt)

    2010-05-15

    This paper presents a design for a fault diagnosis system (FDS) for tapped HV/EHV power transmission lines. These lines have two different protection zones. The proposed approach reduces the cost and the complexity of the FDS for these types of lines. The FDS consists basically of fifteen artificial neural networks (ANNs). The FDS basic objectives are mainly: (1) the detection of the system fault; (2) the localization of the faulted zone; (3) the classification of the fault type; and finally (4) the identification of the faulted phase. This FDS is structured in a three hierarchical levels. In the first level, a preprocessing unit to the input data is performed. An ANN, in the second level, is designed in order to detect and zone localize the line faults. In the third level, two zone diagnosis systems (ZDS) are designed. Each ZDS is dedicated to one zone and consists of seven parallel-cascaded ANN's. Four-parallel ANN's are designed in order to achieve the fault type classification. While, the other three cascaded ANN's are designed mainly for the selection of the faulted phase. A smoothing unit is also configured to smooth out the output response of the proposed FDS. The proposed FDS is designed and evaluated using the local measurements of the three-phase voltage and current samples acquired at only one side. The sampling rate was taken 16 samples per cycle of the power frequency. Data window of 4 samples was utilized. These samples were generated using the EMTP simulation program, applied to the High-Dam/Cairo 500 kV tapped transmission line. All possible shunt fault types were considered. The effect of fault location and fault incipience time were also included. Moreover, the effect of load and capacitor switchings on the FDS performance was investigated. Testing results have proved the capability as well as the effectiveness of the proposed FDS. (author)

  17. Effect analysis of faults in digital I and C systems of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun

    2014-01-01

    A reliability analysis of digital instrumentation and control (I and C) systems in nuclear power plants has been introduced as one of the important elements of a probabilistic safety assessment because of the unique characteristics of digital I and C systems. Digital I and C systems have various features distinguishable from those of analog I and C systems such as software and fault-tolerant techniques. In this work, the faults in a digital I and C system were analyzed and a model for representing the effects of the faults was developed. First, the effects of the faults in a system were analyzed using fault injection experiments. A software-implemented fault injection technique in which faults can be injected into the memory was used based on the assumption that all faults in a system are reflected in the faults in the memory. In the experiments, the effect of a fault on the system output was observed. In addition, the success or failure in detecting the fault by fault-tolerant functions included in the system was identified. Second, a fault tree model for representing that a fault is propagated to the system output was developed. With the model, it can be identified how a fault is propagated to the output or why a fault is not detected by fault-tolerant techniques. Based on the analysis results of the proposed method, it is possible to not only evaluate the system reliability but also identify weak points of fault-tolerant techniques by identifying undetected faults. The results can be reflected in the designs to improve the capability of fault-tolerant techniques. (author)

  18. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  19. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  20. A distributed fault-detection and diagnosis system using on-line parameter estimation

    Science.gov (United States)

    Guo, T.-H.; Merrill, W.; Duyar, A.

    1991-01-01

    The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.

  1. Fault detection and diagnosis of photovoltaic systems

    Science.gov (United States)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  2. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...... occur in the system, a fault separation in the fault signature matrix can be obtained. Then the single elements in the matrix only depend of a reduced number of parametric faults. This can directly be applied for fault isolation. If it is not possible to obtain this separation, it is shown how the fault...... signature matrix can be applied for a dynamical fault isolation, i.e. fault isolation based on the dynamic characteristic of the fault signature matrix as function of the different parametric faults....

  3. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  4. Statistical fault detection in photovoltaic systems

    KAUST Repository

    Garoudja, Elyes

    2017-05-08

    Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array\\'s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.

  5. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    , the estimate of fault is used to compensate for the effect of the fault. Hence, using the estimate of fault, a fault tolerant controller using a piecewise linear static output feedback is designed such that it stabilizes the system and provides an upper bound on the H∞ performance of the faulty system......In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then....... Sufficient conditions for the existence of robust fault estimator and fault tolerant controller are derived in terms of linear matrix inequalities. Upper bounds on the H∞ performance can be minimized by solving convex optimization problems with linear matrix inequality constraints. The efficiency...

  6. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...

  7. Sequential fault diagnosis for mechatronics system using diagnostic hybrid bond graph and composite harmony search

    Directory of Open Access Journals (Sweden)

    Ming Yu

    2015-12-01

    Full Text Available This article proposes a sequential fault diagnosis method to handle asynchronous distinct faults using diagnostic hybrid bond graph and composite harmony search. The faults under consideration include fault mode, abrupt fault, and intermittent fault. The faults can occur in different time instances, which add to the difficulty of decision making for fault diagnosis. This is because the earlier occurred fault can exhibit fault symptom which masks the fault symptom of latter occurred fault. In order to solve this problem, a sequential identification algorithm is developed in which the identification task is reactivated based on two conditions. The first condition is that the latter occurred fault has at least one inconsistent coherence vector element which is consistent in coherence vector of the earlier occurred fault, and the second condition is that the existing fault coherence vector has the ability to hide other faults and the second-level residual exceeds the threshold. A new composite harmony search which is capable of handling continuous variables and binary variables simultaneously is proposed for identification purpose. Experiments on a mobile robot system are conducted to assess the proposed sequential fault diagnosis algorithm.

  8. Fault-tolerant power distribution system

    Science.gov (United States)

    Volp, Jeffrey A. (Inventor)

    1987-01-01

    A fault-tolerant power distribution system which includes a plurality of power sources and a plurality of nodes responsive thereto for supplying power to one or more loads associated with each node. Each node includes a plurality of switching circuits, each of which preferably uses a power field effect transistor which provides a diode operation when power is first applied to the nodes and which thereafter provides bi-directional current flow through the switching circuit in a manner such that a low voltage drop is produced in each direction. Each switching circuit includes circuitry for disabling the power field effect transistor when the current in the switching circuit exceeds a preselected value.

  9. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...... and Kucera) parameterization. Conditions are given for exact detection and isolation of parametric faults in closed-loop uncertain systems....

  10. Robust filtering and fault detection of switched delay systems

    CERN Document Server

    Wang, Dong; Wang, Wei

    2013-01-01

    Switched delay systems appear in a wide field of applications including networked control systems, power systems, memristive systems. Though the large amount of ideas with respect to such systems have generated, until now, it still lacks a framework to focus on filter design and fault detection issues which are relevant to life safety and property loss. Beginning with the comprehensive coverage of the new developments in the analysis and control synthesis for switched delay systems, the monograph not only provides a systematic approach to designing the filter and detecting the fault of switched delay systems, but it also covers the model reduction issues. Specific topics covered include: (1) Arbitrary switching signal where delay-independent and delay-dependent conditions are presented by proposing a linearization technique. (2) Average dwell time where a weighted Lyapunov function is come up with dealing with filter design and fault detection issues beside taking model reduction problems. The monograph is in...

  11. Soft-Fault Detection Technologies Developed for Electrical Power Systems

    Science.gov (United States)

    Button, Robert M.

    2004-01-01

    The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.

  12. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... by the second grid fault, so that the transient rotor and stator current and torque fluctuations under the second grid fault may be influenced by the characteristic of the first grid fault, including the voltage dips level and the grid fault angle, as well as the duration between two faults. The mathematical...

  13. Fault Detection for Quantized Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Wei-Wei Che

    2013-01-01

    Full Text Available The fault detection problem in the finite frequency domain for networked control systems with signal quantization is considered. With the logarithmic quantizer consideration, a quantized fault detection observer is designed by employing a performance index which is used to increase the fault sensitivity in finite frequency domain. The quantized measurement signals are dealt with by utilizing the sector bound method, in which the quantization error is treated as sector-bounded uncertainty. By using the Kalman-Yakubovich-Popov (GKYP Lemma, an iterative LMI-based optimization algorithm is developed for designing the quantized fault detection observer. And a numerical example is given to illustrate the effectiveness of the proposed method.

  14. Paleoseismology of Sinistral-Slip Fault System, Focusing on the Mae Chan Fault, on the Shan Plateau, SE Asia.

    Science.gov (United States)

    Curtiss, E. R.; Weldon, R. J.; Wiwegwin, W.; Weldon, E. M.

    2017-12-01

    The Shan Plateau, which includes portions of Myanmar, China, Thailand, Laos, and Vietnam lies between the dextral NS-trending Sagaing and SE-trending Red River faults and contains 14 active E-W sinistral-slip faults, including the Mae Chan Fault (MCF) in northern Thailand. The last ground-rupturing earthquake to occur on the broader sinistral fault system was the M6.8 Tarlay earthquake in Myanmar in March 2011 on the Nam Ma fault immediately north of the MCF the last earthquake to occur on the MCF was a M4.0 in the 5th century that destroyed the entire city of Wiang Yonok (Morley et al., 2011). We report on a trenching study of the MCF, which is part of a broader study to create a regional seismic hazard map of the entire Shan Plateau. By studying the MCF, which appears to be representative of the sinistral faults, and easy to work on, we hope to characterize both it and the other unstudied faults in the system. As part of a paleoseismology training course we dug two trenches at the Pa Tueng site on the MCF, within an offset river channel and the trenches exposed young sediment with abundant charcoal (in process of dating), cultural artifacts, and evidence for the last two (or three) ground-rupturing earthquakes on the fault. We hope to use the data from this site to narrow the recurrence interval, which is currently to be 2,000-4,000 years and the slip rate of 1-2 mm/year, being developed at other sites on the fault. By extrapolating the data of the MCF to the other faults we will have a better understanding of the whole fault system. Once we have characterized the MCF, we plan to use geomorphic offsets and strain rates from regional GPS to relatively estimate the activity of the other faults in this sinistral system.

  15. A fast fault classification technique for power systems

    OpenAIRE

    Nouri, H.; Wang, C.; Power Systems, Electronics and Control Research Lab

    2014-01-01

    This paper proposes a fast fault classification technique using three phase current signals for power systems. Digital Fourier Transform, the ‘Least Square’ method or the Kalman Filtering technique are used to extract fundamental frequency components of three phase fault currents. Fast fault classification can be achieved using the fault probability of three phases. Results from simulation work on EMTP have validated the proposed fault classification technique. The response time of the fault ...

  16. A Diagnostic System for Speed-Varying Motor Rotary Faults

    Directory of Open Access Journals (Sweden)

    Chwan-Lu Tseng

    2014-01-01

    Full Text Available This study proposed an intelligent rotary fault diagnostic system for motors. A sensorless rotational speed detection method and an improved dynamic structural neural network are used. Moreover, to increase the convergence speed of training, a terminal attractor method and a hybrid discriminant analysis are also adopted. The proposed method can be employed to detect the rotary frequencies of motors with varying speeds and can enhance the discrimination of motor faults. To conduct the experiments, this study used wireless sensor nodes to transmit vibration data and employed MATLAB to write codes for functional modules, including the signal processing, sensorless rotational speed estimation, neural network, and stochastic process control chart. Additionally, Visual Basic software was used to create an integrated human-machine interface. The experimental results regarding the test of equipment faults indicated that the proposed novel diagnostic system can effectively estimate rotational speeds and provide superior ability of motor fault discrimination with fast training convergence.

  17. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  18. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  19. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    device fault, DC line faults as well as AC grid faults. Special attention is given to the comparison of the corresponding fault diagnosis and fault-tolerant control approaches. Further, focus is dedicated to control/protection strategies and topologies with fault ride-though capability for MMC...... of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...... strategies of MMC-HVDC systems for the most common faults happened in MMC-HVDC systems covering MMC faults, DC side faults as well as AC side faults. An important part of this paper is devoted to a discussion of the vulnerable spots as well as failure mechanism of the MMC-HVDC system covering switching...

  20. Fault Detection for Shipboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran; Nielsen, Ulrik Dam

    2009-01-01

    In this paper a basic idea of a fault-tolerant monitoring and decision support system will be explained. Fault detection is an important part of the fault-tolerant design for in-service monitoring and decision support systems for ships. In the paper, a virtual example of fault detection...... will be presented for a containership with a real decision support system onboard. All possible faults can be simulated and detected using residuals and the generalized likelihood ratio (GLR) algorithm....

  1. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  2. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Expert system structures for fault detection in spaceborne power systems

    Science.gov (United States)

    Watson, Karan; Russell, B. Don; Hackler, Irene

    1988-01-01

    This paper presents an architecture for an expert system structure suitable for use with power system fault detection algorithms. The system described is not for the purpose of reacting to faults which have occurred, but rather for the purpose of performing on-line diagnostics and parameter evaluation to determine potential or incipient fault conditions. The system is also designed to detect high impedance or arcing faults which cannot be detected by conventional protection devices. This system is part of an overall monitoring computer hierarchy which would provide a full evaluation of the status of the power system and react to both incipient and catastrophic faults. An approximate hardware structure is suggested and software requirements are discussed. Modifications to CLIPS software, to capitalize on features offered by expert systems, are presented. It is suggested that such a system would have significant advantages over existing protection philosophy.

  4. Passive Fault-tolerant Control of Discrete-time Piecewise Affine Systems against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Izadi-Zamanabadi, Roozbeh; Bak, Thomas

    2012-01-01

    In this paper, we propose a new method for passive fault-tolerant control of discrete time piecewise affine systems. Actuator faults are considered. A reliable piecewise linear quadratic regulator (LQR) state feedback is designed such that it can tolerate actuator faults. A sufficient condition...

  5. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  6. Fast fault detection for power distribution systems

    OpenAIRE

    Öhrström, Magnus

    2003-01-01

    The main topic of this licentiate thesis is fast faultdetection. The thesis summaries the work performed in theproject“Fast fault detection for distributionsystems”. In the first chapters of the thesis the term“fast”is used in a general manner. The term is laterdefined based upon considerations and conclusions made in thefirst chapters and then related to a specific time. To be able to understand and appreciate why fast faultdetection is necessary, power system faults and theirconsequences ar...

  7. Dead sea transform fault system reviews

    CERN Document Server

    Garfunkel, Zvi; Kagan, Elisa

    2014-01-01

    The Dead Sea transform is an active plate boundary connecting the Red Sea seafloor spreading system to the Arabian-Eurasian continental collision zone. Its geology and geophysics provide a natural laboratory for investigation of the surficial, crustal and mantle processes occurring along transtensional and transpressional transform fault domains on a lithospheric scale and related to continental breakup. There have been many detailed and disciplinary studies of the Dead Sea transform fault zone during the last?20 years and this book brings them together.This book is an updated comprehensive coverage of the knowledge, based on recent studies of the tectonics, structure, geophysics, volcanism, active tectonics, sedimentology and paleo and modern climate of the Dead Sea transform fault zone. It puts together all this new information and knowledge in a coherent fashion.

  8. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  9. Fault diagnosis in sparse multiprocessor systems

    Science.gov (United States)

    Blough, Douglas M.; Sullivan, Gregory F.; Masson, Gerald M.

    1988-01-01

    The problem of fault diagnosis in multiprocessor systems is considered under a uniformly probabilistic model in which processors are faulty with probability p. This work focuses on minimizing the number of tests that must be conducted in order to correctly diagnose the state of every processor in the system with high probability. A diagnosis algorithm that can correctly diagnose the state of every processor with probability approaching one in a class of systems performing slightly greater than a linear number of tests is presented. A nearly matching lower bound on the number of tests required to achieve correct diagnosis in arbitrary systems is also proven. The number of tests required under this probabilistic model is shown to be significantly less than under a bounded-size fault set model. Because the number of tests that must be conducted is a measure of the diagnosis overhead, these results represent a dramatic improvement in the performance of system-level diagnosis technique.

  10. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    Science.gov (United States)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  11. Abstractions for Fault-Tolerant Distributed System Verification

    Science.gov (United States)

    Pike, Lee S.; Maddalon, Jeffrey M.; Miner, Paul S.; Geser, Alfons

    2004-01-01

    Four kinds of abstraction for the design and analysis of fault tolerant distributed systems are discussed. These abstractions concern system messages, faults, fault masking voting, and communication. The abstractions are formalized in higher order logic, and are intended to facilitate specifying and verifying such systems in higher order theorem provers.

  12. Industrial Cost-Benefit Assessment for Fault-tolerant Control Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Blanke, M.

    1998-01-01

    Economic aspects are decisive for industrial acceptance of research concepts including the promising ideas in fault tolerant control. Fault tolerance is the ability of a system to detect, isolate and accommodate a fault, such that simple faults in a sub-system do not develop into failures...... at a system level. In a design phase for an industrial system, possibilities span from fail safe design where any single point failure is accommodated by hardware, over fault-tolerant design where selected faults are handled without extra hardware, to fault-ignorant design where no extra precaution is taken...... against failure. The paper describes the assessments needed to find the right path for new industrial designs. The economic decisions in the design phase are discussed: cost of different failures, profits associated with available benefits, investments needed for development and life-time support...

  13. Fault-tolerant clock synchronization validation methodology. [in computer systems

    Science.gov (United States)

    Butler, Ricky W.; Palumbo, Daniel L.; Johnson, Sally C.

    1987-01-01

    A validation method for the synchronization subsystem of a fault-tolerant computer system is presented. The high reliability requirement of flight-crucial systems precludes the use of most traditional validation methods. The method presented utilizes formal design proof to uncover design and coding errors and experimentation to validate the assumptions of the design proof. The experimental method is described and illustrated by validating the clock synchronization system of the Software Implemented Fault Tolerance computer. The design proof of the algorithm includes a theorem that defines the maximum skew between any two nonfaulty clocks in the system in terms of specific system parameters. Most of these parameters are deterministic. One crucial parameter is the upper bound on the clock read error, which is stochastic. The probability that this upper bound is exceeded is calculated from data obtained by the measurement of system parameters. This probability is then included in a detailed reliability analysis of the system.

  14. Impedance based fault location in power distribution systems

    OpenAIRE

    Jia, Ke

    2012-01-01

    This thesis presents an investigation into impedance based fault location methods which directly use the fault transient as an excitation source to provide fast and accurate fault locations in small distribution systems such as the modem marine and aircraft power systems which have Integrated Power System (IPS) configuration. Fast and accurate fault location on un-exposed power distribution lines is of vital importance to expedite service restoration and improving the reliability of the power...

  15. FAULT-TOLERANT DESIGN FOR ADVANCED DIVERSE PROTECTION SYSTEM

    OpenAIRE

    YANG GYUN OH; JIN KWON JEONG; CHANG JAE LEE; YOON HEE LEE; SEUNG MIN BAEK; SANG JEONG LEE

    2013-01-01

    For the improvement of APR1400 Diverse Protection System (DPS) design, the Advanced DPS (ADPS) has recently been developed to enhance the fault tolerance capability of the system. Major fault masking features of the ADPS compared with the APR1400 DPS are the changes to the channel configuration and reactor trip actuation equipment. To minimize the fault occurrences within the ADPS, and to mitigate the consequences of common-cause failures (CCF) within the safety I&C systems, several fault avo...

  16. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization......, it is shown that a certain matrix transfer function, the fault signature matrix, is an LFT (linear fractional transformation) of the parametric faults. Further, for limit parametric faults, the fault signature matrix transfer function can be approximated with a linear matrix function of the parametric faults....

  17. Systems and Methods for Determining Inertial Navigation System Faults

    Science.gov (United States)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  18. Paleoseismology of silent faults in the Central Apennines (Italy: the Campo Imperatore Fault (Gran Sasso Range Fault System

    Directory of Open Access Journals (Sweden)

    M. Moro

    2003-06-01

    Full Text Available Paleoseismological analyses were performed along the Campo Imperatore Fault (part of the Gran Sasso Range Fault System in order to define the seismogenic behaviour (recurrence interval for surface faulting events, elapsed time since the last activation, maximum expected magnitude. Four trenches were excavated across secondary faults which are related to the main fault zone. The youngest event (E1 occurred after 3480-3400 years BP; a previous event (E2 occurred between 7155-7120/7035-6790 years BP and 5590-5565/5545-5475 years BP, while the oldest one (E3 has a Late Pleistocene age. The chronological interval between the last two displacement events ranges between 1995 and 6405 years. The minimum elapsed time since the last activation is 800 years, due to the absence of historical earthquakes which may have been caused by the Campo Imperatore Fault and based on the completeness of the historical catalogues for the large magnitude events in the last eight centuries. Based on the length of the fault surficial expression, earthquakes with M 6.95 may be expected from the activation of the entire Gran Sasso Range Fault System. The effects of the fault activation were investigated through the simulation of a damage scenario obtained by means of the FaCES computer code, made by the National Seismic Survey for civil protection purposes. The damage scenario shows that the activation of the Gran Sasso Range Fault System may be responsible for an earthquake with epicentral intensity I0 10.5 MCS, with a number of collapsed buildings ranging between 7900 and 31100 and a number of damaged buildings ranging between 99 000 and 234 000. The investigated case defines, therefore, a high risk level for the region affected by the Campo Imperatore Fault.

  19. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  20. Fault Adaptive Control of Overactuated Systems Using Prognostic Estimation

    Data.gov (United States)

    National Aeronautics and Space Administration — Most fault adaptive control research addresses the preservation of system stability or functionality in the presence of a specific failure (fault). This paper...

  1. Results of an electrical power system fault study (CDDF)

    Science.gov (United States)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  2. Dynamic characteristics of a 20 kHz resonant power system - Fault identification and fault recovery

    Science.gov (United States)

    Wasynczuk, O.

    1988-01-01

    A detailed simulation of a dc inductor resonant driver and receiver is used to demonstrate the transient characteristics of a 20 kHz resonant power system during fault and overload conditions. The simulated system consists of a dc inductor resonant inverter (driver), a 50-meter transmission cable, and a dc inductor resonant receiver load. Of particular interest are the driver and receiver performance during fault and overload conditions and on the recovery characteristics following removal of the fault. The information gained from these studies sets the stage for further work in fault identification and autonomous power system control.

  3. Fault trees for decision making in systems analysis

    International Nuclear Information System (INIS)

    Lambert, H.E.

    1975-01-01

    The application of fault tree analysis (FTA) to system safety and reliability is presented within the framework of system safety analysis. The concepts and techniques involved in manual and automated fault tree construction are described and their differences noted. The theory of mathematical reliability pertinent to FTA is presented with emphasis on engineering applications. An outline of the quantitative reliability techniques of the Reactor Safety Study is given. Concepts of probabilistic importance are presented within the fault tree framework and applied to the areas of system design, diagnosis and simulation. The computer code IMPORTANCE ranks basic events and cut sets according to a sensitivity analysis. A useful feature of the IMPORTANCE code is that it can accept relative failure data as input. The output of the IMPORTANCE code can assist an analyst in finding weaknesses in system design and operation, suggest the most optimal course of system upgrade, and determine the optimal location of sensors within a system. A general simulation model of system failure in terms of fault tree logic is described. The model is intended for efficient diagnosis of the causes of system failure in the event of a system breakdown. It can also be used to assist an operator in making decisions under a time constraint regarding the future course of operations. The model is well suited for computer implementation. New results incorporated in the simulation model include an algorithm to generate repair checklists on the basis of fault tree logic and a one-step-ahead optimization procedure that minimizes the expected time to diagnose system failure. (80 figures, 20 tables)

  4. Fault tolerant architecture for artificial olfactory system

    International Nuclear Information System (INIS)

    Lotfivand, Nasser; Hamidon, Mohd Nizar; Abdolzadeh, Vida

    2015-01-01

    In this paper, to cover and mask the faults that occur in the sensing unit of an artificial olfactory system, a novel architecture is offered. The proposed architecture is able to tolerate failures in the sensors of the array and the faults that occur are masked. The proposed architecture for extracting the correct results from the output of the sensors can provide the quality of service for generated data from the sensor array. The results of various evaluations and analysis proved that the proposed architecture has acceptable performance in comparison with the classic form of the sensor array in gas identification. According to the results, achieving a high odor discrimination based on the suggested architecture is possible. (paper)

  5. Interface For Fault-Tolerant Control System

    Science.gov (United States)

    Shaver, Charles; Williamson, Michael

    1989-01-01

    Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.

  6. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  7. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  8. Systems analysis approach to probabilistic modeling of fault trees

    International Nuclear Information System (INIS)

    Bartholomew, R.J.; Qualls, C.R.

    1985-01-01

    A method of probabilistic modeling of fault tree logic combined with stochastic process theory (Markov modeling) has been developed. Systems are then quantitatively analyzed probabilistically in terms of their failure mechanisms including common cause/common mode effects and time dependent failure and/or repair rate effects that include synergistic and propagational mechanisms. The modeling procedure results in a state vector set of first order, linear, inhomogeneous, differential equations describing the time dependent probabilities of failure described by the fault tree. The solutions of this Failure Mode State Variable (FMSV) model are cumulative probability distribution functions of the system. A method of appropriate synthesis of subsystems to form larger systems is developed and applied to practical nuclear power safety systems

  9. Robust Parametric Fault Estimation in a Hopper System

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Wisniewski, Rafal

    2012-01-01

    The ability of diagnosis of the possible faults is a necessity for satellite launch vehicles during their mission. In this paper, a structural analysis method is employed to divide the complex propulsion system into simpler subsystems for fault diagnosis filter design. A robust fault diagnosis...

  10. Determining on-fault magnitude distributions for a connected, multi-fault system

    Science.gov (United States)

    Geist, E. L.; Parsons, T.

    2017-12-01

    A new method is developed to determine on-fault magnitude distributions within a complex and connected multi-fault system. A binary integer programming (BIP) method is used to distribute earthquakes from a 10 kyr synthetic regional catalog, with a minimum magnitude threshold of 6.0 and Gutenberg-Richter (G-R) parameters (a- and b-values) estimated from historical data. Each earthquake in the synthetic catalog can occur on any fault and at any location. In the multi-fault system, earthquake ruptures are allowed to branch or jump from one fault to another. The objective is to minimize the slip-rate misfit relative to target slip rates for each of the faults in the system. Maximum and minimum slip-rate estimates around the target slip rate are used as explicit constraints. An implicit constraint is that an earthquake can only be located on a fault (or series of connected faults) if it is long enough to contain that earthquake. The method is demonstrated in the San Francisco Bay area, using UCERF3 faults and slip-rates. We also invoke the same assumptions regarding background seismicity, coupling, and fault connectivity as in UCERF3. Using the preferred regional G-R a-value, which may be suppressed by the 1906 earthquake, the BIP problem is deemed infeasible when faults are not connected. Using connected faults, however, a solution is found in which there is a surprising diversity of magnitude distributions among faults. In particular, the optimal magnitude distribution for earthquakes that participate along the Peninsula section of the San Andreas fault indicates a deficit of magnitudes in the M6.0- 7.0 range. For the Rodgers Creek-Hayward fault combination, there is a deficit in the M6.0- 6.6 range. Rather than solving this as an optimization problem, we can set the objective function to zero and solve this as a constraint problem. Among the solutions to the constraint problem is one that admits many more earthquakes in the deficit magnitude ranges for both faults

  11. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time computer systems. In the past twenty years, the control systems now operating in 21 plants have achieved an availability of 99.8%, making significant contributions to high CANDU plant capacity factors. This paper describes some of the features that ensure the high degree of system fault tolerance and hence high plant availability. The emphasis will be placed on the fault tolerant features of the computer systems included in the latest reactor design - the CANDU 3 (450MWe). (author)

  12. Study on seismic hazard assessment of large active fault systems. Evolution of fault systems and associated geomorphic structures: fault model test and field survey

    International Nuclear Information System (INIS)

    Ueta, Keichi; Inoue, Daiei; Miyakoshi, Katsuyoshi; Miyagawa, Kimio; Miura, Daisuke

    2003-01-01

    Sandbox experiments and field surveys were performed to investigate fault system evolution and fault-related deformation of ground surface, the Quaternary deposits and rocks. The summary of the results is shown below. 1) In the case of strike-slip faulting, the basic fault sequence runs from early en echelon faults and pressure ridges through linear trough. The fault systems associated with the 2000 western Tottori earthquake are shown as en echelon pattern that characterize the early stage of wrench tectonics, therefore no thoroughgoing surface faulting was found above the rupture as defined by the main shock and aftershocks. 2) Low-angle and high-angle reverse faults commonly migrate basinward with time, respectively. With increasing normal fault displacement in bedrock, normal fault develops within range after reverse fault has formed along range front. 3) Horizontal distance of surface rupture from the bedrock fault normalized by the height of the Quaternary deposits agrees well with those of model tests. 4) Upward-widening damage zone, where secondary fractures develop, forms in the handing wall side of high-angle reverse fault at the Kamioka mine. (author)

  13. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults.

    Science.gov (United States)

    Li, Xiao-Jian; Yang, Guang-Hong

    2014-08-01

    This paper is concerned with the fault detection (FD) problem in finite frequency domain for continuous-time Takagi-Sugeno fuzzy systems with sensor faults. Some finite-frequency performance indices are initially introduced to measure the fault/reference input sensitivity and disturbance robustness. Based on these performance indices, an effective FD scheme is then presented such that the generated residual is designed to be sensitive to both fault and reference input for faulty cases, while robust against the reference input for fault-free case. As the additional reference input sensitivity for faulty cases is considered, it is shown that the proposed method improves the existing FD techniques and achieves a better FD performance. The theory is supported by simulation results related to the detection of sensor faults in a tunnel-diode circuit.

  14. Dependability evaluation of computing systems - physical faults, design faults, malicious faults

    International Nuclear Information System (INIS)

    Kaaniche, Mohamed

    1999-01-01

    The research summarized in this report focuses on the dependability of computer systems. It addresses several complementary, theoretical as well as experimental, issues that are grouped into four topics. The first topic concerns the definition of efficient methods that aim to assist the users in the construction and validation of complex dependability analysis and evaluation models. The second topic deals with the modeling of reliability and availability growth that mainly result from the progressive removal of design faults. A method is also defined to support the application of software reliability evaluation studies in an industrial context. The third topic deals with the development and experimentation of a new approach for the quantitative evaluation of operational security. This approach aims to assist the system administrators in the monitoring of operational security, when modifications, that are likely to introduce new vulnerabilities, occur in the system configuration, the applications, the user behavior, etc. Finally, the fourth topic addresses: a) the definition of a development model focused at the production of dependable systems, and b) the development of assessment criteria to obtain justified confidence that a system will achieve, during its operation and up to its decommissioning, its dependability objectives. (author) [fr

  15. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  16. From experiment to design -- Fault characterization and detection in parallel computer systems using computational accelerators

    Science.gov (United States)

    Yim, Keun Soo

    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of

  17. Fault Detection and Isolation for Wind Turbine Electric Pitch System

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; Hajizadeh, Amin

    2017-01-01

    This paper presents a model-based fault detection and isolation scheme applied on electric pitch system of wind turbines. Pitch system is one of the most critical components due to its effect on the operational safety and the dynamics of wind turbines. Faults in this system should be precisely...... detected to prevent failures and decrease downtime. To detect faults of electric pitch actuators and sensors, an extended kalman filter (EKF) based multiple model adaptive estimation (MMAE) designed to estimate the states of the system. The proposed method is demonstrated in case studies. The simulation...... results show that the proposed method detects different fault scenarios of wind turbines under the stochastic external condition....

  18. SLG(Single-Line-to-Ground Fault Location in NUGS(Neutral Un-effectively Grounded System

    Directory of Open Access Journals (Sweden)

    Zhang Wenhai

    2018-01-01

    Full Text Available This paper reviews the SLG(Single-Line-to-Ground fault location methods in NUGS(Neutral Un-effectively Grounded System, including ungrounded system, resonant grounded system and high-resistance grounded system which are widely used in Northern Europe and China. This type of fault is hard to detect and location because fault current is the sum of capacitance current of the system which is always small(about tens of amperes. The characteristics of SLG fault in NUGS and the fault location methods are introduced in the paper.

  19. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng

    2013-01-01

    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  20. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  1. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    Science.gov (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  2. Computer aided fault tree construction for electrical systems

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1975-01-01

    A technique is presented for automated construction of the Boolean failure logic diagram, called the fault tree, for electrical systems. The method is a technique for synthesizing a fault tree from system-independent component characteristics. Terminology is defined and heuristic examples are given for all phases of the model. The computer constructed fault trees are in conventional format, use conventional symbols, and are deductively constructed from the main failure of interest to the individual component failures. The synthesis technique is generally applicable to automated fault tree construction for other types of systems

  3. Reconfigurability of Piecewise Affine Systems Against Actuator Faults

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Gholami, Mehdi; Bak, Thomas

    2011-01-01

    In this paper, we consider the problem of recongurability of peicewise ane (PWA) systems. Actuator faults are considered. A system subject to a fault is considered as recongurable if it can be stabilized by a state feedback controller and the optimal cost of the performance of the systems...

  4. Current Microearthquake Activity on the Large Pärvie Endglacial Fault System, Northern Sweden

    Science.gov (United States)

    Lindblom, E.; Lund, B.; Tryggvason, A.; Uski, M.; Juhlin, C.; Bodvarsson, R.; Kvaerna, T.

    2011-12-01

    The Pärvie fault is one of the largest known endglacial faults in the world. It is situated in northernmost Sweden and extends for over 160 km in a northeastward direction. The fault exhibits reverse faulting throw of more than 10 m and based on studies of Quaternary deposits, landslides and liquefaction structures it is inferred to have ruptured as a one-step event at the time of deglaciation in the area, approximately 10,000 years ago. An earthquake of this size would have had a magnitude of approximately 8. The mechanisms driving the endglacial faults are still not well understood. However, knowledge of the fault geometry at depth would significantly contribute to the understanding. In a seismological study of the Pärvie fault we have acquired both a 23 km long seismic reflection profile across the center of the fault, and deployed eight temporary seismic stations in the vicinity of the fault. The results of the reflection seismic processing images the fault system from the near surface down to about 2-3 km depth. The profile crosses three surface mapped faults where the westernmost, main fault strand, is dipping about 50 degrees to the east, the middle fault dipping 75 degrees east and the easternmost fault dipping 60 degrees to the west. The eight temporary seismic stations have recorded microearthquakes together with the six northernmost permanent stations of the Swedish National Seismic Network and a collaborating Finnish station. The seismic stations have recorded numerous small events, most of which are mining induced microearthquakes from the nearby Kiruna and Malmberget iron ore mines. About 800 microearthquakes are detected from the vicinity of the Pärvie fault system. Based on velocity structures estimated using 3D local earthquake tomography we will present locations, magnitudes and focal mechanisms of the events. The events are concentrated to the east side of the surface trace of the main Pärvie fault and spread along its whole north

  5. How is tectonic slip partitioned from the Alpine Fault to the Marlborough Fault System? : results from the Hope Fault

    International Nuclear Information System (INIS)

    Langridge, R.M.

    2004-01-01

    This report contains data from research undertaken by the author on the Hope Fault from 2000-2004. This report provides an opportunity to include data that was additional to or newer than work that was published in other places. New results from studies along the Hurunui section of the Hope Fault, additional to that published in Langridge and Berryman (2005) are presented here. This data includes tabulated data of fault location and description measurements, a graphical representation of this data in diagrammatic form along the length of the fault and new radiocarbon dates from the current EQC funded project. The new data show that the Hurunui section of the Hope Fault has the capability to yield further data on fault slip rate, earthquake displacements, and paleoseismicity. New results from studies at the Greenburn Stream paleoseismic site additional to that published in Langridge et al. (2003) are presented here. This includes a new log of the deepened west wall of Trench 2, a log of the west wall of Trench 1, and new radiocarbon dates from the second phase of dating undertaken at the Greenburn Stream site. The new data show that this site has the capability to yield further data on the paleoseismicity of the Conway segment of the Hope Fault. Through a detailed analysis of all three logged walls at the site and the new radiocarbon dates, it may, in combination with data from the nearby Clarence Reserve site of Pope (1994), be possible to develop a good record of the last 5 events on the Conway segment. (author). 12 refs., 12 figs

  6. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    Science.gov (United States)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  7. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    Four fault tolerant architectures were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant (TMR), both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault tolerant systems. An advantage of fault-tolerant controllers over those not fault tolerant, is that fault-tolerant controllers continue to function after the occurrence of most single hardware faults. However, most fault-tolerant controllers have single hardware components that will cause system failure, almost all controllers have single points of failure in software, and all are subject to common cause failures. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failures modes that may be important in nuclear power plants. 7 refs., 4 tabs

  8. Orion GN&C Fault Management System Verification: Scope And Methodology

    Science.gov (United States)

    Brown, Denise; Weiler, David; Flanary, Ronald

    2016-01-01

    In order to ensure long-term ability to meet mission goals and to provide for the safety of the public, ground personnel, and any crew members, nearly all spacecraft include a fault management (FM) system. For a manned vehicle such as Orion, the safety of the crew is of paramount importance. The goal of the Orion Guidance, Navigation and Control (GN&C) fault management system is to detect, isolate, and respond to faults before they can result in harm to the human crew or loss of the spacecraft. Verification of fault management/fault protection capability is challenging due to the large number of possible faults in a complex spacecraft, the inherent unpredictability of faults, the complexity of interactions among the various spacecraft components, and the inability to easily quantify human reactions to failure scenarios. The Orion GN&C Fault Detection, Isolation, and Recovery (FDIR) team has developed a methodology for bounding the scope of FM system verification while ensuring sufficient coverage of the failure space and providing high confidence that the fault management system meets all safety requirements. The methodology utilizes a swarm search algorithm to identify failure cases that can result in catastrophic loss of the crew or the vehicle and rare event sequential Monte Carlo to verify safety and FDIR performance requirements.

  9. Active Fault Diagnosis in Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The focus in this paper is on active fault diagnosis (AFD) in closed-loop sampleddata systems. Applying the same AFD architecture as for continuous-time systems does not directly result in the same set of closed-loop matrix transfer functions. For continuous-time systems, the LFT (linear fractional...... transformation) structure in the connection between the parametric faults and the matrix transfer function (also known as the fault signature matrix) applied for AFD is not directly preserved for sampled-data system. As a consequence of this, the AFD methods cannot directly be applied for sampled-data systems....... Two methods are considered in this paper to handle the fault signature matrix for sampled-data systems such that standard AFD methods can be applied. The first method is based on a discretization of the system such that the LFT structure is preserved resulting in the same LFT structure in the fault...

  10. Fault diagnostics of dynamic system operation using a fault tree based method

    International Nuclear Information System (INIS)

    Hurdle, E.E.; Bartlett, L.M.; Andrews, J.D.

    2009-01-01

    For conventional systems, their availability can be considerably improved by reducing the time taken to restore the system to the working state when faults occur. Fault identification can be a significant proportion of the time taken in the repair process. Having diagnosed the problem the restoration of the system back to its fully functioning condition can then take place. This paper expands the capability of previous approaches to fault detection and identification using fault trees for application to dynamically changing systems. The technique has two phases. The first phase is modelling and preparation carried out offline. This gathers information on the effects that sub-system failure will have on the system performance. Causes of the sub-system failures are developed in the form of fault trees. The second phase is application. Sensors are installed on the system to provide information about current system performance from which the potential causes can be deduced. A simple system example is used to demonstrate the features of the method. To illustrate the potential for the method to deal with additional system complexity and redundancy, a section from an aircraft fuel system is used. A discussion of the results is provided.

  11. Fault Tolerant Controllers for Sampled-data Systems

    DEFF Research Database (Denmark)

    Niemann, H.; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FT...

  12. Fault tolerant controllers for sampled-data systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2004-01-01

    A general compensator architecture for fault tolerant control (FTC) for sampled-data systems is proposed. The architecture is based on the YJBK parameterization of all stabilizing controllers, and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The FTC...

  13. Research on Fault Diagnostic System in CVT Based on UDS

    Directory of Open Access Journals (Sweden)

    Jiande Wang

    2015-01-01

    Full Text Available A communication model of diagnostic network and implementation of unified diagnostic services (UDS based on controller area network (CAN bus are presented in this paper, and fault diagnostic function of transmission control unit (TCU, USB- (universal serial bus- CAN hardware and software modules, and fault diagnostic software based on personal computer (PC are designed. Model diagnostic method is applied on ratio control, and fault diagnostic system is tested in vehicle.

  14. Non deterministic finite automata for power systems fault diagnostics

    Directory of Open Access Journals (Sweden)

    LINDEN, R.

    2009-06-01

    Full Text Available This paper introduces an application based on finite non-deterministic automata for power systems diagnosis. Automata for the simpler faults are presented and the proposed system is compared with an established expert system.

  15. Neuroadaptive Fault-Tolerant Control of Nonlinear Systems Under Output Constraints and Actuation Faults.

    Science.gov (United States)

    Zhao, Kai; Song, Yongduan; Shen, Zhixi

    2018-02-01

    In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

  16. Map and Data for Quaternary Faults and Fault Systems on the Island of Hawai`i

    Science.gov (United States)

    Cannon, Eric C.; Burgmann, Roland; Crone, Anthony J.; Machette, Michael N.; Dart, Richard L.

    2007-01-01

    Introduction This report and digitally prepared, GIS-based map is one of a series of similar products covering individual states or regions of United States that show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. It is part of a continuing the effort to compile a comprehensive Quaternary fault and fold map and database for the United States, which is supported by the U.S. Geological Survey's (USGS) Earthquake Hazards Program. Guidelines for the compilation of the Quaternary fault and fold maps for the United States were published by Haller and others (1993) at the onset of this project. This compilation of Quaternary surface faulting and folding in Hawai`i is one of several similar state and regional compilations that were planned for the United States. Reports published to date include West Texas (Collins and others, 1996), New Mexico (Machette and others, 1998), Arizona (Pearthree, 1998), Colorado (Widmann and others, 1998), Montana (Stickney and others, 2000), Idaho (Haller and others, 2005), and Washington (Lidke and others, 2003). Reports for other states such as California and Alaska are still in preparation. The primary intention of this compilation is to aid in seismic-hazard evaluations. The report contains detailed information on the location and style of faulting, the time of most recent movement, and assigns each feature to a slip-rate category (as a proxy for fault activity). It also contains the name and affiliation of the compiler, date of compilation, geographic and other paleoseismologic parameters, as well as an extensive set of references for each feature. The map (plate 1) shows faults, volcanic rift zones, and lineaments that show evidence of Quaternary surface movement related to faulting, including data on the time of most recent movement, sense of movement, slip rate, and continuity of surface expression. This compilation is presented as a digitally prepared map product

  17. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    Directory of Open Access Journals (Sweden)

    Hyeongcheol Lee

    2013-10-01

    Full Text Available This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS model, are connected together like in the target real battery system. Comparison results between the real battery system hardware and the battery system model show a similar tendency and values. Furthermore, the fault injection test of the model shows that the proposed battery system model can simulate a failure situation consistent with a real system. It is possible for the model to emulate the battery characteristics and fault situation if it is used in the development process of a BMS or for supervisory control strategies for electric propulsion systems.

  18. Fault-weighted quantification method of fault detection coverage through fault mode and effect analysis in digital I&C systems

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun; Lee, Seung Jun, E-mail: sjlee420@unist.ac.kr; Jung, Wondea

    2017-05-15

    Highlights: • We developed the fault-weighted quantification method of fault detection coverage. • The method has been applied to specific digital reactor protection system. • The unavailability of the module had 20-times difference with the traditional method. • Several experimental tests will be effectively prioritized using this method. - Abstract: The one of the most outstanding features of a digital I&C system is the use of a fault-tolerant technique. With an awareness regarding the importance of thequantification of fault detection coverage of fault-tolerant techniques, several researches related to the fault injection method were developed and employed to quantify a fault detection coverage. In the fault injection method, each injected fault has a different importance because the frequency of realization of every injected fault is different. However, there have been no previous studies addressing the importance and weighting factor of each injected fault. In this work, a new method for allocating the weighting to each injected fault using the failure mode and effect analysis data was proposed. For application, the fault-weighted quantification method has also been applied to specific digital reactor protection system to quantify the fault detection coverage. One of the major findings in an application was that we may estimate the unavailability of the specific module in digital I&C systems about 20-times smaller than real value when we use a traditional method. The other finding was that we can also classify the importance of the experimental case. Therefore, this method is expected to not only suggest an accurate quantification procedure of fault-detection coverage by weighting the injected faults, but to also contribute to an effective fault injection experiment by sorting the importance of the failure categories.

  19. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification

    Science.gov (United States)

    Li, Shuanghong; Cao, Hongliang; Yang, Yupu

    2018-02-01

    Fault diagnosis is a key process for the reliability and safety of solid oxide fuel cell (SOFC) systems. However, it is difficult to rapidly and accurately identify faults for complicated SOFC systems, especially when simultaneous faults appear. In this research, a data-driven Multi-Label (ML) pattern identification approach is proposed to address the simultaneous fault diagnosis of SOFC systems. The framework of the simultaneous-fault diagnosis primarily includes two components: feature extraction and ML-SVM classifier. The simultaneous-fault diagnosis approach can be trained to diagnose simultaneous SOFC faults, such as fuel leakage, air leakage in different positions in the SOFC system, by just using simple training data sets consisting only single fault and not demanding simultaneous faults data. The experimental result shows the proposed framework can diagnose the simultaneous SOFC system faults with high accuracy requiring small number training data and low computational burden. In addition, Fault Inference Tree Analysis (FITA) is employed to identify the correlations among possible faults and their corresponding symptoms at the system component level.

  20. Battery System Modeling for a Military Electric Propulsion Vehicle with a Fault Simulation

    OpenAIRE

    Ham, Hyeongjin; Han, Kyuhong; Lee, Hyeongcheol

    2013-01-01

    This paper describes the development process and results of a battery system model with a fault simulation for electric propulsion vehicles. The developed battery system model can be used to verify control and fault diagnosis strategies of the supervisory controller in an electric propulsion vehicle. To develop this battery system model, three sub-models, including a battery model, a relay assembly model, and a battery management system (BMS) model, are connected together like in the target r...

  1. Mechanical insights into tectonic reorganization of the southern San Andreas fault system at ca. 1.1-1.5 Ma

    Science.gov (United States)

    Fattaruso, L.; Cooke, M. L.; Dorsey, R. J.

    2013-12-01

    Reorganization of active fault systems may result from changes in relative plate motion and evolving fault geometries. Between ~1.5 and 1.1 Ma the southern San Andreas fault system underwent a major reorganization that included initiation of the San Jacinto fault zone, termination of slip on the extensional West Salton detachment fault, and reorganization of structures in the Mecca Hills northeast of the San Andreas fault during a local change from transtension to transpression conditions with no known change in Pacific-North America relative plate motion. The active trace of the southern San Andreas fault itself also evolved during this time, with shifts in activity from the Mission Creek to Mill Creek to the present-day active fault geometry of the San Bernardino, Garnet Hill, and Banning strands of the San Andreas fault. Although there is a rich geologic record of these changes, the mechanisms that controlled abandonment of active faults, initiation of new strands, and shifting loci of uplift are poorly understood. We use three-dimensional mechanical Boundary Element Method models to investigate this major tectonic reorganization at ~1.1-1.5 Ma. Previous mechanical modeling studies have examined the evolution of the southern San Andreas fault geometry in the San Gorgonio Pass using a series of snapshot models of the succession of active fault geometries. We use the same approach to explore the role of fault interaction and tectonic loading in abandonment of the West Salton detachment fault and initiation of the San Jacinto fault. The snapshots include: (1) regional transtension with an active West Salton detachment fault and active Mission Creek strand of the San Andreas fault; (2) cessation of local extension in combination with initiation of the San Jacinto fault in which we explore both north-to-south propagation and simultaneous growth; (3) shift of activity to the Mill Creek strand of the San Andreas fault; and (4) shift of activity to the present

  2. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  3. System and method for motor fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  4. System and method for bearing fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  5. Integrated system fault diagnostics utilising digraph and fault tree-based approaches

    International Nuclear Information System (INIS)

    Bartlett, L.M.; Hurdle, E.E.; Kelly, E.M.

    2009-01-01

    With the growing intolerance to failures within systems, the issue of fault diagnosis has become ever prevalent. Information concerning these possible failures can help to minimise the disruption to the functionality of the system by allowing quick rectification. Traditional approaches to fault diagnosis within engineering systems have focused on sequential testing procedures and real-time mechanisms. Both methods have been predominantly limited to single fault causes. Latest approaches also consider the issue of multiple faults in reflection to the characteristics of modern day systems designed for high reliability. In addition, a diagnostic capability is required in real time and for changeable system functionality. This paper focuses on two approaches which have been developed to cater for the demands of diagnosis within current engineering systems, namely application of the fault tree analysis technique and the method of digraphs. Both use a comparative approach to consider differences between actual system behaviour and that expected. The procedural guidelines are discussed for each method, with an experimental aircraft fuel system used to test and demonstrate the features of the techniques. The effectiveness of the approaches is compared and their future potential highlighted

  6. A fault-tolerant software strategy for digital systems

    Science.gov (United States)

    Hitt, E. F.; Webb, J. J.

    1984-01-01

    Techniques developed for producing fault-tolerant software are described. Tolerance is required because of the impossibility of defining fault-free software. Faults are caused by humans and can appear anywhere in the software life cycle. Tolerance is effected through error detection, damage assessment, recovery, and fault treatment, followed by return of the system to service. Multiversion software comprises two or more versions of the software yielding solutions which are examined by a decision algorithm. Errors can also be detected by extrapolation from previous results or by the acceptability of results. Violations of timing specifications can reveal errors, or the system can roll back to an error-free state when a defect is detected. The software, when used in flight control systems, must not impinge on time-critical responses. Efforts are still needed to reduce the costs of developing the fault-tolerant systems.

  7. Fault-tolerant Control of a Cyber-physical System

    Science.gov (United States)

    Roxana, Rusu-Both; Eva-Henrietta, Dulf

    2017-10-01

    Cyber-physical systems represent a new emerging field in automatic control. The fault system is a key component, because modern, large scale processes must meet high standards of performance, reliability and safety. Fault propagation in large scale chemical processes can lead to loss of production, energy, raw materials and even environmental hazard. The present paper develops a multi-agent fault-tolerant control architecture using robust fractional order controllers for a (13C) cryogenic separation column cascade. The JADE (Java Agent DEvelopment Framework) platform was used to implement the multi-agent fault tolerant control system while the operational model of the process was implemented in Matlab/SIMULINK environment. MACSimJX (Multiagent Control Using Simulink with Jade Extension) toolbox was used to link the control system and the process model. In order to verify the performance and to prove the feasibility of the proposed control architecture several fault simulation scenarios were performed.

  8. Fault-tolerant dead reckoning system for a modular vehicle

    Science.gov (United States)

    Hashimoto, Masafumi; Oba, Fuminori; Takahashi, Kazuhiko

    2005-12-01

    A fault-tolerant dead reckoning system is presented for a modular vehicle, which consists of one chassis unit and several wheel units. The units locally estimate the vehicle position based on their own internal sensors. The local estimates are exchanged among the units via an inter-communication system, and they are fused in a decentralized manner. The units can then determine the vehicle position accurately. The decentralized dead reckoning algorithm is formulated based on the information filter and the covariance Intersection method. For enhancing the reliability of the dead reckoning a multi-model based fault detection and diagnosis (FDD) of the internal sensors is incorporated into the dead reckoning system. The units diagnose their sensors with the FDD system, and they apply only the normal sensors for the vehicle localization. In this paper two fault modes (hard fault and noise fault modes) of the sensors are handled; on the hard fault the sensor output is stuck at a constant value. On the noise fault it is disturbed by a large noise. The FDD algorithm is based on the variable structure interacting multiple-model estimator. The fault-tolerant dead reckoning algorithm was implemented on our indoor test-vehicle, which consists of one chassis unit and four wheel units. Experimental results show that our dead reckoning provided better localization accuracy than the conventional one (i.e., the dead reckoning without sensor FDD system) did even though the sensors partially failed.

  9. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  10. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  11. System assessment using modular logic fault tree methodology

    International Nuclear Information System (INIS)

    Troncoso Fleitas, M.

    1996-01-01

    In the process of a Probabilistic Safety analysis (PSA) study a large number of fault trees are generated by different specialist. Modular Logic Fault Tree Methodology pave the way the way to systematize the procedures and to unify the criteria in the process of systems modulation. An example of of the application of this methodology is shown

  12. All-to-all sequenced fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-11-02

    An apparatus, program product and method enable nodal fault detection by sequencing communications between all system nodes. A master node may coordinate communications between two slave nodes before sequencing to and initiating communications between a new pair of slave nodes. The communications may be analyzed to determine the nodal fault.

  13. Reconfigurable Control of Input Affine Nonlinear Systems under Actuator Fault

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Galeazzi, Roberto

    2015-01-01

    This paper proposes a fault tolerant control method for input-affine nonlinear systems using a nonlinear reconfiguration block (RB). The basic idea of the method is to insert the RB between the plant and the nominal controller such that fault tolerance is achieved without re-designing the nominal...

  14. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  15. Fault-Tolerant Control For A Robotic Inspection System

    Science.gov (United States)

    Tso, Kam Sing

    1995-01-01

    Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.

  16. High-Intensity Radiated Field Fault-Injection Experiment for a Fault-Tolerant Distributed Communication System

    Science.gov (United States)

    Yates, Amy M.; Torres-Pomales, Wilfredo; Malekpour, Mahyar R.; Gonzalez, Oscar R.; Gray, W. Steven

    2010-01-01

    Safety-critical distributed flight control systems require robustness in the presence of faults. In general, these systems consist of a number of input/output (I/O) and computation nodes interacting through a fault-tolerant data communication system. The communication system transfers sensor data and control commands and can handle most faults under typical operating conditions. However, the performance of the closed-loop system can be adversely affected as a result of operating in harsh environments. In particular, High-Intensity Radiated Field (HIRF) environments have the potential to cause random fault manifestations in individual avionic components and to generate simultaneous system-wide communication faults that overwhelm existing fault management mechanisms. This paper presents the design of an experiment conducted at the NASA Langley Research Center's HIRF Laboratory to statistically characterize the faults that a HIRF environment can trigger on a single node of a distributed flight control system.

  17. Communication-based fault handling scheme for ungrounded distribution systems

    International Nuclear Information System (INIS)

    Yang, X.; Lim, S.I.; Lee, S.J.; Choi, M.S.

    2006-01-01

    The requirement for high quality and highly reliable power supplies has been increasing as a result of increasing demand for power. At the time of a fault occurrence in a distribution system, some protection method would be dedicated to fault section isolation and service restoration. However, if there are many outage areas when the protection method is performed, it is an inconvenience to the customer. A conventional method to determine a fault section in ungrounded systems requires many successive outage invocations. This paper proposed an efficient fault section isolation method and service restoration method for single line-to-ground fault in an ungrounded distribution system that was faster than the conventional one using the information exchange between connected feeders. The proposed algorithm could be performed without any power supply interruption and could decrease the number of switching operations, so that customers would not experience outages very frequently. The method involved the use of an intelligent communication method and a sequential switching control scheme. The proposed algorithm was also applied in both a single-tie and multi-tie distribution system. This proposed algorithm has been verified through fault simulations in a simple model of ungrounded multi-tie distribution system. The method proposed in this paper was proven to offer more efficient fault identification and much less outage time than the conventional method. The proposed method could contribute to a system design since it is valid in multi-tie systems. 5 refs., 2 tabs., 8 figs

  18. Optimal fault-tolerant control strategy of a solid oxide fuel cell system

    Science.gov (United States)

    Wu, Xiaojuan; Gao, Danhui

    2017-10-01

    For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.

  19. Fault-Tolerant Onboard Monitoring and Decision Support Systems

    DEFF Research Database (Denmark)

    Lajic, Zoran

    The purpose of this research project is to improve current onboard decision support systems. Special focus is on the onboard prediction of the instantaneous sea state. In this project a new approach to increasing the overall reliability of a monitoring and decision support system has been...... advice regarding speed and course changes to decrease the wave-induced loads. The SeaSense system is based on the combined use of a mathematical model and measurements from a set of sensors. The overall dependability of a shipboard monitoring and decision support system such as the SeaSense system can...... of a fault. A supervisory function determines the severity of the fault once its origin has been isolated and its magnitude estimated. Fault-tolerant Sensor Fusion means that the monitoring and decision support system can accommodate faults so that the overall system continues to satisfy its goal...

  20. Fault-tolerant clock synchronization in distributed systems

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.; Butler, Ricky W.

    1990-01-01

    Existing fault-tolerant clock synchronization algorithms are compared and contrasted. These include the following: software synchronization algorithms, such as convergence-averaging, convergence-nonaveraging, and consistency algorithms, as well as probabilistic synchronization; hardware synchronization algorithms; and hybrid synchronization. The worst-case clock skews guaranteed by representative algorithms are compared, along with other important aspects such as time, message, and cost overhead imposed by the algorithms. More recent developments such as hardware-assisted software synchronization and algorithms for synchronizing large, partially connected distributed systems are especially emphasized.

  1. Incipient fault detection and power system protection for spaceborne systems

    Science.gov (United States)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  2. Comparing Different Fault Identification Algorithms in Distributed Power System

    Science.gov (United States)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  3. PCA Fault Feature Extraction in Complex Electric Power Systems

    Directory of Open Access Journals (Sweden)

    ZHANG, J.

    2010-08-01

    Full Text Available Electric power system is one of the most complex artificial systems in the world. The complexity is determined by its characteristics about constitution, configuration, operation, organization, etc. The fault in electric power system cannot be completely avoided. When electric power system operates from normal state to failure or abnormal, its electric quantities (current, voltage and angles, etc. may change significantly. Our researches indicate that the variable with the biggest coefficient in principal component usually corresponds to the fault. Therefore, utilizing real-time measurements of phasor measurement unit, based on principal components analysis technology, we have extracted successfully the distinct features of fault component. Of course, because of the complexity of different types of faults in electric power system, there still exists enormous problems need a close and intensive study.

  4. Broadband Ground Motion Simulations for the Puente Hills Fault System

    Science.gov (United States)

    Graves, R. W.

    2005-12-01

    Recent geologic studies have identified the seismic potential of the Puente Hills fault system. This system is comprised of multiple blind thrust segments, a portion of which ruptured in the Mw 5.9 Whittier-Narrows earthquake. Rupture of the entire system could generate a Mw 7.2 (or larger) earthquake. To assess the potential hazard posed by the fault system, we have simulated the response for several earthquake scenarios. These simulations are unprecedented in scope and scale. Broadband (0-10 Hz) ground motions are computed at 66,000 sites, covering most of the LA metropolitan region. Low frequency (f 1 Hz) motions are calculated using a stochastic approach. We consider scenarios ranging from Mw 6.7 to Mw 7.2, including both high and low stress drop events. Finite-fault rupture models for these scenarios are generated following a wavenumber filtering technique (K-2 model) that has been calibrated against recent earthquakes. In all scenarios, strong rupture directivity channels large amplitude pulses of motion directly into the Los Angeles basin, which then propagate southward as basin surface waves. Typically, the waveforms near downtown Los Angeles are dominated by a strong, concentrated pulse of motion. At Long Beach (across the LA basin from the rupture) the waveforms are dominated by late arriving longer period surface waves. The great density of sites used in the calculation allows the construction of detailed maps of various ground motion parameters (PGA, PGV, SA), as well as full animations of the propagating broadband wave field. Additionally, the broadband time histories are available for use in non-linear response analyses of built structures.

  5. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  6. Fusion of Built in Test (BIT) Technologies with Embeddable Fault Tolerant Techniques for Power System and Drives in Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies has proposed development of an effective prognostic and fault accommodation system for critical DC power systems including PV systems. Overall...

  7. Fault Location in Power Electrical Traction Line System

    Directory of Open Access Journals (Sweden)

    Yimin Zhou

    2012-11-01

    Full Text Available In this paper, methods of fault location are discussed in electrical traction single-end direct power supply network systems. Based on the distributed parameter model of the system, the position of the short-circuit fault can be located with the aid of the current and voltage value at the measurement end of the electrical traction line. Furthermore, the influence of the transient resistance, the position of the locomotive, locomotive load for fault location are also discussed. MATLAB simulation tool is used for the simulation experiments. Simulation results are proved the effectiveness of the proposed algorithms.

  8. Active Fault Tolerant Control of Livestock Stable Ventilation System

    DEFF Research Database (Denmark)

    Gholami, Mehdi

    2011-01-01

    degraded performance even in the faulty case. In this thesis, we have designed such controllers for climate control systems for livestock buildings in three steps: Deriving a model for the climate control system of a pig-stable. Designing a active fault diagnosis (AFD) algorithm for different kinds...... of the hybrid model are estimated by a recursive estimation algorithm, the Extended Kalman Filter (EKF), using experimental data which was provided by an equipped laboratory. Two methods for active fault diagnosis are proposed. The AFD methods excite the system by injecting a so-called excitation input. In both...... methods, the input is designed off-line based on a sensitivity analysis in order to improve the precision of estimation of parameters associated with faults. Two different algorithm, the EKF and a new adaptive filter, are used to estimate the parameters of the system. The fault is detected and isolated...

  9. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  10. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    Science.gov (United States)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  11. Fault Injection and Monitoring Capability for a Fault-Tolerant Distributed Computation System

    Science.gov (United States)

    Torres-Pomales, Wilfredo; Yates, Amy M.; Malekpour, Mahyar R.

    2010-01-01

    The Configurable Fault-Injection and Monitoring System (CFIMS) is intended for the experimental characterization of effects caused by a variety of adverse conditions on a distributed computation system running flight control applications. A product of research collaboration between NASA Langley Research Center and Old Dominion University, the CFIMS is the main research tool for generating actual fault response data with which to develop and validate analytical performance models and design methodologies for the mitigation of fault effects in distributed flight control systems. Rather than a fixed design solution, the CFIMS is a flexible system that enables the systematic exploration of the problem space and can be adapted to meet the evolving needs of the research. The CFIMS has the capabilities of system-under-test (SUT) functional stimulus generation, fault injection and state monitoring, all of which are supported by a configuration capability for setting up the system as desired for a particular experiment. This report summarizes the work accomplished so far in the development of the CFIMS concept and documents the first design realization.

  12. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  13. Multi-directional fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2010-06-29

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  14. All row, planar fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D; Smith, Brian Edward

    2013-07-23

    An apparatus, program product and method for detecting nodal faults may simultaneously cause designated nodes of a cell to communicate with all nodes adjacent to each of the designated nodes. Furthermore, all nodes along the axes of the designated nodes are made to communicate with their adjacent nodes, and the communications are analyzed to determine if a node or connection is faulty.

  15. Multi-directional fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-03-17

    An apparatus, program product and method checks for nodal faults in a group of nodes comprising a center node and all adjacent nodes. The center node concurrently communicates with the immediately adjacent nodes in three dimensions. The communications are analyzed to determine a presence of a faulty node or connection.

  16. Intelligent fault isolation and diagnosis for communication satellite systems

    Science.gov (United States)

    Tallo, Donald P.; Durkin, John; Petrik, Edward J.

    1992-01-01

    Discussed here is a prototype diagnosis expert system to provide the Advanced Communication Technology Satellite (ACTS) System with autonomous diagnosis capability. The system, the Fault Isolation and Diagnosis EXpert (FIDEX) system, is a frame-based system that uses hierarchical structures to represent such items as the satellite's subsystems, components, sensors, and fault states. This overall frame architecture integrates the hierarchical structures into a lattice that provides a flexible representation scheme and facilitates system maintenance. FIDEX uses an inexact reasoning technique based on the incrementally acquired evidence approach developed by Shortliffe. The system is designed with a primitive learning ability through which it maintains a record of past diagnosis studies.

  17. Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems

    Directory of Open Access Journals (Sweden)

    Hsueh-Hsien Chang

    2017-04-01

    Full Text Available This paper proposes statistical feature extraction methods combined with artificial intelligence (AI approaches for fault locations in non-intrusive single-line-to-ground fault (SLGF detection of low voltage distribution systems. The input features of the AI algorithms are extracted using statistical moment transformation for reducing the dimensions of the power signature inputs measured by using non-intrusive fault monitoring (NIFM techniques. The data required to develop the network are generated by simulating SLGF using the Electromagnetic Transient Program (EMTP in a test system. To enhance the identification accuracy, these features after normalization are given to AI algorithms for presenting and evaluating in this paper. Different AI techniques are then utilized to compare which identification algorithms are suitable to diagnose the SLGF for various power signatures in a NIFM system. The simulation results show that the proposed method is effective and can identify the fault locations by using non-intrusive monitoring techniques for low voltage distribution systems.

  18. Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Singular Time-Delayed Stochastic Distribution Systems with Disturbance Based on the Rational Square-Root Model

    Directory of Open Access Journals (Sweden)

    Yuancheng Sun

    2016-01-01

    Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.

  19. A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Davide Bresolin

    2011-06-01

    Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.

  20. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. PV System Component Fault and Failure Compilation and Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    2018-02-01

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  2. Evaluation of digital fault-tolerant architectures for nuclear power plant control systems

    International Nuclear Information System (INIS)

    Battle, R.E.

    1990-01-01

    This paper reports on four fault-tolerant architectures that were evaluated for their potential reliability in service as control systems of nuclear power plants. The reliability analyses showed that human- and software-related common cause failures and single points of failure in the output modules are dominant contributors to system unreliability. The four architectures are triple-modular-redundant, both synchronous and asynchronous, and also dual synchronous and asynchronous. The evaluation includes a review of design features, an analysis of the importance of coverage, and reliability analyses of fault-tolerant systems. Reliability analyses based on data from several industries that have fault-tolerant controllers were used to estimate the mean-time-between-failures of fault-tolerant controllers and to predict those failure modes that may be important in nuclear power plants

  3. A Fault Recognition System for Gearboxes of Wind Turbines

    Science.gov (United States)

    Yang, Zhiling; Huang, Haiyue; Yin, Zidong

    2017-12-01

    Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.

  4. Fault diagnosis and fault-tolerant control strategies for non-linear systems analytical and soft computing approaches

    CERN Document Server

    Witczak, Marcin

    2014-01-01

      This book presents selected fault diagnosis and fault-tolerant control strategies for non-linear systems in a unified framework. In particular, starting from advanced state estimation strategies up to modern soft computing, the discrete-time description of the system is employed Part I of the book presents original research results regarding state estimation and neural networks for robust fault diagnosis. Part II is devoted to the presentation of integrated fault diagnosis and fault-tolerant systems. It starts with a general fault-tolerant control framework, which is then extended by introducing robustness with respect to various uncertainties. Finally, it is shown how to implement the proposed framework for fuzzy systems described by the well-known Takagi–Sugeno models. This research monograph is intended for researchers, engineers, and advanced postgraduate students in control and electrical engineering, computer science,as well as mechanical and chemical engineering.

  5. A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems

    OpenAIRE

    Xiong, Guojiang; Shi, Dongyuan; Zhu, Lin; Duan, Xianzhong

    2013-01-01

    Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems) are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusi...

  6. Fault Tolerant Emergency Control to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2016-01-01

    This paper introduces a method for fault-masking and system reconfiguration in power transmission systems. The paper demonstrates how faults are handled by reconfiguring remaining controls through utilisation of wide-area measurement in real time. It is shown how reconfiguration can be obtained...... using a virtual actuator concept, which covers Lure-type systems. The paper shows the steps needed to calculate a virtual actuator, which relies on the solution of a linear matrix inequality. The solution is shown to work with existing controls by adding a compensation signal. Simulation results...... of a benchmark system show ability of the reconfiguration to maintain stability...

  7. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of met...

  8. A study of fault injection in multichannel spacecraft power systems

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1991-01-01

    NASA/Marshall Space Flight Center proposes to implement fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Among the elements to be studied are the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power is being performed to yield a list of the most common power system faults. The results of this study are being applied to a multichannel high-voltage DC spacecraft power system called the Large Autonomous Spacecraft Electrical Power System Breadboard. Some of the reactions of the breadboard to some of the faults which have been encountered are presented along with the results of this study.

  9. A study of fault injection in multichannel spacecraft power systems

    Science.gov (United States)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    NASA/Marshall Space Flight Center proposes to implement fault injection into an electrical power system breadboard to study the reactions of the various control elements of this breadboard. Among the elements to be studied are the remote power controllers, the algorithms in the control computers, and the artificially intelligent control programs resident in this breadboard. To this end, a study of electrical power is being performed to yield a list of the most common power system faults. The results of this study are being applied to a multichannel high-voltage DC spacecraft power system called the Large Autonomous Spacecraft Electrical Power System Breadboard. Some of the reactions of the breadboard to some of the faults which have been encountered are presented along with the results of this study.

  10. A system view of the No Fault Found (NFF) phenomenon

    International Nuclear Information System (INIS)

    Soederholm, Peter

    2007-01-01

    When a unit is tested outside a technical system, it has normally been removed due to a fault. However, in some cases the external test may not discover any fault and a No Fault Found (NFF) event may occur. The NFF phenomenon is a major problem when dealing with complex technical systems, and its consequences may be manifested in decreased safety and dependability and increased life cycle costs. There are multiple interacting causes of NFF, demanding tough requirements for successful solutions. The purpose of this paper is to describe the phenomenon of NFF and to highlight possible improvements for the prevention of causes of NFF and the reduction of its consequences. The study was performed as an explorative literature study, and the analysis was based on a holistic system view. The identified causes and solutions are related to life cycle stages, availability performance factors, and system stakeholders

  11. The 2015 M w 6.0 Mt. Kinabalu earthquake: an infrequent fault rupture within the Crocker fault system of East Malaysia

    Science.gov (United States)

    Wang, Yu; Wei, Shengji; Wang, Xin; Lindsey, Eric O.; Tongkul, Felix; Tapponnier, Paul; Bradley, Kyle; Chan, Chung-Han; Hill, Emma M.; Sieh, Kerry

    2017-12-01

    The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicity. Our seismological, space geodetic, geomorphological, and field investigations show that the earthquake resulted from rupture of a northwest-dipping normal fault that did not reach the surface. Its unilateral rupture was almost directly beneath 4000-m-high Mt. Kinabalu and triggered widespread slope failures on steep mountainous slopes, which included rockfalls that killed 18 hikers. Our seismological and morphotectonic analyses suggest that the rupture occurred on a normal fault that splays upwards off of the previously identified normal Marakau fault. Our mapping of tectonic landforms reveals that these faults are part of a 200-km-long system of normal faults that traverse the eastern side of the Crocker Range, parallel to Sabah's northwestern coastline. Although the tectonic reason for this active normal fault system remains unclear, the lengths of the longest fault segments suggest that they are capable of generating magnitude 7 earthquakes. Such large earthquakes must occur very rarely, though, given the hitherto undetectable geodetic rates of active tectonic deformation across the region.

  12. Wavelet and neuro-fuzzy based fault location for combined transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    Jung, C.K.; Kim, K.H.; Lee, J.B. [Department of Electrical Engineering, Wonkwang University, 344-2, Shinyong-dong, Iksan (Korea); Kloeckl, Bernd [High Voltage Laboratory, ETH, Swiss Federal Institute of Technology, Zurich (Switzerland)

    2007-07-15

    This paper describes the fault location algorithm using neuro-fuzzy systems in combined transmission lines with underground power cables. The neuro-fuzzy system consists of two parts to perform different tasks. One is to discriminate the fault section between overhead and underground using the detailed coefficients obtained by wavelet transform. The other system calculates fault location. The algorithm for fault location again is divided into two parts: one to calculate the fault location on the overhead lines, the other one for the underground cable section. This system shows excellent results for discrimination of fault section and calculation of fault location. (author)

  13. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  14. Cryogenic systems advanced monitoring, fault diagnostics, and predictive maintenance

    CERN Document Server

    Arpaia, Pasquale

    2017-01-01

    Cryogenics, the study and technology of materials and systems at very low temperature, is widely used for sensors and instruments requiring very highly precise measurements with low electrical resistance, especially for measurements of materials and energies at a very small scale. Thus, the need to understand how instruments operate and perform over time at temperatures below -2920 F (-1800 C) is critical, for applications from Magnetic Resonance Imaging (MRI) to Nuclear Magnetic Resonance Spectroscopy to instrumentation for particle accelerators of all kinds. This book brings to the reader guidance learned from work at the European Laboratory for Nuclear Research (CERN), and its large scale particle accelerator in Switzerland to help engineers and technicians implement best practices in instrumentation at cryogenic temperatures, including a better understanding of fault detection and predictive maintenance. Special problems with devices like flow meters, pressure gauges, and temperature gauges when operating...

  15. Cryogenic systems advanced monitoring, fault diagnostics, and predictive maintenance

    CERN Document Server

    Arpaia, Pasquale; Inglese, Vitaliano; Pezzetti, Marco

    2018-01-01

    Cryogenics, the study and technology of materials and systems at very low temperature, is widely used for sensors and instruments requiring very highly precise measurements with low electrical resistance, especially for measurements of materials and energies at a very small scale. Thus, the need to understand how instruments operate and perform over time at temperatures below -2920 F (-1800 C) is critical, for applications from Magnetic Resonance Imaging (MRI) to Nuclear Magnetic Resonance Spectroscopy to instrumentation for particle accelerators of all kinds. This book brings to the reader guidance learned from work at the European Laboratory for Nuclear Research (CERN), and its large scale particle accelerator in Switzerland to help engineers and technicians implement best practices in instrumentation at cryogenic temperatures, including a better understanding of fault detection and predictive maintenance. Special problems with devices like flow meters, pressure gauges, and temperature gauges when operating...

  16. Clouds: A support architecture for fault tolerant, distributed systems

    Science.gov (United States)

    Dasgupta, P.; Leblanco, R. J., Jr.

    1986-01-01

    Clouds is a distributed operating system providing support for fault tolerance, location independence, reconfiguration, and transactions. The implementation paradigm uses objects and nested actions as building blocks. Subsystems and applications that can be supported by Clouds to further enhance the performance and utility of the system are also discussed.

  17. Rapid Transient Fault Insertion in Large Digital Systems

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    This paper presents a technique for rapidtransientfault injection, regarding the CPU time, to perform simulation-based fault-injection in complex System-on-Chip Systems (SoCs). The proposed approach can be applied to complex circuits, as it is not required to modify the top-level modules of a

  18. Fault Diagnosis in Dynamic Systems Using Fuzzy Interacting Observers

    Directory of Open Access Journals (Sweden)

    N. V. Kolesov

    2013-01-01

    Full Text Available A method of fault diagnosis in dynamic systems based on a fuzzy approach is proposed. The new method possesses two basic specific features which distinguish it from the other known fuzzy methods based on the application of fuzzy logic and a bank of state observers. First, this method uses a bank of interacting observers instead of traditional independent observers. The second specific feature of the proposed method is the assumption that there is no strict boundary between the serviceable and disabled technical states of the system, which makes it possible to specify a decision making rule for fault diagnosis.

  19. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    Science.gov (United States)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  20. Chaos Synchronization Based Novel Real-Time Intelligent Fault Diagnosis for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2014-01-01

    Full Text Available The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the fault data of only one set of sensors. The aforesaid two points reduce the cost and fault diagnosis time. It can improve the construction of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point tracker (MPPT is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization. Then, the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

  1. FADES: A tool for automated fault analysis of complex systems

    International Nuclear Information System (INIS)

    Wood, C.

    1990-01-01

    FADES is an Expert System for performing fault analyses on complex connected systems. By using a graphical editor to draw components and link them together the FADES system allows the analyst to describe a given system. The knowledge base created is used to qualitatively simulate the system behaviour. By inducing all possible component failures in the system and determining their effects, a set of facts is built up. These facts are then used to create Fault Trees, or FMEA tables. The facts may also be used for explanation effects and to generate diagnostic rules allowing system instrumentation to be optimised. The prototype system has been built and tested and is preently undergoing testing by users. All comments from these trials will be used to tailor the system to the requirements of the user so that the end product performs the exact task required

  2. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  3. Final Project Report: Self-Correcting Controls for VAV System Faults Filter/Fan/Coil and VAV Box Sections

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, Michael R.; Fernandez, Nicholas; Wang, Weimin; Cort, Katherine A.; Cho, Heejin; Ngo, Hung; Goddard, James K.

    2011-05-01

    This report addresses original research by the Pacific Northwest National Laboratory for the California Institute for Energy and Environment on self-correcting controls for variable-air-volume (VAV) heating, ventilating and air-conditioning systems and focuses specifically on air handling and VAV box components of the air side of the system. A complete set of faults for these components was compiled and a fault mode analysis performed to understand the detectable symptoms of the faults and the chain of causation. A set of 26 algorithms was developed to facilitate the automatic correction of these faults in typical commercial VAV systems. These algorithms include training tests that are used during commissioning to develop models of normal system operation, passive diagnostics used to detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and finally fault correction algorithms. Ten of the twenty six algorithms were implemented in a prototype software package that interfaces with a test bed facility at PNNL's Richland, WA, laboratory. Measurement bias faults were instigated in the supply-air temperature sensor and the supply-air flow meter to test the algorithms developed. The algorithms as implemented in the laboratory software correctly detected, diagnosed and corrected these faults. Finally, an economic and impact assessment was performed for the State of California for deployment of self-correcting controls. Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1-5.8 TBu of energy savings are possible by year 15.

  4. A System for Fault Management and Fault Consequences Analysis for NASA's Deep Space Habitat

    Science.gov (United States)

    Colombano, Silvano; Spirkovska, Liljana; Baskaran, Vijaykumar; Aaseng, Gordon; McCann, Robert S.; Ossenfort, John; Smith, Irene; Iverson, David L.; Schwabacher, Mark

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy

  5. Fault-diagnosis applications. Model-based condition monitoring. Acutators, drives, machinery, plants, sensors, and fault-tolerant systems

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, Rolf [Technische Univ. Darmstadt (DE). Inst. fuer Automatisierungstechnik (IAT)

    2011-07-01

    Supervision, condition-monitoring, fault detection, fault diagnosis and fault management play an increasing role for technical processes and vehicles in order to improve reliability, availability, maintenance and lifetime. For safety-related processes fault-tolerant systems with redundancy are required in order to reach comprehensive system integrity. This book is a sequel of the book ''Fault-Diagnosis Systems'' published in 2006, where the basic methods were described. After a short introduction into fault-detection and fault-diagnosis methods the book shows how these methods can be applied for a selection of 20 real technical components and processes as examples, such as: Electrical drives (DC, AC) Electrical actuators Fluidic actuators (hydraulic, pneumatic) Centrifugal and reciprocating pumps Pipelines (leak detection) Industrial robots Machine tools (main and feed drive, drilling, milling, grinding) Heat exchangers Also realized fault-tolerant systems for electrical drives, actuators and sensors are presented. The book describes why and how the various signal-model-based and process-model-based methods were applied and which experimental results could be achieved. In several cases a combination of different methods was most successful. The book is dedicated to graduate students of electrical, mechanical, chemical engineering and computer science and for engineers. (orig.)

  6. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  7. Fracture surface energy of the Punchbowl fault, San Andreas system.

    Science.gov (United States)

    Chester, Judith S; Chester, Frederick M; Kronenberg, Andreas K

    2005-09-01

    Fracture energy is a form of latent heat required to create an earthquake rupture surface and is related to parameters governing rupture propagation and processes of slip weakening. Fracture energy has been estimated from seismological and experimental rock deformation data, yet its magnitude, mechanisms of rupture surface formation and processes leading to slip weakening are not well defined. Here we quantify structural observations of the Punchbowl fault, a large-displacement exhumed fault in the San Andreas fault system, and show that the energy required to create the fracture surface area in the fault is about 300 times greater than seismological estimates would predict for a single large earthquake. If fracture energy is attributed entirely to the production of fracture surfaces, then all of the fracture surface area in the Punchbowl fault could have been produced by earthquake displacements totalling <1 km. But this would only account for a small fraction of the total energy budget, and therefore additional processes probably contributed to slip weakening during earthquake rupture.

  8. Fault-tolerant design of picture archiving and communication systems

    International Nuclear Information System (INIS)

    Taira, R.K.; Chan, K.K.; Stewart, B.K.; Weinberg, W.S.

    1990-01-01

    Reliability is perhaps the most important attribute of a PACS. Any downtime of the system may seriously affect patient care. This paper describes fault-tolerant measures employed in the design of a hospital-wide PACS. Six fault-tolerant measures have been implemented: hardware redundance (networks and archives), data-base backups, monitoring routines for local host processes and network status; uninterruptible power supplied, structured software design techniques, and in-service training of all radiology technologists. A PACS consisting of 13 acquisition nodes, two optical archiving nodes, two data-base server nodes, and five workstation nodes has been developed

  9. Nondestructive detection system of faults in fuses using radioisotope

    International Nuclear Information System (INIS)

    Goncalves, D.

    1973-01-01

    A system is developed to show the viability of non-destructive detection of the faults of explosive safety fuses which are manufactured by Fabrica da Estrela do Ministerio do Exercito. The faults are detected by an ion-chamber based on the variation of the intensity of the beta particles that penetrate the fuse which passes through a collimator. The beta particles are emitted by Strontium-90 + Yttrium-90 encapsulated in either stainless steel or aluminum. The concept of 'bucking Voltage' is applied to differentiate electronically the signal generated by the ion-chamber. (author)

  10. A Ship Propulsion System Model for Fault-tolerant Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.

    This report presents a propulsion system model for a low speed marine vehicle, which can be used as a test benchmark for Fault-Tolerant Control purposes. The benchmark serves the purpose of offering realistic and challenging problems relevant in both FDI and (autonomous) supervisory control area...

  11. Performance-Oriented Fault Tolerance in Computing Systems

    NARCIS (Netherlands)

    Borodin, D.

    2010-01-01

    In this dissertation we address the overhead reduction of fault tolerance (FT) techniques. Due to technology trends such as decreasing feature sizes and lowering voltage levels, FT is becoming increasingly important in modern computing systems. FT techniques are based on some form of redundancy. It

  12. A Fault tolerant Control Supervisory System development Procedurefor Small Satellites

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Larsen, Jesper Abildgaard

    The paper presents a stepwise procedure to develop a fault tolerant control system for small satellites. The procedure is illustrated through implementation on the AAUSAT-II spacecraft. As it is shown the presented procedure requires expertise from several disciplines that are nevertheless...

  13. Dynamic Observers for Fault Diagnosis of Timed Systems

    OpenAIRE

    Cassez, Franck

    2010-01-01

    In this paper we extend the work on \\emph{dynamic ob\\-servers} for fault diagnosis to timed automata. We study sensor minimization problems with static observers and then address the problem of computing the most permissive dynamic observer for a system given by a timed automaton.

  14. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  15. Fault Ride Through Capability Enhancement of a Large-Scale PMSG Wind System with Bridge Type Fault Current Limiters

    Directory of Open Access Journals (Sweden)

    ALAM, M. S.

    2018-02-01

    Full Text Available In this paper, bridge type fault current limiter (BFCL is proposed as a potential solution to the fault problems of permanent magnet synchronous generator (PMSG based large-scale wind energy system. As PMSG wind system is more vulnerable to disturbances, it is essential to guarantee the stability during severe disturbances by enhancing the fault ride through capability. BFCL controller has been designed to insert resistance and inductance during the inception of system disturbances in order to limit fault current. Constant capacitor voltage has been maintained by the grid voltage source converter (GVSC controller while current extraction or injection has been achieved by machine VSC (MVSC controller. Symmetrical and unsymmetrical faults have been applied in the system to show the effectiveness of the proposed BFCL solution. PMSG wind system, BFCL and their controllers have been implemented by real time hardware in loop (RTHIL setup with real time digital simulator (RTDS and dSPACE. Another significant feature of this work is that the performance of the proposed BFCL is compared with that of series dynamic braking resistor (SDBR. Comparative RTHIL implementation results show that the proposed BFCL is very efficient in improving system fault ride through capability by limiting the fault current and outperforms SDBR.

  16. Simplified Analytic Approach of Pole-to-Pole Faults in MMC-HVDC for AC System Backup Protection Setting Calculation

    Directory of Open Access Journals (Sweden)

    Tongkun Lan

    2018-01-01

    Full Text Available AC (alternating current system backup protection setting calculation is an important basis for ensuring the safe operation of power grids. With the increasing integration of modular multilevel converter based high voltage direct current (MMC-HVDC into power grids, it has been a big challenge for the AC system backup protection setting calculation, as the MMC-HVDC lacks the fault self-clearance capability under pole-to-pole faults. This paper focused on the pole-to-pole faults analysis for the AC system backup protection setting calculation. The principles of pole-to-pole faults analysis were discussed first according to the standard of the AC system protection setting calculation. Then, the influence of fault resistance on the fault process was investigated. A simplified analytic approach of pole-to-pole faults in MMC-HVDC for the AC system backup protection setting calculation was proposed. In the proposed approach, the derived expressions of fundamental frequency current are applicable under arbitrary fault resistance. The accuracy of the proposed approach was demonstrated by PSCAD/EMTDC (Power Systems Computer-Aided Design/Electromagnetic Transients including DC simulations.

  17. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  18. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  19. Measurements of soil gas radon in active fault systems: A case study along the North and East anatolian fault systems in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Inceoez, Murat [Faculty of Eng. Dept. of Geological Eng, University of Firat, 23119, Elazig (Turkey); Baykara, Oktay [Department of Physics, Faculty of Arts and Science, University of Firat, 23169, Elazig (Turkey)]. E-mail: obaykara@firat.edu.tr; Aksoy, Ercan [Faculty of Eng. Dept. of Geological Eng, University of Firat, 23119, Elazig (Turkey); Dogru, Mahmut [Department of Physics, Faculty of Arts and Science, University of Firat, 23169, Elazig (Turkey)

    2006-03-15

    We have used solid-state nuclear track detectors (CR-39) in order to determine the profile of the soil radon in district areas of the North and East Anatolian active fault systems in Turkey. It has been shown that the radon anomalies among the fault zones are relatively high in the fault line while dramatically decreases by going away from the lines. Radon concentrations in both active fault systems ranged from 4.3 to 9.8kBqm{sup -3}. The average radon concentration levels in the North Anatolian Fault System are relatively higher than the East Anatolian Fault System. Radon measurement technique is proved to be a good tool for detection and mapping of the active fault zone, and also in the case of continuous monitoring of radon anomalies connected with earthquake events.

  20. Measurements of soil gas radon in active fault systems: A case study along the North and East anatolian fault systems in Turkey

    International Nuclear Information System (INIS)

    Inceoez, Murat; Baykara, Oktay; Aksoy, Ercan; Dogru, Mahmut

    2006-01-01

    We have used solid-state nuclear track detectors (CR-39) in order to determine the profile of the soil radon in district areas of the North and East Anatolian active fault systems in Turkey. It has been shown that the radon anomalies among the fault zones are relatively high in the fault line while dramatically decreases by going away from the lines. Radon concentrations in both active fault systems ranged from 4.3 to 9.8kBqm -3 . The average radon concentration levels in the North Anatolian Fault System are relatively higher than the East Anatolian Fault System. Radon measurement technique is proved to be a good tool for detection and mapping of the active fault zone, and also in the case of continuous monitoring of radon anomalies connected with earthquake events

  1. Development and Evaluation of Fault-Tolerant Flight Control Systems

    Science.gov (United States)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  2. Application Research of Fault Tree Analysis in Grid Communication System Corrective Maintenance

    Science.gov (United States)

    Wang, Jian; Yang, Zhenwei; Kang, Mei

    2018-01-01

    This paper attempts to apply the fault tree analysis method to the corrective maintenance field of grid communication system. Through the establishment of the fault tree model of typical system and the engineering experience, the fault tree analysis theory is used to analyze the fault tree model, which contains the field of structural function, probability importance and so on. The results show that the fault tree analysis can realize fast positioning and well repairing of the system. Meanwhile, it finds that the analysis method of fault tree has some guiding significance to the reliability researching and upgrading f the system.

  3. Fault Self-Diagnosis for Modular Robotic Systems Using M-Lattice Modules

    OpenAIRE

    Enguang Guan; Jian Fei; Gen Pan; Zhuang Fu; Weixin Yan; Yanzheng Zhao

    2015-01-01

    In the domain of modular robotic systems, self-configuration, self-diagnosis and self-repair are known to be highly challenging tasks. This paper presents a novel fault self-diagnosis strategy which consists of two parts: fault detection and fault message transmission. In fault detection, a bionic synchronization ‘healthy heartbeat’ method is used to guarantee the high efficiency of the exogenous detection strategy. For fault message transmission, the Dijkstra method is modified to be capable...

  4. A Design Space Exploration Framework for ANN-Based Fault Detection in Hardware Systems

    Directory of Open Access Journals (Sweden)

    Andreas G. Savva

    2017-01-01

    Full Text Available This work presents a design exploration framework for developing a high level Artificial Neural Network (ANN for fault detection in hardware systems. ANNs can be used for fault detection purposes since they have excellent characteristics such as generalization capability, robustness, and fault tolerance. Designing an ANN in order to be used for fault detection purposes includes different parameters. Through this work, those parameters are presented and analyzed based on simulations. Moreover, after the development of the ANN, in order to evaluate it, a case study scenario based on Networks on Chip is used for detection of interrouter link faults. Simulation results with various synthetic traffic models show that the proposed work can detect up to 96–99% of interrouter link faults with a delay less than 60 cycles. Added to this, the size of the ANN is kept relatively small and they can be implemented in hardware easily. Synthesis results indicate an estimated amount of 0.0523 mW power consumption per neuron for the implemented ANN when computing a complete cycle.

  5. Methods for Fault Diagnosability Analysis of a Class of Affine Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiafu Peng

    2015-01-01

    Full Text Available The fault diagnosability analysis for a given model, before developing a diagnosis algorithm, can be used to answer questions like “can the fault fi be detected by observed states?” and “can it separate fault fi from fault fj by observed states?” If not, we should redesign the sensor placement. This paper deals with the problem of the evaluation of detectability and separability for the diagnosability analysis of affine nonlinear system. First, we used differential geometry theory to analyze the nonlinear system and proposed new detectability criterion and separability criterion. Second, the related matrix between the faults and outputs of the system and the fault separable matrix are designed for quantitative fault diagnosability calculation and fault separability calculation, respectively. Finally, we illustrate our approach to exemplify how to analyze diagnosability by a certain nonlinear system example, and the experiment results indicate the effectiveness of the fault evaluation methods.

  6. Investigation of candidate data structures and search algorithms to support a knowledge based fault diagnosis system

    Science.gov (United States)

    Bosworth, Edward L., Jr.

    1987-01-01

    The focus of this research is the investigation of data structures and associated search algorithms for automated fault diagnosis of complex systems such as the Hubble Space Telescope. Such data structures and algorithms will form the basis of a more sophisticated Knowledge Based Fault Diagnosis System. As a part of the research, several prototypes were written in VAXLISP and implemented on one of the VAX-11/780's at the Marshall Space Flight Center. This report describes and gives the rationale for both the data structures and algorithms selected. A brief discussion of a user interface is also included.

  7. Protection system for high impedance faults; Sistema de protecao para faltas de alta impedancia

    Energy Technology Data Exchange (ETDEWEB)

    Malagodi, Caius Vinicius Sampaio

    1997-07-01

    This paper proposes a protection system against high impedance faults based on the voltage unbalance along the feeder. The main focus is on the sensor developed together with Sao Paulo state utilities through the CED - Center of Excellence in Distribution, to detect this kind of fault. These simulations show the voltage unbalance that allows to safely determine the conductor breakdown, taking into consideration the distribution transformers and the way they are connected to the line. A zero consequence prototype sensor that has as its greatest advantage the coupling with the distribution line through the electric field, is also presented. Sensibility settings and timings delay are included to allow the coordination between the sensors and other feeder protections.When a fault occurs, only the downstream sensors work. In order to have the information of the sensor situation reaching an upstream fault protection device, a way of communication is needed. Distribution lines with supervision and control system already have this advantage, allowing for the function of protection against faults and high impedance to be aggregated to this communication system. For distribution lines that do not have this kind of system, a more detailed study on the carrier signals as a means of communication should be carried out. (author)

  8. A H-infinity Fault Detection and Diagnosis Scheme for Discrete Nonlinear System Using Output Probability Density Estimation

    International Nuclear Information System (INIS)

    Zhang Yumin; Lum, Kai-Yew; Wang Qingguo

    2009-01-01

    In this paper, a H-infinity fault detection and diagnosis (FDD) scheme for a class of discrete nonlinear system fault using output probability density estimation is presented. Unlike classical FDD problems, the measured output of the system is viewed as a stochastic process and its square root probability density function (PDF) is modeled with B-spline functions, which leads to a deterministic space-time dynamic model including nonlinearities, uncertainties. A weighting mean value is given as an integral function of the square root PDF along space direction, which leads a function only about time and can be used to construct residual signal. Thus, the classical nonlinear filter approach can be used to detect and diagnose the fault in system. A feasible detection criterion is obtained at first, and a new H-infinity adaptive fault diagnosis algorithm is further investigated to estimate the fault. Simulation example is given to demonstrate the effectiveness of the proposed approaches.

  9. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  10. Implementing Fault-Tolerant Services in Goal-Oriented Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    BORA, S.

    2014-08-01

    Full Text Available In this paper, findings and analysis detail the implementation of fault tolerance services into a goal-oriented multi-agent systems development platform. Fault tolerance services are used to provide replication-based fault tolerance policies (i.e. static and adaptive to multi-agent systems. This approach provided flexibility and reusability to multi-agent systems because fault tolerance policies were implemented as reusable plan structures. Thus, whenever an agent was needed to be made fault-tolerant, plans for fault tolerance policies were simply activated by sending a request message.

  11. Architecture and Fault Identification of Wide-area Protection System

    Directory of Open Access Journals (Sweden)

    Yuxue Wang

    2012-09-01

    Full Text Available Wide-area protection system (WAPS is widely studied for the purpose of improvng the performance of conventional backup protection. In this paper, the system architecture of WAPS is proposed and its key technologies are discussed in view of engineering projects. So a mixed structurecentralized-distributed structure which is more suitable for WAPS in limited power grid region, is obtained based on the advantages of the centralized structure and distributed structure. Furthermore, regional distance protection algorithm was taken as an example to illustrate the functions of the constituent units. Faulted components can be detected based on multi-source imformation fuse in the algorithm. And the algorithm cannot only improve the selectivity, the rapidity, and the reliability of relaying protection but also has high fault tolerant capability. A simulation of 220 kV grid systems in Easter Hubei province shows the effectiveness of the wide-area protection system presented by this paper.

  12. Fault Detection and Performance Monitoring in PV Systems

    OpenAIRE

    Vasco Brogueira Andrade

    2017-01-01

    Given the exponential growth of the PV sector in recent years and the market?s overall need for new PV monitoring solutions, this dissertation aims at creating an automatic fault detection tool for PV systems, more specifically for shading and soiling situations. By detecting deviations in the measured PV systems? data patterns, this tool aims at providing essential information for the deployment of the right maintenance strategy for each situation.

  13. Estimating Rates of Fault Insertion and Test Effectiveness in Software Systems

    Science.gov (United States)

    Nikora, A.; Munson, J.

    1998-01-01

    In developing a software system, we would like to estimate the total number of faults inserted into a software system, the residual fault content of that system at any given time, and the efficacy of the testing activity in executing the code containing the newly inserted faults.

  14. EKF-based fault detection for guided missiles flight control system

    Science.gov (United States)

    Feng, Gang; Yang, Zhiyong; Liu, Yongjin

    2017-03-01

    The guided missiles flight control system is essential for guidance accuracy and kill probability. It is complicated and fragile. Since actuator faults and sensor faults could seriously affect the security and reliability of the system, fault detection for missiles flight control system is of great significance. This paper deals with the problem of fault detection for the closed-loop nonlinear model of the guided missiles flight control system in the presence of disturbance. First, set up the fault model of flight control system, and then design the residual generation based on the extended Kalman filter (EKF) for the Eulerian-discrete fault model. After that, the Chi-square test was selected for the residual evaluation and the fault detention task for guided missiles closed-loop system was accomplished. Finally, simulation results are provided to illustrate the effectiveness of the approach proposed in the case of elevator fault separately.

  15. Fault recovery for real-time, multi-tasking computer system

    Science.gov (United States)

    Hess, Richard (Inventor); Kelly, Gerald B. (Inventor); Rogers, Randy (Inventor); Stange, Kent A. (Inventor)

    2011-01-01

    System and methods for providing a recoverable real time multi-tasking computer system are disclosed. In one embodiment, a system comprises a real time computing environment, wherein the real time computing environment is adapted to execute one or more applications and wherein each application is time and space partitioned. The system further comprises a fault detection system adapted to detect one or more faults affecting the real time computing environment and a fault recovery system, wherein upon the detection of a fault the fault recovery system is adapted to restore a backup set of state variables.

  16. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  17. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  18. Model based fault detection and diagnosis using structured residual approach in a multi-input multi-output system

    Directory of Open Access Journals (Sweden)

    Asokan A.

    2007-01-01

    Full Text Available Fault detection and isolation (FDI is a task to deduce from observed variable of the system if any component is faulty, to locate the faulty components and also to estimate the fault magnitude present in the system. This paper provides a systematic method of fault diagnosis to detect leak in the three-tank process. The proposed scheme makes use of structured residual approach for detection, isolation and estimation of faults acting on the process [1]. This technique includes residual generation and residual evaluation. A literature review showed that the conventional fault diagnosis methods like the ordinary Chisquare (ψ2 test method, generalized likelihood ratio test have limitations such as the "false alarm" problem. From the results it is inferred that the proposed FDI scheme diagnoses better when compared to other conventional methods.

  19. Fault tolerant aggregation for power system services

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver; Kullmann, Daniel

    2013-01-01

    Exploiting the flexibility in distributed energy resources (DER) is seen as an important contribution to allow high penetrations of renewable generation in electrical power systems. However, the present control infrastructure in power systems is not well suited for the integration of a very large...... number of small units. A common approach is to aggregate a portfolio of such units together and expose them to the power system as a single large virtual unit. In order to realize the vision of a Smart Grid, concepts for flexible, resilient and reliable aggregation infrastructures are required...

  20. Structural Design of Systems with Safe Behavior under Single and Multiple Faults

    DEFF Research Database (Denmark)

    Blanke, Mogens; Staroswiecki, Marcel

    2006-01-01

    Handling of multiple simultaneous faults is a complex issue in fault-tolerant control. The design task is particularly made difficult by to the numerous different cases that need be analyzed. Aiming at safe fault-handling, this paper shows how structural analysis can be applied to find...... the analytical redundancy relations for all relevant combinations of faults, and can cope with the complexity and size of a real system. Being essential for fault-tolerant control schemes that shall handle particular cases of faults/failures, fault isolation is addressed. The paper introduces an extension...... to structural analysis to disclose which faults could be isolated from a structural point of view using active fault isolation. Results from application on a marine control system illustrate the concepts....

  1. Neural Network Expert System in the Application of Tower Fault Diagnosis

    Science.gov (United States)

    Liu, Xiaoyang; Xia, Zhongwu; Tao, Zhiyong; Zhao, Zhenlian

    For the corresponding fuzzy relationship between the fault symptoms and the fault causes in the process of tower crane operation, this paper puts forward a kind of rapid new method of fast detection and diagnosis for common fault based on neural network expert system. This paper makes full use of expert system and neural network advantages, and briefly introduces the structure, function, algorithm and realization of the adopted system. Results show that the new algorithm is feasible and can achieve rapid faults diagnosis.

  2. Fault Detection Coverage Quantification of Automatic Test Functions of Digital I and C System in NPPs

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Lee, Seung Jun; Hur, Seop; Lee, Young Jun; Jang, Seung Cheol

    2011-01-01

    Recently, analog instrument and control (I and C) systems in nuclear power plants (NPPs) have been replaced with digital systems for safer and more efficient operations. Digital I and C systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions in spite of the presence of faults. Each fault-tolerant technique has a different inspection period from real-time monitoring to monthly testing. The range covered by each fault-tolerant technique is also different. The digital I and C system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects have not been properly considered yet in most PSA models. Therefore, it is necessary to develop an evaluation method that can describe these features of a digital I and C system. Several issues must be considered in the fault coverage estimation of a digital I and C system, and two of them were handled in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, fault injection experiment was used to obtain the exact relations between faults and multiple barriers of fault-tolerant techniques. This experiment was applied to a bistable processor (BP) of a reactor protection system

  3. Probabilistic Fault Diagnosis in Electrical Power Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft. This paper discusses our development of a diagnostic capability for an electrical power...

  4. A distributed expert system for fault diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, E.; Talukdar, S.N.

    1988-05-01

    This paper describes a hybrid approach to synthesizing solutions for diagnosis and set covering problems from the area of power system operations. The approach combines expert systems written in a rule-based language (OPS5) with algorithmic programs written in C and Lisp. An environment called DPSK has been developed to allow these programs to be run in parallel in a network of computers. Speeds sufficient for real-time applications can thereby be obtained.

  5. Quaternary Activity of the Monastir and Grombalia Fault Systems in the North‒Eastern Tunisia (Seismotectonic Implication)

    Science.gov (United States)

    Ghribi, R.; Zaatra, D.; Bouaziz, S.

    2018-01-01

    The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.

  6. Fault Risk Assessment of Underwater Vehicle Steering System Based on Virtual Prototyping and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    He Deyu

    2016-09-01

    Full Text Available Assessing the risks of steering system faults in underwater vehicles is a human-machine-environment (HME systematic safety field that studies faults in the steering system itself, the driver’s human reliability (HR and various environmental conditions. This paper proposed a fault risk assessment method for an underwater vehicle steering system based on virtual prototyping and Monte Carlo simulation. A virtual steering system prototype was established and validated to rectify a lack of historic fault data. Fault injection and simulation were conducted to acquire fault simulation data. A Monte Carlo simulation was adopted that integrated randomness due to the human operator and environment. Randomness and uncertainty of the human, machine and environment were integrated in the method to obtain a probabilistic risk indicator. To verify the proposed method, a case of stuck rudder fault (SRF risk assessment was studied. This method may provide a novel solution for fault risk assessment of a vehicle or other general HME system.

  7. A Fault-tolerant Development Methodology for Industrial Control Systems

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Thybo, C.

    2004-01-01

    Developing advanced detection schemes is not the lone factor for obtaining a successful fault diagnosis performance. Acquiring significant achievements in applying Fault-tolerance in industrial development requires that fault diagnosis and recovery schemes are developed in a consistent and logica......Developing advanced detection schemes is not the lone factor for obtaining a successful fault diagnosis performance. Acquiring significant achievements in applying Fault-tolerance in industrial development requires that fault diagnosis and recovery schemes are developed in a consistent...

  8. GPS (global positioning system) studies of the Wasatch fault zone, Utah, with implications for elastic and viscoelastic fault behavior and earthquake hazard

    Science.gov (United States)

    Chang, Wu-Lung

    Contemporary crustal deformation along the 370 km-long Wasatch fault, Utah, has been measured by the Global Positioning System (GPS) and modeled for elastic and viscoelastic mechanisms. The Wasatch Front GPS network, including 107 campaign sites surveyed in 1992--1995, 1999, and 2001, and 11 permanent stations operating continuously from as early as mid-1996, spans a 100-km wide area across the fault. Combining these GPS measurement data revealed surface velocities with horizontal components of 1.8 +/- 0.5 mm/yr and 2.2 +/- 1.0 mm/yr across the northern and southern part of the Wasatch fault, respectively, with directions nearly perpendicular to the fault (E-W). Analysis of the spatial variation of the strain rate field, moreover, revealed a notable strain concentration across the Salt Lake City segment of the Wasatch fault that may be produced by the interseismic fault loading. Mechanisms other than fault loading that could contribute surface deformation signals to the Wasatch Front GPS observations were first examined, which include postseismic viscoelastic relaxation of the Earth's lithosphere and fluctuations of water table and the level of Great Salt Lake. Results showed that deformation signals induced by these effects are within the error ranges of GPS horizontal velocities, which imply that the Wasatch fault may be the main tectonic feature responsible for the contemporary deformation of the Wasatch Front area. A nonlinear optimization algorithm was then implemented to the GPS observations to investigate the geometry and loading rate of the Wasatch fault zone. An optimal model that best fits the observed horizontal velocity field shows a fault plane dipping 27° and creeping at 7 mm/yr from depths of 9--20 km, which may correspond to the interseismic loading-zone of the Wasatch fault. Examining the rheological properties of crustal and fault-zone rocks, on the other hand, suggests the brittle thickness of 7 to 9 km for the Wasatch fault zone and the depth

  9. Meteoric water in normal fault systems: Oxygen and hydrogen isotopic measurements on authigenic phases in brittle fault rocks

    Science.gov (United States)

    Haines, S. H.; Anderson, R.; Mulch, A.; Solum, J. G.; Valley, J. W.; van der Pluijm, B. A.

    2009-12-01

    The nature of fluid circulation systems in normal fault systems is fundamental to understanding the nature of fluid movement within the upper crust, and has important implications for the on-going controversy about the strength of faults. Authigenic phases in clay gouges and fault breccias record the isotopic signature of the fluids they formed in equilibrium with, and can be used to understand the ‘plumbing system’ of brittle fault environments. We obtained paired oxygen and hydrogen isotopic measurements on authigenic illite and/or smectite in clay gouge from normal faults in two geologic environments, 1.) low-angle normal faults (Ruby Mountains detachment, NV; Badwater Turtleback, CA; Panamint range-front detachment; CA; Amargosa detachment; CA; Waterman Hills detachment, CA), and 2.) An intracratonic high-angle normal fault (Moab Fault, UT). All authigenic phases in these clay gouges are moderately light isotopically with respect to oxygen (illite δ18O -2.0 - + 11.5 ‰ SMOW, smectite δ18O +3.6 and 17.9 ‰) and very light isotopically with respect to hydrogen (illite δD -148 to -98 ‰ SMOW, smectite δD -147 to -92 ‰). Fluid compositions calculated from the authigenic clays at temperatures of 50 - 130 ○C (as indicated by clay mineralogy) indicate that both illite and smectite in normal fault clay gouge formed in the presence of near-pristine to moderately-evolved meteoric fluids and that igneous or metamorphic fluids are not involved in clay gouge formation in these normal fault settings. We also obtained paired oxygen and hydrogen isotopic measurements on chlorites derived from footwall chlorite breccias in 4 low-angle normal fault detachment systems (Badwater and Mormon Point Turtlebacks, CA, the Chemehuevi detachment, CA, and the Buckskin-Rawhide detachment, AZ). All chlorites are isotopically light to moderately light with respect to oxygen (δ18O +0.29 to +8.1 ‰ SMOW) and very light with respect to hydrogen (δD -97 to -113 ‰) and indicate

  10. A fault isolation method based on the incidence matrix of an augmented system

    Science.gov (United States)

    Chen, Changxiong; Chen, Liping; Ding, Jianwan; Wu, Yizhong

    2018-03-01

    A new approach is proposed for isolating faults and fast identifying the redundant sensors of a system in this paper. By introducing fault signal as additional state variable, an augmented system model is constructed by the original system model, fault signals and sensor measurement equations. The structural properties of an augmented system model are provided in this paper. From the viewpoint of evaluating fault variables, the calculating correlations of the fault variables in the system can be found, which imply the fault isolation properties of the system. Compared with previous isolation approaches, the highlights of the new approach are that it can quickly find the faults which can be isolated using exclusive residuals, at the same time, and can identify the redundant sensors in the system, which are useful for the design of diagnosis system. The simulation of a four-tank system is reported to validate the proposed method.

  11. Experimental Approach of Fault Movement on an Engineered Barrier System

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna

    2012-01-01

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required

  12. Experimental Approach of Fault Movement on an Engineered Barrier System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required.

  13. Spatial Heterogeneity in Earthquake Fault-Like Systems

    Science.gov (United States)

    Kazemian, J.; Dominguez, R.; Tiampo, K. F.; Klein, W.

    2015-08-01

    The inhomogeneity of materials with different physical properties is responsible for a wide variety of spatial and temporal behavior. In this work, we studied an earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with particular aspects of spatial heterogeneities and long-range stress interactions. In our model some localized stress accumulators were added into the system by converting a percentage of randomly selected sites into stronger sites that are called `asperity cells'. These asperity cells support much higher failure stresses than the surrounding regular lattice sites but eventually rupture when applied stress reaches their threshold stress. We found that changing the spatial configuration of those stronger sites generally increased the ability of the fault system to generate larger events, but that the total percentage of asperities is important as well. We also observed an increasing number of larger events associated with the total number of asperities in the lattice.

  14. A proposal of surveying and evaluating system of active faults for earthquake assessment

    International Nuclear Information System (INIS)

    Miyakoshi, Katsuyoshi; Ueta, Keiichi; Hataya; Ryuta; Abe, Shintaro; Miura, Daisuke; Hamada, Takaomi; Aoyagi, Yasuhira; Inoue, Daiei

    2004-01-01

    1. Paleoseismology of the Itoigawa-Shizuoka Tectonic Line active fault system: We investigated co-seismic faulting activity of the Itoigawa-Shizuoka Tectonic Line active fault system (ISTL) to clarify behavioral segmentation of long and massive faults. Geomorphologic and geologic surveys, trench excavation, and seismic reflection survey in the southern to central parts of ISTL revealed paleoseismologic faulting events occurred in the last thousands years and characteristics of geometric, structural, and geomorphologic segments. Each paleoseismic event, co-seismic displacement of deposit, average slip rate, and recurrence intervals suggest that the latest paleo-earthquake occurred in 1700 cal y BP and involved multiple segments in the Okaya to the Shimotsuburai faults. The estimated surface rupture length for this event is up to 77 km or possibly up to 94 km long. The another latest event occurred after 1200 cal y BP at the Ichinose fault and adjacent active faults. In addition, ca. 1200 cal y BP event at the Gofukuji fault occurred and involved multiple segments in the northern ISTL. Behavioral boundaries of these distinctive paleoseismic events were present in segment boundaries of geometric characters and slip rate variation. In the ISTL, geometric segmentation and slip-rate variation likely coincide with the estimated behavioral segmentation. Therefore, this finding suggests that geometric segment and slip-rate variation play an important role to determine the size of the maximum behavioral segment. 2. Active fault study on the 1999 Taiwan Chichi Earthquake area: The earthquake fault was appeared along the Chelungpu Fault while the 1999 Chichi Earthquake has occurred. The N-S striking fault has been recognized as an active fault, however E-W direction earthquake fault has not been described before the earthquake as an active fault. The later fault appeared just beneath the Shihkang Dam and the dam was destroyed by the fault. This study revealed that the E

  15. Logic-Dynamic Approach to Fault Diagnosis in Mechatronic Systems

    Directory of Open Access Journals (Sweden)

    V. F. Filaretov

    2006-12-01

    Full Text Available This paper presents a problem of fault detection and isolation (FDI in mechatronic systems described by nonlinear dynamic models with such types of no differentiable nonlinearities as saturation, Coulomb friction, backlash, and hysteresis. To solve this problem, so-called logic-dynamic approach is suggested. This approach consists of three main steps: replacing the initial nonlinear system by certain linear logic-dynamic system, obtaining the bank of linear logic-dynamic observers, and transforming these observes into the nonlinear ones. Logic-dynamic approach allows one to use the linear FDI methods for diagnosis in nonlinear mechatronic systems.

  16. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    Science.gov (United States)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  17. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  18. GPS measurements of present day crustal deformation within the Lebanese restraining bend along the Dead Sea Fault System

    Science.gov (United States)

    Jaafar, R.; Gomez, F.; Abdallah, C.; Karam, G.; Reilinger, R.; Alchalbi, A.; Yassminh, R.; Daoud, M.

    2007-12-01

    The Lebanese restraining bend is a 200 km long bend with a left lateral sense of slip located along the Dead Sea fault system (DSFS) between 33.2 and 34.6 degrees north latitude. The DSFS is a transform plate boundary fault system accommodating the differential northward movement of Arabian and Sinai plates relative to the Eurasian plate. Within the Lebanese Restraining bend, The DSFS splays into several major left-lateral strike-slip faults, forming a positive flower structure. This study combines GPS measurements from Lebanon where surveys span for about 5.5 years with sites from the Anti Lebanon Mountains in SW Syria for a more complete view of crystal deformation in the Restraining bend. The GPS network includes Continuous GPS sites and 27 campaign sites: 14 sites in Lebanon installed in 2002, 8 sites in Lebanon installed in 2005, and 5 sites in southwestern Syria. Preliminary velocities for older campaign sites have uncertainties less than 1 mm/yr, whereas newer sites have around 1.5 mm/yr uncertainties. The improved spatial coverage and reduced uncertainties allow constructing elastic fault models that explore strain partitioning between two strike slip faults (representing the Yammouneh and Serghaya faults) and a generalized thrust fault to accommodate convergence in the Restraining bend. Preliminary velocities suggest around 4 - 4.5 mm/yr along the Yammouneh fault. This study provides an essential tool for assessing tool for assessing the seismic hazard in the vicinity of the Lebanese restraining bend.

  19. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  20. Fault Estimation for Fuzzy Delay Systems: A Minimum Norm Least Squares Solution Approach.

    Science.gov (United States)

    Huang, Sheng-Juan; Yang, Guang-Hong

    2017-09-01

    This paper mainly focuses on the problem of fault estimation for a class of Takagi-Sugeno fuzzy systems with state delays. A minimum norm least squares solution (MNLSS) approach is first introduced to establish a fault estimation compensator, which is able to optimize the fault estimator. Compared with most of the existing fault estimation methods, the MNLSS-based fault estimation method can effectively decrease the effect of state errors on the accuracy of fault estimation. Finally, three examples are given to illustrate the effectiveness and merits of the proposed method.

  1. Active fault tolerant control of piecewise affine systems with reference tracking and input constraints

    DEFF Research Database (Denmark)

    Gholami, M.; Cocquempot, V.; Schiøler, H.

    2014-01-01

    performance of the faulty system are held. The design of the supervisory scheme is not considered here. The set of controllers is composed of a normal controller for the fault-free case, an active fault detection and isolation controller for isolation and identification of the faults, and a set of passive......An active fault tolerant control (AFTC) method is proposed for discrete-time piecewise affine (PWA) systems. Only actuator faults are considered. The AFTC framework contains a supervisory scheme, which selects a suitable controller in a set of controllers such that the stability and an acceptable...... fault tolerant controllers (PFTCs) modules designed to be robust against a set of actuator faults. In this research, the piecewise nonlinear model is approximated by a PWA system. The PFTCs are state feedback laws. Each one is robust against a fixed set of actuator faults and is able to track...

  2. Reliable H∞ control of discrete-time systems against random intermittent faults

    Science.gov (United States)

    Tao, Yuan; Shen, Dong; Fang, Mengqi; Wang, Youqing

    2016-07-01

    A passive fault-tolerant control strategy is proposed for systems subject to a novel kind of intermittent fault, which is described by a Bernoulli distributed random variable. Three cases of fault location are considered, namely, sensor fault, actuator fault, and both sensor and actuator faults. The dynamic feedback controllers are designed not only to stabilise the fault-free system, but also to guarantee an acceptable performance of the faulty system. The robust H∞ performance index is used to evaluate the effectiveness of the proposed control scheme. In terms of linear matrix inequality, the sufficient conditions of the existence of controllers are given. An illustrative example indicates the effectiveness of the proposed fault-tolerant control method.

  3. Expert system application to fault diagnosis and procedure synthesis

    International Nuclear Information System (INIS)

    Hajek, B.K.; Hashemi, S.; Bhatnagar, R.; Miller, D.W.; Stasenko, J.

    1987-01-01

    Two knowledge based systems have been developed to detect plant faults, to validate sensor data in a nuclear power plant, and to synthesize procedures to assure safety goals are met when a transient occurs. These two systems are being combined into a single system through a Plant Status Monitoring System (PSMS) and a common data base accessed by all the components of the integrated system. The system is designed to sit on top of an existing Safety Parameter Display System (SPDS), and to use the existing data acquisition and data control software of the SPDS. The integrated system will communicate with the SPDS software through a single database. This database will receive sensor values and equipment status indications in a form acceptable to the knowledge based system and according to an update plan designed specifically for the system

  4. Fault Identification in an Unbalanced Distribution System Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Sophi Shilpa Gururajapathy

    2016-12-01

    Full Text Available Fast and effective fault location in distribution system is important to improve the power system reliability. Most of the researches rarely mention about effective fault location consisting of faulted phase, fault type, faulty section and fault distance identification. This work presents a method using support vector machine to identify the faulted phase, fault type, faulty section and distance at the same time. Support vector classification and regression analysis are performed to locate fault. The method uses the voltage sag data during fault condition measured at the primary substation. The faulted phase and the fault type are identified using three-dimensional support vector classification. The possible faulty sections are identified by matching voltage sag at fault condition to the voltage sag in database and the possible sections are ranked using shortest distance principle. The fault distance for the possible faulty sections isthen identified using support vector regression analysis. The performance of the proposed method was tested on an unbalanced distribution system from SaskPower, Canada. The results show that the accuracy of the proposed method is satisfactory.

  5. Sensor and Actuator Fault-Hiding Reconfigurable Control Design for a Four-Tank System Benchmark

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; El-Madbouly, Esam I; Abdo, Mohamed I

    2015-01-01

    Fault detection and compensation plays a key role to fulfill high demands for performance and security in today's technological systems. In this paper, a fault-hiding (i.e., tolerant) control scheme that detects and compensates for actuator and sensor faults in a four-tank system benchmark...... Invariant (LTI) system where virtual sensors and virtual actuators are used to correct faulty performance through the use of a pre-fault performance. Simulation results showed that the developed approach can handle different types of faults and able to completely and instantly recover the original system...

  6. A new fault diagnosis algorithm for AUV cooperative localization system

    Science.gov (United States)

    Shi, Hongyang; Miao, Zhiyong; Zhang, Yi

    2017-10-01

    Multiple AUVs cooperative localization as a new kind of underwater positioning technology, not only can improve the positioning accuracy, but also has many advantages the single AUV does not have. It is necessary to detect and isolate the fault to increase the reliability and availability of the AUVs cooperative localization system. In this paper, the Extended Multiple Model Adaptive Cubature Kalmam Filter (EMMACKF) method is presented to detect the fault. The sensor failures are simulated based on the off-line experimental data. Experimental results have shown that the faulty apparatus can be diagnosed effectively using the proposed method. Compared with Multiple Model Adaptive Extended Kalman Filter and Multi-Model Adaptive Unscented Kalman Filter, both accuracy and timelines have been improved to some extent.

  7. Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yufang Liu

    2014-01-01

    Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.

  8. Study of Intelligent Photovoltaic System Fault Diagnostic Scheme Based on Chaotic Signal Synchronization

    Directory of Open Access Journals (Sweden)

    Chin-Tsung Hsieh

    2013-01-01

    Full Text Available As the photovoltaic system consists of many equipment components, manual inspection will be very costly. This study proposes the photovoltaic system fault diagnosis based on chaotic signal synchronization. First, MATLAB was used to simulate the fault conditions of solar system, and the maximum power point tracking (MPPT was used to ensure the system's stable power and capture and record the system fault feature signals. The dynamic errors of various fault signals were extracted by chaotic signal synchronization, and the dynamic error data of various fault signals were recorded completely. In the photovoltaic system, the captured output voltage signal was used as the characteristic values for fault recognition, and the extension theory was used to create the joint domain and classical domain of various fault conditions according to the collected feature data. The matter-element model of extension engineering was constructed. Finally, the whole fault diagnosis system is only needed to capture the voltage signal of the solar photovoltaic system, so as to know the exact fault condition effectively and rapidly. The proposed fault diagnostor can be implemented by embedded system and be combined with ZigBee wireless network module in the future, thus reducing labor cost and building a complete portable renewable energy system fault diagnostor.

  9. Fuzzy Timing Petri Net for Fault Diagnosis in Power System

    Directory of Open Access Journals (Sweden)

    Alireza Tavakholi Ghainani

    2012-01-01

    Full Text Available A model-based system for fault diagnosis in power system is presented in this paper. It is based on fuzzy timing Petri net (FTPN. The ordinary Petri net (PN tool is used to model the protective components, relays, and circuit breakers. In addition, fuzzy timing is associated with places (token/transition to handle the uncertain information of relays and circuits breakers. The received delay time information of relays and breakers is mapped to fuzzy timestamps, π(τ, as initial marking of the backward FTPN. The diagnosis process starts by marking the backward sub-FTPNs. The final marking is found by going through the firing sequence, σ, of each sub-FTPN and updating fuzzy timestamp in each state of σ. The final marking indicates the estimated fault section. This information is then in turn used in forward FTPN to evaluate the fault hypothesis. The FTPN will increase the speed of the inference engine because of the ability of Petri net to describe parallel processing, and the use of time-tag data will cause the inference procedure to be more accurate.

  10. System for detecting and limiting electrical ground faults within electrical devices

    International Nuclear Information System (INIS)

    Gaubatz, D.C.

    1990-01-01

    This paper discusses, in a nuclear power plant of a variety wherein a reactor is provided including a reactor vessel retaining a liquid metal coolant, a reactor core and an electromagnetic pump having inductive windings insulatively retained within the electrically conductive wall of an enclosure, the method for controlling electrical ground fault current between a the inductive winding and the walls. It comprises providing an electrically isolated power source by inductive coupling with the plant power supply; rectifying the power source to provide an isolated d.c. power source; providing an inverter powered from the isolated d.c. power source under the control of the plant control system for selectively energizing the inductive windings; providing a fault control conductor electrically connected with the pump enclosure wall and extending as an electrical return for ground fault current to the inverter; and providing an electrical resistance between the conductor and the isolated inverter having an impedance selected to limit the fault current below a predetermined value limiting arc damage at any the electrical ground fault location

  11. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  12. Online fault location on crossbonded AC cables in underground transmission systems

    DEFF Research Database (Denmark)

    F. Jensen, Christian; Bak, Claus Leth; Gudmundsdottir, Unnur Stella

    2014-01-01

    In this paper, a fault locator system specifically designed for crossbonded cables is described. Electromagnetic wave propagation theory for crossbonded cables with focus on fault location purposes is discussed. Based on this, the most optimal modal component and input signal to the fault locator...... to changes in the fault inception angle, fault resistance and fault location. It is shown that the fault location can be estimated very accurately using the proposed system and the system will be used to monitor Danish crossbonded transmission cables in the future....... of a 245 kV crossbonded cable system, connecting the newly installed 400 MW Danish offshore wind farm Anholt to the main grid, are obtained and used to verify the proposed system. Furthermore, extensive simulation data created in PSCAD/EMTDC is used in order to examine the robustness of the system...

  13. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  14. A System for Fault Management for NASA's Deep Space Habitat

    Science.gov (United States)

    Colombano, Silvano P.; Spirkovska, Liljana; Aaseng, Gordon B.; Mccann, Robert S.; Baskaran, Vijayakumar; Ossenfort, John P.; Smith, Irene Skupniewicz; Iverson, David L.; Schwabacher, Mark A.

    2013-01-01

    NASA's exploration program envisions the utilization of a Deep Space Habitat (DSH) for human exploration of the space environment in the vicinity of Mars and/or asteroids. Communication latencies with ground control of as long as 20+ minutes make it imperative that DSH operations be highly autonomous, as any telemetry-based detection of a systems problem on Earth could well occur too late to assist the crew with the problem. A DSH-based development program has been initiated to develop and test the automation technologies necessary to support highly autonomous DSH operations. One such technology is a fault management tool to support performance monitoring of vehicle systems operations and to assist with real-time decision making in connection with operational anomalies and failures. Toward that end, we are developing Advanced Caution and Warning System (ACAWS), a tool that combines dynamic and interactive graphical representations of spacecraft systems, systems modeling, automated diagnostic analysis and root cause identification, system and mission impact assessment, and mitigation procedure identification to help spacecraft operators (both flight controllers and crew) understand and respond to anomalies more effectively. In this paper, we describe four major architecture elements of ACAWS: Anomaly Detection, Fault Isolation, System Effects Analysis, and Graphic User Interface (GUI), and how these elements work in concert with each other and with other tools to provide fault management support to both the controllers and crew. We then describe recent evaluations and tests of ACAWS on the DSH testbed. The results of these tests support the feasibility and strength of our approach to failure management automation and enhanced operational autonomy.

  15. Application of three fault growth criteria to the Puente Hills thrust system, Los Angeles, California, USA

    Science.gov (United States)

    Olson, Erik L.; Cooke, Michele L.

    2005-10-01

    Three-dimensional mechanical models are used to evaluate the performance of different fault growth criteria in predicting successive growth of three échelon thrust faults similar to the segments of the Puente Hills thrust system of the Los Angeles basin, California. Four sequential Boundary Element Method models explore the growth of successive échelon faults within the system by simulating snapshots of deformation at different stages of development. These models use three criteria, (1) energy release rate, (2) strain energy density, and (3) Navier-Coulomb stress, to characterize the lateral growth of the fault system. We simulate the growth of an échelon thrust fault system to evaluate the suitability of each of these criteria for assessing fault growth. Each of these three factors predicts a portion of the incipient fault geometry (i.e. location or orientation); however, each provides different information. In each model, energy release rate along the westernmost (leading) tip of the Puente Hills thrust drops with growth of the next neighboring fault; this result supports the overall lateral development of successive échelon segments. Within each model, regions of high strain energy density and Navier-Coulomb stress envelope at least a portion of the next fault to develop, although the strain energy density has stronger correlation than Navier-Coulomb stress to the location of incipient faulting. In each model, one of the two predicted planes of maximum Navier-Coulomb stress ahead of the leading fault tip matches the strike but not the dip of the incipient fault plane recreating part of the fault orientation. The incipient fault dip is best predicted by the orientation of the strain energy density envelopes around the leading fault tip. Furthermore, the energy release rate and pattern of strain energy density can be used to characterize potential soft linkage (overlap) or hard linkage (connection) of échelon faults within the system.

  16. Automated fault diagnosis in nonlinear multivariable systems using a learning methodology.

    Science.gov (United States)

    Trunov, A B; Polycarpou, M M

    2000-01-01

    The paper presents a robust fault diagnosis scheme for detecting and approximating state and output faults occurring in a class of nonlinear multiinput-multioutput dynamical systems. Changes in the system dynamics due to a fault are modeled as nonlinear functions of the control input and measured output variables. Both state and output faults can be modeled as slowly developing (incipient) or abrupt, with each component of the state/output fault vector being represented by a separate time profile. The robust fault diagnosis scheme utilizes on-line approximators and adaptive nonlinear filtering techniques to obtain estimates of the fault functions. Robustness with respect to modeling uncertainties, fault sensitivity and stability properties of the learning scheme are rigorously derived and the theoretical results are illustrated by a simulation example of a fourth-order satellite model.

  17. Robust fault diagnosis of disturbed linear systems via a sliding mode high order differentiator

    Science.gov (United States)

    Bejarano, Francisco Javier; Figueroa, Maricela; Pacheco, Jaime; Rubio, José de Jesus

    2012-06-01

    A fault estimator for linear systems affected by disturbances is proposed. Faults appearing explicitly in the state equation and in the system output (actuator faults and sensor faults) are considered. With this design neither the estimation of the state vector nor the estimation of the disturbances is required, implying that the structural conditions are less restrictive than the ones required to design an unknown input observer. Furthermore, the number of unknown inputs (faults plus disturbances) may be greater than the number of outputs. The faults are written as an algebraic expression of a high-order derivative of a function depending on the output. Thus, the reconstruction of the fault signals is carried out by means of a sliding mode high-order differentiator, which requires the derivative of the faults to have a bounded norm.

  18. A fault diagnosis system for nuclear power plant operation

    International Nuclear Information System (INIS)

    Ohga, Yukiharu; Hayashi, Yoshiharu; Yuchi, Hiroyuki; Utena, Shunsuke; Maeda, Akihiko

    2002-01-01

    A fault diagnosis system has been developed to support operators in nuclear power plants. In the system various methods are combined to get a diagnosis result which provides better detection sensitivity and result reliability. The system is composed of an anomaly detection part with diagnosis modules, an integration part which obtains the diagnosis result by combining results from each diagnosis module, and a prediction part with state prediction and estimation modules. For the anomaly detection part, three kinds of modules are prepared: plant signal processing, early fault detection and event identification modules. The plant signal processing module uses wavelet transform and chaos technologies as well as fast Fourier transform (FFT) to analyze vibration sensor signals and to detect signal anomaly. The early fault detection module uses the neural network model of a plant subprocess to estimate the process variable values assuming normal conditions, and to detect an anomaly by comparing the measured and estimated values. The event identification module identifies the kind of occurring event by using the neural network and knowledge processing. In the integration part the diagnosis is performed by using knowledge processing. The knowledge for diagnosis is structured based on the means-ends abstraction hierarchy to simplify knowledge input and maintenance. In the prediction part, the prediction module predicts the future changes of process variables and plant interlock statuses and the estimation module estimates the values of unmeasurable variables. A prototype system has been developed and the system performance was evaluated. The evaluation results show that the developed technologies are effective to improve the human-machine system for plant operation. (author)

  19. Towards fault-tolerant decision support systems for ship operator guidance

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Lajic, Zoran; Jensen, Jørgen Juncher

    2012-01-01

    Fault detection and isolation are very important elements in the design of fault-tolerant decision support systems for ship operator guidance. This study outlines remedies that can be applied for fault diagnosis, when the ship responses are assumed to be linear in the wave excitation. A novel num...

  20. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  1. Application of wavelet theory to power distribution systems for fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Momoh, J. [Howard Univ., Washington, DC (United States). Dept. of Electrical Engineering; Rizy, D.T. [Oak Ridge National Lab., TN (United States)

    1996-03-01

    In this paper an investigation of the wavelet transform as a means of creating a feature extractor for Artificial Neural Network (ANN) training is presented. The study includes a teresstrial-based 3 phase delta power distribution system. Faults were injected into the system and data was obtained from experimentation. Graphical representations of the feature extractors obtained in the time domain, the frequency domain and the wavelet domain are presented to ascertain the superiority of the wavelet ``reform feature extractor.

  2. Fault Tolerant Software: a Multi Agent System Solution

    DEFF Research Database (Denmark)

    Caponetti, Fabio; Bergantino, Nicola; Longhi, Sauro

    2009-01-01

    Development of high dependable systems remains a labour intensive task. This paper explores recent advances on the adaptation of the software agent architecture for control application while looking to dependability issues. Multiple agent systems theory will be reviewed giving methods to supervise...... it. Software ageing is shown to be the most common problem and rejuvenation its counteract. The paper will show how an agent population can be monitored, faulty agents isolated and reloaded in a healthy state, hence rejuvenated. The aim is to propose an architecture as basis for the design of control...... software able to tolerate faults and residual bugs without the need of maintenance stops....

  3. Earthquake fault superhighways

    Science.gov (United States)

    Robinson, D. P.; Das, S.; Searle, M. P.

    2010-10-01

    Motivated by the observation that the rare earthquakes which propagated for significant distances at supershear speeds occurred on very long straight segments of faults, we examine every known major active strike-slip fault system on land worldwide and identify those with long (> 100 km) straight portions capable not only of sustained supershear rupture speeds but having the potential to reach compressional wave speeds over significant distances, and call them "fault superhighways". The criteria used for identifying these are discussed. These superhighways include portions of the 1000 km long Red River fault in China and Vietnam passing through Hanoi, the 1050 km long San Andreas fault in California passing close to Los Angeles, Santa Barbara and San Francisco, the 1100 km long Chaman fault system in Pakistan north of Karachi, the 700 km long Sagaing fault connecting the first and second cities of Burma, Rangoon and Mandalay, the 1600 km Great Sumatra fault, and the 1000 km Dead Sea fault. Of the 11 faults so classified, nine are in Asia and two in North America, with seven located near areas of very dense populations. Based on the current population distribution within 50 km of each fault superhighway, we find that more than 60 million people today have increased seismic hazards due to them.

  4. Automated Fault Diagnostics, Prognostics, and Recovery in Spacecraft Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault detection and isolation (FDI) in spacecraft's electrical power system (EPS) has always received special attention. However, the power systems health management...

  5. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    Science.gov (United States)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  6. Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Blanke, Mogens

    2014-01-01

    In safety critical systems, the control system is composed of a core control system with a fault detection and isolation scheme together with a repair or a recovery strategy. The time that it takes to detect, isolate, and recover from the fault (fault recovery time) is a critical factor in safety...... of a system. It must be guaranteed that the trajectory of a system subject to fault remains in the region of attraction (ROA) of the post-fault system during this time. This paper proposes a new algorithm to compute the critical fault recovery time for nonlinear systems with polynomial vector elds using sum...... of squares programming. The proposed algorithm is based on computation of ROA of the recovered system and nite-time stability of the faulty system....

  7. Designing Fault Tolerance Strategy by Iterative Redundancy for Component-Based Distributed Computing Systems

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available Reliability is a critical issue for component-based distributed computing systems, some distributed software allows the existence of large numbers of potentially faulty components on an open network. Faults are inevitable in this large-scale, complex, distributed components setting, which may include a lot of untrustworthy parts. How to provide highly reliable component-based distributed systems is a challenging problem and a critical research. Generally, redundancy and replication are utilized to realize the goal of fault tolerance. In this paper, we propose a CFI (critical fault iterative redundancy technique, by which the efficiency can be guaranteed to make use of resources (e.g., computation and storage and to create fault-tolerance applications. When operating in an environment with unknown components’ reliability, CFI redundancy is more efficient and adaptive than other techniques (e.g., K-Modular Redundancy and N-Version Programming. In the CFI strategy of redundancy, the function invocation relationships and invocation frequencies are employed to rank the functions’ importance and identify the most vulnerable function implemented via functionally equivalent components. A tradeoff has to be made between efficiency and reliability. In this paper, a formal theoretical analysis and an experimental analysis are presented. Compared with the existing methods, the reliability of components-based distributed system can be greatly improved by tolerating a small part of significant components.

  8. Characteristics of earth faults in power systems with a compensated or an unearthed neutral

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S.; Lehtonen, M. [VTT Energy, Espoo (Finland); Antila, E. [ABB Transmit Oy (Finland); Stroem, J. [Espoo Electricity Co (Finland); Ingman, S. [Vaasa Electricity Co (Finland)

    1998-08-01

    The most common fault type in the electrical distribution networks is the single phase to earth fault. For instance in the Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occurred in the networks. Therefore, data of fault occurrences have been recorded and analyzed in the medium voltage distribution networks (20 kV) at two substations, of which one has an isolated and the other a compensated neutral. In the occurring disturbances, the traces of phase currents and neutral currents in the beginning of two feeder and the traces of phase voltages and neutral voltage from the voltage measuring bay were recorded. In addition to the measured data, other information of the fault occurrences was also collected (data of the line, cause and location of permanent faults and so on)

  9. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  10. Subsurface structure identification of active fault based on magnetic anomaly data (Case study: Toru fault in Sumatera fault system)

    Science.gov (United States)

    Simanjuntak, Andrean V. H.; Husni, Muhammad; Syirojudin, Muhammad

    2017-07-01

    Toru segment, which is one of the active faults and located in the North of Sumatra, broke in 1984 ago on Pahae Jahe's earthquake with a magnitude 6.4 at the northern part of the fault which has a length of 23 km, and also broke again at the same place in 2008. The event of recurrence is very fast, which only 25 years old have repeatedly returned. However, in the elastic rebound theory, it probably happen with a fracture 50 cm and an average of the shear velocity 20 mm/year. The average focus of the earthquake sourced at a depth of 10 km and 23 km along its fracture zones, which can generate enough shaking 7 MMI and could breaking down buildings and create landslides on the cliff. Due to its seismic activity, this study was made to identify the effectiveness of this fault with geophysical methods. Geophysical methods such as gravity, geomagnetic and seismology are powerful tools for detecting subsurface structures of local, regional as well as of global scales. This study used to geophysical methods to discuss about total intensity of the geomagnetic anomaly data, resulted in the distribution of susceptibility values corresponding to the fault movement. The geomagnetic anomalies data was obtained from Geomag, such as total intensity measured by satellite. Data acquisition have been corrected for diurnal variations and reduced by IGRF. The study of earthquake records can be used for differentiating the active and non active fault elements. Modeling has been done using several methods, such as pseudo-gravity, reduce to pole, and upward or downward continuation, which is used to filter the geomagnetic anomaly data because the data has not fully representative of the fault structure. The results indicate that rock layers of 0 - 100 km depth encountered the process of intrusion and are dominated by sedimentary rocks that are paramagnetic, and that the ones of 100 - 150 km depth experienced the activity of subducting slab consisting of basalt and granite which are

  11. An Autonomous Distributed Fault-Tolerant Local Positioning System

    Science.gov (United States)

    Malekpour, Mahyar R.

    2017-01-01

    We describe a fault-tolerant, GPS-independent (Global Positioning System) distributed autonomous positioning system for static/mobile objects and present solutions for providing highly-accurate geo-location data for the static/mobile objects in dynamic environments. The reliability and accuracy of a positioning system fundamentally depends on two factors; its timeliness in broadcasting signals and the knowledge of its geometry, i.e., locations and distances of the beacons. Existing distributed positioning systems either synchronize to a common external source like GPS or establish their own time synchrony using a scheme similar to a master-slave by designating a particular beacon as the master and other beacons synchronize to it, resulting in a single point of failure. Another drawback of existing positioning systems is their lack of addressing various fault manifestations, in particular, communication link failures, which, as in wireless networks, are increasingly dominating the process failures and are typically transient and mobile, in the sense that they typically affect different messages to/from different processes over time.

  12. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...... may be superposed on the stator natural flux produced by the second grid fault, and it may result in large current and voltage transient. The damping of the stator natural flux can be accelerated with a rotor natural current in its opposite direction after voltage recovery, but larger torque....... The performance of DFIG under recurring grid faults is verified by the simulation and experiments....

  13. Neural network based expert system for fault diagnosis of particle accelerators

    International Nuclear Information System (INIS)

    Dewidar, M.M.

    1997-01-01

    Particle accelerators are generators that produce beams of charged particles, acquiring different energies, depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Its applications include isotope production, nuclear reaction, and mass spectroscopy studies. It is a complicated machine, it consists of five main parts, the ion source, the deflector, the beam transport system, the concentric and harmonic coils, and the radio frequency system. The diagnosis of this device is a very complex task. it depends on the conditions of 27 indicators of the control panel of the device. The accurate diagnosis can lead to a high system reliability and save maintenance costs. so an expert system for the cyclotron fault diagnosis is necessary to be built. In this thesis , a hybrid expert system was developed for the fault diagnosis of the MGC-20 cyclotron. Two intelligent techniques, multilayer feed forward back propagation neural network and the rule based expert system, are integrated as a pre-processor loosely coupled model to build the proposed hybrid expert system. The architecture of the developed hybrid expert system consists of two levels. The first level is two feed forward back propagation neural networks, used for isolating the faulty part of the cyclotron. The second level is the rule based expert system, used for troubleshooting the faults inside the isolated faulty part. 4-6 tabs., 4-5 figs., 36 refs

  14. Fault current reduction by SFCL in a distribution system with PV using fuzzy logic technique

    Science.gov (United States)

    Mounika, M.; Lingareddy, P.

    2017-07-01

    In the modern power system, as the utilization of electric power is very wide, there is a frequent occurring of any fault or disturbance in power system. It causes a high short circuit current. Due to this fault, high currents occurs results to large mechanical forces, these forces cause overheating of the equipment. If the large size equipment are used in power system then they need a large protection scheme for severe fault conditions. Generally, the maintenance of electrical power system reliability is more important. But the elimination of fault is not possible in power systems. So the only alternate solution is to minimize the fault currents. For this the Super Conducting Fault Current Limiter using fuzzy logic technique is the best electric equipment which is used for reducing the severe fault current levels. In this paper, we simulated the unsymmetrical and symmetrical faults with fuzzy based superconducting fault current limiter. In our analysis it is proved that, fuzzy logic based super conducting fault current limiter reduces fault current quickly to a lower value.

  15. Design of fault diagnosis system for inertial navigation system based on virtual technology

    Science.gov (United States)

    Hu, Baiqing; Wang, Boxiong; Li, An; Zhang, Mingzhao; Qin, Fangjun; Pan, Hua

    2006-11-01

    With regard to the complex structure of the inertial navigation system and the low rate of fault detection with BITE (built-in test equipment), a fault diagnosis system for INS based on virtual technologies (virtual instrument and virtual equipment) is proposed in this paper. The hardware of the system is a PXI computer with highly stable performance and strong extensibility. In addition to the basic functions of digital multimeter, oscilloscope and cymometer, it can also measure the attitude of the ship in real-time, connect and control the measurement instruments with digital interface. The software is designed with the languages of Measurement Studio for VB, JAVA, and CULT3D. Using the extensively applied fault-tree reasoning and fault cases makes fault diagnosis. To suit the system to the diagnosis for various navigation electronic equipments, the modular design concept is adopted for the software programming. Knowledge of the expert system is digitally processed and the parameters of the system's interface and the expert diagnosis knowledge are stored in the database. The application shows that system is stable in operation, easy to use, quick and accurate in fault diagnosis.

  16. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    systems. It consists of four different contributions. First, it presents a review of the idea and the theory behind the geometric approach for FDI. Starting from the original solution for linear systems up to the latest results for input-affine systems the theory and solutions are described....... Then the geometric approach is applied to a nonlinear ship propulsion system benchmark. The calculations and application results are presented in detail to give an illustrative example. The obtained subsystems are considered for the design of nonlinear observers in order to obtain FDI. Additionally, an adaptive...... for the observers designed for the ship propulsion system. Furthermore, it stresses the importance of the time-variant character of the linearization along a trajectory. It leads to a different stability analysis than for linearization at one operation point. Finally, the preliminary concept of (actuator) fault...

  17. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    International Nuclear Information System (INIS)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook

    2016-01-01

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  18. Mitigation of commutation failures in LCC–HVDC systems based on superconducting fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Geon; Khan, Umer Amir; Lee, Ho-Yun; Lim, Sung-Woo; Lee, Bang-Wook, E-mail: bangwook@hanyang.ac.kr

    2016-11-15

    Commutation failure in line commutated converter based HVDC systems cause severe damages on the entire power grid system. For LCC–HVDC, thyristor valves are turned on by a firing signal but turn off control is governed by the external applied AC voltage from surrounding network. When the fault occurs in AC system, turn-off control of thyristor valves is unavailable due to the voltage collapse of point of common coupling (PCC), which causes the commutation failure in LCC–HVDC link. Due to the commutation failure, the power transfer interruption, dc voltage drop and severe voltage fluctuation in the AC system could be occurred. In a severe situation, it might cause the protection system to block the valves. In this paper, as a solution to prevent the voltage collapse on PCC and to limit the fault current, the application study of resistive superconducting fault current limiter (SFCL) on LCC–HVDC grid system was performed with mathematical and simulation analyses. The simulation model was designed by Matlab/Simulink considering Haenam-Jeju HVDC power grid in Korea which includes conventional AC system and onshore wind farm and resistive SFCL model. From the result, it was observed that the application of SFCL on LCC–HVDC system is an effective solution to mitigate the commutation failure. And then the process to determine optimum quench resistance of SFCL which enables the recovery of commutation failure was deeply investigated.

  19. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks

    Directory of Open Access Journals (Sweden)

    Yunji Li

    2018-01-01

    Full Text Available In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  20. Simultaneous Event-Triggered Fault Detection and Estimation for Stochastic Systems Subject to Deception Attacks.

    Science.gov (United States)

    Li, Yunji; Wu, QingE; Peng, Li

    2018-01-23

    In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.

  1. Robust Fault Detection for a Class of Uncertain Nonlinear Systems Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2015-01-01

    Full Text Available A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes robust control theory and parameter optimization algorithm to design the gain matrix of fault tracking approximator (FTA for fault detection. The gain matrix of FTA is designed to minimize the effects of system uncertainty on residual signals while maximizing the effects of system faults on residual signals. The design of the gain matrix of FTA takes into account the robustness of residual signals to system uncertainty and sensitivity of residual signals to system faults simultaneously, which leads to a multiobjective optimization problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally, simulation results are provided to show the validity and applicability of the proposed approach.

  2. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  3. Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic

    Directory of Open Access Journals (Sweden)

    Majid Jamil

    2015-09-01

    Full Text Available In this proposed work a fuzzy logic based algorithm using discrete wavelet transform is developed for identifying the various faults in the electrical distribution system for an unbalanced distribution electrical power system. This technique is capable to identify the ten different types of faults with negligible effect of variation in fault inception angle, loading and other parameters of the power distribution system. The proposed method is tested on IEEE 13 bus electrical distribution system and on an Indian scenario of distribution system. The current of respective three phases is used as input signal for fault identification and the results obtained from the proposed method are more than satisfactory.

  4. Data-driven design of fault diagnosis systems nonlinear multimode processes

    CERN Document Server

    Haghani Abandan Sari, Adel

    2014-01-01

    In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...

  5. Adaptive observer-based fault estimation for a class of Lipschitz nonlinear systems

    Directory of Open Access Journals (Sweden)

    Oucief Nabil

    2016-06-01

    Full Text Available Fault input channels represent a major challenge for observer design for fault estimation. Most works in this field assume that faults enter in such a way that the transfer functions between these faults and a number of measured outputs are strictly positive real (SPR, that is, the observer matching condition is satisfied. This paper presents a systematic approach to adaptive observer design for joint estimation of the state and faults when the SPR requirement is not verified. The proposed method deals with a class of Lipschitz nonlinear systems subjected to piecewise constant multiplicative faults. The novelty of the proposed approach is that it uses a rank condition similar to the observer matching condition to construct the adaptation law used to obtain fault estimates. The problem of finding the adaptive observer matrices is formulated as a Linear Matrix Inequality (LMI optimization problem. The proposed scheme is tested on the nonlinear model of a single link flexible joint robot system.

  6. Active-Varying Sampling-Based Fault Detection Filter Design for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2014-01-01

    Full Text Available This paper is concerned with fault detection filter design for continuous-time networked control systems considering packet dropouts and network-induced delays. The active-varying sampling period method is introduced to establish a new discretized model for the considered networked control systems. The mutually exclusive distribution characteristic of packet dropouts and network-induced delays is made full use of to derive less conservative fault detection filter design criteria. Compared with the fault detection filter design adopting a constant sampling period, the proposed active-varying sampling-based fault detection filter design can improve the sensitivity of the residual signal to faults and shorten the needed time for fault detection. The simulation results illustrate the merits and effectiveness of the proposed fault detection filter design.

  7. Online Location of Faults on AC Cables in Underground Transmission Systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær

    difficulties for the fault locator systems currently in use and such can therefore not be applied directly. In this thesis, the analysis and development of a fault locator system capable of locating faults with high accuracy on crossbonded cables and hybrid lines is presented. The thesis is divided into five...... parts; The preliminaries, a part which deals with the use of impedance-based fault location methods on crossbonded cables, a part which deals with travelling wave-based fault location, a part listing the conclusions and contributions of the thesis and an appendix. A state-of-the-art analysis...... is conducted on the use of both impedance- and travelling wavebased fault location methods, and it is found in both cases that the research field is not covered in detail. Therefore, the use of both fault location methods is examined in detail. It is found that an impedance-based method is difficult...

  8. Energy-Aware Synthesis of Fault-Tolerant Schedules for Real-Time Distributed Embedded Systems

    DEFF Research Database (Denmark)

    Poulsen, Kåre Harbo; Pop, Paul; Izosimov, Viacheslav

    2007-01-01

    This paper presents a design optimisation tool for distributed embedded real-time systems that 1) decides mapping, fault-tolerance policy and generates a fault-tolerant schedule, 2) is targeted for hard real-time, 3) has hard reliability goal, 4) generates static schedule for processes and messages......, 5) provides fault-tolerance for k transient/soft faults, 6) optimises for minimal energy consumption, while considering impact of lowering voltages on the probability of faults, 7) uses constraint logic programming (CLP) based implementation....

  9. A New Approach to Fault Diagnosis of Power Systems Using Fuzzy Reasoning Spiking Neural P Systems

    Directory of Open Access Journals (Sweden)

    Guojiang Xiong

    2013-01-01

    Full Text Available Fault diagnosis of power systems is an important task in power system operation. In this paper, fuzzy reasoning spiking neural P systems (FRSN P systems are implemented for fault diagnosis of power systems for the first time. As a graphical modeling tool, FRSN P systems are able to represent fuzzy knowledge and perform fuzzy reasoning well. When the cause-effect relationship between candidate faulted section and protective devices is represented by the FRSN P systems, the diagnostic conclusion can be drawn by means of a simple parallel matrix based reasoning algorithm. Three different power systems are used to demonstrate the feasibility and effectiveness of the proposed fault diagnosis approach. The simulations show that the developed FRSN P systems based diagnostic model has notable characteristics of easiness in implementation, rapidity in parallel reasoning, and capability in handling uncertainties. In addition, it is independent of the scale of power system and can be used as a reliable tool for fault diagnosis of power systems.

  10. Application of fault tree methodology to modeling of the AP1000 plant digital reactor protection system

    International Nuclear Information System (INIS)

    Teolis, D.S.; Zarewczynski, S.A.; Detar, H.L.

    2012-01-01

    The reactor trip system (RTS) and engineered safety features actuation system (ESFAS) in nuclear power plants utilizes instrumentation and control (IC) to provide automatic protection against unsafe and improper reactor operation during steady-state and transient power operations. During normal operating conditions, various plant parameters are continuously monitored to assure that the plant is operating in a safe state. In response to deviations of these parameters from pre-determined set points, the protection system will initiate actions required to maintain the reactor in a safe state. These actions may include shutting down the reactor by opening the reactor trip breakers and actuation of safety equipment based on the situation. The RTS and ESFAS are represented in probabilistic risk assessments (PRAs) to reflect the impact of their contribution to core damage frequency (CDF). The reactor protection systems (RPS) in existing nuclear power plants are generally analog based and there is general consensus within the PRA community on fault tree modeling of these systems. In new plants, such as AP1000 plant, the RPS is based on digital technology. Digital systems are more complex combinations of hardware components and software. This combination of complex hardware and software can result in the presence of faults and failure modes unique to a digital RPS. The United States Nuclear Regulatory Commission (NRC) is currently performing research on the development of probabilistic models for digital systems for inclusion in PRAs; however, no consensus methodology exists at this time. Westinghouse is currently updating the AP1000 plant PRA to support initial operation of plants currently under construction in the United States. The digital RPS is modeled using fault tree methodology similar to that used for analog based systems. This paper presents high level descriptions of a typical analog based RPS and of the AP1000 plant digital RPS. Application of current fault

  11. Diagnosis of Fault Modes Masked by Control Loops with an Application to Autonomous Hovercraft Systems

    Directory of Open Access Journals (Sweden)

    Ioannis A. Raptis

    2013-01-01

    Full Text Available This paper introduces a methodology for the design, testing and assessment of incipient failure detection techniques for failing components/systems of an autonomous vehicle masked or hidden by feedback control loops. It is recognized that the optimum operation of critical assets (aircraft, autonomous systems, etc. may be compromised by feedback control loops by masking severe fault modes while compensating for typical disturbances. Detrimental consequences of such occurrences include the inability to detect expeditiously and accurately incipient failures, loss of control and inefficient operation of assets in the form of fuel overconsumption and adverse environmental impact. We pursue a systems engineering process to design, construct and test an autonomous hovercraft instrumented appropriately for improved autonomy. Hidden fault modes are detected with performance guarantees by invoking a Bayesian estimation approach called particle filtering. Simulation and experimental studies are employed to demonstrate the efficacy of the proposed methods.

  12. Diversification of Smallholder Tobacco Systems to include ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Tobacco is the mainstay of the economy of Malawi, accounting for over 70% of export earnings. Of the 100 000 members of the National Smallholder Farmers' Association of Malawi (NASFAM), 60% rely on tobacco for their sole source of income. Like their counterparts elsewhere, they face many difficulties, including: ...

  13. New Geologic Data on the Seismic Risks of the Most Dangerous Fault on Shore in Central Japan, the Itoigawa-Shizuoka Tectonic Line Active Fault System

    Science.gov (United States)

    Okumura, K.; Kondo, H.; Toda, S.; Takada, K.; Kinoshita, H.

    2006-12-01

    Ten years have past since the first official assessment of the long-term seismic risks of the Itoigawa-Shizuoka tectonic line active fault system (ISTL) in 1996. The disaster caused by the1995 Kobe (Hyogo-ken-Nanbu) earthquake urged the Japanese government to initiated a national project to assess the long-term seismic risks of on-shore active faults using geologic information. ISTL was the first target of the 98 significant faults and the probability of a M7 to M8 event turned out to be the highest among them. After the 10 years of continued efforts to understand the ISTL, now it is getting ready to revise the assessment. Fault mapping and segmentation: The most active segment of the Gofukuji fault (~1 cm/yr left-lateral strike slip, R=500~800 yrs.) had been maped only for less than 10 km. Adjacent segments were much less active. This large slip on such a short segment was contradictory. However, detailed topographic study including Lidar survey revealed the length of the Gofukuji fault to be 25 km or more. High slip rate with frequent earthquakes may be restricted to the Gofukuji fault while the 1996 assessment modeled frequent >100 km rupture scenario. The geometry of the fault is controversial especially on the left-lateral strike-slip section of the ISTL. There are two models of high-angle Middel ISTL and low-angle Middle ISTL with slip partitioning. However, all geomorphic and shallow geologic data supports high-angle almost pure strike slip on the faults in the Middle ISTL. CRIEPI's 3- dimensional trenching in several sites as well as the previous results clearly demonstrated repeated pure strike-slip offset during past a few events. In Middle ISTL, there is no evidence of recent activity of pre-existing low-angle thrust faults that are inferred to be active from shallow seismic survey. Separation of high (~3000 m) mountain ranges and low (earthquakes. In order to solve this problem, we have carried out intensive geoslicer and boring survey of buried faults

  14. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  15. Faults detection approach using PCA and SOM algorithm in PMSG-WT system

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine FADDA

    2016-07-01

    Full Text Available In this paper, a new approach for faults detection in observable data system wind turbine - permanent magnet synchronous generator (WT-PMSG, the studying objective, illustrate the combination (SOM-PCA to build Multi-local-PCA models faults detection in system (WT-PMSG, the performance of the method suggested to faults detection in system data, finding good results in simulation experiment.

  16. Electrochemical system including lamella settler crystallizer

    Science.gov (United States)

    Maimoni, Arturo

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  17. Expert systems applied to fault isolation and energy storage management, phase 2

    Science.gov (United States)

    1987-01-01

    A user's guide for the Fault Isolation and Energy Storage (FIES) II system is provided. Included are a brief discussion of the background and scope of this project, a discussion of basic and advanced operating installation and problem determination procedures for the FIES II system and information on hardware and software design and implementation. A number of appendices are provided including a detailed specification for the microprocessor software, a detailed description of the expert system rule base and a description and listings of the LISP interface software.

  18. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    Science.gov (United States)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  19. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  20. Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Science.gov (United States)

    Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.

    1992-01-01

    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions.

  1. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  2. Fault Diagnosis Scheme for Nonlinear Stochastic Systems with Time-Varying Fault: Application to the Rigid Spacecraft Control

    Czech Academy of Sciences Publication Activity Database

    Nguyen, H.Q.; Čelikovský, Sergej

    2012-01-01

    Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab

  3. Applications of artificial intelligence, including expert systems

    International Nuclear Information System (INIS)

    Abbott, M.B.

    1989-01-01

    When Artificial Intelligence is applied to a complex physical system like a nuclear plant it is useful to distinguish between two rather distinct and different intelligent views of such a plant. The first view may be characterised as ''the designer's view''. This is the view of the plant as it was originally conceived and designed; it is essentially a once-and-for-all static view, corresponding to the implicit assumption of an ''ageless plant'', or at most a plant which ages in a preconceived, preset manner. The second view, which may be characterised as ''the operators view'', has to do more with a real-world, ageing plant. It is a more dynamic view, which sees the ageing process as one in which unforeseen, and possibly unforeseeable events may occur at equally unforeseen, and possibly unforeseeable times. The first view is predominantly a way of thinking about the plant, while the second is very often more a way of feeling about it. It should be emphasized that both ways are ways of intelligence. (author)

  4. Fault Feature Analysis of a Cracked Gear Coupled Rotor System

    Directory of Open Access Journals (Sweden)

    Hui Ma

    2014-01-01

    Full Text Available Considering the misalignment of gear root circle and base circle and accurate transition curve, an improved mesh stiffness model for healthy gear is proposed, and it is validated by comparison with the finite element method. On the basis of the improved method, a mesh stiffness model for a cracked gear pair is built. Then a finite element model of a cracked gear coupled rotor system in a one-stage reduction gear box is established. The effects of crack depth, width, initial position, and crack propagation direction on gear mesh stiffness, fault features in time domain and frequency domain, and statistical indicators are investigated. Moreover, fault features are also validated by experiment. The results show that the improved mesh stiffness model is more accurate than the traditional mesh stiffness model. When the tooth root crack appears, distinct impulses are found in time domain vibration responses, and sidebands appear in frequency domain. Amplitudes of all the statistical indicators ascend gradually with the growth of crack depth and width, decrease with the increasing crack initial position angle, and firstly increase and then decrease with the growth of propagation direction angle.

  5. Fault-tolerance in Two-dimensional Topological Systems

    Science.gov (United States)

    Anderson, Jonas T.

    This thesis is a collection of ideas with the general goal of building, at least in the abstract, a local fault-tolerant quantum computer. The connection between quantum information and topology has proven to be an active area of research in several fields. The introduction of the toric code by Alexei Kitaev demonstrated the usefulness of topology for quantum memory and quantum computation. Many quantum codes used for quantum memory are modeled by spin systems on a lattice, with operators that extract syndrome information placed on vertices or faces of the lattice. It is natural to wonder whether the useful codes in such systems can be classified. This thesis presents work that leverages ideas from topology and graph theory to explore the space of such codes. Homological stabilizer codes are introduced and it is shown that, under a set of reasonable assumptions, any qubit homological stabilizer code is equivalent to either a toric code or a color code. Additionally, the toric code and the color code correspond to distinct classes of graphs. Many systems have been proposed as candidate quantum computers. It is very desirable to design quantum computing architectures with two-dimensional layouts and low complexity in parity-checking circuitry. Kitaev's surface codes provided the first example of codes satisfying this property. They provided a new route to fault tolerance with more modest overheads and thresholds approaching 1%. The recently discovered color codes share many properties with the surface codes, such as the ability to perform syndrome extraction locally in two dimensions. Some families of color codes admit a transversal implementation of the entire Clifford group. This work investigates color codes on the 4.8.8 lattice known as triangular codes. I develop a fault-tolerant error-correction strategy for these codes in which repeated syndrome measurements on this lattice generate a three-dimensional space-time combinatorial structure. I then develop an

  6. A fault tolerant superheat control strategy for supermarket refrigeration systems

    DEFF Research Database (Denmark)

    Vinther, Kasper; Izadi-Zamanabadi, Roozbeh; Rasmussen, Henrik

    2013-01-01

    In this paper, a fault tolerant control (FTC) strategy is proposed for evaporator superheat control in supermarket refrigeration systems. Conventional control uses a pressure and temperature sensor for this purpose, however, the pressure sensor can fail to function. A contingency control strategy......, based on a maximum slope-seeking control method and only a single temperature sensor, is developed to drive the evaporator outlet temperature to a level that gives a suitable superheat of the refrigerant. The FTC strategy requires no a priori system knowledge or additional hardware and functions...... in a plug & play fashion. The strategy is outlined by means of procedural steps as well as a flow chart that also illustrates the process of automatic tuning of the maximum slope-seeking controller. Test results are furthermore presented for a display case in a full scale CO2 supermarket refrigeration...

  7. Software System for Finding the Incipient Faults in Power Transformers

    Directory of Open Access Journals (Sweden)

    Nikolina Petkova

    2015-05-01

    Full Text Available In this paper a new software system for finding of incipient faultsis presented.An experiment is made with real measurement of partial discharge(PD that appeared in power transformer. The software system usesacquisition data to define the real state of this transformer. One of the most important criteria for the power transformer’s state is the presence of partial discharges. The wave propagation caused by partial discharge depends on scheme of the winding and construction of the power equipment. In all cases, the PD source had a specific position so the wave measured from the PD –coupling device had a specific waveform. The waveform is different when PDcoupling device is put on a specific place. The waveform and the time of propagation are criteria for the localization of the source of incipient faults in the volume of power transformer.

  8. Analytical Model-based Fault Detection and Isolation in Control Systems

    DEFF Research Database (Denmark)

    Vukic, Z.; Ozbolt, H.; Blanke, M.

    1998-01-01

    The paper gives an introduction and an overview of the field of fault detection and isolation for control systems. The summary of analytical (quantitative model-based) methodds and their implementation are presented. The focus is given to mthe analytical model-based fault-detection and fault diag...... diagnosis methods, often viewed as the classical or deterministic ones. Emphasis is placed on the algorithms suitable for ship automation, unmanned underwater vehicles, and other systems of automatic control....

  9. Fault Detection, Isolation, and Accommodation for LTI Systems Based on GIMC Structure

    Directory of Open Access Journals (Sweden)

    D. U. Campos-Delgado

    2008-01-01

    Full Text Available In this contribution, an active fault-tolerant scheme that achieves fault detection, isolation, and accommodation is developed for LTI systems. Faults and perturbations are considered as additive signals that modify the state or output equations. The accommodation scheme is based on the generalized internal model control architecture recently proposed for fault-tolerant control. In order to improve the performance after a fault, the compensation is considered in two steps according with a fault detection and isolation algorithm. After a fault scenario is detected, a general fault compensator is activated. Finally, once the fault is isolated, a specific compensator is introduced. In this setup, multiple faults could be treated simultaneously since their effect is additive. Design strategies for a nominal condition and under model uncertainty are presented in the paper. In addition, performance indices are also introduced to evaluate the resulting fault-tolerant scheme for detection, isolation, and accommodation. Hard thresholds are suggested for detection and isolation purposes, meanwhile, adaptive ones are considered under model uncertainty to reduce the conservativeness. A complete simulation evaluation is carried out for a DC motor setup.

  10. Verification of a Novel Method of Detecting Faults in Medium-Voltage Systems with Covered Conductors

    Directory of Open Access Journals (Sweden)

    Mišák Stanislav

    2017-06-01

    Full Text Available This paper describes the use of new methods of detecting faults in medium-voltage overhead lines built of covered conductors. The methods mainly address such faults as falling of a conductor, contacting a conductor with a tree branch, or falling a tree branch across three phases of a medium-voltage conductor. These faults cannot be detected by current digital relay protection systems. Therefore, a new system that can detect the above mentioned faults was developed. After having tested its operation, the system has already been implemented to protect mediumvoltage overhead lines built of covered conductors.

  11. Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    2013-01-01

    Full Text Available A reliable fault diagnostic system for gas turbine generator system (GTGS, which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling.

  12. Timing of initiation and fault rates of the Yushu-Xianshuihe-Xiaojiang fault system around the eastern Himalayan syntaxis.

    Science.gov (United States)

    Hervé Leloup, Philippe; Replumaz, Anne; Chevalier, Marie-Luce; Zhang, Yuan-Ze; Paquette, Jean-Louis; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Pan, Jiawei; Metois, Marianne; Li, Haibing

    2017-04-01

    In eastern Tibet, the left-lateral strike-slip Yushu-Xianshuihe-Xiaojiang fault system (YXX-FS) is 1400 km long, veering from N100° to N175° broadly following a small circle whose pole is located in the eastern Himalayan syntaxis. Several competing models are proposed to explain the geological evolution of eastern Tibet, and in particular of the YXX-FS: fault following slip-lines in a plastic media, book-shelf fault in a large right-lateral shear zone, or fault bounding a lower channel flow veering around the syntaxis. In this contribution we document the timing of onset of the YXX-FS, its propagation through time, its rate at various time-scales; and discuss how these relate to the deformation models. The YXX-FS comprises four segments from east (Tibetan Plateau) to west (Yunnan): Yushu-Ganzi, Xianshuihe, Anninghe, and Zemuhe-Xiaojiang. It is one of the most tectonically active intra-continental fault system in China along which more than 20 M>6.5 earthquakes occurred since 1700. Slip-rates of 3.5 to 30 mm/yr along the YXX-FS have been suggested by matching geological offsets of 60-100 km with initiation ages of 2 to 17 Ma. Late Quaternary rates deduced from morphological offsets, InSAR, paleoseismology and GPS also show a large range: between 3 and 20 mm/yr. The timing of initiation of the Yushu-Ganzi segment has been constrained at 12.6±1 Ma and its total offset to 76 - 90 km (Wang et al., 2009) yielding a rate of 6.6+0.8-0.7 mm/yr. By measuring the offsets of moraine crests and fan edges across the fault using LiDAR and kinematic GPS, and dating their surfaces using 10Be, we determined slip-rates of 7+1.1-1.0 mm/yr, 3 - 11.2 mm/yr and 8.5+0.8-0.7 mm/yr at three different sites. This suggests a constant rate of 6-8 mm/yr along the fault segment since 13Ma. The timing of initiation of the Xianshuihe segment was thought to be prior to 12.8±1.4 Ma (Roger et al., 1995), but new field studies and geochronological ages suggest that the fault initiated later. Using

  13. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...... degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including...

  14. Extension of the Accurate Voltage-Sag Fault Location Method in Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    Youssef Menchafou

    2016-03-01

    Full Text Available Accurate Fault location in an Electric Power Distribution System (EPDS is important in maintaining system reliability. Several methods have been proposed in the past. However, the performances of these methods either show to be inefficient or are a function of the fault type (Fault Classification, because they require the use of an appropriate algorithm for each fault type. In contrast to traditional approaches, an accurate impedance-based Fault Location (FL method is presented in this paper. It is based on the voltage-sag calculation between two measurement points chosen carefully from the available strategic measurement points of the line, network topology and current measurements at substation. The effectiveness and the accuracy of the proposed technique are demonstrated for different fault types using a radial power flow system. The test results are achieved from the numerical simulation using the data of a distribution line recognized in the literature.

  15. A statistical-based approach for fault detection and diagnosis in a photovoltaic system

    KAUST Repository

    Garoudja, Elyes

    2017-07-10

    This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short-circuit faults; open-circuit faults; and partial shading faults). Towards this end, we apply exponentially-weighted moving average (EWMA) control chart on the residuals obtained from the one-diode model. Such a choice is motivated by the greater sensitivity of EWMA chart to incipient faults and its low-computational cost making it easy to implement in real time. Practical data from a 3.2 KWp photovoltaic plant located within an Algerian research center is used to validate the proposed approach. Results show clearly the efficiency of the developed method in monitoring PV system status.

  16. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  17. Passive Fault Tolerant Control of Piecewise Affine Systems Based on H Infinity Synthesis

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Cocquempot, vincent; Schiøler, Henrik

    2011-01-01

    In this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs). In the cur......In this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs......). In the current paper, the PWA system switches not only due to the state but also due to the control input. The method is applied on a large scale livestock ventilation model....

  18. Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration

    International Nuclear Information System (INIS)

    Wang, Songyan; Chen, Ning; Yu, Daren; Foley, Aoife; Zhu, Lingzhi; Li, Kang; Yu, Jilai

    2015-01-01

    Highlights: • A flexible fault ride through strategy is proposed. • The strategy comprises of grid code requirements and power restrictions. • Slight faults and moderate faults are the main defending objectives. • Temporary overloading capability of the doubly fed induction generator is considered. - Abstract: This paper investigates a flexible fault ride through strategy for power systems in China with high wind power penetration. The strategy comprises of adaptive fault ride through requirements and maximum power restrictions of the wind farms with weak fault ride through capabilities. The slight faults and moderate faults with high probability are the main defending objective of the strategy. The adaptive fault ride through requirement in the strategy consists of two sub fault ride through requirements, a temporary slight voltage ride through requirement corresponding to a slight fault incident, with a moderate voltage ride through requirement corresponding to a moderate fault. The temporary overloading capability of the wind farm is reflected in both requirements to enhance the capability to defend slight faults and to avoid tripping when the crowbar is disconnected after moderate faults are cleared. For those wind farms that cannot meet the adaptive fault ride through requirement, restrictions are put on the maximum power output. Simulation results show that the flexible fault ride through strategy increases the fault ride through capability of the wind farm clusters and reduces the wind power curtailment during faults

  19. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  20. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia

    Science.gov (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim

    2017-04-01

    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  1. Finite element simulation of earthquake cycle dynamics for continental listric fault system

    Science.gov (United States)

    Wei, T.; Shen, Z. K.

    2017-12-01

    We simulate stress/strain evolution through earthquake cycles for a continental listric fault system using the finite element method. A 2-D lithosphere model is developed, with the upper crust composed of plasto-elastic materials and the lower crust/upper mantle composed of visco-elastic materials respectively. The media is sliced by a listric fault, which is soled into the visco-elastic lower crust at its downdip end. The system is driven laterally by constant tectonic loading. Slip on fault is controlled by rate-state friction. We start with a simple static/dynamic friction law, and drive the system through multiple earthquake cycles. Our preliminary results show that: (a) periodicity of the earthquake cycles is strongly modulated by the static/dynamic friction, with longer period correlated with higher static friction and lower dynamic friction; (b) periodicity of earthquake is a function of fault depth, with less frequent events of greater magnitudes occurring at shallower depth; and (c) rupture on fault cannot release all the tectonic stress in the system, residual stress is accumulated in the hanging wall block at shallow depth close to the fault, which has to be released either by conjugate faulting or inelastic folding. We are in a process of exploring different rheologic structure and friction laws and examining their effects on earthquake behavior and deformation pattern. The results will be applied to specific earthquakes and fault zones such as the 2008 great Wenchuan earthquake on the Longmen Shan fault system.

  2. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  3. FaultBuster: data driven fault detection and diagnosis for industrial systems

    DEFF Research Database (Denmark)

    Bergantino, Nicola; Caponetti, Fabio; Longhi, Sauro

    2009-01-01

    . Multivariate statistical models based on principal components are used to detect abnormal situations. Tailored to alarms, a probabilistic inference engine process the fault evidences to output the most probable diagnosis. Results from the DX 09 Diagnostic Challenge shown strong detection properties, while...

  4. Using Magnetics and Topography to Model Fault Splays of the Hilton Creek Fault System within the Long Valley Caldera

    Science.gov (United States)

    De Cristofaro, J. L.; Polet, J.

    2017-12-01

    The Hilton Creek Fault (HCF) is a range-bounding extensional fault that forms the eastern escarpment of California's Sierra Nevada mountain range, near the town of Mammoth Lakes. The fault is well mapped along its main trace to the south of the Long Valley Caldera (LVC), but the location and nature of its northern terminus is poorly constrained. The fault terminates as a series of left-stepping splays within the LVC, an area of active volcanism that most notably erupted 760 ka, and currently experiences continuous geothermal activity and sporadic earthquake swarms. The timing of the most recent motion on these fault splays is debated, as is the threat posed by this section of the Hilton Creek Fault. The Third Uniform California Earthquake Rupture Forecast (UCERF3) model depicts the HCF as a single strand projecting up to 12km into the LVC. However, Bailey (1989) and Hill and Montgomery-Brown (2015) have argued against this model, suggesting that extensional faulting within the Caldera has been accommodated by the ongoing volcanic uplift and thus the intracaldera section of the HCF has not experienced motion since 760ka.We intend to map the intracaldera fault splays and model their subsurface characteristics to better assess their rupture history and potential. This will be accomplished using high-resolution topography and subsurface geophysical methods, including ground-based magnetics. Preliminary work was performed using high-precision Nikon Nivo 5.C total stations to generate elevation profiles and a backpack mounted GEM GS-19 proton precession magnetometer. The initial results reveal a correlation between magnetic anomalies and topography. East-West topographic profiles show terrace-like steps, sub-meter in height, which correlate to changes in the magnetic data. Continued study of the magnetic data using Oasis Montaj 3D modeling software is planned. Additionally, we intend to prepare a high-resolution terrain model using structure-from-motion techniques

  5. Composite armor, armor system and vehicle including armor system

    Science.gov (United States)

    Chu, Henry S.; Jones, Warren F.; Lacy, Jeffrey M.; Thinnes, Gary L.

    2013-01-01

    Composite armor panels are disclosed. Each panel comprises a plurality of functional layers comprising at least an outermost layer, an intermediate layer and a base layer. An armor system incorporating armor panels is also disclosed. Armor panels are mounted on carriages movably secured to adjacent rails of a rail system. Each panel may be moved on its associated rail and into partially overlapping relationship with another panel on an adjacent rail for protection against incoming ordnance from various directions. The rail system may be configured as at least a part of a ring, and be disposed about a hatch on a vehicle. Vehicles including an armor system are also disclosed.

  6. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania

    Science.gov (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.

    2003-04-01

    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  7. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    Science.gov (United States)

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Fault tolerance of artificial neural networks with applications in critical systems

    Science.gov (United States)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  9. Evaluation of fault coverage for digitalized system in nuclear power plants using VHDL

    International Nuclear Information System (INIS)

    Kim, Suk Joon; Lee, Jun Suk; Seong, Poong Hyun

    2003-01-01

    Fault coverage of digital systems is found to be one of the most important factors in the safety analysis of nuclear power plants. Several axiomatic models for the estimation of fault coverage of digital systems have been proposed, but to apply those axiomatic models to real digital systems, parameters that the axiomatic models require should be approximated using analytic methods, empirical methods or expert opinions. In this paper, we apply the fault injection method to VHDL computer simulation model of a real digital system which provides the protection function to nuclear power plants, for the approximation of fault detection coverage of the digital system. As a result, the fault detection coverage of the digital system could be obtained

  10. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...

  11. Model-Based Sensor Placement for Component Condition Monitoring and Fault Diagnosis in Fossil Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mobed, Parham [Texas Tech Univ., Lubbock, TX (United States); Pednekar, Pratik [West Virginia Univ., Morgantown, WV (United States); Bhattacharyya, Debangsu [West Virginia Univ., Morgantown, WV (United States); Turton, Richard [West Virginia Univ., Morgantown, WV (United States); Rengaswamy, Raghunathan [Texas Tech Univ., Lubbock, TX (United States)

    2016-01-29

    Design and operation of energy producing, near “zero-emission” coal plants has become a national imperative. This report on model-based sensor placement describes a transformative two-tier approach to identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, and the level of resolution desired for any specific failure. Because of the presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. This work could have a major impact on the design and operation of future fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.

  12. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  13. Fault Diagnosis for Nonlinear Hydraulic-Mechanical Drilling Pipe Handling System

    DEFF Research Database (Denmark)

    Choux, Martin; Blanke, Mogens

    2011-01-01

    Leakage and increased friction are common faults in hydraulic cylinders that can have serious consequences if they are not detected at early stage. In this paper, the design of a fault detector for a nonlinear hydraulic mechanical system is presented. By considering the system in steady state, two...

  14. Emergency control of unstable behavior of nonlinear systems induced by fault

    Directory of Open Access Journals (Sweden)

    Mark A. Pinsky

    1998-01-01

    -functions significantly simplifying analysis and control of fault phenomena. The design of an mergency controller is based on the technique for computing fault-induced jumps of the system states, which is described in the paper. An emergency controller instantaneously returning states of a sample nonlinear system to its stability basin is designed.

  15. Design for interaction between humans and intelligent systems during real-time fault management

    Science.gov (United States)

    Malin, Jane T.; Schreckenghost, Debra L.; Thronesbery, Carroll G.

    1992-01-01

    Initial results are reported to provide guidance and assistance for designers of intelligent systems and their human interfaces. The objective is to achieve more effective human-computer interaction (HCI) for real time fault management support systems. Studies of the development of intelligent fault management systems within NASA have resulted in a new perspective of the user. If the user is viewed as one of the subsystems in a heterogeneous, distributed system, system design becomes the design of a flexible architecture for accomplishing system tasks with both human and computer agents. HCI requirements and design should be distinguished from user interface (displays and controls) requirements and design. Effective HCI design for multi-agent systems requires explicit identification of activities and information that support coordination and communication between agents. The effects are characterized of HCI design on overall system design and approaches are identified to addressing HCI requirements in system design. The results include definition of (1) guidance based on information level requirements analysis of HCI, (2) high level requirements for a design methodology that integrates the HCI perspective into system design, and (3) requirements for embedding HCI design tools into intelligent system development environments.

  16. Cooperative Fault Tolerant Tracking Control for Multiagent Systems: An Intermediate Estimator-Based Approach.

    Science.gov (United States)

    Zhu, Jun-Wei; Yang, Guang-Hong; Zhang, Wen-An; Yu, Li

    2017-10-17

    This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some specified parameters. Finally, a simulation example of aircraft demonstrates the effectiveness of the designed tracking protocol.This paper studies the observer based fault tolerant tracking control problem for linear multiagent systems with multiple faults and mismatched disturbances. A novel distributed intermediate estimator based fault tolerant tracking protocol is presented. The leader's input is nonzero and unavailable to the followers. By applying a projection technique, the mismatched disturbances are separated into matched and unmatched components. For each node, a tracking error system is established, for which an intermediate estimator driven by the relative output measurements is constructed to estimate the sensor faults and a combined signal of the leader's input, process faults, and matched disturbance component. Based on the estimation, a fault tolerant tracking protocol is designed to eliminate the effects of the combined signal. Besides, the effect of unmatched disturbance component can be attenuated by directly adjusting some

  17. Analysis of Space Shuttle Ground Support System Fault Detection, Isolation, and Recovery Processes and Resources

    Science.gov (United States)

    Gross, Anthony R.; Gerald-Yamasaki, Michael; Trent, Robert P.

    2009-01-01

    As part of the FDIR (Fault Detection, Isolation, and Recovery) Project for the Constellation Program, a task was designed within the context of the Constellation Program FDIR project called the Legacy Benchmarking Task to document as accurately as possible the FDIR processes and resources that were used by the Space Shuttle ground support equipment (GSE) during the Shuttle flight program. These results served as a comparison with results obtained from the new FDIR capability. The task team assessed Shuttle and EELV (Evolved Expendable Launch Vehicle) historical data for GSE-related launch delays to identify expected benefits and impact. This analysis included a study of complex fault isolation situations that required a lengthy troubleshooting process. Specifically, four elements of that system were considered: LH2 (liquid hydrogen), LO2 (liquid oxygen), hydraulic test, and ground special power.

  18. Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems

    Science.gov (United States)

    Sandwell, David; Smith-Konter, Bridget

    2018-05-01

    We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.

  19. Optimal structure of fault-tolerant software systems

    International Nuclear Information System (INIS)

    Levitin, Gregory

    2005-01-01

    This paper considers software systems consisting of fault-tolerant components. These components are built from functionally equivalent but independently developed versions characterized by different reliability and execution time. Because of hardware resource constraints, the number of versions that can run simultaneously is limited. The expected system execution time and its reliability (defined as probability of obtaining the correct output within a specified time) strictly depend on parameters of software versions and sequence of their execution. The system structure optimization problem is formulated in which one has to choose software versions for each component and find the sequence of their execution in order to achieve the greatest system reliability subject to cost constraints. The versions are to be chosen from a list of available products. Each version is characterized by its reliability, execution time and cost. The suggested optimization procedure is based on an algorithm for determining system execution time distribution that uses the moment generating function approach and on the genetic algorithm. Both N-version programming and the recovery block scheme are considered within a universal model. Illustrated example is presented

  20. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.

    Science.gov (United States)

    Fialko, Yuri

    2006-06-22

    The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times (for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7-10 metres, comparable to the maximum co-seismic offset ever documented on the fault. Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

  1. Reasoning about fault diagnosis for the space station common module thermal control system

    Science.gov (United States)

    Vachtsevanos, G.; Hexmoor, H.; Purves, B.

    1988-01-01

    The proposed common module thermal control system for the Space Station is designed to integrate thermal distribution and thermal control functions in order to transport heat and provide environmental temperature control through the common module. When the thermal system is operating in an off-normal state, due to component faults, an intelligent controller is called upon to diagnose the fault type, identify the fault location and determine the appropriate control action required to isolate the faulty component. A methodology is introduced for fault diagnosis based upon a combination of signal redundancy techniques and fuzzy logic. An expert system utilizes parity space representation and analytic redundancy to derive fault symptoms, the aggregate of which is assessed by a multivalued rule based system. A subscale laboratory model of the thermal control system designed is used as the testbed for the study.

  2. Research on Fault Detection System of Power Equipment Based on UV and Infrared Image

    Science.gov (United States)

    Lu, Qiyu; Ding, Kun

    2017-09-01

    UV corona on power system can reflect the location of the fault and the severity of the fault, the traditional UV and infrared detection equipment can only use the band and the visible light band image of the power system fault detection. In this paper, a power system fault detection system based on ultraviolet and infrared dual-band images is designed. The principle of UV imaging detection and image fusion are introduced respectively. The software of the host computer is written by MFC. The software can acquire both ultraviolet and infrared, the two images are fused using the image fusion algorithm based on edge detection and cross correlation and the highest point temperature is plotted. Experiments show that the system can detect the failure of power equipment in time, and has a certain practical value, which puts forward a new idea for fault detection of power equipment.

  3. The Design and Implementation of a Remote Fault Reasoning Diagnosis System for Meteorological Satellites Data Acquisition

    Directory of Open Access Journals (Sweden)

    Zhu Jie

    2017-01-01

    Full Text Available Under the background of the trouble shooting requirements of FENGYUN-3 (FY-3 meteorological satellites data acquisition in domestic and oversea ground stations, a remote fault reasoning diagnosis system is developed by Java 1.6 in eclipse 3.6 platform. The general framework is analyzed, the workflow is introduced. Based on the system, it can realize the remote and centralized monitoring of equipment running status in ground stations,triggering automatic fault diagnosis and rule based fault reasoning by parsing the equipment quality logs, generating trouble tickets and importing expert experience database, providing text and graphics query methods. Through the practical verification, the system can assist knowledge engineers in remote precise and rapid fault location with friendly graphical user interface, boost the fault diagnosis efficiency, enhance the remote monitoring ability of integrity operating control system. The system has a certain practical significance to improve reliability of FY-3 meteorological satellites data acquisition.

  4. Stochastic Fault Analysis of Balanced Systems | Ekwue | Nigerian ...

    African Journals Online (AJOL)

    A sequence coordinates approach for fault calculations is extended to take into account the uncertainty of the network input data. The probability of a fault current on a bus exceeding its short circuit current is determined. These results would be of importance in determining the protective philosophy of any network.

  5. Design of a real-time fault diagnosis expert system for the EAST cryoplant

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Zhuang Ming; Lu Xiaofei; Hu Liangbing; Xia Genhai

    2012-01-01

    Highlights: ► An expert system of real-time fault diagnosis for EAST cryoplant is designed. ► Knowledge base is built via fault tree analysis based on our fault experience. ► It can make up the deficiency of safety monitoring in cryogenic DCS. ► It can help operators to find the fault causes and give operation suggestion. ► It plays a role of operators training in certain degree. - Abstract: The EAST cryoplant consists of a 2 kW/4 K helium refrigerator and a helium distribution system. It is a complex process system which involves many process variables and cryogenic equipments. Each potential fault or abnormal event may influence stability and safety of the cryogenic system, thereby disturbing the fusion experiment. The cryogenic control system can monitor the process data and detect process alarms, but it is difficult to effectively diagnose the fault causes and provide operation suggestions to operators when anomalies occur. Therefore, a real-time fault diagnosis expert system is essential for a safe and steady operation of EAST cryogenic system. After a brief description of the EAST cryoplant and its control system, the structure design of the cryogenic fault diagnosis expert system is proposed. Based on the empirical knowledge, the fault diagnosis model is built adopting fault tree analysis method which considers the uncertainty. The knowledge base and the inference machine are presented in detail. A cross-platform integrated development environment Qt Creator and MySQL database have been used to develop the system. The proposed expert system has a fine graphic user interface for monitoring and operation. Preliminary test was conducted and the results found to be satisfactory.

  6. Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system

    Science.gov (United States)

    Moore, Diane E.; Lockner, David A.

    2013-01-01

    The serpentinized ultramafic rocks found in many plate-tectonic settings commonly are juxtaposed against crustal rocks along faults, and the chemical contrast between the rock types potentially could influence the mechanical behavior of such faults. To investigate this possibility, we conducted triaxial experiments under hydrothermal conditions (200-350°C), shearing serpentinite gouge between forcing blocks of granite or quartzite. In an ultramafic chemical environment, the coefficient of friction, µ, of lizardite and antigorite serpentinite is 0.5-0.6, and µ increases with increasing temperature over the tested range. However, when either lizardite or antigorite serpentinite is sheared against granite or quartzite, strength is reduced to µ ~ 0.3, with the greatest strength reductions at the highest temperatures (temperature weakening) and slowest shearing rates (velocity strengthening). The weakening is attributed to a solution-transfer process that is promoted by the enhanced solubility of serpentine in pore fluids whose chemistry has been modified by interaction with the quartzose wall rocks. The operation of this process will promote aseismic slip (creep) along serpentinite-bearing crustal faults at otherwise seismogenic depths. During short-term experiments serpentine minerals reprecipitate in low-stress areas, whereas in longer experiments new Mg-rich phyllosilicates crystallize in response to metasomatic exchanges across the serpentinite-crustal rock contact. Long-term shear of serpentinite against crustal rocks will cause the metasomatic mineral assemblages, which may include extremely weak minerals such as saponite or talc, to play an increasingly important role in the mechanical behavior of the fault. Our results may explain the distribution of creep on faults in the San Andreas system.

  7. Electric drive systems including smoothing capacitor cooling devices and systems

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Ercan Mehmet; Zhou, Feng

    2017-02-28

    An electric drive system includes a smoothing capacitor including at least one terminal, a bus bar electrically coupled to the at least one terminal, a thermoelectric device including a first side and a second side positioned opposite the first side, where the first side is thermally coupled to at least one of the at least one terminal and the bus bar, and a cooling element thermally coupled to the second side of the thermoelectric device, where the cooling element dissipates heat from the thermoelectric device.

  8. Methods for recognition and segmentation of active fault

    International Nuclear Information System (INIS)

    Hyun, Chang Hun; Noh, Myung Hyun; Lee, Kieh Hwa; Chang, Tae Woo; Kyung, Jai Bok; Kim, Ki Young

    2000-03-01

    In order to identify and segment the active faults, the literatures of structural geology, paleoseismology, and geophysical explorations were investigated. The existing structural geological criteria for segmenting active faults were examined. These are mostly based on normal fault systems, thus, the additional criteria are demanded for application to different types of fault systems. Definition of the seismogenic fault, characteristics of fault activity, criteria and study results of fault segmentation, relationship between segmented fault length and maximum displacement, and estimation of seismic risk of segmented faults were examined in paleoseismic study. The history of earthquake such as dynamic pattern of faults, return period, and magnitude of the maximum earthquake originated by fault activity can be revealed by the study. It is confirmed through various case studies that numerous geophysical explorations including electrical resistivity, land seismic, marine seismic, ground-penetrating radar, magnetic, and gravity surveys have been efficiently applied to the recognition and segmentation of active faults

  9. Combining knowledge and historical data for system-level fault diagnosis of HVAC systems

    NARCIS (Netherlands)

    Verbert, K.A.J.; Babuska, R.; De Schutter, B.H.K.

    2017-01-01

    Interdependencies among system components and the existence of multiple operating modes present a challenge for fault diagnosis of Heating, Ventilation, and Air Conditioning (HVAC) systems. Reliable and timely diagnosis can only be ensured when it is performed in all operating modes, and at the

  10. A flexible simulator for training an early fault diagnostic system

    International Nuclear Information System (INIS)

    Marsiletti, M.; Santinelli, A.; Zuenkov, M.; Poletykin, A.

    1997-01-01

    An early fault diagnostic system has been developed addressed to timely trouble shooting in process plants during any operational modes. The theory of this diagnostic system is related with the usage of learning methods for automatic generation of knowledge bases. This approach enables the conversion of ''cause→effect'' relations into ''effect→possible-causes'' ones. The diagnostic rules are derived from the operation of a plant simulator according to a specific procedure. Flexibility, accuracy and high speed are the major characteristics of the training simulator, used to generate the diagnostic knowledge base. The simulator structure is very flexible, being based on LEGO code but allowing the use of practically any kind of FORTRAN routines (recently also ACSL macros has been introduced) as plant modules: this permits, when needed, a very accurate description of the malfunctions the diagnostic system should ''known''. The high speed is useful to shorten the ''learning'' phase of the diagnostic system. The feasibility of the overall system has been assessed, using as reference plant the conventional Sampierdarena (Italy) power station, that is a combined cycle plant dedicated to produce both electrical and heat power. The hardware configuration of this prototype system was made up of a network of a Hewlett-Packard workstation and a Digital VAX-Station. The paper illustrates the basic structure of the simulator used for this diagnostic system training purpose, as well as the theoretical background on which the diagnostic system is based. Some evidence of the effectiveness of the concept through the application to Sampierdarena 40 MW cogeneration plant is reported. Finally an outline of an ongoing application to a WWER-1000 plant is given; the operating system is, in this case, UNIX. (author)

  11. Method for detecting an open-switch fault in a grid-connected NPC inverter system

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Jeong, Hae-Gwang; Lee, Kyo-Beum

    2012-01-01

    This paper proposes a fault-detection method for an open-switch fault in the switches of grid-connected neutral-point-clamped inverter systems. The proposed method can not only detect the fault condition but also identify the location of the faulty switch. In the proposed method, which is designed...... by incorporating a simple switching control in the conventional method, the fault condition is detected on the basis of the radius of the Concordia current pattern, and the location of the faulty switch can be identified. By using the proposed method, it is possible to detect the open-switch fault and identify...... the faulty switch within two fundamental periods, without using additional sensors or performing complex calculations. Simulations and experiments are carried out to confirm the reliability of the proposed fault-detection method....

  12. Classification methodology and feature selection to assist fault location in power distribution systems

    Directory of Open Access Journals (Sweden)

    Juan José Mora Flórez

    2008-01-01

    Full Text Available A classification methodology based on Support Vector Machines (SVM is proposed to locate the faulted zone in power distribution networks. The goal is to reduce the multiple-estimation problem inherent in those methods that use single end measures (in the substation to estimate the fault location in radial systems. A selection of features or descriptors obtained from voltages and currents measured in the substation are analyzed and used as input of the SVM classifier. Performance of the fault locator having several combinations of these features has been evaluated according to its capability to discriminate between faults in different zones but located at similar distance. An application example illustrates the precision, to locate the faulted zone, obtained with the proposed methodology in simulated framework. The proposal provides appropriate information for the prevention and opportune attention of faults,requires minimum investment and overcomes the multiple-estimation problem of the classic impedance based methods.

  13. New evidence on the state of stress of the san andreas fault system.

    Science.gov (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C

    1987-11-20

    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  14. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  15. Fault self-defection of automatic testing systems by means of aspect-oriented programming

    CERN Document Server

    Arpaia, P; Di Lucca, G; Inglese, V; Spiezia, G

    2007-01-01

    An Aspect Oriented approach to implement fault detection in automatic measurement systems is proposed. Faults are handled by means of "aspects", a specific software unit to better modularize issues transversal to many modules ("crosscutting concerns"). In this way, maintainability and reusability of a measurement software are improved: indeed, once a modification of the fault detection policy occurs, only the related aspects have to be modified. As an experimental case study, this technique has been applied to the fault self-detection of a flexible framework for magnetic measurements, developed at the European Organization for Nuclear Research (CERN).

  16. The accommodation of relative motion at depth on the San Andreas fault system in California

    Science.gov (United States)

    Prescott, W. H.; Nur, A.

    1981-01-01

    Plate motion below the seismogenic layer along the San Andreas fault system in California is assumed to form by aseismic slip along a deeper extension of the fault or may result from lateral distribution of deformation below the seismogenic layer. The shallow depth of California earthquakes, the depth of the coseismic slip during the 1906 San Francisco earthquake, and the presence of widely separated parallel faults indicate that relative motion is distributed below the seismogenic zone, occurring by inelastic flow rather than by aseismic slip on discrete fault planes.

  17. Analysis and optimization of fault-tolerant embedded systems with hardened processors

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Polian, Ilia; Pop, Paul

    2009-01-01

    In this paper we propose an approach to the design optimization of fault-tolerant hard real-time embedded systems, which combines hardware and software fault tolerance techniques. We trade-off between selective hardening in hardware and process reexecution in software to provide the required levels...... of fault tolerance against transient faults with the lowest-possible system costs. We propose a system failure probability (SFP) analysis that connects the hardening level with the maximum number of reexecutions in software. We present design optimization heuristics, to select the fault......-tolerant architecture and decide process mapping such that the system cost is minimized, deadlines are satisfied, and the reliability requirements are fulfilled....

  18. Remote Fault Information Acquisition and Diagnosis System of the Combine Harvester Based on LabVIEW

    Science.gov (United States)

    Chen, Jin; Wu, Pei; Xu, Kai

    Most combine harvesters have not be equipped with online fault diagnosis system. A fault information acquisition and diagnosis system of the Combine Harvester based on LabVIEW is designed, researched and developed. Using ARM development board, by collecting many sensors' signals, this system can achieve real-time measurement, collection, displaying and analysis of different parts of combine harvesters. It can also realize detection online of forward velocity, roller speed, engine temperature, etc. Meanwhile the system can judge the fault location. A new database function is added so that we can search the remedial measures to solve the faults and also we can add new faults to the database. So it is easy to take precautions against before the combine harvester breaking down then take measures to service the harvester.

  19. A Grid Voltage Measurement Method for Wind Power Systems during Grid Fault Conditions

    Directory of Open Access Journals (Sweden)

    Cheol-Hee Yoo

    2014-11-01

    Full Text Available Grid codes in many countries require low-voltage ride-through (LVRT capability to maintain power system stability and reliability during grid fault conditions. To meet the LVRT requirement, wind power systems must stay connected to the grid and also supply reactive currents to the grid to support the recovery from fault voltages. This paper presents a new fault detection method and inverter control scheme to improve the LVRT capability for full-scale permanent magnet synchronous generator (PMSG wind power systems. Fast fault detection can help the wind power systems maintain the DC-link voltage in a safe region. The proposed fault detection method is based on on-line adaptive parameter estimation. The performance of the proposed method is verified in comparison to the conventional voltage measurement method defined in the IEC 61400-21 standard.

  20. Transient fault tolerant control for vehicle brake-by-wire systems

    International Nuclear Information System (INIS)

    Huang, Shuang; Zhou, Chunjie; Yang, Lili; Qin, Yuanqing; Huang, Xiongfeng; Hu, Bowen

    2016-01-01

    Brake-by-wire (BBW) systems that have no mechanical linkage between the brake pedal and the brake mechanism are expected to improve vehicle safety through better braking capability. However, transient faults in BBW systems can cause dangerous driving situations. Most existing research in this area focuses on the brake control mechanism, but very few studies try to solve the problem associated with transient fault propagation and evolution in the brake control system hierarchy. In this paper, a hierarchical transient fault tolerant scheme with embedded intelligence and resilient coordination for BBW system is proposed based on the analysis of transient fault propagation characteristics. In this scheme, most transient faults are tackled rapidly by a signature-based detection method at the node level, and the remaining transient faults, which cannot be detected directly at the node level and could degrade the system performance through fault propagation and evolution, are detected and recovered through function and structure models at the system level. To jointly accommodate these BBW transient faults at the system level, a sliding mode control algorithm and a task reallocation strategy are designed. A simulation platform based on Architecture Analysis and Design Language (AADL) is established to evaluate the task reallocation strategy, and a hardware-in-the-loop simulation is carried out to validate the proposed scheme systematically. Experimental results show the effectiveness of this new approach to BBW systems. - Highlights: • We propose a hierarchical transient fault tolerant scheme for BBW systems. • A sliding mode algorithm and a task strategy are designed to tackle transient fault. • The effectiveness of the scheme is verified in both simulation and HIL environments.

  1. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    Science.gov (United States)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  2. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    Science.gov (United States)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline

  3. Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis

    International Nuclear Information System (INIS)

    Kaistha, Nitin; Upadhyaya, Belle R.

    2001-01-01

    An integrated method for the detection and isolation of incipient faults in common field devices, such as sensors and actuators, using plant operational data is presented. The approach is based on the premise that data for normal operation lie on a surface and abnormal situations lead to deviations from the surface in a particular way. Statistically significant deviations from the surface result in the detection of faults, and the characteristic directions of deviations are used for isolation of one or more faults from the set of typical faults. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data and fit a hyperplane to the data. The fault direction for each of the scenarios is obtained using the singular value decomposition on the state and control function prediction errors, and fault isolation is then accomplished from projections on the fault directions. This approach is demonstrated for a simulated pressurized water reactor steam generator system and for a laboratory process control system under single device fault conditions. Enhanced fault isolation capability is also illustrated by incorporating realistic nonlinear terms in the PCA data matrix

  4. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  5. Insights in Fault Flow Behaviour from Onshore Nigeria Petroleum System Modelling

    Directory of Open Access Journals (Sweden)

    Woillez Marie-Noëlle

    2017-09-01

    Full Text Available Faults are complex geological features acting either as permeability barrier, baffle or drain to fluid flow in sedimentary basins. Their role can be crucial for over-pressure building and hydrocarbon migration, therefore they have to be properly integrated in basin modelling. The ArcTem basin simulator included in the TemisFlow software has been specifically designed to improve the modelling of faulted geological settings and to get a numerical representation of fault zones closer to the geological description. Here we present new developments in the simulator to compute fault properties through time as a function of available geological parameters, for single-phase 2D simulations. We have used this new prototype to model pressure evolution on a siliciclastic 2D section located onshore in the Niger Delta. The section is crossed by several normal growth faults which subdivide the basin into several sedimentary units and appear to be lateral limits of strong over-pressured zones. Faults are also thought to play a crucial role in hydrocarbons migration from the deep source rocks to shallow reservoirs. We automatically compute the Shale Gouge Ratio (SGR along the fault planes through time, as well as the fault displacement velocity. The fault core permeability is then computed as a function of the SGR, including threshold values to account for shale smear formation. Longitudinal fault fluid flow is enhanced during periods of high fault slip velocity. The method allows us to simulate both along-fault drainages during the basin history as well as overpressure building at present-day. The simulated pressures are at first order within the range of observed pressures we had at our disposal.

  6. Reliability Evaluation Methodologies of Fault Tolerant Techniques of Digital I and C Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Seong, Poong Hyun; Lee, Seung Jun

    2011-01-01

    Since the reactor protection system was replaced from analog to digital, digital reactor protection system has 4 redundant channels and each channel has several modules. It is necessary for various fault tolerant techniques to improve availability and reliability due to using complex components in DPPS. To use the digital system, it is necessary to improve the reliability and availability of a system through fault-tolerant techniques. Several researches make an effort to effects of fault tolerant techniques. However, the effects of fault tolerant techniques have not been properly considered yet in most fault tree models. Various fault-tolerant techniques, which used in digital system in NPPs, should reflect in fault tree analysis for getting lower system unavailability and more reliable PSA. When fault-tolerant techniques are modeled in fault tree, categorizing the module to detect by each fault tolerant techniques, fault coverage, detection period and the fault recovery should be considered. Further work will concentrate on various aspects for fault tree modeling. We will find other important factors, and found a new theory to construct the fault tree model

  7. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  8. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  9. Active Fault Diagnosis for Hybrid Systems Based on Sensitivity Analysis and EKF

    DEFF Research Database (Denmark)

    Gholami, Mehdi; Schiøler, Henrik; Bak, Thomas

    2011-01-01

    An active fault diagnosis approach for different kinds of faults is proposed. The input of the approach is designed off-line based on sensitivity analysis such that the maximum sensitivity for each individual system parameter is obtained. Using maximum sensitivity, results in a better precision...

  10. Fault tolerant control for unstable systems: A linear time varying approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2004-01-01

    In (passive) fault tolerant control design, the objective is to find a fixed compensator, which will maintain a suitable performance - or at least stability - in the event that a fault should occur. A major theoretical obstacle to obtain this objective, is that even if the system models correspon...

  11. Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    NARCIS (Netherlands)

    Gnesi, S.; Etalle, Sandro; Mukhopadhyay, S.; Lenzini, Gabriele; Lenzini, G.; Martinelli, F.; Roychoudhury, A.

    2003-01-01

    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform

  12. Synchronization in single-phase grid-connected photovoltaic systems under grid faults

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede

    2012-01-01

    under grid faults. The focus of this paper is put on the benchmarking of synchronization techniques, mainly about phase locked loop (PLL) based methods, in single-phase PV power systems operating under grid faults. Some faulty mode cases are studied at the end of this paper in order to compare...

  13. Active Fault Geometry and Crustal Deformation Along the San Andreas Fault System Through San Gorgonio Pass, California: The View in 3D From Seismicity

    Science.gov (United States)

    Nicholson, C.; Hauksson, E.; Plesch, A.

    2012-12-01

    Understanding the 3D geometry and deformation style of the San Andreas fault (SAF) is critical to accurate dynamic rupture and ground motion prediction models. We use 3D alignments of hypocenter and focal mechanism nodal planes within a relocated earthquake catalog (1981-2011) [Hauksson et al., 2012] to develop improved 3D fault models for active strands of the SAF and adjacent secondary structures. Through San Gorgonio Pass (SGP), earthquakes define a mechanically layered crust with predominantly high-angle strike-slip faults in the upper ~10 km, while at greater depth, intersecting sets of strike-slip, oblique slip and low-angle thrust faults define a wedge-shaped volume deformation of the lower crust. In some places, this interface between upper and lower crustal deformation may be an active detachment fault, and may have controlled the down-dip extent of recent fault rupture. Alignments of hypocenters and nodal planes define multiple principal slip surfaces through SGP, including a through-going steeply-dipping predominantly strike-slip Banning fault strand at depth that upward truncates a more moderately dipping (40°-50°) blind, oblique North Palm Springs fault. The North Palm Springs fault may be the active down-dip extension of the San Gorgonio Pass thrust offset at depth by the principal, through-going Banning strand. In the northern Coachella Valley, seismicity indicates that the Garnet Hill and Banning fault strands are most likely sub-parallel and steeply dipping (~70°NE) to depths of 8-10 km, where they intersect and merge with a stack of moderately dipping to low-angle oblique thrust faults. Gravity and water well data confirm that these faults are sub-parallel and near vertical in the upper 2-3 km. Although the dense wedge of deep seismicity below SGP and largely south of the SAF contains multiple secondary fault sets of different orientations, the predominant fault set appears to be a series of en echelon NW-striking oblique strike-slip faults

  14. Design of a fault-tolerant decision-making system for biomedical applications.

    Science.gov (United States)

    Faust, Oliver; Acharya, U Rajendra; Sputh, Bernhard H C; Tamura, Toshiyo

    2013-01-01

    This paper describes the design of a fault-tolerant classification system for medical applications. The design process follows the systems engineering methodology: in the agreement phase, we make the case for fault tolerance in diagnosis systems for biomedical applications. The argument extends the idea that machine diagnosis systems mimic the functionality of human decision-making, but in many cases they do not achieve the fault tolerance of the human brain. After making the case for fault tolerance, both requirements and specification for the fault-tolerant system are introduced before the implementation is discussed. The system is tested with fault and use cases to build up trust in the implemented system. This structured approach aided in the realisation of the fault-tolerant classification system. During the specification phase, we produced a formal model that enabled us to discuss what fault tolerance, reliability and safety mean for this particular classification system. Furthermore, such a formal basis for discussion is extremely useful during the initial stages of the design, because it helps to avoid big mistakes caused by a lack of overview later on in the project. During the implementation, we practiced component reuse by incorporating a reliable classification block, which was developed during a previous project, into the current design. Using a well-structured approach and practicing component reuse we follow best practice for both research and industry projects, which enabled us to realise the fault-tolerant classification system on time and within budget. This system can serve in a wide range of future health care systems.

  15. An Integrated Learning and Filtering Approach for Fault Diagnosis of a Class of Nonlinear Dynamical Systems.

    Science.gov (United States)

    Keliris, Christodoulos; Polycarpou, Marios M; Parisini, Thomas

    2017-04-01

    This paper develops an integrated filtering and adaptive approximation-based approach for fault diagnosis of process and sensor faults in a class of continuous-time nonlinear systems with modeling uncertainties and measurement noise. The proposed approach integrates learning with filtering techniques to derive tight detection thresholds, which is accomplished in two ways: 1) by learning the modeling uncertainty through adaptive approximation methods and 2) by using filtering for dampening measurement noise. Upon the detection of a fault, two estimation models, one for process and the other for sensor faults, are initiated in order to identify the type of fault. Each estimation model utilizes learning to estimate the potential fault that has occurred, and adaptive isolation thresholds for each estimation model are designed. The fault type is deduced based on an exclusion-based logic, and fault detectability and identification conditions are rigorously derived, characterizing quantitatively the class of faults that can be detected and identified by the proposed scheme. Finally, simulation results are used to demonstrate the effectiveness of the proposed approach.

  16. Application of Joint Parameter Identification and State Estimation to a Fault-Tolerant Robot System

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    , it would further simplify the reconfigurable design task and possibly speed up the system recovery, if the system state information under the new operating circumstance can be available along with faulty parameter information. The joint parameter identification and state estimation using the combined......The joint parameter identification and state estimation technique is applied to develop a fault-tolerant space robot system. The potential faults in the considered system are abrupt parametric faults, which indicate that some system parameters will immediately deviate from their nominal values...... if a fault happens. The concerned system parameters consist of deterministic parts as well as those describing the stochastic features in the system. Due to the purpose for design of reconfigurable control, these deviated system parameters need to be identified as precisely and quickly as possible. Meanwhile...

  17. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  18. Multiple-step fault estimation for interval type-II T-S fuzzy system of hypersonic vehicle with time-varying elevator faults

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2017-03-01

    Full Text Available This article proposes a multiple-step fault estimation algorithm for hypersonic flight vehicles that uses an interval type-II Takagi–Sugeno fuzzy model. An interval type-II Takagi–Sugeno fuzzy model is developed to approximate the nonlinear dynamic system and handle the parameter uncertainties of hypersonic firstly. Then, a multiple-step time-varying additive fault estimation algorithm is designed to estimate time-varying additive elevator fault of hypersonic flight vehicles. Finally, the simulation is conducted in both aspects of modeling and fault estimation; the validity and availability of such method are verified by a series of the comparison of numerical simulation results.

  19. Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches

    KAUST Repository

    Harrou, Fouzi

    2017-09-18

    This study reports the development of an innovative fault detection and diagnosis scheme to monitor the direct current (DC) side of photovoltaic (PV) systems. Towards this end, we propose a statistical approach that exploits the advantages of one-diode model and those of the univariate and multivariate exponentially weighted moving average (EWMA) charts to better detect faults. Specifically, we generate array\\'s residuals of current, voltage and power using measured temperature and irradiance. These residuals capture the difference between the measurements and the predictions MPP for the current, voltage and power from the one-diode model, and use them as fault indicators. Then, we apply the multivariate EWMA (MEWMA) monitoring chart to the residuals to detect faults. However, a MEWMA scheme cannot identify the type of fault. Once a fault is detected in MEWMA chart, the univariate EWMA chart based on current and voltage indicators is used to identify the type of fault (e.g., short-circuit, open-circuit and shading faults). We applied this strategy to real data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria. Results show the capacity of the proposed strategy to monitors the DC side of PV systems and detects partial shading.

  20. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    International Nuclear Information System (INIS)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng; Zhu, Lili; Chen, Xiaojiao

    2016-01-01

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  1. Invention and Application of Synthetic Experiment System of Machine Equipment Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available All kinds of faults were engendered during machine equipment working process. Diagnosing them accurately has important significance in actual production. The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university’s teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi- kinds of field machine equipment conveniently. In this paper, the three dimensions waterfall spectrum matrix analysis was made on two compact mesh gears. Energy attenuation analysis was made on vibration signal. Wavelet analysis was made on bearing fault.

  2. Fault diagnosis of air conditioning systems based on qualitative bond graph

    International Nuclear Information System (INIS)

    Ghiaus, C.

    1999-01-01

    The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)

  3. Applying Parametric Fault Detection to a Mechanical System

    DEFF Research Database (Denmark)

    Felício, P.; Stoustrup, Jakob; Niemann, H.

    2002-01-01

    A way of doing parametric fault detection is described. It is based on the representation of parameter changes as linear fractional transformations (lfts). We describe a model with parametric uncertainty. Then a stabilizing controller is chosen and its robustness properties are studied via mu. Th....... The parameter changes (faults) are estimated based on estimates of the fictitious signals that enter the delta block in the lft. These signal estimators are designed by H-infinity techniques. The chosen example is an inverted pendulum....

  4. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  5. Fault-specific verification (FSV) - An alternative VV ampersand T strategy for high reliability nuclear software systems

    International Nuclear Information System (INIS)

    Miller, L.A.

    1994-01-01

    The author puts forth an argument that digital instrumentation and control systems can be safely applied in the nuclear industry, but it will require changes to the way software for such systems is developed and tested. He argues for a fault-specific verification procedure to be applied to software development. This plan includes enumerating and classifying all software faults at all levels of the product development, over the whole development process. While collecting this data, develop and validate different methods for software verification, validation and testing, and apply them against all the detected faults. Force all of this development toward an automated product for doing this testing. Continue to develop, expand, test, and share these testing methods across a wide array of software products

  6. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    Science.gov (United States)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  7. A methodology for the quantitative evaluation of NPP fault diagnostic systems' dynamic aspects

    International Nuclear Information System (INIS)

    Kim, J.H.; Seong, P.H.

    2000-01-01

    A fault diagnostic system (FDS) is an operator decision support system which is implemented both to increase NPP efficiency as well as to reduce human error and cognitive workload that may cause nuclear power plant (NPP) accidents. Evaluation is an indispensable activity in constructing a reliable FDS. We first define the dynamic aspects of fault diagnostic systems (FDSs) for evaluation in this work. The dynamic aspect is concerned with the way a FDS responds to input. Next, we present a hierarchical structure in the evaluation for the dynamic aspects of FDSs. Dynamic aspects include both what a FDS provides and how a FDS operates. We define the former as content and the latter as behavior. Content and behavior contain two elements and six elements in the lower hierarchies, respectively. Content is a criterion for evaluating the integrity of a FDS, the problem types which a FDS deals with, along with the level of information. Behavior contains robustness, understandability, timeliness, transparency, effectiveness, and communicativeness of FDSs. On the other hand, the static aspects are concerned with the hardware and the software of the system. For quantitative evaluation, the method used to gain and aggregate the priorities of the criteria in this work is the analytic hierarchy process (AHP). The criteria at the lowest level are quantified through simple numerical expressions and questionnaires developed in this work. these well describe the characteristics of the criteria and appropriately use subjective, empirical, and technical methods. Finally, in order to demonstrate the feasibility of our evaluation method, we have performed one case study for the fault diagnosis module of OASYS TM (On-Line Operator Aid SYStem for Nuclear Power Plant), which is an operator support system developed at the Korea Advanced Institute of Science and Technology (KAIST)

  8. Component-based modeling of systems for automated fault tree generation

    International Nuclear Information System (INIS)

    Majdara, Aref; Wakabayashi, Toshio

    2009-01-01

    One of the challenges in the field of automated fault tree construction is to find an efficient modeling approach that can support modeling of different types of systems without ignoring any necessary details. In this paper, we are going to represent a new system of modeling approach for computer-aided fault tree generation. In this method, every system model is composed of some components and different types of flows propagating through them. Each component has a function table that describes its input-output relations. For the components having different operational states, there is also a state transition table. Each component can communicate with other components in the system only through its inputs and outputs. A trace-back algorithm is proposed that can be applied to the system model to generate the required fault trees. The system modeling approach and the fault tree construction algorithm are applied to a fire sprinkler system and the results are presented

  9. Development of expert system for fault diagnosis and restoration at substations

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jin Boo; Kwon, Tae Won; Yoon, Yong Beum; Park, Sung Taek [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Park, Young Moon; Lee, Heung Jae [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1995-12-31

    When a fault occurs in power systems, the operators have to make precise judgements on the situation and take appropriate actions rapidly to protect the system and minimize the black-out area. However, the larger and the more complex the power systems become, the more difficult it becomes to expect the effective actions of human operators. Therefore, it is a very important issue to support the operators of the local power systems in the case of various faults. We develop an expert system for fault diagnosis and reconfiguration of local power system. The expert system has a capability of identifying the location and the type of faults, the black-out area, and an appropriate reconfiguration procedure for re-energizing or minimizing the service interruption (author). 35 refs., 45 figs.

  10. Fault tree synthesis for software design analysis of PLC based safety-critical systems

    Energy Technology Data Exchange (ETDEWEB)

    Koo, S. R.; Cho, C. H. [Corporate R and D Inst., Doosan Heavy Industries and Construction Co., Ltd., 39-3, Seongbok-Dong, Yongin-Si, Gyeonggi-Do 449-795 (Korea, Republic of); Seong, P. H. [Dept. of Nuclear and Quantum Engineering, Korea Advanced Inst. of Science and Technology, 373-3 Guseong-dong, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2006-07-01

    As a software verification and validation should be performed for the development of PLC based safety-critical systems, a software safety analysis is also considered in line with entire software life cycle. In this paper, we propose a technique of software safety analysis in the design phase. Among various software hazard analysis techniques, fault tree analysis is most widely used for the safety analysis of nuclear power plant systems. Fault tree analysis also has the most intuitive notation and makes both qualitative and quantitative analyses possible. To analyze the design phase more effectively, we propose a technique of fault tree synthesis, along with a universal fault tree template for the architecture modules of nuclear software. Consequently, we can analyze the safety of software on the basis of fault tree synthesis. (authors)

  11. Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Kuo-Nan Yu

    2014-01-01

    Full Text Available At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

  12. CRISP. Fault detection, analysis and diagnostics in high-DG distribution systems

    International Nuclear Information System (INIS)

    Fontela, M.; Bacha, S.; Hadsjaid, N.; Andrieu, C.; Raison, B.; Penkov, D.

    2004-04-01

    The fault in the electrotechnical meaning is defined in the document. The main part of faults in overhead lines are non permanent faults, what entails the network operator to maintain the existing techniques to clear as fast as possible these faults. When a permanent fault occurs the operator has to detect and to limit the risks as soon as possible. Different axes are followed: limitation of the fault current, clearing the faulted feeder, locating the fault by test and try under possible fault condition. So the fault detection, fault clearing and fault localization are important functions of an EPS (electric power systems) to allow secure and safe operation of the system. The function may be improved by means of a better use of ICT components in the future sharing conveniently the intelligence needed near the distributed devices and a defined centralized intelligence. This improvement becomes necessary in distribution EPS with a high introduction of DR (distributed resources). The transmission and sub-transmission protection systems are already installed in order to manage power flow in all directions, so the DR issue is less critical for this part of the power system in term of fault clearing and diagnosis. Nevertheless the massive introduction of RES involves another constraints to the transmission system which are the bottlenecks caused by important local and fast installed production as wind power plants. Dealing with the distribution power system, and facing a permanent fault, two main actions must be achieved: identify the faulted elementary EPS area quickly and allow the field crew to locate and to repair the fault as soon as possible. The introduction of DR in distribution EPS involves some changes in fault location methods or equipment. The different existing neutral grounding systems make it difficult the achievement of a general method relevant for any distribution EPS in Europe. Some solutions are studied in the CRISP project in order to improve the

  13. Applying a Cerebellar Model Articulation Controller Neural Network to a Photovoltaic Power Generation System Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Kuei-Hsiang Chao

    2013-01-01

    Full Text Available This study employed a cerebellar model articulation controller (CMAC neural network to conduct fault diagnoses on photovoltaic power generation systems. We composed a module array using 9 series and 2 parallel connections of SHARP NT-R5E3E 175 W photovoltaic modules. In addition, we used data that were outputted under various fault conditions as the training samples for the CMAC and used this model to conduct the module array fault diagnosis after completing the training. The results of the training process and simulations indicate that the method proposed in this study requires fewer number of training times compared to other methods. In addition to significantly increasing the accuracy rate of the fault diagnosis, this model features a short training duration because the training process only tunes the weights of the exited memory addresses. Therefore, the fault diagnosis is rapid, and the detection tolerance of the diagnosis system is enhanced.

  14. Application of a Fault Detection and Isolation System on a Rotary Machine

    Directory of Open Access Journals (Sweden)

    Silvia M. Zanoli

    2013-01-01

    Full Text Available The paper illustrates the design and the implementation of a Fault Detection and Isolation (FDI system to a rotary machine like a multishaft centrifugal compressor. A model-free approach, that is, the Principal Component Analysis (PCA, has been employed to solve the fault detection issue. For the fault isolation purpose structured residuals have been adopted while an adaptive threshold has been designed in order to detect and to isolate the faults. To prove the goodness of the proposed FDI system, historical data of a nitrogen centrifugal compressor employed in a refinery plant are considered. Tests results show that detection and isolation of single as well as multiple faults are successfully achieved.

  15. Developing a PC-based expert system for fault analysis of reactor instruments

    International Nuclear Information System (INIS)

    Diwakar, M.P.; Rathod, N.C.; Bairi, B.R.; Darbhe, M.D.; Joglekar, S.S.

    1989-01-01

    This paper describes the development of an expert system for fault analysis of electronic instruments in the CIRUS nuclear reactor. The system was developed in Prolog on an IBM PC-XT compatible computer. A 'model-based' approach (Button et al, 1986) was adopted combining 'frames' and 'rules' to provide flexible control over the inferencing mechanisms. Frames represent the domain-objects as well as the inter-object relationships. They include 'demons' or 'active values' for triggering actions. Rules, along with frames, are used for fault analysis. The rules can be activated either in a data-driven or a goal-driven manner. The use of frames makes rule management easier. It is felt that developing in-house shell proved advantageous, compared to using commercially available shells. Choosing the model-based approach was efficient compared to a production system architecture. Therefore, the use of hybrid representations for diagnostic applications is advocated. Based on the experience, some general recommendations for developing such systems are presented. The expert system helps novice operators to understand the process of diagnosis and achieve a significant required level of competence. The system may not achieve the required level of proficiency by itself, but it can be used to train operators to become experts. (author). 12 refs

  16. Automatic Supervision And Fault Detection In PV System By Wireless Sensors With Interfacing By Labview Program

    Directory of Open Access Journals (Sweden)

    Yousra M Abbas

    2015-08-01

    Full Text Available In this work a wireless monitoring system are designed for automatic detection localization fault in photovoltaic system. In order to avoid the use of modeling and simulation of the PV system we detected the fault by monitoring the output of each individual photovoltaic panel connected in the system by Arduino and transmit this data wirelessly to laptop then interface it by LabVIEW program which made comparison between this data and the measured data taking from reference module at the same condition. The proposed method is very simple but effective detecting and diagnosing the main faults of a PV system and was experimentally validated and has demonstrated its effectiveness in the detection and diagnosing of main faults present in the DC side of PV system.

  17. Research and implementation of power acquisition fault recognition system based on data mining

    Science.gov (United States)

    Zhong, Xiaoqiang; Gao, Chen; Ding, Zhongan; Yan, Shengteng; Yang, Canrong; Mai, Hongkun

    2017-08-01

    At present, the work of acquisition system for fault treatment and elimination is still rely on manual process, it costs a large number of daily time and energy in term of the low efficiency. As the warning mechanism is not perfect, it is often only after the occurrence of the fault, the worker can have a process about the fault, which has a negative impact on the stable operation of the acquisition system. It is necessary to establish the system of automatic operation and maintenance. This paper mainly studies and implements a data mining based acquisition fault warning system, and the accuracy of the identification and early warning of the failure can reach to 97%, about 33% than the old system. The system has improved efficiency and recognized by the worker.

  18. Characterizing the recent behavior and earthquake potential of the blind western San Cayetano and Ventura fault systems

    Science.gov (United States)

    McAuliffe, L. J.; Dolan, J. F.; Hubbard, J.; Shaw, J. H.

    2011-12-01

    The recent occurrence of several destructive thrust fault earthquakes highlights the risks posed by such events to major urban centers around the world. In order to determine the earthquake potential of such faults in the western Transverse Ranges of southern California, we are studying the activity and paleoearthquake history of the blind Ventura and western San Cayetano faults through a multidisciplinary analysis of strata that have been folded above the fault tiplines. These two thrust faults form the middle section of a >200-km-long, east-west belt of large, interconnected reverse faults that extends across southern California. Although each of these faults represents a major seismic source in its own right, we are exploring the possibility of even larger-magnitude, multi-segment ruptures that may link these faults to other major faults to the east and west in the Transverse Ranges system. The proximity of this large reverse-fault system to several major population centers, including the metropolitan Los Angeles region, and the potential for tsunami generation during offshore ruptures of the western parts of the system, emphasizes the importance of understanding the behavior of these faults for seismic hazard assessment. During the summer of 2010 we used a mini-vibrator source to acquire four, one- to three-km-long, high-resolution seismic reflection profiles. The profiles were collected along the locus of active folding above the blind, western San Cayetano and Ventura faults - specifically, across prominent fold scarps that have developed in response to recent slip on the underlying thrust ramps. These high-resolution data overlap with the uppermost parts of petroleum-industry seismic reflection data, and provide a near-continuous image of recent folding from several km depth to within 50-100 m of the surface. Our initial efforts to document the earthquake history and slip-rate of this large, multi-fault reverse fault system focus on a site above the blind

  19. Nonlinear System Identification and Its Applications in Fault Detection and Diagnosis

    DEFF Research Database (Denmark)

    Sun, Zhen

    Interest in nonlinear system identification has grown significantly in recent years. It is much more difficult to develop general results than the concern for linear models since the nonlinear model structures are often much more complicated. As a consequence, the thesis only considers two differ...... be performed by identifying these fault related parameters. Afterwards, the decision whether the fault happened or how large the fault is can be made by comparison and analysis based on the estimated values....... and then for a space robot system. Secondly, the system considered is described by a nonlinear FOPDT model. This type of FOPDT model is an extension of the traditional FOPDT model which pre-assumes all the model parameters are constants. The nonlinearity that is defined in the model is reflected in its two categories...... refrigeration system. The proposed models and methods are further extended for the purpose of Fault Detection and Diagnosis (FDD). In a system where it exists possible parametric fault, if some fault happens, one or several parameters related to fault may change their values. Then the FDD procedure can...

  20. Quorums Systems as a Method to Enhance Collaboration for Achieving Fault Tolerance in Distributed System

    Directory of Open Access Journals (Sweden)

    Ioan PETRI

    2009-01-01

    Full Text Available A system that implements the byzantine agreement algorithm is supposed to be very reliable and robust because of its fault tolerating feature. For very realistic environments, byzantine agreement protocols becomes inadequate, because they are based on the assumption that failures are controlled and they have unlimited severity. The byzantine agreement model works with a number of bounded failures that have to be tolerated. It is never concerned to identify these failures or to exclude them from the system. In this paper, we tackle quorum systems, which is a particular sort of distributed systems where some storage or computations are replicated on various machines in the idea that some of them work correctly to produce a reliable output at some given moment of time. Thus, by majority voting collaboration with quorums, one can achieve fault tolerance in distributed systems. Further, we argue that an algorithm to identify faulty-behaving machines is useful to identify purposeful malicious behaviors.

  1. Comparison of γ-ray intensity distribution around Hira fault with spatial pattern of major and/or sub fault system

    International Nuclear Information System (INIS)

    Nakanishi, Tatsuya; Mino, Kazuo; Ogasawara, Hiroshi; Katsura, Ikuo

    1999-01-01

    Major active faults generally consist of systems of a number of fractures with various dimensions, and contain a lot of ground water. Rn gas, moving with underground water, tends to accumulate along faults and emit γ-ray while it decays down to Pb through Bi. Therefore, it has been shown by a number of works that γ-ray intensity is generally high near the core of the major active fault and the γ-ray survey is one of the effective methods to look for the core of the major active fault. However, around the area near the tips of faults, a number of complicated sub-fault systems and the corresponding complicated geological structures are often seen and it has not been investigated well about what can be the relationship between the intensity distribution of γ-ray and the fault systems. In order to investigate the relationship in an area near the tips of major faults well, therefore, we carried out the γ-ray survey at about 1,100 sites in an area of about 2 km x 2 km that has the tips of the two major right lateral faults with significant thrusting components. We also investigated the lineaments by using the topographic map published in 1895 when artificial construction was seldom seen in the area and we can easily see the natural topography. In addition, we carried out the γ-ray survey in an area far from the fault tip to compare with the results in the area with the fault tips. Then: (1) we reconfirmed that in the case of the middle of the major active fault, γ-ray intensity is high in the limited area just adjacent to the core of the fault. (2) However, we found that in the case of the tip of the major active fault, high γ-ray intensity is seen in much wider area with clear lineaments that is inferred to be developed associated with the movement of the major faults. (author)

  2. Goal-Function Tree Modeling for Systems Engineering and Fault Management

    Science.gov (United States)

    Johnson, Stephen B.; Breckenridge, Jonathan T.

    2013-01-01

    This paper describes a new representation that enables rigorous definition and decomposition of both nominal and off-nominal system goals and functions: the Goal-Function Tree (GFT). GFTs extend the concept and process of functional decomposition, utilizing state variables as a key mechanism to ensure physical and logical consistency and completeness of the decomposition of goals (requirements) and functions, and enabling full and complete traceabilitiy to the design. The GFT also provides for means to define and represent off-nominal goals and functions that are activated when the system's nominal goals are not met. The physical accuracy of the GFT, and its ability to represent both nominal and off-nominal goals enable the GFT to be used for various analyses of the system, including assessments of the completeness and traceability of system goals and functions, the coverage of fault management failure detections, and definition of system failure scenarios.

  3. Dignosis of Pulley-Belt System Faults Using Vibration Analysis Technique

    Directory of Open Access Journals (Sweden)

    Ali Raad Hassan.

    2017-12-01

    Full Text Available This work presents the pulley-belt system faults like unbalance, misalignment, belt worm and resonance. Which dedicated by vibration analysis technique, this system built and an experimental results had been obtained to find out the types of faults that appeared in the manufactured system. A selected faults have been created where the resulted dynamic response has been analyzed. The vibration results obtained by manufactured system by sensors ADXL335 (3-axis accelerometer mounted on bearing brackets of drive and driven shafts. These sensors connected to Arduino type mega 2560 (microcontroller which sending the data of vibration to the laptop in order to display it in Sigview software as a time and frequency domain band by FFT (fast Fourier transform.The results of FFT explained the effect of each type of faults comparing with the optimum condition FFT of the system.

  4. A review on fault classification methodologies in power transmission systems: Part-II

    Directory of Open Access Journals (Sweden)

    Avagaddi Prasad

    2018-05-01

    Full Text Available The countless extent of power systems and applications requires the improvement in suitable techniques for the fault classification in power transmission systems, to increase the efficiency of the systems and to avoid major damages. For this purpose, the technical literature proposes a large number of methods. The paper analyzes the technical literature, summarizing the most important methods that can be applied to fault classification methodologies in power transmission systems.The part 2 of the article is named “A review on fault classification methodologies in power transmission systems”. In this part 2 we discussed the advanced technologies developed by various researchers for fault classification in power transmission systems. Keywords: Transmission line protection, Protective relaying, Soft computing techniques

  5. Fault tolerant software modules for SIFT

    Science.gov (United States)

    Hecht, M.; Hecht, H.

    1982-01-01

    The implementation of software fault tolerance is investigated for critical modules of the Software Implemented Fault Tolerance (SIFT) operating system to support the computational and reliability requirements of advanced fly by wire transport aircraft. Fault tolerant designs generated for the error reported and global executive are examined. A description of the alternate routines, implementation requirements, and software validation are included.

  6. A review on fault classification methodologies in power transmission systems: Part—I

    Directory of Open Access Journals (Sweden)

    Avagaddi Prasad

    2018-05-01

    Full Text Available This paper presents a survey on different fault classification methodologies in transmission lines. Efforts have been made to include almost all the techniques and philosophies of transmission lines reported in the literature. Fault classification is necessary for reliable and high speed protective relaying followed by digital distance protection. Hence, a suitable review of these methods is needed. The contribution consists of two parts. This is part 1 of the series of two parts. Part 1, it is a review on brief introduction on faults in transmission lines and the scope of various old approaches in this field are reviewed. Part 2 will focus and present a newly developed approaches in this field. Keywords: Fault, Fault classification, Protection, Soft computing techniques, Transmission lines

  7. An Effective Fault Feature Extraction Method for Gas Turbine Generator System Diagnosis

    Directory of Open Access Journals (Sweden)

    Jian-Hua Zhong

    2016-01-01

    Full Text Available Fault diagnosis is very important to maintain the operation of a gas turbine generator system (GTGS in power plants, where any abnormal situations will interrupt the electricity supply. The fault diagnosis of the GTGS faces the main challenge that the acquired data, vibration or sound signals, contain a great deal of redundant information which extends the fault identification time and degrades the diagnostic accuracy. To improve the diagnostic performance in the GTGS, an effective fault feature extraction framework is proposed to solve the problem of the signal disorder and redundant information in the acquired signal. The proposed framework combines feature extraction with a general machine learning method, support vector machine (SVM, to implement an intelligent fault diagnosis. The feature extraction method adopts wavelet packet transform and time-domain statistical features to extract the features of faults from the vibration signal. To further reduce the redundant information in extracted features, kernel principal component analysis is applied in this study. Experimental results indicate that the proposed feature extracted technique is an effective method to extract the useful features of faults, resulting in improvement of the performance of fault diagnosis for the GTGS.

  8. System for detecting and limiting electrical ground faults within electrical devices

    Science.gov (United States)

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  9. Fault Detection and Diagnosis System in Process industry Based on Big Data and WeChat

    Directory of Open Access Journals (Sweden)

    Sun Zengqiang

    2017-01-01

    Full Text Available The fault detection and diagnosis information in process industry can be received, anytime and anywhere, based on bigdata and WeChat with mobile phone, which got rid of constraints that can only check Distributed Control System (DCS in the central control room or look over in office. Then, fault detection, diagnosis information sharing can be provided, and what’s more, fault detection alarm range, code and inform time can be personalized. The pressure of managers who worked on process industry can be release with the mobile information system.

  10. Design of integrated systems for control and detection of actuator/sensor faults

    DEFF Research Database (Denmark)

    Stoustrup, J.; Grimble, M.J.; Niemann, Hans Henrik

    1997-01-01

    Consider control systems operating under potentially faulty conditions. Discusses the problems of designing a single unit which not only handle the required control but also identified faults occuring in actuators and sensors. In common practice, unites for control and for diagnosis are designed......-integrated design of control and diagnosis unit. Shows how a combined module for control and diagnosis can be designed which is able to follow references and reject disturbances robustly, control the system so that the undertected faults do not have disastrous effect, reduce the number of false alarams and indetify...... which faults have occurred....

  11. A Systematic Approach to Sensitivity Analysis of Fault Tolerant Systems in NMR Architecture

    Directory of Open Access Journals (Sweden)

    Kourosh Aslansefat

    2015-01-01

    Full Text Available A fault tree illustrates the ways through which a system fails. It states different ways in which combination of faulty components result in an undesired event in the system. Being used in phases such as designing and exploiting industrial systems, and the designers able to evaluate the dependability attributes such as reliability, MTTF and sensitivity. In addition, in the mentioned ability, the fault tree is a systematic method for finding systems bottlenecks and weakness point. In spite of its extensive use in evaluating the reliability of systems, fault tree is rarely used in calculating sensitivity. In the last decade, few researches has been conducted in this field, however these methods are not applicable to large scale systems and are not systematic. This paper provides a systematic method for evaluating system sensitivity through fault tree. Then, it introduces sensitivity of NMR architecture as one of the common structures of fault tolerance which is used for enhancing systems’ reliability, safety and availability in industry. This article presents a comprehensive and parameterized formula for NMR structure's sensitivity. The presented method can be a great help for designing and exploiting reliable systems engineers in systematic and instant calculation of sensitivity by means of fault tree.

  12. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    Science.gov (United States)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  13. Fault-Tolerant Consensus of Multi-Agent System With Distributed Adaptive Protocol.

    Science.gov (United States)

    Chen, Shun; Ho, Daniel W C; Li, Lulu; Liu, Ming

    2015-10-01

    In this paper, fault-tolerant consensus in multi-agent system using distributed adaptive protocol is investigated. Firstly, distributed adaptive online updating strategies for some parameters are proposed based on local information of the network structure. Then, under the online updating parameters, a distributed adaptive protocol is developed to compensate the fault effects and the uncertainty effects in the leaderless multi-agent system. Based on the local state information of neighboring agents, a distributed updating protocol gain is developed which leads to a fully distributed continuous adaptive fault-tolerant consensus protocol design for the leaderless multi-agent system. Furthermore, a distributed fault-tolerant leader-follower consensus protocol for multi-agent system is constructed by the proposed adaptive method. Finally, a simulation example is given to illustrate the effectiveness of the theoretical analysis.

  14. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    In this work, an early fault detection system for the generator cooling of wind turbines is presented and tested. It relies on a hybrid model of the cooling system. The parameters of the generator model are estimated by an extended Kalman filter. The estimated parameters are then processed...... by an appropriate statistical change detection algorithm in order to detect faults in the cooling system. To validate the method, it has been tested on 3 years of historical data from 43 turbines. During the testing period, 16 faults occurred; 15 of these were detected by the developed method, and one false alarm...... was issued. This is an improvement compared with the current system that gives 15 detections and more than 10 false alarms. In some cases, the method detects the fault a long time before the turbine reports an alarm. A further advantage of the method is that it is based on supervisory control and data...

  15. Study of expert system of fault diagnosis for nuclear power plant

    International Nuclear Information System (INIS)

    Chen Zhihui; Xia Hong; Liu Miao

    2005-01-01

    Based on the fault features of Nuclear Power Plant, the ES (expert system) of fault diagnosis has been programmed. The knowledge in the ES adopts the production systems, which can express the certain and uncertain knowledge. For certain knowledge, the simple reasoning mechanism of prepositional logic is adopted. For the uncertain knowledge, CF (certain factor) is used to express the uncertain, thus to set up the reasoning mechanism. In order to solve the 'bottleneck' problem for knowledge acquisition, rough set theory is incorporated into the fault diagnose system and the reduction algorithm based on the discernibility matrix is improved. In the improved algorithm, the measure of attribute importance first calculate the attribute which have the same value in the same decision-sort, then calculate the degrees of attribute in the discernibility matrix. Several different faults have been diagnosed on some emulator with this expert system. (authors)

  16. Active Complementary Control for Affine Nonlinear Control Systems With Actuator Faults.

    Science.gov (United States)

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-11-01

    This paper is concerned with the problem of active complementary control design for affine nonlinear control systems with actuator faults. The outage and loss of effectiveness fault cases are considered. In order to achieve the performance enhancement of the faulty control system, the complementary control scheme is designed in two steps. Firstly, a novel fault estimation scheme is developed. Then, by using the fault estimations to reconstruct the faulty system dynamics and introducing a cost function as the optimization objective, a nearly optimal complementary control is obtained online based on the adaptive dynamic programming (ADP) method. Unlike most of the previous ADP methods with the addition of a probing signal, new adaptive weight update laws are derived to guarantee the convergence of neural network weights and the stability of the closed-loop system, which strongly supports the online implementation of the ADP method. Finally, two simulation examples are given to illustrate the performance and effectiveness of the proposed method.

  17. An Online Fault Pre-warning System of the Rolling Mill Screw-down Device Based on Virtual Instrument

    Directory of Open Access Journals (Sweden)

    Qing Bai

    2014-04-01

    Full Text Available A traditional off-line screw-down monitoring system performs not well on real-time signal analysis or process, which cannot provide simultaneous fault pre-warning either. A diagnostic monitoring system as well as a remotely accessible graphic user interface is presented in this paper. The main objective of this work is to develop an online and available technique for monitoring the kinetic, hydrodynamic and electrical parameters of the rolling mill screw-down device, and analyze these figures to support online fault pre-warning. A series of transducers are installed in suitable locations to measure parameters decried above including the vibration acceleration of a rolling mill stand, the rolling force of a screw-down device, the stroke of a hydraulic cylinder, the system source pressure, the in-cylinder stress and the output value of an electro-hydraulic servo valve. An industrial personal computer picks up the information transformed by an extra high-speed data acquisition board embedded inside, processes the signals via a software designed by means of Laborary Virtual Instrument Engineering Workbench (LabVIEW and indicates fault conditions through the graphic user interface. Besides, the data of the overall system can be published over the Internet using LabVIEW Web Server capabilities. The results of experiments suggest that the system works well on real-time data acquisition and online fault pre- warning. The statistics saved contributes to the research of vibration performance and malfunction analysis of a rolling mill.

  18. Explaining the current geodetic field with geological models: A case study of the Haiyuan fault system

    Science.gov (United States)

    Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M. P.; Barbot, S.; Peltzer, G.; Tapponnier, P.

    2015-12-01

    Oblique convergence across Tibet leads to slip partitioning with the co-existence of strike-slip, normal and thrust motion in major fault systems. While such complexity has been shown at the surface, the question is to understand how faults interact and accumulate strain at depth. Here, we process InSAR data across the central Haiyuan restraining bend, at the north-eastern boundary of the Tibetan plateau and show that the surface complexity can be explained by partitioning of a uniform deep-seated convergence rate. We construct a time series of ground deformation, from Envisat radar data spanning from 2001-2011 period, across a challenging area because of the high jump in topography between the desert environment and the plateau. To improve the signal-to-noise ratio, we used the latest Synthetic Aperture Radar interferometry methodology, such as Global Atmospheric Models (ERA Interim) and Digital Elevation Model errors corrections before unwrapping. We then developed a new Bayesian approach, jointly inverting our InSAR time series together with published GPS displacements. We explore fault system geometry at depth and associated slip rates and determine a uniform N86±7E° convergence rate of 8.45±1.4 mm/yr across the whole fault system with a variable partitioning west and east of a major extensional fault-jog. Our 2D model gives a quantitative understanding of how crustal deformation is accumulated by the various branches of this thrust/strike-slip fault system and demonstrate the importance of the geometry of the Haiyuan Fault, controlling the partitioning or the extrusion of the block motion. The approach we have developed would allow constraining the low strain accumulation along deep faults, like for example for the blind thrust faults or possible detachment in the San Andreas "big bend", which are often associated to a poorly understood seismic hazard.

  19. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  20. Detection of high-impedance fault in low-voltage DC distribution system via mathematical morphology

    Directory of Open Access Journals (Sweden)

    Yun-Sik Oh

    2016-01-01

    Full Text Available This study presents a method for high-impedance fault (HIF detection in a low-voltage DC (LVDC distribution system via mathematical morphology (MM, which is composed of two elementary transformations, namely, dilation and erosion. Various MM-based filters are used to detect abnormal signals of current waveform. The LVDC distribution system, including power conversion devices, such as AC/DC and DC/DC converters, is modelled with electromagnetic transient program (EMTP software to verify the proposed method. The HIF arc model in the DC system is also implemented with EMTP/MODELS, which is a symbolic language interpreter for EMTP. Simulation results show that the proposed method can be applied to detect HIF effectively in the LVDC distribution system.

  1. Spatio-temporal trends in normal-fault segmentation recorded by low-temperature thermochronology: Livingstone fault scarp, Malawi Rift, East African Rift System

    Science.gov (United States)

    Mortimer, Estelle; Kirstein, Linda A.; Stuart, Finlay M.; Strecker, Manfred R.

    2016-12-01

    The evolution of through-going normal-fault arrays from initial nucleation to growth and subsequent interaction and mechanical linkage is well documented in many extensional provinces. Over time, these processes lead to predictable spatial and temporal variations in the amount and rate of displacement accumulated along strike of individual fault segments, which should be manifested in the patterns of footwall exhumation. Here, we investigate the along-strike and vertical distribution of low-temperature apatite (U-Th)/He (AHe) cooling ages along the bounding fault system, the Livingstone fault, of the Karonga Basin of the northern Malawi Rift. The fault evolution and linkage from rift initiation to the present day has been previously constrained through investigations of the hanging wall basin fill. The new cooling ages from the footwall of the Livingstone fault can be related to the adjacent depocentre evolution and across a relay zone between two palaeo-fault segments. Our data are complimented by published apatite fission-track (AFT) data and reveal significant variation in rock cooling history along-strike: the centre of the footwall yields younger cooling ages than the former tips of earlier fault segments that are now linked. This suggests that low-temperature thermochronology can detect fault interactions along strike. That these former segment boundaries are preserved within exhumed footwall rocks is a function of the relatively recent linkage of the system. Our study highlights that changes in AHe (and potentially AFT) ages associated with the along-strike displacement profile can occur over relatively short horizontal distances (of a few kilometres). This is fundamentally important in the assessment of the vertical cooling history of footwalls in extensional systems: temporal differences in the rate of tectonically driven exhumation at a given location along fault strike may be of greater importance in controlling changes in rates of vertical exhumation

  2. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    Science.gov (United States)

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  3. Automated Generation of Fault Management Artifacts from a Simple System Model

    Science.gov (United States)

    Kennedy, Andrew K.; Day, John C.

    2013-01-01

    Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.

  4. Sensor Fault Masking of a Ship Propulsion System

    DEFF Research Database (Denmark)

    Wu, N. Eva; Thavamani, Shuda; Zhang, Youmin

    2005-01-01

    This paper presents the results of a study on fault-tolerant control of a ship propulsion benchmark (Izadi-Zamanabadi and Blanke, 999), which uses estimated or virtual measurements as feedback variables. The estimator operates on a self-adjustable design model so that its outputs can be made immu...

  5. Fault management system for reliable ADSL services provisioning

    Science.gov (United States)

    Kim, Dong-Il; Hong, Won-Kyu; Jong, Mun-Jo; Oh, Chang-suk

    2001-07-01

    A number of ADSL subscribers are explosively increasing every year. The ATM over ADSL gives us a new paradigm for Internet access service using existing copper cable. An ATM network takes the role of access network for providing the Internet access service using the ATM over ADSL. However, it is very difficult for network service provider to manage the large-scale ATM access network in uniform in terms of the stabilized Internet access service provision using the ATM over ADSL model. We logically divide the ATM access network into two domains from the perspective of fault management. The first domain is composed of DSLAMs and the seconds one is composed of the pure ATM switches. This paper proposes two level fault management schemes for ATM over ADSL service provision in terms of TMN functional layering: one is the fault management in terms of the network management layer (NML) and the other is one in terms of the service management layer (SML). We also describe the experience learned from the network management under the real network applying the proposed fault management schemes.

  6. Fault Detection for Network Control Systems with Multiple Communication Delays and Stochastic Missing Measurements

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2014-01-01

    Full Text Available This paper is concerned with fault detection problem for a class of network control systems (NCSs with multiple communication delays and stochastic missing measurements. The missing measurement phenomenon occurs in a random way and the occurrence probability for each measurement output is governed by an individual random variable. Besides, the multiple communication delay phenomenon reflects that networked control systems have different communication delays when the signals are transferred via different channels. We aim to design a fault detection filter so that the overall fault detection dynamics is exponentially stable in the mean square. By constructing proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the fault detection filter for the discrete systems, and the filter parameters are also derived by solving linear matrix inequality. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

  7. PLAT: An Automated Fault and Behavioural Anomaly Detection Tool for PLC Controlled Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Arup Ghosh

    2016-01-01

    Full Text Available Operational faults and behavioural anomalies associated with PLC control processes take place often in a manufacturing system. Real time identification of these operational faults and behavioural anomalies is necessary in the manufacturing industry. In this paper, we present an automated tool, called PLC Log-Data Analysis Tool (PLAT that can detect them by using log-data records of the PLC signals. PLAT automatically creates a nominal model of the PLC control process and employs a novel hash table based indexing and searching scheme to satisfy those purposes. Our experiments show that PLAT is significantly fast, provides real time identification of operational faults and behavioural anomalies, and can execute within a small memory footprint. In addition, PLAT can easily handle a large manufacturing system with a reasonable computing configuration and can be installed in parallel to the data logging system to identify operational faults and behavioural anomalies effectively.

  8. Robust Fault Tolerant Control for a Class of Time-Delay Systems with Multiple Disturbances

    Directory of Open Access Journals (Sweden)

    Songyin Cao

    2013-01-01

    Full Text Available A robust fault tolerant control (FTC approach is addressed for a class of nonlinear systems with time delay, actuator faults, and multiple disturbances. The first part of the multiple disturbances is supposed to be an uncertain modeled disturbance and the second one represents a norm-bounded variable. First, a composite observer is designed to estimate the uncertain modeled disturbance and actuator fault simultaneously. Then, an FTC strategy consisting of disturbance observer based control (DOBC, fault accommodation, and a mixed H2/H∞ controller is constructed to reconfigure the considered systems with disturbance rejection and attenuation performance. Finally, simulations for a flight control system are given to show the efficiency of the proposed approach.

  9. Fault linkage and continental breakup

    Science.gov (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  10. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, Jaques; Wei, Thomas Y. C.

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  11. Fault detection of flywheel system based on clustering and principal component analysis

    Directory of Open Access Journals (Sweden)

    Wang Rixin

    2015-12-01

    Full Text Available Considering the nonlinear, multifunctional properties of double-flywheel with closed-loop control, a two-step method including clustering and principal component analysis is proposed to detect the two faults in the multifunctional flywheels. At the first step of the proposed algorithm, clustering is taken as feature recognition to check the instructions of “integrated power and attitude control” system, such as attitude control, energy storage or energy discharge. These commands will ask the flywheel system to work in different operation modes. Therefore, the relationship of parameters in different operations can define the cluster structure of training data. Ordering points to identify the clustering structure (OPTICS can automatically identify these clusters by the reachability-plot. K-means algorithm can divide the training data into the corresponding operations according to the reachability-plot. Finally, the last step of proposed model is used to define the relationship of parameters in each operation through the principal component analysis (PCA method. Compared with the PCA model, the proposed approach is capable of identifying the new clusters and learning the new behavior of incoming data. The simulation results show that it can effectively detect the faults in the multifunctional flywheels system.

  12. Combined expert system/neural networks method for process fault diagnosis

    Science.gov (United States)

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  13. Fault Tolerant Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Kinnaert, Michel

    2013-01-01

    This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator...... of 4.8 MW. The fault detection and isolation (FDI) problem was addressed by several teams, and five of the solutions are compared in the second part of this paper. This comparison relies on additional test data in which the faults occur in different operating conditions than in the test data used...

  14. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  15. A Pyrenean Cretaceous extensional fault system in the Briançonnais Domain of the Alps: implications for the eastern termination of the segmented Bay of Biscay-Pyrenean rift system.

    Science.gov (United States)

    Tavani, Stefano; Bertok, Carlo; D'Atri, Anna; Piana, Fabrizio; Barale, Luca; Corradetti, Amerigo; Granado, Pablo; Martire, Luca; Vigna, Bartolomeo

    2017-04-01

    Recent studies in the foreland fold and thrust belt of the SW Alps reported that, in spite of the obliterating effect by the Alpine deformation, Mesozoic structures can still be recognised. These structures, occurring at the southern portion of the Western Alps arc, include a well-exposed crustal-scale Cretaceous extensional fault system. Field data (geological maps) and subsurface data (karst network) have been integrated to produce a detailed 3D reconstruction of this extensional fault system. Cretaceous faults affect the Paleozoic and Mesozoic successions and consist of a tens of km long E-W striking master fault, having in its northern block a set of E-dipping transverse extensional faults, having displacements in the order of hundreds of meters. The 3D reconstruction indicates that E-W extension, accommodated by transverse faults, is between 20% and 40%, and it reduces toward the E-W striking master fault. N-S extension is instead negligible and the E-W fault is interpreted as a Cretaceous right-lateral strike-slip fault. Removing the about 120° counter-clockwise vertical axis rotation, which is associated with the post-Cretaceous Alpine orogeny, the strike-slip fault becomes parallel to a suite of NNE-SSW to NE-SW striking faults occurring in the SW Alps foreland (present Provence region). We propose that, during the Cretaceous separation of Iberia from Eurasia, the NNE-SSW striking faults of Provence and Western Alps were delimiting to the east the Bay of Biscay - Pyrenean rift system. In detail, they formed a NNE-SSW striking transfer zone bounding to the east the Pyrenean arm of the rift, and likely ensured the connection of the Bay of Biscay - Pyrenean rift system with a further eastern, intra-plate, arm.

  16. Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems

    KAUST Repository

    N'Doye, Ibrahima

    2015-07-01

    This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.

  17. Structural analysis of superposed fault systems of the Bornholm horst block, Tornquist Zone, Denmark

    DEFF Research Database (Denmark)

    Graversen, Ole

    2009-01-01

    towards the SE and ESE respectively. The Mesozoic faulting was associated with the development of a horst-graben framework in the Bornholm-Skåne segment of the Sorgenfrei-Tornquist Zone. Mesozoic fault subsidence started in the Rønne Graben in the Triassic. In the Jurassic the Arnager-Sose block became...... and the Lobbæk block (new) along with subsidence of the Holsterhus block and renewed subsidence of the Arnager-Sose block. The Mesozoic series are dipping towards the southwest.The Palaeozoic fault systems were associated with two-dimensional plane strain during ENE-WSW and NNE-SSW extension. By contrast...

  18. Incipient multiple fault diagnosis in real time with applications to large-scale systems

    International Nuclear Information System (INIS)

    Chung, H.Y.; Bien, Z.; Park, J.H.; Seon, P.H.

    1994-01-01

    By using a modified signed directed graph (SDG) together with the distributed artificial neutral networks and a knowledge-based system, a method of incipient multi-fault diagnosis is presented for large-scale physical systems with complex pipes and instrumentations such as valves, actuators, sensors, and controllers. The proposed method is designed so as to (1) make a real-time incipient fault diagnosis possible for large-scale systems, (2) perform the fault diagnosis not only in the steady-state case but also in the transient case as well by using a concept of fault propagation time, which is newly adopted in the SDG model, (3) provide with highly reliable diagnosis results and explanation capability of faults diagnosed as in an expert system, and (4) diagnose the pipe damage such as leaking, break, or throttling. This method is applied for diagnosis of a pressurizer in the Kori Nuclear Power Plant (NPP) unit 2 in Korea under a transient condition, and its result is reported to show satisfactory performance of the method for the incipient multi-fault diagnosis of such a large-scale system in a real-time manner

  19. Fault-Tolerant in Embedded Systems (MPSoC: Performance Estimation and Dynamic Migration Task

    Directory of Open Access Journals (Sweden)

    Kamel Smiri

    2017-07-01

    Full Text Available Multiprocessor Systems-on-Chip (MPSoC allow the implementation of heterogeneous architectures with a high integration capacity. In recent years, computational requirements MPSoC are increasing exponentially. This complexity, coupled with constantly evolving specifications, has forced designers to consider intrinsically flexible implementations. Deploying applications typical of multimedia domains is difficult, not only due to the heterogeneous parallelism in the platforms, but also due to the performance constraints that typify these systems. An application can be modeled as a set of cooperative tasks. A task can be implemented in software or in hardware depending on its complexity and the involved cost. Our proposal is a fault tolerance approach which combines the results of a performance model and a technical’s fault tolerance. We interest of the dynamic migration task to resolve the Fault-Tolerant for Multiprocessors Embedded System. We exploited an example of multimedia application (MJPEG decoder to find optimal Fault tolerance systems. Our aim in this paper is to exploit the classic technique of fault tolerance. The solution chosen is the transformation of software processing into hardware processing. And also, exploitation of hybrid models (simulation/analytics. The goal is to have a Fault Tolerant Embedded System.

  20. Novel fault tolerant modular system architecture for I and C applications

    International Nuclear Information System (INIS)

    Kumar, Ankit; Venkatesan, A.; Madhusoodanan, K.

    2013-01-01

    Novel fault tolerant 3U modular system architecture has been developed for safety related and safety critical I and C systems of the reactor. Design innovatively utilizes simplest multi-drop serial bus called Inter-Integrated Circuits (I 2 C) Bus for system operation with simplicity, fault tolerance and online maintainability (hot swap). I 2 C bus failure modes analysis was done and system design was hardened for possible failure modes. System backplane uses only passive components, dual redundant I 2 C buses, data consistency checks and geographical addressing scheme to tackle bus lock ups/stuck buses and bit flips in data transactions. Dual CPU active/standby redundancy architecture with hot swap implements tolerance for CPU software stuck up conditions and hardware faults. System cards implement hot swap for online maintainability, power supply fault containment, communication buses fault containment and I/O channel to channel isolation and independency. Typical applications for pure hardwired (without real time software) Core Temperature Monitoring System for FBRs, as a Universal Signal Conditioning System for safety related I and C systems and as a complete control system for non nuclear safety systems have also been discussed. (author)

  1. Stabiliser Fault Emergency Control using Reconfiguration to Preserve Power System Stability

    DEFF Research Database (Denmark)

    Pedersen, Andreas Søndergaard; Richter, Jan H.; Tabatabaeipour, Mojtaba

    2014-01-01

    Stabiliser faults in multi-machine power systems are examined in this paper where fault-masking and system reconguration of the nonlinear system is obtained using a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area transmission grids to improve the performa......Stabiliser faults in multi-machine power systems are examined in this paper where fault-masking and system reconguration of the nonlinear system is obtained using a virtual actuator approach. Phasor Measurement Units, which can be integrated in wide-area transmission grids to improve...... the performance of power system stabilisers, are utilised when reconguring remaining stabilisers after one has been inoperable by a local failure. A stabilitypreserving reconguration is designed using absolute stability results for Lure type systems: The calculation of the virtual actuator that relies...... on a solution of a linear matrix inequality (LMI) is detailed in the paper. Simulation results of a benchmark transmission system show the ability of the fault-tolerant reconguration strategy to maintain wide-area stability of a power system despite failure in a stabiliser....

  2. The 2009 L'Aquila sequence (Central Italy): fault system anatomy by aftershock distribution.

    Science.gov (United States)

    Chiaraluce, Lauro

    2010-05-01

    On April 6 (01:32 UTC) 2009 a destructive MW 6.13 earthquake struck the Abruzzi region in Central Italy, causing nearly 300 deaths, 40.000 homeless people and strong damage to the cultural heritage of the L'Aquila city and its province. Two strong earthquakes hit the same area in historical times (e.g. the 1461 and 1703 events), but the main fault that drives the extension in this portion of the Apennines was unknown. Seismic data was recorded at both permanent stations of the Centralised Italian National Seismic Network managed by the INGV and 45 temporary stations installed in the epicentral area together with the LGIT of Grenoble (Fr). The resulting geometry of the dense monitoring network allows us to gain very high resolution earthquake locations that we use to investigate the geometry of the activated fault system and to report on seismicity pattern and kinematics of the whole sequence. The mainshock was preceded by a foreshock sequence that activated the main fault plane during the three months before, while the largest foreshock (MW 4.08) occurred one week before (30th of March) nucleated on a antithetic (e.g. off-fault) segment. The distribution of the aftershocks defines a complex, 50 km long, NW-trending normal fault system, with seismicity nucleating within the upper 10-12 km of the crust. There is an exception of an event (MW 5.42) nucleating a couple of kilometers deeper that the 7th of April that activates a high angle normal fault antithetic to the main system. Its role is still unclear. We reconstruct the geometry of the two major SW-dipping normal faults forming a right lateral en-echelon system. The main fault (L'Aquila fault) is activated by the 6th of April mainshock unluckily located right below the city of L'Aquila. A 50°SW-dipping plane with planar geometry about 16 km long. The related seismicity interests the entire first 12 km of the upper crust from the surface. The ground surveys carried out soon after the occurrence of the earthquake

  3. Software fault detection and recovery in critical real-time systems: An approach based on loose coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Pekka, E-mail: pekka.alho@tut.fi; Mattila, Jouni

    2014-10-15

    Highlights: •We analyze fault tolerance in mission-critical real-time systems. •Decoupled architectural model can be used to implement fault tolerance. •Prototype implementation for remote handling control system and service manager. •Recovery from transient faults by restarting services. -- Abstract: Remote handling (RH) systems are used to inspect, make changes to, and maintain components in the ITER machine and as such are an example of mission-critical system. Failure in a critical system may cause damage, significant financial losses and loss of experiment runtime, making dependability one of their most important properties. However, even if the software for RH control systems has been developed using best practices, the system might still fail due to undetected faults (bugs), hardware failures, etc. Critical systems therefore need capability to tolerate faults and resume operation after their occurrence. However, design of effective fault detection and recovery mechanisms poses a challenge due to timeliness requirements, growth in scale, and complex interactions. In this paper we evaluate effectiveness of service-oriented architectural approach to fault tolerance in mission-critical real-time systems. We use a prototype implementation for service management with an experimental RH control system and industrial manipulator. The fault tolerance is based on using the high level of decoupling between services to recover from transient faults by service restarts. In case the recovery process is not successful, the system can still be used if the fault was not in a critical software module.

  4. Integral Sliding Mode Fault-Tolerant Control for Uncertain Linear Systems Over Networks With Signals Quantization.

    Science.gov (United States)

    Hao, Li-Ying; Park, Ju H; Ye, Dan

    2017-09-01

    In this paper, a new robust fault-tolerant compensation control method for uncertain linear systems over networks is proposed, where only quantized signals are assumed to be available. This approach is based on the integral sliding mode (ISM) method where two kinds of integral sliding surfaces are constructed. One is the continuous-state-dependent surface with the aim of sliding mode stability analysis and the other is the quantization-state-dependent surface, which is used for ISM controller design. A scheme that combines the adaptive ISM controller and quantization parameter adjustment strategy is then proposed. Through utilizing H ∞ control analytical technique, once the system is in the sliding mode, the nature of performing disturbance attenuation and fault tolerance from the initial time can be found without requiring any fault information. Finally, the effectiveness of our proposed ISM control fault-tolerant schemes against quantization errors is demonstrated in the simulation.

  5. Robust fault-sensitive synchronization of a class of nonlinear systems

    International Nuclear Information System (INIS)

    Xu Shi-Yun; Tang Yong; Sun Hua-Dong; Yang Ying; Liu Xian

    2011-01-01

    Aiming at enhancing the quality as well as the reliability of synchronization, this paper is concerned with the fault detection issue within the synchronization process for a class of nonlinear systems in the existence of external disturbances. To handle such problems, the concept of robust fault-sensitive (RFS) synchronization is proposed, and a method of determining such a kind of synchronization is developed. Under the framework of RFS synchronization, the master and the slave systems are robustly synchronized, and at the same time, sensitive to possible faults based on a mixed H − /H ∞ performance. The design of desired output feedback controller is realized by solving a linear matrix inequality, and the fault sensitivity H − index can be optimized via a convex optimization algorithm. A master-slave configuration composed of identical Chua's circuits is adopted as a numerical example to demonstrate the effectiveness and applicability of the analytical results. (general)

  6. Fault detection and diagnosis in nonlinear systems a differential and algebraic viewpoint

    CERN Document Server

    Martinez-Guerra, Rafael

    2014-01-01

    The high reliability required in industrial processes has created the necessity of detecting abnormal conditions, called faults, while processes are operating. The term fault generically refers to any type of process degradation, or degradation in equipment performance because of changes in the process's physical characteristics, process inputs or environmental conditions. This book is about the fundamentals of fault detection and diagnosis in a variety of nonlinear systems which are represented by ordinary differential equations. The fault detection problem is approached from a differential algebraic viewpoint, using residual generators based upon high-gain nonlinear auxiliary systems (‘observers’). A prominent role is played by the type of mathematical tools that will be used, requiring knowledge of differential algebra and differential equations. Specific theorems tailored to the needs of the problem-solving procedures are developed and proved. Applications to real-world problems, both with constant an...

  7. Implementation of a Wind Farm Turbine Control System with Short-Term Grid Faults Management

    DEFF Research Database (Denmark)

    Marra, Francesco; Rasmussen, Tonny Wederberg; Garcia-Valle, Rodrigo

    2010-01-01

    restrictions for the wind turbines behavior especially under grid faults. Wind turbines are requested to stay connected even during faults. These new requirements are challenging the control of the wind turbines and new control strategies are required to meet the target. This paper dealt...... with the implementation of a control strategy in order to stay connected under grid faults. The method aimed to ensure that a wind farm turbine remains connected and no electric power is delivered to the grid during the fault period. The overall system was modelled and simulated by using the software Matlab/Simulink.......The increased penetration of wind power in the grid has led to important technical barriers that limit the development, where the stability of the system plays a key issue. Grid operators in different countries are issuing new grid requirements, the so-called grid codes that impose more...

  8. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    Science.gov (United States)

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  9. Tectonic reversal of the western Doruneh Fault System: Implications for Central Asian tectonics

    Science.gov (United States)

    Javadi, Hamid Reza; Esterabi Ashtiani, Marzieh; Guest, Bernard; Yassaghi, Ali; Ghassemi, Mohammad Reza; Shahpasandzadeh, Majid; Naeimi, Amir

    2015-10-01

    The left-lateral Doruneh Fault System (DFS) bounds the north margin of the Central Iranian microplate and has played an important role in the structural evolution of the Turkish-Iranian plateau. The western termination of the DFS is a sinistral synthetic branch fault array that shows clear kinematic evidence of having undergone recent slip sense inversion from a dextral array to a sinistral array in the latest Neogene or earliest Quaternary. Similarly, kinematic evidence from the Anarak Metamorphic complex suggests that this complex initially developed at a transpressive left-stepping termination of the DFS and that it was inverted in the latest Neogene to a transtensional fault termination. The recognition that the DFS and other faults in NE Iran were inverted from dextral to sinistral strike slip in the latest Neogene and the likely connection between the DFS and the Herat Fault of Afghanistan suggests that prior to the latest Miocene, all of the north Iranian and northern Afghan ranges were part of a distributed dextral fault network that extended from the west Himalayan syntaxes to the western Alborz. Also, the recognition that regional slip sense inversion occurred across northern and northeastern Iran after the latest Miocene invalidates tectonic models that extrapolate Pleistocene to recent fault slip kinematics and rates back beyond this time.

  10. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    Directory of Open Access Journals (Sweden)

    Xianfeng Yuan

    2015-01-01

    presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel support vector machine (SVM and Dempster-Shafer (D-S fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  11. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    Science.gov (United States)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault

  12. Artificial neural network application for space station power system fault diagnosis

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  13. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    Science.gov (United States)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  14. An evaluation method of fault-tolerance for digital plant protection system in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Man Cheol; Seong, Poong Hyun; Kang, Hyun Gook; Jang, Seung Cheol

    2005-01-01

    In recent years, analog based nuclear power plant (NPP) safety related instrumentation and control (I and C) systems have been replaced to modern digital based I and C systems. NPP safety related I and C systems require very high design reliability compare to the conventional digital systems so that reliability assessment is very important. In the reliability assessment of the digital system, fault tolerance evaluation is one of the crucial factors. However, the evaluation is very difficult because the digital system in NPP is very complex. In this paper, the simulation based fault injection technique on simplified processor is used to evaluate the fault-tolerance of the digital plant protection system (DPPS) with high efficiency with low cost

  15. The Nature of Extension on the Western Edge of the Basin and Range: Evolution of the Surprise Valley Fault System

    Science.gov (United States)

    Surpless, B.; Egger, A. E.

    2006-12-01

    The Warner Range is a major west-tilted fault block in northeastern California bound on its eastern side by the Surprise Valley normal fault system, which has accommodated a minimum of 3 km of uplift. The fault system separates the northeastern Basin and Range Province on the east, which has undergone 10-15% extension since the Miocene, from the Modoc Plateau to the west, a relatively unextended region with a thick sequence of flat-lying Pliocene and younger volcanic rocks. Although no major earthquakes have occurred along the fault system in historic times, significant Quaternary fault scarps, ~3 Ma U-Th/He ages, and trenching suggest that the system is still active, and recently published GPS data suggest ongoing extension and right- lateral deformation across the region. Thus, the Surprise Valley fault system is ideally located to gain insight into extensional processes at the edge of the Basin and Range province and to reveal potential seismic hazard. Dip-slip displacement along the Surprise Valley fault system decreases toward the system's north and south terminations. The northern termination is complicated by the Fandango Valley, a northwest-trending, graben- like structure that cuts across the Warner Range at an oblique angle. South of the Fandango Valley, Eocene to Miocene volcanic and volcaniclastic rocks in the range dip ~25 degrees to the west, and the east- dipping Surprise Valley fault system bounds the east side of the range. North of the valley, Miocene age volcanic rocks in the range dip gently to the east, and the dominant normal fault system is west-dipping and bounds the west side of the range. These two significant normal fault systems overlap at the latitude of the Fandango Valley, suggesting that the structure is an antithetic accommodation zone, but the Valley's northwest-trending orientation is orthogonal to that expected for an accommodation zone controlled exclusively by the propagation of oppositely-dipping normal faults. It is possible

  16. Data and Visualizations in the Southern California Earthquake Center's Fault Information System

    Science.gov (United States)

    Perry, S.

    2003-12-01

    The Southern California Earthquake Center's Fault Information System (FIS) provides a single point of access to fault-related data and models from multiple databases and datasets. The FIS is built of computer code, metadata and Web interfaces based on Web services technology, which enables queries and data interchange irrespective of computer software or platform. Currently we have working prototypes of programmatic and browser-based access. The first generation FIS may be searched and downloaded live, by automated processes, as well as interactively, by humans using a browser. Users get ascii data in plain text or encoded in XML. Via the Earthquake Information Technology (EIT) Interns (Juve and others, this meeting), we are also testing the effectiveness of querying multiple databases using a fault database ontology. For more than a decade, the California Geological Survey (CGS), SCEC, and the U. S. Geological Survey (USGS) have put considerable, shared resources into compiling and assessing published fault data, then providing the data on the Web. Several databases now exist, with different formats, datasets, purposes, and users, in various stages of completion. When fault databases were first envisioned, the full power of today's internet was not yet recognized, and the databases became the Web equivalents of review papers, where one could read an overview summation of a fault, then copy and paste pertinent data. Today, numerous researchers also require rapid queries and downloads of data. Consequently, the first components of the FIS are MySQL databases that deliver numeric values from earlier, text-based databases. Another essential service provided by the FIS is visualizations of fault representations such as those in SCEC's Community Fault Model. The long term goal is to provide a standardized, open-source, platform-independent visualization technique. Currently, the FIS makes available fault model viewing software for users with access to Matlab or Java3D

  17. Reactor protection system including engineered features actuation system

    International Nuclear Information System (INIS)

    Palmaers, W.

    1982-01-01

    The safety concept requires to ensure that - the reactor protection system - the active engineered safeguard - and the necessary auxiliary systems are so designed and interfaced in respect of design and mode of action that, in the event of single component failure reliable control of the consequences of accidents remains ensured at all times and that the availability of the power plant is not limited unnecessarily. In order to satisfy these requirements due, importance was attached to a consistent spacial separation of the mutually redundant subsystems of the active safety equipment. The design and layout of the reactor protection system, of the power supply (emergency power supply), and of the auxiliary systems important from the safety engineering point of view, are such that their subsystems also largely satisfy the requirements of independence and spacial separation. (orig./RW)

  18. Investigation of the synthetic experiment system of machine equipment fault diagnosis

    Science.gov (United States)

    Liu, Hongyu; Xu, Zening; Yu, Xiaoguang

    2008-12-01

    The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university's teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. The synthetic experiment system has the advantages of short training time, quick desirable result and low test cost etc. It suits for spreading in university extraordinarily. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi-kinds of field machine equipment conveniently. Its market foreground is very good.

  19. Wavelet transform-based fault diagnosis and line selection method of small current grounding system

    Science.gov (United States)

    Yang, Ni; Zhang, Shuqing; Zhang, Liguo; Zhang, Kexin; Sun, Lingyun

    2008-12-01

    Small current grounding system is the system that the neutral point doesn't ground or grounds across the arc suppressing coils, which has been applied commonly in distribution system of many countries. As the grounding fault occurs, current is the one caused by capacity of circuit to ground only and it is rather small. The status of fault is complexity, e.g., the electromagnet interferes together with the amplified impact of zero-order loops to high-order singularity waves and various temporary variables. All these result in the lower ratio of the fault element signal to noise caused by zero-order current. In this paper, the position of signal singularity and the magnitude of the singularity degree are analyzed based on the variable focus character of wavelet, and the time fault occurs is then determined. The series db wavelet with close sustain is adopted, and the line selection is according to the zero-order voltage of the generatrix and the current of various outlet line. It is proved by the experiment that the fault circuit diagnosis method based on wavelet analysis to the character of temporary status of single-phase grounding fault plays an important role to a finer line selection.

  20. A Fault-Tolerant Modulation Method to Counteract the Double Open-Switch Fault in Matrix Converter Drive Systems without Redundant Power Devices

    DEFF Research Database (Denmark)

    Chen, Der-Fa; Nguyen-Duy, Khiem; Liu, Tian-Hua

    2012-01-01

    This paper studies the double open-switch fault issue occurring within the conventional matrix converter driving a three-phase permanent-magnet synchronous motor system and proposes a fault-tolerant solution by introducing a revised modulation strategy. In this switching strategy, the rectifier......-stage modulation is adjusted based on the knowledge of the switching logics of the inverter-stage and the operating input voltage sectors. However, the proposed fault-tolerant method does not rely on the assist of any redundant power devices or any reconfiguration of the matrix converter circuit by means of using...

  1. Intelligent Fault Diagnosis in a Power Distribution Network

    Directory of Open Access Journals (Sweden)

    Oluleke O. Babayomi

    2016-01-01

    Full Text Available This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults.

  2. Computer Simulation of Complex Power System Faults under various Operating Conditions

    International Nuclear Information System (INIS)

    Khandelwal, Tanuj; Bowman, Mark

    2015-01-01

    A power system is normally treated as a balanced symmetrical three-phase network. When a fault occurs, the symmetry is normally upset, resulting in unbalanced currents and voltages appearing in the network. For the correct application of protection equipment, it is essential to know the fault current distribution throughout the system and the voltages in different parts of the system due to the fault. There may be situations where protection engineers have to analyze faults that are more complex than simple shunt faults. One type of complex fault is an open phase condition that can result from a fallen conductor or failure of a breaker pole. In the former case, the condition is often accompanied by a fault detectable with normal relaying. In the latter case, the condition may be undetected by standard line relaying. The effect on a generator is dependent on the location of the open phase and the load level. If an open phase occurs between the generator terminals and the high-voltage side of the GSU in the switchyard, and the generator is at full load, damaging negative sequence current can be generated. However, for the same operating condition, an open conductor at the incoming transmission lines located in the switchyard can result in minimal negative sequence current. In 2012, a nuclear power generating station (NPGS) suffered series or open phase fault due to insulator mechanical failure in the 345 kV switchyard. This resulted in both reactor units tripping offline in two separate incidents. Series fault on one of the phases resulted in voltage imbalance that was not detected by the degraded voltage relays. These under-voltage relays did not initiate a start signal to the emergency diesel generators (EDG) because they sensed adequate voltage on the remaining phases exposing a design vulnerability. This paper is intended to help protection engineers calculate complex circuit faults like open phase condition using computer program. The impact of this type of

  3. A data-driven fault-tolerant control design of linear multivariable systems with performance optimization.

    Science.gov (United States)

    Li, Zhe; Yang, Guang-Hong

    2017-09-01

    In this paper, an integrated data-driven fault-tolerant control (FTC) design scheme is proposed under the configuration of the Youla parameterization for multiple-input multiple-output (MIMO) systems. With unknown system model parameters, the canonical form identification technique is first applied to design the residual observer in fault-free case. In faulty case, with online tuning of the Youla parameters based on the system data via the gradient-based algorithm, the fault influence is attenuated with system performance optimization. In addition, to improve the robustness of the residual generator to a class of system deviations, a novel adaptive scheme is proposed for the residual generator to prevent its over-activation. Simulation results of a two-tank flow system demonstrate the optimized performance and effect of the proposed FTC scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Fault detection and classification in electrical power transmission system using artificial neural network.

    Science.gov (United States)

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  5. Metric Learning Method Aided Data-Driven Design of Fault Detection Systems

    Directory of Open Access Journals (Sweden)

    Guoyang Yan

    2014-01-01

    Full Text Available Fault detection is fundamental to many industrial applications. With the development of system complexity, the number of sensors is increasing, which makes traditional fault detection methods lose efficiency. Metric learning is an efficient way to build the relationship between feature vectors with the categories of instances. In this paper, we firstly propose a metric learning-based fault detection framework in fault detection. Meanwhile, a novel feature extraction method based on wavelet transform is used to obtain the feature vector from detection signals. Experiments on Tennessee Eastman (TE chemical process datasets demonstrate that the proposed method has a better performance when comparing with existing methods, for example, principal component analysis (PCA and fisher discriminate analysis (FDA.

  6. Fault Diagnosis of Power System Based on Improved Genetic Optimized BP-NN

    Directory of Open Access Journals (Sweden)

    Yuan Pu

    2015-01-01

    Full Text Available BP neural network (Back-Propagation Neural Network, BP-NN is one of the most widely neural network models and is applied to fault diagnosis of power system currently. BP neural network has good self-learning and adaptive ability and generalization ability, but the operation process is easy to fall into local minima. Genetic algorithm has global optimization features, and crossover is the most important operation of the Genetic Algorithm. In this paper, we can modify the crossover of traditional Genetic Algorithm, using improved genetic algorithm optimized BP neural network training initial weights and thresholds, to avoid the problem of BP neural network fall into local minima. The results of analysis by an example, the method can efficiently diagnose network fault location, and improve fault-tolerance and grid fault diagnosis effect.

  7. Expert system for fault diagnosis in process control valves using fuzzy-logic

    International Nuclear Information System (INIS)

    Carneiro, Alvaro L.G.; Porto Junior, Almir C.S.

    2013-01-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a rule base

  8. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    Science.gov (United States)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  9. Dynamics of fault-fluid-hydrate system around a shale-cored anticline in deepwater Nigeria

    Science.gov (United States)

    Sultan, N.; Riboulot, V.; Ker, S.; Marsset, B.; GéLi, L.; Tary, J. B.; Klingelhoefer, F.; Voisset, M.; Lanfumey, V.; Colliat, J. L.; Adamy, J.; Grimaud, S.

    2011-12-01

    Gas hydrates were recovered by coring at the eastern border of a shale-cored anticline in the eastern Niger Delta. To characterize the link between faults and fluid release and to identify the role of fluid flow in the gas hydrate dynamics, three piezometers were deployed for periods ranging from 387 to 435 days. Two of them were deployed along a major fault linked to a shallow hydrocarbon reservoir while the third monitored the fluid pressure in a pockmark aligned above the same major fault. In addition, 10 ocean-bottom seismometers (OBS) were deployed for around 60 days. The piezometers simultaneously registered a prolonged fluid flow event lasting 90 days. During this time, OBS measurements record several episodic fluid release events. By combining and analyzing existing and newly acquired data, we show that the fluid-fault system operates according to the following three stages: (1) upward pore fluid migration through existing conduits and free gas circulation within several shallow sandy layers intersecting the major fault, (2) gas accumulation and pore pressure increases within sandy-silty layers, and (3) hydrofracturing and fluid pressure dissipation through sporadic degassing events, causing pore fluid circulation through shallow sandy layers and drawing overlying seawater into the sediment. This paper clearly demonstrates how an integrated approach based on seafloor observations, in situ measurements, and monitoring is essential for understanding fault-fluid-hydrate systems.

  10. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  11. Design and Implementation of a Fault-Tolerant Magnetic Bearing System for MSCMG

    Directory of Open Access Journals (Sweden)

    Enqiong Tang

    2013-01-01

    Full Text Available The magnetically suspended control moment gyros (MSCMGs are complex system with multivariable, nonlinear, and strongly gyroscopic coupling. Therefore, its reliability is a key factor to determine whether it can be widely used in spacecraft. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate normally in spite of some faults in the system. However, the conventional magnetic bearing and fault-tolerant control strategies are not suitable for the MSCMGs because of the moving-gimbal effects and requirement of the maximum load capacity after failure. A novel fault-tolerant magnetic bearing system which has low power loss and good robust performances to reject the moving-gimbal effects is presented in this paper. Moreover, its maximum load capacity is unchanged before and after failure. In addition, the compensation filters are designed to improve the bandwidth of the amplifiers so that the nutation stability of the high-speed rotor cannot be affected by the increasing of the coil currents. The experimental results show the effectiveness and superiority of the proposed fault-tolerant system.

  12. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  13. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...

  14. Operation and control of a DC-grid offshore wind farm under DC transmission system faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2013-01-01

    . Consequently, the protection and control strategies of dc systems need to be established. This paper studies a dc-grid offshore wind farm, where the wind power collection system and power transmission system adopt dc technology. In this paper, the redundancy of the HVDC transmission system under faults...... is studied, and a fault ridethrough strategy for the dc-grid offshore wind farm is proposed. The proposed strategy can effectively minimize the impacts of the power transmission system disturbance on the offshore wind farm, and on the ac grid. A dc-grid offshore wind farm example is simulated with PSCAD....../EMTDC, and the results validate the feasibility of the presented redundancy configuration and operation approach, and the fault ridethrough control strategy....

  15. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.

    Science.gov (United States)

    Du, Zhimin; Domanski, Piotr A; Payne, W Vance

    2016-04-05

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.

  16. Interseismic Coupling on the Quito Fault System in Ecuador Using New GPS and InSAR Data and Its Implication on Seismic Hazard Assessment.

    Science.gov (United States)

    Mariniere, J.; Champenois, J.; Nocquet, J. M.; Beauval, C. M.; Audin, L.; Baize, S.; Alvarado, A. P.; Yepes, H. A.; Jomard, H.

    2017-12-01

    Quito, the capital of Ecuador hosting two million inhabitants lies on an active reverse fault system within the Andes. Regular moderate size earthquakes (M 5) occur on these faults, widely felt within the city and its surrounding. Despite a relatively small magnitude of Mw 5.1, the 2014 August 12 earthquake triggered landslides that killed 4 people, cut off one of the main highways for several weeks and caused the temporary shutdown of the airport. Quantifying the seismic potential of the Quito fault system is therefore crucial for a better preparation and mitigation to seismic risk. Previous work using a limited GPS data set found that the Quito fault accommodates 4 mm/yr of EW shortening (Alvarado et al., 2014) at shallow locking depths (3-7 km). We combine GPS and new InSAR data to extend the previous analysis and better quantify the spatial distribution of locking of the Quito fault. GPS dataset includes new continuous sites operating since 2013. 18 ERS SAR scenes, spanning the 1993-2000 time period and covering an area of 85 km by 30 km, were processed using a Permanent Scatter strategy. We perform a joint inversion of both data set (GPS and InSAR) to infer a new and better-constrained kinematic model of the fault to determine both the slip rate and the locking distribution at depth. We find a highly variable level of locking which changes along strike. At some segments, sharp displacement gradients observed both for GPS and InSAR suggest that the fault is creeping up to the surface, while shallow locking is found for other segments. Previous Probabilistic Seismic Hazard Assessment studies have shown that the Quito fault fully controls the hazard in Quito city (Beauval et al. 2014). The results will be used to improve the forecast of earthquakes on the Quito fault system for PSHA studies.

  17. The 2009MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    Science.gov (United States)

    Valoroso, Luisa

    2016-03-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50km long: the high-angle L'Aquila fault and the listric Campotosto fault, located in the first 10km depth. From the beginning of 2009, foreshocks activated the deepest portion of the mainshock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the mainshock. High-precision locations allowed us to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  18. Theory of reliable systems. [reliability analysis and on-line fault diagnosis

    Science.gov (United States)

    Meyer, J. F.

    1974-01-01

    Research is reported in the program to refine the current notion of system reliability by identifying and investigating attributes of a system which are important to reliability considerations, and to develop techniques which facilitate analysis of system reliability. Reliability analysis, and on-line fault diagnosis are discussed.

  19. Crustal Seismicity and Geomorphic Observations of the Chiripa-Haciendas Fault System: The Guanacaste Volcanic Arc Sliver of Western Costa Rica

    Science.gov (United States)

    Lewis, J. C.; Montero Pohly, W. K.; Araya, M. C.

    2017-12-01

    It has recently been shown that contemporary northwest motion of the Nicoya Peninsula of Costa Rica reflects a tectonic sliver that includes much of the upper-plate arc, referred to as the Guanacaste Volcanic Arc Sliver (GVAS). Here we characterize historical seismicity and geomorphic expressions of faults that define the northeastern margin of the GVAS. Several crustal earthquakes and their aftershocks provide constraints on the geometry and/or kinematics of the fault system. These include the Armenia earthquake of July 12, 2011, the Bijagua earthquake of January 27, 2002, the Tilarán earthquake of April 13, 1973 and two much older events. We summarize these earthquakes in the context of recent fault mapping and focal mechanism solutions, and suggest that most of the deformation can be explained by slip on steeply dipping NW-striking fault planes accommodating dextral slip. Streams that cross the major fault traces we have mapped also show deflections consistent with dextral slip. These include map-view apparent offsets of 6.5 km for the Haciendas River, 1.0 km for the Orosi River and 0.6 km for the Pizote River. Although preservation is poor, we document stream terrace risers that reveal truncations and/or offsets consistent with dextral slip. Additional constraints on the fault system are apparent as it is traced into Lake Nicaragua. Previous workers have shown that earthquake clusters accommodate a combination of dextral slip on NW-strike faults and sinistral slip NE-strike faults, the latter described as part of a system of bookshelf fault blocks. Whether the northeastern margin of the GVAS under Lake Nicaragua is a single fault strand or an array of bookshelf blocks remains an open question. An equally important gap in our understanding is the kinematic link of the fault system to the east where the GVAS originates. Our results set the stage for expanded studies that will be essential to understanding the relative contributions of Cocos Ridge collision and

  20. Steady-state analysis of a faulted three-phase four-wire system supplying induction motors with neutrals connected and other single-phase line-to-neutral loads

    Science.gov (United States)

    Wood, M. E.

    1980-01-01

    Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.