WorldWideScience

Sample records for include energy resolved

  1. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  2. Energy-resolved positron annihilation for molecules

    International Nuclear Information System (INIS)

    Barnes, L.D.; Gilbert, S.J.; Surko, C.M.

    2003-01-01

    This paper presents an experimental study designed to address the long-standing question regarding the origin of very large positron annihilation rates observed for many molecules. We report a study of the annihilation, resolved as a function of positron energy (ΔE∼25 meV, full width at half maximum) for positron energies from 50 meV to several eV. Annihilation measurements are presented for a range of hydrocarbon molecules, including a detailed study of alkanes, C n H 2n+2 , for n=1-9 and 12. Data for other molecules are also presented: C 2 H 2 , C 2 H 4 ; CD 4 ; isopentane; partially fluorinated and fluorinated methane (CH x F 4-x ); 1-fluorohexane (C 6 H 13 F) and 1-fluorononane (C 9 H 19 F). A key feature of the results is very large enhancements in the annihilation rates at positron energies corresponding to the excitation of molecular vibrations in larger alkane molecules. These enhancements are believed to be responsible for the large annihilation rates observed for Maxwellian distributions of positrons in molecular gases. In alkane molecules larger than ethane (C 2 H 6 ), the position of these peaks is shifted downward by an amount ∼20 meV per carbon. The results presented here are generally consistent with a physical picture recently considered in detail by Gribakin [Phys. Rev. A 61, 022720 (2000)]. In this model, the incoming positron excites a vibrational Feshbach resonance and is temporarily trapped on the molecule, greatly enhancing the probability of annihilation. The applicability of this model and the resulting enhancement in annihilation rate relies on the existence of positron-molecule bound states. In accord with this reasoning, the experimental results presented here provide the most direct evidence to date that positrons bind to neutral molecules. The shift in the position of the resonances is interpreted as a measure of the binding energy of the positron to the molecule. Other features of the results are also discussed, including large

  3. Computed tomography with energy-resolved detection: a feasibility study

    Science.gov (United States)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the

  4. Spatially resolved X-ray energy analysis

    International Nuclear Information System (INIS)

    Aronson, M.; Horowitz, P.

    1981-01-01

    We have constructed a proton-induced X-ray emission (PIXE) analysis system that performs one- or two-dimensional scans of a sample and stores energy spectra at each point for later analysis. This system permits examination of the spectra or the spatial distribution of a selected element as data is being gathered, and allows versatile imaging and graphing analysis later. The boundaries of the region under study can easily be altered, both for one-dimensional line scans and two-dimensional rasters. Thy system includes provisions for beam-current normalization and baseline removal. (orig.)

  5. Optimal ''image-based'' weighting for energy-resolved CT

    International Nuclear Information System (INIS)

    Schmidt, Taly Gilat

    2009-01-01

    This paper investigates a method of reconstructing images from energy-resolved CT data with negligible beam-hardening artifacts and improved contrast-to-nosie ratio (CNR) compared to conventional energy-weighting methods. Conceptually, the investigated method first reconstructs separate images from each energy bin. The final image is a linear combination of the energy-bin images, with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image. The investigated weighting method is referred to as ''image-based'' weighting, although, as will be described, the weights can be calculated and the energy-bin data combined prior to reconstruction. The performance of optimal image-based energy weighting with respect to CNR and beam-hardening artifacts was investigated through simulations and compared to that of energy integrating, photon counting, and previously studied optimal ''projection-based'' energy weighting. Two acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-resolving detector was simulated with five energy bins. Four methods of estimating the optimal weights were investigated, including task-specific and task-independent methods and methods that require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal image-based weighting improved the CNR compared to energy-integrating weighting by factors of 1.15-1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal image-based weighting reduced the cupping to 0.6%. Overall, optimal image-based energy weighting

  6. Energy-resolved computed tomography: first experimental results

    International Nuclear Information System (INIS)

    Shikhaliev, Polad M

    2008-01-01

    First experimental results with energy-resolved computed tomography (CT) are reported. The contrast-to-noise ratio (CNR) in CT has been improved with x-ray energy weighting for the first time. Further, x-ray energy weighting improved the CNR in material decomposition CT when applied to CT projections prior to dual-energy subtraction. The existing CT systems use an energy (charge) integrating x-ray detector that provides a signal proportional to the energy of the x-ray photon. Thus, the x-ray photons with lower energies are scored less than those with higher energies. This underestimates contribution of lower energy photons that would provide higher contrast. The highest CNR can be achieved if the x-ray photons are scored by a factor that would increase as the x-ray energy decreases. This could be performed by detecting each x-ray photon separately and measuring its energy. The energy selective CT data could then be saved, and any weighting factor could be applied digitally to a detected x-ray photon. The CT system includes a photon counting detector with linear arrays of pixels made from cadmium zinc telluride (CZT) semiconductor. A cylindrical phantom with 10.2 cm diameter made from tissue-equivalent material was used for CT imaging. The phantom included contrast elements representing calcifications, iodine, adipose and glandular tissue. The x-ray tube voltage was 120 kVp. The energy selective CT data were acquired, and used to generate energy-weighted and material-selective CT images. The energy-weighted and material decomposition CT images were generated using a single CT scan at a fixed x-ray tube voltage. For material decomposition the x-ray spectrum was digitally spilt into low- and high-energy parts and dual-energy subtraction was applied. The x-ray energy weighting resulted in CNR improvement of calcifications and iodine by a factor of 1.40 and 1.63, respectively, as compared to conventional charge integrating CT. The x-ray energy weighting was also applied

  7. Detectors for Energy-Resolved Fast Neutron Imaging

    OpenAIRE

    Dangendorf, V.; Breskin, A.; Chechik, R.; Feldman, G.; Goldberg, M. B.; Jagutzki, O.; Kersten, C.; Laczko, G.; Mor, I.; Spillman, U.; Vartsky, D.

    2004-01-01

    Two detectors for energy-resolved fast-neutron imaging in pulsed broad-energy neutron beams are presented. The first one is a neutron-counting detector based on a solid neutron converter coupled to a gaseous electron multiplier (GEM). The second is an integrating imaging technique, based on a scintillator for neutron conversion and an optical imaging system with fast framing capability.

  8. Solar Energy Education. Renewable energy: a background text. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)

  9. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  10. Modern electron microscopy resolved in space, energy and time

    Science.gov (United States)

    Carbone, F.

    2011-06-01

    Recent pioneering experiments combining ultrafast lasers with electron-based technology demonstrated the possibility to obtain real-time information about chemical bonds and their dynamics during reactions and phase transformation. These techniques have been successfully applied to several states of matter including gases, liquids, solids and biological samples showing a unique versatility thanks to the high sensitivity of electrons to tiny amounts of material and their low radiation damage. A very powerful tool, the time-resolved Transmission Electron Microscope (TEM), is capable of delivering information on the structure of ordered and disordered matter through diffraction and imaging, with a spatial resolution down to the atomic limit (10-10 m); the same apparatus can distinguish dynamical phenomena happening on the time-scales between fs and ms, with a dynamic range of 12 orders of magnitude. At the same time, spectroscopic information can be obtained from the loss of kinetic energy of electrons interacting with specimens in the range of interband transitions and plasmons in solids, or charge transfers in molecules, all the way up to the atomic core levels with the same time-resolution. In this contribution, we focus on the recent advances in fs Electron Energy Loss Spectroscopy (FEELS), discussing the main results and their implications for future studies.

  11. Including environmental concerns in energy policies

    International Nuclear Information System (INIS)

    Potier, Michel

    2014-05-01

    In this article, the author comments the different impacts on the environment and risks related to energy, provided that all energies have an impact on the environment (renewable energies are generally cleaner than fossil energies) and these impacts can be on human health, ecosystems, buildings, crops, landscapes, and climate change. He comments the efforts made in the search for a higher energetic efficiency, and proposes an overview of the various available tools implemented by environmental policies in the energy sector: regulatory instruments, economic instruments, negotiated agreements, and informational instruments. He comments the implementation of an energetic taxing aimed at developing a greater respect of the environment

  12. The Dark Energy Survey: Prospects for resolved stellar populations

    Energy Technology Data Exchange (ETDEWEB)

    Rossetto, Bruno M. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Santiago, Basílio X. [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); Girardi, Léo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Osservatorio Astronomica di Padova-INAF, Padova (Italy); Camargo, Julio I. B. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Balbinot, Eduardo [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Instituto de Fisica, Porto Alegre (Brazil); da Costa, Luiz N. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Yanny, Brian [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maia, Marcio A. G. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Makler, Martin [Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ogando, Ricardo L. C. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Pellegrini, Paulo S. [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Ramos, Beatriz [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); de Simoni, Fernando [Observatorio Nacional, Rio de Janeiro (Brazil); Lab. Interinstitucional de e-Astronomia-LIneA, Rio de Janeiro (Brazil); Armstrong, R. [Univ. of Illinois, Urbana, IL (United States); Bertin, E. [Univ. Pierre et Marie Curie, Paris (France); Desai, S. [Univ. of Illinois, Urbana, IL (United States); Kuropatkin, N. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lin, H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Mohr, J. J. [Max-Planck-Institut fur extraterrestrische Physik, Garching (Germany); Tucker, D. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2011-05-06

    Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 108 stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.

  13. Vibrationally resolved electronic spectra including vibrational pre-excitation: Theory and application to VIPER spectroscopy

    Science.gov (United States)

    von Cosel, Jan; Cerezo, Javier; Kern-Michler, Daniela; Neumann, Carsten; van Wilderen, Luuk J. G. W.; Bredenbeck, Jens; Santoro, Fabrizio; Burghardt, Irene

    2017-10-01

    Vibrationally resolved electronic absorption spectra including the effect of vibrational pre-excitation are computed in order to interpret and predict vibronic transitions that are probed in the Vibrationally Promoted Electronic Resonance (VIPER) experiment [L. J. G. W. van Wilderen et al., Angew. Chem., Int. Ed. 53, 2667 (2014)]. To this end, we employ time-independent and time-dependent methods based on the evaluation of Franck-Condon overlap integrals and Fourier transformation of time-domain wavepacket autocorrelation functions, respectively. The time-independent approach uses a generalized version of the FCclasses method [F. Santoro et al., J. Chem. Phys. 126, 084509 (2007)]. In the time-dependent approach, autocorrelation functions are obtained by wavepacket propagation and by the evaluation of analytic expressions, within the harmonic approximation including Duschinsky rotation effects. For several medium-sized polyatomic systems, it is shown that selective pre-excitation of particular vibrational modes leads to a redshift of the low-frequency edge of the electronic absorption spectrum, which is a prerequisite for the VIPER experiment. This effect is typically most pronounced upon excitation of modes that are significantly displaced during the electronic transition, such as ring distortion modes within an aromatic π-system. Theoretical predictions as to which modes show the strongest VIPER effect are found to be in excellent agreement with experiment.

  14. Resolving environmental issues in energy development: roles for the Department of Energy and its field offices

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Merrow, E.W.

    1979-01-01

    This study asks what the Department of Energy (DOE) might do to resolve environmental conflicts that arise during the implementation of energy projects or programs. We define implementation as efforts to establish an energy facility at a specific site. The environmental concerns surrounding implementation serve as touchstones of the relevance and feasibility of national energy policies. We have analyzed geothermal development in California and oil shale development in Colorado and Utah and addressed the following questions: By what processes are energy and environmental tradeoffs made. In what circumstances can DOE participation in these processes lead to a more satisfactory outcome. What options does DOE have for resolving environmetal issues and how can it choose the best option. How can DOE establish an effective working relationship with both the governmental and private groups affected by the siting and operation of energy projects. The government's most effective role in resolving environmental conflicts and uncertainties is to improve communications among the concerned parties. This role requires flexibility and evenhandedness from the government as well as an understanding of the local conditions and a commitment to appropriate local solutions. Involving local sources at every stage of the environmental impact analysis will reduce the probability of conflicts and make those that do arise more easily resolvable.

  15. Resolving society's energy trilemma through the Energy Justice Metric

    International Nuclear Information System (INIS)

    Heffron, Raphael J.; McCauley, Darren; Sovacool, Benjamin K.

    2015-01-01

    Carbon dioxide emissions continue to increase to the detriment of society in many forms. One of the difficulties faced is the imbalance between the competing aims of economics, politics and the environment which form the trilemma of energy policy. This article advances that this energy trilemma can be resolved through energy justice. Energy justice develops the debate on energy policy to one that highlights cosmopolitanism, progresses thinking beyond economics and incorporates a new futuristic perspective. To capture these dynamics of energy justice, this research developed an Energy Justice Metric (EJM) that involves the calculation of several metrics: (1) a country (national) EJM; (2) an EJM for different energy infrastructure; and (3) an EJM which is incorporated into economic models that derive costs for energy infrastructure projects. An EJM is modeled for China, the European Union and the United States, and for different energy infrastructure in the United Kingdom. The EJM is plotted on a Ternary Phase Diagram which is used in the sciences for analyzing the relationship (trilemma) of three forms of matter. The development of an EJM can provide a tool for decision-making on energy policy and one that solves the energy trilemma with a just and equitable approach. - Highlights: • Energy justice advances energy policy with cosmopolitanism and new economic-thinking. • An Energy Justice Metric is developed and captures the dynamics of energy justice. • The Energy Justice Metric (EJM) compares countries, and energy infrastructure. • EJM provides an energy policy decision-making tool that is just and equitable.

  16. Solar Energy Education. Reader, Part II. Sun story. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    Magazine articles which focus on the subject of solar energy are presented. The booklet prepared is the second of a four part series of the Solar Energy Reader. Excerpts from the magazines include the history of solar energy, mythology and tales, and selected poetry on the sun. A glossary of energy related terms is included. (BCS)

  17. The role of solar energy in resolving global problems

    International Nuclear Information System (INIS)

    Kendall, H.W.

    1993-01-01

    Solar energy, and other alternate energy sources, including improved energy efficiency, can play a significant role in the solution of the cluster of ''great problems'' that face the present generation. These problems are related to, first, environmental damage, second, management of critical resources, and lastly, spiraling population growth. Some aspects of these linked difficulties are not yet well comprehended, even within the environmental community, though their neglect could prove to be very serious. It was the principal purpose of the paper to address those hidden risks. Seeking prompt and effective solutions to these problems is now a most urgent matter. On November 18, 1992, the Union of Concerned Scientists released a document called ''World Scientists'' ''Warning to Humanity''. The document outlined the most important challenges and set out the principal elements required to deal with them. It was signed by some 1,600 scientists from around the world, including the leaders of a substantial number of national honorary, scientific societies. In what follows, relevant elements of that statement are reviewed to set the stage for a description of solar energy's role in dealing with the situation that the world faces

  18. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  19. Optimal ''image-based'' weighting for energy-resolved CT

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Taly Gilat [Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201 (United States)

    2009-07-15

    This paper investigates a method of reconstructing images from energy-resolved CT data with negligible beam-hardening artifacts and improved contrast-to-nosie ratio (CNR) compared to conventional energy-weighting methods. Conceptually, the investigated method first reconstructs separate images from each energy bin. The final image is a linear combination of the energy-bin images, with the weights chosen to maximize the CNR in the final image. The optimal weight of a particular energy-bin image is derived to be proportional to the contrast-to-noise-variance ratio in that image. The investigated weighting method is referred to as ''image-based'' weighting, although, as will be described, the weights can be calculated and the energy-bin data combined prior to reconstruction. The performance of optimal image-based energy weighting with respect to CNR and beam-hardening artifacts was investigated through simulations and compared to that of energy integrating, photon counting, and previously studied optimal ''projection-based'' energy weighting. Two acquisitions were simulated: dedicated breast CT and a conventional thorax scan. The energy-resolving detector was simulated with five energy bins. Four methods of estimating the optimal weights were investigated, including task-specific and task-independent methods and methods that require a single reconstruction versus multiple reconstructions. Results demonstrated that optimal image-based weighting improved the CNR compared to energy-integrating weighting by factors of 1.15-1.6 depending on the task. Compared to photon-counting weighting, the CNR improvement ranged from 1.0 to 1.3. The CNR improvement factors were comparable to those of projection-based optimal energy weighting. The beam-hardening cupping artifact increased from 5.2% for energy-integrating weighting to 12.8% for optimal projection-based weighting, while optimal image-based weighting reduced the cupping to 0

  20. Decision analytic tools for resolving uncertainty in the energy debate

    International Nuclear Information System (INIS)

    Renn, O.

    1986-01-01

    Within the context of a Social Compatibility Study on Energy Supply Systems a complex decision making model was used to incorporate scientific expertize and public participation into the process of policy formulation and evaluation. The study was directed by the program group ''Technology and Society'' of the Nuclear Research Centre Juelich. It consisted of three parts: First, with the aid of value tree analysis the whole spectrum of concern and dimensions relevant to the energy issue in Germany was collected and structured in a combined value tree representing the values and criteria of nine important interest groups in the Federal Republic of Germany. Second, the revealed criteria were translated into indicators. Four different energy scenarios were evaluated with respect to each indicator making use of physical measurement, literature review and expert surveys. Third, the weights for each indicator were elicited by interviewing randomly chosen citizens. Those citizens were informed about the scenarios and their impacts prior to the weighting process in a four day seminar. As a result most citizens favoured more moderate energy scenarios assigning high priority to energy conservation. Nuclear energy was perceived as necessary energy source in the long run, but should be restricted to meet only the demand that cannot be covered by other energy means. (orig.)

  1. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  2. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  3. Highly-resolved modeling of personal transportation energy consumption in the United States

    International Nuclear Information System (INIS)

    Muratori, Matteo; Moran, Michael J.; Serra, Emmanuele; Rizzoni, Giorgio

    2013-01-01

    This paper centers on the estimation of the total primary energy consumption for personal transportation in the United States, to include gasoline and/or electricity consumption, depending on vehicle type. The bottom-up sector-based estimation method introduced here contributes to a computational tool under development at The Ohio State University for assisting decision making in energy policy, pricing, and investment. In order to simulate highly-resolved consumption profiles three main modeling steps are needed: modeling the behavior of drivers, generating realistic driving profiles, and simulating energy consumption of different kinds of vehicles. The modeling proposed allows for evaluating the impact of plug-in electric vehicles on the electric grid – especially at the distribution level. It can serve as a tool to compare different vehicle types and assist policy-makers in estimating their impact on primary energy consumption and the role transportation can play to reduce oil dependency. - Highlights: • Modeling primary energy consumption for personal transportation in the United States. • Behavior of drivers has been simulated in order to establish when driving events occur and the length of each event. • Realistic driving profiles for each driving event are generated using a stochastic model. • The model allows for comparing the initial cost of different vehicles and their expected energy-use operating cost. • Evaluation of the impact of PEVs on the electric grid – especially at the distribution level – can be performed

  4. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    Science.gov (United States)

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  5. Resolving shifting patterns of muscle energy use in swimming fish.

    Directory of Open Access Journals (Sweden)

    Shannon P Gerry

    Full Text Available Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes.

  6. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  7. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  8. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  9. Time-resolved energy transduction in a quantum capacitor.

    Science.gov (United States)

    Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan

    2011-08-23

    The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices.

  10. ERICA: an energy resolving photon counting readout ASIC for X-ray in-line cameras

    Science.gov (United States)

    Macias-Montero, J.-G.; Sarraj, M.; Chmeissani, M.; Moore, T.; Casanova, R.; Martinez, R.; Puigdengoles, C.; Prats, X.; Kolstein, M.

    2016-12-01

    We present ERICA (Energy Resolving Inline X-ray Camera) a photon-counting readout ASIC, with 6 energy bins. The ASIC is composed of a matrix of 8 × 20 pixels controlled by a global digital controller and biased with 7 independent digital to analog converters (DACs) and a band-gap current reference. The pixel analog front-end includes a charge sensitive amplifier with 16 mV/ke- gain and dynamic range of 45 ke-. ERICA has programmable pulse width, an adjustable constant current feedback resistor, a linear test pulse generator, and six discriminators with 6-bit local threshold adjustment. The pixel digital back-end includes the digital controller, 8 counters of 8-bit depth, half-full buffer flag for any of the 8 counters, a 74-bit shadow/shift register, a 74-bit configuration latch, and charge sharing compensation processing to perform the energy classification and counting operations of every detected photon in 1 μ s. The pixel size is 330 μm × 330 μm and its average consumption is 150 μW. Implemented in TSMC 0.25 μm CMOS process, the ASIC pixel's equivalent noise charge (ENC) is 90 e- RMS connected to a 1 mm thickness matching CdTe detector biased at -300 V with a total leakage current of 20 nA.

  11. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Science.gov (United States)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  12. Mapping unoccupied electronic states of freestanding graphene by angle-resolved low-energy electron transmission

    OpenAIRE

    Wicki Flavio; Longchamp Jean-Nicolas; Latychevskaia Tatiana; Escher Conrad; Fink Hans-Werner

    2016-01-01

    We report angle-resolved electron transmission measurements through freestanding graphene sheets in the energy range of 18 to 30 eV above the Fermi level. The measurements are carried out in a low-energy electron point source microscope, which allows simultaneously probing the transmission for a large angular range. The characteristics of low-energy electron transmission through graphene depend on its electronic structure above the vacuum level. The experimental technique described here allow...

  13. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  14. Event Centroiding Applied to Energy-Resolved Neutron Imaging at LANSCE

    Directory of Open Access Journals (Sweden)

    Nicholas P. Borges

    2018-02-01

    Full Text Available The energy-dependence of the neutron cross section provides vastly different contrast mechanisms than polychromatic neutron radiography if neutron energies can be selected for imaging applications. In recent years, energy-resolved neutron imaging (ERNI with epi-thermal neutrons, utilizing neutron absorption resonances for contrast as well as for quantitative density measurements, was pioneered at the Flight Path 5 beam line at LANSCE and continues to be refined. Here we present event centroiding, i.e., the determination of the center-of-gravity of a detection event on an imaging detector to allow sub-pixel spatial resolution and apply it to the many frames collected for energy-resolved neutron imaging at a pulsed neutron source. While event centroiding was demonstrated at thermal neutron sources, it has not been applied to energy-resolved neutron imaging, where the energy resolution requires to be preserved, and we present a quantification of the possible resolution as a function of neutron energy. For the 55 μm pixel size of the detector used for this study, we found a resolution improvement from ~80 μm to ~22 μm using pixel centroiding while fully preserving the energy resolution.

  15. Proposal to Include Electrical Energy in the Industrial Return Statistics

    CERN Document Server

    2003-01-01

    At its 108th session on the 20 June 1997, the Council approved the Report of the Finance Committee Working Group on the Review of CERN Purchasing Policy and Procedures. Among other topics, the report recommended the inclusion of utility supplies in the calculation of the return statistics as soon as the relevant markets were deregulated, without reaching a consensus on the exact method of calculation. At its 296th meeting on the 18 June 2003, the Finance Committee approved a proposal to award a contract for the supply of electrical energy (CERN/FC/4693). The purpose of the proposal in this document is to clarify the way electrical energy will be included in future calculations of the return statistics. The Finance Committee is invited: 1. to agree that the full cost to CERN of electrical energy (excluding the cost of transport) be included in the Industrial Service return statistics; 2. to recommend that the Council approves the corresponding amendment to the Financial Rules set out in section 2 of this docum...

  16. Survey of state legislative programs that include passive solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S

    1979-06-01

    This report surveys and evaluates state-level solar-incentive programs, including passive solar energy. The range of programs examined focuses on financial and legal incentives designed to speed the implementation of solar heating, cooling, and hot water systems. They have been evaluated by probing the wording of the incentive legislation and by interviewing state program administrators in each state to determine: (1) the extent, if any, of passive inclusion in solar-incentive programs, and (2) the level of success that various implementation techniques have achieved for encouraging passive solar designs as opposed to the more-commonly-understood active systems. Because no states have initiated incentive legislation designed exclusively to encourage passive solar techniques, it has been essential to determine whether legislative programs explicitly or implicitly include passive solar or if they explicitly exclude it.

  17. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    Science.gov (United States)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  18. Potential of mediation for resolving environmental disputes related to energy facilities

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-12-01

    This study assesses the potential of mediation as a tool for resolving disputes related to the environmental regulation of new energy facilities and identifies possible roles the Federal government might play in promoting the use of mediation. These disputes result when parties challenge an energy project on the basis of its potential environmental impacts. The paper reviews the basic theory of mediation, evaluates specific applications of mediation to recent environmental disputes, discusses the views of environmental public-interest groups towards mediation, and identifies types of energy facility-related disputes where mediation could have a significant impact. Finally, potential avenues for the Federal government to encourage use of this tool are identified.

  19. Solving the high energy evolution equation including running coupling corrections

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Kovchegov, Yuri V.

    2007-01-01

    We study the solution of the nonlinear Balitsky-Kovchegov evolution equation with the recently calculated running coupling corrections [I. I. Balitsky, Phys. Rev. D 75, 014001 (2007). and Y. Kovchegov and H. Weigert, Nucl. Phys. A784, 188 (2007).]. Performing a numerical solution we confirm the earlier result of Albacete et al. [Phys. Rev. D 71, 014003 (2005).] (obtained by exploring several possible scales for the running coupling) that the high energy evolution with the running coupling leads to a universal scaling behavior for the dipole-nucleus scattering amplitude, which is independent of the initial conditions. It is important to stress that the running coupling corrections calculated recently significantly change the shape of the scaling function as compared to the fixed coupling case, in particular, leading to a considerable increase in the anomalous dimension and to a slow-down of the evolution with rapidity. We then concentrate on elucidating the differences between the two recent calculations of the running coupling corrections. We explain that the difference is due to an extra contribution to the evolution kernel, referred to as the subtraction term, which arises when running coupling corrections are included. These subtraction terms were neglected in both recent calculations. We evaluate numerically the subtraction terms for both calculations, and demonstrate that when the subtraction terms are added back to the evolution kernels obtained in the two works the resulting dipole amplitudes agree with each other. We then use the complete running coupling kernel including the subtraction term to find the numerical solution of the resulting full nonlinear evolution equation with the running coupling corrections. Again the scaling regime is recovered at very large rapidity with the scaling function unaltered by the subtraction term

  20. Interim performance criteria for photovoltaic energy systems. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  1. Potential energy surface for ? dissociation including spin-orbit effects

    Science.gov (United States)

    Siebert, Matthew R.; Aquino, Adelia J. A.; de Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-01

    Previous experiments [J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation ( ? ) and found a one-dimensional distribution of translational energy, an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction ? → C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single-point (energy) calculations, and multi-reference energy calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the ? reactant has a substantial effect on the role of the SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for ? similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for ? , similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcalmol-1. Also, we find that, for this system, coupled-cluster single-point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  2. Survey of Public Understanding on Energy Resources including Nuclear Energy (I)

    International Nuclear Information System (INIS)

    Park, Se-Moon; Song, Sun-Ja

    2007-01-01

    Women in Nuclear-Korea (WINK) surveyed the public understanding on various energy resources in early September 2006 to offer the result for establishment of the nuclear communication policy. The reason why this survey includes other energy resources is because the previous works are only limited on nuclear energy, and also aimed to know the public's opinion on the present communication skill of nuclear energy for the public understanding. The present study is purposed of having data how public understands nuclear energy compared to other energies, such as fossil fuels, hydro power, and other sustainable energies. The data obtained from this survey have shown different results according to the responded group; age, gender, residential area, etc. Responded numbers are more than 2,000 of general public and university students. The survey result shows that nuclear understanding is more negative in women than in men, and is more negative in young than older age

  3. Angular and mass resolved energy distribution measurements with a gallium liquid metal ion source

    International Nuclear Information System (INIS)

    Marriott, Philip

    1987-06-01

    Ionisation and energy broadening mechanisms relevant to liquid metal ion sources are discussed. A review of experimental results giving a picture of source operation and a discussion of the emission mechanisms thought to occur for the ionic species and droplets emitted is presented. Further work is suggested by this review and an analysis system for angular and mass resolved energy distribution measurements of liquid metal ion source beams has been constructed. The energy analyser has been calibrated and a series of measurements, both on and off the beam axis, of 69 Ga + , Ga ++ and Ga 2 + ions emitted at various currents from a gallium source has been performed. A comparison is made between these results and published work where possible, and the results are discussed with the aim of determining the emission and energy spread mechanisms operating in the gallium liquid metal ion source. (author)

  4. Energy-resolved X-ray imaging: Material decomposition methods adapted for spectrometric detectors

    International Nuclear Information System (INIS)

    Potop, Alexandra-Iulia

    2014-01-01

    Scintillator based integrating detectors are used in conventional X-ray imaging systems. The new generation of energy-resolved semiconductor radiation detectors, based on CdTe/CdZnTe, allows counting the number of photons incident on the detector and measure their energy. The LDET laboratory developed pixelated spectrometric detectors for X-ray imaging, associated with a fast readout circuit, which allows working with high fluxes and while maintaining a good energy resolution. With this thesis, we bring our contribution to data processing acquired in radiographic and tomographic modes for material components quantification. Osteodensitometry was chosen as a medical application. Radiographic data was acquired by simulation with a detector which presents imperfections as charge sharing and pile-up. The methods chosen for data processing are based on a material decomposition approach. Basis material decomposition models the linear attenuation coefficient of a material as a linear combination of the attenuations of two basis materials based on the energy related information acquired in each energy bin. Two approaches based on a calibration step were adapted for our application. The first is the polynomial approach used for standard dual energy acquisitions, which was applied for two and three energies acquired with the energy-resolved detector. We searched the optimal configuration of bins. We evaluated the limits of the polynomial approach with a study on the number of channels. To go further and take benefit of the elevated number of bins acquired with the detectors developed in our laboratory, a statistical approach implemented in our laboratory was adapted for the material decomposition method for quantifying mineral content in bone. The two approaches were compared using figures of merit as bias and noise over the lengths of the materials traversed by X-rays. An experimental radiographic validation of the two approaches was done in our laboratory with a

  5. Track structure for low energy ions including charge exchange processes

    International Nuclear Information System (INIS)

    Uehara, S.; Nikjoo, H.

    2002-01-01

    The model and development is described of a new generation of Monte Carlo track structure codes. The code LEAHIST simulates full slowing down of low-energy proton history tracks in the range 1 keV-1 MeV and the code LEAHIST simulates low-energy alpha particle history tracks in the range 1 keV-8 MeV in water. All primary ion interactions are followed down to 1 keV and all electrons to 1 eV. Tracks of secondary electrons ejected by ions were traced using the electron code KURBUC. Microdosimetric parameters derived by analysis of generated tracks are presented. (author)

  6. Time-resolved energy spectrum of a pseudospark-produced high-brightness electron beam

    International Nuclear Information System (INIS)

    Myers, T.J.; Ding, B.N.; Rhee, M.J.

    1992-01-01

    The pseudospark, a fast low-pressure gas discharge between a hollow cathode and a planar anode, is found to be an interesting high-brightness electron beam source. Typically, all electron beam produced in the pseudospark has the peak current of ∼1 kA, pulse duration of ∼50 ns, and effective emittance of ∼100 mm-mrad. The energy information of this electron beam, however, is least understood due to the difficulty of measuring a high-current-density beam that is partially space-charge neutralized by the background ions produced in the gas. In this paper, an experimental study of the time-resolved energy spectrum is presented. The pseudospark produced electron beam is injected into a vacuum through a small pinhole so that the electrons without background ions follow single particle motion; the beam is sent through a negative biased electrode and the only portion of beam whose energy is greater than the bias voltage can pass through the electrode and the current is measured by a Faraday cup. The Faraday cup signals with various bias voltage are recorded in a digital oscilloscope. The recorded waveforms are then numerically analyzed to construct a time-resolved energy spectrum. Preliminary results are presented

  7. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    Science.gov (United States)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  8. Energy-resolved X-ray detectors: the future of diagnostic imaging

    OpenAIRE

    Pacella, Danilo

    2015-01-01

    Danilo Pacella ENEA-Frascati, Rome, Italy Abstract: This paper presents recent progress in the field of X-ray detectors, which could play a role in medical imaging in the near future, with special attention to the new generation of complementary metal-oxide semiconductor (C-MOS) imagers, working in photon counting, that opened the way to the energy-resolved X-ray imaging. A brief description of the detectors used so far in medical imaging (photographic films, imaging plates, flat panel detec...

  9. Energy-resolved X-ray detectors: the future of diagnostic imaging

    Directory of Open Access Journals (Sweden)

    Pacella D

    2015-01-01

    Full Text Available Danilo Pacella ENEA-Frascati, Rome, Italy Abstract: This paper presents recent progress in the field of X-ray detectors, which could play a role in medical imaging in the near future, with special attention to the new generation of complementary metal-oxide semiconductor (C-MOS imagers, working in photon counting, that opened the way to the energy-resolved X-ray imaging. A brief description of the detectors used so far in medical imaging (photographic films, imaging plates, flat panel detectors, together with the most relevant imaging quality parameters, shows differences between, and advantages of these new C-MOS imagers. X-ray energy-resolved imaging is very attractive not only for the increase of contrast but even for the capability of detecting the nature and composition of the material or tissue to be investigated. Since the X-ray absorption coefficients of the different parts or organs of the patient (object are strongly dependent on the X-ray photon energy, this multienergy ("colored" X-ray imaging could increase enormously the probing capabilities. While dual-energy imaging is now a reality in medical practice, multienergy is still in its early stage, but a promising research activity. Based on this new technique of color X-ray imaging, the entire scheme of source–object–detector could be revised in the future, optimizing spectrum and detector to the nature and composition of the target to be investigated. In this view, a transition to a set of monoenergetic X-ray lines, suitably chosen in energy and intensity, could be envisaged, instead of the present continuous spectra. Keywords: X-ray detectors, X-ray medical imaging, C-MOS imagers, dual and multienergy CT

  10. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  11. Investigation of dissimilar metal welds by energy-resolved neutron imaging.

    Science.gov (United States)

    Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce

    2016-08-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

  12. City and mobility: towards an integrated approach to resolve energy problems

    Directory of Open Access Journals (Sweden)

    Carmela Gargiulo

    2012-07-01

    Full Text Available The issue of integration between city, mobility and energy plays a central role in the current EU policies, aimed at achieving energy saving targets, independence from fossil fuels and enhance of the urban systems resilience, but the strategies of the single states are, however, still far from its implementation. This paper proposes a reading of the current policies and of the recent initiatives aimed at improving the energy efficiency of settlements, implemented at both Community and national level, aimed at laying the groundwork for the definition of an integrated approach between city and mobility to resolve energy problem. Therefore, the paper is divided into six parts. The first part describes the transition from the concept of sustainability to the concept of resilience and illustrates the central role played by this one in the current urban and territorial research; the second part briefly analyzes the main and more recent European directives related to city, mobility and energy, while the third part describes how the energy problem is afforded in the current programming and planning tools. The fourth and fifth parts, are intended to describe the innovative practices promoted in some European and Italian cities concerning energy efficiency aimed at the integration between urban and transport systems. The last part of the paper, finally, deals with the definition of a new systemic approach for achieving objectives of energy sustainability. This approach aims at integrating strategies and actions for strategies of mobility governance, based on the certain assumption that the core for the most part of energy problems is mainly represented in medium and large cities. 

  13. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  14. Full momentum- and energy-resolved spectral function of a 2D electronic system

    Science.gov (United States)

    Jang, Joonho; Yoo, Heun Mo; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Ashoori, Raymond C.

    2017-11-01

    The single-particle spectral function measures the density of electronic states in a material as a function of both momentum and energy, providing central insights into strongly correlated electron phenomena. Here we demonstrate a high-resolution method for measuring the full momentum- and energy-resolved electronic spectral function of a two-dimensional (2D) electronic system embedded in a semiconductor. The technique remains operational in the presence of large externally applied magnetic fields and functions even for electronic systems with zero electrical conductivity or with zero electron density. Using the technique on a prototypical 2D system, a GaAs quantum well, we uncover signatures of many-body effects involving electron-phonon interactions, plasmons, polarons, and a phonon analog of the vacuum Rabi splitting in atomic systems.

  15. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-01-01

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ∼7 eV, delivering under typical conditions >10 12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  16. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    Science.gov (United States)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  17. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  18. Experimental data parameterization in the resolved resonance energy range: R-matrix theory and approximations

    International Nuclear Information System (INIS)

    Bouland, O.

    2005-01-01

    The paper reviews some current approximations used in R-matrix theory for calculating angular integrated nuclear cross sections. In particular, it distinguishes the SLBW and MLBW approximations of their practical applications ENDF-oriented. This paper also focuses on the problem of prior resonance parameter determination compulsory for any experimental data adjustment in the resolved resonance range. The major contribution of this paper concerns R-matrix calculations made with no approximations using the SAMMY program which is developed at the Oak Ridge National Laboratory. These new R-matrix calculations are applied to real cases which experimental data are extracted from radiative capture gamma rays measurements on 23 Na, 19 F and 238 U isotopes. Small but significant R-matrix effects show up in the wings of the resonances and especially at thermal energies when calculating the capture cross section without the classic Reich-Moore approximation. (author)

  19. A mediation case for resolving the energy and environment dispute at Aliaga-Izmir, Turkey

    International Nuclear Information System (INIS)

    Mueezzinoglu, A.

    2000-01-01

    Aliaga town, located 50 km north of Izmir, Turkey, is facing serious air, water, and soil pollution problems of industrial origin. The town has had a widespread public reaction against the estimated environmental effects of a 500 MW power plant originally to be built by a private international company during the first half of the 1990s. This project was rejected by court order at that time, but recently a number of new power projects emerged, and overall environmental burdens had to be reconsidered. A mediation exercise to resolve the ongoing dispute against these power plant projects at Aliaga was recommended and participated in by the author in 1997. In this article the basis of the continuing environmental consent about the feared impacts of the new power plants, procedure, and results of this mediation are mentioned. The basis of the energy versus environment dispute in Aliaga are introduced. Mediation exercise and its end results have been criticized

  20. Energy-resolved X-ray radiography with controlled-drift detectors at Sincrotrone Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Castoldi, A. E-mail: andrea.castoldi@polimi.it; Galimberti, A.; Guazzoni, C.; Rehak, P.; Strueder, L.; Menk, R.H

    2003-09-01

    The Controlled-Drift Detector (CDD) is a fully depleted silicon detector that allows 2-D position sensing and energy spectroscopy of X-rays in the range 1-20 keV with excellent time resolution. Its distinctive feature is the simultaneous readout of the charge packets stored in the detector by means of a uniform electrostatic field leading to readout times of few microseconds. The advantage of this readout mechanism is twofold: (i) a higher frame rate/better time resolution with respect to the charge-coupled device which represents the reference X-ray spectroscopic imager and (ii) a lower contribution of the thermal noise due to a shorter integration time, leading to an excellent energy resolution also at room temperature. In this work we present the first experimental characterization of the CDD with synchrotron light in the range 8-30 keV carried out at Sincrotrone Trieste. Two-dimensional energy-resolved radiographic images carried out at a frame frequency up to 100 kHz are shown. Application of the CDD to elemental absorption contrast imaging is also presented.

  1. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Dwarkadas, V. V. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Falcone, A., E-mail: ealiu@astro.columbia.edu, E-mail: nahee@uchicago.edu [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); and others

    2014-06-10

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  2. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    International Nuclear Information System (INIS)

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Falcone, A.

    2014-01-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  3. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Estelle eTallet

    2011-09-01

    Full Text Available The prolactin receptor (PRLR is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L or PRLR blockade (antagonist involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue-native electrophoresis, BRET1, we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET technology that allows monitoring distance changes between cell-surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements.

  4. Fingerprinting ancient gold by measuring Pt with spatially resolved high energy Sy-XRF

    International Nuclear Information System (INIS)

    Guerra, M.F.; Calligaro, T.; Radtke, M.; Reiche, I.; Riesemeier, H.

    2005-01-01

    Trace elements of ancient gold such as Pt, give fundamental information on the circulation of the metal in the past. In the case of objects from the cultural heritage, the determination of trace elements requires non-destructive point analysis in general. These conditions and the need of good detection limits restrain the number of applicable analytical techniques. After the development of a PIXE set-up with a selective Cu or Zn filter of 75 μm and of a PIXE-XRF set-up using a primary target of As, we tested the possibilities of spatially resolved Sy-XRF to determine Pt in gold alloys. With a Zn filter, PIXE showed a detection limit of 1000 ppm in gold while PIXE-XRF lowers this detection limit down to 80 ppm. This last value being constrained by the resonant Raman effect produced on gold. In order to improve the detection limit of Pt keeping the non-destructiveness and access to point analysis, we developed an analytical protocol for XRF with synchrotron radiation at BESSY II, using the BAMline set-up. The L-lines of Pt were excited by a beam of energy above and below 11.564 keV and measured using a Si(Li) detector with a 50 μm Cu filter. A μ-beam of 100-250 μm 2 was used according to the size of the sample. The determination of the Pt content in the samples was carried out by Monte-Carlo simulation and subtraction of Au and Pt spectra obtained on pure standards. The limit of detection for Pt of 20 ppm was determined by using certified standards. The detection limits of a small set of other characteristic elements of gold were also measured using an incident energy of 33 keV

  5. Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    An instructional aid is provided for home economics teachers who wish to integrate the subject of solar energy into their classroom activities. This teacher's guide was produced along with the student activities book for home economics by the US Department of Energy Solar Energy Education. A glossary of solar energy terms is included. (BCS)

  6. Resolving issues at the Department of Energy/Oak Ridge Operations Facilities

    International Nuclear Information System (INIS)

    Row, T.H.; Adams, W.D.

    1988-01-01

    Waste management, like many other issues, has experienced major milestones. In 1971, the Calvert Cliff's decision resulted in an entirely different approach to the consideration of environmental impact analysis in reactor siting. The accidents at Three Mile Island and Chernobyl have had profound effects on nuclear power plant design. The high-level waste repository program has had many similar experiences that have modified the course of events. The management of radioactive, hazardous chemical and mixed waste in all of the facilities of the Oak Ridge Operations (ORO) Office of the Department of Energy (DOE) took on an entirely different meaning in 1984. On April 13, 1984, Federal Judge Robert Taylor said that DOE should proceed 'with all deliberate speed' to bring the Y-12 plant into compliance with the Resource Conservation and Recovery Act and the Clean Water Act. This decision resulted from a suit brought by the Legal Environmental Assistance Foundation (LEAF) and grew out of a continuing revelation of mercury spills and other problems related to the Oak Ridge plants of DOE. In this same time frame, other events occurred in Oak Ridge that would set the stage for major changes, to provide the supporting environment that allowed a very different and successful approach to resolving waste management issues at the DOE/ORO Facilities. This is the origin of the Oak Ridge Model which was recently adopted as the DOE Model. The concept is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. A discussion of many of the elements that have contributed to the success of the Model follows

  7. Including Energy Efficiency and Renewable Energy Policies in Electricity Demand Projections

    Science.gov (United States)

    Find more information on how state and local air agencies can identify on-the-books EE/RE policies, develop a methodology for projecting a jurisdiction's energy demand, and estimate the change in power sector emissions.

  8. Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida, including two reinstated and five new species

    Directory of Open Access Journals (Sweden)

    Matt Renner

    2013-10-01

    Full Text Available Molecular data from three chloroplast markers resolve individuals attributable to Radula buccinifera in six lineages belonging to two subgenera, indicating the species is polyphyletic as currently circumscribed. All lineages are morphologically diagnosable, but one pair exhibits such morphological overlap that they can be considered cryptic. Molecular and morphological data justify the re-instatement of a broadly circumscribed ecologically variable R. strangulata, of R. mittenii, and the description of five new species. Two species Radula mittenii Steph. and R. notabilis sp. nov. are endemic to the Wet Tropics Bioregion of north-east Queensland, suggesting high diversity and high endemism might characterise the bryoflora of this relatively isolated wet-tropical region. Radula demissa sp. nov. is endemic to southern temperate Australasia, and like R. strangulata occurs on both sides of the Tasman Sea. Radula imposita sp. nov. is a twig and leaf epiphyte found in association with waterways in New South Wales and Queensland. Another species, R. pugioniformis sp. nov., has been confused with Radula buccinifera but was not included in the molecular phylogeny. Morphological data suggest it may belong to subg. Odontoradula. Radula buccinifera is endemic to Australia including Western Australia and Tasmania, and to date is known from south of the Clarence River on the north coast of New South Wales. Nested within R. buccinifera is a morphologically distinct plant from Norfolk Island described as R. anisotoma sp. nov. Radula australiana is resolved as monophyletic, sister to a species occurring in east coast Australian rainforests, and nesting among the R.buccinifera lineages with strong support. The molecular phylogeny suggests several long-distance dispersal events may have occurred. These include two east-west dispersal events from New Zealand to Tasmania and south-east Australia in R. strangulata, one east-west dispersal event from Tasmania to

  9. Time-Resolved Fluorescence Anisotropy of Bicyclo[1.1.1]pentane/Tolane-Based Molecular Rods Included in Tris(o-phenylenedioxy)cyclotriphosphazene (TPP).

    Science.gov (United States)

    Cipolloni, Marco; Kaleta, Jiří; Mašát, Milan; Dron, Paul I; Shen, Yongqiang; Zhao, Ke; Rogers, Charles T; Shoemaker, Richard K; Michl, Josef

    2015-04-23

    We examine the fluorescence anisotropy of rod-shaped guests held inside the channels of tris( o -phenylenedioxy)cyclotriphosphazene (TPP) host nanocrystals, characterized by powder X-ray diffraction and solid state NMR spectroscopy. We address two issues: (i) are light polarization measurements on an aqueous colloidal solution of TPP nanocrystals meaningful, or is depolarization by scattering excessive? (ii) Can measurements of the rotational mobility of the included guests be performed at low enough loading levels to suppress depolarization by intercrystallite energy transfer? We find that meaningful measurements are possible and demonstrate that the long axis of molecular rods included in TPP channels performs negligible vibrational motion.

  10. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  11. Energy-resolved photoemission studies of Be-containing surfaces for fusion; Energievariierte Photoemissionsstudien an berylliumhaltigen Oberflaechen fuer die Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Koeppen, Martin

    2013-02-04

    Fusion research aims at the exploitation of the deuterium-tritium reaction for energy production. Next step on the roadmap is the construction of the experimental reactor ITER. The three elements beryllium, carbon and tungsten are to be used as armour materials for the vacuum vessel. After erosion due to plasma processes, these materials are transported and redeposited together with plasma impurities like oxygen from surface oxides. This leads to the formation of compounds by chemical reactions and diffusive processes, induced both by elevated temperatures and implantation of energetic particles. Due to the complexity of the induced surface processes, a method is required which is capable of both qualitative and quantitative analysis of the involved chemical species. X-ray photoelectron spectroscopy (XPS) provides the chemical analysis. Since diffusive processes play an important role in solid-state reactions, a depth-resolved method is required. In this work, energy-resolved XPS using synchrotron radiation with variable photon energies is extended towards a quantitative depth-resolved analysis. For the quantitative analysis a new model is derived which calculates the depth-resolved composition and the respective composition-dependent electron inelastic mean free path in a self-consistent way. Input is the XPS data which is normalized with all parameters influencing the photoelectron intensities. This fully quantitative model is applied to describe the interaction of energetic oxygen ions with the beryllium-tungsten alloy Be{sub 2}W. Oxygen ions from the plasma are able to interact with plasma facing materials. Formation of Be{sub 2}W is to be expected at the first wall and in the divertor region of ITER. Irradiation of this alloy leads to its decompositions. After decomposition, formation of beryllium oxide BeO is preferred compared to formation of tungsten oxides. Heating to 600K leads to chemical reduction of tungsten oxides. Metallic Be acts as reduction agent

  12. Full genotyping of a highly polymorphic human gene trait by time-resolved fluorescence resonance energy transfer.

    Directory of Open Access Journals (Sweden)

    Edoardo Totè

    Full Text Available The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA system. The polymorphisms of the trait of the DQB1 gene including codons 52-57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52-57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52-57 trait of DQB1 (8 homozygous and 28 heterozygous. We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.

  13. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Efthimion, P; Pablant, N A; Lu, J; Beiersdorfer, P; Chen, H; Magee, E

    2014-11-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10,000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  14. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium.

    Science.gov (United States)

    Choi, Youngwoon; Hillman, Timothy R; Choi, Wonjun; Lue, Niyom; Dasari, Ramachandra R; So, Peter T C; Choi, Wonshik; Yaqoob, Zahid

    2013-12-13

    Multiple scatterings occurring in a turbid medium attenuate the intensity of propagating waves. Here, we propose a method to efficiently deliver light energy to the desired target depth in a scattering medium. We measure the time-resolved reflection matrix of a scattering medium using coherent time-gated detection. From this matrix, we derive and experimentally implement an incident wave pattern that optimizes the detected signal corresponding to a specific arrival time. This leads to enhanced light delivery at the target depth. The proposed method will lay a foundation for efficient phototherapy and deep-tissue in vivo imaging in the near future.

  15. Identifying and Resolving Issues in EnergyPlus and DOE-2 Window Heat Transfer Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C.; Kruis, N.; Christensen, C.

    2012-08-01

    Issues in building energy software accuracy are often identified by comparative, analytical, and empirical testing as delineated in the BESTEST methodology. As described in this report, window-related discrepancies in heating energy predictions were identified through comparative testing of EnergyPlus and DOE-2. Multiple causes for discrepancies were identified, and software fixes are recommended to better align the models with the intended algorithms and underlying test data.

  16. Uphill energy transfer in photosystem I from Chlamydomonas reinhardtii. Time-resolved fluorescence measurements at 77 K.

    Science.gov (United States)

    Giera, Wojciech; Szewczyk, Sebastian; McConnell, Michael D; Redding, Kevin E; van Grondelle, Rienk; Gibasiewicz, Krzysztof

    2018-04-04

    Energetic properties of chlorophylls in photosynthetic complexes are strongly modulated by their interaction with the protein matrix and by inter-pigment coupling. This spectral tuning is especially striking in photosystem I (PSI) complexes that contain low-energy chlorophylls emitting above 700 nm. Such low-energy chlorophylls have been observed in cyanobacterial PSI, algal and plant PSI-LHCI complexes, and individual light-harvesting complex I (LHCI) proteins. However, there has been no direct evidence of their presence in algal PSI core complexes lacking LHCI. In order to determine the lowest-energy states of chlorophylls and their dynamics in algal PSI antenna systems, we performed time-resolved fluorescence measurements at 77 K for PSI core and PSI-LHCI complexes isolated from the green alga Chlamydomonas reinhardtii. The pool of low-energy chlorophylls observed in PSI cores is generally smaller and less red-shifted than that observed in PSI-LHCI complexes. Excitation energy equilibration between bulk and low-energy chlorophylls in the PSI-LHCI complexes at 77 K leads to population of excited states that are less red-shifted (by ~ 12 nm) than at room temperature. On the other hand, analysis of the detection wavelength dependence of the effective trapping time of bulk excitations in the PSI core at 77 K provided evidence for an energy threshold at ~ 675 nm, above which trapping slows down. Based on these observations, we postulate that excitation energy transfer from bulk to low-energy chlorophylls and from bulk to reaction center chlorophylls are thermally activated uphill processes that likely occur via higher excitonic states of energy accepting chlorophylls.

  17. Angle-resolved energy distributions of laser ablated silver ions in vacuum

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1998-01-01

    The energy distributions of ions ablated from silver in vacuum have been measured in situ for pulsed laser irradiation at 355 nm. We have determined the energy spectra for directions ranging from 5 degrees to 75 degrees with respect to the normal in the intensity range from 100 to 400 MW/cm(2...

  18. How Consistent are Recent Variations in the Tropical Energy and Water Cycle Resolved by Satellite Measurements?

    Science.gov (United States)

    Robertson, F. R.; Lu, H.-I.

    2004-01-01

    One notable aspect of Earth's climate is that although the planet appears to be very close to radiative balance at top-of-atmosphere (TOA), the atmosphere itself and underlying surface are not. Profound exchanges of energy between the atmosphere and oceans, land and cryosphere occur over a range of time scales. Recent evidence from broadband satellite measurements suggests that even these TOA fluxes contain some detectable variations. Our ability to measure and reconstruct radiative fluxes at the surface and at the top of atmosphere is improving rapidly. One question is 'How consistent, physically, are these diverse remotely-sensed data sets'? The answer is of crucial importance to understanding climate processes, improving physical models, and improving remote sensing algorithms. In this work we will evaluate two recently released estimates of radiative fluxes, focusing primarily on surface estimates. The International Satellite Cloud Climatology Project 'FD' radiative flux profiles are available from mid-1983 to near present and have been constructed by driving the radiative transfer physics from the Goddard Institute for Space Studies (GISS) global model with ISCCP clouds and TOVS (TIROS Operational Vertical Sounder)thermodynamic profiles. Full and clear sky SW and LW fluxes are produced. A similar product from the NASA/GEWEX Surface Radiation Budget Project using different radiative flux codes and thermodynamics from the NASA/Goddard Earth Observing System (GEOS-1) assimilation model makes a similar calculation of surface fluxes. However this data set currently extends only through 1995. We also employ precipitation measurements from the Global Precipitation Climatology Project (GPCP) and the Tropical Rainfall Measuring Mission (TRMM). Finally, ocean evaporation estimates from the Special Sensor Microwave Imager (SSM/I) are considered as well as derived evaporation from the NCAR/NCEP Reanalysis. Additional information is included in the original extended

  19. Annual Technology Baseline (Including Supporting Data); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate; Cory, Karlynn; Hand, Maureen; Parkhill, Linda; Speer, Bethany; Stehly, Tyler; Feldman, David; Lantz, Eric; Augusting, Chad; Turchi, Craig; O' Connor, Patrick

    2015-07-08

    Consistent cost and performance data for various electricity generation technologies can be difficult to find and may change frequently for certain technologies. With the Annual Technology Baseline (ATB), National Renewable Energy Laboratory provides an organized and centralized dataset that was reviewed by internal and external experts. It uses the best information from the Department of Energy laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information. The ATB includes both a presentation with notes (PDF) and an associated Excel Workbook. The ATB includes the following electricity generation technologies: land-based wind; offshore wind; utility-scale solar PV; concentrating solar power; geothermal power; hydropower plants (upgrades to existing facilities, powering non-powered dams, and new stream-reach development); conventional coal; coal with carbon capture and sequestration; integrated gasification combined cycle coal; natural gas combustion turbines; natural gas combined cycle; conventional biopower. Nuclear laboratory's renewable energy analysts and Energy Information Administration information for conventional technologies. The ATB will be updated annually in order to provide an up-to-date repository of current and future cost and performance data. Going forward, we plan to revise and refine the values using best available information.

  20. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  1. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  2. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  3. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  4. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  5. A new cross-detection method for improved energy-resolving photon counting under pulse pile-up

    Science.gov (United States)

    Lee, Daehee; Lim, Kyung Taek; Park, Kyungjin; Lee, Changyeop; Cho, Gyuseong

    2017-09-01

    In recent, photon counting detectors (PCDs) have been replacing the energy-integrating detectors in many medical imaging applications due to the formers' high resolution, low noise, and high efficiency. Under a high flux X-ray exposure, however, a superimposition of pulses, i.e., pulse pile-up, frequently occurs due to the finite output pulse width, causing distortions in the energy spectrum as a consequence. Therefore, pulse pile-up is considered as a major constraint in using PCDs for high flux X-ray applications. In this study, a new photon counting method is proposed to minimize degradations in PCD performance due to pulse pile-up. The proposed circuit was incorporated into a pixel with a size of 200 × 200 μm2. It was fabricated by using a 1-poly 6-metal 0 . 18 μm complementary metal-oxide-semiconductor (CMOS) process and had a power consumption of 7 . 8 μW / pixel. From the result, it was shown that the maximum count rate of the proposed circuit was increased by a factor of 4.7 when compared to that of the conventional circuit at the same pulse width of 700 ns. This implies that the energy spectrum obtained by the proposed circuit is 4.7 times more resistant to distortions than the conventional energy-resolving circuit does under higher X-ray fluxes.

  6. Resolving issues at the Department of Energy/Oak Ridge operations facilities

    International Nuclear Information System (INIS)

    Row, T.H.; Adams, W.D.

    1988-01-01

    The development of the US Department of Energy Oak Ridge Operations Office's model for waste management and its application in the Oak Ridge Reservation are discussed. The concept simply stated is to assure that all stakeholders in waste management decisions have the opportunity to be participants from the first step. The paper discusses the advisory committees involved in the process, subcontracting support, college and university relation, technology demonstrations and planning, other federal agency interaction, and the model meeting

  7. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    International Nuclear Information System (INIS)

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-01-01

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .

  8. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  9. Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

    OpenAIRE

    Yoshio Kurosawa

    2017-01-01

    The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

  10. Resolving issues with environmental impact assessment of marine renewable energy installations

    Directory of Open Access Journals (Sweden)

    Ilya M. D. Maclean

    2014-12-01

    Full Text Available Growing concerns about climate change and energy security have fueled a rapid increase in the development of marine renewable energy installations (MREIs. The potential ecological consequences of increased use of these devices emphasizes the need for high quality environmental impact assessment (EIA. We demonstrate that these processes are hampered severely, primarily because ambiguities in the legislation and lack of clear implementation guidance are such that they do not ensure robust assessment of the significance of impacts and cumulative effects. We highlight why the regulatory framework leads to conceptual ambiguities and propose changes which, for the most part, do not require major adjustments to standard practice. We emphasize the importance of determining the degree of confidence in impacts to permit the likelihood as well as magnitude of impacts to be quantified and propose ways in which assessment of population-level impacts could be incorporated into the EIA process. Overall, however, we argue that, instead of trying to ascertain which particular developments are responsible for tipping an already heavily degraded marine environment into an undesirable state, emphasis should be placed on better strategic assessment.

  11. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  12. Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources.

    Science.gov (United States)

    Hipp, A; Willner, M; Herzen, J; Auweter, S; Chabior, M; Meiser, J; Achterhold, K; Mohr, J; Pfeiffer, F

    2014-12-15

    Grating interferometry has been successfully adapted at standard X-ray tubes and is a promising candidate for a broad use of phase-contrast imaging in medical diagnostics or industrial testing. The achievable image quality using this technique is mainly dependent on the interferometer performance with the interferometric visibility as crucial parameter. The presented study deals with experimental investigations of the spectral dependence of the visibility in order to understand the interaction between the single contributing energies. Especially for the choice which type of setup has to be preferred using a polychromatic source, this knowledge is highly relevant. Our results affirm previous findings from theoretical investigations but also show that measurements of the spectral contributions to the visibility are necessary to fully characterize and optimize a grating interferometer and cannot be replaced by only relying on simulated data up to now.

  13. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    Science.gov (United States)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  14. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  15. Performancpe profiles of major energy producers, 1977. [Using EIA Financial Reporting System; 26 companies; includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This volume is the first report of the Financial Reporting System (FRS). The finances and economics of energy production are the main subjects addressed by the data gathered. Much information already exists because of the largest firms are publicly held and file reports with the SEC. Useful as these reports are, they leave much to be desired as an account of the financial and economic aspects of the energy industry in the United States. Chapter 2 compares the 26 companies reporting to the FRS with a broad index of companies which includes energy companies and other non-energy industrial companies. The comparisons are at the aggregated consolidated company level where public information is available. In Chapter 3, characteristics of the industrial financial structure are reviewed in the context of the FRS reporting framework. Data on horizontal diversification are presented to permit review of existing patterns and evident directions of change, as well as the relation of these patterns to firm and segment profitability. In Chapter 4, profits, new investments, and the composition of net investment in place are described by FRS size groupings. Chapter 5 traces oil and gas resource-development efforts in 1977. Data on resource-development expenditures are complemented by data on reserve holdings, changes in reserves, and characteristics of exploration and development effort. Foreign activity is compared with domestic. Chapter 6 deals specifically with crude and refined-product production and distribution.

  16. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    Science.gov (United States)

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  17. Full-dimensional diabatic potential energy surfaces including dissociation: the ²E″ state of NO₃.

    Science.gov (United States)

    Eisfeld, Wolfgang; Vieuxmaire, Olivier; Viel, Alexandra

    2014-06-14

    A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully applied to model the two-sheeted surface of the (2)E″ state of the NO3 radical. An accurate potential energy surface for the NO₃⁻ anion ground state is developed as well. Both surfaces are based on high-level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second central aspect is the generation of reference data to fit the expansion coefficients of the model for which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle problematic regions of the potential energy surfaces, resulting from the massive undersampling by the reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are used to compute the lowest vibrational levels of NO₃⁻ and the photo-electron detachment spectrum of NO₃⁻ leading to the neutral radical in the (2)E″ state by full dimensional multi-surface wave-packet propagation for NO3 performed using the Multi-Configuration Time Dependent Hartree method. The achieved agreement of the simulations with available experimental data demonstrates the power of the proposed scheme and the high quality of the obtained potential energy surfaces.

  18. Expressions For Total Energy And Relativistic Kinetic Energy At Low Speeds In Special Relativity Must Include Rotational And Vibrational As Well As Linear Kinetic Energies

    Science.gov (United States)

    Brekke, Stewart

    2017-09-01

    Einstein calculated the total energy at low speeds in the Special Theory of Relativity to be Etotal =m0c2 + 1 / 2m0v2 . However, the total energy must include the rotational and vibrational kinetic energies as well as the linear kinetic energies. If 1 / 2 Iω2 is the expression for the rotational kinetic energy of mass and 1 / 2 kx02 is the vibrational kinetic energy expression of a typical mass, the expression for the total energy of a mass at low speeds must be Etotal =m0c2 + 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 . If this expression is correct, the relativistic kinetic energy of a mass. at low speeds must include the rotational and vibrational kinetic energies as well as the linear kinetic energies since according to Einstein K = (m -m0) c2 and therefore, K = 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 .

  19. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  20. Energy-gap dynamics of a superconductor NbN studied by time-resolved terahertz spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Matthias; Leiderer, Paul [Dept. of Physics and Center for Appl. Photonics, Univ. of Konstanz (Germany); Kabanov, Viktor V. [Zukunftskolleg, Univ. of Konstanz, (Germany); Gol' tsman, Gregory [Moscow State Ped. Univ., Moscow (Russian Federation); Helm, Manfred [Helmholtz-Zentrum, Dresden-Rossendorf (Germany); Demsar, Jure [Dept. of Physics and Center for Appl. Photonics, Univ. of Konstanz (Germany); Zukunftskolleg, Univ. of Konstanz, (Germany)

    2012-07-01

    Using time-resolved terahertz (THz) spectroscopy we performed direct studies of the photoinduced suppression and recovery of the SC gap in a conventional SC NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the important microscopic constants: the Cooper pair-breaking rate via phonon absorption and the bare quasiparticle recombination rate. From the latter we were able to extract the dimensionless electron-phonon coupling constant, {lambda}=1.1{+-}0.1, in excellent agreement with theoretical estimates. The technique also allowed us to determine the absorbed energy required to suppress SC, which in NbN equals the thermodynamic condensation energy (in cuprates the two differ by an order of magnitude). Finally, we present the first studies of dynamics following resonant excitation with intense narrow band THz pulses tuned to above and below the superconducting gap. These suggest an additional process, particularly pronounced near T{sub c}, that could be attributed to amplification of SC via effective quasiparticle cooling.

  1. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  2. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  3. 78 FR 34372 - TGP Energy Management, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-06-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1586-000] TGP Energy Management, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of TGP Energy...

  4. 75 FR 10245 - S.J. Energy Partners, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-03-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-735-000] S.J. Energy Partners, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding of S.J. Energy Partners, Inc.'s application for market-based rate authority, with an accompanying...

  5. 75 FR 37430 - Plymouth Rock Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-06-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1470-000] Plymouth Rock Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Plymouth Rock Energy, LLC.'s application for market-based rate authority, with an accompanying...

  6. 78 FR 54464 - ABC Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2013-09-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2260-000] ABC Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of ABC Energy, LLC...

  7. 77 FR 64980 - Collegiate Clean Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-10-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-33-000] Collegiate Clean Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Collegiate Clean Energy, LLC's application for market-based rate authority, with an accompanying rate tariff...

  8. 76 FR 19351 - Stream Energy Maryland, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-04-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3188-000] Stream Energy Maryland, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding Stream Energy...

  9. 76 FR 69267 - Stream Energy New Jersey, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-225-000] Stream Energy New Jersey, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Stream Energy New Jersey, LLC's application for market-based rate authority, with an accompanying rate...

  10. 77 FR 47625 - Beebe Renewable Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2311-000] Beebe Renewable Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Beebe Renewable Energy, LLC's application for market-based rate authority, with an accompanying rate...

  11. 78 FR 34371 - Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-06-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1561-000] Centinela Solar Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Centinela Solar Energy, LLC's application for market-based rate authority, with an accompanying rate...

  12. 77 FR 47625 - Laurel Hill Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-08-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2313-000] Laurel Hill Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For... Laurel Hill Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...

  13. 75 FR 10245 - DPL Energy Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-03-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-726-000] DPL Energy Resources, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request For Blanket... proceeding of DPL Energy Resources, Inc.'s application for market-based rate authority, with an accompanying...

  14. 75 FR 74711 - Planet Energy (USA) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2166-000] Planet Energy (USA) Corp.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... proceeding, of Planet Energy (USA) Corp.'s application for market-based rate authority, with an accompanying...

  15. 78 FR 55250 - TEC Energy Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2013-09-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2304-000] TEC Energy Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of TEC Energy Inc...

  16. 75 FR 359 - Google Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2010-01-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-468-000] Google Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section... of Google Energy LLC's application for market-based rate authority, with an accompanying rate tariff...

  17. 77 FR 21555 - Flat Ridge 2 Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-04-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1400-000] Flat Ridge 2 Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...

  18. 75 FR 18202 - Vantage Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-956-000] Vantage Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Vantage Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...

  19. 77 FR 41400 - Mehoopany Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2200-000] Mehoopany Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Wind Energy LLC's application for market-based rate authority, with an accompanying rate tariff, noting...

  20. 76 FR 6614 - Elk Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2011-02-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2765-000] Elk Wind Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Elk Wind Energy, LLC's application for market-based rate authority, with an accompanying rate...

  1. Privacy-preserving smart meter control strategy including energy storage losses

    OpenAIRE

    Avula, Chinni Venkata Ramana R.; Oechtering, Tobias J.; Månsson, Daniel

    2018-01-01

    Privacy-preserving smart meter control strategies proposed in the literature so far make some ideal assumptions such as instantaneous control without delay, lossless energy storage systems etc. In this paper, we present a one-step-ahead predictive control strategy using Bayesian risk to measure and control privacy leakage with an energy storage system. The controller estimates energy state using a three-circuit energy storage model to account for steady-state energy losses. With numerical exp...

  2. Protein activation dynamics in cells and tumor micro arrays assessed by time resolved Förster resonance energy transfer.

    Science.gov (United States)

    Calleja, Véronique; Leboucher, Pierre; Larijani, Banafshé

    2012-01-01

    Analytical time resolved Förster resonance energy transfer (FRET) can be exploited for assessing, in cells and tumor micro arrays, the activation status and dynamics of oncoproteins such as epidermal growth factor receptor (EGFR1) and their downstream effectors such as protein kinase B (PKB) and 3-phosphoinositide-dependent protein kinase 1 (PDK1). The outcome of our research involving the application of quantitative imaging for investigating molecular mechanisms of phosphoinositide-dependant enzymes, such as PKB and PDK1, has resulted in a refined model describing the dynamics and regulation of these two oncoproteins in live cells. Our translational research exploits a quantitative FRET method for establishing the activation status of predictive biomarkers in tumor micro arrays. We developed a two-site FRET assay monitored by automated frequency domain Fluorescence lifetime imaging microscopy (FLIM). As a proof of principle, we tested our methodology by assessing EGFR1 activation status in tumor micro arrays from head and neck patients. Our two-site FRET assay, by high-throughput frequency domain FLIM, has great potential to provide prognostic and perhaps predictive biomarkers. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Directory of Open Access Journals (Sweden)

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  4. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    Energy Technology Data Exchange (ETDEWEB)

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  5. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    Science.gov (United States)

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285

  6. Robust scaling laws for energy confinement time, including radiated fraction, in Tokamaks

    Science.gov (United States)

    Murari, A.; Peluso, E.; Gaudio, P.; Gelfusa, M.

    2017-12-01

    In recent years, the limitations of scalings in power-law form that are obtained from traditional log regression have become increasingly evident in many fields of research. Given the wide gap in operational space between present-day and next-generation devices, robustness of the obtained models in guaranteeing reasonable extrapolability is a major issue. In this paper, a new technique, called symbolic regression, is reviewed, refined, and applied to the ITPA database for extracting scaling laws of the energy-confinement time at different radiated fraction levels. The main advantage of this new methodology is its ability to determine the most appropriate mathematical form of the scaling laws to model the available databases without the restriction of their having to be power laws. In a completely new development, this technique is combined with the concept of geodesic distance on Gaussian manifolds so as to take into account the error bars in the measurements and provide more reliable models. Robust scaling laws, including radiated fractions as regressor, have been found; they are not in power-law form, and are significantly better than the traditional scalings. These scaling laws, including radiated fractions, extrapolate quite differently to ITER, and therefore they require serious consideration. On the other hand, given the limitations of the existing databases, dedicated experimental investigations will have to be carried out to fully understand the impact of radiated fractions on the confinement in metallic machines and in the next generation of devices.

  7. Calculations of environmental benefits from using geothermal energy must include the rebound effect

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Unnthorsson, Runar

    2017-01-01

    and energy production patterns are simulated using data from countries with similar environmental conditions but do not use geothermal or hydropower to the same extent as Iceland. Because of the rapid shift towards renewable energy and exclusion of external energy provision, the country is considered...

  8. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    Science.gov (United States)

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  9. Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance

    International Nuclear Information System (INIS)

    Takada, Masahiro; Bridle, Sarah

    2007-01-01

    Several dark energy experiments are available from a single large-area imaging survey and may be combined to improve cosmological parameter constraints and/or test inherent systematics. Two promising experiments are cosmic shear power spectra and counts of galaxy clusters. However, the two experiments probe the same cosmic mass density field in large-scale structure, therefore the combination may be less powerful than first thought. We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts based on the halo model approach, where the cross-covariance arises from the three-point correlations of the underlying mass density field. Fully taking into account the cross-covariance, as well as non-Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation between the lensing power spectrum signals at multipoles l∼10 3 and the cluster counts containing halos with masses M∼>10 14 M o-dot . Including the cross-covariance for the combined measurement degrades and in some cases improves the total signal-to-noise (S/N) ratios up to ∼±20% relative to when the two are independent. For cosmological parameter determination, the cross-covariance has a smaller effect as a result of working in a multi-dimensional parameter space, implying that the two observables can be considered independent to a good approximation. We also discuss the fact that cluster count experiments using lensing-selected mass peaks could be more complementary to cosmic shear tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing selected clusters with a realistic usable detection threshold ((S/N) cluster ∼6 for a ground-based survey), the uncertainty on each dark energy parameter may be roughly halved by the combined experiments, relative to using the power spectra alone

  10. Optimization of piezoelectric cantilever energy harvesters including non-linear effects

    International Nuclear Information System (INIS)

    Patel, R; McWilliam, S; Popov, A A

    2014-01-01

    This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)

  11. Proceedings of the Wind Energy and Birds/Bats Workshop: Understanding and Resolving Bird and Bat Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Susan Savitt (ed.)

    2004-09-01

    Most conservation groups support the development of wind energy in the US as an alternative to fossil and nuclear-fueled power plants to meet growing demand for electrical energy. However, concerns have surfaced over the potential threat to birds, bats, and other wildlife from the construction and operation of wind turbine facilities. Co-sponsored by the American Bird Conservancy (ABC) and the American Wind Energy Association (AWEA), the Wind Energy and Birds/Bats Workshop was convened to examine current research on the impacts of wind energy development on avian and bat species and to discuss the most effective ways to mitigate such impacts. On 18-19 May 2004, 82 representatives from government, non-government organizations, private business, and academia met to (1) review the status of the wind industry and current project development practices, including pre-development risk assessment and post-construction monitoring; (2) learn what is known about direct, indirect (habitat), and cumulative impacts on birds and bats from existing wind projects; about relevant aspects of bat and bird migration ecology; about offshore wind development experience in Europe; and about preventing, minimizing, and mitigating avian and bat impacts; (3) review wind development guidelines developed by the USFWS and the Washington State Department of Fish and Wildlife; and (4) identify topics needing further research and to discuss what can be done to ensure that research is both credible and accessible. These Workshop Proceedings include detailed summaries of the presentations made and the discussions that followed.

  12. Solar energy collector including a weightless balloon with sun tracking means

    Science.gov (United States)

    Hall, Frederick F.

    1978-01-01

    A solar energy collector having a weightless balloon, the balloon including a transparent polyvinylfluoride hemisphere reinforced with a mesh of ropes secured to its outside surface, and a laminated reflector hemisphere, the inner layer being clear and aluminized on its outside surface and the outer layer being opaque, the balloon being inflated with lighter-than-air gas. A heat collection probe extends into the balloon along the focus of reflection of the reflective hemisphere for conducting coolant into and out of the balloon. The probe is mounted on apparatus for keeping the probe aligned with the sun's path, the apparatus being founded in the earth for withstanding wind pressure on the balloon. The balloon is lashed to the probe by ropes adhered to the outer surface of the balloon for withstanding wind pressures of 100 miles per hour. Preferably, the coolant is liquid sodium-potassium eutectic alloy which will not normally freeze at night in the temperate zones, and when heated to 4,000.degree. R exerts a pressure of only a few atmospheres.

  13. Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery

    Science.gov (United States)

    Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.

    2016-09-01

    Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.

  14. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Science.gov (United States)

    Tremsin, A. S.; Losko, A. S.; Vogel, S. C.; Byler, D. D.; McClellan, K. J.; Bourke, M. A. M.; Vallerga, J. V.

    2017-01-01

    Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (˜739 ± 98 kPa and ˜751 ± 154 kPa for two Xe resonances) is in relatively good agreement with the pressure value of ˜758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ˜ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others) containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  15. Non-contact measurement of partial gas pressure and distribution of elemental composition using energy-resolved neutron imaging

    Directory of Open Access Journals (Sweden)

    A. S. Tremsin

    2017-01-01

    Full Text Available Neutron resonance absorption imaging is a non-destructive technique that can characterize the elemental composition of a sample by measuring nuclear resonances in the spectrum of a transmitted beam. Recent developments in pixelated time-of-flight imaging detectors coupled with pulsed neutron sources pose new opportunities for energy-resolved imaging. In this paper we demonstrate non-contact measurements of the partial pressure of xenon and krypton gases encapsulated in a steel pipe while simultaneously passing the neutron beam through high-Z materials. The configuration was chosen as a proof of principle demonstration of the potential to make non-destructive measurement of gas composition in nuclear fuel rods. The pressure measured from neutron transmission spectra (∼739 ± 98 kPa and ∼751 ± 154 kPa for two Xe resonances is in relatively good agreement with the pressure value of ∼758 ± 21 kPa measured by a pressure gauge. This type of imaging has been performed previously for solids with a spatial resolution of ∼ 100 μm. In the present study it is demonstrated that the high penetration capability of epithermal neutrons enables quantitative mapping of gases encapsulate within high-Z materials such as steel, tungsten, urania and others. This technique may be beneficial for the non-destructive testing of bulk composition of objects (such as spent nuclear fuel assemblies and others containing various elements opaque to other more conventional imaging techniques. The ability to image the gaseous substances concealed within solid materials also allows non-destructive leak testing of various containers and ultimately measurement of gas partial pressures with sub-mm spatial resolution.

  16. 76 FR 67720 - Bishop Hill Energy III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-164-000] Bishop Hill Energy III LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  17. 76 FR 67721 - Bishop Hill Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-161-000] Bishop Hill Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  18. 77 FR 6109 - Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-846-000] Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  19. 76 FR 67721 - Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-162-000] Bishop Hill Energy II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bishop Hill...

  20. 76 FR 69267 - Stream Energy Columbia, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-224-000] Stream Energy Columbia, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Stream...

  1. 77 FR 45349 - Stream Energy New York, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-07-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-2301-000] Stream Energy New York, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Stream...

  2. Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks

    Science.gov (United States)

    Christina E. Canter; Zhangcai Qin; Hao Cai; Jennifer B. Dunn; Michael Wang; D. Andrew Scott

    2017-01-01

    The GHG emissions and fossil energy consumption associated with producing potential biomass sup­ply in the select BT16 scenarios include emissions and energy consumption from biomass production, harvest/collection, transport, and pre-processing activities to the reactor throat. Emissions associated with energy, fertilizers, and...

  3. 78 FR 27219 - Osprey Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-05-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1406-000] Osprey Energy Center, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Osprey...

  4. 77 FR 6109 - Mariposa Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2012-02-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-896-000] Mariposa Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Mariposa...

  5. 77 FR 35373 - Duke Energy Dicks Creek, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-06-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1951-000] Duke Energy Dicks Creek, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Dicks Creek, LLC's application for market-based rate authority, with an accompanying rate tariff, noting...

  6. 76 FR 26283 - Blue Chip Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2011-05-06

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3467-000] Blue Chip Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Blue Chip...

  7. 77 FR 28594 - Bethel Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-05-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1739-000] Bethel Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Bethel Wind...

  8. 77 FR 28593 - Rippey Wind Energy LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-05-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-1740-000] Rippey Wind Energy LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Rippey Wind...

  9. Including Pressure Measurements in Supervision of Energy Efficiency of Wastewater Pump Systems

    DEFF Research Database (Denmark)

    Larsen, Torben; Arensman, Mareike; Nerup-Jensen, Ole

    2016-01-01

    energy). This article presents a method for a continuous supervision of the performance of both the pump and the pipeline in order to maintain the initial specific energy consumption as close as possible to the original value from when the system was commissioned. The method is based on pressure...... measurements only. The flow is determined indirectly from pressure fluctuations during pump run-up....

  10. ICT Enabling More Energy Efficient Processes, Including e-Invoicing as a Case

    NARCIS (Netherlands)

    Bomhof, F.W.; Hoorik, P.M. van; Hoeve, M.C.

    2012-01-01

    ICT has the potential to enable a low carbon economy, as pointed out by many studies. One example of the energy (and CO2) saving potential of ICT is illustrated in this chapter: how much energy (and emissions) can be saved if the invoicing process is redesigned? Although there is a net positive

  11. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-06-01

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  12. Eddy Resolving Global Ocean Prediction including Tides

    Science.gov (United States)

    2013-09-30

    oceanographic and acoustic soliton simulations in the Yellow Sea: a search for soliton -induced resonances. Mathematics and Computers in Simulation...Assimilation), and in forecast mode. Also to incorporate advances in dynamics and physics from the science community into the HYCOM established and maintained...validate the model in different regions and different regimes. Demonstrated advancements in HYCOM numerics and physics from all sources will be

  13. Theoretical analysis of the time-resolved binary (e, 2e) binding energy spectra on three-body photodissociation of acetone at 195 nm

    Science.gov (United States)

    Yamazaki, M.; Nakayama, S.; Zhu, C. Y.; Takahashi, M.

    2017-11-01

    We report on theoretical progress in time-resolved (e, 2e) electron momentum spectroscopy of photodissociation dynamics of the deuterated acetone molecule at 195 nm. We have examined the predicted minimum energy reaction path to investigate whether associated (e, 2e) calculations meet the experimental results. A noticeable difference between the experiment and calculations has been found at around binding energy of 10 eV, suggesting that the observed difference may originate, at least partly, in ever-unconsidered non-minimum energy paths.

  14. Accurate prediction of adsorption energies on graphene, using a dispersion-corrected semiempirical method including solvation.

    Science.gov (United States)

    Vincent, Mark A; Hillier, Ian H

    2014-08-25

    The accurate prediction of the adsorption energies of unsaturated molecules on graphene in the presence of water is essential for the design of molecules that can modify its properties and that can aid its processability. We here show that a semiempirical MO method corrected for dispersive interactions (PM6-DH2) can predict the adsorption energies of unsaturated hydrocarbons and the effect of substitution on these values to an accuracy comparable to DFT values and in good agreement with the experiment. The adsorption energies of TCNE, TCNQ, and a number of sulfonated pyrenes are also predicted, along with the effect of hydration using the COSMO model.

  15. Predictive Energy Management Strategy Including Traffic Flow Data for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Bouwman, K.R.; Pham, T.H.; Wilkins, S.; Hofman, T.

    2017-01-01

    Within hybrid electric vehicles (HEVs) predictive energy management strategies (EMSs) have the potential to reduce the fuel consumption compared to conventional EMSs, where the drive cycle is unknown. Typically, predictive EMSs require a future vehicle speed profile prediction. However, when

  16. ADEME energy transition scenarios. Summary including a macro-economic evaluation 2030 2050

    International Nuclear Information System (INIS)

    2014-05-01

    ADEME, the French Environment and Energy Management Agency, is a public agency reporting to the Ministry of Ecology, Sustainable Development and Energy and the Ministry of Higher Education and Research. In 2012 the agency drew up a long-term scenario entitled 'ADEME Energy Transition Scenarios 2030-2050'. This document presents a summary of the report. The full version can be viewed online on the ADEME web site. With this work ADEME offers a proactive energy vision for all stakeholders - experts, the general public, decision-makers, etc. - focusing on two main areas of expertise: managing energy conservation and developing renewable energy production using proven or demonstration-phase technologies. These scenarios identify a possible pathway for the energy transition in France. They are based on two time horizons and two separate methodologies. One projection, applicable from the present day, seeks to maximise potential energy savings and renewable energy production in an ambitious but realistic manner, up to 2030. The second exercise is a normative scenario that targets a fourfold reduction in greenhouse gas emissions generated in France by 2050, compared to 1990 levels. The analysis presented in this document is primarily based on an exploration of different scenarios that allow for the achievement of ambitious energy and environmental targets under technically, economically and socially feasible conditions. This analysis is supplemented by a macro-economic analysis. These projections, particularly for 2030, do not rely on radical changes in lifestyle, lower comfort levels or hypothetical major technological breakthroughs. They show that by using technologies and organisational changes that are currently within our reach, we have the means to achieve these long-term goals. The scenarios are based on assumptions of significant growth, both economic (1.8% per year) and demographic (0.4% a year). The 2050 scenario shows that with sustained growth, a

  17. Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Akimoto, Seiji; Yokono, Makio; Aikawa, Shimpei; Kondo, Akihiko

    2013-11-01

    In cyanobacteria, the interactions among pigment-protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions.

  18. Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS

    Directory of Open Access Journals (Sweden)

    Sean Vig, Anshul Kogar, Matteo Mitrano, Ali A. Husain, Vivek Mishra, Melinda S. Rak, Luc Venema, Peter D. Johnson, Genda D. Gu, Eduardo Fradkin, Michael R. Norman, Peter Abbamonte

    2017-10-01

    Full Text Available One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, $\\chi({\\bf q},\\omega$. The imaginary part, $\\chi''({\\bf q},\\omega$, defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. $\\chi$ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure $\\chi({\\bf q},\\omega$ at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure $\\chi$ with quantitative momentum resolution by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS. This approach, which we refer to here as ``M-EELS" allows direct measurement of $\\chi''({\\bf q},\\omega$ with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\\bf q} excitations in the optimally-doped high temperature superconductor, Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ (Bi2212, which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. Our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.

  19. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration

    Science.gov (United States)

    Zhang, Yangyang; Lu, Bingwei; Lü, Chaofeng; Feng, Xue

    2017-11-01

    Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.

  20. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.; Gierz, I. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Ermolov, A.; Belli, F.; Abdolvand, A.; Russell, P. St. J.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Calegari, F. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Institute for Photonics and Nanotechnologies, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Li, M. T.; Lin, C. T. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Cavalleri, A. [Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg (Germany); Clarendon Laboratory, Department of Physics, University of Oxford, Parks Rd. Oxford OX1 3PU (United Kingdom)

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  1. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    Science.gov (United States)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  2. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    Levi, M. P.; O& #x27; Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  3. Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence.

    Science.gov (United States)

    Akimoto, Seiji; Teshigahara, Ayaka; Yokono, Makio; Mimuro, Mamoru; Nagao, Ryo; Tomo, Tatsuya

    2014-09-01

    In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx-Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300fs. Chl c transferred excitation energy to Chl a with time constants of 500-600fs (intra-complex transfer), 600-700fs (intra-complex transfer), and 4-6ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014. Published by Elsevier B.V.

  4. Improved morphed potentials for Ar-HBr including scaling to the experimentally determined dissociation energy.

    Science.gov (United States)

    Wang, Z; McIntosh, A L; McElmurry, B A; Walton, J R; Lucchese, R R; Bevan, J W

    2005-09-15

    A lead salt diode infrared laser spectrometer has been employed to investigate the rotational predissociation in Ar-HBr for transitions up to J' = 79 in the v(1) HBr stretching vibration of the complex using a slit jet and static gas phase. Line-shape analysis and modeling of the predissociation lifetimes have been used to determine a ground-state dissociation energy D(0) of 130(1) cm(-1). In addition, potential energy surfaces based on ab initio calculations are scaled, shifted, and dilated to generate three-dimensional morphed potentials for Ar-HBr that reproduce the measured value of D(0) and that have predictive capabilities for spectroscopic data with nearly experimental uncertainty. Such calculations also provide a basis for making a comprehensive comparison of the different morphed potentials generated using the methodologies applied.

  5. 77 FR 30274 - Inupiat Energy Marketing, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-05-22

    ... Energy Marketing, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Inupiat Energy Marketing, LLC's application for market-based rate authority, with an accompanying rate... protests and interventions in lieu of paper, using the FERC Online links at http://www.ferc.gov . To...

  6. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  7. Proof of the positive energy theorem including the angular momentum contribution

    International Nuclear Information System (INIS)

    Zhang Jingfei; Chee, G.Y.; Guo Yongxin

    2005-01-01

    A proof of the positive energy theorem of general relativity is given. In this proof the gravitational Lagrangian is identified with that of Lau and is equivalent to the teleparallel Lagrangian modulo, a boundary term. The approach adopted in this proof uses the two-spinor method and the extended Witten identities and then combines the Brown-York and the Nester-Witten approaches. At the same time the proof is extended to the case involving the contribution of angular momentum by choosing a special shift vector

  8. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan

    2014-09-01

    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  9. Frequency participation by using virtual inertia in wind turbines including energy storage

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Huang, Yu; Guerrero, Josep M.

    2017-01-01

    (WT) and battery unit (BU). A central controller forecasts wind speed and determines system operation states to be sent to the local controllers. These local controllers include MPPT, virtual inertia, and pitch control for the WT; and power control loops for the BU. The proposed approach achieve...

  10. Optimization of energy plants including water/lithium bromide absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.C.; Castells, F. [Universitat Rovira i Virgili, Dept. d' Enginyeria Quimica, Tarragona (Spain); Miquel, J. [Universitat Politecnica de Catalunya, Dept. de Mecanica de Fluids, Barcelona (Spain)

    2000-07-01

    In this paper a methodology for the optimal integration of water/lithium bromide absorption chillers in combined heat and power plants is proposed. This method is based on the economic optimisation of an energy plant that interacts with a refrigeration cycle, by using a successive linear programming technique (SLP). The aim of this paper is to study the viability of the integration of already technologically available absorption chillers in CHP plants. The results of this alternative are compared with the results obtained using the conventional way of producing chilled water, that is, using mechanical vapour compression chillers in order to select the best refrigeration cycle alternative for a given refrigeration demand. This approach is implemented in the computer program XV, and tested using the data obtained in the water/LiBr absorption chiller of Bayer in Tarragona (Catalonia, Spain). The results clearly show that absorption chillers are not only a good option when low-cost process heat is available, but also when a cogeneration system is presented. In this latter case, the absorption chiller acts as a bottoming cycle by using steam generated in the heat recovery boiler. In this way, the cogeneration size can be increased producing higher benefits than those obtained with the use of compression chillers. (Author)

  11. Reconstruction of 6 MV photon spectra from measured transmission including maximum energy estimation.

    Science.gov (United States)

    Baker, C R; Peck, K K

    1997-11-01

    Photon spectra from a nominally 6 MV beam under standard clinical conditions and at higher and lower beam qualities have been derived from narrow-beam transmission measurements using a previously published three-parameter reconstruction model. Estimates of the maximum photon energy present in each spectrum were derived using a reduced number of model parameters. An estimate of the maximum contribution of background, or room, scatter to transmission measurements has been made for this study and is shown to be negligible in terms of the quality index and percentage depth-dose of the derived spectra. Percentage depth-dose data for standard beam conditions derived from the reconstructed spectrum were found to agree with direct measurements to within approximately 1% for depths of up to 25 cm in water. Quality indices expressed in terms of TPR10(20) for all spectra were found to agree with directly measured values to within 1%. The experimental procedure and reconstruction model are therefore shown to produce photon spectra whose derived quality indices and percentage depth-dose values agree with direct measurement to within expected experimental uncertainty.

  12. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.

    Science.gov (United States)

    Koppisetty, Chaitanya A K; Frank, Martin; Kemp, Graham J L; Nyholm, Per-Georg

    2013-10-28

    Computing binding energies of protein-ligand complexes including their enthalpy and entropy terms by means of computational methods is an appealing approach for selecting initial hits and for further optimization in early stages of drug discovery. Despite the importance, computational predictions of thermodynamic components have evaded attention and reasonable solutions. In this study, support vector machines are used for developing scoring functions to compute binding energies and their enthalpy and entropy components of protein-ligand complexes. The binding energies computed from our newly derived scoring functions have better Pearson's correlation coefficients with experimental data than previously reported scoring functions in benchmarks for protein-ligand complexes from the PDBBind database. The protein-ligand complexes with binding energies dominated by enthalpy or entropy term could be qualitatively classified by the newly derived scoring functions with high accuracy. Furthermore, it is found that the inclusion of comprehensive descriptors based on ligand properties in the scoring functions improved the accuracy of classification as well as the prediction of binding energies including their thermodynamic components. The prediction of binding energies including the enthalpy and entropy components using the support vector machine based scoring functions should be of value in the drug discovery process.

  13. Time Resolved Spectroscopic Studies on a Novel Synthesized Photo-Switchable Organic Dyad and Its Nanocomposite Form in Order to Develop Light Energy Conversion Devices.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Abhijit; Yadav, Somnath; Bardhan, Munmun; De, Asish; Chowdhury, Joydeep; Jana, Aindrila; Ganguly, Tapan

    2015-08-01

    UV-vis absorption, steady state and time resolved spectroscopic investigations in pico and nanosecond time domain were made in the different environments on a novel synthesized dyad, 3-(2-methoxynaphthalen-1-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (MNTMA) in its pristine form and when combined with gold (Au) nanoparticles i.e., in its nanocomposite structure. Both steady state and time resolved measurements coupled with the DFT calculations performed by using Gaussian 03 suit of software operated in the linux operating system show that though the dyad exhibits mainly the folded conformation in the ground state but on photoexcitation the nanocomposite form of dyad prefers to be in elongated structure in the excited state indicating its photoswitchable nature. Due to the predominancy of elongated isomeric form of the dyad in the excited state in presence of Au Nps, it appears that the dyad MNTMA may behave as a good light energy converter specially in its nanocomposite form. As larger charge separation rate (kcs ~ 4 x 10(8) s-1) is found relative to the rate associated with the energy wasting charge recombination processes (kcR ~ 3 x 10(5) s-1) in the nanocomposite form of the dyad, it demonstrates the suitability of constructing the efficient light energy conversion devices with Au-dyad hybrid nanomaterials.

  14. Digital fast pulse shape and height analysis on cadmium-zinc-telluride arrays for high-flux energy-resolved X-ray imaging.

    Science.gov (United States)

    Abbene, Leonardo; Principato, Fabio; Gerardi, Gaetano; Bettelli, Manuele; Seller, Paul; Veale, Matthew C; Zambelli, Nicola; Benassi, Giacomo; Zappettini, Andrea

    2018-01-01

    Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response of the system to photon energies below ( 109 Cd source) and above ( 241 Am source) the K-shell absorption energy of the CZT material was investigated, with particular attention to the mitigation of charge sharing and pile-up. The detector allows high bias voltage operation (>5000 V cm -1 ) and good energy resolution at moderate cooling (3.5% and 5% FWHM at 59.5 keV for the 500 and 250 µm arrays, respectively) by using fast pulse shaping with a low dead-time (300 ns). Charge-sharing investigations were performed using a fine time coincidence analysis (TCA), with very short coincidence time windows up to 10 ns. For the 500 µm pitch array (250 µm pitch array), sharing percentages of 36% (52%) and 60% (82%) at 22.1 and 59.5 keV, respectively, were measured. The potential of the pulse shape analysis technique for charge-sharing detection for corner/border pixels and at high rate conditions (250 kcps pixel -1 ), where the TCA fails, is also shown. Measurements demonstrated that significant amounts of charge are lost for interactions occurring in the volume of the inter-pixel gap. This charge loss must be accounted for in the correction of shared events. These activities are within the framework of an international collaboration on the development of energy-resolved

  15. Decay time shortening of fluorescence from donor-acceptor pair proteins using ultrafast time-resolved fluorescence resonance energy transfer spectroscopy

    International Nuclear Information System (INIS)

    Baba, Motoyoshi; Suzuki, Masayuki; Ganeev, Rashid A.; Kuroda, Hiroto; Ozaki, Tsuneyuki; Hamakubo, Takao; Masuda, Kazuyuki; Hayashi, Masahiro; Sakihama, Toshiko; Kodama, Tatsuhiko; Kozasa, Tohru

    2007-01-01

    We improved an ultrafast time-resolved fluorescence resonance energy transfer (FRET) spectroscopy system and measured directly the decrease in the fluorescence decay time of the FRET signal, without any entanglement of components in the picosecond time scale from the donor-acceptor protein pairs (such as cameleon protein for calcium ion indicator, and ligand-activated GRIN-Go proteins pair). The drastic decrease in lifetime of the donor protein fluorescence under the FRET condition (e.g. a 47.8% decrease for a GRIN-Go protein pair) proves the deformation dynamics between donor and acceptor fluorescent proteins in an activated state of a mixed donor-acceptor protein pair. This study is the first clear evidence of physical contact of the GRIN-Go proteins pair using time-resolved FRET system. G protein-coupled receptors (GPCRs) are the most important protein family for the recognition of many chemical substances at the cell surface. They are the targets of many drugs. Simultaneously, we were able to observe the time-resolved spectra of luminous proteins at the initial stage under the FRET condition, within 10 ns from excitation. This new FRET system allows us to trace the dynamics of the interaction between proteins at the ligand-induced activated state, molecular structure change and combination or dissociation. It will be a key technology for the development of protein chip technology

  16. Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

    International Nuclear Information System (INIS)

    Oelsner, Andreas; Rohmer, Martin; Schneider, Christian; Bayer, Daniela; Schoenhense, Gerd; Aeschlimann, Martin

    2010-01-01

    The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump-probe experiments in the femtosecond and attosecond time scale where space charge processes drastically limit the maximum number of photoemitted electrons per laser pulse. This work focuses particularly on time-of-flight analysis using a novel delay line detector. Time and energy resolved PEEM instruments with delay line detectors enable 4D imaging (x, y, Δt, E Kin ) on a true counting basis. This allows a broad range of applications from real-time observation of dynamic phenomena at surfaces to fs time-of-flight spectro-microscopy and even aberration correction. By now, these time-of-flight analysis instruments achieve intrinsic time resolutions of 108 ps absolute and 13.5 ps relative. Very high permanent measurement speeds of more than 4 million events per second in random detection regimes have been realized using a standard USB2.0 interface. By means of this performance, the time-resolved PEEM technique enables to display evolutions of spatially resolved (<25 nm) and temporal sliced images life on any modern computer. The method allows dynamics investigations of variable electrical, magnetic, and optical near fields at surfaces and great prospects in dynamical adaptive photoelectron optics. For dynamical processes in the ps time scale such as magnetic domain wall movements, the time resolution of the delay line detectors

  17. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  18. EMPLOY: Step-by-step guidelines for calculating employment effects of renewable energy investments [including annex 2

    Energy Technology Data Exchange (ETDEWEB)

    Breitschopf, Barbara [Fraunhofer Inst. for Systems and Innovation Research (Germany); Nathani, Carsten [Ruetter and Partner Socioeconomic Research and Consulting (Switzerland); Resch, Gustav [Vienna Univ. of Technology, Energy Economics Group (EEG) (Austria

    2012-07-15

    The EMPLOY project aimed to help achieve the IEA-RETD’s objective to 'empower policy makers and energy market actors through the provision of information, tools and resources' by underlining the economic and industrial impacts of renewable energy technology deployment and providing reliable methodological approaches for employment – similar to those available for the incumbent energy technologies. The EMPLOY project resulted in a comprehensive set of methodological guidelines for estimating the employment impacts of renewable energy deployment in a coherent, uniform and systematic way. Guidelines were prepared for four different methodological approaches. In the introduction section of the guidelines policy makers are guided in their choice for the most suited approach, depending on the policy questions to be answered, the data availability and budget. The guidelines were tested for the IEA-RETD member state countries and Tunisia. The results of these calculations are included in the annex to the guidelines.

  19. Feasibility study on temporal-resolved diffraction of high-energy electrons produced in femtosecond laser-plasmas

    CERN Document Server

    Zhang Jun; Cang Yu; Chen Qing; Peng Lian Mao; Wang Huai Bin; Zhong Jia Yong

    2002-01-01

    The high-energy electrons can be produced in the interaction between intense ultra-short laser pulses and Al targets. The diffraction may take place when high-energy electrons pass through an Al single crystal. Feasibility is studied using such diffraction as a method to analyze the structures of crystals

  20. Comparison of the rate constants for energy transfer in the light-harvesting protein, C-phycocyanin, calculated from Foerster`s theory and experimentally measured by time-resolved fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, Martin Paul [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    We have measured and assigned rate constants for energy transfer between chromophores in the light-harvesting protein C-phycocyanin (PC), in the monomeric and trimeric aggregation states, isolated from Synechococcus sp. PCC 7002. In order to compare the measured rate constants with those predicted by Fdrster`s theory of inductive resonance in the weak coupling limit, we have experimentally resolved several properties of the three chromophore types ({beta}{sub 155} {alpha}{sub 84}, {beta}{sub 84}) found in PC monomers, including absorption and fluorescence spectra, extinction coefficients, fluorescence quantum yields, and fluorescence lifetimes. The cpcB/C155S mutant, whose PC is missing the {beta}{sub 155} chromophore, was, useful in effecting the resolution of the chromophore properties and in assigning the experimentally observed rate constants for energy transfer to specific pathways.

  1. Brazilian national energy balance 2007. Calendar year 2006[Includes executive summary 2007]; Balanco energetico nacional 2007. Ano base 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This document reports the activities of the Ministry of Mine and Energy, during the calendar year 2006 as follows: energy analysis and aggregated data; supply and demand of energy according to source; energy consumption according to sector; energy external trading; transformation center balance; energy resources and reserves; energy and social economics; state energy data; installed capacity; energy world data.

  2. ChromAIX: A high-rate energy-resolving photon-counting ASIC for Spectral Computed Tomography

    NARCIS (Netherlands)

    Steadman, R.; Herrmann, C.; Mülhens, O.

    2011-01-01

    X-ray attenuation properties of matter (i.e. human body in medicalComputed Tomography) are energy and material dependent. This dependency is largely neglected in conventional CT techniques, which require the introduction of correction algorithms in order to prevent image artefacts. The

  3. Resolving Past Liabilities for Future Reduction in Greenhouse Gases; Nuclear Energy and the Outstanding Federal Liability of Spent Nuclear Fuel

    Science.gov (United States)

    Donohue, Jay

    This thesis will: (1) examine the current state of nuclear power in the U.S.; (2) provide a comparison of nuclear power to both existing alternative/renewable sources of energy as well as fossil fuels; (3) dissect Standard Contracts created pursuant to the National Waste Policy Act (NWPA), Congress' attempt to find a solution for Spent Nuclear Fuel (SNF), and the designation of Yucca Mountain as a repository; (4) the anticipated failure of Yucca Mountain; (5) explore WIPP as well as attempts to build a facility on Native American land in Utah; (6) examine reprocessing as a solution for SNF used by France and Japan; and, finally, (7) propose a solution to reduce GHG's by developing new nuclear energy plants with financial support from the U.S. government and a solution to build a storage facility for SNF through the sitting of a repository based on a "bottom-up" cooperative federalism approach.

  4. Time and space-resolved energy flux measurements in the divertor of the ASDEX tokamak by computerized infrared thermography

    International Nuclear Information System (INIS)

    Mueller, E.R.; Steinmetz, K.; Bein, B.K.

    1984-06-01

    A new, fully computerized and automatic thermographic system has been developed. Its two central components are an AGA THV 780 infrared camera and a PDP-11/34 computer. A combined analytical-numerical method of solving the 1-dimensional heat diffusion equation for a solid of finite thickness bounded by two parallel planes was developed. In high-density (anti nsub(e) = 8 x 10 13 cm -3 ) neutral-beam-heated (L-mode) divertor discharges in ASDEX, the power deposition on the neutralizer plates is reduced to about 10-15% of the total heating power, owing to the inelastic scattering of the divertor plasma from a neutral gas target. Between 30% and 40% of the power is missing in the global balance. The power flow inside the divertor chambers is restricted to an approximately 1-cm-thick plasma scrape-off layer. This width depends only weakly on the density and heating power. During H-phases free of Edge Localized Mode (ELM) activity the energy flow into the divertor is blocked. During H-phases with ELM activity the energy is expelled into the divertor in very short intense pulses (several MW for about one hundred μs). Sawtooth events are able to transport significant amounts of energy from the plasma core to the peripheral zones and the scrape-off layer, and they are frequently correlated with transitions from the L to the H mode. (orig./AH)

  5. Probing long-range structural order in SnPc/Ag(111) by umklapp process assisted low-energy angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Jauernik, Stephan; Hein, Petra; Gurgel, Max; Falke, Julian; Bauer, Michael

    2018-03-01

    Laser-based angle-resolved photoelectron spectroscopy is performed on tin-phthalocyanine (SnPc) adsorbed on silver Ag(111). Upon adsorption of SnPc, strongly dispersing bands are observed which are identified as secondary Mahan cones formed by surface umklapp processes acting on photoelectrons from the silver substrate as they transit through the ordered adsorbate layer. We show that the photoemission data carry quantitative structural information on the adsorbate layer similar to what can be obtained from a conventional low-energy electron diffraction (LEED) study. More specifically, we compare photoemission data and LEED data probing an incommensurate-to-commensurate structural phase transition of the adsorbate layer. Based on our results we propose that Mahan-cone spectroscopy operated in a pump-probe configuration can be used in the future to probe structural dynamics at surfaces with a temporal resolution in the sub-100-fs regime.

  6. Effect of crystallinity on UV degradability of poly[methyl(phenylsilane] by energy-resolved electrochemical impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Schauer

    2017-05-01

    Full Text Available Low stability and degradability of polymers by ambient air, UV irradiation or charge transport are major problems of molecular electronics devices. Recent research tentatively suggests that the presence of a crystalline phase may increase polymer stability due to an intensive energy trapping in the ordered phase. Using the UV degradability, we demonstrate this effect on an archetypal model σ bonded polymer - poly[methyl(phenylsilane] (PMPSi - with partially crystalline and amorphous-like layers. UV degradation with 345 nm, derived from the branching state generation rate, was inversely proportional to the crystalline phase content, changing from 4.8x1011 s-1 (partially crystalline phase to 1.8x1013 s-1 (amorphous-like phase. A model is proposed where crystallites formed by molecular packing act as effective excitation energy traps with a suppressed nonradiative recombination improving thus PMPSi film stability. The molecular packing and higher crystalline phase proportion may be a general approach for stability and degradability improvement of polymers in molecular electronics.

  7. Resolving the impasse in American energy policy. The case for a transformational R and D strategy at the U.S. Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [National University of Singapore, Lee Kuan Yew School of Public Policy Centre on Asia and Globalisation, 469C Bukit Timah Road, Singapore 259772 (Singapore)

    2009-02-15

    From its inception in 1977, the U.S. Department of Energy (DOE) has been responsible for maintaining the nation's nuclear stockpile, leading the country in terms of basic research, setting national energy goals, and managing thousands of individual programs. Despite these gains, however, the DOE research and development (R and D) model does not appear to offer the nation an optimal strategy for assessing long-term energy challenges. American energy policy continues to face constraints related to three I's: inconsistency, incrementalism, and inadequacy. An overly rigid management structure and loss of mission within the DOE continues to plague its programs and create inconsistencies in terms of a national energy policy. Various layers of stove-piping within and between the DOE and national laboratories continue to fracture collaboration between institutions and engender only slow, incremental progress on energy problems. And funding for energy research and development continues to remain inadequate, compromising the country's ability to address energy challenges. To address these concerns, an R and D organization dedicated to transformative, creative research is proposed. (author)

  8. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  9. Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method

    International Nuclear Information System (INIS)

    Rezac, K.; Klir, D.; Kubes, P.; Kravarik, J.

    2009-01-01

    We present the reconstruction of neutron energy spectra from time-of-flight signals. This technique is useful in experiments with the time of neutron production in the range of about tens or hundreds of nanoseconds. The neutron signals were obtained by a common hard X-ray and neutron fast plastic scintillation detectors. The reconstruction is based on the Monte Carlo method which has been improved by simultaneous usage of neutron detectors placed on two opposite sides from the neutron source. Although the reconstruction from detectors placed on two opposite sides is more difficult and a little bit inaccurate (it followed from several presumptions during the inclusion of both sides of detection), there are some advantages. The most important advantage is smaller influence of scattered neutrons on the reconstruction. Finally, we describe the estimation of the error of this reconstruction.

  10. Simple energy balance model resolving the seasons and the continents - Application to the astronomical theory of the ice ages

    Science.gov (United States)

    North, G. R.; Short, D. A.; Mengel, J. G.

    1983-01-01

    An analysis is undertaken of the properties of a one-level seasonal energy balance climate model having explicit, two-dimensional land-sea geography, where land and sea surfaces are strictly distinguished by the local thermal inertia employed and transport is governed by a smooth, latitude-dependent diffusion mechanism. Solutions of the seasonal cycle for the cases of both ice feedback exclusion and inclusion yield good agreements with real data, using minimal turning of the adjustable parameters. Discontinuous icecap growth is noted for both a solar constant that is lower by a few percent and a change of orbital elements to favor cool Northern Hemisphere summers. This discontinuous sensitivity is discussed in the context of the Milankovitch theory of the ice ages, and the associated branch structure is shown to be analogous to the 'small ice cap' instability of simpler models.

  11. Performance analysis on borehole energy storage system including utilization of solar thermal and photovoltaic energies; Taiyonetsu hikari riyo wo fukumu borehole energy chozo system no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T. [Tohoku University, Sendai (Japan); Yamaguchi, A. [Matsushita Electric Co. Ltd., Osaka (Japan)

    1996-10-27

    A permanent borehole energy storage system utilizing solar energy and waste heat from coolers is simulated, to be used as an air conditioning system for super-tall buildings. A 100m-long pipe is buried vertically into the ground, and a heat medium is caused to circulate in the pipe for the exchange of heat with the soil. Thirty borehole units are used, each measuring 9m{times}9m (with the pipe pitch being 3m). Solar cells occupying half of the wall surface facing south and solar collectors installed on the roof supply electric power and heat for cooling and warming. Heat in the ground is transferred mainly by conduction but also is carried by water and gas in movement. So, an analysis is carried out using an equation in which heat and water move at the same time. Because waste heat from cooling and warming systems is accumulated in the ground and none is discharged into the air, big cities will be protected from warming (from developing heat islands). As compared with the conventional boiler-aided air conditioning system, a hybrid borehole system incorporating solar collectors and solar cells will bring about an 80% reduction in CO2 emission and annual energy consumption. 7 refs., 3 figs., 4 tabs.

  12. Long term variability of Cygnus X-1. VI. Energy-resolved X-ray variability 1999-2011

    NARCIS (Netherlands)

    Grinberg, V.; Pottschmidt, K.; Böck, M.; Schmid, C.; Nowak, M.A.; Uttley, P.; Tomsick, J.A.; Rodriguez, J.; Hell, N.; Markowitz, A.; Bodaghee, A.; Cadolle Bel, M.; Rothschild, R.E.; Wilms, J.

    2014-01-01

    We present the most extensive analysis of Fourier-based X-ray timing properties of the black hole binary Cygnus X-1 to date, based on 12 years of bi-weekly monitoring with RXTE from 1999 to 2011. Our aim is a comprehensive study of timing behavior across all spectral states, including the elusive

  13. A distribution-based method to resolve single-molecule Förster resonance energy transfer observations.

    Science.gov (United States)

    Backović, Mihailo; Price, E Shane; Johnson, Carey K; Ralston, John P

    2011-04-14

    We introduce a new approach to analyze single-molecule Förster resonance energy transfer (FRET) data. The method recognizes that FRET efficiencies assumed by traditional ensemble methods are unobservable for single molecules. We propose instead a method to predict distributions of FRET parameters obtained directly from the data. Distributions of FRET rates, given the data, are precisely defined using Bayesian methods and increase the information derived from the data. Benchmark comparisons find that the response time of the new method outperforms traditional methods of averaging. Our approach makes no assumption about the number or distribution of underlying FRET states. The new method also yields information about joint parameter distributions going beyond the standard framework of FRET analysis. For example, the running distribution of FRET means contains more information than any conceivable single measure of FRET efficiency. The method is tested against simulated data and then applied to a pilot-study sample of calmodulin molecules immobilized in lipid vesicles, revealing evidence for multiple dynamical states.

  14. The MC-DFT approach including the SCS-MP2 energies to the new Minnesota-type functionals.

    Science.gov (United States)

    Liu, Po-Chun; Hu, Wei-Ping

    2014-08-05

    We have applied the multicoefficient density functional theory (MC-DFT) to four recent Minnesota functionals, including M06-2X, M08-HX, M11, and MN12-SX on the performance of thermochemical kinetics. The results indicated that the accuracy can be improved significantly using more than one basis set. We further included the SCS-MP2 energies into MC-DFT, and the resulting mean unsigned errors (MUEs) decreased by approximately 0.3 kcal/mol for the most accurate basis set combinations. The M06-2X functional with the simple [6-311+G(d,p)/6-311+G(2d,2p)] combination gave the best performance/cost ratios for the MC-DFT and MC-SCS-MP2|MC-DFT methods with MUE of 1.58 and 1.22 kcal/mol, respectively. Copyright © 2014 Wiley Periodicals, Inc.

  15. Investigation of the quaternary structure of an ABC transporter in living cells using spectrally resolved resonance energy transfer

    Science.gov (United States)

    Singh, Deo Raj

    Forster resonance energy transfer (FRET) has become an important tool to study proteins inside living cells. It has been used to explore membrane protein folding and dynamics, determine stoichiometry and geometry of protein complexes, and measure the distance between two molecules. In this dissertation, we use a method based on FRET and optical micro-spectroscopy (OptiMiS) technology, developed in our lab, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of an ABC transporter in living cells. Specifically, the transporter we investigate originates from the pathogen Pseudomonas aeruginosa, which is a Gram-negative bacterium with several virulence factors, lipopolysaccharides being one of them. This pathogen coexpresses two unique forms of lipopolysaccharides on its surface, the A- and B-bands. The A-band polysaccharides, synthesized in the cytoplasm, are translocated into the periplasm through an ATP-binding-cassette (ABC) transporter consisting of a transmembranar protein, Wzm, and a nucleotide-binding protein, Wzt. In P. aeruginosa, all of the biochemical studies of A-band LPS are concentrated on the stages of the synthesis and ligation of polysaccharides (PSs), leaving the export stage involving ABC transporter unexplored. The mode of PS export through ABC transporters is still unknown. This difficulty is due to the lack of information about sub-unit composition and structure of this bi-component ABC transporter. Using the FRET-OptiMiS combination method developed by our lab, we found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the

  16. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, W. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficient and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia

  17. MOCCA: A 4k-Pixel Molecule Camera for the Position- and Energy-Resolving Detection of Neutral Molecule Fragments at CSR

    Science.gov (United States)

    Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.

    2016-08-01

    We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.

  18. Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm

    International Nuclear Information System (INIS)

    Soheyli, Saman; Shafiei Mayam, Mohamad Hossein; Mehrjoo, Mehri

    2016-01-01

    Highlights: • Considering renewable energy resources as the main prime movers in CCHP systems. • Simultaneous application of FEL and FTL by optimizing two probability functions. • Simultaneous optimization the equipment and penalty factors by CC-MOPSO algorithm. • Reducing fuel consumption and pollution up to 263 and 353 times, respectively. - Abstract: Due to problems, such as, heat losses of equipment, low energy efficiency, increasing pollution and the fossil fuels consumption, combined cooling, heating, and power (CCHP) systems have attracted lots of attention during the last decade. In this paper, for minimizing fossil fuel consumption and pollution, a novel CCHP system including photovoltaic (PV) modules, wind turbines, and solid oxide fuel cells (SOFC) as the prime movers is considered. Moreover, in order to minimize the excess electrical and heat energy production of the CCHP system and so reducing the need for the local power grid and any auxiliary heat production system, following electrical load (FEL) and following thermal load (FTL) operation strategies are considered, simultaneously. In order to determine the optimal number of each system component and also set the penalty factors in the used penalty function, a co-constrained multi objective particle swarm optimization (CC-MOPSO) algorithm is applied. Utilization of the renewable energy resources, the annual total cost (ATC) and the CCHP system area are considered as the objective functions. It also includes constraints such as, loss of power supply probability (LPSP), loss of heat supply probability (LHSP), state of battery charge (SOC), and the number of each CCHP component. A hypothetical hotel in Kermanshah, Iran is conducted to verify the feasibility of the proposed system. 10 wind turbines, 430 PV modules, 11 SOFCs, 106 batteries and 2 heat storage tanks (HST) are numerical results for the spring as the best season in terms of decreasing cost and fuel consumption. Comparing the results

  19. Development and Implementation of a Battery-Electric Light-Duty Class 2a Truck including Hybrid Energy Storage

    Science.gov (United States)

    Kollmeyer, Phillip J.

    This dissertation addresses two major related research topics: 1) the design, fabrication, modeling, and experimental testing of a battery-electric light-duty Class 2a truck; and 2) the design and evaluation of a hybrid energy storage system (HESS) for this and other vehicles. The work begins with the determination of the truck's peak power and wheel torque requirements (135kW/4900Nm). An electric traction system is then designed that consists of an interior permanent magnet synchronous machine, two-speed gearbox, three-phase motor drive, and LiFePO4 battery pack. The battery pack capacity is selected to achieve a driving range similar to the 2011 Nissan Leaf electric vehicle (73 miles). Next, the demonstrator electric traction system is built and installed in the vehicle, a Ford F150 pickup truck, and an extensive set of sensors and data acquisition equipment is installed. Detailed loss models of the battery pack, electric traction machine, and motor drive are developed and experimentally verified using the driving data. Many aspects of the truck's performance are investigated, including efficiency differences between the two-gear configuration and the optimal gear selection. The remainder focuses on the application of battery/ultracapacitor hybrid energy storage systems (HESS) to electric vehicles. First, the electric truck is modeled with the addition of an ultracapacitor pack and a dc/dc converter. Rule-based and optimal battery/ultracapacitor power-split control algorithms are then developed, and the performance improvements achieved for both algorithms are evaluated for operation at 25°C. The HESS modeling is then extended to low temperatures, where battery resistance increases substantially. To verify the accuracy of the model-predicted results, a scaled hybrid energy storage system is built and the system is tested for several drive cycles and for two temperatures. The HESS performance is then modeled for three variants of the vehicle design, including the

  20. 75 FR 52528 - FC Landfill Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission FC Landfill Energy, LLC; Supplemental Notice That Initial Market- Based Rate... notice in the above-referenced proceeding, of FC Landfill Energy, LLC's application for market-based rate...

  1. 75 FR 61747 - Discount Energy Group, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-10-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Discount Energy Group, LLC; Supplemental Notice That Initial Market-Based... supplemental notice in the above-referenced proceeding of Discount Energy Group, LLC's application for market...

  2. 77 FR 66976 - Star Energy Partners LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-11-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Star Energy Partners LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of Star Energy Partners LLC's application for market-based rate authority, with an...

  3. 75 FR 59260 - HOP Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2010-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission HOP Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing... the above-referenced proceeding of HOP Energy, LLC's application for market-based rate authority, with...

  4. 77 FR 47624 - Escanaba Green Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Escanaba Green Energy, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Escanaba Green Energy, LLC's application for market-based rate authority...

  5. 76 FR 52326 - Green Mountain Energy Company; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-08-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Green Mountain Energy Company; Supplemental Notice That Initial Market-Based... above-referenced proceeding of Green Mountain Energy Company's application for market-based rate...

  6. 75 FR 59259 - Turner Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2010-09-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Turner Energy, LLC; Supplemental Notice That Initial Market-Based Rate... notice in the above-referenced proceeding of Turner Energy, LLC's application for market-based rate...

  7. 78 FR 4143 - Energy Storage Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-01-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Storage Holdings, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Energy Storage Holdings, LLC's application for market-based rate...

  8. Material decomposition through weighted imaged subtraction in dual-energy spectral mammography with an energy-resolved photon-counting detector using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Ji Soo; Kang, Soon Cheol; Lee, Seung Wan [Konyang University, Daejeon (Korea, Republic of)

    2017-09-15

    Mammography is commonly used for screening early breast cancer. However, mammographic images, which depend on the physical properties of breast components, are limited to provide information about whether a lesion is malignant or benign. Although a dual-energy subtraction technique decomposes a certain material from a mixture, it increases radiation dose and degrades the accuracy of material decomposition. In this study, we simulated a breast phantom using attenuation characteristics, and we proposed a technique to enable the accurate material decomposition by applying weighting factors for the dual-energy mammography based on a photon-counting detector using a Monte Carlo simulation tool. We also evaluated the contrast and noise of simulated breast images for validating the proposed technique. As a result, the contrast for a malignant tumor in the dual-energy weighted subtraction technique was 0.98 and 1.06 times similar than those in the general mammography and dual-energy subtraction techniques, respectively. However the contrast between malignant and benign tumors dramatically increased 13.54 times due to the low contrast of a benign tumor. Therefore, the proposed technique can increase the material decomposition accuracy for malignant tumor and improve the diagnostic accuracy of mammography.

  9. Resolving the Distribution of Energy Critical Elements in Ore Systems through in situ Chemical mapping of Mineral Phases

    Science.gov (United States)

    McClenaghan, Sean H.

    2017-04-01

    The mineral sphalerite is found in a wide-range of ore forming conditions including sedimentary and volcanogenic massive sulphides, as well as epigenetic mineralization associated with intrusive settings such as porphyries, skarns and epithermal veins. Sphalerite is a known host for In, Sn, Ge, Te, and Ga; these represent valuable commodities increasing the value of Zn production worldwide. These elements along with their deleterious counterparts Se, Hg, Tl, and Cd can reveal much about the genesis and evolution of a mineralizing system. From the standpoint of understanding the genesis of various ore systems, mineral chemistry, in particular the accommodation of trace elements in the sphalerite structure, is an ideal proxy for comparing both inter- and intra-deposit variations in hydrothermal geochemistry as well as enabling broad comparisons across a wide spectrum of mineral deposit types. The mineral chemistry of sphalerite will often differ between deposits of an ore district and can even exhibit considerable variability across individual mineral grains in response to evolving hydrothermal fluids and distinct fluid sources. Recent improvements in the field of in situ microanalysis have coupled advances in ICP-MS technology with newer classes of UV Excimer lasers and sample cells with smaller active volumes. This has effectively decreased the amount of ablated material required for analysis, allowing for more discrete analyses and permitting micro-chemical mapping at much smaller scales (important to note that while bulk analyses remain a good estimate of bulk metal contents, they do not portray the heterogeneous nature of trace elements in mineral systems, which could indicate the fertility of a system and the delineation of vein sphalerite enriched in ECE's.

  10. Optimal fuzzy logic-based PID controller for load-frequency control including superconducting magnetic energy storage units

    International Nuclear Information System (INIS)

    Pothiya, Saravuth; Ngamroo, Issarachai

    2008-01-01

    This paper proposes a new optimal fuzzy logic-based-proportional-integral-derivative (FLPID) controller for load frequency control (LFC) including superconducting magnetic energy storage (SMES) units. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the multiple tabu search (MTS) algorithm is applied to simultaneously tune PID gains, membership functions and control rules of FLPID controller to minimize frequency deviations of the system against load disturbances. The MTS algorithm introduces additional techniques for improvement of search process such as initialization, adaptive search, multiple searches, crossover and restarting process. Simulation results explicitly show that the performance of the optimum FLPID controller is superior to the conventional PID controller and the non-optimum FLPID controller in terms of the overshoot, settling time and robustness against variations of system parameters

  11. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  12. A furnace for the in situ study of the formation of inorganic solids at high temperature using time-resolved energy-dispersive x-ray diffraction

    Science.gov (United States)

    Geselbracht, Margret J.; Walton, Richard I.; Cowell, E. Sarah; Millange, Franck; O'Hare, Dermot

    2000-11-01

    The design, construction, and use of a furnace from which time-resolved x-ray diffraction data may be measured from reacting mixtures of solids or of solids and liquids is described. The furnace is a vertical tube design, constructed from commercially available components, and can operate at temperatures of up to 1000 °C. The apparatus is designed to heat sample tubes of up to 3 cm diameter. The use of high-intensity synchrotron-generated white-beam x rays allows the tube and its contents to be penetrated; thus x-ray diffraction data can be measured from reactions taking place in laboratory-sized reaction vessels. The energy-dispersive diffraction geometry allows rapid data collection (of the order of seconds); hence reactions can be followed continuously in real time. The use of the furnace is demonstrated by results from experiments performed on Station 16.4 of the Daresbury Synchrotron Radiation Source, UK. Two distinct reaction types are studied, both used to prepare the layered perovskite RbCa2Nb3O10: first, a solid state route at 800 °C and second a flux route, performed in molten RbCl, also at 800 °C.

  13. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  14. Analysis of Implementing Lifetime Energy Cost, Including Fully Burdened Cost of Fuel and Energy Footprints of Contractors, as Mandatory Decision Factors in Navy Acquisition

    Science.gov (United States)

    2010-06-01

    Cost Of Energy, Energy Efficiency, Energy Footprint, Mandatory Evaluation Factors, Navy Acquisition, Energy Management Systems, Corporate Social Responsibility 16...Chairman of the Joint Chiefs of Staff CPG Comprehensive Procurement Guidelines CSR Corporate Social Responsibility DAG Defense Acquisition... corporate social responsibility (CSR), in the pursuit of maximizing profit, corporations are incentivized, at least theoretically, to produce their goods

  15. MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity

    Science.gov (United States)

    Zheng, Jingjing; Mielke, Steven L.; Clarkson, Kenneth L.; Truhlar, Donald G.

    2012-08-01

    processors) Operating system: Linux/Unix/Mac OS RAM: 2 Mbytes Classification: 16.3, 16.12, 23 Nature of problem: Calculation of the partition functions and thermodynamic functions (standard-state energy, enthalpy, entropy, and free energy as functions of temperatures) of complex molecules involving multiple torsional motions. Solution method: The multi-structural approximation with torsional anharmonicity (MS-T). The program also provides results for the multi-structural local harmonic approximation [1]. Restrictions: There is no limit on the number of torsions that can be included in either the Voronoi calculation or the full MS-T calculation. In practice, the range of problems that can be addressed with the present method consists of all multi-torsional problems for which one can afford to calculate all the conformations and their frequencies. Unusual features: The method can be applied to transition states as well as stable molecules. The program package also includes the hull program for the calculation of Voronoi volumes and six utility codes that can be used as stand-alone programs to calculate reduced moment-of-inertia matrices by the method of Kilpatrick and Pitzer, to generate conformational structures, to calculate, either analytically or by Monte Carlo sampling, volumes for torsional subdomain defined by Voronoi tessellation of the conformational subspace, to generate template input files, and to calculate one-dimensional torsional partition functions using the torsional eigenvalue summation method. Additional comments: The program package includes a manual, installation script, and input and output files for a test suite. Running time: There are 24 test runs. The running time of the test runs on a single processor of the Itasca computer is less than 2 seconds. J. Zheng, T. Yu, E. Papajak, I.M. Alecu, S.L. Mielke, D.G. Truhlar, Practical methods for including torsional anharmonicity in thermochemical calculations of complex molecules: The internal-coordinate multi

  16. High Flux Energy-Resolved Photon-Counting X-Ray Imaging Arrays with CdTe and CdZnTe for Clinical CT

    International Nuclear Information System (INIS)

    Barber, William C.; Hartsough, Neal E.; Gandhi, Thulasidharan; Iwanczyk, Jan S.; Wessel, Jan C.; Nygard, Einar; Malakhov, Nail; Wawrzyniak, Gregor; Dorholt, Ole; Danielsen, Roar

    2013-06-01

    We have fabricated fast room-temperature energy dispersive photon counting x-ray imaging arrays using pixellated cadmium zinc (CdTe) and cadmium zinc telluride (CdZnTe) semiconductors. We have also fabricated fast application specific integrated circuits (ASICs) with a two dimensional (2D) array of inputs for readout from the CdZnTe sensors. The new CdTe and CdZnTe sensors have a 2D array of pixels with a 0.5 mm pitch and can be tiled in 2D. The new 2D ASICs have four energy discriminators per pixel with a linear energy response across the entire dynamic range for clinical CT. The ASICs can also be tiled in 2D and are designed to fit within the active area of the 2D sensors. We have measured several important performance parameters including; an output count rate (OCR) in excess of 20 million counts per second per square mm, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor less than 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdTE and CdZnTe sensors incurring very little additional capacitance. We present a comparison of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, and noise floor. (authors)

  17. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    μm. - Highlights: • Cross section of yttria partially stabilised zirconia (YPSZ)–porcelain prosthesis • Energy dispersive X-ray spectroscopy shows 2–6 μm elemental diffusion zone. • Transmission electron microscopy shows voids in near interface porcelain. • Complex near interface YPSZ microstructure shows grains embedded in porcelain. • Spatially resolved micropillar compression reveals modulus and strength variation.

  18. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction.

    Science.gov (United States)

    Xiong, Jinglin; Pecchi, Valentina Gonzalez; Qui, Min; Ivanov, Andrey A; Mo, Xiulei; Niu, Qiankun; Chen, Xiang; Fu, Haian; Du, Yuhong

    Epigenetic modulators play critical roles in reprogramming of cellular functions, emerging as a new class of promising therapeutic targets. Nuclear receptor binding SET domain protein 3 (NSD3) is a member of the lysine methyltransferase family. Interestingly, the short isoform of NSD3 without the methyltransferase fragment, NSD3S, exhibits oncogenic activity in a wide range of cancers. We recently showed that NSD3S interacts with MYC, a central regulator of tumorigenesis, suggesting a mechanism by which NSD3S regulates cell proliferation through engaging MYC. Thus, small molecule inhibitors of the NSD3S/MYC interaction will be valuable tools for understanding the function of NSD3 in tumorigenesis for potential cancer therapeutic discovery. Here we report the development of a cell lysate-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) format to monitor the interaction of NSD3S with MYC. In our TR-FRET assay, anti-Flag-terbium and anti-glutathione S-transferase (GST)-d2, a paired fluorophores, were used to indirectly label Flag-tagged NSD3 and GST-MYC in HEK293T cell lysates. This TR-FRET assay is robust in a 1,536-well uHTS format, with signal-to-background >8 and a Z' factor >0.7. A pilot screening with the Spectrum library of 2,000 compounds identified several positive hits. One positive compound was confirmed to disrupt the NSD3/MYC interaction in an orthogonal protein-protein interaction assay. Thus, our optimized uHTS assay could be applied to future scaling up of a screening campaign to identify small molecule inhibitors targeting the NSD3/MYC interaction.

  20. Development of Lab-to-Fab Production Equipment Across Several Length Scales for Printed Energy Technologies, Including Solar Cells

    DEFF Research Database (Denmark)

    Hösel, Markus; Dam, Henrik Friis; Krebs, Frederik C

    2015-01-01

    We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll-to-roll m......We describe and review how the scaling of printed energy technologies not only requires scaling of the input materials but also the machinery used in the processes. The general consensus that ultrafast processing of technologies with large energy capacity can only be realized using roll...... the lower end of the industrial scale. The machinery bridges the gap through firstly achieving improved ink efficiency without surface contact, followed by better ink efficiency at higher speeds, and finally large-area processing at high speed with very high ink efficiency....

  1. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  2. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    NARCIS (Netherlands)

    Rogers, P.J.; Hogenkamp, P.S.; Graaf, de Kees; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; Mela, D.J.

    2016-01-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a

  3. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    Science.gov (United States)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  4. An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units

    International Nuclear Information System (INIS)

    Tascikaraoglu, A.; Erdinc, O.; Uzunoglu, M.; Karakas, A.

    2014-01-01

    Highlights: • Feasibility of virtual power plant concept for electricity market participation. • An economic operation based adaptive load dispatching strategy. • A new meteorological data forecasting algorithm. • Long term scheduling of virtual power plant components. - Abstract: The increasing awareness on the risky state of conventional energy sources in terms of future energy supply security and health of environment has promoted the research activities on alternative energy systems. However, due to the fact that the power production of main alternative sources such as wind and solar is directly related with meteorological conditions, these sources should be combined with dispatchable energy sources in a hybrid combination in order to ensure security of demand supply. In this study, the evaluation of such a hybrid system consisting of wind, solar, hydrogen and thermal power systems in the concept of virtual power plant strategy is realized. An economic operation-based load dispatching strategy that can interactively adapt to the real measured wind and solar power production values is proposed. The adaptation of the load dispatching algorithm is provided by the update mechanism employed in the meteorological condition forecasting algorithms provided by the combination of Empirical Mode Decomposition, Cascade-Forward Neural Network and Linear Model through a fusion strategy. Thus, the effects of the stochastic nature of solar and wind energy systems are better overcome in order to participate in the electricity market with higher benefits

  5. A neural network potential energy surface for the F + CH4reaction including multiple channels based on coupled cluster theory.

    Science.gov (United States)

    Chen, Jun; Xu, Xin; Liu, Shu; Zhang, Dong H

    2018-03-22

    We report here a new global and full dimensional potential energy surface (PES) for the F + CH4 reaction. This PES was constructed by using neural networks (NN) fitting to about 99 000 ab initio energies computed at the UCCSD(T)-F12a/aug-cc-pVTZ level of theory, and the correction terms considering the influence of a larger basis set as well as spin-orbit couplings were further implemented with a hierarchial scheme. This PES, covering both the abstraction and substitution channels, has an overall fitting error of 8.24 meV in total, and 4.87 meV for energies within 2.5 eV using a segmented NN fitting method, and is more accurate than the previous PESs.

  6. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  7. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    Science.gov (United States)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  8. Energy conservation in the Netherlands 1995-2006. Including decomposition of the energy consumption trend; Energiebesparing in Nederland 1995-2007. Inclusief decompositie energieverbruikstrend

    Energy Technology Data Exchange (ETDEWEB)

    Gerdes, J.; Boonekamp, P.G.M. [ECN Beleidsstudies, Petten (Netherlands); Vreuls, H. [SenterNovem, Utrecht (Netherlands); Verdonk, M. [Planbureau voor de Leefomgeving PBL, Bilthoven (Netherlands); Pouwelse, J.W. [Centraal Planbureau CPB, Den Haag (Netherlands)

    2009-08-15

    Realized energy savings in the Netherlands for the period 1995-2007 are presented for the sectors households, industry, agriculture, services, transport, refineries and electricity, and on a national level. The figures on energy savings are based on the 'Protocol Monitoring Energy Savings', a common methodology and database for calculating energy savings. Results are presented for savings on final energy use, conversion in end-use sectors (co-generation) and conversion in the energy sector. National savings for the period 1995-2007 equal 0.9% per year on average, with a decreasing tendency in recent years. Continuing the trends of last year, the highest figure for end-use sectors is found for agriculture (2.6%) and the lowest figure for transport (0.1%). An uncertainty analysis reveals that the margin for the national savings figure is {+-}0.3 percent-point. At the request of PBL, a decomposition of the change in energy use into 14 different factors has been conducted. This shows that the growth of energy use from 1995 to 2007, if no savings would have been achieved, would have been almost twice as high. [Dutch] In dit rapport worden de energiebesparingcijfers gepresenteerd voor de periode 1995-2007, berekend volgens het Protocol Monitoring Energiebesparing (PME). De besparing wordt berekend voor de verbruiksectoren industrie, huishoudens, transport, land- en tuinbouw, diensten en raffinaderijen, de elektriciteitscentrales en het nationale niveau.

  9. Calculations of the one-body electronic structure of the strongly correlated systems including self-energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Sanchez-Lopez, M.M.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Edifici Cn, Universitat Autonoma de Barcelona 08193, Bellaterra, Barcelona (Spain)

    1996-10-01

    We give a method to obtain the quasiparticle band structure and renormalized density of states by diagonalizing the interacting system Green function. This method operates for any self-energy approximation appropriated to strongly correlated systems. Application to CeSi{sub 2} and YBa{sub 2}Cu{sub 3}O{sub 7} is analyzed as a probe for this band calculation method. {copyright} {ital 1996 The American Physical Society.}

  10. 48 CFR 1552.239-103 - Acquisition of Energy Star Compliant Microcomputers, Including Personal Computers, Monitors and...

    Science.gov (United States)

    2010-10-01

    ... Compliant Microcomputers, Including Personal Computers, Monitors and Printers. 1552.239-103 Section 1552.239... Star Compliant Microcomputers, Including Personal Computers, Monitors and Printers. As prescribed in... Personal Computers, Monitors, and Printers (APR 1996) (a) The Contractor shall provide computer products...

  11. Ernest Orlando Lawrence Awards Ceremony for 2011 Award Winners (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    International Nuclear Information System (INIS)

    Chu, Steven

    2012-01-01

    The winners for 2011 of the Department of Energy's Ernest Orlando Lawrence Award were recognized in a ceremony held May 21, 2012. Dr. Steven Chu and others spoke of the importance of the accomplishments and the prestigious history of the award. The recipients of the Ernest Orlando Lawrence Award for 2011 are: Riccardo Betti (University of Rochester); Paul C. Canfield (Ames Laboratory); Mark B. Chadwick (Los Alamos National Laboratory); David E. Chavez (Los Alamos National Laboratory); Amit Goyal (Oak Ridge National Laboratory); Thomas P. Guilderson (Lawrence Livermore National Laboratory); Lois Curfman McInnes (Argonne National Laboratory); Bernard Matthew Poelker (Thomas Jeffereson National Accelerator Facility); and Barry F. Smith (Argonne National Laboratory).

  12. TeV-scale jet energy calibration using multijet events including close-by jet effects at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2013-01-01

    With the large number of proton-proton collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\\sqrt{s}=7$ TeV in 2011, it became possible to probe the jet transverse momentum (pT) scale beyond the TeV range in events with multijet production. The jet energy scale (JES) uncertainty, which is one of the most important sources of systematic uncertainties for new physics searches at high pT, is evaluated using in-situ techniques based on the pT balance in events with a photon or $Z$ boson as well as in dijet events. Exploiting the pT balance technique between a system of low-pT jets and a leading jet at high pT in multijet events, with the calibration (provided by the gamma-jet and Z+jet events) applied to the low-pT jets, allows the extension of the in-situ determination of JES calibration and uncertainty to the TeV-scale. Results are presented for the JES uncertainty using the multijet balance technique based on the ATLAS data collected in 2011 corresponding to an integrated luminosity...

  13. Time-resolved resonance Raman spectroscopy of 1,3,5-hexatrienes in the lowest excited triplet state. The potential energy surface in T1

    NARCIS (Netherlands)

    Wilbrandt, R.; Langkilde, F.W.; Brouwer, A.M.; Negri, F.; Orlandi, G.

    1990-01-01

    Time-resolved resonance Raman spectroscopy is applied to the study of the T1 state of 1,3,5-hexatriene and deuteriated and methylated derivatives in solution. The technique is described briefly. The experimentally obtained resonance Raman spectra are discussed in the light of theoretical Quantum

  14. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism.

    Science.gov (United States)

    Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2015-10-29

    Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.

  15. FY 1997 report on the field survey on country situations including efficient energy consumption. Vietnam; 1997 nendo chosa hokokusho (energy shohi koritsuka nado chiiki josei genchi chosa). Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Field survey was made on the current state of and issues on energy in Vietnam. In Vietnam, firewood is in wide use as non-commercial energy, and sums to a half of total energy consumption. Other energies such as hydroelectric power, petroleum, natural gas and coal are self-sustainable. Commercial energy consumption in 1995 is estimated at 10,070,000t in oil equivalent, which is broken down into 23% for coal, 42% in oil, 5% for natural gas and 30% for electricity. Abundant water resources will form the mainstay of future electric power supply. Commercial production of oil started in 1986 becoming an oil exporting country. Several promising natural gas fields were discovered as the result of the exploration by foreign capital. Coal deposits are estimated to be nearly 3.5 billion tons, and most of them are anthracite. Electric power demand is growing at a higher rate than the economic growth of Vietnam. The growth rate of electric power demand is set to be 1.3 times that of GDP. Since construction funds for new plants cannot be satisfied with the national budget and domestic investment alone, the country is expecting foreign capitals. 21 figs., 36 tabs.

  16. Study Modules for Calculus-Based General Physics. [Includes Modules 6 and 7: Work and Energy; Applications of Newton's Laws].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  17. 78 FR 20910 - Hess Energy Marketing, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-04-08

    ... Marketing, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... Marketing, LLC's application for market-based rate authority, with an accompanying rate schedule, noting... interventions in lieu of paper, using the FERC Online links at http://www.ferc.gov . To facilitate electronic...

  18. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  19. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  20. Polarization phenomena in nucleon-nucleon scattering at intermediate and high energies including the present status of dibaryons

    Energy Technology Data Exchange (ETDEWEB)

    Yokosawa, A.

    1985-01-01

    We review experimental results concerning polarization phenomena in nucleon-nucleon scattering in which both the elastic scattering and hadron-production reaction are included. We also present summary of S = 0 dibaryon resonances and candidates by reviewing experimental data in the nucleon-nucleon system, ..gamma..d channel, ..pi..d elastic scattering, pp ..-->.. ..pi..d channel, deuteron break-up reactions, and narrow structures in missing-mass spectra. 93 refs., 26 figs.

  1. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik

    2012-01-01

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops...... and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow...

  4. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    . 1. Introduction. Time resolved spectroscopy is an important tool for study- ing energy and charge transfer processes, coupling of electronic and vibrational degrees of freedom, vibrational and conformational relaxation, isomerization, etc. The.

  5. Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

  6. Time-resolved studies

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  7. Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies.

    Science.gov (United States)

    Rogers, P J; Hogenkamp, P S; de Graaf, C; Higgs, S; Lluch, A; Ness, A R; Penfold, C; Perry, R; Putz, P; Yeomans, M R; Mela, D J

    2016-03-01

    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific 'learning' paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and body mass index (-0.002 kg m(-)(2) per year, 95% confidence interval (CI) -0.009 to 0.005). Meta-analysis of short-term randomized controlled trials (129 comparisons) showed reduced total EI for LES versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95% CI -122 to -66), with no difference versus water (-2 kcal, 95% CI -30 to 26). This was consistent with EI results from sustained intervention randomized controlled trials (10 comparisons). Meta-analysis of sustained intervention randomized controlled trials (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95% CI -2.28 to -0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95% CI -2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human randomized controlled trials indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (for example, water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also

  8. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  9. Research report for fiscal 1998. Study of utilization of biomass including foods in energy industry; 1998 nendo shokubutsu nado no biomass no energy riyo ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Rice being produced as food is taken up out of various types of biomass, and a feasibility study from the viewpoints of technology and economy is conducted as to its use in the energy industry. The production of ethanol from rice, though it has no past record worth discussion, is similar to the production of ethanol from other biomass resources in terms of technology and economy. The problem is that the production cost of rice is far higher than those of other materials. It is expected, however, that there will a large-scale production cost reduction and an increase in the yield when novel cultivation techniques are introduced in the future. It is also expected that alcohol from rice will be sufficiently competitive with alcohol from molasses or the like when the exploitation of cellulose-family by-products such as husks becomes feasible. The study on this occasion deals solely with the effective use of farmland and the surplus rice. A confrontation between rice as a biomass resource and rice as a food has to be avoided as much as possible in the long term because it may cause a price rise and compromise the security of food supply. That is, in discussing this matter, it is mandatory to draw a very definite line between rice as a food and rice as an alcohol production material. (NEDO)

  10. Methods to include the influence of thermal bonds on the calculation of the energy performance of buildings and their influence on the heat demand for building heating

    Science.gov (United States)

    Valachova, D.; Zdrazilova, N.; Chudikova, B.

    2018-02-01

    The paper deals with the effect of thermal bonds on heat transmission of a building envelope. Then it deals with ways to include of thermal bonds in the calculation of heat loss through the building envelope and the calculation of energy efficiency of buildings. A solution of thermal bonds is very important, because it fundamentally influences the energy efficiency of the buildings. It is important to realize that building envelope comprises not only the peripheral surface structures but also thermal bonds in areas where building structures join.

  11. Future perspectives for climate action. How economics can prescribe more than an energy charge. An essay on how economics can contribute to resolving the climate problem

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, S.

    2013-07-15

    How can economics contribute to designing a 'solution' for the emerging climate crisis? This essay attempts to answer that question by investigating the roots of economic thinking and analyzing the coordination issues that are at the heart of the climate problem. While economics has been a protagonist in climate change debates by providing economic instruments such as tradeable emission permits, it has also been an antagonist by calling into doubt the need for mitigation, the benefits of which were held not to outweigh the costs. This essay argues that climate change is primarily a social equity issue and that economics is a poor science for analyzing such issues. Discussion models in economics and climate change science are fundamentally different, moreover, which means the two disciplines are prone to mutual misunderstanding. Nonetheless, to resolve the climate problem, climate science could well benefit from economic thinking, and especially from theoretical ideas from institutional economics concerning the design of effective policy instruments.

  12. Comparison of approaches to Total Quality Management. Including an examination of the Department of Energy`s position on quality management

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1994-03-01

    This paper presents a comparison of several qualitatively different approaches to Total Quality Management (TQM). The continuum ranges from management approaches that are primarily standards -- with specific guidelines, but few theoretical concepts -- to approaches that are primarily philosophical, with few specific guidelines. The approaches to TQM discussed in this paper include the International Organization for Standardization (ISO) 9000 Standard, the Malcolm Baldrige National Quality Award, Senge`s the Learning Organization, Watkins and Marsick`s approach to organizational learning, Covey`s Seven Habits of Highly Successful People, and Deming`s Fourteen Points for Management. Some of these approaches (Deming and ISO 9000) are then compared to the DOE`s official position on quality management and conduct of operations (DOE Orders 5700.6C and 5480.19). Using a tabular format, it is shown that while 5700.6C (Quality Assurance) maps well to many of the current approaches to TQM, DOE`s principle guide to management Order 5419.80 (Conduct of Operations) has many significant conflicts with some of the modern approaches to continuous quality improvement.

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    International Nuclear Information System (INIS)

    Goyal, Amit

    2012-01-01

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R and D resulted in 7 R and D 100 Awards including the 2010 R and D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  16. Time resolved studies of dual emission and photoinduced energy transfer in a Tris methoxy coumarin derivative of a cryptand and its complex with Tb(NO3)3

    International Nuclear Information System (INIS)

    Samanta, Subhodip; Roy, Maitrayee Basu; Ghosh, Sanjib

    2006-01-01

    The paper reports time resolved emission studies in different solvents of the dual emission observed in the macrotricyclic cryptand (L) where the three secondary amino nitrogen have been derivatized with methoxy coumarin at room temperature and at 77K. The emission from the 'locally excited monomer state' has a lifetime less than 1ns while the other emitting state is an exciplex state with a lifetime of 4-5ns depending on the solvent. The lifetime is found to increase significantly in the presence of protons and at 77K exhibiting photoinduced electron transfer (PET) in the system L. The system exhibits photoinduced energy transfer (ET) in its Tb(III) complex using NO 3 - ion as counteranion at room temperature as well as at 77K. The rate constants for energy transfer from coumarin moiety to Tb(III) have been evaluated at room temperature and at 77K following the decay of 5 D 4 -> 7 F 5 emission of Tb(III). The results indicate that energy transfer takes place from the lowest triplet state of coumarin moiety to Tb(III) by exchange mechanism. The energy transfer (ET) rate constants at room temperature and at 77K have been evaluated and interpreted using the geometry of L obtained by theoretical calculation

  17. Energy partitioning in polyatomic chemical reactions: Quantum state resolved studies of highly exothermic atom abstraction reactions from molecules in the gas phase and at the gas-liquid interface

    Science.gov (United States)

    Zolot, Alexander M.

    This thesis recounts a series of experiments that interrogate the dynamics of elementary chemical reactions using quantum state resolved measurements of gas-phase products. The gas-phase reactions F + HCl → HF + Cl and F + H2O → HF + OH are studied using crossed supersonic jets under single collision conditions. Infrared (IR) laser absorption probes HF product with near shot-noise limited sensitivity and high resolution, capable of resolving rovibrational states and Doppler lineshapes. Both reactions yield inverted vibrational populations. For the HCl reaction, strongly bimodal rotational distributions are observed, suggesting microscopic branching of the reaction mechanism. Alternatively, such structure may result from a quantum-resonance mediated reaction similar to those found in the well-characterized F + HD system. For the H2O reaction, a small, but significant, branching into v = 2 is particularly remarkable because this manifold is accessible only via the additional center of mass collision energy in the crossed jets. Rotationally hyperthermal HF is also observed. Ab initio calculations of the transition state geometry suggest mechanisms for both rotational and vibrational excitation. Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic jet of F atoms with liquid squalane (C30H62), a low vapor pressure hydrocarbon compatible with the high vacuum environment. IR spectroscopy provides absolute HF( v,J) product densities and Doppler resolved velocity component distributions perpendicular to the surface normal. Compared to analogous gas-phase F + hydrocarbon reactions, the liquid surface is a more effective "heat sink," yet vibrationally excited populations reveal incomplete thermal accommodation with the surface. Non-Boltzmann J-state populations and hot Doppler lineshapes that broaden with HF excitation indicate two competing scattering mechanisms: (i) a direct reactive scattering channel

  18. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

    Energy Technology Data Exchange (ETDEWEB)

    Konopacki, S.; Akbari, H.

    2002-02-28

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City, UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air

  19. Energy in greenhouses in the Netherlands. Developments in the sector and in the businesses up to and including 1994; Energie in de glastuinbouw van Nederland. Ontwikkelingen in de sector en op bedrijven t/m 1994

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velden, N.J.A.; Van der Sluis, B.J.; Verhaegh, A.P.

    1996-02-01

    An overview is given of energy efficient developments, CO{sub 2} emission and the degrees of penetration and applications of energy saving options in the glasshouse market gardening sector. The aims of the long-range agreement between the greenhouse businesses and the Dutch government (i.e. 50% energy efficiency must be realized within the period 1980-2000) are taken into account. Up to and including 1994 the energy efficiency has improved 38%. The CO{sub 2} emission improved from 113% to 108% compared to the emission level in 1989/1990. Further improvements and reduction can be realized by a better and higher use of energy saving options. It appears that there is a positive development in the application of condensers, climate computers, heat buffers, pure CO{sub 2}, shields, and cogeneration installations. The use of waste heat is the most important option: in 1994 the contribution of waste heat to the total energy consumption in the glasshouse sector increased by 6%. 5 figs., 5 ills., 32 tabs., 3 appendices, 24 refs.

  20. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  1. Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)

    Energy Technology Data Exchange (ETDEWEB)

    Moniz, Ernest [U.S. Energy Secretary

    2014-02-03

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

  2. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  3. Resolved resonance parameters for 236Np

    International Nuclear Information System (INIS)

    Morogovskij, G.B.; Bakhanovich, L.A.

    2002-01-01

    Multilevel Breit-Wigner parameters were obtained for fission cross-section representation in the 0.01-33 eV energy region from evaluation of a 236 Np experimental fission cross-section in the resolved resonance region. (author)

  4. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain.

  5. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  11. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  13. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  16. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    International Nuclear Information System (INIS)

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. A Preliminary Review of U.S. Forest Service Business Practices To Authorize Special Uses, Including Energy Infrastructure Projects, on National Forest System Lands

    Energy Technology Data Exchange (ETDEWEB)

    Wescott, K. L. [Argonne National Lab. (ANL), Argonne, IL (United States); May, J. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, H. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunner, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The U.S. Forest Service (USFS) Special Uses-Lands Program is in jeopardy. Although this program, authorized in Title 36, Part 251, of the U.S. Code of Federal Regulations (36 CFR Part 251), ranks among the top four revenue-generating programs for use of National Forest System (NFS) lands, along with the Timber, Minerals, and Special Uses-Recreation Programs, the Special Uses-Lands Program is in a state of neglect. Repeated cuts in funding (a decrease of 26% from fiscal years 2010 to 2014) are adversely affecting staffing and training, which in turn is affecting timely permit processing and ultimately the public’s ability to use and benefit from NFS lands. In addition, highly experienced staff with valuable institutional knowledge of the program have begun to retire. The ability of the program to function under these dire circumstances can be attributed to the dedication of Special Uses staff to the program and their commitment to the public. The initial focus of this report was to identify opportunities for improving performance of permitting and review for large energy infrastructure-related projects. However, it became clear during this analysis that these projects are generally adequately staffed and managed. This is due in large part to the availability of cost-recovery dollars and the high-profile nature of these projects. However, it also became apparent that larger issues affecting the bulk of the work of the Special Uses-Lands Program need to be addressed immediately. This report is a preliminary examination of the state of the Special Uses-Lands Program and focuses on a few key items requiring immediate attention. Further investigation through case studies is recommended to dig deeper into the Special Uses-Lands Program business process to determine the most costeffective strategies for streamlining the overall process and the metrics by which performance can be evaluated, including for the permitting and tracking of energy infrastructure projects.

  20. Energy evolution of the moments of the hadron distribution in QCD jets including NNLL resummation and NLO running-coupling corrections

    CERN Document Server

    Perez-Ramos, Redamy

    2014-01-01

    The moments of the single inclusive momentum distribution of hadrons in QCD jets, are studied in the next-to-modified-leading-log approximation (NMLLA) including next-to-leading-order (NLO) corrections to the alpha_s strong coupling. The evolution equations are solved using a distorted Gaussian parametrisation, which successfully reproduces the spectrum of charged hadrons of jets measured in e+e- collisions. The energy dependencies of the maximum peak, multiplicity, width, kurtosis and skewness of the jet hadron distribution are computed analytically. Comparisons of all the existing jet data measured in e+e- collisions in the range sqrt(s)~2-200 GeV to the NMLLA+NLO* predictions allow one to extract a value of the QCD parameter Lambda_QCD, and associated two-loop coupling constant at the Z resonance alpha_s(m_Z^2)= 0.1195 +/- 0.0022, in excellent numerical agreement with the current world average obtained using other methods.

  1. Coronagraphic Planet Finding with Energy Resolving Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a 10,000 pixel MKID camera and integrate it with the Project 1640 coronagraph and the PALM-3000 adaptive optics system at the PaloMarch 200-inch...

  2. Time-resolved spectroscopy in synchrotron radiation

    International Nuclear Information System (INIS)

    Rehn, V.; Stanford Univ., CA

    1980-01-01

    Synchrotron radiation (SR) from large-diameter storage rings has intrinsic time structure which facilitates time-resolved measurements form milliseconds to picoseconds and possibly below. The scientific importance of time-resolved measurements is steadily increasing as more and better techniques are discovered and applied to a wider variety of scientific problems. This paper presents a discussion of the importance of various parameters of the SR facility in providing for time-resolved spectroscopy experiments, including the role of beam-line optical design parameters. Special emphasis is placed on the requirements of extremely fast time-resolved experiments with which the effects of atomic vibrational or relaxation motion may be studied. Before discussing the state-of-the-art timing experiments, we review several types of time-resolved measurements which have now become routine: nanosecond-range fluorescence decay times, time-resolved emission and excitation spectroscopies, and various time-of-flight applications. These techniques all depend on a short SR pulse length and a long interpulse period, such as is provided by a large-diameter ring operating in a single-bunch mode. In most cases, the pulse shape and even the stability of the pulse shape is relatively unimportant as long as the pulse length is smaller than the risetime of the detection apparatus, typically 1 to 2 ns. For time resolution smaller than 1 ns, the requirements on the pulse shape become more stringent. (orig./FKS)

  3. Highly resolving computerized tomography

    International Nuclear Information System (INIS)

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  4. An overview of wind energy, taking into consideration several imporatn issues, including an analisys of regulatory requirements for the connection of wind generation into the power system

    OpenAIRE

    Gimenez Alvarez, Juan Manuel; SCHWEICKARDT, GUSTAVO; GÓMEZ TARGARONA, JUAN CARLOS

    2012-01-01

    Pollution problems such as greenhouse effect as well as the high value and volatility of fuel prices have forced and accelerated the development and use of renewable energy sources. In this work a complete revision of wind generation is presented. In the first part a brief history of the wind energy developments is detailed. Next, some commentaries related to the present and future state are made. Then, a revision of the modern structures of wind generation is realized. In fourth place it is ...

  5. Resolving the Circumgalactic Medium in the NEPHTHYS Simulations

    Science.gov (United States)

    Richardson, Mark Lawrence Albert; Devriendt, Julien; Slyz, Adrianne; Rosdahl, Karl Joakim; Kimm, Taysun

    2018-01-01

    NEPHTHYS is a RAMSES Cosmological-zoom galaxy simulation suite investigating the impact of stellar feedback (winds, radiation, and type Ia and II SNe) on z > 1 ~L* galaxies and their environments. NEPHTHYS has ~10 pc resolution in the galaxy, where the scales driving star formation and the interaction of stellar feedback with the ISM can begin to be resolved. As outflows, winds, and radiation permeate through the circumgalactic medium (CGM) they can heat or cool gas, and deposit metals throughout the CGM. Such material in the CGM is seen by spectroscopic studies of distant quasars, where CGM gas of foreground galaxies is observed in absorption. It is still unclear what the origin and evolution of this gas is. To help answer this, NEPHTHYS includes additional refinement in the CGM, refining it to an unrivaled 80 pc resolution. I will discuss how this extra resolution is crucial for resolving the complex structure of outflows and accretion in the CGM. Specifically, the metal mass and covering fraction of metals and high energy ions is increased, while the better resolved outflows leads to a decrease in the overall baryon content of galaxy halos, and individual outflow events can have larger velocities. Our results suggest that absorption observations of CGM are tracing a clumpy column of gas with multiple kinematic components.

  6. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    International Nuclear Information System (INIS)

    Chu, Steven

    2012-01-01

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  7. Including the temporal change in PM{sub 2.5} concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    Energy Technology Data Exchange (ETDEWEB)

    Gschwind, Benoit, E-mail: benoit.gschwind@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Lefevre, Mireille, E-mail: mireille.lefevre@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Blanc, Isabelle, E-mail: isabelle.blanc@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Ranchin, Thierry, E-mail: thierry.ranchin@mines-paristech.fr [Centre Observation, Impacts, Energy, MINES ParisTech, 1 rue Claude Daunesse, CS 10207, F-06904 Sophia Antipolis (France); Wyrwa, Artur, E-mail: awyrwa@agh.edu.pl [AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059 (Poland); Drebszok, Kamila [AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059 (Poland); Cofala, Janusz, E-mail: cofala@iiasa.ac.at [International Institute for Applied Systems Analysis, Schlossplatz 1, 2067 Laxenburg (Austria); Fuss, Sabine, E-mail: fuss@mcc-berlin.net [International Institute for Applied Systems Analysis, Schlossplatz 1, 2067 Laxenburg (Austria); Mercator Research Institute on Global Commons and Climate Change, Torgauer Str. 12-15, 10829 Berlin (Germany)

    2015-04-15

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM{sub 2.5}) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM{sub 2.5} concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM{sub 2.5} concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM{sub 2.5} for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM{sub 2.5} is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM{sub 2.5} is of great interest for assessing the potential impacts of energy scenarios.

  8. Including the temporal change in PM2.5 concentration in the assessment of human health impact: Illustration with renewable energy scenarios to 2050

    International Nuclear Information System (INIS)

    Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle; Ranchin, Thierry; Wyrwa, Artur; Drebszok, Kamila; Cofala, Janusz; Fuss, Sabine

    2015-01-01

    This article proposes a new method to assess the health impact of populations exposed to fine particles (PM 2.5 ) during their whole lifetime, which is suitable for comparative analysis of energy scenarios. The method takes into account the variation of particle concentrations over time as well as the evolution of population cohorts. Its capabilities are demonstrated for two pathways of European energy system development up to 2050: the Baseline (BL) and the Low Carbon, Maximum Renewable Power (LC-MRP). These pathways were combined with three sets of assumptions about emission control measures: Current Legislation (CLE), Fixed Emission Factors (FEFs), and the Maximum Technically Feasible Reductions (MTFRs). Analysis was carried out for 45 European countries. Average PM 2.5 concentration over Europe in the LC-MRP/CLE scenario is reduced by 58% compared with the BL/FEF case. Health impacts (expressed in days of loss of life expectancy) decrease by 21%. For the LC-MRP/MTFR scenario the average PM 2.5 concentration is reduced by 85% and the health impact by 34%. The methodology was developed within the framework of the EU's FP7 EnerGEO project and was implemented in the Platform of Integrated Assessment (PIA). The Platform enables performing health impact assessments for various energy scenarios. - Highlights: • A new method to assess health impact of PM 2.5 for energy scenarios is proposed. • An algorithm to compute Loss of Life Expectancy attributable to exposure to PM 2.5 is depicted. • Its capabilities are demonstrated for two pathways of European energy system development up to 2050. • Integrating the temporal evolution of PM 2.5 is of great interest for assessing the potential impacts of energy scenarios

  9. Changes in body weight, blood pressure and selected metabolic biomarkers with an energy-restricted diet including twice daily sweet snacks and once daily sugar-free beverage

    OpenAIRE

    Nickols-Richardson, Sharon M.; Piehowski, Kathryn E.; Metzgar, Catherine J.; Miller, Debra L.; Preston, Amy G.

    2014-01-01

    BACKGROUND/OBJECTIVES The type of sweet snack incorporated into an energy-restricted diet (ERD) may produce differential effects on metabolic improvements associated with body weight (BW) loss. This study compared effects of incorporating either twice daily energy-controlled dark chocolate snacks plus once daily sugar-free cocoa beverage (DC) to non-chocolate snacks plus sugar-free non-cocoa beverage (NC) into an ERD on BW loss and metabolic outcomes. MATERIALS/METHODS In an 18-week randomize...

  10. Resolving inventory differences

    International Nuclear Information System (INIS)

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  11. A spectral pyrometer to spatially resolve the blackbody temperature of a warm dense plasma

    Science.gov (United States)

    Coleman, J. E.

    2016-12-01

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ˜100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (˜0.1 to 100 μs). The diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma is presented, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.

  12. Performance of the Time Resolved Spectrometer for the 5 MeV Photo-Injector PHIN

    CERN Document Server

    Olvegaard, M; Mete, O; Csatari, M; Dabrowski, A; Dobert, S; Lefevre, T; Petrarca, M

    2011-01-01

    The PHIN photo-injector test facility is being commissioned at CERN to demonstrate the capability to produce the required beam for the 3rd CLIC Test Facility (CTF3), which includes the production of a 3.5A stable beam, bunched at 1.5 GHz with a relative energy spread of less than 1%. A 90◦ spectrometer is instrumented with an OTR screen coupled to a gated intensified camera, followed by a segmented beam dump for time resolved energy measurements. The following paper describes the transverse and temporal resolution of the instrumentation with an outlook towards single-bunch energy measurements.

  13. Characterization of a quadrant diamond transmission X-ray detector including a precise determination of the mean electron-hole pair creation energy.

    Science.gov (United States)

    Keister, Jeffrey W; Cibik, Levent; Schreiber, Swenja; Krumrey, Michael

    2018-03-01

    Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron-hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X-ray scattering properties of the device are also described.

  14. Renner-Teller effect in linear tetra-atomic molecules. I. Variational method including couplings between all degrees of freedom on six-dimensional potential energy surfaces

    Science.gov (United States)

    Jutier, L.; Léonard, C.; Gatti, F.

    2009-04-01

    For electronically degenerate states of linear tetra-atomic molecules, a new method is developed for the variational treatment of the Renner-Teller and spin-orbit couplings. The approach takes into account all rotational and vibrational degrees of freedom, the dominant couplings between the corresponding angular momenta as well as the couplings with the electronic and electron spin angular momenta. The complete rovibrational kinetic energy operator is expressed in Jacobi coordinates, where the rovibrational angular momenta ĴN have been replaced by L̂ez-Ŝ and the spin-orbit coupling has been described by the perturbative term ASO×L̂ezṡŜz. Attention has been paid on the electronic wave functions, which require additional phase for linear tetra-atomic molecules. Our implemented rovibrational basis functions and the integration of the different parts of the total Hamiltonian operator are described. This new variational approach is tested on the electronic ground state X Π2u of HCCH+ for which new six-dimensional potential energy surfaces have been computed using the internally contracted multireference configuration interaction method and the cc-pV5Z basis set. The calculated rovibronic energies and their comparisons with previous theoretical and experimental works are presented in the next paper.

  15. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Steven (U.S. Energy Secretary)

    2012-05-07

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  16. Development of a Cloud Resolving Model for Heterogeneous Supercomputers

    Science.gov (United States)

    Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.

    2017-12-01

    A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.

  17. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    Science.gov (United States)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  18. Photon number projection using non-number-resolving detectors

    International Nuclear Information System (INIS)

    Rohde, Peter P; Webb, James G; Huntington, Elanor H; Ralph, Timothy C

    2007-01-01

    Number-resolving photo-detection is necessary for many quantum optics experiments, especially in the application of entangled state preparation. Several schemes have been proposed for approximating number-resolving photo-detection using non-number-resolving detectors. Such techniques include multi-port detection and time-division multiplexing. We provide a detailed analysis and comparison of different number-resolving detection schemes, with a view to creating a useful reference for experimentalists. We show that the ideal architecture for projective measurements is a function of the detector's dark count and efficiency parameters. We also describe a process for selecting an appropriate topology given actual experimental component parameters

  19. Resolving Turbine Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kruizenga, Alan Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Withey, Elizabeth Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    The supercritical carbon dioxide (S-CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capable of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE-NE), has been conducting research and development in order to deliver a technology that is ready for commercialization. Root cause analysis has been performed on the Recompression Loop at Sandia National Laboratories. It was found that particles throughout the loop are stainless steel, likely alloy 316 based upon the elemental composition. Deployment of a filter scheme is underway to both protect the turbomachinery and also for purposes of determining the specific cause for the particulate. Shake down tests of electric resistance (ER) as a potential in-situ monitoring scheme shows promise in high temperature systems. A modified instrument was purchased and held at 650°C for more than 1.5 months to date without issue. Quantitative measurements of this instrument will be benchmarked against witness samples in the future, but all qualitative trends to date are as to be expected. ER is a robust method for corrosion monitoring, but very slow at responding and can take several weeks under conditions to see obvious changes in behavior. Electrochemical noise was identified as an advanced technique that should be pursued for the ability to identify transients that would lead to poor material performance.

  20. Study Modules for Calculus-Based General Physics. [Includes Modules 8-10: Conservation of Energy; Impulse and Momentum; and Rotational Motion].

    Science.gov (United States)

    Fuller, Robert G., Ed.; And Others

    This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…

  1. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  2. Resolving Lifshitz Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Sarah; Kachru, Shamit; Wang, Huajia; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2012-04-24

    Via the AdS/CFT correspondence, ground states of field theories at finite charge density are mapped to extremal black brane solutions. Studies of simple gravity + matter systems in this context have uncovered wide new classes of extremal geometries. The Lifshitz metrics characterizing field theories with non-trivial dynamical critical exponent z {ne} 1 emerge as one common endpoint in doped holographic toy models. However, the Lifshitz horizon exhibits mildly singular behaviour - while curvature invariants are finite, there are diverging tidal forces. Here we show that in some of the simplest contexts where Lifshitz metrics emerge, Einstein-Maxwell-dilaton theories, generic corrections lead to a replacement of the Lifshitz metric, in the deep infrared, by a re-emergent AdS{sub 2} x R{sup 2} geometry. Thus, at least in these cases, the Lifshitz scaling characterizes the physics over a wide range of energy scales, but the mild singularity is cured by quantum or stringy effects.

  3. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  4. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity.

    Science.gov (United States)

    Maury, Olivier; Poggiale, Jean-Christophe

    2013-05-07

    Individual metabolism, predator-prey relationships, and the role of biodiversity are major factors underlying the dynamics of food webs and their response to environmental variability. Despite their crucial, complementary and interacting influences, they are usually not considered simultaneously in current marine ecosystem models. In an attempt to fill this gap and determine if these factors and their interaction are sufficient to allow realistic community structure and dynamics to emerge, we formulate a mathematical model of the size-structured dynamics of marine communities which integrates mechanistically individual, population and community levels. The model represents the transfer of energy generated in both time and size by an infinite number of interacting fish species spanning from very small to very large species. It is based on standard individual level assumptions of the Dynamic Energy Budget theory (DEB) as well as important ecological processes such as opportunistic size-based predation and competition for food. Resting on the inter-specific body-size scaling relationships of the DEB theory, the diversity of life-history traits (i.e. biodiversity) is explicitly integrated. The stationary solutions of the model as well as the transient solutions arising when environmental signals (e.g. variability of primary production and temperature) propagate through the ecosystem are studied using numerical simulations. It is shown that in the absence of density-dependent feedback processes, the model exhibits unstable oscillations. Density-dependent schooling probability and schooling-dependent predatory and disease mortalities are proposed to be important stabilizing factors allowing stationary solutions to be reached. At the community level, the shape and slope of the obtained quasi-linear stationary spectrum matches well with empirical studies. When oscillations of primary production are simulated, the model predicts that the variability propagates along the

  5. On the resolvents methods in quantum perturbation calculations

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    This paper gives a systematic review of resolvent methods in quantum perturbation calculations. The case of discrete spectrum of hamiltonian is considered specially (in the literature this is the fewest considered case). The topics of calculations of quantum transitions by using of the resolvent formalism, quantum transitions between states from particular subspaces, the shifts of energy levels, are shown. The main ideas of stationary perturbation theory developed by Lippmann and Schwinger are considered too. (author)

  6. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... be signicantly reduced. Besides time-resolved terahertz spectroscopy measurement, optical transmission, Raman spectroscopy, scanning electron microscope, energy dispersive X-ray, and X-ray diffraction spectroscopy experiments on black silicon are presented....

  7. Evidence for the blue 10 pi S62+ dication in solutions of S8(AsF6)2: a computational study including solvation energies.

    Science.gov (United States)

    Krossing, Ingo; Passmore, Jack

    2004-02-09

    The energetics of dissociation reactions of S(8)(2+) into stoichiometric mixtures of S(n)(+), n = 2-7, and S(m)(2+), m = 3, 4, 6, 10, were investigated by the B3PW91 method [6-311+G(3df)//6-311+G] in the gas phase and in solution, with solvation energies calculated using the SCIPCM model and in some cases also the COSMO model [B3PW91/6-311+G*, dielectric constants 2-30, 83, 110]. UV-vis spectra of all species were calculated at the CIS/6-311G(2df) level and for S(4)(2+) and S(6)(2+) also at the TD-DFT level (BP86/SV(P)). Standard enthalpies of formation at 298 K were derived for S(3)(2+) (2538 kJ/mol), S(6)(2+) (2238 kJ/mol), and S(10)(2+) (2146 kJ/mol). A comparison of the observed and calculated UV-vis spectra based on our calculated thermochemical data in solution suggests that, in the absence of traces of facilitating agent (such as dibromine Br(2)), S(8)(2+) dissociates in dilute SO(2) solution giving an equilibrium mixture of ca. 0.5S(6)(2+) and S(5)(+) (K approximately 8.0) while in the more polar HSO(3)F some S(8)(2+) remains (K approximately 0.4). According to our calculations, the blue color of this solution is likely due to the pi-pi transition of the previously unknown 10 pi S(6)(2+) dication, and the previously assigned S(5)(+) is a less important contributor. Although not strictly planar, S(6)(2+) may be viewed as a 10 pi electron Hückel-aromatic ring containing a thermodynamically stable 3p(pi)-3p(pi) bond [d(S-S) = 2.028 A; tau(S-S-S-S) = 47.6 degrees ]. The computations imply that the new radical cation S(4)(+) may be present in sulfur dioxide solutions given on reaction of sulfur oxidized by AsF(5) in the presence of a facilitating agent. The standard enthalpy of formation of S(6)(AsF(6))(2)(s) was estimated as -3103 kJ/mol, and the disproportionation enthalpy of 2S(6)(AsF(6))(2)(s) to S(8)(AsF(6))(2)(s) and S(4)(AsF(6))(2)(s) as exothermic by 6-17 kJ/mol. The final preference of the observed disproportionation products is due to the inclusion of

  8. 1998 Annual Study Report. Surveys on seeds for global environmental technologies, including those for energy saving; 1998 nendo chosa hokokusho. Sho energy nado chikyu kankyo taisaku gijutsu no seeds ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The energy-saving and other global environmental technologies are surveyed by collecting relevant information from various institutes, both abroad and domestic, to contribute to development of ceramic gas turbines. USA has announced a climate change plan, based on the five principles, to promote utilization of high-efficiency technologies and development of new clean technologies. UK is promoting to improve energy efficiency, along with liberalization of its energy markets. Germany concentrates its efforts in the 'Program for Energy Research and Energy Technologies.' France places emphasis on prevention of air pollution and rational use of energy. The R and D trends at public institutes, e.g., universities, for global environmental technologies are surveyed, from which a total of 14 themes are extracted as the seed technologies. At the same time, a total of 9 techniques potentially applicable to the seeds are extracted by mainly reviewing JICST and patent information, and assessed. The R&D trends of the IPCC-related researchers are also surveyed, but provide no theme directly applicable to the seeds. Most of the related themes at the private and public institutes surveyed, both domestic and abroad, are concentrated on carbon dioxide. (NEDO)

  9. Including solar energy in the local heat supply of the Goettingen city works; Einbindung von Sonnenenergie in die Nahwaermeversorgung der Stadtwerke Goettingen AG

    Energy Technology Data Exchange (ETDEWEB)

    Tepe, R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Schreitmueller, K.R. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany); Vanoli, K. [ISFH - Institut fuer Solarenergieforschung Hameln-Emmerthal GmbH, Emmerthal (Germany)

    1996-11-01

    The research project `Solar local heat Goettingen` was started in 1992 in which, by including a 785 m{sup 2} flat collector plant in the return of the local heat supply of the Goettingen City Works; the potential of the combined system of solar plant and conventional heat supply system is to be proved. The size of the collector plant and inclusion in an existing local heat network promised an advantageous combination due to appreciably lower investment costs (lower collector installation costs) and savings in system technique, reduced operating costs, and higher income due to favourable operating conditions with even low collector operating temperatures and reduced piping losses. In parallel with this system, the Goettingen City Works installed an air collector plant which is used to preheat the combustion air taken to the conventional burners. (orig./HW) [Deutsch] Es entstand im Jahr 1992 das Forschungsvorhaben `Solare Nahwaerme Goettingen`, in dem durch die Einbindung einer 785 m{sup 2} grossen Flachkollektoranlage in den Ruecklauf der Nahwaermeversorgung der Stadtwerke Goettingen AG das Potential der Systemkombination Solaranlage und konventionelle Waermeversorgungssystem nachgewiesen werden sollte. Die Groesse der Kollektoranlage sowie die Einbindung in ein bestehendes Nahwaermenetz versprachen eine vorteilhafte Kombination aufgrund - deutlich geringerer Investionskosten (geringe Kollektorinstallationskosten sowie Einsparungen bei der Systemtechnik); - reduzierter Betriebskosten; - hoher Ertraege durch guenstige Betriebsbedingungen wie gleichbleibend niedriger Kollektorbetriebstemperaturen und reduzierter Leitungsverluste. Parallel zu diesem System installierten die Stadtwerke Goettingen AG eine Luftkollektoranlage, die der Vorwaermung der den konventionellen Brennern zugefuehrten Verbrennungsluft dient. (orig./HW)

  10. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  11. Time-resolved studies. Ch. 9

    International Nuclear Information System (INIS)

    Mills, Dennis M.; Argonne National Lab., IL

    1991-01-01

    Synchrotron radiation, with its unique properties, offers a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Wide-bandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the 'parallel data collection' method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in data-collection time. Perhaps the most exciting advances in time-resolved X-ray studies will be made by those methods that exploit the pulsed nature of the radiation emitted from storage rings. Pulsed techniques have had an enormous impact in the study of the temporal evolution of transient phenomena. The extension from continuous to modulated sources for use in time-resolved work has been carried over in a host of fields that use both pulsed particle and pulsed electro-magnetic beams. In this chapter the new experimental techniques are reviewed and illustrated with some experiments. (author). 98 refs.; 20 figs.; 5 tabs

  12. High resolving power spectrometer for beam analysis

    Science.gov (United States)

    Moshammer, H. W.; Spencer, J. E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion, and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretation of the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread, and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability.

  13. WFIRST: Resolving the Milky Way Galaxy

    Science.gov (United States)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason

    2018-01-01

    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  14. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  15. Development of a Spatially-Resolved Microwave Interferometer

    Science.gov (United States)

    Specht, Paul; Cooper, Marcia

    2015-06-01

    The development of a spatially-resolved microwave interferometer (SRMI) for non-invasively measuring the internal transit of a shock, detonation, or reaction front in energetic media is presented. Utilizing the transparency of many energetic materials in the RF regime, current microwave interferometers provide continuum-level tracking of the dielectric discontinuity that occurs across a shock or reaction front. While this continuum-level response can provide bulk shock and detonation velocities, it is insufficient to understand the complex wave and material interactions present in heterogeneous energetic materials. Leveraging interferometry and terahertz spectroscopy techniques, a heterodyne, spatially-resolved microwave interferometer was designed. A theoretical description of its operation and potential impact to current energetic materials research is discussed. Preliminary experimental results, including electro-optic sensing of a Doppler shifted microwave beam, are presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-0308A.

  16. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  17. Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 : Calculated dehydrogenation enthalpy, including zero point energy, and the structure of the phonon spectra

    NARCIS (Netherlands)

    Marashdeh, A.; Frankcombe, T.J.

    2008-01-01

    The dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5, and CaH2+6LiBH4 have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski’s direct method. The

  18. Resolving Ethical Issues at School

    Science.gov (United States)

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  19. Time-resolved quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  20. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  1. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  2. Minimum resolvable power contrast model

    Science.gov (United States)

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  3. Cross section parameterization in the resolved resonance region

    International Nuclear Information System (INIS)

    Larson, N.M.

    1992-01-01

    Experimental techniques, methods, and equipment have evolved to provide more accurate neutron cross section data with better energy resolution. Keeping pace with those developments has been a challenge for data analysts; commensurate improvements in analysis tools are required. In this paper, analysis techniques for neutron time-of-flight data in the resolved resonance region are discussed, with emphasis on contemporary needs

  4. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  5. Energy Recovery Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Nikolitsa Merminga

    2007-06-01

    The success and continuing progress of the three operating FELs based on Energy Recovery Linacs (ERLs), the Jefferson Lab IR FEL Upgrade, the Japan Atomic Energy Agency (JAEA) FEL, and the Novosibirsk High Power THz FEL, have inspired multiple future applications of ERLs, which include higher power FELs, synchrotron radiation sources, electron cooling devices, and high luminosity electron-ion colliders. The benefits of using ERLs for these applications are presented. The key accelerator physics and technology challenges of realizing future ERL designs, and recent developments towards resolving these challenges are reviewed.

  6. Spatially resolved spectroscopy on semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  7. Resonance fluorescence in the resolvent-operator formalism

    Science.gov (United States)

    Debierre, V.; Harman, Z.

    2017-10-01

    The Mollow spectrum for the light scattered by a driven two-level atom is derived in the resolvent operator formalism. The derivation is based on the construction of a master equation from the resolvent operator of the atom-field system. We show that the natural linewidth of the excited atomic level remains essentially unmodified, to a very good level of approximation, even in the strong-field regime, where Rabi flopping becomes relevant inside the self-energy loop that yields the linewidth. This ensures that the obtained master equation and the spectrum derived matches that of Mollow.

  8. Constant Matrix Element Approximation to Time-Resolved Angle-Resolved Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    James K. Freericks

    2016-11-01

    Full Text Available We discuss several issues associated with employing a constant matrix element approximation for the coupling of light to multiband electrons in the context of time-resolved angle-resolved photoemission spectroscopy (TR-ARPES. In particular, we demonstrate that the “constant matrix element approximation” —even when reasonable—only holds for specific choices of the one-electron basis, and changing to other bases, requires including nonconstant corrections to the matrix element. We also discuss some simplifying approximations, where a constant matrix element is employed in multiple bases, and the consequences of this further approximation (especially with respect to the calculated TR-ARPES signal becoming negative. We also discuss issues related to gauge invariance of the final spectra.

  9. Electronic structures of 1-adamantanol, cyclohexanol and cyclohexanone and anisotropic interactions with He*(23S) atoms: collision-energy-resolved Penning ionization electron spectroscopy combined with quantum chemistry calculations

    International Nuclear Information System (INIS)

    Tian Shanxi; Kishimoto, Naoki; Ohno, Koichi

    2002-01-01

    He I ultraviolet photoelectron spectra and He*(2 3 S) Penning ionization electron spectra have been measured for 1-adamantanol, cyclohexanol and cyclohexanone. Four stable isomeric conformers of cyclohexanol were predicted by Becke's three-parameter hybrid density functional B3LYP/6-31+G(d,p) calculations. Since the orbital reactivity in Penning ionizations is simply related to the electron density extending outside the molecular surface, the theoretical Penning ionization electron spectra were synthesized using the calculated molecular orbital wave functions and ionization potentials. They were in good agreement with the experimental spectra except for the low-electron-energy bands. Collision energy dependence of partial ionization cross sections for the oxygen lone pair orbitals exhibited that there are strong steric hindrances by the neighboring hydrogen atoms in 1-adamantanol and cyclohexanol

  10. Time-resolved fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  11. Time and momentum-resolved phonon decay

    Science.gov (United States)

    Reis, David

    2017-04-01

    The high brightness of x-ray free-electron lasers provides us a unique opportunity to measure lattice dynamics directly in the time domain and out of equilibrium. As a first step in this direction we demonstrate how ultrafast optical excitation creates temporal coherences in the mean-square phonon displacements spanning the Brillouin zone by a second-order squeezing process. This leads to broad-bandwidth high-resolution measurements of the phonon dispersion without the need for high-resolution monochromators or analyzers. We will also show how anharmonic phonon decay can be viewed as a parametric squeezing process, and present first momentum-resolved measurements of the downconversion of a coherent optical phonon into pairs of high-wavevector acoustic modes, information that cannot be obtained by spectroscopic measurements in the frequency domain. Supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  12. PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-02-01

    Full Text Available The disposal and further recycling of concrete is being investigated worldwide, because the issue of complete recycling has not yet been fully resolved. A fundamental difficulty faced by researchers is the reuse of the recycled concrete fines which are very small (< 1 mm. Currently, full recycling of such waste fine fractions is highly energy intensive and resulting in production of CO2. Because of this, the only recycling methods that can be considered as sustainable and environmentally friendly are those which involve recycled concrete powder (RCP in its raw form. This article investigates the performance of RCP with the grain size < 0.25 mm as a potential binder replacement, and also as a microfiller in cement-based composites. Here, the RCP properties are assessed, including how mechanical properties and the microstructure are influenced by increasing the amount of the RCP in a cement paste (≤ 25 wt%.

  13. Angle-resolved photoelectron spectrometry: new electron optics and detection system

    International Nuclear Information System (INIS)

    Hoof, H.A. van.

    1980-01-01

    A new spectrometer system is described, designed to measure angle-resolved energy distributions of photoemitted electrons efficiently. Some results are presented of measurements on a Si(001) surface. (Auth.)

  14. Panchromatic SED modelling of spatially resolved galaxies

    Science.gov (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  15. Highly-resolving Rutherford-scattering spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Klein, C.

    2003-10-01

    in the present thesis for the first time the Browne-Buechner spectrometer for the highly resolving ion-beam analysis in the ion beam center Rossendorf is completely presented. A main topic of this theis lied in the apparative construction and the taking-into-operation of the spectrometer and the scattering chamber including the facilities for the sample treatment and characterization. In the framework of this thesis for the chosen measurement arrangement the experimental conditions were elaborated, which allow the routine-like application of the spectrometer for analyses of thin-film systems. for C and Li ions as incident particles especially the straggling was more precisely determined in a large range of materials. By means of the spectrometer also the interaction of the ion with the solid respectively single atoms on its surface could be studied. For the first time the mean charge-state after the single collision on a gold atom was determined for differently heavy ions in a wide energy range

  16. Flavour from partially resolved singularities

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, G. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: bonelli@sissa.it; Bonora, L. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy); Ricco, A. [International School of Advanced Studies (SISSA) and INFN, Sezione di Trieste, via Beirut 2-4, 34014 Trieste (Italy)

    2006-06-15

    In this Letter we study topological open string field theory on D-branes in a IIB background given by non-compact CY geometries O(n)-bar O(-2-n) on P{sup 1} with a singular point at which an extra fiber sits. We wrap N D5-branes on P{sup 1} and M effective D3-branes at singular points, which are actually D5-branes wrapped on a shrinking cycle. We calculate the holomorphic Chern-Simons partition function for the above models in a deformed complex structure and find that it reduces to multi-matrix models with flavour. These are the matrix models whose resolvents have been shown to satisfy the generalized Konishi anomaly equations with flavour. In the n=0 case, corresponding to a partial resolution of the A{sub 2} singularity, the quantum superpotential in the N=1 unitary SYM with one adjoint and M fundamentals is obtained. The n=1 case is also studied and shown to give rise to two-matrix models which for a particular set of couplings can be exactly solved. We explicitly show how to solve such a class of models by a quantum equation of motion technique.

  17. Time resolved heat exchange in driven quantum systems

    Science.gov (United States)

    Florencia Ludovico, María; Lim, Jong Soo; Moskalets, Michael; Arrachea, Liliana; Sánchez, David

    2014-12-01

    We study time-dependent heat transport in systems composed of a resonant level periodically forced with an external power source and coupled to a fermionic continuum. This simple model contains the basic ingredients to understand time resolved energy exchange in quantum capacitors that behave as single particle emitters. We analyse the behaviour of the dynamic heat current for driving frequencies within the non-adiabatic regime, showing that it does not obey a Joule dissipation law.

  18. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  19. Pump apparatus including deconsolidator

    Energy Technology Data Exchange (ETDEWEB)

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  20. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Time resolved two- and three-dimensional plasma diagnostics

    International Nuclear Information System (INIS)

    1991-03-01

    This collection of papers on diagnostics in fusion plasmas contains work on the data analysis of inverse problems and on the experimental arrangements presently used to obtain spatially and temporally resolved plasma radial profiles, including electron and ion temperature, plasma density and plasma current profiles. Refs, figs and tabs

  2. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    CERN Document Server

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  3. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  4. Enzyme reactions and their time resolved measurements

    International Nuclear Information System (INIS)

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  5. RAiSE II: resolved spectral evolution in radio AGN

    Science.gov (United States)

    Turner, Ross J.; Rogers, Jonathan G.; Shabala, Stanislav S.; Krause, Martin G. H.

    2018-01-01

    The active galactic nuclei (AGN) lobe radio luminosities modelled in hydrodynamical simulations and most analytical models do not address the redistribution of the electron energies due to adiabatic expansion, synchrotron radiation and inverse-Compton scattering of cosmic microwave background photons. We present a synchrotron emissivity model for resolved sources that includes a full treatment of the loss mechanisms spatially across the lobe, and apply it to a dynamical radio source model with known pressure and volume expansion rates. The bulk flow and dispersion of discrete electron packets is represented by tracer fields in hydrodynamical simulations; we show that the mixing of different aged electrons strongly affects the spectrum at each point of the radio map in high-powered Fanaroff & Riley type II (FR-II) sources. The inclusion of this mixing leads to a factor of a few discrepancy between the spectral age measured using impulsive injection models (e.g. JP model) and the dynamical age. The observable properties of radio sources are predicted to be strongly frequency dependent: FR-II lobes are expected to appear more elongated at higher frequencies, while jetted FR-I sources appear less extended. The emerging FR0 class of radio sources, comprising gigahertz peaked and compact steep spectrum sources, can potentially be explained by a population of low-powered FR-Is. The extended emission from such sources is shown to be undetectable for objects within a few orders of magnitude of the survey detection limit and to not contribute to the curvature of the radio spectral energy distribution.

  6. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  7. Batteries not included

    International Nuclear Information System (INIS)

    Cooper, M.

    2001-01-01

    This article traces the development of clockwork wind-up battery chargers that can be used to recharge mobile phones, laptop computers, torches or radio batteries from the pioneering research of the British inventor Trevor Baylis to the marketing of the wind-up gadgets by Freeplay Energy who turned the idea into a commercial product. The amount of cranking needed to power wind-up devices is discussed along with a hand-cranked charger for mobile phones, upgrading the phone charger's mechanism, and drawbacks of the charger. Details are given of another invention using a hand-cranked generator with a supercapacitor as a storage device which has a very much higher capacity for storing electrical charge

  8. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form.

  9. Wasted energy?

    NARCIS (Netherlands)

    E.M. Steg

    1999-01-01

    Original title: Verspilde energie? Many environmental problems are increasing primarily due to rising production and consumption, in other words due to the behaviour of consumers. Accordingly, there is a growing realisation that environmental problems must be partly resolved through a change

  10. Resolving the inner disk of UX Orionis

    Science.gov (United States)

    Kreplin, A.; Madlener, D.; Chen, L.; Weigelt, G.; Kraus, S.; Grinin, V.; Tambovtseva, L.; Kishimoto, M.

    2016-05-01

    Aims: The cause of the UX Ori variability in some Herbig Ae/Be stars is still a matter of debate. Detailed studies of the circumstellar environment of UX Ori objects (UXORs) are required to test the hypothesis that the observed drop in photometry might be related to obscuration events. Methods: Using near- and mid-infrared interferometric AMBER and MIDI observations, we resolved the inner circumstellar disk region around UX Ori. Results: We fitted the K-, H-, and N-band visibilities and the spectral energy distribution (SED) of UX Ori with geometric and parametric disk models. The best-fit K-band geometric model consists of an inclined ring and a halo component. We obtained a ring-fit radius of 0.45 ± 0.07 AU (at a distance of 460 pc), an inclination of 55.6 ± 2.4°, a position angle of the system axis of 127.5 ± 24.5°, and a flux contribution of the over-resolved halo component to the total near-infrared excess of 16.8 ± 4.1%. The best-fit N-band model consists of an elongated Gaussian with a HWHM ~ 5 AU of the semi-major axis and an axis ration of a/b ~ 3.4 (corresponding to an inclination of ~72°). With a parametric disk model, we fitted all near- and mid-infrared visibilities and the SED simultaneously. The model disk starts at an inner radius of 0.46 ± 0.06 AU with an inner rim temperature of 1498 ± 70 K. The disk is seen under an nearly edge-on inclination of 70 ± 5°. This supports any theories that require high-inclination angles to explain obscuration events in the line of sight to the observer, for example, in UX Ori objects where orbiting dust clouds in the disk or disk atmosphere can obscure the central star. Based on observations made with ESO telescopes at Paranal Observatory under program IDs: 090.C-0769, 074.C-0552.

  11. Enhanced Research Opportunity to Study the Atmospheric Forcing by High-Energy Particle Precipitation at High Latitudes: Emerging New Satellite Data and the new Ground-Based Observations in Northern Scandinavia, including the EISCAT_3D Incoherent Scatter Facility.

    Science.gov (United States)

    Turunen, E. S.; Ulich, T.; Kero, A.; Tero, R.; Verronen, P. T.; Norberg, J.; Miyoshi, Y.; Oyama, S. I.; Saito, S.; Hosokawa, K.; Ogawa, Y.

    2017-12-01

    Recent observational and model results on the particle precipitation as source of atmospheric variability challenge us to implement better and continuously monitoring observational infrastructure for middle and upper atmospheric research. An example is the effect of high-energy electron precipitation during pulsating aurora on mesospheric ozone, the concentration of which may be reduced by several tens of percent, similarily as during some solar proton events, which are known to occur more rarely than pulsating aurora. So far the Assessment Reports by the Intergovernmental Panel on Climate Change did not include explicitely the particle forcing of middle and upper atmosphere in their climate model scenarios. This will appear for the first time in the upcoming climate simulations. We review recent results related to atmospheric forcing by particle precipitation via effects on chemical composition. We also show the research potential of new ground-based radio measurement techniques, such as spectral riometry and incoherent scatter by new phased-array radars, such as EISCAT_3D, which will be a volumetric, 3- dimensionally imaging radar, distributed in Norway, Sweden, and Finland. It is expected to be operational from 2020 onwards, surpassing all the current IS radars of the world in technology. It will be able to produce continuous information of ionospheric plasma parameters in a volume, including 3D-vector plasma velocities. For the first time we will be able to map the 3D electric currents in ionosphere, as well as we will have continuous vector wind measurements in mesosphere. The geographical area covered by the EISCAT_3D measurements can be expanded by suitably selected other continuous observations, such as optical and satellite tomography networks. A new 100 Hz all-sky camera network was recently installed in Northern Scandinavia in order to support the Japanese Arase satellite mission. In near future the ground-based measurement network will also include new

  12. Functional Imaging of Hybrid Nanostructures. Visualization of Mechanisms for Solar Energy Utilization. Northwestern FG-02-07ER46401 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lauhon, Lincoln J. [Northwestern Univ., Evanston, IL (United States)

    2015-03-20

    The report describes advances in understanding the interaction of light with hybrid nanostructured materials, and the influence of physical and electronic structure on the flow of excess energetic charge carriers to support the design and optimization of new materials for photoelectrical and photoelectrochemical energy conversion. Raman scattering, multi-wavelength optical excitation, and numerical modeling are combined with electrical transport measurements on model hybrid materials structures and devices to resolve, in energy and space, the absorption of light, the generation of excess energetic charge carriers, and the efficiency of their separation to generate electrical and chemical energy. Appropriate combinations of spatially-resolved, time-resolved, and spectrally-resolved measurements are used to isolate and quantify various steps in the energy conversion process, including geometrically and plasmonically enhanced absorption, the generation of carriers with excess energy, and the efficiency with which the carriers can move to and perform useful chemistry at interfaces.

  13. The Ontario Energy Marketers Association

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.F.C. [Ontario Energy Marketers Association, ON (Canada)

    1998-12-31

    An overview of the role of the Ontario Energy Marketers Association (OEMA) and its future orientation was presented. Participants in the OEMA include agents, brokers, marketers, local distribution companies, public interest representatives, associations and government representatives. The role of the OEMA is to encourage open competition for the benefit and protection of all energy consumer and market participants. As well, the OEMA serves as a forum for key industry stakeholders to resolve market issues outside the regulatory arena, set standards and codes of practice, establish customer education programs, and develop industry input into public policy making.

  14. The Resolved Stellar Populations Early Release Science Program

    Science.gov (United States)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  15. Demonstration of Resolving Urban Problems by Applying Smart Technology.

    Science.gov (United States)

    Kim, Y.

    2016-12-01

    Recently, movements to seek various alternatives are becoming more active around the world to resolve urban problems related to energy, water, a greenhouse gas, and disaster by utilizing smart technology system. The purpose of this study is to evaluate service verification aimed at demonstration region applied with actual smart technology in order to raise the efficiency of the service and explore solutions for urban problems. This process must be required for resolving urban problems in the future and establishing `integration platform' for sustainable development. The demonstration region selected in this study to evaluate service verification is `Busan' in Korea. Busan adopted 16 services in 4 sections last year and begun demonstration to improve quality of life and resolve urban environment problems. In addition, Busan participated officially in `Global City Teams Challenge (GCTC)' held by National Institute of Standards and Technology (NIST) in USA last year and can be regarded as representative demonstration region in Korea. The result of survey showed that there were practical difficulties as explained below in the demonstration for resolving urban problems by applying smart technology. First, the participation for demonstration was low because citizens were either not aware or did not realize the demonstration. Second, after demonstrating various services at low cost, it resulted in less effect of service demonstration. Third, as functions get fused, it was found that management department, application criteria of technology and its process were ambiguous. In order to increase the efficiency of the demonstration for the rest of period through the result of this study, it is required to draw demand that citizens requires in order to raise public participation. In addition, it needs to focus more on services which are wanted to demonstrate rather than various service demonstrations. Lastly, it is necessary to build integration platform through cooperation

  16. Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    International Nuclear Information System (INIS)

    Larson, N.M.

    1998-07-01

    Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions

  17. Introduction to the theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    Energy Technology Data Exchange (ETDEWEB)

    Larson, N.M.

    1998-02-01

    Neutron cross-section data are important for two distinct purposes: First, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher energy regions.

  18. Introduction to the Theory and Analysis of Resolved (and Unresolved) Neutron Resonances via SAMMY

    Energy Technology Data Exchange (ETDEWEB)

    Larson, N.

    2000-03-13

    Neutron cross-section data are important for two purposes: First, they provide insight into the nature of matter, increasing our understanding of fundamental physics. Second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, or for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this report, important features of the analysis process are discussed, with emphasis on the particular techniques used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  19. Introduction to theory and analysis of resolved (and unresolved) neutron resonances via SAMMY

    Energy Technology Data Exchange (ETDEWEB)

    Larson, N.M.

    1998-07-01

    Neutron cross-section data are important for two distinct purposes: first, they provide insight into the nature of matter, thus assisting in the understanding of fundamental physics; second, they are needed for practical applications (e.g., for calculating when and how a reactor will become critical, or how much shielding is needed for storage of nuclear materials, and for medical applications). Neutron cross section data in the resolved-resonance region are generally obtained by time-of-flight experiments, which must be carefully analyzed if they are to be properly understood and utilized. In this paper, important features of the analysis process are discussed, with emphasis on the particular technique used in the analysis code SAMMY. Other features of the code are also described; these include such topics as calculation of group cross sections (including covariance matrices), generation and fitting of integral quantities, and extensions into the unresolved-resonance region and higher-energy regions.

  20. Angle-resolved photoemission spectra of graphene from first-principles calculations.

    Science.gov (United States)

    Park, Cheol-Hwan; Giustino, Feliciano; Spataru, Catalin D; Cohen, Marvin L; Louie, Steven G

    2009-12-01

    Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique for directly probing electron dynamics in solids. The energy versus momentum dispersion relations and the associated spectral broadenings measured by ARPES provide a wealth of information on quantum many-body interaction effects. In particular, ARPES allows studies of the Coulomb interaction among electrons (electron-electron interactions) and the interaction between electrons and lattice vibrations (electron-phonon interactions). Here, we report ab initio simulations of the ARPES spectra of graphene including both electron-electron and electron-phonon interactions on the same footing. Our calculations reproduce some of the key experimental observations related to many-body effects, including the indication of a mismatch between the upper and lower halves of the Dirac cone.

  1. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  2. Spatially and time resolved kinetics of indirect magnetoexcitons

    Science.gov (United States)

    Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur

    The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  3. Energy storage

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role that energy storage may have on the energy future of the US. The topics discussed in the chapter include historical aspects of energy storage, thermal energy storage including sensible heat storage, latent heat storage, thermochemical heat storage, and seasonal heat storage, electricity storage including batteries, pumped hydroelectric storage, compressed air energy storage, and superconducting magnetic energy storage, and production and combustion of hydrogen as an energy storage option

  4. Differential resolvents of minimal order and weight

    Directory of Open Access Journals (Sweden)

    John Michael Nahay

    2004-01-01

    Full Text Available We will determine the number of powers of α that appear with nonzero coefficient in an α-power linear differential resolvent of smallest possible order of a univariate polynomial P(t whose coefficients lie in an ordinary differential field and whose distinct roots are differentially independent over constants. We will then give an upper bound on the weight of an α-resolvent of smallest possible weight. We will then compute the indicial equation, apparent singularities, and Wronskian of the Cockle α-resolvent of a trinomial and finish with a related determinantal formula.

  5. Time resolved spectrometry on the CLIC Test Facility 3

    CERN Document Server

    Lefèvre, T; Braun, H H; Bravin, E; Burger, S; Corsini, R; Döbert, Steffen; Dutriat, C; Tecker, F A; Urschütz, Peter; Welsch, C P

    2006-01-01

    The high charge (>6ìC) electron beam produced in the CLIC Test Facility 3 (CTF3) is accelerated in fully beam loaded cavities. To be able to measure the resulting strong transient effects, the time evolution of the beam energy and its energy spread must be determined with at least 50MHz bandwidth. Three spectrometer lines are installed along the linac in order to control and tune the beam. The electrons are deflected by dipole magnets onto Optical Transition Radiation (OTR) screens which are observed by CCD cameras. The measured horizontal beam size is then directly related to the energy spread. In order to provide time-resolved energy spectra, a fraction of the OTR photons is sent onto a multi-channel photomultiplier. The overall setup is described, special focus is given to the design of the OTR screen with its synchrotron radiation shielding. The performance of the time-resolved measurements are discussed in detail. Finally, the limitations of the system, mainly due to radiation problems are discussed.

  6. Time-resolved absorption measurements on OMEGA

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; DaSilva, L.; Delettrez, J.; Gregory, G.G.; Richardson, M.C.

    1986-01-01

    Time-resolved measurements of the incident laser light that is scattered and/or refracted from targets irradiated by the 24 uv-beam OMEGA laser at LLE, have provided some interesting features related to time-resolved absorption. The decrease in laser absorption characteristic of irradiating a target that implodes during the laser pulse has been observed. The increase in absorption expected as the critical density surface moves from a low to a high Z material in the target has also been noted. The detailed interpretation of these results is made through comparisons with simulation using the code LILAC, as well as with streak data from time-resolved x-ray imaging and spectroscopy. In addition, time and space-resolved imaging of the scattered light yields information on laser irradiation uniformity conditions on the target. The report consists of viewgraphs

  7. Component resolved testing for allergic sensitization

    DEFF Research Database (Denmark)

    Skamstrup Hansen, Kirsten; Poulsen, Lars K

    2010-01-01

    Component resolved diagnostics introduces new possibilities regarding diagnosis of allergic diseases and individualized, allergen-specific treatment. Furthermore, refinement of IgE-based testing may help elucidate the correlation or lack of correlation between allergenic sensitization and allergi...

  8. Resolving Inconsistencies in de Broglie's Relation

    Directory of Open Access Journals (Sweden)

    Wagener P.

    2010-01-01

    Full Text Available Modern quantum theory is based on de Broglie's relation between momentum and wave-length. In this article we investigate certain inconsistencies in its formulation and propose a reformulation to resolve them.

  9. Time-Resolved Fluorescence in Photodynamic Therapy

    Directory of Open Access Journals (Sweden)

    Shu-Chi Allison Yeh

    2014-12-01

    Full Text Available Photodynamic therapy (PDT has been used clinically for treating various diseases including malignant tumors. The main advantages of PDT over traditional cancer treatments are attributed to the localized effects of the photochemical reactions by selective illumination, which then generate reactive oxygen species and singlet oxygen molecules that lead to cell death. To date, over- or under-treatment still remains one of the major challenges in PDT due to the lack of robust real-time dose monitoring techniques. Time-resolved fluorescence (TRF provides fluorescence lifetime profiles of the targeted fluorophores. It has been demonstrated that TRF offers supplementary information in drug-molecular interactions and cell responses compared to steady-state intensity acquisition. Moreover, fluorescence lifetime itself is independent of the light path; thus it overcomes the artifacts given by diffused light propagation and detection geometries. TRF in PDT is an emerging approach, and relevant studies to date are scattered. Therefore, this review mainly focuses on summarizing up-to-date TRF studies in PDT, and the effects of PDT dosimetric factors on the measured TRF parameters. From there, potential gaps for clinical translation are also discussed.

  10. Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering

    Science.gov (United States)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Vibrational excitation and vibrationally resolved electronic excitation cross sections of positron-H2 scattering have been calculated using the single-centre molecular convergent close-coupling (CCC) method. The adiabatic-nuclei approximation was utilized to model the above scattering processes and obtain the vibrationally resolved positron-H2 scattering length. As previously demonstrated, the CCC results are converged and accurately account for virtual and physical positronium formation by coupling basis functions with large orbital angular momentum. Here vibrationally resolved integrated and differential cross sections are presented over a wide energy range and compared with previous calculations and available experiments. Los Alamos National Laboratory and Curtin University.

  11. Time-resolved photoelectron nano-spectroscopy of individual silver particles: Perspectives and limitations

    DEFF Research Database (Denmark)

    Rohmer, Martin; Bauer, Michael; Leissner, Till

    2010-01-01

    Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source...

  12. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  13. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg (eds.)

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  14. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg

    2010-01-01

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  15. Energy Technology.

    Science.gov (United States)

    Eaton, William W.

    Reviewed are technological problems faced in energy production including locating, recovering, developing, storing, and distributing energy in clean, convenient, economical, and environmentally satisfactory manners. The energy resources of coal, oil, natural gas, hydroelectric power, nuclear energy, solar energy, geothermal energy, winds, tides,…

  16. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei

    2018-03-19

    Executive Summary The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heating of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.

  17. A new scintillation counter with very fast resolving time (1961)

    International Nuclear Information System (INIS)

    Koch, L.

    1961-01-01

    The rare gases used as scintillators are characterized by their short time of luminescence and by the linearity of their response as a function of the total energy imparted to the gas by the incident particle. It is possible with these scintillators, when associated with a fast response photomultiplier, to solve certain problems of nuclear physics demanding a linear detector with a very fast resolving time (a few nanoseconds). Two examples of the construction of this apparatus are described. The results obtained and future possibilities are briefly outlined. (author) [fr

  18. Magneto-Optical and Time Resolved Spectroscopy in Narrow Gap MOVPE Grown Ferromagnetic Semiconductors

    Science.gov (United States)

    Meeker, M.; Magill, B.; Bhowmick, M.; Khodaparast, G. A.; McGill, S.; Feeser, C.; Wessels, B. W.; Saha, D.; Sanders, G. D.; Stanton, C. J.

    2014-03-01

    We report on magneto-optical at high magnetic fields and time resolved studies, that provide insight into the band structure, time scales, and the nature of the interactions in ferromagnetic InMnAs and InMnSb grown by MOVPE. By probing the dynamical behavior of the nonequilibrium carriers and spins, created by intense laser pulses, we gain valuable information about different scattering mechanisms and observe the sensitivity and tunability of the carrier and spin dynamics to the initial excitation energy. Theoretical calculations are performed using an 8 band k . model including non-parabolicity, band-mixing, and the interaction of magnetic Mn impurities with itinerant electrons and holes. Supported by: NSF-Career Award DMR-0846834, NSF-DMR-1305666, NSF-DMR-1105437, and Virginia Tech Institute for Critical Technology and Applied Sciences (ICTAS).

  19. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    Science.gov (United States)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  20. ESCo for mutual benefit and free energy saving. White paper 1. Including five cases and tips from experts; ESCo voor wederzijds voordeel en gratis energiebesparing. White paper 1. Inclusief vijf cases en experttips

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    This white paper provides insight into the operation, options and restrictions of ESCo's (Energy Service Companies). The different variants of a relatively simple ESCo-product to an advanced ESCo-project are described and illustrated with examples from practice. Tips from experts can help with the assessment whether entering into a partnership with an ESCo is attractive enough [Dutch] Deze whitepaper geeft inzicht in de werking, mogelijkheden en beperkingen van ESCo's (Energy Service Companies). De verschillende varianten, van een relatief eenvoudige product-ESCo tot een geavanceerde project-ESCo worden beschreven en geillustreerd aan de hand van praktijkvoorbeelden. Tips van expert helpen met de inschatting of het aangaan van een samenwerkingsverband met een ESCo aantrekkelijk is.

  1. New Instruments for Spectrally-Resolved Solar Soft X-ray Observations from CubeSats, and Larger Missions

    Science.gov (United States)

    Caspi, A.; Shih, A.; Warren, H. P.; DeForest, C. E.; Woods, T. N.

    2015-12-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics and evolution of these energetic processes; spatially-resolved measurements are critical for understanding energy transport. A better understanding of the thermal plasma informs our interpretation of hard X-ray (HXR) observations of nonthermal particles, improving our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-SDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. An X123-CdTe cadmium-telluride detector is also included for ~5-100 keV HXR spectroscopy with ~0.5-1 keV FWHM resolution. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a pinhole aperture and X-ray transmission diffraction grating to provide full-Sun imaging from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. We discuss scaled versions of these instruments, with greater sensitivity and dynamic range, and significantly improved spectral and spatial resolutions for the imager, for deployment on larger platforms such as Small Explorer missions.

  2. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  3. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  4. The conforming brain and deontological resolve.

    Science.gov (United States)

    Pincus, Melanie; LaViers, Lisa; Prietula, Michael J; Berns, Gregory

    2014-01-01

    Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  5. The conforming brain and deontological resolve.

    Directory of Open Access Journals (Sweden)

    Melanie Pincus

    Full Text Available Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.

  6. Spectrally resolved longitudinal spatial coherence inteferometry

    Science.gov (United States)

    Woodard, Ethan R.; Kudenov, Michael W.

    2017-05-01

    We present an alternative imaging technique using spectrally resolved longitudinal spatial coherence interferometry to encode a scene's angular information onto the source's power spectrum. Fourier transformation of the spectrally resolved channeled spectrum output yields a measurement of the incident scene's angular spectrum. Theory for the spectrally resolved interferometric technique is detailed, demonstrating analogies to conventional Fourier transform spectroscopy. An experimental proof of concept system and results are presented using an angularly-dependent Fabry-Perot interferometer-based optical design for successful reconstruction of one-dimensional sinusoidal angular spectra. Discussion for a potential future application of the technique, in which polarization information is encoded onto the source's power spectrum is also given.

  7. Depth-resolved fluorescence of biological tissue

    Science.gov (United States)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  8. Imposing resolved turbulence in CFD simulations

    DEFF Research Database (Denmark)

    Gilling, L.; Sørensen, Niels N.

    2011-01-01

    In large‐eddy simulations, the inflow velocity field should contain resolved turbulence. This paper describes and analyzes two methods for imposing resolved turbulence in the interior of the domain in Computational Fluid Dynamics simulations. The intended application of the methods is to impose...... resolved turbulence immediately upstream of the region or structure of interest. Comparing to the alternative of imposing the turbulence at the inlet, there is a large potential to reduce the computational cost of the simulation by reducing the total number of cells. The reduction comes from a lower demand...... of modifying the source terms. None of the two methods can impose synthetic turbulence with good results, but it is shown that by running the turbulence field through a short precursor simulation, very good results are obtained. Copyright © 2011 John Wiley & Sons, Ltd....

  9. Energies; Energies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  10. Resolving Ethical Dilemmas in Financial Audit

    OpenAIRE

    Professor PhD Turlea Eugeniu; PhD Student Mocanu Mihaela

    2010-01-01

    Resolving ethical dilemmas is a difficult endeavor in any field and financial auditing makes no exception. Ethical dilemmas are complex situations which derive from a conflict and in which a decision among several alternatives is needed. Ethical dilemmas are common in the work of the financial auditor, whose mission is to serve the interests of the public at large, not those of the auditee’s managers who mandate him/her. The objective of the present paper is to offer support in resolving ethi...

  11. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  12. De novo assembly of a haplotype-resolved human genome

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang

    2015-01-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome...... of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should...... shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb...

  13. Suggested technical scheme to help resolve regulatory issues

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.

    1978-07-01

    A management-planning model envisioned as a useful tool for planning and guiding the development of a nuclear waste repository data base is described. It incorporates the technical assessment goals and objectives of the US Nuclear Regulatory Commission, and it provides a strategy for reaching them. The model strategy includes provisions for the breadth, timeliness, and defensibility of its predictions. Consideration is given to observational data, its structure, and future refinements. The structure of the data is consistent with the needs of a systems model whose structure is proposed to resolve questions about repository safety. Uncertainties are categorized as an aid in defining and resolving technical issues. The model provides a framework for ultimately exposing all the sensitive and controversial factors. Some quantitative aspects of data acquisition are presented. 12 figures.

  14. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  15. Spaced resolved analysis of suprathermal electrons in dense plasma

    Directory of Open Access Journals (Sweden)

    Moinard A.

    2013-11-01

    Full Text Available The investigation of the hot electron fraction is a crucial topic for high energy density laser driven plasmas: first, energy losses and radiative properties depend strongly on the hot electron fraction and, second, in ICF hohlraums suprathermal electrons preheat the D-T-capsule and seriously reduce the fusion performance. In the present work we present our first experimental and theoretical studies to analyze single shot space resolved hot electron fractions inside dense plasmas via optically thin X-ray line transitions from autoionizing states. The benchmark experiment has been carried out at an X-pinch in order to create a dense, localized plasma with a well defined symmetry axis of hot electron propagation. Simultaneous high spatial and spectral resolution in the X-ray spectral range has been obtained with a spherically bent quartz Bragg crystal. The high performance of the X-ray diagnostics allowed to identify space resolved hot electron fractions via the X-ray spectral distribution of multiple excited states.

  16. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Peter

    2012-12-07

    show a good agreement. Up to now the measurements of impinging spectra with a Timepix detector have been performed in radiation fields with a relatively high fluence. To cope with the requirement of measuring in radiation fields with a low fluence, there had to be changes in the method of analysis compared to those performed formerly. An important improvement in this context was the employment of the Bayesian deconvolution method. The spectra reconstructed with this method were then compared to the results of two different and established detection systems. Firstly, the shape of the deconvolved spectrum was compared to the one measured with a hpGe detector. Secondly, the calculated value of the kerma rate was compared to the one measured with an ionization chamber. This gave an estimate on the correctness of the absolute number of photons. Both comparisons have shown a good agreement and thus I was able to validate that the method delivers precise results. Compared to the formerly used spectrum-stripping method the Bayesian deconvolution turned out to be very stable and reliable. This robustness of the deconvolution method and the development of a pixel-by-pixel energy calibration were the keys towards position-resolved spectrometry. With such a precise energy calibration the energy resolution was enhanced by up to 45%. This improved accuracy in the measurement has been very demanding on the improvements of the simulation of the response matrix needed for deconvolution. Both this enhanced simulation and a pixel-by-pixel calibrated detector opened the possibility of measuring the anode heel effect. Not only the relative angular dependency of the spectrum emitted but also the change in the absolute photon fluence were measured. Furthermore, it is possible to even use small ROIs down to 4x4 pixels to evaluate a spectrum. This was then applied for the spectrometry of small focal spots of a miniature X-ray source used in therapeutics. Furthermore, the robustness and the

  17. Time-resolved and position-resolved X-ray spectrometry with a pixelated detector

    International Nuclear Information System (INIS)

    Sievers, Peter

    2012-01-01

    show a good agreement. Up to now the measurements of impinging spectra with a Timepix detector have been performed in radiation fields with a relatively high fluence. To cope with the requirement of measuring in radiation fields with a low fluence, there had to be changes in the method of analysis compared to those performed formerly. An important improvement in this context was the employment of the Bayesian deconvolution method. The spectra reconstructed with this method were then compared to the results of two different and established detection systems. Firstly, the shape of the deconvolved spectrum was compared to the one measured with a hpGe detector. Secondly, the calculated value of the kerma rate was compared to the one measured with an ionization chamber. This gave an estimate on the correctness of the absolute number of photons. Both comparisons have shown a good agreement and thus I was able to validate that the method delivers precise results. Compared to the formerly used spectrum-stripping method the Bayesian deconvolution turned out to be very stable and reliable. This robustness of the deconvolution method and the development of a pixel-by-pixel energy calibration were the keys towards position-resolved spectrometry. With such a precise energy calibration the energy resolution was enhanced by up to 45%. This improved accuracy in the measurement has been very demanding on the improvements of the simulation of the response matrix needed for deconvolution. Both this enhanced simulation and a pixel-by-pixel calibrated detector opened the possibility of measuring the anode heel effect. Not only the relative angular dependency of the spectrum emitted but also the change in the absolute photon fluence were measured. Furthermore, it is possible to even use small ROIs down to 4x4 pixels to evaluate a spectrum. This was then applied for the spectrometry of small focal spots of a miniature X-ray source used in therapeutics. Furthermore, the robustness and the

  18. Electronic properties of linear carbon chains: Resolving the controversy

    Science.gov (United States)

    Al-Backri, Amaal; Zólyomi, Viktor; Lambert, Colin J.

    2014-03-01

    Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap Eg of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient β governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find Eg = 2.16 eV and an upper bound for β of 0.21 Å-1.

  19. Electronic properties of linear carbon chains: Resolving the controversy

    International Nuclear Information System (INIS)

    Al-Backri, Amaal; Zólyomi, Viktor; Lambert, Colin J.

    2014-01-01

    Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap E g of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient β governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find E g = 2.16 eV and an upper bound for β of 0.21 Å −1

  20. Approaches for Resolving Dynamic IP Addressing.

    Science.gov (United States)

    Foo, Schubert; Hui, Siu Cheung; Yip, See Wai; He, Yulan

    1997-01-01

    A problem with dynamic Internet protocol (IP) addressing arises when the Internet connection is through an Internet provider since the IP address is allocated only at connection time. This article examines a number of online and offline methods for resolving the problem. Suggests dynamic domain name system (DNS) and directory service look-up are…

  1. The resolved stellar population of Leo A

    NARCIS (Netherlands)

    Tolstoy, E

    1996-01-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Ha filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an

  2. Generalized Darcy–Oseen resolvent problem

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar; Ptashnyk, M.; Varnhorn, W.

    2016-01-01

    Roč. 39, č. 6 (2016), s. 1621-1630 ISSN 0170-4214 Institutional support: RVO:67985840 Keywords : Darcy -Oseen resolvent problem * semipermeable membrane * Brinkman- Darcy equations * fluid flow between free-fluid domains and porous media Subject RIV: BA - General Mathematics Impact factor: 1.017, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/mma.3872/abstract

  3. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new v...

  4. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... structure in vitro and it may be one such protein that could resolve G4 DNA under normal growth conditions in. D. radiodurans. [Kota S and Misra HS 2015 Topoisomerase IB of ..... 2004 Intracellular transcription of G-rich DNAs induces forma- tion of G-loops, novel structures containing G4 DNA. Genes. Dev.

  5. Topoisomerase IB of Deinococcus radiodurans resolves guanine ...

    Indian Academy of Sciences (India)

    2015-11-28

    Nov 28, 2015 ... [Kota S and Misra HS 2015 Topoisomerase IB of Deinococcus radiodurans resolves guanine quadruplex DNA structures in vitro. J. Biosci. 40 833–843] ... known for its efficient DNA double strand break repair. (Zahradka et al. ..... These samples were analysed on 12% native PAGE in KCl buffer (a). For CD ...

  6. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  7. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  8. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  9. Energy sustainability through green energy

    CERN Document Server

    Sharma, Atul

    2015-01-01

    This book shares the latest developments and advances in materials and processes involved in the energy generation, transmission, distribution and storage. Chapters are written by researchers in the energy and materials field. Topics include, but are not limited to, energy from biomass, bio-gas and bio-fuels; solar, wind, geothermal, hydro power, wave energy; energy-transmission, distribution and storage; energy-efficient lighting buildings; energy sustainability; hydrogen and fuel cells; energy policy for new and renewable energy technologies and education for sustainable energy development

  10. Optical model calculation for the unresolved/resolved resonance region of Fe-56

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Fukuoka (Japan); Froehner, F.H.

    1997-03-01

    We have studied optical model fits to total neutron cross sections of structural materials using the accurate data base for {sup 56}Fe existing in the resolved and unresolved resonance region. Averages over resolved resonances were calculated with Lorentzian weighting in Reich-Moore (reduced R matrix) approximation. Starting from the best available optical potentials we found that adjustment of the real and imaginary well depths does not work satisfactorily with the conventional weak linear energy dependence of the well depths. If, however, the linear dependences are modified towards low energies, the average total cross sections can be fitted quite well, from the resolved resonance region up to 20 MeV and higher. (author)

  11. Timepix3 as X-ray detector for time resolved synchrotron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem, E-mail: hazem.yousef@diamond.ac.uk; Crevatin, Giulio; Gimenez, Eva N.; Horswell, Ian; Omar, David; Tartoni, Nicola

    2017-02-11

    The Timepix3 ASIC can be used very effectively for time resolved experiments at synchrotron facilities. We have carried out characterizations with the synchrotron beam in order to determine the time resolution and other characteristics such as the energy resolution, charge sharing and signals overlapping. The best time resolution achieved is 19 ns FWHM for 12 keV photons and 350 V bias voltage. The time resolution shows dependency on the photon energy as well as on the chip and acquisition parameters. - Highlights: • An estimate time resolution of the Timepix3 is produced based on the arrival time. • At high resolution, the time structure of the DLS synchrotron beam is resolved. • The arrival time information improves combining the charge split events. • The results enable performing a wide range of time resolved experiments.

  12. Sandia energy titles

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.L. (ed.)

    1978-08-01

    The bibliography of energy-related publications produced by Sandia authors is arranged in broad subject category order. Subjects included are conservation, drilling technology, energy (general), environment and safety, fossil energy, geothermal energy, nuclear energy, and solar energy.

  13. Deflection evaluation using time-resolved radiography

    International Nuclear Information System (INIS)

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. The authors have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed in this paper, the author's intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made

  14. Time-resolved brightness measurements by streaking

    Science.gov (United States)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  15. A spin-resolved photoemission study

    Indian Academy of Sciences (India)

    Stoner vs. spin-mixing behavior in the bulk magnetism of Gd: A spin-resolved photoemission study. K MAITI1,2,∗. , M C MALAGOLI2, A DALLMEYER2 and C CARBONE2,3. 1Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. 2Institut für Festkörperforschung, Forschungszentrum Jülich, ...

  16. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  17. Time Resolved Shadowgraph Images of Silicon during Laser Ablation: Shockwaves and Particle Generation

    International Nuclear Information System (INIS)

    Liu, C Y; Mao, X L; Greif, R; Russo, R E

    2007-01-01

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume

  18. Layer-resolved photoelectron diffraction: electron attenuation anisotropy in GaAs

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Cukr, Miroslav; Jiříček, Petr

    2012-01-01

    Roč. 185, 5-7 (2012), 184-187 ISSN 0368-2048 Grant - others:AVČR(CZ) Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : low-energy electron attenuation in GaAs * layer-resolved photoelectron diffraction * synchrotron radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.706, year: 2012

  19. Time-resolved measurement of a self-amplified free-electron laser

    International Nuclear Information System (INIS)

    We report on a time-resolved measurement of self-amplified spontaneous emission free-electron laser (FEL) pulses. We observed that the spikes in such FEL pulses have an intrinsic positive chirp and the energy chirp in the electron bunch mapped directly into the FEL output. The measurement also provides rich information on the statistics of the FEL pulses

  20. Time Resolved Shadowgraph Images of Silicon during Laser Ablation:Shockwaves and Particle Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.Y.; Mao, X.L.; Greif, R.; Russo, R.E.

    2006-05-06

    Time resolved shadowgraph images were recorded of shockwaves and particle ejection from silicon during laser ablation. Particle ejection and expansion were correlated to an internal shockwave resonating between the shockwave front and the target surface. The number of particles ablated increased with laser energy and was related to the crater volume.

  1. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    International Nuclear Information System (INIS)

    Marczynski-Buehlow, Martin

    2012-01-01

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of FEL pulse

  2. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  3. Becoming homeless, being homeless, and resolving homelessness among women.

    Science.gov (United States)

    Finfgeld-Connett, Deborah

    2010-07-01

    The purpose of this investigation was to more comprehensively articulate the experiences of homeless women and make evidence-based inferences regarding optimal social services. This study was conducted using qualitative meta-synthesis methods. As youth, homeless women experience challenging circumstances that leave them ill-prepared to prevent and resolve homelessness in adulthood. Resolution of homelessness occurs in iterative stages: crisis, assessment, and sustained action. To enhance forward progression through these stages, nurses are encouraged to promote empowerment in concordance with the Transtheoretical and Harm Reduction Models. Services that are highly valued include physical and mental health care and child care assistance.

  4. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM).

    Science.gov (United States)

    Bruntz, Ronald C; Lane, Andrew N; Higashi, Richard M; Fan, Teresa W-M

    2017-07-14

    Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Time Resolved Spectroscopy of MOVPE Grown Narrow Gap Ferromagnetic Semiconductors

    Science.gov (United States)

    Bhowmick, Mithun; Merritt, Travis; Khodaparast, Giti A.; Feeser, Caitlin; Wessels, Bruce W.; McGill, Stephen; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2011-12-01

    We report on time resolved differential transmission experiments to provide insight into both the time scales and the nature of the microscopic interactions and carrier dynamics in MOVPE grown ferromagnetic InMnAs and InMnSb. Theoretical calculations of the electronic structure for InMnAs are performed using an 8 band kṡp model which includes non-parabolicity of the conduction bands; strong band-mixing of the valence bands; as well as coupling of Mn impurities to the electrons and holes. Our preliminary theoretical results explain the sign change in the differential transmission signal as a function of probe wavelength.

  6. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    Science.gov (United States)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  7. Time-Resolved Hard X-Ray Spectrometer

    International Nuclear Information System (INIS)

    Kenneth Moya; Ian McKennaa; Thomas Keenana; Michael Cuneob

    2007-01-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and polar views. UNSPEC1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment

  8. Comparative frequency-resolved photoconductivity studies of amorphous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, R. [Department of Secondary Science and Mathematics Education, University of Mersin, Yenisehir Campus, 33169 Mersin (Turkey)

    2005-02-01

    Comparative frequency-resolved photoconductivity measurements in amorphous (a-) semiconductors, such as a-Si:H p-i-n junction, a-SiGe:H and a-chalcogenides (a-Se, a-As{sub 2}Se{sub 3}, a-As{sub 2}Te{sub 3}, a-SeTe, a-As{sub 2}S{sub 3}, etc.) are reported. In particular, photoconductivity lifetimes as a function of light intensity and temperature were determined by using the quadrature frequency-resolved spectroscopy method. The activation energies from the temperature-dependent lifetime and photocurrent were determined and compared in different materials. The exponent n in the power-law relationship (I{sub ph}KG{sup n}) between generating flux and photocurrent was also obtained at different excitation wavelengths. The results were compared with the predictions of multiple-trapping (MT) and distant-pair (DP) models developed for photoconductivity of a-semiconductors at high and low temperatures, respectively.

  9. Fully resolved simulations of expansion waves propagating into particle beds

    Science.gov (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  10. What Supports an Aeroplane? Force, Momentum, Energy and Power in Flight

    Science.gov (United States)

    Robertson, David

    2014-01-01

    Some apparently confusing aspects of Newton's laws as applied to an aircraft in normal horizontal flight are neatly resolved by a careful analysis of force, momentum, energy and power. A number of related phenomena are explained at the same time, including the lift and induced drag coefficients, used empirically in the aviation industry.

  11. Resolving the evolutionary relationships of molluscs with phylogenomic tools.

    Science.gov (United States)

    Smith, Stephen A; Wilson, Nerida G; Goetz, Freya E; Feehery, Caitlin; Andrade, Sónia C S; Rouse, Greg W; Giribet, Gonzalo; Dunn, Casey W

    2011-10-26

    Molluscs (snails, octopuses, clams and their relatives) have a great disparity of body plans and, among the animals, only arthropods surpass them in species number. This diversity has made Mollusca one of the best-studied groups of animals, yet their evolutionary relationships remain poorly resolved. Open questions have important implications for the origin of Mollusca and for morphological evolution within the group. These questions include whether the shell-less, vermiform aplacophoran molluscs diverged before the origin of the shelled molluscs (Conchifera) or lost their shells secondarily. Monoplacophorans were not included in molecular studies until recently, when it was proposed that they constitute a clade named Serialia together with Polyplacophora (chitons), reflecting the serial repetition of body organs in both groups. Attempts to understand the early evolution of molluscs become even more complex when considering the large diversity of Cambrian fossils. These can have multiple dorsal shell plates and sclerites or can be shell-less but with a typical molluscan radula and serially repeated gills. To better resolve the relationships among molluscs, we generated transcriptome data for 15 species that, in combination with existing data, represent for the first time all major molluscan groups. We analysed multiple data sets containing up to 216,402 sites and 1,185 gene regions using multiple models and methods. Our results support the clade Aculifera, containing the three molluscan groups with spicules but without true shells, and they support the monophyly of Conchifera. Monoplacophora is not the sister group to other Conchifera but to Cephalopoda. Strong support is found for a clade that comprises Scaphopoda (tusk shells), Gastropoda and Bivalvia, with most analyses placing Scaphopoda and Gastropoda as sister groups. This well-resolved tree will constitute a framework for further studies of mollusc evolution, development and anatomy.

  12. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  13. Advantage Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Increased focus has been placed on the issues of energy access and energy poverty over the last number of years, most notably indicated by the United Nations (UN) declaring 2012 as the 'International Year of Sustainable Energy for All'. Although attention in these topics has increased, incorrect assumptions and misunderstandings still arise in both the literature and dialogues. Access to energy does not only include electricity, does not only include cook stoves, but must include access to all types of energy that form the overall energy system. This paper chooses to examine this energy system using a typology that breaks it into 3 primary energy subsystems: heat energy, electricity and transportation. Describing the global energy system using these three subsystems provides a way to articulate the differences and similarities for each system's required investments needs by the private and public sectors.

  14. Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael; Kemper, Alexander F.; Moritz, Brian; Freericks, James K.; Shen, Zhi-Xun; Devereaux, Thomas P.

    2013-12-26

    Nonequilibrium pump-probe time-domain spectroscopies can become an important tool to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Here, using the time-resolved solution of a model photoexcited electron-phonon system, we show that the relaxational dynamics are directly governed by the equilibrium self-energy so that the phonon frequency sets a window for “slow” versus “fast” recovery. The overall temporal structure of this relaxation spectroscopy allows for a reliable and quantitative extraction of the electron-phonon coupling strength without requiring an effective temperature model or making strong assumptions about the underlying bare electronic band dispersion.

  15. Chemistry resolved kinetic flow modeling of TATB based explosives

    Science.gov (United States)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  16. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom)

    2014-12-28

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includes only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.

  17. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  18. Geothermal Energy.

    Science.gov (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  19. 2002 energy statistics

    International Nuclear Information System (INIS)

    2003-01-01

    This report has 12 chapters. The first chapter includes world energy reserves, the second chapter is about world primary energy production and consumption condition. Other chapters include; world energy prices, energy reserves in Turkey, Turkey primary energy production and consumption condition, Turkey energy balance tables, Turkey primary energy reserves production, consumption, imports and exports conditions, sectoral energy consumptions, Turkey secondary electricity plants, Turkey energy investments, Turkey energy prices.This report gives world and Turkey statistics on energy

  20. Spectra-resolved technique of a sensitive time-resolved fluorescence immunoassay instrument

    Science.gov (United States)

    Guo, Zhouyi; Tian, Zhen; Jia, Yali

    2004-07-01

    The lanthanide trivalence ion and its chelates are used for marking substance in time-resolved fluorescence immunoassay (TRFIA), marking the protein, hormone, antibody, nucleic acid probe or biologica alive cell, to measure the concentration of the analysis substance inside the reaction system with time-resolved fluorometry after the reaction system occurred, and attain the quantitative analysis's purpose. TRFIA has been become a kind of new and more sensitive measure method after radioisotope marking, enzymatic marking, chemiluminescence, electrochemiluminescence, it primarily is decided by the special physics and chemistry characteristic of lanthanide trivalence ion and its chelates. In this paper, the result of spectroscopic evaluation of europium trivalence ion and its chelate, and the principle of spectra-resolved technology and a sensitive time-resolved fluorescence immunoassay instrument made by ourselves are reported. In the set, a high frequency Xenon pulsed-light was adopted as exciting light, and two special filters was utilized according to spectra-resolved technique. Thus the influence of scattering light and short-lifetime fluorescence was removed. And the sensitivity is 10-12mol/L (when Eu3+ was used for marking substance), examination repeat is CV = 95% (p < 0.01).

  1. Achieving patient satisfaction: resolving patient complaints.

    Science.gov (United States)

    Oxler, K F

    1997-07-01

    Patients demand to be active participants on and partners with the health care team to design their care regimen. Patients bring unique perceptions and expectations and use these to evaluate service quality and satisfaction. If customer satisfaction is not achieved and a patient complaint results, staff must have the skills to respond and launch a service recovery program. Service recovery, when done with style and panache, can retain loyal customers. Achieving patient satisfaction and resolving patient complaints require commitment from top leadership and commitment from providers to dedicate the time to understand their patients' needs.

  2. Daylight time-resolved photographs of lightning.

    Science.gov (United States)

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  3. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  4. Full-Circle Resolver-to-Linear-Analog Converter

    Science.gov (United States)

    Alhorn, Dean C.; Smith, Dennis A.; Howard, David E.

    2005-01-01

    A circuit generates sinusoidal excitation signals for a shaft-angle resolver and, like the arctangent circuit described in the preceding article, generates an analog voltage proportional to the shaft angle. The disadvantages of the circuit described in the preceding article arise from the fact that it must be made from precise analog subcircuits, including a functional block capable of implementing some trigonometric identities; this circuitry tends to be expensive, sensitive to noise, and susceptible to errors caused by temperature-induced drifts and imprecise matching of gains and phases. These disadvantages are overcome by the design of the present circuit. The present circuit (see figure) includes an excitation circuit, which generates signals Ksin(Omega(t)) and Kcos(Omega(t)) [where K is an amplitude, Omega denotes 2(pi)x a carrier frequency (the design value of which is 10 kHz), and t denotes time]. These signals are applied to the excitation terminals of a shaft-angle resolver, causing the resolver to put out signals C sin(Omega(t)-Theta) and C cos(Omega(t)-Theta). The cosine excitation signal and the cosine resolver output signal are processed through inverting comparator circuits, which are configured to function as inverting squarers, to obtain logic-level or square-wave signals .-LL[cos(Omega(t)] and -LL[cos(Omega(t)-Theta)], respectively. These signals are fed as inputs to a block containing digital logic circuits that effectively measure the phase difference (which equals Theta between the two logic-level signals). The output of this block is a pulse-width-modulated signal, PWM(Theta), the time-averaged value of which ranges from 0 to 5 VDC as Theta ranges from .180 to +180deg. PWM(Theta) is fed to a block of amplifying and level-shifting circuitry, which converts the input PWM waveform to an output waveform that switches between precise reference voltage levels of +10 and -10 V. This waveform is processed by a two-pole, low-pass filter, which removes

  5. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  6. Oregon: a guide to geothermal energy development. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

    1980-06-01

    The following subjects are covered: Oregons' geothermal potential, exploration methods and costs, drilling, utilization methods, economic factors of direct use projects, and legal and institutional setting. (MHR)

  7. Your solar energy home: including wind and methane applications

    National Research Council Canada - National Science Library

    Howell, Derek

    1979-01-01

    .... When a particular title is adopted or recommended for adoption for class use and the recommendation results in a sale of 12 or more copies, the inspection copy may be retained with our compliments. The Publishers will be pleased to receive suggestions for revised editions and new titles to be published in this important International Library.Other Pergamon ...

  8. Healthcare Teams Neurodynamically Reorganize When Resolving Uncertainty

    Directory of Open Access Journals (Sweden)

    Ronald Stevens

    2016-11-01

    Full Text Available Research on the microscale neural dynamics of social interactions has yet to be translated into improvements in the assembly, training and evaluation of teams. This is partially due to the scale of neural involvements in team activities, spanning the millisecond oscillations in individual brains to the minutes/hours performance behaviors of the team. We have used intermediate neurodynamic representations to show that healthcare teams enter persistent (50–100 s neurodynamic states when they encounter and resolve uncertainty while managing simulated patients. Each of the second symbols was developed situating the electroencephalogram (EEG power of each team member in the contexts of those of other team members and the task. These representations were acquired from EEG headsets with 19 recording electrodes for each of the 1–40 Hz frequencies. Estimates of the information in each symbol stream were calculated from a 60 s moving window of Shannon entropy that was updated each second, providing a quantitative neurodynamic history of the team’s performance. Neurodynamic organizations fluctuated with the task demands with increased organization (i.e., lower entropy occurring when the team needed to resolve uncertainty. These results show that intermediate neurodynamic representations can provide a quantitative bridge between the micro and macro scales of teamwork.

  9. Time Resolved Deposition Measurements in NSTX

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Roquemore, A.L.; Hogan, J.; Wampler, W.R.

    2004-01-01

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 (micro)g/cm 2 of deposition, however surprisingly, 15.9 (micro)g/cm 2 of material loss occurred at 7 discharges. The net deposited mass of 13.3 (micro)g/cm 2 matched the mass of 13.5 (micro)g/cm 2 measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition

  10. Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2015-11-01

    Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.

  11. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  12. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles

    Science.gov (United States)

    White, Allen R.; Allen, James; Devasher, Rebecca B.

    2011-06-01

    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  13. Energy 93, energy in Israel

    International Nuclear Information System (INIS)

    Shilo, D.; Bar Mashiah, D.; Er-El, J.

    1993-01-01

    For the first time this report includes a chapter entitles 'energy and peace'. Following is an overview of israel's energy economy and some principal initiatives in its various sectors during 1992/93 period. 46 figs, 13 tabs

  14. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief presentation on the state of energy demand in the United States and discussed the improving economics for new nuclear power plants. He discussed the consolidation of companies under deregulation and the ability of these larger companies to undertake large capital projects such as nuclear power plant construction. He discussed efforts under way to support a new generation of plants but noted that there needs to be greater certainty in the licensing process. He discussed infrastructure challenges in terms of people, hardware, and services to support new and current plants. He stated that there needs to be fair and equitable licensing fees and decommissioning funding assurance for innovative modular designs such as the PBMR. He concluded that NRC challenges will include resolving 10 CFR Part 52 implementation issues, establishing an efficient and predictable process for siting, COL permits and inspection, and an increasing regulatory workload

  15. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  16. Resolving coastal conflicts using marine spatial planning.

    Science.gov (United States)

    Tuda, Arthur O; Stevens, Tim F; Rodwell, Lynda D

    2014-01-15

    We applied marine spatial planning (MSP) to manage conflicts in a multi-use coastal area of Kenya. MSP involves several steps which were supported by using geographical information systems (GISs), multi-criteria decision analysis (MCDA) and optimization. GIS was used in identifying overlapping coastal uses and mapping conflict hotspots. MCDA was used to incorporate the preferences of user groups and managers into a formal decision analysis procedure. Optimization was applied in generating optimal allocation alternatives to competing uses. Through this analysis three important objectives that build a foundation for future planning of Kenya's coastal waters were achieved: 1) engaging competing stakeholders; 2) illustrating how MSP can be adapted to aid decision-making in multi-use coastal regions; and 3) developing a draft coastal use allocation plan. The successful application of MSP to resolve conflicts in coastal regions depends on the level of stakeholder involvement, data availability and the existing knowledge base. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Time - resolved thermography at Tokamak T-10

    International Nuclear Information System (INIS)

    Grunow, C.; Guenther, K.; Lingertat, J.; Chicherov, V.M.; Evstigneev, S.A.; Zvonkov, S.N.

    1987-01-01

    Thermographic experiments were performed at T-10 tokamak to investigate the thermic coupling of plasma and the limiter. The limiter is an internal equipment of the vacuum vessel of tokamak-type fusion devices and the interaction of plasma with limiter results a high thermal load of limiter for short time. In according to improve the limiter design the temperature distribution on the limiter surface was measured by a time-resolved thermographic method. Typical isotherms and temperature increment curves are presented. This measurement can be used as a systematic plasma diagnostic method because the limiter is installed in the tokamak whereas special additional probes often disturb the plasma discharge. (D.Gy.) 3 refs.; 7 figs

  18. Resolving capacity of the circular Zernike polynomials.

    Science.gov (United States)

    Svechnikov, M V; Chkhalo, N I; Toropov, M N; Salashchenko, N N

    2015-06-01

    Circular Zernike polynomials are often used for approximation and analysis of optical surfaces. In this paper, we analyse their lateral resolving capacity, illustrating the effects of a lack of approximation by a finite set of polynomials and answering the following questions: What is the minimum number of polynomials that is necessary to describe a local deformation of a certain size? What is the relationship between the number of approximating polynomials and the spatial spectrum of the approximation? What is the connection between the mean-square error of approximation and the number of polynomials? The main results of this work are the formulas for calculating the error of fitting the relief and the connection between the width of the spatial spectrum and the order of approximation.

  19. Time-resolved fluoroimmunoassay of CA125

    International Nuclear Information System (INIS)

    Cai Gangming; Huang Biao; Zhu Liguo; Xiao Hualong; Tan Cheng; Tao Yonghui; Jin Jian

    2001-01-01

    A two-site time-resolved fluoroimmunoassay (TRFIA) of CA 125 based on the direct sandwich technique has been developed, with the equilibrium method. The monoclonal antibody (MoAb) against CA 125 was labelled with europium by the help of europium-chelate of diethylenetriaminepentaacetic acid (DTPA). The luminescent enhancement system was an enhancement solution that contained mainly of 2-naphthoyltrifluoroacetone. The intra- and inter- assay CV of the TRFIA were 4.5% and 4.0%, respectively, and the recovery rate was 96.7%, the sensitivity was 3.3 μg/mL. The cross-reacting rate with CEA was negligible, and that with AFP and β-HCG was 4.6% and 12.4%, respectively. Compared with the imported IRMA Kit, the correlation coefficient was 0.999

  20. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  1. Capital-energy complementarity in aggregate energy-economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, W.W.

    1979-10-01

    The interplay between capital and energy will affect the outcome of energy-policy initiatives. A static model clarifies the interpretation of the conflicting empirical evidence on the nature of this interplay. This resolves an apparent conflict between engineering and economc interpretations and points to an additional ambiguity that can be resolved by distinguishing between policy issues at aggregated and disaggregated levels. Restrictions on aggregate energy use should induce reductions in the demand for capital and exacerbate the economic impacts of the energy policy. 32 references.

  2. Angle-resolved photoelectron cross section of CF4

    International Nuclear Information System (INIS)

    Carlson, T.A.; Fahlman, A.; Svensson, W.A.; Krause, M.O.; Whitley, T.A.; Grimm, F.A.; Piancastelli, M.N.; Taylor, J.W.

    1984-01-01

    Partial photoelectron cross sections sigma and angular distribution parameters β were obtained for the first five valence orbitals in CF 4 : 1t 1 , 4t 2 , 1e, 3t 2 , and 4a 1 , as a function of photon energy from 17 to 70 eV. These data were taken with the aid of angle-resolved photoelectron spectroscopy and synchrotron radiation. The results were compared with earlier data on CCl 4 . Substantial differences were found. These are explained partly in terms of the absence of a Cooper minimum with a fluorine compound as opposed to the presence of a Cooper minimum with chlorine compounds and partly in terms of the position of shape resonances. Data on CF 4 were also compared with recent calculations of Stephens et al., who used the multiple-scattering Xα method. Structure in the photoelectron spectrum of CF 4 lying on the low energy side of the third band was identified as due to autoionization and evidence is given as to its specific nature

  3. Enforcement actions: significant actions resolved. Quarterly progress report, January-June 1982

    International Nuclear Information System (INIS)

    1982-09-01

    This compilation summarizes significant enforcement actions that have been resolved during two quarterly periods (January to June 1982) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to the licensee with respect to the enforcement action. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, in the interest of promoting public health and safety as well as common defense and security. The intention is that this publication will be issued on a quarterly basis to include significant enforcement actions resolved during the preceding quarter

  4. Annual Energy Review, 2008

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-01

    The Annual Energy Review (AER) is the Energy Information Administration's (EIA) primary report of annual historical energy statistics. For many series, data begin with the year 1949. Included are statistics on total energy production, consumption, trade, and energy prices; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, and international energy; financial and environment indicators; and data unit conversions.

  5. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  6. Local crystallography analysis for atomically resolved scanning tunneling microscopy images

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Li, Qing; Belianinov, Alexei; Gai, Zheng; Baddorf, Arthur P; Pan, Minghu; Jesse, Stephen; Kalinin, Sergei V; Sales, Brian C; Sefat, Athena

    2013-01-01

    Scanning probe microscopy has emerged as a powerful and flexible tool for atomically resolved imaging of surface structures. However, due to the amount of information extracted, in many cases the interpretation of such data is limited to being qualitative and semi-quantitative in nature. At the same time, much can be learned from local atom parameters, such as distances and angles, that can be analyzed and interpreted as variations of local chemical bonding, or order parameter fields. Here, we demonstrate an iterative algorithm for indexing and determining atomic positions that allows the analysis of inhomogeneous surfaces. This approach is further illustrated by local crystallographic analysis of several real surfaces, including highly ordered pyrolytic graphite and an Fe-based superconductor FeTe 0.55 Se 0.45 . This study provides a new pathway to extract and quantify local properties for scanning probe microscopy images. (paper)

  7. Laser induced vaporization time resolved mass spectrometry of refractories

    International Nuclear Information System (INIS)

    Bonnell, D.W.; Schenck, P.K.; Hastie, J.W.

    1988-01-01

    An experimental approach is described which can yield information about refractory surfaces by examining the time history of the gasdynamic process occurring during pulsed Nd/YAG laser induced degradation/vaporization of the surface. Boron nitride (BN) and graphite are considered as example systems. Time resolved mass spectrometric measurements of evolved species permit direct determination of gas species identities and concentration, independent of mass spectral cracking patterns. Of particular note is the observation of local thermodynamic equilibrium in both systems for the observed gas species laser vaporized from surfaces at temperatures of 2900 K (BN) and 3800-4100 K (graphite). Indirect methods of determining surface temperature, as alternatives to direct measurement of radiance temperature, are discussed. Also, a preliminary analysis of time-of-arrival (TOA), data is presented, including discussion of the elimination of amplifier RG response delays convoluted with the TOA data and extraction of true species time-of-arrival distributions

  8. Spatially resolved fish population analysis for designing MPAs

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Mosegaard, Henrik; Jensen, Henrik

    2009-01-01

    The sandeel population analysis model (SPAM) is presented as a simulation tool for exploring the efficiency of Marine Protected Areas (MPAs) for sandeel stocks. SPAM simulates spatially resolved sandeel population distributions, based on a high-resolution map of all fishery-established sandbank....... The SPAM framework was tested using ICES statistical rectangle 37F2 as an MPA, and the impact on sandeel populations within the MPA and neighbouring habitats was investigated. Increased larval spillover compensated for lost catches inside the MPA. The temporal and spatial scales of stock response to MPAs...... demonstrated that ecosystem self-regulation must be included when modelling the efficiency of MPAs, and for lesser sandeel, that self-regulation partially counteracts the benefits of a fishing sanctuary. The use of realistic habitat connectivity is critical for both qualitative and quantitative MPA assessment...

  9. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  10. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  11. Energy Storage.

    Science.gov (United States)

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  12. Panchromatic SED modelling of spatially-resolved galaxies

    Science.gov (United States)

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-02-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially-resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226,950 MAGPHYS SED fits to regions between 0.2 kpc and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  13. Time-resolved ARPES with sub-15 fs temporal and near Fourier-limited spectral resolution.

    Science.gov (United States)

    Rohde, G; Hendel, A; Stange, A; Hanff, K; Oloff, L-P; Yang, L X; Rossnagel, K; Bauer, M

    2016-10-01

    An experimental setup for time- and angle-resolved photoelectron spectroscopy with sub-15 fs temporal resolution is presented. A hollow-fiber compressor is used for the generation of 6.5 fs white light pump pulses, and a high-harmonic-generation source delivers 11 fs probe pulses at a photon energy of 22.1 eV. A value of 13 fs full width at half-maximum of the pump-probe cross correlation signal is determined by analyzing a photoemission intensity transient probing a near-infrared interband transition in 1T-TiSe 2 . Notably, the energy resolution of the setup conforms to typical values reported in conventional time-resolved photoemission studies using high harmonics, and an ultimate resolution of 170 meV is feasible.

  14. Energy Statistics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources

  15. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied

  16. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-06-14

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied.

  17. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  18. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    Science.gov (United States)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  19. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination

  20. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  1. The Resolved Stellar Population of Leo A

    Science.gov (United States)

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  2. Resolved Parental Infertility and Children's Educational Achievement.

    Science.gov (United States)

    Branigan, Amelia R; Helgertz, Jonas

    2017-06-01

    Although difficulty conceiving a child has long been a major medical and social preoccupation, it has not been considered as a predictor of long-term outcomes in children ultimately conceived. This is consistent with a broader gap in knowledge regarding the consequences of parental health for educational performance in offspring. Here we address that omission, asking how resolved parental infertility relates to children's academic achievement. In a sample of all Swedish births between 1988 and 1995, we find that involuntary childlessness prior to either a first or a second birth is associated with lower academic achievement (both test scores and GPA) in children at age 16, even if the period of infertility was prior to a sibling's birth rather than the child's own. Our results support a conceptualization of infertility as a cumulative physical and social experience with effects extending well beyond the point at which a child is born, and emphasize the need to better understand how specific parental health conditions constrain children's educational outcomes.

  3. Component-resolved diagnostics in vernal conjunctivitis.

    Science.gov (United States)

    Armentia, Alicia; Sanchís, Eugenia; Montero, Javier A

    2016-10-01

    Conventional diagnostic tests in allergy are insufficient to clarify the cause of vernal conjunctivitis. Component-resolved diagnostic (CRD) by microarray allergen assay may be useful in detecting allergens that might be involved in the inflammatory process. In a recent trial in patients suffered from eosinophilic esophagitis, after 2 years of the CRD-guided exclusion diet and specific immunotherapy, significant clinical improvement was observed, and 68% of patients were discharged (cure based on negative biopsy, no symptoms, and no medication intake). Our new objective was to evaluate IgE-mediated hypersensitivity by CRD in tears and serum from patients with vernal conjunctivitis and treat patients with identified triggering allergens by specific immunotherapy. Twenty-five patients with vernal conjunctivitis were evaluated. The identified triggering allergens were n Lol p 1 (11 cases), n Cyn d 1 (eight cases), group 4 and 6 grasses (six cases) and group 5 of grasses (five cases). Prick test and pollen IgE were positive in one case. Clinical improvement was observed in 13/25 vernal conjunctivitis patients after 1-year specific immunotherapy. CRD seems to be a more sensitive diagnostic tool compared with prick test and IgE detection. Specific CRD-led immunotherapy may achieve clinical improvements in vernal conjunctivitis patients.

  4. Component Resolved Diagnosis in Hymenoptera Anaphylaxis.

    Science.gov (United States)

    Tomsitz, D; Brockow, K

    2017-06-01

    Hymenoptera anaphylaxis is one of the leading causes of severe allergic reactions and can be fatal. Venom-specific immunotherapy (VIT) can prevent a life-threatening reaction; however, confirmation of an allergy to a Hymenoptera venom is a prerequisite before starting such a treatment. Component resolved diagnostics (CRD) have helped to better identify the responsible allergen. Many new insect venom allergens have been identified within the last few years. Commercially available recombinant allergens offer new diagnostic tools for detecting sensitivity to insect venoms. Additional added sensitivity to nearly 95% was introduced by spiking yellow jacket venom (YJV) extract with Ves v 5. The further value of CRD for sensitivity in YJV and honey bee venom (HBV) allergy is more controversially discussed. Recombinant allergens devoid of cross-reactive carbohydrate determinants often help to identify the culprit venom in patients with double sensitivity to YJV and HBV. CRD identified a group of patients with predominant Api m 10 sensitization, which may be less well protected by VIT, as some treatment extracts are lacking this allergen. The diagnostic gap of previously undetected Hymenoptera allergy has been decreased via production of recombinant allergens. Knowledge of analogies in interspecies proteins and cross-reactive carbohydrate determinants is necessary to distinguish relevant from irrelevant sensitizations.

  5. Fully Resolved Simulations of 3D Printing

    Science.gov (United States)

    Tryggvason, Gretar; Xia, Huanxiong; Lu, Jiacai

    2017-11-01

    Numerical simulations of Fused Deposition Modeling (FDM) (or Fused Filament Fabrication) where a filament of hot, viscous polymer is deposited to ``print'' a three-dimensional object, layer by layer, are presented. A finite volume/front tracking method is used to follow the injection, cooling, solidification and shrinking of the filament. The injection of the hot melt is modeled using a volume source, combined with a nozzle, modeled as an immersed boundary, that follows a prescribed trajectory. The viscosity of the melt depends on the temperature and the shear rate and the polymer becomes immobile as its viscosity increases. As the polymer solidifies, the stress is found by assuming a hyperelastic constitutive equation. The method is described and its accuracy and convergence properties are tested by grid refinement studies for a simple setup involving two short filaments, one on top of the other. The effect of the various injection parameters, such as nozzle velocity and injection velocity are briefly examined and the applicability of the approach to simulate the construction of simple multilayer objects is shown. The role of fully resolved simulations for additive manufacturing and their use for novel processes and as the ``ground truth'' for reduced order models is discussed.

  6. Time resolved ion beam induced charge collection

    International Nuclear Information System (INIS)

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  7. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    Chapter 2: As part of the Bluedisk survey we analyse the radial gas-phase metallicity profiles of 50 late-type galaxies. We compare the metallicity profiles of a sample of HI-rich galaxies against a control sample of HI-'normal' galaxies. We find the metallicity gradient of a galaxy to be strongly correlated with its HI mass fraction {M}{HI}) / {M}_{\\ast}). We note that some galaxies exhibit a steeper metallicity profile in the outer disc than in the inner disc. These galaxies are found in both the HI-rich and control samples. This contradicts a previous indication that these outer drops are exclusive to HI-rich galaxies. These effects are not driven by bars, although we do find some indication that barred galaxies have flatter metallicity profiles. By applying a simple analytical model we are able to account for the variety of metallicity profiles that the two samples present. The success of this model implies that the metallicity in these isolated galaxies may be in a local equilibrium, regulated by star formation. This insight could provide an explanation of the observed local mass-metallicity relation. Chapter 3 We present a method to recover the gas-phase metallicity gradients from integral field spectroscopic (IFS) observations of barely resolved galaxies. We take a forward modelling approach and compare our models to the observed spatial distribution of emission line fluxes, accounting for the degrading effects of seeing and spatial binning. The method is flexible and is not limited to particular emission lines or instruments. We test the model through comparison to synthetic observations and use downgraded observations of nearby galaxies to validate this work. As a proof of concept we also apply the model to real IFS observations of high-redshift galaxies. From our testing we show that the inferred metallicity gradients and central metallicities are fairly insensitive to the assumptions made in the model and that they are reliably recovered for galaxies

  8. Angle-resolved ion TOF spectrometer with a position sensitive detector

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Norio [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Heiser, F.; Wieliczec, K.; Becker, U.

    1996-07-01

    A angle-resolved ion time-of-flight mass spectrometer with a position sensitive anode has been investigated. Performance of this spectrometer has been demonstrated by measuring an angular distribution of a fragment ion pair, C{sup +} + O{sup +}, from CO at the photon energy of 287.4 eV. The obtained angular distribution is very close to the theoretically expected one. (author)

  9. Ultrafast Structural Dynamics in InSb Probed by Time-Resolved X-Ray Diffraction

    International Nuclear Information System (INIS)

    Chin, A.H.; Shank, C.V.; Chin, A.H.; Schoenlein, R.W.; Shank, C.V.; Glover, T.E.; Leemans, W.P.; Balling, P.

    1999-01-01

    Ultrafast structural dynamics in laser-perturbed InSb are studied using time-resolved x-ray diffraction with a novel femtosecond x-ray source. We report the first observation of a delay in the onset of lattice expansion, which we attribute to energy relaxation processes and lattice strain propagation. In addition, we observe direct indications of ultrafast disordering on a subpicosecond time scale. copyright 1999 The American Physical Society

  10. 239Pu neutron cross-sections in the resolved-resonance region

    International Nuclear Information System (INIS)

    Luk'yanov, A.A.; Kolesov, V.V.; Toshkov, S.; Yaneva, N.

    1988-01-01

    The authors have determined the multi-level parameters for description of the total and fission cross-sections for 239 Pu in the resolved-resonance region up to 500 eV. A method has been developed for the construction of the elastic scattering and radiative capture resonance cross-sections using these parameters. The group-averaged cross-sections for experimental and evaluated data have been calculated in the energy region considered. (author). Refs, 4 tabs

  11. Time-resolved phase measurement of a self-amplified free-electron laser

    International Nuclear Information System (INIS)

    We report on the first time-resolved phase measurement on self-amplified spontaneous emission (SASE) free-electron laser (FEL) pulses. We observed that the spikes in the output of such free-electron laser pulses have an intrinsic positive chirp. We also observed that the energy chirp in the electron bunch mapped directly into the FEL output. Under certain conditions, the two chirps cancel each other. The experimental result was compared with simulations and interpreted with SASE theory

  12. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    OpenAIRE

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra ena...

  13. Electronic structure of Sr2RuO4 studied by angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Iwasawa, H.; Aiura, Y.; Saitoh, T.; Yoshida, Y.; Hase, I.; Ikeda, S.I.; Bando, H.; Kubota, M.; Ono, K.

    2007-01-01

    Electronic structure of the monolayer strontium ruthenate Sr 2 RuO 4 was investigated by high-resolution angle-resolved photoemission spectroscopy. We present photon-energy (hν) dependence of the electronic structure near the Fermi level along the ΓM line. The hν dependence has shown a strong spectral weight modulation of the Ru 4d xy and 4d zx bands

  14. Study of High Temperature Superconductors with Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2003-05-13

    The Angle Resolved Photoemission Spectroscopy (ARPES) recently emerged as a powerful tool for the study of highly correlated materials. This thesis describes the new generation of ARPES experiment, based on the third generation synchrotron radiation source and utilizing very high resolution electron energy and momentum analyzer. This new setup is used to study the physics of high temperature superconductors. New results on the Fermi surfaces, dispersions, scattering rate and superconducting gap in high temperature superconductors are presented.

  15. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  16. Handbook on energy conservation

    International Nuclear Information System (INIS)

    1989-12-01

    This book shows energy situation in recent years, which includes reserves of energy resource in the world, crude oil production records in OPEC and non OPEC, supply and demand of energy in important developed countries, prospect of supply and demand of energy and current situation of energy conservation in developed countries. It also deals with energy situation in Korea reporting natural resources status, energy conservation policy, measurement for alternative energy, energy management of Korea, investment in equipment and public education for energy conservation.

  17. Broadband Comb-Resolved Cavity Enhanced Spectrometer with Graphene Modulator

    Science.gov (United States)

    Lee, Kevin; Mohr, Christian; Jiang, Jie; Fermann, Martin; Lee, Chien-Chung; Schibli, Thomas R.; Kowzan, Grzegorz; Maslowski, Piotr

    2015-06-01

    Optical cavities enhance sensitivity in absorption spectroscopy. While this is commonly done with single wavelengths, broad bandwidths can be coupled into the cavity using frequency combs. The combination of cavity enhancement and broad bandwidth allows simultaneous measurement of tens of transitions with high signal-to-noise for even weak near-infrared transitions. This removes the need for time-consuming sequencing acquisition or long-term averaging, so any systematic errors from long-term drifts of the experimental setup or slow changes of sample composition are minimized. Resolving comb lines provides a high accuracy, absolute frequency axis. This is of great importance for gas metrology and data acquisition for future molecular lines databases, and can be applied to simultaneous trace-gas detection of gas mixtures. Coupling of a frequency comb into a cavity can be complex, so we introduce and demonstrate a simplification. The Pound-Drever-Hall method for locking a cavity and a frequency comb together requires a phase modulation of the laser output. We use the graphene modulator that is already in the Tm fiber laser cavity for controlling the carrier envelope offset of the frequency comb, rather than adding a lossy external modulator. The graphene modulator can operate at frequencies of over 1~ MHz, which is sufficient for controlling the laser cavity length actuator which operates below 100~kHz. We match the laser cavity length to fast variations of the enhancement cavity length. Slow variations are stabilized by comparison of the pulse repetition rate to a GPS reference. The carrier envelope offset is locked to a constant value chosen to optimize the transmitted spectrum. The transmitted pulse train is a stable frequency comb suitable for long measurements, including the acquisition of comb-resolved Fourier transform spectra with a minimum absorption coefficient of about 2×10-7 wn. For our 38 cm long enhancement cavity, the comb spacing is 394~MHz. With our

  18. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...

  19. Enforcement actions: significant actions resolved. Quarterly progress report, October-December 1985. Volume 4, No. 4

    International Nuclear Information System (INIS)

    1986-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1985) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory commission to licensees with respects to these enforcement actions, and the licensees' responses

  20. The uses of alternative dispute resolution to resolve genetic disputes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Robert E.

    2003-01-01

    The report sets out lessons learned while carrying out the study. It concludes that genetic disputes will increase in number and that ADR processes including mediation, arbitration, the use of independent experts and court-appointed masters can be helpful in resolving them. It suggests additional effort on bioremediation, and workplace disputes and training for ADR neutrals.