WorldWideScience

Sample records for include electronic materials

  1. Second-principles method for materials simulations including electron and lattice degrees of freedom

    Science.gov (United States)

    García-Fernández, Pablo; Wojdeł, Jacek C.; Íñiguez, Jorge; Junquera, Javier

    2016-05-01

    We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved at a very modest computational cost. Our approach is based on dividing the electron density of the system into a reference part—typically corresponding to the system's neutral, geometry-dependent ground state—and a deformation part—defined as the difference between the actual and reference densities. We then take advantage of the fact that the bulk part of the system's energy depends on the reference density alone; this part can be efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then, the effects associated to the difference density can be treated perturbatively with good precision by working in a suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest. All these features combined yield a very flexible and computationally very efficient scheme. Here we present the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as well as its many envisioned possibilities and future extensions.

  2. Electronic materials

    CERN Document Server

    Kwok, H L

    2010-01-01

    The electronic properties of solids have become of increasing importance in the age of information technology. The study of solids and materials, while having originated from the disciplines of physics and chemistry, has evolved independently over the past few decades. The classical treatment of solid-state physics, which emphasized classifications, theories and fundamental physical principles, is no longer able to bridge the gap between materials advances and applications. In particular, the more recent developments in device physics and technology have not necessarily been driven by new conc

  3. Modern electronic materials

    CERN Document Server

    Watkins, John B

    2013-01-01

    Modern Electronic Materials focuses on the development of electronic components. The book first discusses the history of electronic components, including early developments up to 1900, developments up to World War II, post-war developments, and a comparison of present microelectric techniques. The text takes a look at resistive materials. Topics include resistor requirements, basic properties, evaporated film resistors, thick film resistors, and special resistors. The text examines dielectric materials. Considerations include basic properties, evaporated dielectric materials, ceramic dielectri

  4. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  5. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  6. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  7. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  8. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  9. Two-fluid turbulence including electron inertia

    Energy Technology Data Exchange (ETDEWEB)

    Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)

    2014-12-15

    We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.

  10. Good Security Practices for Electronic Commerce, Including Electronic Data Interchange

    National Research Council Canada - National Science Library

    Saltman, Roy

    1993-01-01

    Electronic commerce (EC) is the use of documents in electronic form, rather than paper, for carrying out functions of business or government that require interchange of information, obligations, or monetary value between organizations...

  11. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  12. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar

    2017-06-29

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic semiconductors. We begin by describing general aspects of materials design, including the wide variety of chemistries exploited to control the electronic and optical properties of these materials. We then discuss explicit examples of how the study of noncovalent interactions can provide deeper chemical insights that can improve the design of new generations of organic electronic materials.

  13. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  14. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  15. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  16. Electronic Transport in Two-Dimensional Materials

    Science.gov (United States)

    Sangwan, Vinod K.; Hersam, Mark C.

    2018-04-01

    Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

  17. Electron ring design for HERA, including spin-matching

    International Nuclear Information System (INIS)

    Skuja, A.; Hand, L.; Steffen, K.; Barber, D.

    1984-01-01

    A. Skuja has been working in collaboration with Professor Lou Hand in obtaining an optics for the electron ring at HERA that satisfies the usual constraints of an electron storage ring, but in addition allows longitudinal polarization in the interaction region without depolarizing the electron beam completely. This collaboration effort grew out of their work on a possible electron ring at Fermilab. When this project was degraded in priority at Fermilab, they turned their attention to the HERA project at DESY. The HERA project will have an electron ring of about 30 GeV e - (or e + ) incident on 800 GeV protons. Recently it has been decided that the collisions should be head on (0 0 crossing), although all previous designs had a crossing angle of the 2 beams of 20 mrad. Professors Hand and Skuja implemented a complete program in the last year and a half that could fit the usual Turis parameters as well as the so called 12 spin-matching conditions of Chao and Yukoya for all possible machine elements including solenoids. The program has the possibility of fully coupling vertical and horizontal motion using the usual eigenvalue method

  18. Electron microscopy of nanostructured semiconductor materials

    International Nuclear Information System (INIS)

    Neumann, Wolfgang

    2003-01-01

    For various material systems of low dimensions, including multilayers, islands, and quantum dots, the potential applicability of transmission electron microscopy (TEM) is demonstrated. Conventional TEM is applied to elucidate size, shape, and arrangement of nanostructures, whereas high-resolution imaging is used for visualizing their atomic structure. In addition, microchemical peculiarities of the nanoscopic objects are investigated by analytical TEM techniques (energy-filtered TEM, energy-dispersive X-ray spectroscopy)

  19. 76 FR 65212 - Henkel Corporation, Currently Known as Henkel Electronic Materials, LLC, Electronic Adhesives...

    Science.gov (United States)

    2011-10-20

    ..., Currently Known as Henkel Electronic Materials, LLC, Electronic Adhesives Division, Including On-Site Leased..., Electronic Adhesives Division, including on-site leased workers from Aerotek Professional Services, Billerica..., Electronic Adhesives Division had their wages reported under a separate unemployment insurance (UI) tax...

  20. Nonlinearity in structural and electronic materials

    International Nuclear Information System (INIS)

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors

  1. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. Electronic, magnetic, and optical materials

    CERN Document Server

    Fulay, Pradeep

    2013-01-01

    Technological aspects of ferroelectric, piezoelectric and pyroelectric materials are discussed in detail, in a way that should allow the reader to select an optimal material for a particular application. The basics of magnetostatics are described clearly, as are a wide range of magnetic properties of materials … .-Tony Harker, Department of Physics and Astronomy, University College London

  3. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  4. Physics of electronic materials principles and applications

    CERN Document Server

    Rammer, Jorgen

    2017-01-01

    Adopting a uniquely pedagogical approach, this comprehensive textbook on the quantum mechanics of semiconductor materials and devices focuses on the materials, components and devices themselves whilst incorporating a substantial amount of fundamental physics related to condensed matter theory and quantum mechanics. Written primarily for advanced undergraduate students in physics and engineering, this book can also be used as a supporting text for introductory quantum mechanics courses, and will be of interest to anyone interested in how electronic devices function at a fundamental level. Complete with numerous exercises, and with all the necessary mathematics and physics included in appendices, this book guides the reader seamlessly through the principles of quantum mechanics and the quantum theory of metals and semiconductors, before describing in detail how devices are exploited within electric circuits and in the hardware of computers, for example as amplifiers, switches and transistors. Includes nume...

  5. Electron and Positron Stopping Powers of Materials

    Science.gov (United States)

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  6. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  7. Nanostructured electronic and magnetic materials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    and magnetic materials are provided. Advantages of nanocrystalline magnetic mate- rials in the context of ... 2.2 Phosphors for high definition TV. Better resolution of television screens could be ..... materials and that of preparing nanoparticles. This will remain a challenge for the future if nanomaterials are to be competitive.

  8. Environmental testing techniques for electronics and materials

    CERN Document Server

    Dummer, Geoffrey W A; Fry, D W; Higinbotham, W

    2013-01-01

    Environmental Testing Techniques for Electronics and Materials reviews environmental testing techniques for evaluating the performance of electronic equipment, components, and materials. Environmental test planning, test methods, and instrumentation are described, along with the general environmental conditions under which equipment must operate. This book is comprised of 15 chapters and begins by explaining why environmental testing is necessary and describing the environment in which electronics must operate. The next chapter considers how an environmental test plan is designed; the methods

  9. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  10. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.

  11. Surfaces and interfaces of electronic materials

    CERN Document Server

    Brillson, Leonard J

    2012-01-01

    An advanced level textbook covering geometric, chemical, and electronic structure of electronic materials, and their applications to devices based on semiconductor surfaces, metal-semiconductor interfaces, and semiconductor heterojunctions. Starting with the fundamentals of electrical measurements on semiconductor interfaces, it then describes the importance of controlling macroscopic electrical properties by atomic-scale techniques. Subsequent chapters present the wide range of surface and interface techniques available to characterize electronic, optical, chemical, and structural propertie

  12. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  13. Transparent oxide electronics from materials to devices

    CERN Document Server

    Martins, Rodrigo; Barquinha, Pedro; Pereira, Luis

    2012-01-01

    Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at lo

  14. Materials and applications of bioresorbable electronics

    Science.gov (United States)

    Huang, Xian

    2018-01-01

    Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework. Project supported by the National Natural Science Foundation of China (No. 61604108) and the Natural Science Foundation of Tianjin (No. 16JCYBJC40600).

  15. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi

    2018-04-23

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular recognition. Monitoring the quality and function of lipid bilayers is thus essential and can be performed using electrically active substrates that allow for transduction of signals. Such a promising electronic transducer material is the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) which has provided a plethora of novel bio transducing architectures. The challenge is however in assembling a bilayer on the conducting polymer surface, which is defect-free and has high mobility. Herein, we investigate the fusion of zwitterionic vesicles on a variety of PEDOT:PSS films, but also on an electron transporting, negatively charged organic semiconductor, in order to understand the surface properties that trigger vesicle fusion. The PEDOT:PSS films are prepared from dispersions containing different concentrations of ethylene glycol included as a formulation additive, which gives a handle to modulate surface physicochemical properties without a compromise on the chemical composition. The strong correlation between the polarity of the surface, the fusion of vesicles and the mobility of the resulting bilayer aides extracting design principles for the development of future conducting polymers that will enable the formation of lipid bilayers.

  16. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  17. Runaway-electron-materials interaction studies

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.

    1990-03-01

    During the operation of magnetic fusion devices it has been frequently observed that runaway electrons can cause severe damage to plasma facing components. The energy of the runaway electrons could possibly reach several 100 MeV in a next generation device with an energy content in the plasma in the order of 100 MJ. In this study effects of high energy electron - materials interaction were determined by laboratory experiments using particle beam facilities, i.e. the Electron Linear Accelerator of the Institute of Scientific and Industrial Research of Osaka University and the 10 MW Neutral Beam Injection Test Stand of the National Institute for Fusion Science. The experiments and further analyses lead to a first assessment of the damage thresholds of plasma facing materials and components under runaway electron impact. It was found that metals (stainless steel, molybdenum, tungsten) showed grain growth, crack formation and/or melting already below the threshold for crack initiation on graphite (14-33 MJ/m 2 ). Strong erosion of carbon materials would occur above 100 MJ/m 2 . Damage to metal coolant channels can occur already below an energy deposition of 100 MJ/m 2 . The energy deposited in the metal coolant channels depends on the thickness of the plasma facing carbon material D, with the shielding efficiency S of carbon approximately as S∼D 1.15 . (author) 304 refs. 12 tabs. 59 figs

  18. Dielectric materials electrization by fast electrons

    International Nuclear Information System (INIS)

    Dyrkov, V.A.; Kononov, B.A.

    1990-01-01

    Electrization of short-circuited high-ohmage targets under irradiation by 50-200 keV electrons non-uniformly by volume is investigated both experimentally and theoretically. The obtained data show that effect of space charge field increases monotonically up to stationary state during irradiation. Time constant for space charge accumulation constitutes 1-10 min and has lower value for polymethylmethacrylate as compared with polyethyleneterephthalate and decreases with increase of beam current density. Good agreement of experimental and theoretical results for both materials confirms the validity of main positions of phonomenological model of space charge formation in dielectric materials under fast electron irradiation

  19. Sustainable Materials Management (SMM) Electronics Challenge Data

    Science.gov (United States)

    On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Challenge??s goals are to: 1). Ensure responsible recycling through the use of third-party certified recyclers, 2). Increase transparency and accountability through public posting of electronics collection and recycling data, and 3). Encourage outstanding performance through awards and recognition. By striving to send 100 percent of used electronics collected to certified recyclers and refurbishers, Challenge participants are ensuring that the used electronics they collect will be responsibly managed by recyclers that maximize reuse and recycling, minimize exposure to human health and the environment, ensure the safe management of materials by downstream handlers, and require destruction of all data on used electronics. Electronics Challenge participants are publicly recognized on EPA's website as a registrant, new participant, or active participant. Awards are offered in two categories - tier and champion. Tier awards are given in recognition of achieving all the requirements under a gold, silver or bronze tier. Champion awards are given in two categories - product and non-product. For champion awards, a product is an it

  20. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  1. Thermal and Electrical Properties of Nanocomposites, Including Material Properties

    NARCIS (Netherlands)

    Kochetov, R.

    2012-01-01

    The research described in this thesis is part of a state-funded IOP-EMVT project in cooperation with industrial companies, aiming at the design, assessment and implementation of new, environmental friendly (e.g. oil and SF6 - free) solid dielectric materials. A large disadvantage of solid polymer

  2. Plasma processes including electron beam for off-gases purification

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Witman, S.; Licki, J.

    2011-01-01

    Complete text of publication follows. Non-thermal plasma technologies based on different methods of plasma generation are being applied for ozone generation for different applications, waste water and off-gases treatment. Plasmas create reactive species, in particular ions, radicals or other reactive compounds, which can decompose pollutant molecules, organic particulate matter or soot. Electron beam flue gas treatment is another plasma-based technology which has been successfully demonstrated on industrial scale coal fired power plants. High efficiency of SO 2 (> 95%) and NO x (> 70%) has been obtained and industrial plant applying this process has been built in Poland. The further investigations carried out all over the world have illustrated that the process can be applied for poly-aromatic hydrocarbons (PAH) destruction as well, and just recently research laboratories in the US and South Korea have reported in the feasibility of the process for mercury removal from the flue gas. The recent studies concern a new type of accelerators implementation in the industrial scale, application of the process in the high sulfur oil fired boilers and Diesel off - gases purification. The treatment of the flue gases with the high NOx concentration is a special challenge for the technology since the main energy consumption (and applied accelerators power) is related to this pollutant content in the processed off gases. The pulse beams and scavenger application can be a solution to reduce investment and operational costs. The further development of the technology is directly connected with high power accelerators development. Acknowledgement: The R and D activities are supported by the European Regional Development Found in the frame of the project PlasTEP 'Dissemination and fostering of plasma based technological innovation for environment protection in the Baltic Sea Region'.

  3. Molecular modeling and multiscaling issues for electronic material applications

    CERN Document Server

    Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo

    Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications.  Part I presents  the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue.  Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...

  4. Electronic Structure of Strongly Correlated Materials

    CERN Document Server

    Anisimov, Vladimir

    2010-01-01

    Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.

  5. Photoemission for f-electron materials

    International Nuclear Information System (INIS)

    Huang, Youngsea.

    1989-01-01

    The dissertation investigates the interpretation of photoemission from f-electron materials. The authors also discuss unusual room temperature solid-state reactions in Yb-Cu films that they discovered. They show the importance of considering the entire system in the photoemission process and that photoemission actually measures the energy difference between total energies of the initial state and the final excited state of the whole system. They point out misconceptions in the current interpretation of photoemission from mixed valent materials. Their results on Yb-Cu system and other high-resolution photoemission measurements on mixed valent Yb-based materials show that the 4f feature is not pinned at the Fermi level though there is a 4f 14 (6s5d) 2 and 4f 13 (6s5d) 3 configuration degeneracy in the ground state. They suggest that this non-pinning is a general phenomenon due to the fact that the final state is not completely relaxed in the photoemission process. They discuss the current competing models of photoemission from Ce-based materials and show problems with their interpretations. As 4f electrons are more itinerant for Ce and Yb, they give a delocalized-localized kind of interpretation for 4f levels of Ce based materials. They employ the Ce-Yb analogy (electron-hole inversion and thereby an energy scale inversion) with the impurity model to photoemission from Yb-based materials and point out contradictory results on YbAl 3 in the literature. In their results on the Yb-Cu system, where the Yb valence varies from ∼3 to ∼2.2, they do not observe the Kondo resonance within the limits of their experimental resolution. They suggest that to date no Kondo resonance has been observed, and speculate either that the impurity model is inadequate for Yb-based materials or that photoemission is unable to detect a Kondo resonance

  6. Surface and Interface Physics of Correlated Electron Materials

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States)

    2004-09-01

    The {\\it Surface and Interface Physics of Correlated Electron Materials} research program provided conceptual understanding of and theoretical methodologies for understanding the properties of surfaces and interfaces involving materials exhibiting strong electronic correlations. The issues addressed in this research program are important for basic science, because the behavior of correlated electron superlattices is a crucial challenge to and crucial test of our understanding of the grand-challenge problem of correlated electron physics and are important for our nation's energy future because correlated interfaces offer opportunities for the control of phenomena needed for energy and device applications. Results include new physics insights, development of new methods, and new predictions for materials properties.

  7. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  8. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  9. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  10. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  11. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  12. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Our purpose was to quantify 36 inorganic chemical elements in aerosols from disposable electronic cigarettes (ECs and electronic hookahs (EHs, examine the effect of puffing topography on elements in aerosols, and identify the source of the elements.Thirty-six inorganic chemical elements and their concentrations in EC/EH aerosols were determined using inductively coupled plasma optical emission spectroscopy, and their source was identified by analyzing disassembled atomizers using scanning electron microscopy and energy dispersive X-ray spectroscopy.Of 36 elements screened, 35 were detected in EC/EH aerosols, while only 15 were detected in conventional tobacco smoke. Some elements/metals were present in significantly higher concentrations in EC/EH aerosol than in cigarette smoke. Concentrations of particular elements/metals within EC/EH brands were sometimes variable. Aerosols generated at low and high air-flow rates produced the same pattern of elements, although the total element concentration decreased at the higher air flow rate. The relative amount of elements in the first and last 60 puffs was generally different. Silicon was the dominant element in aerosols from all EC/EH brands and in cigarette smoke. The elements appeared to come from the filament (nickel, chromium, thick wire (copper coated with silver, brass clamp (copper, zinc, solder joints (tin, lead, and wick and sheath (silicon, oxygen, calcium, magnesium, aluminum. Lead was identified in the solder and aerosol of two brands of EHs (up to 0.165 μg/10 puffs.These data show that EC/EH aerosols contain a mixture of elements, including heavy metals, with concentrations often significantly higher than in conventional cigarette smoke. While the health effects of inhaling mixtures of heated metals is currently not known, these data will be valuable in future risk assessments involving EC/EH elements/metals.

  13. 75 FR 36678 - In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic...

    Science.gov (United States)

    2010-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-697] In the Matter of Certain Authentication Systems, Including Software and Handheld Electronic Devices; Notice of Commission Decision Not to... importation of certain authentication systems, including software and handheld electronic devices, by reason...

  14. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  15. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  16. Microwave Technology for Waste Management Applications Including Disposition of Electronic Circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-01-01

    Advanced microwave technology is being developed nationally and internationally for a variety of waste management and environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of hazardous components into leach resistant forms. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from the undesirable consequences of hazardous materials. One application of special interest is the treatment of discarded electronic circuitry using a new hybrid microwave treatment process and subsequent reclamation of the precious metals within

  17. Microwave technology for waste management applications including disposition of electronic circuitry

    International Nuclear Information System (INIS)

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.; Folz, D.C.

    1995-01-01

    Microwave technology is being developed nationally and internationally for a variety of environmental remediation purposes. These efforts include treatment and destruction of a vast array of gaseous, liquid and solid hazardous wastes as well as subsequent immobilization of selected components. Microwave technology provides an important contribution to an arsenal of existing remediation methods that are designed to protect the public and environment from undesirable consequences of hazardous materials. Applications of microwave energy for environmental remediation will be discussed. Emphasized will be a newly developed microwave process designed to treat discarded electronic circuitry and reclaim the precious metals within for reuse

  18. Topological materials discovery using electron filling constraints

    Science.gov (United States)

    Chen, Ru; Po, Hoi Chun; Neaton, Jeffrey B.; Vishwanath, Ashvin

    2018-01-01

    Nodal semimetals are classes of topological materials that have nodal-point or nodal-line Fermi surfaces, which give them novel transport and topological properties. Despite being highly sought after, there are currently very few experimental realizations, and identifying new materials candidates has mainly relied on exhaustive database searches. Here we show how recent studies on the interplay between electron filling and nonsymmorphic space-group symmetries can guide the search for filling-enforced nodal semimetals. We recast the previously derived constraints on the allowed band-insulator fillings in any space group into a new form, which enables effective screening of materials candidates based solely on their space group, electron count in the formula unit, and multiplicity of the formula unit. This criterion greatly reduces the computation load for discovering topological materials in a database of previously synthesized compounds. As a demonstration, we focus on a few selected nonsymmorphic space groups which are predicted to host filling-enforced Dirac semimetals. Of the more than 30,000 entires listed, our filling criterion alone eliminates 96% of the entries before they are passed on for further analysis. We discover a handful of candidates from this guided search; among them, the monoclinic crystal Ca2Pt2Ga is particularly promising.

  19. Observation of defects evolution in electronic materials

    Science.gov (United States)

    Jang, Jung Hun

    Advanced characterization techniques have been used to obtain a better understanding of the microstructure of electronic materials. The structural evolution, especially defects, has been investigated during the film growth and post-growth processes. Obtaining the relation between the defect evolution and growth/post-growth parameters is very important to obtain highly crystalline films. In this work, the growth and post-growth related defects in GaN, ZnO, strained-Si/SiGe films have been studied using several advanced characterization techniques. First of all, the growth of related defects in GaN and p-type ZnO films have been studied. The effect of growth parameters, such as growth temperature, gas flow rate, dopants used during the deposition, on the crystalline quality of the GaN and ZnO layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). In GaN films, it was found that the edge and mixed type threading dislocations were the dominant defects so that the only relevant figure of merit (FOM) for the crystalline quality should be the FWHM value of o-RC of the surface perpendicular plane which could be determined by a grazing incidence x-ray diffraction (GIXD) technique as shown in this work. The understanding of the relationship between the defect evolution and growth parameters allowed for the growth of high crystalline GaN films. For ZnO films, it was found that the degree of texture and crystalline quality of P-doped ZnO films decreased with increasing the phosphorus atomic percent. In addition, the result from the x-ray diffraction line profile analysis showed that the 0.5 at % P-doped ZnO film showed much higher microstrain than the 1.0 at % P-doped ZnO film, which indicated that the phosphorus atoms were segregated with increasing P atomic percentage. Finally, post-growth related defects in strained-Si/SiGe films were investigated. Postgrowth processes used in this work included high temperature N2

  20. Electron beam melting of bearing materials

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmied, G.; Schuler, A. (Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Elektrotechnik); Elsinger, G.; Koroschetz, F. (MIBA Gleitlager AG, Laakirchen (Austria)); Tschegg, E.K. (Technische Univ., Vienna (Austria). Inst. fuer Angewandte und Technische Physik)

    1990-06-01

    This paper reports on a surface treatment method for the bearing materials AlSn6 which permits the use of this material without the overlay usually required. Microstructural refinement is achieved by means of a surface melting technique using an electron beam with successive rapid solidification. Extremely fine tin precipitates are formed in the melted surface layer which lead to significantly better tribological properties of the bearing material. Tests compared the tribological properties for AlSn6 bearings treated by the surface melting technique with those of untreated bearings. Whereas all untreated bearings failed by seizure after only 2 h of testing, 30% of the tested bearings which had been surface melted survived the entire testing program without damage.

  1. Electrons scattered inside small dust grains of various materials

    International Nuclear Information System (INIS)

    Richterova, Ivana; Beranek, Martin; Pavlu, Jiri; Nemecek, Zdenek; Safrankova, Jana

    2010-01-01

    The dust grain charge in an electron beam is given by a difference in numbers of electrons that fall onto the grain and those leaving it. Electrons with energies exceeding 1 keV can penetrate through submicron-sized dust grains. If the grain is small enough, a yield of these electrons reaches unity but they leave a part of their energy inside the grain and this energy excites secondary electrons. The paper presents a hybrid Monte Carlo code that simulates paths of the primary electrons inside a spherical grain and provides the yield of scattered electrons and their energy spectrum as a function of the grain size and material. This code is based on the Richterovaet al. [Phys. Rev. B 74, 235430 (2006)] model but it includes several corrections important for light materials like carbon or ice. The model was verified using experimental results obtained on large planar samples. For spherical samples, we have found that the yield of scattered electrons reaches unity for 50 nm Au grains illuminated by 5 keV electrons, whereas the same effect can be observed on ≅1000 nm carbon grains.

  2. 77 FR 18860 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-28

    ... INTERNATIONAL TRADE COMMISSION [DN 2885] Certain Consumer Electronics, Including Mobile Phones and.... International Trade Commission has received a complaint entitled Certain Consumer Electronics, Including Mobile... electronics, including mobile phones and tablets. The complaint names as respondents ASUSTeK Computer, Inc. of...

  3. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  4. Soft Active Materials for Actuation, Sensing, and Electronics

    OpenAIRE

    Kramer, Rebecca Krone

    2012-01-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components ...

  5. Ab initio electronic stopping power in materials

    International Nuclear Information System (INIS)

    Shukri, Abdullah-Atef

    2015-01-01

    The average energy loss of an ion per unit path length when it is moving through the matter is named the stopping power. The knowledge of the stopping power is essential for a variety of contemporary applications which depend on the transport of ions in matter, especially ion beam analysis techniques and ion implantation. Most noticeably, the use of proton or heavier ion beams in radiotherapy requires the knowledge of the stopping power. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. The linear response dielectric formalism has been widely used in the past to study the electronic stopping power. In particular, the famous pioneering calculations due to Lindhard evaluate the electronic stopping power of a free electron gas. In this thesis, we develop a fully ab initio scheme based on linear response time-dependent density functional theory to predict the impact parameter averaged quantity named the random electronic stopping power (RESP) of materials without any empirical fitting. The purpose is to be capable of predicting the outcome of experiments without any knowledge of target material besides its crystallographic structure. Our developments have been done within the open source ab initio code named ABINIT, where two approximations are now available: the Random-Phase Approximation (RPA) and the Adiabatic Local Density Approximation (ALDA). Furthermore, a new method named 'extrapolation scheme' have been introduced to overcome the stringent convergence issues we have encountered. These convergence issues have prevented the previous studies in literature from offering a direct comparison to experiment. First of all, we demonstrate the importance of describing the realistic ab initio electronic structure by comparing with the historical Lindhard stopping power evaluation. Whereas the Lindhard stopping power provides a first order description that captures the general features of the

  6. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  7. 78 FR 13895 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Commission Determination Not...

    Science.gov (United States)

    2013-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-839] Certain Consumer Electronics... importation of certain consumer electronics, including mobile phones and tablets, by reason of infringement of..., Washington (collectively, ``HTC''); LG Electronics, Inc. of Seoul, Republic of Korea, LG Electronics U.S.A...

  8. Transmission electron microscopy and diffractometry of materials

    CERN Document Server

    Fultz, Brent

    2001-01-01

    This book teaches graduate students the concepts of trans- mission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materi- als. It emphasizes themes common to both techniques, such as scattering from atoms and the formation and analysis of dif- fraction patterns. It also describes unique aspects of each technique, especially imaging and spectroscopy in the TEM. The textbook thoroughly develops both introductory and ad- vanced-level material, using over 400 accompanying illustra- tions. Problems are provided at the end of each chapter to reinforce key concepts. Simple citatioins of rules are avoi- ded as much as possible, and both practical and theoretical issues are explained in detail. The book can be used as both an introductory and advanced-level graduate text since sec- tions/chapters are sorted according to difficulty and grou- ped for use in quarter and semester courses on TEM and XRD.

  9. Novel simulation method of space charge effects in electron optical systems including emission of electrons

    Czech Academy of Sciences Publication Activity Database

    Zelinka, Jiří; Oral, Martin; Radlička, Tomáš

    2018-01-01

    Roč. 184, JAN (2018), s. 66-76 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : space charge * self-consistent simulation * aberration polynomial * electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.843, year: 2016

  10. Materials Meets Concepts in Molecule-Based Electronics

    KAUST Repository

    Ortmann, Frank

    2014-10-14

    In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance in various applications and devices demands for an extension of basic theoretical approaches to describe charge transport in molecular materials, including the accurate description of electron-phonon coupling. Starting with the simplest case of a molecular junction and moving on to larger aggregates of bulk organic semiconductors, charge-transport regimes from ballistic motion to incoherent hopping, which are frequently encountered in molecular systems under respective conditions, are discussed. Transport features of specific materials are described through ab initio material parameters whose determination is addressed. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    Science.gov (United States)

    Zhang, Daliang; Zhu, Yihan; Liu, Lingmei; Ying, Xiangrong; Hsiung, Chia-En; Sougrat, Rachid; Li, Kun; Han, Yu

    2018-02-01

    High-resolution imaging of electron beam–sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  12. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials

    KAUST Repository

    Zhang, Daliang

    2018-01-18

    High-resolution imaging of electron beam-sensitive materials is one of the most difficult applications of transmission electron microscopy (TEM). The challenges are manifold, including the acquisition of images with extremely low beam doses, the time-constrained search for crystal zone axes, the precise image alignment, and the accurate determination of the defocus value. We develop a suite of methods to fulfill these requirements and acquire atomic-resolution TEM images of several metal organic frameworks that are generally recognized as highly sensitive to electron beams. The high image resolution allows us to identify individual metal atomic columns, various types of surface termination, and benzene rings in the organic linkers. We also apply our methods to other electron beam–sensitive materials, including the organic-inorganic hybrid perovskite CH3NH3PbBr3.

  13. Challenges for INAA in studies of materials from advanced material research including rare earth concentrates and carbon based ceramics

    International Nuclear Information System (INIS)

    Bode, P.; Van Meerten, Th.G.

    2000-01-01

    Rare-earth elements are increasingly applied in advanced materials to be used, e.g., in electronic industry, automobile catalysts, or lamps and optical devices. Trace element analysis of these materials might be an interesting niche for NAA because of the intrinsic high accuracy of this technique, and the shortage of matrix matching reference materials with other methods for elemental analysis. The carbon composite materials form another category of advanced materials, where sometimes a very high degree of purity is required. Also for these materials, NAA has favorable analytical characteristics. Examples are given of the use of NAA in the analysis of both categories of materials. (author)

  14. Sustainable Materials Management (SMM) Electronics Challenge

    Science.gov (United States)

    Learn how the SMM Electronics Challenge encourage electronic manufacturers to strive to send 100 percent of the used electronics they collect from the public and retailers to certified electronics refurbishers and recyclers.

  15. Quantitative Scanning Transmission Electron Microscopy of Electronic and Nanostructured Materials

    Science.gov (United States)

    Yankovich, Andrew B.

    Electronic and nanostructured materials have been investigated using advanced scanning transmission electron microscopy (STEM) techniques. The first topic is the microstructure of Ga and Sb-doped ZnO. Ga-doped ZnO is a candidate transparent conducting oxide material. The microstructure of GZO thin films grown by MBE under different growth conditions and different substrates were examined using various electron microscopy (EM) techniques. The microstructure, prevalent defects, and polarity in these films strongly depend on the growth conditions and substrate. Sb-doped ZnO nanowires have been shown to be the first route to stable p-type ZnO. Using Z-contrast STEM, I have showed that an unusual microstructure of Sb-decorated head-to-head inversion domain boundaries and internal voids contain all the Sb in the nanowires and cause the p-type conduction. InGaN thin films and InGaN / GaN quantum wells (QW) for light emitting diodes are the second topic. Low-dose Z-contrast STEM, PACBED, and EDS on InGaN QW LED structures grown by MOCVD show no evidence for nanoscale composition variations, contradicting previous reports. In addition, a new extended defect in GaN and InGaN was discovered. The defect consists of a faceted pyramid-shaped void that produces a threading dislocation along the [0001] growth direction, and is likely caused by carbon contamination during growth. Non-rigid registration (NRR) and high-precision STEM of nanoparticles is the final topic. NRR is a new image processing technique that corrects distortions arising from the serial nature of STEM acquisition that previously limited the precision of locating atomic columns and counting the number of atoms in images. NRR was used to demonstrate sub-picometer precision in STEM images of single crystal Si and GaN, the best achieved in EM. NRR was used to measure the atomic surface structure of Pt nanoacatalysts and Au nanoparticles, which revealed new bond length variation phenomenon of surface atoms. In

  16. Electronic fitness function for screening semiconductors as thermoelectric materials

    International Nuclear Information System (INIS)

    Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Fan, Xiaofeng

    2017-01-01

    Here, we introduce a simple but efficient electronic fitness function (EFF) that describes the electronic aspect of the thermoelectric performance. This EFF finds materials that overcome the inverse relationship between σ and S based on the complexity of the electronic structures regardless of specific origin (e.g., isosurface corrugation, valley degeneracy, heavy-light bands mixture, valley anisotropy or reduced dimensionality). This function is well suited for application in high throughput screening. We applied this function to 75 different thermoelectric and potential thermoelectric materials including full- and half-Heuslers, binary semiconductors, and Zintl phases. We find an efficient screening using this transport function. The EFF identifies known high-performance p- and n-type Zintl phases and half-Heuslers. In addition, we find some previously unstudied phases with superior EFF.

  17. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  18. 78 FR 48468 - Delphi Corporation, Electronics and Safety Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-08-08

    ..., Electronics and Safety Division, Including On-Site Leased Workers From Securitas, Bartech, Flint Janitorial... Adjustment Assistance on May 20, 2013, applicable to workers of Delphi Corporation, Electronics and Safety... on- site at the Flint, Michigan location of Delphi Corporation, Electronics and Safety Division. The...

  19. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  20. Epitaxial Graphene: A New Material for Electronics

    Science.gov (United States)

    de Heer, Walt A.

    2007-10-01

    Graphene multilayers are grown epitaxially on single crystal silicon carbide. This system is composed of several graphene layers of which the first layer is electron doped due to the built-in electric field and the other layers are essentially undoped. Unlike graphite the charge carriers show Dirac particle properties (i.e. an anomalous Berry's phase, weak anti-localization and square root field dependence of the Landau level energies). Epitaxial graphene shows quasi-ballistic transport and long coherence lengths; properties that may persists above cryogenic temperatures. Paradoxically, in contrast to exfoliated graphene, the quantum Hall effect is not observed in high mobility epitaxial graphene. It appears that the effect is suppressed due to absence of localized states in the bulk of the material. Epitaxial graphene can be patterned using standard lithography methods and characterized using a wide array of techniques. These favorable features indicate that interconnected room temperature ballistic devices may be feasible for low dissipation high-speed nano-electronics.

  1. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  2. Ordered materials for organic electronics and photonics.

    Science.gov (United States)

    O'Neill, Mary; Kelly, Stephen M

    2011-02-01

    We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Oxide bipolar electronics: materials, devices and circuits

    International Nuclear Information System (INIS)

    Grundmann, Marius; Klüpfel, Fabian; Karsthof, Robert; Schlupp, Peter; Schein, Friedrich-Leonhard; Splith, Daniel; Yang, Chang; Bitter, Sofie; Von Wenckstern, Holger

    2016-01-01

    We present the history of, and the latest progress in, the field of bipolar oxide thin film devices. As such we consider primarily pn-junctions in which at least one of the materials is a metal oxide semiconductor. A wide range of n-type and p-type oxides has been explored for the formation of such bipolar diodes. Since most oxide semiconductors are unipolar, challenges and opportunities exist with regard to the formation of heterojunction diodes and band lineups. Recently, various approaches have led to devices with high rectification, namely p-type ZnCo 2 O 4 and NiO on n-type ZnO and amorphous zinc-tin-oxide. Subsequent bipolar devices and applications such as photodetectors, solar cells, junction field-effect transistors and integrated circuits like inverters and ring oscillators are discussed. The tremendous progress shows that bipolar oxide electronics has evolved from the exploration of various materials and heterostructures to the demonstration of functioning integrated circuits. Therefore a viable, facile and high performance technology is ready for further exploitation and performance optimization. (topical review)

  4. Secondary electron interactions in materials with environmental and radiological interest

    International Nuclear Information System (INIS)

    Garcia, G.; Blanco, F.; Pablos, J.L. de; Perez, J.M.; Williart, A.

    2003-01-01

    Important environmental and radiological applications require energy deposition models including the interactions between secondary electrons and the atoms or molecules of the medium. In this work we propose a method to obtain reliable cross-section data to be used in these models by combining total and ionization cross-section measurements with simple calculations of the differential and integral elastic cross-sections. The energy loss spectra obtained in this experiment have been also used to drive stopping power of the considered materials for electrons. Some examples of results for atomic (Xe) and molecular (CF 4 ) targets are presented and discussed in this paper. (author)

  5. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  6. Electron Beam Welding of Thick Copper Material

    International Nuclear Information System (INIS)

    Broemssen, Bernt von

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter

  7. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  8. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  9. Nanocellulose as Material Building Block for Energy and Flexible Electronics

    Science.gov (United States)

    Hu, Liangbing

    2014-03-01

    In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.

  10. Soft Active Materials for Actuation, Sensing, and Electronics

    Science.gov (United States)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  11. Sustainable Materials Management (SMM) Electronics Challenge Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — On September 22, 2012, EPA launched the SMM Electronics Challenge. The Challenge encourages electronics manufacturers, brand owners and retailers to strive to send...

  12. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  13. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  14. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-09-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are...

  15. 78 FR 49764 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-08-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review n... for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc...

  16. 78 FR 72712 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-12-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov...

  17. High-resolution electron microscopy of advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  18. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  19. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  20. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  1. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  2. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  3. The Diverse Ecology of Electronic Materials

    NARCIS (Netherlands)

    Mody, Cyrus C.M.; Teissier, Pierre; Mody, Cyrus C. M.; Tiggelen, Brigitte van

    2017-01-01

    Silicon has been the dominant material in microelectronics for a half century. Other materials, however, have subsidiary roles in microelectronics manufacturing. A few materials have even been promoted as replacements for silicon. Yet because of silicon’s dominance, none of these alternatives has

  4. Noncovalent Interactions in Organic Electronic Materials

    KAUST Repository

    Ravva, Mahesh Kumar; Risko, Chad; Bredas, Jean-Luc

    2017-01-01

    In this chapter, we provide an overview of how noncovalent interactions, determined by the chemical structure of π-conjugated molecules and polymers, govern essential aspects of the electronic, optical, and mechanical characteristics of organic

  5. 77 FR 24514 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Institution of Investigation...

    Science.gov (United States)

    2012-04-24

    ..., Including Mobile Phones and Tablets; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S... mobile phones and tablets, by reason of infringement of certain claims of U.S. Patent No. 5,854,893... after importation of certain consumer electronics, including mobile phones and tablets, that infringe...

  6. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  7. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  8. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Science.gov (United States)

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  9. Conjugated material self-assembly : towards supramolecular electronics

    NARCIS (Netherlands)

    Leclère, P.E.L.G.; Surin, M.; Cavallini, M.; Jonkheijm, P.; Henze, O.; Schenning, A.P.H.J.; Biscarini, F.; Grimsdale, A.C.; Feast, W.J.; Meijer, E.W.; Müllen, K.; Brédas, J.L.; Lazzaroni, R.

    2004-01-01

    Properties of organic electronic materials in solid-state are determined as individual molecules and molecular assembly. It is essential to optimize conjugated materials to control performance of molecular assembly that constitute electronic devices such as light-emitting diodes and solar cells, and

  10. Amorphous electron-accepting materials for organic optoelectronics

    NARCIS (Netherlands)

    Ganesan, P.

    2007-01-01

    The importance of organic materials for use in electronic devices such as OLEDs, OFETs and photovoltaic cells has increased significantly over the past decade. Organic materials have been attractive candidates for such electronic devices because of their compatibility with high-throughput,

  11. Material machining with pseudo-spark electron beams

    International Nuclear Information System (INIS)

    Benker, W.; Christiansen, J.; Frank, K.; Gundel, H.; Redel, T.; Stetter, M.

    1989-01-01

    The authors give a brief description of the production of pseudo-spark (low pressure gas discharge) electron beams. They illustrate the use of these electron beams for machining not only conducting, semiconducting and insulating materials, but also thin layers of such materials as high temperature superconducting ceramics

  12. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  13. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  14. Electron microscopy of some exotic materials

    International Nuclear Information System (INIS)

    Mitchell, T.E.

    1998-01-01

    Just about every material has been looked at under the microscope, either out of pure inquisitiveness or the need to relate the microstructure to its properties. Some of these materials are mundane, like steels or glass or polyethylene; others are so-called advanced, such as intermetallics, silicon nitride or zirconia; yet others might be called exotic whether they be martian rocks, high temperature superconductors, fullerenes, diamonds, or the latest thin film device. Many exotic materials are important in Los Alamos, not only weapons materials such as actinides, tritium and explosives, but also civilian materials for energy applications. Here the author will report briefly on plutonium and uranium, on rhenium disilicide, and on Cu-Nb nanolayered composites

  15. Electron emission from materials at low excitation energies

    International Nuclear Information System (INIS)

    Urma, N.; Kijek, M.; Millar, J.J.

    1996-01-01

    Full text: An experimental system has been designed and developed with the purpose of measuring the total electron emission yield from materials at low energy excitation. In the first instance the reliability of the system was checked by measuring the total electron emission yield for a well defined surface (aluminium 99.45%). The obtained data was in the expected range given by the literature, and consequently the system will be used further for measuring the total electron yield for a range of materials with interest in the instrumentation industry. We intend to measure the total electron emission yield under electron bombardment as a function of incident electron energy up to 1200 eV, angle of incidence, state of the surface and environment to which the surface has been exposed. Dependence of emission on total electron irradiated dose is also of interest. For many practical application of the 'Secondary Electron Emission', the total electron yield is desired to be as large as possible. The above phenomenon has practical applicability in electron multiplier tube and Scanning electron microscopy - when by means of the variation of the yield of the emitted electrons one may produce visible images of small sample areas. The electron multiplier tube, is a device which utilises the above effect to detect and amplify both single particles and low currents streams of charged particles. The majority of electron tubes use electrons with low energy, hundreds of eV. Not a lot has been published in the literature about this regime and also about the emission when the impinging electrons have small energy, up to 1 KeV. The information obtained from the experimental measurements concerning the total electron emission yield is used to asses the investigated materials as a potential electron emitting surfaces or dynodes in an electron multiplier tube

  16. Flexible organic electronic devices: Materials, process and applications

    International Nuclear Information System (INIS)

    Logothetidis, Stergios

    2008-01-01

    The research for the development of flexible organic electronic devices (FEDs) is rapidly increasing worldwide, since FEDs will change radically several aspects of everyday life. Although there has been considerable progress in the area of flexible inorganic devices (a-Si or solution processed Si), there are numerous advances in the organic (semiconducting, conducting and insulating), inorganic and hybrid (organic-inorganic) materials that exhibit customized properties and stability, and in the synthesis and preparation methods, which are characterized by a significant amount of multidisciplinary efforts. Furthermore, the development and encapsulation of organic electronic devices onto flexible polymeric substrates by large-scale and low-cost roll-to-roll production processes will allow their market implementation in numerous application areas, including displays, lighting, photovoltaics, radio-frequency identification circuitry and chemical sensors, as well as to a new generation of modern exotic applications. In this work, we report on some of the latest advances in the fields of polymeric substrates, hybrid barrier layers, inorganic and organic materials to be used as novel active and functional thin films and nanomaterials as well as for the encapsulation of the materials components for the production of FEDs (flexible organic light-emitting diodes, and organic photovoltaics). Moreover, we will emphasize on the real-time optical monitoring and characterization of the growing films onto the flexible polymeric substrates by spectroscopic ellipsometry methods. Finally, the potentiality for the in-line characterization processes for the development of organic electronics materials will be emphasized, since it will also establish the framework for the achievement of the future scientific and technological breakthroughs

  17. Scanning electron microscopy of semiconductor materials

    International Nuclear Information System (INIS)

    Bresse, J.F.; Dupuy, M.

    1978-01-01

    The use of scanning electron microscopy in semiconductors opens up a large field of use. The operating modes lending themselves to the study of semiconductors are the induced current, cathodoluminescence and the use of the potential contrast which can also be applied very effectively to the study of the devices (planar in particular). However, a thorough knowledge of the mechanisms of the penetration of electrons, generation and recombination of generated carriers in a semiconductor is necessary in order to attain a better understanding of the operating modes peculiar to semiconductors [fr

  18. Design of materials configurations for enhanced phononic and electronic properties

    Science.gov (United States)

    Daraio, Chiara

    The discovery of novel nonlinear dynamic and electronic phenomena is presented for the specific cases of granular materials and carbon nanotubes. This research was conducted for designing and constructing optimized macro-, micro- and nano-scale structural configurations of materials, and for studying their phononic and electronic behavior. Variation of composite arrangements of granular elements with different elastic properties in a linear chain-of-sphere, Y-junction or 3-D configurations led to a variety of novel phononic phenomena and interesting physical properties, which can be potentially useful for security, communications, mechanical and biomedical engineering applications. Mechanical and electronic properties of carbon nanotubes with different atomic arrangements and microstructures were also investigated. Electronic properties of Y-junction configured carbon nanotubes exhibit an exciting transistor switch behavior which is not seen in linear configuration nanotubes. Strongly nonlinear materials were designed and fabricated using novel and innovative concepts. Due to their unique strongly nonlinear and anisotropic nature, novel wave phenomena have been discovered. Specifically, violations of Snell's law were detected and a new mechanism of wave interaction with interfaces between NTPCs (Nonlinear Tunable Phononic Crystals) was established. Polymer-based systems were tested for the first time, and the tunability of the solitary waves speed was demonstrated. New materials with transformed signal propagation speed in the manageable range of 10-100 m/s and signal amplitude typical for audible speech have been developed. The enhancing of the mitigation of solitary and shock waves in 1-D chains were demonstrated and a new protective medium was designed for practical applications. 1-D, 2-D and 3-D strongly nonlinear system have been investigated providing a broad impact on the whole area of strongly nonlinear wave dynamics and creating experimental basis for new

  19. Soluble phthalocyanines: perspective materials for electronics

    Czech Academy of Sciences Publication Activity Database

    Nešpůrek, Stanislav; Chaidogiannos, G.; Glezos, N.; Wang, G.; Böhm, S.; Rakušan, J.; Karásková, M.

    2007-01-01

    Roč. 468, č. 2 (2007), 3/[355]-21/[373] ISSN 1542-1406 R&D Projects: GA AV ČR KAN401770651; GA MPO FT-TA/036; GA MŠk OC 138 Institutional research plan: CEZ:AV0Z40500505 Keywords : FET transistors * humidity sensors * organic semiconductors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.554, year: 2007

  20. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  1. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-06-08

    ... Phones and Tablet Computers, and Components Thereof Institution of Investigation AGENCY: U.S... the United States after importation of certain electronic devices, including mobile phones and tablet... mobile phones and tablet computers, and components thereof that infringe one or more of claims 1-3 and 5...

  2. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  3. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  4. Electron holography of Fe-based nanocrystalline magnetic materials (invited)

    International Nuclear Information System (INIS)

    Shindo, Daisuke; Park, Young-Gil; Gao, Youhui; Park, Hyun Soon

    2004-01-01

    Magnetic domain structures of nanocrystalline magnetic materials were extensively investigated by electron holography with a change in temperature or magnetic field applied. In both soft and hard magnetic materials, the distribution of lines of magnetic flux clarified in situ by electron holography was found to correspond well to their magnetic properties. An attempt to produce a strong magnetic field using a sharp needle made of a permanent magnet, whose movement is controlled by piezo drives has been presented. This article demonstrates that the attempt is promising to investigate the magnetization process of hard magnetic materials by electron holography

  5. High Resolution Electron Microscopy in Materials Science

    International Nuclear Information System (INIS)

    Amelinckx, S.

    1986-01-01

    This paper illustrates different operating modes of the electron microscope and shows the image formation in an ideal microscope. Diffraction contrast is used in the study of crystal defects, such as dislocations and planar interfaces. Methods are surveyed which give at least a rudimentary image of the lattice and therefore make use of at least two interfering beams. Special attention is given to images which also carry structural information and therefore imply the use of many beams. The underlying theory is discussed as are the theories of Van Dyck, Spence and Cowley. These are illustrated by means of a number of recent case studies

  6. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Holmium hafnate: An emerging electronic device material

    International Nuclear Information System (INIS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S.; Scott, James F.

    2015-01-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho 2 Hf 2 O 7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E g of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices

  8. Holmium hafnate: An emerging electronic device material

    Science.gov (United States)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  9. Holmium hafnate: An emerging electronic device material

    Energy Technology Data Exchange (ETDEWEB)

    Pavunny, Shojan P., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Katiyar, Ram S., E-mail: shojanpp@gmail.com, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Scott, James F. [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 OHE (United Kingdom)

    2015-03-16

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho{sub 2}Hf{sub 2}O{sub 7} (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ∼20 and very low dielectric loss of ∼0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap E{sub g} of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  10. Electronic processes in non-crystalline materials

    CERN Document Server

    Mott, Nevill Francis

    2012-01-01

    Since the first edition of this highly successful book the field saw many great developments both in experimental and theoretical studies of electrical properties of non-crystalline solids. It became necessary to rewrite nearly the whole book, while the aims of the second edition remained the same: to set out the theoretical concepts, to test them by comparison with experiment for a wide variety of phenomena, and to apply them to non-crystalline materials. Sir Nevill Mott shared the1977 Nobel Prize for Physics, awarded for his research work in this field. The reissue of this book as part of th

  11. Materials Meets Concepts in Molecule-Based Electronics

    KAUST Repository

    Ortmann, Frank; Radke, K. Sebastian; Gü nther, Alrun; Kasemann, Daniel; Leo, Karl; Cuniberti, Gianaurelio

    2014-01-01

    In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance

  12. Monte Carlo calculations of electron diffusion in materials

    International Nuclear Information System (INIS)

    Schroeder, U.G.

    1976-01-01

    By means of simulated experiments, various transport problems for 10 Mev electrons are investigated. For this purpose, a special Monte-Carlo programme is developed, and with this programme calculations are made for several material arrangements. (orig./LN) [de

  13. Electron diffraction study of {alpha}-AlMnSi crystals including non-crystallographic axes

    Energy Technology Data Exchange (ETDEWEB)

    Song, G.L.; Bursill, L.A.

    1997-06-01

    The structure of crystalline {alpha}-AlMnSi is examined by electron diffraction. Six distinct zone axes are examined, including both normal crystallographic and non-crystallographic zones axes, allowing the space group symmetry to be studied. Electron diffraction patterns characteristic of Pm3-bar were obtained for thicker specimens. However, for very thin specimens, as used for HRTEM imaging, the electron diffraction patterns were characteristic of Im3-bar space group symmetry. The structural basis of the Pm3-bar to Im3-bar transformation may be understood in terms of an analysis of the icosahedral structural elements located at the corners and body-centers of the cubic unit cell. A method for indexing the non-crystallographic zone axis diffraction patterns is described. An electron diffraction pattern of the 5-fold axis of the quasicrystalline phase i-AlMnSi is also included; this is compared with the experimental results and calculations for the [0{tau}1] axis of Pm3-bar and Im3-bar crystalline phases. 26 refs., 4 tabs., 7 figs.

  14. New electron microprobe for radioactive materials

    International Nuclear Information System (INIS)

    Perrot, M.; Geoffroy, G.; Trotabas, M.

    1989-01-01

    The latest model of CAMECA microprobe SX 50R has just been set up in the high activity laboratory of the Centre d'Etudes Nucleaires de SACLAY. It has been especially designed for the examination of nuclear fuel and irradiated materials. The spectrometers are protected from the radioactivity by an armour plate and the entire equipment has been installed into a special cell in order to protect the operators. The special sample holder allows to examine specimens as large as 80 mm in diameter. One of the interesting uses concerns the quantitative determination of the oxygen content in zircaloy oxidized by steam at high temperature. This analysis was made possible by using the new type of crystals (multilayer)

  15. Evaluation on electrical resistivity of silicon materials after electron ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 5. Evaluation on ... This research deals with the study of electron beam melting (EBM) methodology utilized in melting silicon material and subsequently discusses on the effect of oxygen level on electrical resistivity change after EBM process. The oxygen ...

  16. 2D Dirac electrons in 3D materials

    NARCIS (Netherlands)

    Ramankutty, S.V.

    2018-01-01

    Quantum materials pack the spooky properties of quantum mechanics into real-life materials you can make, pick up with tweezers and study in the lab. Those of interest to us show special electronic properties of great fundamental interest and have applications potential for future computer and

  17. The role of defects on electron behavior in graphene materials

    NARCIS (Netherlands)

    Cervenka, J.

    2009-01-01

    Graphene-based materials exhibit many unique physical properties that are intriguing for both fundamental science and application purposes. This thesis describes three systems of sp2 bonded carbon: graphite, graphene and fullerene, and studies the electron behavior in these materials and how it is

  18. Material Processing Opportunites Utilizing a Free Electron Laser

    Science.gov (United States)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise

  19. Soft electron processor for surface sterilization of food material

    International Nuclear Information System (INIS)

    Baba, Takashi; Kaneko, Hiromi; Taniguchi, Shuichi

    2004-01-01

    As frozen or chilled foods have become popular nowadays, it has become very important to provide raw materials with lower level microbial contamination to food processing companies. Consequently, the sterilization of food material is one of the major topics for food processing. Dried materials like grains, beans and spices, etc., are not typically deeply contaminated by microorganisms, which reside on the surfaces of materials, so it is very useful to take low energetic, lower than 300 keV, electrons with small penetration power (Soft-Electrons), as a sterilization method for such materials. Soft-Electrons is researched and named by Dr. Hayashi et al. This is a non-thermal method, so one can keep foods hygienic without serious deterioration. It is also a physical method, so is free from residues of chemicals in foods. Recently, Nissin-High Voltage Co., Ltd. have developed and manufactured equipment for commercial use of Soft-Electrons (Soft Electron Processor), which can process 500 kg/h of grains. This report introduces the Soft Electron Processor and shows the results of sterilization of wheat and brown rice by the equipment

  20. Application of electron irradiation to food containers and packaging materials

    International Nuclear Information System (INIS)

    Ueno, Koji

    2010-01-01

    Problems caused by microbial contamination and hazardous chemicals have attracted much attention in the food industry. The number of systems such as hygienic management systems and Hazard Analysis Critical Control Point (HACCP) systems adopted in the manufacturing process is increasing. As manufacturing process control has become stricter, stricter control is also required for microbial control for containers and packaging materials (from disinfection to sterilization). Since safe and reliable methods for sterilizing food containers and packaging materials that leave no residue are required, electron beam sterilization used for medical equipment has attracted attention from the food industry. This paper describes an electron irradiation facility, methods for applying electron beams to food containers and packaging materials, and products irradiated with electron beams. (author)

  1. Contained scanning electron microscope facility for examining radioactive materials

    International Nuclear Information System (INIS)

    Hsu, C.W.

    1986-03-01

    At the Savannah River Laboratory (SRL) radioactive solids are characterized with a scanning electron microscope (SEM) contained in a glove box. The system includes a research-grade Cambridge S-250 SEM, a Tracor Northern TN-5500 x-ray and image analyzer, and a Microspec wavelength-dispersive x-ray analyzer. The containment facility has a glove box train for mounting and coating samples, and for housing the SEM column, x-ray detectors, and vacuum pumps. The control consoles of the instruments are located outside the glove boxes. This facility has been actively used since October 1983 for high alpha-activity materials such as plutonium metal and plutonium oxide powders. Radioactive defense waste glasses and contaminated equipment have also been examined. During this period the facility had no safety-related incidents, and personnel radiation exposures were maintained at less than 100 mrems

  2. Nanodiamond composite as a material for cold electron emitters

    International Nuclear Information System (INIS)

    Arkhipov, A V; Sominski, G G; Uvarov, A A; Gordeev, S K; Korchagina, S B

    2008-01-01

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp 3 -sp 2 interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology

  3. Nanodiamond composite as a material for cold electron emitters

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, A V; Sominski, G G; Uvarov, A A [St.Petersburg State Polytechnic University, 29 Politchnicheskaya, St.Petersburg, 195251 (Russian Federation); Gordeev, S K; Korchagina, S B [FSUE ' Central Research Institute for Materials' , 8 Paradnaya Street, St.Petersburg, 191014 (Russian Federation)], E-mail: arkhipov@rphf.spbstu.ru

    2008-03-15

    Characteristics of field-induced electron emission were investigated for one of newly designed all-carbon materials - nanodiamond composite (NDC). The composite is comprised by 4-6 nm diamond grains covered with 0.2-1 nm-thick graphite-like shells that merge at grain junctions and determine such properties as mechanical strength and high electric conductivity. Large number of uniformly distributed sp{sup 3}-sp{sup 2} interfaces allowed to expect enhanced electron emission in electric field. Combination of these features makes NDC a promising material for cold electron emitters in various applications. Experimental testing confirmed high efficiency of electron emission from NDC. In comparison with previousely tested forms of nanocarbon, NDC emitters demonstrated better stabily and tolerance to performance conditions. Unusual activation scenarios and thermal dependencies of emission characteristics observed in experiments with NDC can add new background for explanation of facilitated electron emission from nanocarbons with relatively 'smooth' surface morphology.

  4. Student decisions about lecture attendance: do electronic course materials matter?

    Science.gov (United States)

    Billings-Gagliardi, Susan; Mazor, Kathleen M

    2007-10-01

    This study explored whether first-year medical students make deliberate decisions about attending nonrequired lectures. If so, it sought to identify factors that influence these decisions, specifically addressing the potential impact of electronic materials. Medical students who completed first-year studies between 2004 and 2006 responded to an open-ended survey question about their own lecture-attendance decisions. Responses were coded to capture major themes. Students' ratings of the electronic materials were also examined. Most respondents made deliberate attendance decisions. Decisions were influenced by previous experiences with the lecturer, predictions of what would occur during the session itself, personal learning preferences, and learning needs at that particular time, with the overriding goal of maximizing learning. Access to electronic materials did not influence students' choices. Fears that the increasing availability of technology-enhanced educational materials has a negative impact on lecture attendance seem unfounded.

  5. Hybrid (Vlasov-Fluid) simulation of ion-acoustic solitons chain formation including trapped electrons

    Energy Technology Data Exchange (ETDEWEB)

    Behjat, E.; Aminmansoor, F.; Abbasi, H. [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2015-08-15

    Disintegration of a Gaussian profile into ion-acoustic solitons in the presence of trapped electrons [H. Hakimi Pajouh and H. Abbasi, Phys. Plasmas 15, 082105 (2008)] is revisited. Through a hybrid (Vlasov-Fluid) model, the restrictions associated with the simple modified Korteweg de-Vries (mKdV) model are studied. For instance, the lack of vital information in the phase space associated with the evolution of electron velocity distribution, the perturbative nature of mKdV model which limits it to the weak nonlinear cases, and the special spatio-temporal scaling based on which the mKdV is derived. Remarkable differences between the results of the two models lead us to conclude that the mKdV model can only monitor the general aspects of the dynamics, and the precise picture including the correct spatio-temporal scales and the properties of solitons should be studied within the framework of hybrid model.

  6. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  7. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  8. Experience in nuclear materials accountancy, including the use of computers, in the UKAEA

    International Nuclear Information System (INIS)

    Anderson, A.R.; Adamson, A.S.; Good, P.T.; Terrey, D.R.

    1976-01-01

    The UKAEA have operated systems of nuclear materials accountancy in research and development establishments handling large quantities of material for over 20 years. In the course of that time changing requirements for nuclear materials control and increasing quantities of materials have required that accountancy systems be modified and altered to improve either the fundamental system or manpower utilization. The same accountancy principles are applied throughout the Authority but procedures at the different establishments vary according to the nature of their specific requirements; there is much in the cumulative experience of the UKAEA which could prove of value to other organizations concerned with nuclear materials accountancy or safeguards. This paper reviews the present accountancy system in the UKAEA and summarizes its advantages. Details are given of specific experience and solutions which have been found to overcome difficulties or to strengthen previous weak points. Areas discussed include the use of measurements, the establishment of measurement points (which is relevant to the designation of MBAs), the importance of regular physical stock-taking, and the benefits stemming from the existence of a separate accountancy section independent of operational management at large establishments. Some experience of a dual system of accountancy and criticality control is reported, and the present status of computerization of nuclear material accounts is summarized. Important aspects of the relationship between management systems of accountancy and safeguards' requirements are discussed briefly. (author)

  9. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  10. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  11. 77 FR 3499 - Sony Electronics, Inc., Including On-Site Leased Workers From Selectremedy Park Ridge, NJ...

    Science.gov (United States)

    2012-01-24

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,501M] Sony Electronics, Inc... Electronics, Inc., SEL Headquarters, including on-site leased workers of SelectRemedy, StaffMark, and Payrolling.com , San Diego, California (TA-W-71,501); Sony Electronics, Inc., including on-site leased...

  12. Electronic and Ionic Conductors from Ordered Microporous Materials

    Energy Technology Data Exchange (ETDEWEB)

    Dincă, Mircea [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-10-30

    The proposed work aimed to establish metal-organic frameworks (MOFs) as new classes of high-surface area microporous electronic and ionic conductors. MOFs are crystalline materials with pore sizes ranging from 0.2 to ~ 2 nm (or larger for the latter) defined by inorganic or organic building blocks connected by rigid organic linkers. Myriad applications have been found or proposed for these materials, yet those that require electron transport or conductivity in combination with permanent porosity still lag behind because the vast majority of known frameworks are electrical insulators. Prior to our proposal and subsequent work, there were virtually no studies exploring the possibility of electronic delocalization in these materials. Therefore, our primary goal was to understand and control, at a fundamental level, the electron and ion transport properties of this class of materials, with no specific application proposed, although myriad applications could be envisioned for high surface area conductors. Our goals directly addressed one of the DOE-identified Grand Challenges for Basic Energy Sciences: designing perfect atom- and energy-efficient syntheses of revolutionary new forms of matter with tailored properties. Indeed, the proposed work is entirely synthetic in nature; owing to the molecular nature of the building blocks in MOFs, there is the possibility of unprecedented control over the structure and properties of solid crystalline matter. The goals also tangentially addressed the Grand Challenge of controlling materials processes at the level of electrons: the scope of our program is to create new materials where charges (electrons and/or ions) move according to predefined pathways.

  13. Molecular and nanoscale materials and devices in electronics.

    Science.gov (United States)

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  14. Application of electron and Bremsstrahlung beams for composite materials processing

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Avilov, A.M.; Popov, G.F.; Rudychev, V.G.

    1998-01-01

    In Kharkiv University the radiation process of obtaining composite polymer materials, CPM, with high strength properties and corrosion resistance was studied. CPM are manufactured by vacuum impregnating capillary-porous materials with synthetic monomers and oligomers or by molding granular waste and resins which are further treated by relativistic electron or Bremsstrahlung beam. Such radiation treatment yields new CPM in which capillary-porous structure acting as reinforcement is filled with polymer. The results of the applied research with industrial electron accelerator in the field of thick CPM formation are presented

  15. Secondary Electron Emission Yields from PEP-II Accelerator Materials

    International Nuclear Information System (INIS)

    Kirby, Robert E.

    2000-01-01

    The PEP-II B-Factory at SLAC operates with aluminum alloy and copper vacuum chambers, having design positron and electron beam currents of 2 and 1 A, respectively. Titanium nitride coating of the aluminum vacuum chamber in the arcs of the positron ring is needed in order to reduce undesirable electron-cloud effects. The total secondary electron emission yield of TiN-coated aluminum alloy has been measured after samples of beam chamber material were exposed to air and again after electron-beam bombardment, as a function of incident electron beam angle and energy. The results may be used to simulate and better understand electron-cloud effects under actual operating conditions. We also present yield measurements for other accelerator materials because new surface effects are expected to arise as beam currents increase. Copper, in particular, is growing in popularity for its good thermal conductivity and self-radiation-shielding properties. The effect of electron bombardment, ''conditioning'', on the yield of TiN and copper is shown

  16. Electron fluence correction factors for various materials in clinical electron beams

    International Nuclear Information System (INIS)

    Olivares, M.; Blois, F. de; Podgorsak, E.B.; Seuntjens, J.P.

    2001-01-01

    Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at d max in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than ±1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83±0.01 and 1.55±0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1σ level. Excluding the data for Cu, electron fluence

  17. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  18. Flexible barrier film, method of forming same, and organic electronic device including same

    Science.gov (United States)

    Blizzard, John; Tonge, James Steven; Weidner, William Kenneth

    2013-03-26

    A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.

  19. Electron spin resonance studies of radiation effects. Final report, 1964-1979 (including annual progress reports for 1978 and 1979)

    International Nuclear Information System (INIS)

    Rogers, M.T.

    1979-07-01

    The discovery of new free radicals, largely in irradiated single crystals of nonmetallic solids, and the determination of the molecular and electronic structures of these paramagnetic species by electron spin resonance (ESR) spectroscopy, have been carried out using a wide variety of organic and inorganic materials. The mechanisms of production of radicals in solids, their motions, and their reactions have been investigated and some applicable general principles deduced. Emphasis has been on aliphatic free radicals from irradiated carboxylic acids and amides and their halogen-substituted derivatives, organometallic radicals and substituted cyclic hydrocarbon radicals; inorganic radicals studied include V centers, hypervalent radicals and electron adducts. Extensive investigations of paramagnetic transition metal complexes, particularly cyanides and fluorides, have been made. In all cases quantum mechanical calculations have been employed as far as possible in interpreting the data. An improved method for analyzing experimental ESR spectra of single crystals has been developed and a number of crystal structures have been determined to supplement the ESR studies. Applications of nuclear quadrupole resonance spectroscopy to the study of structure and bonding in inorganic solids have been made and a method for using nuclear magnetic relaxation data for estimating quadrupole coupling constants in liquids has been developed

  20. Managing nuclear knowledge: IAEA activities and international coordination. Including resource material full text CD-ROM

    International Nuclear Information System (INIS)

    2005-06-01

    The present CD-ROM summarizes some activities carried out by the Departments of Nuclear Energy and Nuclear Safety and Security in the area of nuclear knowledge management in the period 2003-2005. It comprises, as open resource, most of the relevant documents in full text, including policy level documents, reports, presentation material by Member States and meeting summaries. The collection starts with a reprint of the report to the IAEA General Conference 2004 on Nuclear Knowledge [GOV/2004/56-GC(48)/12] summarizing the developments in nuclear knowledge management since the 47th session of the General Conference in 2003 and covers Managing Nuclear Knowledge including safety issues and Information and Strengthening Education and Training for Capacity Building. It contains an excerpt on Nuclear Knowledge from the General Conference Resolution [GC(48)/RES/13] on Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications. On the CD-ROM itself, all documents can easily be accessed by clicking on their titles on the subject pages (also printed at the end of this Working Material). Part 1 of the CD-ROM covers the activities in the period 2003-2005 and part 2 presents a resource material full text CD-ROM on Managing Nuclear Knowledge issued in October 2003

  1. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Decontamination of drug vegetative raw material by relativistic electron beam

    International Nuclear Information System (INIS)

    Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.

    2004-01-01

    The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV

  3. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  4. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  5. Low-energy electron inelastic mean free path in materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Truong, Hieu T., E-mail: nguyentruongthanhhieu@tdt.edu.vn [Theoretical Physics Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam)

    2016-04-25

    We show that the dielectric approach can determine electron inelastic mean free paths in materials with an accuracy equivalent to those from first-principle calculations in the GW approximation of many-body theory. The present approach is an alternative for calculating the hot-electron lifetime, which is an important quantity in ultrafast electron dynamics. This approach, applied here to solid copper for electron energies below 100 eV, yields results in agreement with experimental data from time-resolved two-photon photoemission, angle-resolved photoelectron spectroscopy, and X-ray absorption fine structure measurements in the energy ranges 2–3.5, 10–15, and 60–100 eV, respectively.

  6. Commentary on guidelines for radiation measurement and treatment of substances including naturally occurring radioactive materials

    International Nuclear Information System (INIS)

    Sakurai, Naoyuki; Ishiguro, Hideharu

    2007-01-01

    Study group on safety regulation on research reactors in Ministry of Education, Culture, Sports, Science and Technology (MEXT) reported the guidelines of 'Guidelines on radiation measurement and treatment of naturally occurring radioactive materials (NORM)' on 6 February 2006. RANDEC made the website contents 'Study on use and safety of the substances including uranium or thorium', based on the contract with MEXT to make theirs contents. This paper describes the outline of the website in MEXT homepage, background and contents of NORM guidelines in order to understand easily and visually the NORM guidelines, adding in some flowcharts and figures. (author)

  7. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment.

    Science.gov (United States)

    Liu, Wei; Tan, Zhenyu; Zhang, Liming; Champion, Christophe

    2017-03-01

    In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.

  8. Materials and processing approaches for foundry-compatible transient electronics

    Science.gov (United States)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  9. The Chemical Modeling of Electronic Materials and Interconnections

    Science.gov (United States)

    Kivilahti, J. K.

    2002-12-01

    Thermodynamic and kinetic modeling, together with careful experimental work, is of great help for developing new electronic materials such as lead-free solders, their compatible metallizations and diffusion-barrier layers, as well as joining and bonding processes for advanced electronics manufacturing. When combined, these modeling techniques lead to a rationalization of the trial-and-error methods employed in the electronics industry, limiting experimentation and, thus, reducing significantly time-to-market of new products. This modeling provides useful information on the stabilities of phases (microstructures), driving forces for chemical reactions, and growth rates of reaction products occurring in interconnections or thin-film structures during processing, testing, and in longterm use of electronic devices. This is especially important when manufacturing advanced lead-free electronics where solder joint volumes are decreasing while the number of dissimilar reactive materials is increasing markedly. Therefore, a new concept of local nominal composition was introduced and applied together with the relevant ternary and multicomponent phase diagrams to some solder/conductor systems.

  10. Review of neutron activation analysis in the standardization and study of reference materials, including its application to radionuclide reference materials

    International Nuclear Information System (INIS)

    Byrne, A.R.

    1993-01-01

    Neutron activation analysis (NAA) plays a very important role in the certification of reference materials (RMs) and their characterization, including homogeneity testing. The features of the method are briefly reviewed, particularly aspects relating to its completely independent nuclear basis, its virtual freedom from blank problems, and its capacity for self-verification. This last aspect, arising from the essentially isotopic character of NAA, can be exploited by using different nuclear reactions and induced nuclides, and the possibility of employing two modes, one instrumental (nondestructive), the other radiochemical (destructive). This enables the derivation of essentially independent analytical information and the unique capacity of NAA for selfvalidation. The application of NAA to quantify natural or man-made radionuclides such as uranium, thorium, 237 Np, 129 I and 230 Th is discussed, including its advantages over conventional radiometric methods and its usefulness in providing independent data for nuclides where other confirmatory analyses are impossible, or are only recently becoming available through newer 'atom counting' techniques. Certain additional, prospective uses of NAA in the study of RMs and potential RMs are mentioned, including transmutation reactions, creation of endogenously radiolabelled matrices for production and study of RMs (such as dissolution and leaching tests, use as incorporated radiotracers for chemical recovery correction), and the possibility of molecular activation analysis for specification. (orig.)

  11. The 2016 oxide electronic materials and oxide interfaces roadmap

    DEFF Research Database (Denmark)

    Lorenz, M.; Rao, M. S. Ramachandra; Venkatesan, T.

    2016-01-01

    of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap......, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies.In summary, we do hope that this oxide roadmap appears as an interesting...

  12. Spiers memorial lecture. Organic electronics: an organic materials perspective.

    Science.gov (United States)

    Wudl, Fred

    2014-01-01

    This Introductory Lecture is intended to provide a background to Faraday Discussion 174: "Organic Photonics and Electronics" and will consist of a chronological, subjective review of organic electronics. Starting with "ancient history" (1888) and history (1950-present), the article will take us to the present. The principal developments involved the processes of charge carrier generation and charge transport in molecular solids, starting with insulators (photoconductors) and moving to metals, to semiconductors and ending with the most popular semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field effect transistors (OFETs) and organic photovoltaics (OPVs). The presentation will be from an organic chemistry/materials point of view.

  13. Monitoring system including an electronic sensor platform and an interrogation transceiver

    Science.gov (United States)

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  14. Adhesives technology for electronic applications materials, processing, reliability

    CERN Document Server

    Licari, James J

    2011-01-01

    Adhesives are widely used in the manufacture and assembly of electronic circuits and products. Generally, electronics design engineers and manufacturing engineers are not well versed in adhesives, while adhesion chemists have a limited knowledge of electronics. This book bridges these knowledge gaps and is useful to both groups. The book includes chapters covering types of adhesive, the chemistry on which they are based, and their properties, applications, processes, specifications, and reliability. Coverage of toxicity, environmental impacts and the regulatory framework make this book par

  15. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    International Nuclear Information System (INIS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-01-01

    Titanic materials were synthesized by hydrothermal method of TiO 2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO 2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  16. Use of analytical electron microscopy and auger electron spectroscopy for evaluating materials

    International Nuclear Information System (INIS)

    Jones, R.H.; Bruemmer, S.M.; Thomas, M.T.; Baer, D.R.

    1982-11-01

    Analytical electron microscopy (AEM) can be used to characterize the microstructure and microchemistry of materials over dimensions less than 10 nm while Auger electron spectroscopy (AES) can be used to characterize the chemical composition of surfaces and interfaces to a depth of less than 1 nm. Frequently, the information gained from both instruments can be coupled to give new insight into the behavior of materials. Examples of the use of AEM and AES to characterize segregation, sensitization and radiation damage are presented. A short description of the AEM and AES techniques are given

  17. OCV Hysteresis in Li-Ion Batteries including Two-Phase Transition Materials

    Directory of Open Access Journals (Sweden)

    Michael A. Roscher

    2011-01-01

    Full Text Available The relation between batteries' state of charge (SOC and open-circuit voltage (OCV is a specific feature of electrochemical energy storage devices. Especially NiMH batteries are well known to exhibit OCV hysteresis, and also several kinds of lithium-ion batteries show OCV hysteresis, which can be critical for reliable state estimation issues. Electrode potential hysteresis is known to result from thermodynamical entropic effects, mechanical stress, and microscopic distortions within the active electrode materials which perform a two-phase transition during lithium insertion/extraction. Hence, some Li-ion cells including two-phase transition active materials show pronounced hysteresis referring to their open-circuit voltage. This work points out how macroscopic effects, that is, diffusion limitations, superimpose the latte- mentioned microscopic mechanisms and lead to a shrinkage of OCV hysteresis, if cells are loaded with high current rates. To validate the mentioned interaction, Li-ion cells' state of charge is adjusted to 50% with various current rates, beginning from the fully charged and the discharged state, respectively. As a pronounced difference remains between the OCV after charge and discharge adjustment, obviously the hysteresis vanishes as the target SOC is adjusted with very high current rate.

  18. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems

    Directory of Open Access Journals (Sweden)

    Kyowon Kang

    2018-05-01

    Full Text Available Recent progress in fabricating flexible electronics has been significantly developed because of the increased interest in flexible electronics, which can be applied to enormous fields, not only conventional in electronic devices, but also in bio/eco-electronic devices. Flexible electronics can be applied to a wide range of fields, such as flexible displays, flexible power storages, flexible solar cells, wearable electronics, and healthcare monitoring devices. Recently, flexible electronics have been attached to the skin and have even been implanted into the human body for monitoring biosignals and for treatment purposes. To improve the electrical and mechanical properties of flexible electronics, nanoscale fabrications using novel nanomaterials are required. Advancements in nanoscale fabrication methods allow the construction of active materials that can be combined with ultrathin soft substrates to form flexible electronics with high performances and reliability. In this review, a wide range of flexible electronic applications via nanoscale fabrication methods, classified as either top-down or bottom-up approaches, including conventional photolithography, soft lithography, nanoimprint lithography, growth, assembly, and chemical vapor deposition (CVD, are introduced, with specific fabrication processes and results. Here, our aim is to introduce recent progress on the various fabrication methods for flexible electronics, based on novel nanomaterials, using application examples of fundamental device components for electronics and applications in healthcare systems.

  19. Attosecond Electron Processes in Materials: Excitons, Plasmons, and Charge Dynamics

    Science.gov (United States)

    2015-05-19

    focused using a f=1.5 m lens into a 250 micron hollow core fiber (HCF) filled with neon gas at atmospheric pressure to stretch the pulse spectrum from... insulator to metal transition. Introduction: The goal of this work was to understand the generation, transport, and manipulation of electronic charge...chemically sensitive probe pulse utilizing specific core level transitions in atoms that are part of a material under study. The measurements follow

  20. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  2. Specialists meeting on properties of primary circuit structural materials including environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-07-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials.

  3. Specialists meeting on properties of primary circuit structural materials including environmental effects

    International Nuclear Information System (INIS)

    1977-01-01

    The Specialists Meeting on Properties of Primary Circuit Structural Materials of LMFBRs covered the following topics: overview of materials program in different countries; mechanical properties of materials in air; fracture mechanics studies - component related activities; impact of environmental influences on mechanical properties; relationship of material properties and design methods. The purpose of the meeting was to provide a forum for exchange of information on structural materials behaviour in primary circuit of fast breeder reactors. Special emphasis was placed on environmental effects such as influence of sodium and irradiation on mechanical properties of reactor materials

  4. Retrospective search on biomass harvesting techniques including materials handling and storage

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    This literature search covers the period 1977 to date. The harvesting, materials handling and storage of the following materials: wood; crops and crop residues; peat; sugar cane; reeds, grasses and fers; algae and jojoba shrubs are covered.

  5. Investigation of thermal management materials for automotive electronic control units

    International Nuclear Information System (INIS)

    Mallik, Sabuj; Ekere, Ndy; Best, Chris; Bhatti, Raj

    2011-01-01

    Today's electronics packages are smaller and more powerful than ever before. This leads to ever increasing thermal challenges for the systems designer. The automotive electronic control unit (ECU) package faces the same challenge of thermal management as the industry in general. This is coupled with the latest European Union legislation (Euro 6 standard) which forced the ECU manufacturers to completely re-design their ECU platform with improved hardware and software capability. This will result in increased power densities and therefore, the ability to dissipate heat will be a key factor. A higher thermal conductivity (TC) material for the ECU housing (than the currently used Aluminium) could improve heat dissipation from the ECU. This paper critically reviews the state-of-the-art in thermal management materials which may be applicable to an automotive ECU. This review shows that of the different materials currently available, the Al/SiC composites in particular have very good potential for automotive ECU application. In terms of metal composites processing, the liquid metal infiltration process is recommended as it has a lower processing cost and it also has the ability to produce near net-shape materials.

  6. Effective atomic numbers and electron density of dosimetric material

    Directory of Open Access Journals (Sweden)

    Kaginelli S

    2009-01-01

    Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.

  7. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  8. Application of scandium oxide in an electron emission material

    International Nuclear Information System (INIS)

    Suqiu, Y.; Zhizheng, Z.; Yongde, W.

    1985-01-01

    Modern microwave devices impose a number of harsh requirements on the cathodes. For instance, they require cathodes having low working temperature, high emissive current density, slow evaporation rate of the emissive-active material, long lifetime, quick heating and so on. The commercial B-cathode is no longer able to meet these requirements completely. A scandate cathode may be a promising one for use in these devices. Adding rare-earth elements in the electron emission material has been reported in many papers. Based on a B-cathode we add a little amount of scandium oxide (about 3%) into emission material to manufacture a scandate cathode. The emission property of such a cathode has been improved greatly. If the composition is controlled correctly, the emission level of such a cathode may be five times more as high as the B-cathode

  9. Development of nanocomposite polymer materials for electrical and electronic applications

    International Nuclear Information System (INIS)

    Chine, Bruno

    2007-01-01

    Some results and experimental procedures of laboratory are reported in the frame of researches conducted for the development of new nanostructured composite materials. These new materials, which are constituted by an organic phase: the polymer and an inorganic phase: the silicate, are being strongly investigated nowadays so it is expected that they could provide, among other, better electrical insulation properties and flame-delay in electrical and electronic applications. The laboratory experimental work has been developed from two families of polymers, thermoplastics and thermosets and clays silicates providing lamellar type. There are now some preliminary results, such as obtaining thin films of these nanocomposite materials, their complete characterization by X-ray diffraction, scanning microscopy and thermogravimetric analysis, they do well to wait for future research activities. (author) [es

  10. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat

    2017-05-17

    Understanding light-triggered charge carrier dynamics near photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices. Visualization of such dynamics information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics on material surfaces. Time-resolved snapshots indicate that the dynamics of charge carriers generated by electron impact in the electron-photon dynamical probing regime is highly sensitive to the thickness of the absorber layer, as demonstrated using CdSe films of different thicknesses as a model system. This finding not only provides the foundation for potential applications of S-UEM to a wide range of devices in the fields of chemical and materials research, but also has impact on the use and interpretation of electron beam-induced current for optimization of photoactive materials in these devices.

  11. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  12. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  13. A multislice theory of electron scattering in crystals including backscattering and inelastic effects.

    Science.gov (United States)

    Spiegelberg, Jakob; Rusz, Ján

    2015-12-01

    In the framework of the slice transition operator technique, a general multislice theory for electron scattering in crystals is developed. To achieve this generalization, we combine the approaches for inelastic scattering derived by Yoshioka [J. Phys. Soc. Jpn. 12, 6 (1957)] and backscattering based on the formalism of Chen and Van Dyck [Ultramicroscopy 70, 29-44 (1997)]. A computational realization of the obtained equations is suggested. The proposed computational scheme is tested on elastic backscattering of electrons, where we consider single backscattering in analogy to the computational scheme proposed by Chen and Van Dyck. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 75 FR 38127 - Visteon Systems, LLC North Penn Plant Electronics Products Group Including On-Site Leased Workers...

    Science.gov (United States)

    2010-07-01

    ..., North Penn Plant, Electronics Products Group to be covered by this certification. The intent of the... North Penn Plant Electronics Products Group Including On-Site Leased Workers From Ryder Integrated... Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade Adjustment...

  15. 78 FR 36768 - Electron Hydro, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2013-06-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1646-000] Electron Hydro, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of Electron...

  16. Computational Nanotechnology of Molecular Materials, Electronics and Machines

    Science.gov (United States)

    Srivastava, D.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This viewgraph presentation covers carbon nanotubes, their characteristics, and their potential future applications. The presentation include predictions on the development of nanostructures and their applications, the thermal characteristics of carbon nanotubes, mechano-chemical effects upon carbon nanotubes, molecular electronics, and models for possible future nanostructure devices. The presentation also proposes a neural model for signal processing.

  17. Scanning electron microscope facility for examination of radioactive materials

    International Nuclear Information System (INIS)

    Gibson, J.R.; Braski, D.N.

    1985-02-01

    An AMRAY model 1200B scanning electron microscope was modified to permit remote examination of radioactive specimens. Features of the modification include pneumatic vibration isolation of the column, motorized stage controls, improvements for monitoring vacuum, and a system for changing filaments without entering the hot cell

  18. Open literature review of threats including sabotage and theft of fissile material transport in Japan

    International Nuclear Information System (INIS)

    Cochran, John Russell; Furaus, James Phillip; Marincel, Michelle K.

    2005-01-01

    This report is a review of open literature concerning threats including sabotage and theft related to fissile material transport in Japan. It is intended to aid Japanese officials in the development of a design basis threat. This threat includes the external threats of the terrorist, criminal, and extremist, and the insider threats of the disgruntled employee, the employee forced into cooperation via coercion, the psychotic employee, and the criminal employee. Examination of the external terrorist threat considers Japanese demographics, known terrorist groups in Japan, and the international relations of Japan. Demographically, Japan has a relatively homogenous population, both ethnically and religiously. Japan is a relatively peaceful nation, but its history illustrates that it is not immune to terrorism. It has a history of domestic terrorism and the open literature points to the Red Army, Aum Shinrikyo, Chukaku-Ha, and Seikijuku. Japan supports the United States in its war on terrorism and in Iraq, which may make Japan a target for both international and domestic terrorists. Crime appears to remain low in Japan; however sources note that the foreign crime rate is increasing as the number of foreign nationals in the country increases. Antinuclear groups' recent foci have been nuclear reprocessing technology, transportation of MOX fuel, and possible related nuclear proliferation issues. The insider threat is first defined by the threat of the disgruntled employee. This threat can be determined by studying the history of Japan's employment system, where Keiretsu have provided company stability and lifetime employment. Recent economic difficulties and an increase of corporate crime, due to sole reliability on the honor code, have begun to erode employee loyalty

  19. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  20. Electron tomography of porous materials and magnetic nanoparticles

    International Nuclear Information System (INIS)

    Uusimäki, T.

    2015-01-01

    Electron tomography, as carried out in a transmission electron microscope is a method to reveal the three dimensional structure of the sample at the nanometer scale. It is based on tilting the sample and recording subsequent images at different projections angles. Using specific reconstruction algorithms the density distribution of the sample can then be reproduced. In this thesis, electron tomography has been implemented for material science specimens and more rigorously to porous media infiltrated with magnetic nanoparticles. The volume and spatial distribution along with the knowledge of the demagnetizing factors were then used within a magnetic Monte Carlo simulation to predict the magnetic response of the nanoparticle assembly. The local curvature of nanoparticles within the template, known to be a critical geometrical parameter influencing material properties, was extracted with two distinctive methods. Furthermore, new capabilities needed for image analysis and processing of the tilt series had to be implemented for improved alignments and segmentation. A new method to align the tilt series without depending on markers was written for obtaining high quality reconstructions. Also a comparison was made between different scanning TEM acquisition modes such as incoherent bright field and high angle annular dark field imaging modes with respect to resolution and contrast changes. (author) [de

  1. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  2. Development and qualification of materials and processes for radiation shielding of Galileo spacecraft electronic components

    International Nuclear Information System (INIS)

    Hribar, F.; Bauer, J.L.; O'Donnell, T.P.

    1990-01-01

    Several materials and processing methods were evaluated for use on the JPL Galileo spacecraft in the area of radiation shielding for electronics. Development and qualification activities involving an aluminum structural laminate are described. These activities included requirements assessment, design tradeoffs, materials selection, adhesive bonding development, mechanical properties measurements, thermal stability assessment, and nondestructive evaluation. This paper presents evaluation of three adhesives for bonding tantalum to aluminum. The concept of combining a thin sheet of tantalum with two outer aluminum face sheets using adhesive bonding was developed successfully. This radiation shield laminate also provides a structural shear plate for mounting electronic assemblies

  3. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-05-31

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices... Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled...

  4. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-26

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-885] Certain Portable Electronic Communications... States Code AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2013, under section...

  5. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.

    1981-01-01

    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  6. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  7. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James; Georgiadou, Dimitra G; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-01-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  8. Virtual screening of electron acceptor materials for organic photovoltaic applications

    International Nuclear Information System (INIS)

    D Halls, Mathew; Giesen, David J; Goldberg, Alexander; Djurovich, Peter J; Sommer, Jonathan; McAnally, Eric; Thompson, Mark E

    2013-01-01

    Virtual screening involves the generation of structure libraries, automated analysis to predict properties related to application performance and subsequent screening to identify lead systems and estimate critical structure–property limits across a targeted chemical design space. This approach holds great promise for informing experimental discovery and development efforts for next-generation materials, such as organic semiconductors. In this work, the virtual screening approach is illustrated for nitrogen-substituted pentacene molecules to identify systems for development as electron acceptor materials for use in organic photovoltaic (OPV) devices. A structure library of tetra-azapentacenes (TAPs) was generated by substituting four nitrogens for CH at 12 sites on the pentacene molecular framework. Molecular properties (e.g. E LUMO , E g and μ) were computed for each candidate structure using hybrid DFT at the B3LYP/6-311G** level of theory. The resulting TAPs library was then analyzed with respect to intrinsic properties associated with OPV acceptor performance. Marcus reorganization energies for charge transport for the most favorable TAP candidates were then calculated to further determine suitability as OPV electron acceptors. The synthesis, characterization and OPV device testing of TAP materials is underway, guided by these results. (paper)

  9. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  10. A constitutive model for the superplastic material ALNOVI-1 including leak risk information

    NARCIS (Netherlands)

    Snippe, Corijn H.C.; Snippe, Q.H.C.; Meinders, Vincent T.; Pietzyk, M.; Kusiak, J.; Majta, J.; Hartley, P.; Lin, J.; Mori, K.

    2008-01-01

    For some applications, it is important that a formed sheet of material is completely gas tight, therefore it is beneficial to be able to predict whether a formed sheet will be leak tight for gases or not. Superplastic materials show the ability to attain very high plastic strains before failure.

  11. Nonlinear waves in electron-positron-ion plasmas including charge separation

    Science.gov (United States)

    Mugemana, A.; Moolla, S.; Lazarus, I. J.

    2017-02-01

    Nonlinear low-frequency electrostatic waves in a magnetized, three-component plasma consisting of hot electrons, hot positrons and warm ions have been investigated. The electrons and positrons are assumed to have Boltzmann density distributions while the motion of the ions are governed by fluid equations. The system is closed with the Poisson equation. This set of equations is numerically solved for the electric field. The effects of the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle are investigated. It is shown that depending on the driving electric field, ion temperature, positron density, ion drift, Mach number and propagation angle, the numerical solutions exhibit waveforms that are sinusoidal, sawtooth and spiky. The introduction of the Poisson equation increased the Mach number required to generate the waveforms but the driving electric field E 0 was reduced. The results are compared with satellite observations.

  12. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

    OpenAIRE

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed...

  13. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    Science.gov (United States)

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.

    2018-02-01

    The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.

  15. Fifty years old, and still going strong: Transmission electron optical studies of materials

    International Nuclear Information System (INIS)

    Brown, L.M.

    2008-01-01

    Highlights in the history of transmission electron microscopy and scanning transmission electron microscopy include the introduction of diffraction contrast, resolution of periodic lattices by phase contrast and incoherent imaging via the high-angle annular dark-field detector. Convergent-beam electron diffraction and analytical electron microscopy, especially the application of energy-dispersive X-ray and electron energy-loss spectrometry, have provided structural and chemical information in addition to strain contrast from lattice defects. From the outset, novel specimen stages and improvements to aid the operator enhanced the electron-optical engineering provided by the instrument makers. The spatial resolution achieved was mainly determined by the way the instrument was used, and not by the basic resolution limit set by the electron optics. However, the application of computer controlled correction of spherical (and higher order) aberration has resulted in a new generation of instruments capable of sub-Angstrom point-to-point resolution. This improved performance, combined with electron energy-loss spectrometry, promises genuine three-dimensional determination of atomic and electronic structure: an indispensable weapon in the battle to fabricate and control useful nanostructures. The uncertainty principle now fundamentally restricts some of the observations one can make, but much more technical development over the next decades must occur before one can say that the techniques of electron-optical imaging of material structure have reached their fundamental limitations. One can expect remarkable progress over the next few years

  16. Electron microscopy of fine-grained extraterrestrial materials

    International Nuclear Information System (INIS)

    Mackinnon, I.D.R.; McKay, D.S.; Isaacs, A.M.; Nace, G.

    1982-01-01

    Electron micrographs are shown of (a) Mighei C2 carbonaceous chondrite (variety of matrix phases present; micro-diffraction patterns of a region showing small, discrete intergrowths of planar serpentine and an ordered mixed-layer material; figures showing examples of textures which may be interpreted in terms of alteration processes, and inclusions); and (b) a typical cosmic dust particle collected by high-flying aircraft in the Earth's stratosphere. The composition and morphology of the samples are discussed and their significance. (U.K.)

  17. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  18. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  19. Discrete Material and Thickness Optimization of laminated composite structures including failure criteria

    DEFF Research Database (Denmark)

    Lund, Erik

    2017-01-01

    This work extends the Discrete Material and Thickness Optimization approach to structural optimization problems where strength considerations in the form of failure criteria are taken into account for laminated composite structures. It takes offset in the density approaches applied for stress...... constrained topology optimization of single-material problems and develops formulations for multi-material topology optimization problems applied for laminated composite structures. The method can be applied for both stress- and strain-based failure criteria. The large number of local constraints is reduced...

  20. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  1. Damage-free vibrational spectroscopy of biological materials in the electron microscope.

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.

  2. Electron microscopy studies of materials used for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andrei, Carmen M.

    2004-07-01

    Concerns over global warming and air pollution have stimulated the concept of the ''Hydrogen Economy'' and the potential extensive use of hydrogen as an energy carrier. Hydrogen storage in a solid matrix has become one of the promising solutions for vehicular applications. In this study, several transmission electron microscopy (TEM) techniques such as high resolution (HR), electron diffraction, energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFT EM) as well as scanning electron microscopy (SEM) have been used to study the microstructure of materials related to hydrogen storage applications. Some of the results are compared with powder X-ray diffraction (PXD) data. A TbNiAl compound processed by the hydrogenation-disproportionation-desorption-recombination (HDDR) route has been studied using a combination of SEM, TEM and PXD. Information about the variations in the composition and surface topography in both disproportionation and recombination stages is given by the SEM backscattered electrons and secondary electrons images. The crystallites that have undergone the recombination process were found smaller in size. The sodium alanate, NaAIH4 is one of the most promising candidate materials for hydrogen storage. Ti additives are effective at reducing the reaction temperatures and improving the efficiency of the kinetics. The microstructure of NaAlH4 with TiF3 additive has been examined after the initial ball milling and after 15 cycles, using TEM, SEM and EDS. The effect of the additive on particle morphology, grain size and distribution of the phases has been studied. The additive has uneven distribution in the sample after initial ball milling. After 15 cycles, EDS maps show some combination of Ti with the alanate phase. No significant change in grain size of the Na/Al rich particles between the ball milled and 15 cycled sample was observed. The LiAlD4

  3. Scanning and Transmission Electron Microscopy of High Temperature Materials

    Science.gov (United States)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  4. Thermal expansion model for multiphase electronic packaging materials

    International Nuclear Information System (INIS)

    Allred, B.E.; Warren, W.E.

    1991-01-01

    Control of thermal expansion is often necessary in the design and selection of electronic packages. In some instances, it is desirable to have a coefficient of thermal expansion intermediate between values readily attainable with single or two phase materials. The addition of a third phase in the form of fillers, whiskers, or fibers can be used to attain intermediate expansions. To help design the thermal expansion of multiphase materials for specific applications, a closed form model has been developed that accurately predicts the effective elastic properties of isotropic filled materials and transversely isotropic lamina. Properties of filled matrix materials are used as inputs to the lamina model to obtain the composite elastic properties as a function of the volume fraction of each phase. Hybrid composites with two or more fiber types are easily handled with this model. This paper reports that results for glass, quartz, and Kevlar fibers with beta-eucryptite filled polymer matrices show good agreement with experimental results for X, Y, and Z thermal expansion coefficients

  5. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  6. Si quantum dots for nano electronics: From materials to applications

    International Nuclear Information System (INIS)

    Lombardo, S.; Spinella, C.; Rimini, E.

    2005-01-01

    This paper reviews the subject of Si quantum dots embedded in dielectric and its application to the realization of non volatile semiconductor memories. In the first part of the paper various approaches for the analysis of the materials through transmission electron microscopy (TEM) are critically discussed. The advantages coming from an innovative application of energy filtered TEM are put in clear evidence. The paper then focuses on the synthesis of the materials: two different methodologies for the realization of the dots, both based on chemical vapor deposition are described in detail, and physical models providing some understanding of the observed phenomenology are reported. We then discuss the application of this nano technology to the realization of the storage nodes in non volatile semiconductor memories. The following sections describe the electrical characteristics found in the test devices and some key aspects are described in terms of quantitative models. The test devices show several performance advantages, indicating that the approach is an excellent candidate for the realization of Flash memories of the nano electronic era

  7. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance.

    Science.gov (United States)

    Liu, Te-Huan; Zhou, Jiawei; Li, Mingda; Ding, Zhiwei; Song, Qichen; Liao, Bolin; Fu, Liang; Chen, Gang

    2018-01-30

    Recent advancements in thermoelectric materials have largely benefited from various approaches, including band engineering and defect optimization, among which the nanostructuring technique presents a promising way to improve the thermoelectric figure of merit ( zT ) by means of reducing the characteristic length of the nanostructure, which relies on the belief that phonons' mean free paths (MFPs) are typically much longer than electrons'. Pushing the nanostructure sizes down to the length scale dictated by electron MFPs, however, has hitherto been overlooked as it inevitably sacrifices electrical conduction. Here we report through ab initio simulations that Dirac material can overcome this limitation. The monotonically decreasing trend of the electron MFP allows filtering of long-MFP electrons that are detrimental to the Seebeck coefficient, leading to a dramatically enhanced power factor. Using SnTe as a material platform, we uncover this MFP filtering effect as arising from its unique nonparabolic Dirac band dispersion. Room-temperature zT can be enhanced by nearly a factor of 3 if one designs nanostructures with grain sizes of ∼10 nm. Our work broadens the scope of the nanostructuring approach for improving the thermoelectric performance, especially for materials with topologically nontrivial electronic dynamics.

  8. Compression of pulsed electron beams for material tests

    Science.gov (United States)

    Metel, Alexander S.

    2018-03-01

    In order to strengthen the surface of machine parts and investigate behavior of their materials exposed to highly dense energy fluxes an electron gun has been developed, which produces the pulsed beams of electrons with the energy up to 300 keV and the current up to 250 A at the pulse width of 100-200 µs. Electrons are extracted into the accelerating gap from the hollow cathode glow discharge plasma through a flat or a spherical grid. The flat grid produces 16-cm-diameter beams with the density of transported per one pulse energy not exceeding 15 J·cm-2, which is not enough even for the surface hardening. The spherical grid enables compression of the beams and regulation of the energy density from 15 J·cm-2 up to 15 kJ·cm-2, thus allowing hardening, pulsed melting of the machine part surface with the further high-speed recrystallization as well as an explosive ablation of the surface layer.

  9. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-09

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Photo electron emission microscopy of polarity-patterned materials

    International Nuclear Information System (INIS)

    Yang, W-C; Rodriguez, B J; Gruverman, A; Nemanich, R J

    2005-01-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO 3 (LNO) single crystals and PbZrTiO 3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ∼4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ∼4.6 eV at the negative domain and ∼6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ∼300 deg. C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions

  11. Photo electron emission microscopy of polarity-patterned materials

    Science.gov (United States)

    Yang, W.-C.; Rodriguez, B. J.; Gruverman, A.; Nemanich, R. J.

    2005-04-01

    This study presents variable photon energy photo electron emission microscopy (PEEM) of polarity-patterned epitaxial GaN films, and ferroelectric LiNbO3 (LNO) single crystals and PbZrTiO3 (PZT) thin films. The photo electrons were excited with spontaneous emission from the tunable UV free electron laser (FEL) at Duke University. We report PEEM observation of polarity contrast and measurement of the photothreshold of each polar region of the materials. For a cleaned GaN film with laterally patterned Ga- and N-face polarities, we found a higher photoelectric yield from the N-face regions compared with the Ga-face regions. Through the photon energy dependent contrast in the PEEM images of the surfaces, we can deduce that the threshold of the N-face region is less than ~4.9 eV while that of the Ga-face regions is greater than 6.3 eV. In both LNO and PZT, bright emission was detected from the negatively poled domains, indicating that the emission threshold of the negative domain is lower than that of the positive domain. For LNO, the measured photothreshold was ~4.6 eV at the negative domain and ~6.2 eV at the positive domain, while for PZT, the threshold of the negative domain was less than 4.3 eV. Moreover, PEEM observation of the PZT surface at elevated temperatures displayed that the domain contrast disappeared near the Curie temperature of ~300 °C. The PEEM polarity contrast of the polar materials is discussed in terms of internal screening from free carriers and defects and the external screening due to adsorbed ions.

  12. 75 FR 448 - In the Matter of: Certain Authentication Systems, Including Software and Handheld Electronic...

    Science.gov (United States)

    2010-01-05

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-697] In the Matter of: Certain Authentication... the sale within the United States after importation of certain authentication systems, including... importation, or the sale within the United States after importation of authentication systems, including...

  13. Method of extruding and packaging a thin sample of reactive material including forming the extrusion die

    International Nuclear Information System (INIS)

    Lewandowski, E.F.; Peterson, L.L.

    1985-01-01

    This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life

  14. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol.

    Directory of Open Access Journals (Sweden)

    Monique Williams

    Full Text Available Electronic cigarettes (EC deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol.We tested the hypothesis that EC aerosol contains metals derived from various components in EC.Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry.The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers. Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease.The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

  15. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol.

    Science.gov (United States)

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

  16. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-06-02

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players... rendered asserted claim 5 invalid. The ALJ concluded that an industry exists within the United States that...

  17. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-07-12

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission....S.C. 1337) in the importation into the United States, the sale for importation, and the sale within the United States after importation of certain electronic devices, including mobile phones, portable...

  18. Variationally stable treatment of two- and three-photon detachment of H- including electron-correlation effects

    International Nuclear Information System (INIS)

    Liu, C.; Gao, B.; Starace, A.F.

    1992-01-01

    A variationally stable, adiabatic hyperspherical treatment of two- and three-photon detachment of H - is presented. Results are compared with analytic predictions of a zero-range potential model of H - . Detailed comparisions are made also with other theoretical results which include the effects of electron correlations. We predict analytically (and demonstrate numerically) an extreme sensitivity of the theoretical predictions to any errors in the value of the electron affinity employed. In an Appendix we show that the low-intensity limit of the Keldysh treatment [Sov. Phys. JETP 20, 1307 (1965)] of detachment of an electron bound in a zero-range potential agrees with the results of a perturbative treatment

  19. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    Science.gov (United States)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  20. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  1. Computational homogenization of sound propagation in a deformable porous material including microscopic viscous-thermal effects

    NARCIS (Netherlands)

    Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.

    2016-01-01

    Porous materials like acoustic foams can be used for acoustic shielding, which is important for high-tech systems and human comfort. In this paper, a homogenization model is proposed to investigate the relation between the microstructure and the resulting macroscopic acoustic properties. The

  2. Cluster model calculations of the solid state materials electron structure

    International Nuclear Information System (INIS)

    Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.

    1997-01-01

    Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs

  3. Electronic and optoelectronic materials and devices inspired by nature

    Science.gov (United States)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

  4. Availability of nuclear decay data in electronic form, including beta spectra not previously published

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1994-01-01

    The unabridged data used in preparing ICRP Publication 38 (1983) and a monograph of the Medical Internal Radiation Dose (MIRD) Committee are now available in electronic form. The open-quotes ICRP38 collectionclose quotes contains data on the energies and intensities of radiations emitted by 825 radionuclides (those in ICRP Publication 38 plus 13 from the MIRD monograph), and the open-quotes MIRD collectionclose quotes contains data on 242 radionuclides. Each collection consists of a radiations data file and a beta spectra data file. The radiations data file contains the complete listing of the emitted radiations, their types, mean or unique energies, and absolute intensities for each radionuclide, the probability that a beta particle will be emitted with kinetic energies defined by a standard energy grid. Although summary information from the radiation data files has been published, neither the unabridged data nor the beta spectra have been published. These data files and a data extraction utility, which runs on a personal computer, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory. 13 refs., 1 fig., 6 tabs

  5. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy.

    Science.gov (United States)

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila

    2016-03-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  6. Evaluation of the effect of tooth and dental restoration material on electron dose distribution and production of photon contamination in electron beam radiotherapy

    International Nuclear Information System (INIS)

    Bahreyni Toossi, M.T.; Ghorbani, Mahdi; Akbari, Fatemah; Sabet, Leila S.; Mehrpouyan, Mohammad

    2016-01-01

    The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm 2 applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam’s energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided.

  7. Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef.

    Science.gov (United States)

    Midelet, Graziella; Carpentier, Brigitte

    2002-08-01

    The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.

  8. 76 FR 41522 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-07-14

    ... Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components.... 1337, in the importation, sale for importation and sale within the United States after importation of certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...

  9. Results of a Saxitoxin Proficiency Test Including Characterization of Reference Material and Stability Studies

    Directory of Open Access Journals (Sweden)

    Kirsi Harju

    2015-11-01

    Full Text Available A saxitoxin (STX proficiency test (PT was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories’ capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses.

  10. Mechanical experiments on the superplastic material ALNOVI-1, including leak information

    International Nuclear Information System (INIS)

    Snippe, Q.H.C.; Meinders, T.

    2011-01-01

    Research highlights: → Mechanical testing of superplastic materials, in particular ALNOVI-1. → Uniaxial tests to show the one-dimensional stress-strain behaviour and the high amount of strain rate sensitivity. → Void volume fractions have been observed. → Free bulge experiments to show the dependence on the backpressure during the forming stage. → Measuring leak tightness of superplastically formed sheets. → Experiments are used in order to develop a constitutive model in a later stage. - Abstract: In subatomic particle physics, unstable particles can be detected with a so-called vertex detector, placed inside a particle accelerator. A detecting unit close to the accelerator bunch of charged particles must be separated from the accelerator vacuum. A thin sheet with a complex 3D shape prevents the detector vacuum from polluting the accelerator vacuum. Therefore, this sheet has to be completely leak tight. However, this can conflict with restrictions concerning maximum sheet thickness of the product. To produce such a complex thin sheet, superplastic forming can be very attractive in cases where a small number of products is needed. In order to predict gas permeability of these formed sheets, many mechanical experiments are necessary, where the gas leak has to be measured. To obtain insight in the mechanical behaviour of the used material, ALNOVI-1, tensile experiments were performed to describe the uniaxial stress-strain behaviour. From these experiments, a high strain rate sensitivity was measured. The flow stress of this material under superplastic conditions was low and the material behaved in an isotropic manner upon large plastic strains. The results of these experiments were used to predict the forming pressure as a function of time in a free bulge experiment, such that a predefined target strain rate will not be exceeded in the material. An extra parameter within these bulging experiments is the application of a hydrostatic pressure during the

  11. Irradiation of aluminium alloy materials with electron beam

    International Nuclear Information System (INIS)

    Konno, Osamu; Masumoto, Kazuyoshi

    1982-01-01

    It is a theme with a room for discussion to employ the stainless steel composed of longer half-life materials for the vacuum system of accelerators, from the viewpoint of radiation exposure. Therefore, it is desirable to use aluminium of shorter half-life in place of stainless steel. As a result of investigation on the above theme in the 1.2 GeV electron linac project in Tohoku University, it has been concluded that aluminium alloy vacuum chambers can reduce exposure dose by about one or two figures as compared with stainless steel ones. Of course, aluminium alloy contains trace amounts of Mg, Si, Ti, Cr, Mn, Fe, Zn, Cu and others. Therefore, four kinds of aluminium alloy considered to be usable have been examined for induced radioactivity by electron beam irradiation. Stainless steel SUS 304 has been also irradiated for comparison. Radiation energy has been 30 MeV and 200 MeV. When stainless steel and aluminium alloy were compared, aluminium alloy was very effective for reducing surface dose in low energy irradiation. In 200 MeV irradiation, the dose ratio of aluminium alloy to stainless steel became 1/30 to 1/100 after one week, though the dose difference between these two materials became smaller in 100 days or more after irradiation. If practical inspection and repair are implemented during the period from a few days to one week after shutdown, the aluminium alloy is preferable for exposure dose reduction even in high energy irradiation. (Wakatsuki, Y.)

  12. Characterization of high Tc materials and devices by electron microscopy

    National Research Council Canada - National Science Library

    Browning, Nigel D; Pennycook, Stephen J

    2000-01-01

    ..., and microanalysis by scanning transmission electron microscopy. Ensuing chapters examine identi®cation of new superconducting compounds, imaging of superconducting properties by lowtemperature scanning electron microscopy, imaging of vortices by electron holography and electronic structure determination by electron energy loss spectro...

  13. Development of microwave absorbing materials prepared from a polymer binder including Japanese lacquer and epoxy resin

    Science.gov (United States)

    Iwamaru, T.; Katsumata, H.; Uekusa, S.; Ooyagi, H.; Ishimura, T.; Miyakoshi, T.

    Microwave absorption composites were synthesized from a poly urushiol epoxy resin (PUE) mixed with one of microwave absorbing materials; Ni-Zn ferrite, Soot, Black lead, and carbon nano tube (CNT) to investigate their microwave absorption properties. PUE binders were specially made from Japanese lacquer and epoxy resin, where Japanese lacquer has been traditionally used for bond and paint because it has excellent beauty. Japanese lacquer solidifies with oxygen contained in air's moisture, which has difficulty in making composite, but we improved Japanese lacquer's solidification properties by use of epoxy resin. We made 10 mm thickness composite samples and cut them into toroidal shape to measure permittivity, permeability, and reflection loss in frequencies ranging from 50 Hz to 20 GHz. Electric magnetic absorber's composites synthesized from a PUE binders mixed either with Soot or CNT showed significantly higher wave absorption over -27 dB than the others at frequencies around 18 GHz, although Japanese lacquer itself doesn't affect absorption. This means Japanese lacquer can be used as binder materials for microwave absorbers.

  14. Determination of trace elements in electronic materials by NAA

    International Nuclear Information System (INIS)

    Kobayashi, Kenji

    1986-01-01

    Trace amounts of elements in electronic materials were determined by instrumental neutron activation analysis (INAA), re-activation analysis and substoichiometric radioactivation analysis using gamma-ray spectrometry. Ten elements (Cr, Cu, Fe, Zn, Co, Eu, Ir, Sb, Sc, Tb) in gallium arsenide single crystal were determined by INAA and substoichiometric radioactivation analysis. Trace level of chromium (10 13 atoms/cm 3 ) and zinc (10 14 atoms/cm 3 ) in gallium arsenide single crystal were determined by INAA. The chromium concentrations in horizontal Bridgmangrown semi-insulating gallium arsenide ingot were ranged from 1.2 x 10 16 atoms/cm 3 at seed end to 3.5 x 10 16 atoms/cm 3 at tail end. The trace determinations of iron (10 14 atoms/cm 3 ) and copper (10 14 atoms/cm 3 ) in silicon, gallium arsenide and indium phoshide single crystals were carried out by substoichiometric radioactivation analysis. The reactivation analysis for the multielement determination of indium phosphide single crystal was carried out and nineteen elements were determined simultaneously by gamma-ray spectrometry. Eleven elements (Ag, As, Br, Co, Cr, Fe, K, Mn, Sb, Sc, Zn) in four NIES standard reference materials (Pond Sediment, Chlorella, Mussel and Tea Leaves) and seven elements (Co, Cr, Eu, Fe, Sc, Tb, Yb) in two NBS glasses (SRM-615 and SRM-613) were determined by INAA and substoichiometric radioactivation analysis and the analytical results obtained by the methods were in good agreement with certified values by NIES and NBS. (author)

  15. Development of electronic tattoo for pulse rate monitoring: Materials perspective

    Science.gov (United States)

    Shinde, Shilpa Vikas; Sonavane, S. S.

    2018-05-01

    In India, there is a growing concern of the heart diseases and deaths due to heart failure. The severity of the problem can be minimised by efficient heart rate monitoring which can be used to provide before time caution to cater heart attack. Wearable sensor can be designed to sense the pulse. The sensor can be either placed near to heart or on the wrist to sense pulses and send pulse signals to the doctors. Such sensor should adhere to the skin for sufficiently long period without causing etching to the patient. It should also be bendable and stretchable like skin. This paper is a part of the research work carried out to develop patch type sensor, which is termed as Electronic Tattoo (ET). In pursuit for development of ET, we came across various designs and candidate materials which can be used for the ET. Thus, in this paper, we describe the process of selecting best suited method and material for the ET. It may also be noted that the sensor development is governed by the prevailing IEEE 802.15.6 standard.

  16. Photon-Electron Interactions in Dirac Quantum Materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaodong [Univ. of Washington, Seattle, WA (United States). Dept. of Material Science and Engineering

    2017-11-10

    The objective of this proposal was to explore the fundamental light-matter interactions in a new class of Dirac quantum materials, atomically thin transition metal dichalcogenides (TMDs). Monolayer TMDs are newly discovered two-dimensional semiconductors with direct bandgap. Due to their hexagonal lattice structure, the band edge localizes at corner of Brillouin zone, i.e. “Dirac valleys”. This gives the corresponding electron states a “valley index” (or pseudospin) in addition to the real spin. Remarkably, the valley pseudospins have circularly polarized optical selection rules, providing the first solid state system for dynamic control of the valley degree of freedom. During this award, we have developed a suite of advanced nano-optical spectroscopy tools in the investigation and manipulation of charge, spin, and valley degrees of freedom in monolayer semiconductors. Emerging physical phenomena, such as quantum coherence between valley pseudospins, have been demonstrated for the first time in solids. In addition to monolayers, we have developed a framework in engineering, formulating, and understanding valley pseudospin physics in 2D heterostructures formed by different monolayer semiconductors. We demonstrated long-lived valley-polarized interlayer excitons with valley-dependent many-body interaction effects. These works push the research frontier in understanding the light-matter interactions in atomically-thin quantum materials for protentional transformative energy technologies.

  17. Time-dependent shock acceleration of energetic electrons including synchrotron losses

    International Nuclear Information System (INIS)

    Fritz, K.; Webb, G.M.

    1990-01-01

    The present investigation of the time-dependent particle acceleration problem in strong shocks, including synchrotron radiation losses, solves the transport equation analytically by means of Laplace transforms. The particle distribution thus obtained is then transformed numerically into real space for the cases of continuous and impulsive injections of particles at the shock. While in the continuous case the steady-state spectrum undergoes evolution, impulsive injection is noted to yield such unpredicted features as a pile-up of high-energy particles or a steep power-law with time-dependent spectral index. The time-dependent calculations reveal varying spectral shapes and more complex features for the higher energies which may be useful in the interpretation of outburst spectra. 33 refs

  18. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye; Khashab, Niveen M.; Tao, Jing

    2017-01-01

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets

  19. Wrought stainless steel butt-welding fittings: including reference to other corrosion resistant materials - approved 1971

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    ANSI B16.9 is the American Standard for steel butt-welding fittings and although not so stated, it is implied that its scope deals primarily with the schedules of wall thicknesses which are common to carbon steel and the grades of alloy steel piping that are selected for pressure and temperature considerations. The purpose of this standard is to provide industry with a set of dimensional standards for butt-welding fittings that can be used with these light wall pipes of corrosion resisting materials. The center-to-end dimensions of all fittings are identical with those in ANSI B16.9 which give to industry the advantage of uniform design room practice and a maximum utilization of existing die equipment. The only departure from this is in the lap-joint stub end where for purposes of economy the face-to-end of the product has been reduced for use with thin wall piping

  20. Electronic and optoelectronic materials and devices inspired by nature

    International Nuclear Information System (INIS)

    Meredith, P; Schwenn, P E; Bettinger, C J; Irimia-Vladu, M; Mostert, A B

    2013-01-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist. (review article)

  1. Universally-Usable Interactive Electronic Physics Instructional And Educational Materials

    Science.gov (United States)

    Gardner, John

    2000-03-01

    Recent developments of technologies that promote full accessibility of electronic information by future generations of people with print disabilities will be described. ("Print disabilities" include low vision, blindness, and dyslexia.) The guiding philosophy of these developments is that information should be created and transmitted in a form that is as display-independent as possible, and that the user should have maximum freedom over how that information is to be displayed. This philosophy leads to maximum usability by everybody and is, in the long run, the only way to assure truly equal access. Research efforts to be described include access to mathematics and scientific notation and to graphs, tables, charts, diagrams, and general object-oriented graphics.

  2. Model of spur processes in aqueous radiation chemistry including spur overlap and a novel initial hydrated electron distribution

    International Nuclear Information System (INIS)

    Short, D.R.

    1980-01-01

    Results are presented from computer calculations based upon an improved diffusion-kinetic model of the spur which includes a novel initial distribution for the hydrated electron and an approximate mathematical treatment of the overlap of spurs in three dimensions. Experimental data for the decay of the hydrated electron and hydroxyl radical before one in electron-pulse-irradated, solute-free and air-free water are fit wihtin experimental uncertainty by adjustment of the initial spatial distributions of spur intermediates and the average energy deposited in the spur. Using the same values of these parameters, the hydrated electron decay is computed for times from 1 ps 10 μs after the radiatio pulse. The results of such calcuations for various conditions of pulse dose and concentrations of scavengers of individual primary chemical species in the spur are compared with corresponding experimental data obtained predominantly from water and aqueous solutions irradiated with 10 to 15 MeV electron pulses. Very good agreement between calculated and experimental hydrated electron decay in pure water is observed for the entire time range studied when a pulse dose of approximately 7900 rads is modeled, but the calcuated and experimental curves are observed to deviate for times greater than 10 ns nanoseconds when low pulse doses and low scavenger concentrations are considered. It is shown that this deviation is experimental and calculated hydrated electron decay cannot be explained by assuming the presence of a hydrated electron scavenging impurity nor by employing a distribution of nearest neighbor interspur distances to refine the overlap approximation

  3. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  4. Occurance of Staphylococcus nepalensis strains in different sources including human clinical material.

    Science.gov (United States)

    Nováková, Dana; Pantůcek, Roman; Petrás, Petr; Koukalová, Dagmar; Sedlácek, Ivo

    2006-10-01

    Five isolates of coagulase-negative staphylococci were obtained from human urine, the gastrointestinal tract of squirrel monkeys, pig skin and from the environment. All key biochemical characteristics of the tested strains corresponded with the description of Staphylococcus xylosus species. However, partial 16S rRNA gene sequences obtained from analysed strains corresponded with those of Staphylococcus nepalensis reference strains, except for two strains which differed in one residue. Ribotyping with EcoRI and HindIII restriction enzymes, whole cell protein profile analysis performed by SDS-PAGE and SmaI macrorestriction analysis were used for more precise characterization and identification of the analysed strains. Obtained results showed that EcoRI and HindIII ribotyping and whole cell protein fingerprinting are suitable and reliable methods for the differentiation of S. nepalensis strains from the other novobiocin resistant staphylococci, whereas macrorestriction analysis was found to be a good tool for strain typing. The isolation of S. nepalensis is sporadic, and according to our best knowledge this study is the first report of the occurrence of this species in human clinical material as well as in other sources.

  5. Calculation of the collision stopping power of simple and composed materials for fast electrons considering the density effect with the aid of effective material parameters

    International Nuclear Information System (INIS)

    Geske, G.

    1979-01-01

    With the aid of two effective material parameters a simple expression is presented for the Bethe-Bloch-formula for the calculation of the collision stopping power of materials for fast electrons. The formula has been modified in order to include the density effect. The derivation was accomplished in connection with a formalism given by Kim. It was shown that the material dependence on the collision stopping power is entirely comprehended by the density and two effective material parameters. Thus a simple criterion is given for the comparison of materials as to their collision stopping power

  6. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    International Nuclear Information System (INIS)

    Farley, David R.

    2010-01-01

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N (ge) 3, with a rotational temperature between the wall and feed gas temperatures. The N = 0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  7. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    Science.gov (United States)

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.

  8. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    CERN Document Server

    Riegler, Werner

    2016-11-07

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, Micromega detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  9. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  10. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  11. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  12. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  13. Electronic transport in amorphous phase-change materials

    International Nuclear Information System (INIS)

    Luckas, Jennifer Maria

    2012-01-01

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  14. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    Science.gov (United States)

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  15. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    International Nuclear Information System (INIS)

    Pinson, P.A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs

  16. Electron irradiation experiments in support of fusion materials development

    International Nuclear Information System (INIS)

    Gelles, D.S.; Ohnuki, S.; Takahashi, H.; Matsui, H.; Kohno, Y.

    1991-11-01

    Microstructural evolution in response to 1 MeV irradiation has been investigated for three simple ferritic alloys, pure beryllium, pure vanadium, and two simple vanadium alloys over a range of temperatures and doses. Microstructural evolution in Fe-3, -9, and -18Cr ferritic alloys is found to consist of crenulated, faulted a loops and circular, unfaulted a/2 loops at low temperatures, but with only unfaulted loops at high temperatures. The complex dislocation evolution is attributed to sigma phase precipifaults arising from chromium segregation to point defect sinks. Beryllium is found to be resistant to electron damage; the only effect observed was enhanced dislocation mobility. Pure vanadium, V-5Fe, and V-1Ni microstructural response was complicated by precipitation on heating to 400 degrees C and above, but dislocation evolution was investigated in the range of room temperature to 300 degrees C and at 600 degrees C. The three materials behaved similarly, except that pure vanadium showed more rapid dislocation evolution. This difference does not explain the enhanced swelling observed in vanadium alloys

  17. Electronic bandstructure of the ZnTe absorber material

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Daniel [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Schmidt, Heidemarie [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2009-07-01

    Due to its large absorption coefficient, zinc telluride proved to be useful for the production of high-efficiency multi-junction solar cells. Nowadays ZnTe with a mixture of zincblende and wurtzite phases is fabricated by thin film growth techniques. The optical properties of both phases have been extensively studied by ab initio density functional methods. Here we focus on the question whether the effective electron and hole mass in ZnTe are small enough to meet the high-efficiency expectation of the ZnTe absorber material in solar cells and present direction dependent effective mass and Luttinger and Luttinger-like parameters of cubic and wurtzite ZnTe, respectively. Making use of the transferability of ionic model potential parameters and the experimentally known transition energies of different II-VI compounds ZnX (X=O,S,Se,Te), we obtained one single set of cationic model parameters for the Zn atom. The calculations have been performed by means of the empirical pseudopotential method using a simple empty core model potential.

  18. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  19. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-07-01

    Multi-element analysis of dry biological material by neutron activation analysis has to include radiochemical separation. The evaporation process is described in terms of the half-volume. The pretreatment of the samples and the development of the destruction-evaporation apparatus are described. The successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 are described. Results obtained for standard reference materials are summarized. (G.T.H.)

  20. Electronic and magnetic interactions in high temperature superconducting and high coercivity materials. Final performance report

    International Nuclear Information System (INIS)

    Cooper, B.R.

    1997-01-01

    The issue addressed in the research was how to understand what controls the competition between two types of phase transition (ordering) which may be present in a hybridizing correlated-electron system containing two transition-shell atomic species; and how the variation of behavior observed can be used to understand the mechanisms giving the observed ordered state. This is significant for understanding mechanisms of high-temperature superconductivity and other states of highly correlated electron systems. Thus the research pertains to magnetic effects as related to interactions giving high temperature superconductivity; where the working hypothesis is that the essential feature governing the magnetic and superconducting behavior of copper-oxide-type systems is a cooperative valence fluctuation mechanism involving the copper ions, as mediated through hybridization effects dominated by the oxygen p electrons. (Substitution of praseodymium at the rare earth sites in the 1·2·3 material provides an interesting illustration of this mechanism since experimentally such substitution strongly suppresses and destroys the superconductivity; and, at 100% Pr, gives Pr f-electron magnetic ordering at a temperature above 16K). The research was theoretical and computational and involved use of techniques aimed at correlated-electron systems that can be described within the confines of model hamiltonians such as the Anderson lattice hamiltonian. Specific techniques used included slave boson methodology used to treat modification of electronic structure and the Mori projection operator (memory function) method used to treat magnetic response (dynamic susceptibility)

  1. Adler Award Lecture: Fermi-Liquid Instabilities in Strongly Correlated f-Electron Materials.^*

    Science.gov (United States)

    Maple, M. Brian

    1996-03-01

    Strongly correlated f-electron materials are replete with novel electronic states and phenomena ; e. g. , a metallic ``heavy electron'' state with a quasiparticle effective mass of several hundred times the free electron mass, anisotropic superconductivity with an energy gap that may vanish at points or along lines on the Fermi surface, the coexistence of superconductivity and antiferromagnetism over different parts of the Fermi surface, multiple superconducting phases in the hyperspace of chemical composition, temperature, pressure, and magnetic field, and an insulating phase, in so-called ``hybridization gap semiconductors'' or ``Kondo insulators'', with a small energy gap of only a few meV. During the last several years, a new low temperature non-Fermi-liquid (NFL) state has been observed in a new class of strongly correlated f-electron materials which currently consists of certain Ce and U intermetallics into which a nonmagnetic element has been substituted.(M. B. Maple et al./) , J. Low Temp. Phys. 99 , 223 (1995). The Ce and U ions have partially-filled f-electron shells and carry magnetic dipole or electric quadrupole moments which interact with the spins and charges of the conduction electrons and can participate in magnetic or quadrupolar ordering at low temperatures. The physical properties of these materials exhibit weak power law or logarithmic divergences in temperature and suggest the existence of a critical point at T=0 K. Possible origins of the 0 K critical point include an unconventional moment compensation process, such as a multichannel Kondo effect, and fluctuations of the order parameter in the vicinity of a 0 K second order phase transition. In some systems, such as Y_1-xU_xPd 3 and U_1-xTh_xPd _2Al 3 , the NFL characteristics appear to be single ion effects since they persist to low concentrations of f-moments, whereas in other systems, such as CeCu _5.9Au _0.1 , the NFL behavior seems to be associated with interactions between the f

  2. Shear bond strengths of tooth coating materials including the experimental materials contained various amounts of multi-ion releasing fillers and their effects for preventing dentin demineralization.

    Science.gov (United States)

    Arita, Shoko; Suzuki, Masaya; Kazama-Koide, Miku; Shinkai, Koichi

    2017-10-01

    We examined shear bond strengths (SBSs) of various tooth-coating-materials including the experimental materials to dentin and demineralization resistance of a fractured adhesive surface after the SBS testing. Three resin-type tooth-coating-materials (BC, PRG Barrier Coat; HC, Hybrid Coat II; and SF, Shield force plus) and two glass-ionomer-type tooth-coating-materials (CV, Clinpro XT Varnish; and FJ, Fuji VII) were selected. The experimental PRG Barrier Coat containing 0, 17, and 33 wt% S-PRG filler (BC0, BC17, and BC33, respectively) were developed. Each tooth-coating-material was applied to flattened dentin surfaces of extracted human teeth for SBS testing. After storing in water for 32 days with 4000 thermal cycling, the specimens were subjected to the SBS test. Specimens after SBS testing were subjected to a pH cycling test, and then, demineralization depths were measured using a polarized-light microscope. ANOVA and Tukey's HSD test were used for statistical analysis. The SBS value of FJ and CV was significantly lower than those of other materials except for BC (p coating-materials demonstrated significantly higher SBS for dentin than the glass-ionomer-type tooth-coating-materials; however, they were inferior to the glass ionomer-type tooth-coating-materials in regards to the acid resistance of the fractured adhesion surface.

  3. A review of a radioactive material shipping container including design, testing, upgrading compliance program and shipping logistics

    International Nuclear Information System (INIS)

    Celovsky, A.; Lesco, R.; Gale, B.; Sypes, J.

    2003-01-01

    Ten years ago Atomic Energy of Canada developed a Type B(U)-85 shipping container for the global transport of highly radioactive materials. This paper reviews the development of the container, including a summary of the design requirements, a review of the selected materials and key design elements, and the results of the major qualification tests (drop testing, fire test, leak tightness testing, and shielding integrity tests). As a result of the testing, improvements to the structural, thermal and containment design were made. Such improvements, and reasons thereof, are noted. Also provided is a summary of the additional analysis work required to upgrade the package from a Type B(U) to a Type B(F), i.e. essentially upgrading the container to include fissile radioisotopes to the authorized radioactive contents list. Having a certified shipping container is only one aspect governing the global shipments of radioactive material. By necessity the shipment of radioactive material is a highly regulated environment. This paper also explores the experiences with other key aspects of radioactive shipments, including the service procedures used to maintain the container certification, the associated compliance program for radioactive material shipments, and the shipping logistics involved in the transport. (author)

  4. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher; Risko, Chad; Bredas, Jean-Luc

    2015-01-01

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π

  5. Fast three-material modeling with triple arch projection for electronic cleansing in CTC.

    Science.gov (United States)

    Lee, Hyunna; Lee, Jeongjin; Kim, Bohyoung; Kim, Se Hyung; Shin, Yeong-Gil

    2014-07-01

    In this paper, we propose a fast three-material modeling for electronic cleansing (EC) in computed tomographic colonography. Using a triple arch projection, our three-material modeling provides a very quick estimate of the three-material fractions to remove ridge-shaped artifacts at the T-junctions where air, soft-tissue (ST), and tagged residues (TRs) meet simultaneously. In our approach, colonic components including air, TR, the layer between air and TR, the layer between ST and TR (L(ST/TR)), and the T-junction are first segmented. Subsequently, the material fraction of ST for each voxel in L(ST/TR) and the T-junction is determined. Two-material fractions of the voxels in L(ST/TR) are derived based on a two-material transition model. On the other hand, three-material fractions of the voxels in the T-junction are estimated based on our fast three-material modeling with triple arch projection. Finally, the CT density value of each voxel is updated based on our fold-preserving reconstruction model. Experimental results using ten clinical datasets demonstrate that the proposed three-material modeling successfully removed the T-junction artifacts and clearly reconstructed the whole colon surface while preserving the submerged folds well. Furthermore, compared with the previous three-material transition model, the proposed three-material modeling resulted in about a five-fold increase in speed with the better preservation of submerged folds and the similar level of cleansing quality in T-junction regions.

  6. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  7. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Science.gov (United States)

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Successful application of Low Voltage Electron Microscopy to practical materials problems

    International Nuclear Information System (INIS)

    Bell, David C.; Mankin, Max; Day, Robert W.; Erdman, Natasha

    2014-01-01

    Low-voltage High-Resolution Electron Microscopy (LVHREM) has several advantages, including increased cross-sections for inelastic and elastic scattering, increased contrast per electron, decreased delocalization effects and reduced knock-on damage. Imaging at differing voltages has shown advantages for imaging materials that are knock-on damage sensitive. We show experimentally that different materials systems benefit from low voltage high-resolution microscopy. There are advantages for imaging single layer materials such as graphene at below the knock-on threshold; we present an example of imaging a graphene sheet at 40 kV. We have also examined mesoporous silica decorated with Pd nanoparticles and carbon black functionalized with Pd/Pt nanoparticles. In these cases we show that the lower voltage imaging maintains the structure of the surrounding matrix during imaging, whereas aberration correction provides the higher resolution for imaging the nanoparticle lattice. Perhaps surprisingly we show that zeolites damage preferentially by ionization effects (radiolysis). The current literature suggests that below incident energies of 40 kV the damage is mainly radiolitic, whereas at incident energies above 200 kV the knock-on damage and material sputtering will be the dominant effect. Our experimental observations support this conclusion and the effects we have observed at 40 kV are not indicative of knock-on damage. Other nanoscale materials such as thin silicon nanowires also benefit from lower voltage imaging. LVHREM imaging provides an excellent option to avoid beam damage to nanowires; our results suggest that LVHREM is suitable for nanowire-biological composites. Our experimental observations serve as a clear demonstration that even at 40 keV accelerating voltage, LVHREM can be used without inducing beam damage to locate dislocations and other crystalline defects, which may have adverse effects on nanowire device performance. Low voltage operation will likely

  9. Transmission/Scanning Transmission Electron Microscopy | Materials Science

    Science.gov (United States)

    crystallographic structure of a material. Amplitude-contrast images yield information about the chemistry and microstructure of a material and its defects. Phase-contrast imaging or high-resolution (HR) TEM imaging gives information about the microstructure of a material and its defects at an atomic resolution. With scanning

  10. Topological insulator materials and nanostructures for future electronics, spintronics and energy conversion

    International Nuclear Information System (INIS)

    Kantser, Valeriu

    2011-01-01

    Two fundamental electrons attributes in materials and nanostructures - charge and spin - determine their electronic properties. The processing of information in conventional electronic devices is based only on the charge of the electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors and insulators are the basic materials that constitute the components of electronic devices, and these have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals, magnetic semiconductors, dilute magnetic semiconductors and magnetic insulators are the materials that will form the basis for spintronic devices. Materials with topological band structure attributes and having a zero-energy band gap surface states are a special class of these materials that exhibit some fascinating and superior electronic properties compared to conventional materials allowing to combine both charge and spin functionalities. This article reviews a range of topological insulator materials and nanostructures with tunable surface states, focusing on nanolayered and nanowire like structures. These materials and nanostructures all have intriguing physical properties and numerous potential practical applications in spintronics, electronics, optics and sensors.

  11. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.

    Science.gov (United States)

    Lovley, Derek R

    2017-06-27

    The growing ubiquity of electronic devices is increasingly consuming substantial energy and rare resources for materials fabrication, as well as creating expansive volumes of toxic waste. This is not sustainable. Electronic biological materials (e-biologics) that are produced with microbes, or designed with microbial components as the guide for synthesis, are a potential green solution. Some e-biologics can be fabricated from renewable feedstocks with relatively low energy inputs, often while avoiding the harsh chemicals used for synthesizing more traditional electronic materials. Several are completely free of toxic components, can be readily recycled, and offer unique features not found in traditional electronic materials in terms of size, performance, and opportunities for diverse functionalization. An appropriate investment in the concerted multidisciplinary collaborative research required to identify and characterize e-biologics and to engineer materials and devices based on e-biologics could be rewarded with a new "green age" of sustainable electronic materials and devices. Copyright © 2017 Lovley.

  12. Computation of transverse muon-spin relaxation functions including trapping-detrapping reactions, with application to electron-irradiated tantalum

    International Nuclear Information System (INIS)

    Doering, K.P.; Aurenz, T.; Herlach, D.; Schaefer, H.E.; Arnold, K.P.; Jacobs, W.; Orth, H.; Haas, N.; Seeger, A.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1986-01-01

    A new technique for the economical evaluation of transverse muon spin relaxation functions in situations involving μ + trapping at and detrapping from crystal defects is applied to electron-irradiated Ta exhibiting relaxation maxima at about 35 K, 100 K, and 250 K. The long-range μ + diffusion is shown to be limted by traps over the entire temperature range investigated. The (static) relaxation rates for several possible configurations of trapped muons are discussed, including the effect of the simultaneous presence of a proton in a vacancy. (orig.)

  13. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    International Nuclear Information System (INIS)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-01-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance

  14. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  15. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2006-01-01

    This paper provides an introduction for non-experts to first-principles electronic structure methods that are widely used in condensed-matter physics. Particular emphasis is placed on giving the appropriate background information needed to better appreciate the use of these methods to study actinide and other materials. Specifically, I describe the underlying theory sufficiently to enable an understanding of the relative strengths and weaknesses of the methods. I also explain the meaning of commonly used terminology, including density functional theory (DFT), local density approximation (LDA), and generalized gradient approximation (GGA), as well as linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods. I also briefly discuss methodologies that extend the basic theory to address specific limitations. Finally, I describe a few illustrative applications, including quantum molecular dynamics (QMD) simulations and studies of surfaces, impurities, and defects. I conclude by addressing the current controversy regarding magnetic calculations for actinide materials

  16. Writing an Electronic Astronomy Book with Interactive Curricular Material

    Science.gov (United States)

    Thompson, Kristen L.; Belloni, Mario; Christian, Wolfgang

    2015-01-01

    With the rise of tablets, the past few years have seen an increase in the demand for quality electronic textbooks. Unfortunately, most of the current offerings do not exploit the accessibility and interactivity that electronic books can deliver. In this poster, we discuss how we are merging our curriculum development projects (Physlets, Easy Java/JavaScript Simulations, and Open Source Physics) with the EPUB electronic book format to develop an interactive textbook for use in a one-semester introductory astronomy course. The book, Astronomy: An Interactive Introduction, combines the narrative, equations, and images of a traditional astronomy text with new JavaScript simulations.

  17. Introduction to First-Principles Electronic Structure Methods: Application to Actinide Materials

    International Nuclear Information System (INIS)

    Klepeis, J E

    2005-01-01

    The purpose of this paper is to provide an introduction for non-experts to first-principles electronic structure methods that are widely used in the field of condensed-matter physics, including applications to actinide materials. The methods I describe are based on density functional theory (DFT) within the local density approximation (LDA) and the generalized gradient approximation (GGA). In addition to explaining the meaning of this terminology I also describe the underlying theory itself in some detail in order to enable a better understanding of the relative strengths and weaknesses of the methods. I briefly mention some particular numerical implementations of DFT, including the linear muffin-tin orbital (LMTO), linear augmented plane wave (LAPW), and pseudopotential methods, as well as general methodologies that go beyond DFT and specifically address some of the weaknesses of the theory. The last third of the paper is devoted to a few selected applications that illustrate the ideas discussed in the first two-thirds. In particular, I conclude by addressing the current controversy regarding magnetic DFT calculations for actinide materials. Throughout this paper particular emphasis is placed on providing the appropriate background to enable the non-expert to gain a better appreciation of the application of first-principles electronic structure methods to the study of actinide and other materials

  18. Dependence of electron inelastic mean free paths on electron energy and materials at low energy region, 1

    International Nuclear Information System (INIS)

    Tanuma, Shigeo; Powell, C.J.; Penn, D.R.

    1990-01-01

    We have proposed a general formula of electron inelastic mean free path (IMFP) to describe the calculated IMFPs over the 50-2000 eV energy range based on the Inokuti's modified Bethe formula for the inelastic scattering cross section. The IMFPs for 50-2000 eV electrons in 27 elements were calculated using Penn's algorithm. The IMFP dependence on electron energy in the range 50-200 eV varies considerably from material to material. These variations are associated with substantial differences in the electron energy-loss functions amongst the material. We also found that the modified Bethe formula by Inokuti could be fitted to the calculated IMFPs in the range 50-2000 eV within 3% relative error. (author)

  19. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    International Nuclear Information System (INIS)

    Chen, L.L.; Li, W.L.; Li, M.T.; Chu, B.

    2007-01-01

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m 2 at 8 V. At a luminance of 100 cd/m 2 , the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V oc ) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm 2 . And the short-circuit current (I sc ) of 92.5x10 -6 A/cm 2 , fill factor (FF) of 0.30 and power conversion efficiency (η e ) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices

  20. Bifunctional electroluminescent and photovoltaic devices using bathocuproine as electron-transporting material and an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, 130024 (China); Li, W.L. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)]. E-mail: wllioel@yahoo.com.cn; Li, M.T. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China); Graduate School of the Chinese Academy of Sciences, Beijing, 100039 (China); Chu, B. [Key Laboratory of the Excited States Process, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033 (China)

    2007-01-15

    Electroluminescence (EL) devices, using 4, 4',4''-tris (2-methylphenyl- phenylamino) triphenylamine (m-MTDATA) as hole-transporting material and bathocuproine (BCP) as an electron-transporting material, were fabricated, which emitted bright green light peaked at 520 nm instead of the emission of m-MTDATA or BCP. It was attributed to the exciplex formation and emission at the interface of m-MTDATA and BCP. EL performance was significantly enhanced by a thin mixed layer (5 nm) of m-MTDATA and BCP inserted between the two organic layers of the original m-MTDATA/BCP bilayer device. The trilayer device showed maximum luminance of 1,205 cd/m{sup 2} at 8 V. At a luminance of 100 cd/m{sup 2}, the power efficiency is 1.64 cd/A. Commission International De L'Eclairoge (CIE) color coordinates of the output spectrum of the devices at 8 V are x=0.244 and y=0.464. These devices also showed photovoltaic (PV) properties, which were sensitive to UV light. The PV diode exhibits high open-circuit voltage (V {sub oc}) of 2.10 V under illumination of 365 nm UV light with 2 mW/cm{sup 2}. And the short-circuit current (I {sub sc}) of 92.5x10{sup -6} A/cm{sup 2}, fill factor (FF) of 0.30 and power conversion efficiency ({eta} {sub e}) of 2.91% are respectively achieved. It is considered that strong exciplex emission in an EL device is a good indicator of efficient charge transfer at the organic interface, which is a basic requirement for good PV performance. Both the bilayer and trilayer devices showed EL and PV properties, suggesting their potential use as multifunction devices.

  1. Polymeric and Molecular Materials for Advanced Organic Electronics

    Science.gov (United States)

    2014-10-20

    we were able to substantially lower the HOMOs while preserving excellent TFT hole transport, and investigated their use in bulk- hetero - junction ...metal oxide semiconductors, which are prepared by a low-temperature “combustion synthesis” route invented at NU under AFOSR support and published...98) v Prescribed by ANSI Std. Z39.18 Introduction. CMOS, p/n- Junction Devices, and Flexible Electronics Flexible/printed electronics is a

  2. Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultipliers: A Review

    Directory of Open Access Journals (Sweden)

    Shu Xia Tao

    2016-12-01

    Full Text Available Secondary electron emission materials are reviewed with the aim of providing guidelines for the future development of novel transmission dynodes. Materials with reflection secondary electron yield higher than three and transmission secondary electron yield higher than one are tabulated for easy reference. Generations of transmission dynodes are listed in the order of the invention time with a special focus on the most recent atomic-layer-deposition synthesized transmission dynodes. Based on the knowledge gained from the survey of secondary election emission materials with high secondary electron yield, an outlook of possible improvements upon the state-of-the-art transmission dynodes is provided.

  3. Nuclear moments as a probe of electronic structure in material, exotic nuclear structure and fundamental symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Matsuta, K., E-mail: matsuta@vg.phys.sci.osaka-u.ac.jp; Minamisono, T.; Mihara, M.; Fukuda, M. [Osaka Univ., Dept. of Physics (Japan); Zhu, Shengyun [CIAE (China); Masuda, Y. [High Energy Accelerator Research Organization (KEK) (Japan); Hatanaka, K. [Osaka Univ., RCNP (Japan); Yuan Daqing; Zheng Yongnan; Zuo Yi; Fang Ping; Zhou Dongmei [CIAE (China); Ohtsubo, T. [Niigata Univ., Dept. of Physics (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Technology (Japan); Nishimura, D. [Tokyo Univ. of Science (Japan); Matsumiya, R. [Osaka Univ., RCNP (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M. [Nat. Inst. Radiological Sciences (Japan); Collaboration: Osaka-CIAE-NIRS-Niigata-Kochi-LBL Collaboration; and others

    2013-05-15

    We report our studies in various fields of Physics through nuclear moments utilizing the {beta}-NMR technique, including material sciences, nuclear structures and fundamental symmetries. Especially, we focus on the recent progress in the studies on the electronic structure in Pt through Knight shifts of various impurities, lattice locations of impurities, electric field gradients, the analysis of nuclear spin in terms of its components, anomaly in the spin expectation value for {sup 9}C-{sup 9}Li mirror pair, the G-parity conservation law, and the Ramsey resonance on UCN for future neutron EDM measurements.

  4. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management

    International Nuclear Information System (INIS)

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management

  5. Electron work function-a promising guiding parameter for material design.

    Science.gov (United States)

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  6. Electron Transfer in Donor-Bridge-Acceptor Systems and Derived Materials

    NARCIS (Netherlands)

    Oosterbaan, W.D.

    2002-01-01

    Some aspects of photoinduced electron transfer (ET) in (electron donor)-bridge-(electron acceptor) compounds (D-B-A) and derived materials are investigated. Aim I is to determine how and to which extent non-conjugated double bonds in an otherwise saturated hydrocarbon bridge affect the rate of

  7. Recent advances in the application of electron tomography to materials chemistry.

    Science.gov (United States)

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers

  8. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  9. "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future.

    Science.gov (United States)

    Irimia-Vladu, Mihai

    2014-01-21

    "Green" electronics represents not only a novel scientific term but also an emerging area of research aimed at identifying compounds of natural origin and establishing economically efficient routes for the production of synthetic materials that have applicability in environmentally safe (biodegradable) and/or biocompatible devices. The ultimate goal of this research is to create paths for the production of human- and environmentally friendly electronics in general and the integration of such electronic circuits with living tissue in particular. Researching into the emerging class of "green" electronics may help fulfill not only the original promise of organic electronics that is to deliver low-cost and energy efficient materials and devices but also achieve unimaginable functionalities for electronics, for example benign integration into life and environment. This Review will highlight recent research advancements in this emerging group of materials and their integration in unconventional organic electronic devices.

  10. Thermal interface material characterization for cryogenic electronic packaging solutions

    Science.gov (United States)

    Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.

    2017-12-01

    As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.

  11. Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials

    Science.gov (United States)

    Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.

    2016-09-01

    The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.

  12. Development of High-frequency Soft Magnetic Materials for Power Electronics

    Directory of Open Access Journals (Sweden)

    LIU Jun-chang

    2017-05-01

    Full Text Available The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

  13. A Study on the Thermal Neutron Filter for the Irradiation of Electronic Materials at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seong Woo; Kim, Sung Ryul; Park, Seung Jae; Shin, Yoon Taeg; Cho, Man Soon; Cho, Kee Nam [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The representative example is a technique of making the semiconductor with the transmutation using the pure Si. This NTD (Neutron Transmutation Doping) Si is used as a high-quality semiconductor because it has a uniform resistance. Likewise, the electronic materials are being investigated to improve the performance of material using the neutron irradiation method. The mechanism for reaction between the electronic materials and the neutrons depends on the energy of the neutron. Capturing reaction by thermal neutrons causes the transmutation and a lot of defects are made by fast neutrons. The study for the effect by such neutron energy is necessary to understand the performance improvement of the irradiated electronic materials. The thermal neutron filter was investigated to be used for the irradiation of electronic materials at HANARO. IP irradiation hole was selected and the irradiation device was designed. The analysis was conducted considering four candidate materials.

  14. Electron bombardment cross-linking of coating materials

    International Nuclear Information System (INIS)

    Mileo, J.-C.

    1976-01-01

    The use of medium-power electron accelerators to cure paints and varnishes and to make them insoluble is described by making a special analysis of the physico-chemical aspect of the process. The following points in particular are examined: the effect of radiation on matter; general aspects of radiochemical polymerization, and the application of radiation polymerization to varnish drying. A quick review is then made of problems linked to the choice of radiation and to the influence of the oxygen in air. An electron accelerator and a method of calorimetric dosimetery are described [fr

  15. Evaluation of Wet Digestion Methods for Quantification of Metal Content in Electronic Scrap Material

    Directory of Open Access Journals (Sweden)

    Subhabrata Das

    2017-11-01

    Full Text Available Recent advances in the electronics sector and the short life-span of electronic products have triggered an exponential increase in the generation of electronic waste (E-waste. Effective recycling of E-waste has thus become a serious solid waste management challenge. E-waste management technologies include pyrometallurgy, hydrometallurgy, and bioleaching. Determining the metal content of an E-waste sample is critical in evaluating the efficiency of a metal recovery method in E-waste recycling. However, E-waste is complex and of diverse origins. The lack of a standard digestion method for E-waste has resulted in difficulty in comparing the efficiencies of different metal recovery processes. In this study, several solid digestion protocols including American Society for Testing and Materials (ASTM-D6357-11, United States Environment Protection Agency Solid Waste (US EPA SW 846 Method 3050b, ultrasound-assisted, and microwave digestion methods were compared to determine the metal content (Ag, Al, Au, Cu, Fe, Ni, Pb, Pd, Sn, and Zn of electronic scrap materials (ESM obtained from two different sources. The highest metal recovery (mg/g of ESM was obtained using ASTM D6357-11 for most of the metals, which remained mainly bound to silicate fractions, while a microwave-assisted digestion protocol (MWD-2 was more effective in solubilizing Al, Pb, and Sn. The study highlights the need for a judicious selection of digestion protocol, and proposes steps for selecting an effective acid digestion method for ESM.

  16. Establishing and Advancing Electronic Nuclear Material Accounting Capabilities: A Canadian Perspective

    International Nuclear Information System (INIS)

    Sample, J.

    2015-01-01

    Under safeguards agreements that the Government of Canada has with the International Atomic Energy Agency (IAEA), and nuclear cooperation agreements with other states, the Canadian Nuclear Safety Commission (CNSC) is required to track the inventory and movement of all safeguarded material. As safeguards programmes evolve, including the implementation of Integrated Safeguards, the scope of the reporting requirements for facilities within Canada has also increased. At the same time, ensuring the secure transmission of the associated data continues to be an overarching factor. The changes that are occurring in the nuclear material accounting (NMA) landscape have necessitated a modernization of Canada's accounting and reporting system, with the objective of creating a more effective and efficient system, while at the same time maintaining the security of prescribed information. After a review of the environment, the CNSC embarked on a project that would encourage facilities to transition away from traditional modes of NMA reporting and adopt an electronic approach. This paper will discuss how the changes to Canada's NMA infrastructure were identified and implemented internally to allow for optimized electronic reporting. Improvements included the development of the regulatory and guidance documents, the overhaul of the reporting forms, the upgrade of the CNSC's NMA database, and the development of an electronic reporting platform that leveraged existing technologies. The paper will also discuss the logistics of engaging stakeholders throughout the process, launching the system and soliciting feedback for future system improvements. Special consideration will be given to the benefits realized by both the CNSC and facilities who have voluntarily embraced electronic reporting. The final objective of this paper will be to identify the challenges that were faced by the CNSC and the nuclear industry as the system changes were implemented and to highlight how

  17. Electron beam disruption simulation of first wall material

    International Nuclear Information System (INIS)

    Quataert, D.; Brossa, F.; Moretto, P.; Rigon, G.

    1984-01-01

    The destructive effect of plasma disruptions on first wall material and limiters has been predicted and models have been made to study their behaviour under intensive pulsed energy deposition. The results presented here give a full description of qualitative and semi-quantitative results obtained for several materials (Mo, stainless steel, Cu, Al, Inconel, etc.) under various experimental conditions. Examples are given of specific defects such as: evaporation, melting, void and crack formation and recrystallization of the underlying material. Methods for the evaluation of deposited energy and beam dimensions are also presented. (author)

  18. Electron beam accelerator at BARC-BRIT complex - electron beam processing of materials and industrial utilization

    International Nuclear Information System (INIS)

    Khader, S.A.; Patkari, R.K.; Sharma, K.S.S.

    2013-01-01

    During the last decade, the 2MeV/20kW electron beam (EB) accelerator located at BARC-BRIT complex, Vashi has been successfully utilised for non-thermal applications to develop speciality products useful for the industry. Polymer materials are exposed to high energy electrons to induce crosslinking and degradation reactions in a number of industrial products without the use of external chemicals and additives. Various EB crosslinked products viz. PE O-rings, automotive components, automobile tyres, electrical insulations, etc have been found to be much superior in quality compared to those produced conventionally. A process has been developed to enhance colours in the polished diamonds and gem stones using EB irradiation at the facility which has attracted much attention in the Indian diamond industry as a value-addition process. Recycling of polymer waste processed under EB to produce microfine PTFE powder, to reuse in automobile industry etc. has shown good potential for the industrial use. The process feasibility both in terms of economics and technology have been amply demonstrated on a technological scale by installing special conveyors at our facility for irradiating various industrial products. Around 100 km cable insulations, 1.5 million PE O-rings and more than 40000 carats of polished diamonds have been processed in our facility over a period of time on commercial scale. Encouraged with the results, Indian private entrepreneurs have set up dedicated EB machines in some of the most significant industries producing wire and cables, electrical gadgets based on polymer composites, automobile tyres and diamonds. The products are unique in properties and are in some cases, became import substitutes. The industry is now fully geared up to adapt the technology by realising the advantages viz ease in adaptability, convenient, safe and environmental-friendly nature. Encouraged by the process demonstrations, while five EB accelerators were setup and are in operation

  19. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan; Tang, Jiang; Kramer, Illan J.; Debnath, Ratan; Koleilat, Ghada I.; Wang, Xihua; Fisher, Armin; Li, Rui; Brzozowski, Lukasz; Levina, Larissa; Sargent, Edward H.

    2011-01-01

    -ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hybrid Van Der Waals Materials In Next-Generation Electronics

    Data.gov (United States)

    National Aeronautics and Space Administration — In nature, there exists a class of materials which are inherently two-dimensional (2D). Although they form solid 3D structures, the individual atoms have strong...

  1. Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles

    International Nuclear Information System (INIS)

    Zanardi, C.; Terzi, F.; Pigani, L.; Heras, A.; Colina, A.; Lopez-Palacios, J.; Seeber, R.

    2008-01-01

    Composite material consisting of poly(3,4-ethylenedioxythiophene) (PEDOT), including Au nanoparticles encapsulated by N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulphonate (SB12) is synthesised by constant-current method on ITO glass, in aqueous medium, leading to an electrode coating. The synthesis process is followed by UV-vis spectroelectrochemistry, both in normal-beam and in parallel-beam configurations. Under the same experimental conditions PEDOT is also synthesised by electropolymerisation only in the presence of LiClO 4 supporting electrolyte, as well in solutions also containing SB12. The data relative to the electrosynthesis of the three materials are compared. The composite material based on the conductive polymer matrix including Au nanoparticles has been characterised by SEM, TEM, ICP, Raman and UV-vis spectroscopies. The behaviour of the three different electrode coatings with respect to p-doping process has been studied by conventional electrochemical techniques and by potentiostatic and potentiodynamic UV-vis spectroelectrochemical methods. Conclusions are drawn out about the effect of the presence of the surfactant and of Au nanoparticles on the electrochemical properties of the electrode system

  2. Electron holography for the study of nanomagnetic materials

    DEFF Research Database (Denmark)

    Thomas, John Meurig; Simpson, Edward T.; Kasama, Takeshi

    2008-01-01

    provide important quantitative information, with nanometer-scale spatial resolution, pertaining to such materials’ magnetic properties. In this Account, with the aid of representative examples embracing solid-state chemistry, geochemistry, and bio-inorganic phenomena, we illustrate how off-axis electron...

  3. Evaluation on electrical resistivity of silicon materials after electron ...

    Indian Academy of Sciences (India)

    Administrator

    3Department of Physics, Balochistan University of Information Technology, Engineering and Management Sciences, ... 1 m3, an electron beam gun with an accelerating voltage of 30 kV ... interface formed in figure 1b–e, which is not exactly at.

  4. Exposure of space electronics and materials to ionizing radiation

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C

    1996-01-01

    Describes the methods and sources available for irradiation of space instruments developed at the Department of Automation. Methods for calculations and measurements of fluences and doses are also described. The sources are gamma-rays from iridium-192 and cobalt-60, 30 MeV protons, 10 MeV electrons...

  5. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  6. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  7. Loop-driven graphical unitary group approach to the electron correlation problem, including configuration interaction energy gradients

    International Nuclear Information System (INIS)

    Brooks, B.R.

    1979-09-01

    The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables

  8. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  9. Theoretical Studies on the Electronic Structures and Properties of Complex Ceramic Crystals and Novel Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2012-01-14

    This project is a continuation of a long program supported by the Office of Basic Energy Science in the Office of Science of DOE for many years. The final three-year continuation started on November 1, 2005 with additional 1 year extension to October 30, 2009. The project was then granted a two-year No Cost Extension which officially ended on October 30, 2011. This report covers the activities within this six year period with emphasis on the work completed within the last 3 years. A total of 44 papers with acknowledgement to this grant were published or submitted. The overall objectives of this project are as follows. These objectives have been evolved over the six year period: (1) To use the state-of-the-art computational methods to investigate the electronic structures of complex ceramics and other novel crystals. (2) To further investigate the defects, surfaces/interfaces and microstructures in complex materials using large scale modeling. (3) To extend the study on ceramic materials to more complex bioceramic crystals. (4) To initiate the study on soft condensed matters including water and biomolecules. (5) To focus on the spectroscopic studies of different materials especially on the ELNES and XANES spectral calculations and their applications related to experimental techniques. (6) To develop and refine computational methods to be effectively executed on DOE supercomputers. (7) To evaluate mechanical properties of different crystals and those containing defects and relate them to the fundamental electronic structures. (8) To promote and publicize the first-principles OLCAO method developed by the PI (under DOE support for many years) for applications to large complex material systems. (9) To train a new generation of graduate students and postdoctoral fellows in modern computational materials science and condensed matter physics. (10) To establish effective international and domestic collaborations with both experimentalists and theorists in materials

  10. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  11. Proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices

    International Nuclear Information System (INIS)

    Singh, R.; Messick, L.J.

    1989-01-01

    This book contains the proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices. Topics covered include: Growth and characterization of bulk and epitaxial films, Passivation technology, Processing technology, High speed optoelectronic integrated circuits, and Solar cells

  12. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L.

    1993-01-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity

  13. Application of phase change materials in thermal management of electronics

    International Nuclear Information System (INIS)

    Kandasamy, Ravi; Wang Xiangqi; Mujumdar, Arun S.

    2007-01-01

    Application of a novel PCM package for thermal management of portable electronic devices was investigated experimentally for effects of various parameters e.g. power input, orientation of package, and various melting/freezing times under cyclic steady conditions. Also, a two-dimensional numerical study was made and compared the experimental results. Results show that increased power inputs increase the melting rate, while orientation of the package to gravity has negligible effect on the thermal performance of the PCM package. The thermal resistance of the device and the power level applied to the PCM package are of critical importance for design of a passive thermal control system. Comparison with numerical results confirms that PCM-based design is an excellent candidate design for transient electronic cooling applications

  14. Electronic structure characterization and bandgap engineering of solar hydrogen materials

    International Nuclear Information System (INIS)

    Guo, Jinghua

    2007-01-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe 2 O 3 and ZnO

  15. The Structural Characterisation of Risk in the R&D Process of Functional Raw Materials for Electronic Devices

    OpenAIRE

    Chikamori, Yoji; Nasu, Seigo

    2017-01-01

    The electronic materials and electronics device industries remain important to Japan in spite of the general decline of the Japanese electronics industry. There is risk and uncertainty when developing functional materials in the electronics industry. However, studies examining the uncertainty and risk variables in the development of functional materials are scarce. This study examines incremental research and development (R&D) developed for raw functional materials for electronics. Our analys...

  16. Method for coating a resinous coating material. [electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, T; Fujioka, S; Mibae, J; Takahashi, M

    1968-07-13

    The strength, flexibility and durability of a vinyl chloride resin, acryl resin and the like are improved. This method of application comprises the steps of applying and thereafter radically curing a mixture composed of a polymer (II) having double bond(s) on its side chain and an ethylenic unsaturated monomer, said polymer (II) being obtained by the reaction between an unsaturated carboxylic acid or anhydride represented by the formula XCH = CHY (X = (CH/sub 2/)sub(n)COOH, where 0 <= n <= 2, Y = COOR/sub 1/ or R/sub 2/(R/sub 1/ and R/sub 2/ are hydrogen or an alkyl group having from 1 to 10 atoms of carbon)) and the acrylic copolymer (I), containing a hydroxyl group, obtained by copolymerization of 10 to 50% by weight of at least one selected from the group of beta-hydroxy alkyl acrylate, beta-hydroxy alkyl methacrylate, N-methylol acrylamide and N-methylol methacryl amide with at least one selected from the group of acrylic ester, methacrylic ester and stylene. The copolymer (I) can be obtained by the usual radical polymerization such as bulk polymerization, solution polymerization, suspension polymerization or the like. The polymer (II) is dissolved in the ethylenic unsaturated monomer and radically cured with radical polymerization catalysts or electron beams, etc. The energy range of the electron beams may be 0.1 to 3 MeV. Any type of electron accelerator may be used.

  17. Variations in erosive wear of metallic materials with temperature via the electron work function

    International Nuclear Information System (INIS)

    Huang, Xiaochen; Yu, Bin; Yan, X.G.; Li, D.Y.

    2016-01-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  18. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  19. Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects

    Science.gov (United States)

    Laux, S. E.; Kumar, A.; Fischetti, M. V.

    2004-05-01

    A two-dimensional device simulation program which self consistently solves the Schrödinger and Poisson equations with current flow is described in detail. Significant approximations adopted in this work are the absence of scattering and a simple six-valley, parabolic band structure for silicon. A modified version of the quantum transmitting boundary method is used to describe open boundary conditions permitting current flow in device solutions far from equilibrium. The continuous energy spectrum of the system is discretized by temporarily imposing two different forms of closed boundary conditions, resulting in energies which sample the density-of-states and establish the wave function normalization conditions. These standing wave solutions ("normal modes") are decomposed into their traveling wave constituents, each of which represents injection from only one of the open boundary contacts ("traveling eigencomponents"). These current-carrying states are occupied by a drifted Fermi distribution associated with their injecting contact and summed to form the electron density in the device. Holes are neglected in this calculation. The Poisson equation is solved on the same finite element computational mesh as the Schrödinger equation; devices of arbitrary geometry can be modeled. Computational performance of the program including characterization of a "Broyden+Newton" algorithm employed in the iteration for self consistency is described. Device results are presented for a narrow silicon resonant tunneling diode (RTD) and many variants of idealized silicon double-gate field effect transistors (DGFETs). The RTD results show two resonant conduction peaks, each of which demonstrates hysteresis. Three 7.5 nm channel length DGFET structures with identical intrinsic device configurations but differing access geometries (straight, taper and "dog bone") are studied and found to have differing current flows owing to quantum-mechanical reflection in their access regions

  20. Effect of ammonia and electron beam irradiation on lignocelulosic materials

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Gennari, S.M.; Castagnet, A.C.G.

    1986-01-01

    Reports on some of the effects produced on sugarcane bagasse and eucaliptus wood saccharification by combining irradiation and NH 3 treatment. The samples irradiated at 10 5 Gy, 2x10 5 Gy and 5x10 5 Gy with an electron accelerator were treated with anhydrous gaseous ammonia. Cellulase complex from T. reesei was used for hydrolysis assays. Bromatological analysis and 'in vitro' digestibility tests were performed. The combination of EBI and ammonia treatments produced and increase in the saccharification yield, 'in vitro' digestibility and protein content for the two kinds of sample. (Author) [pt

  1. Analysis of archaeological materials through Scanning electron microscopy

    International Nuclear Information System (INIS)

    Camacho, A.; Tenorio C, D.; Elizalde, S.; Mandujano, C.; Cassiano, G.

    2005-01-01

    With the purpose to know the uses and the chemical composition of some cultural objects in the pre hispanic epoch this work presents several types of analysis for identifying them by means of the Scanning electron microscopy and its techniques as the Functional analysis of artifacts based on the 'tracks of use' analysis, also the X-ray spectroscopy and the X-ray dispersive energy (EDS) are mentioned, all of them allowing a major approach to the pre hispanic culture in Mexico. (Author)

  2. On genealogy of defect electron states in semiconductor materials

    International Nuclear Information System (INIS)

    Makhmudov, A.Sh.

    1984-01-01

    Main factors of formation of defect electron structure in semiconductors are considered. It is concluded on the basis of analysis of papers published earlier that it is necessary to take account of two factors: long- and short-range orders i.e. the nature of the atom interaction with the several nearest neighbours as well as crystal periodicity, correctly formulated boundary conditions. One of possible wayes of the given task realization is the combination of a traditional scheme of the solid body theory- the Green function method and the semiempirical quantum-chemical method of equivalent orbitales

  3. Polymeric and Molecular Materials for Advanced Organic Electronics

    Science.gov (United States)

    2011-07-25

    C8H17) films on SiO2 exhibit electron mobilities in air > 0.2 cm 2 /Vs. Electrochemistry reveals reduction potentials ~ 0.0 V vs. S.C.E.; hence...enable low-voltage single-walled carbon nanotube and ZnO nanowire transistors, and can be integrated with GaAs JFETs (Fig. 9). Because of the very...large mobilities achieved in such devices (e ~ 3000 cm 2 V -1 s -1 for ZnO Figure 9. Top. Schematic representation of the TFT components of an

  4. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen; Jr., Carlos M. Torres,; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  5. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  6. PROCESS DEVELOPMENT FOR THE RECOVERY OF CRITICAL MATERIALS FROM ELECTRONIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lister, T. E.; Diaz, L. A.; Clark, G. G.; Keller, P.

    2016-09-01

    As electronic technology continues to evolve there is a growing need to develop processes which recover valuable material from antiquated technology. This need follows from the environmental challenges associated with the availability of raw materials and fast growing generation of electronic waste. Although just present in small quantities in electronic devices, the availability of raw materials, such as rare earths and precious metals, becomes critical for the production of high tech electronic devices and the development of green technologies (i.e. wind turbines, electric motors, and solar panels). Therefore, the proper recycling and processing of increasing volumes of electronic waste present an opportunity to stabilize the market of critical materials, reducing the demand of mined products, and providing a proper disposal and treatment of a hazardous waste stream. This paper will describe development and techno-economic assessment of a comprehensive process for the recovery of value and critical materials from electronic waste. This hydrometallurgical scheme aims to selectively recover different value segments in the materials streams (base metals, precious metals, and rare earths). The economic feasibility for the recovery of rare earths from electronic waste is mostly driven by the efficient recovery of precious metals, such as Au and Pd (ca. 80 % of the total recoverable value). Rare earth elements contained in magnets (speakers, vibrators and hard disk storage) can be recovered as a mixture of rare earths oxides which can later be reduced to the production of new magnets.

  7. Electronic structure characterization and bandgap engineeringofsolar hydrogen materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jinghua

    2007-11-01

    Bandgap, band edge positions as well as the overall band structure of semiconductors are of crucial importance in photoelectrochemical and photocatalytic applications. The energy position of the band edge level can be controlled by the electronegativity of the dopants, the pH of the solution (flatband potential variation of 60 mV per pH unit), as well as by quantum confinement effects. Accordingly, band edges and bandgap can be tailored to achieve specific electronic, optical or photocatalytic properties. Synchrotron radiation with photon energy at or below 1 keV is giving new insight into such areas as condensed matter physics and extreme ultraviolet optics technology. In the soft x-ray region, the question tends to be, what are the electrons doing as they migrated between the atoms. In this paper, I will present a number of soft x-ray spectroscopic study of nanostructured 3d metal compounds Fe{sub 2}O{sub 3} and ZnO.

  8. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  9. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.

    Science.gov (United States)

    Lefebvre, Jacques; Ding, Jianfu; Li, Zhao; Finnie, Paul; Lopinski, Gregory; Malenfant, Patrick R L

    2017-10-17

    Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of

  10. [Realistic theories of heavy electron and other strongly correlated materials

    International Nuclear Information System (INIS)

    1993-01-01

    Research on the following topics is summarized: non-perturbative treatments of multi-channel Kondo models, non-perturbative treatments of multi-band models for the quadrupolar fluctuation model of the cuprates, extension of the two-channel Kondo model to other materials and treatment of the infinite-dimensional Hubbard model within the Non-crossing approximation. Data on the specific heat of Y 0.8 U 0.2 Pd 3 and the c-axis susceptibility and specific heat of U in ThRu 2 Si are shown. 5 figs., 84 refs

  11. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...... in the application of ETEM to gas-phase catalysis over the past 10 years....

  12. Noncovalent Intermolecular Interactions in Organic Electronic Materials: Implications for the Molecular Packing vs Electronic Properties of Acenes

    KAUST Repository

    Sutton, Christopher

    2015-10-30

    Noncovalent intermolecular interactions, which can be tuned through the toolbox of synthetic chemistry, determine not only the molecular packing but also the resulting electronic, optical, and mechanical properties of materials derived from π-conjugated molecules, oligomers, and polymers. Here, we provide an overview of the theoretical underpinnings of noncovalent intermolecular interactions and briefly discuss the computational chemistry approaches used to understand the magnitude of these interactions. These methodologies are then exploited to illustrate how noncovalent intermolecular interactions impact important electronic properties-such as the electronic coupling between adjacent molecules, a key parameter for charge-carrier transport-through a comparison between the prototype organic semiconductor pentacene with a series of N-substituted heteropentacenes. Incorporating an understanding of these interactions into the design of organic semiconductors can assist in developing novel materials systems from this fascinating molecular class. © 2015 American Chemical Society.

  13. Plasma jet printing of electronic materials on flexible and nonconformal objects.

    Science.gov (United States)

    Gandhiraman, Ram P; Jayan, Vivek; Han, Jin-Woo; Chen, Bin; Koehne, Jessica E; Meyyappan, M

    2014-12-10

    We present a novel approach for the room-temperature fabrication of conductive traces and their subsequent site-selective dielectric encapsulation for use in flexible electronics. We have developed an aerosol-assisted atmospheric pressure plasma-based deposition process for efficiently depositing materials on flexible substrates. Silver nanowire conductive traces and silicon dioxide dielectric coatings for encapsulation were deposited using this approach as a demonstration. The paper substrate with silver nanowires exhibited a very low change in resistance upon 50 cycles of systematic deformation, exhibiting high mechanical flexibility. The applicability of this process to print conductive traces on nonconformal 3D objects was also demonstrated through deposition on a 3D-printed thermoplastic object, indicating the potential to combine plasma printing with 3D printing technology. The role of plasma here includes activation of the material present in the aerosol for deposition, increasing the deposition rate, and plasma polymerization in the case of inorganic coatings. The demonstration here establishes a low-cost, high-throughput, and facile process for printing electronic components on nonconventional platforms.

  14. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  15. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  16. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  17. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing

    2013-04-24

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice, the characteristic relaxation time of the lattice, both of which are infinitesimal compared with Tload, the characteristic loading period. The load-unload (L-U) method is used for one extreme, Telem << Tlattice, whereas the force-release (F-R) method is used for the other, Telem T lattice. For cases between the above two extremes, we develop a new algorithm by combining the L-U and the F-R trial displacement fields to construct the new trial field. As a result, our algorithm includes both L-U and F-R failure characteristics, which allows us to observe the influence of the ratio of Telem to Tlattice by adjusting their contributions in the trial displacement field. Therefore, the material dependence of the snap-back instabilities is implemented by introducing one snap-back parameter γ. Although in principle catastrophic failures can hardly be predicted accurately without knowing all microstructural information, effects of γ can be captured by numerical simulations conducted on samples with exactly the same microstructure but different γs. Such a same-specimen-based study shows how the lattice behaves along with the changing ratio of the L-U and F-R components. © 2013 The Author(s).

  18. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  19. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  20. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    Science.gov (United States)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  1. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  2. Investigation and optimisation of a plasma cathode electron beam gun for material processing applications

    OpenAIRE

    Del Pozo Rodriguez, Sofia

    2016-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University London. This thesis describes design, development and testing work on a plasma cathode electron beam gun as well as plasma diagnosis experiments and Electron Beam (EB) current measurements carried out with the aim of maximising the power of the EB extracted and optimising the electron beam gun system for material processing applications. The elements which influence EB gun design are described...

  3. Applications of transmission electron microscopy in the materials and mineral sciences

    International Nuclear Information System (INIS)

    Murr, L.E.

    1975-01-01

    Unique capabilities of transmission electron microscopy in characterizing the structure and properties of metals, minerals, and other crystaline materials are illustrated and compared with observations in the scanning electron and field-ion microscopes. Contrast mechanisms involving both mass-thickness and diffraction processes are illustrated, and examples presented of applications of bright and dark-field techiques. Applications of the electron microscope in the investigation of metallurgical and mineralogical problems are outlined with representative examples [pt

  4. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    Science.gov (United States)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This

  5. Basic mechanisms of radiation effects on electronic materials and devices

    International Nuclear Information System (INIS)

    Winokur, P.S.

    1989-01-01

    Many defense and nuclear reactor systems require complementary metal-oxide semiconductor integrated circuits that are tolerant to high levels of radiation. This radiation can result from space, hostile environments or nuclear reactor and accelerator beam environments. In addition, many techniques used to fabricate today's complex very-large-scale integration circuits expose the circuits to ionizing radiation during the process sequence. Whatever its origin, radiation can cause significant damage to integrated-circuit materials. This damage can lead to circuit performance degradation, logic upset, and even catastrophic circuit failure. This paper provides a brief overview of the basic mechanisms for radiation damage to silicon-based integrated circuits. Primary emphasis is on the effects of total-dose ionizing radiation on metal-oxide-semiconductor (MOS) structures

  6. Potential of Electronic Plastic Waste as a Source of Raw Material and Energy Recovery

    International Nuclear Information System (INIS)

    Norazli Othman; Nor Ezlin Ahmad Basri; Lariyah Mohd Sidek

    2009-01-01

    Nowadays, the production of electronic equipment is one of the fastest growing industrial activities in this world. The increase use of plastic in this sector resulted in an increase of electronic plastic waste. Basically, electronic plastic material contains various chemical elements which act as a flame retardant when electronic equipment is operated. In general, the concept of recycling electronic plastic waste should be considered in order to protect the environment. For this purpose, research has been conducted to different resins of electronic plastic waste to identify the potential of electronic plastic waste as a source of raw material and energy recovery. This study was divided into two part for example determination of physical and chemical characteristics of plastic resins and calculation of heating value for plastic resins based on Dulong formula. Results of this research show that the average calorific value of electronic waste is 30,872.42 kJ/ kg (7,375 kcal/ kg). The emission factor analysis showed that the concentration of emission value that might occur during waste management activities is below the standard set by the Environment Quality Act 1974. Basically, this research shows that electronic plastic waste has the potential to become the source of raw material and energy recovery. (author)

  7. Advanced electron microscopy of wide band-gap semiconductor materials

    International Nuclear Information System (INIS)

    Fay, M.W.

    2000-10-01

    The microstructure of GaN layers grown by metal organic vapour phase epitaxy on (0001) sapphire substrates using a novel precursor for deposition of AlN buffer layers has been investigated and compared to layers grown using low temperature GaN buffer layers and state-of-the-art material. It has been shown that the quality of layers grown using the novel precursor is comparable to the state-of-the-art material. TEM analysis has been performed of multiple quantum wells of InGaN grown within GaN epitaxial layers by metal organic vapour phase epitaxy. Elementally sensitive TEM techniques have been used to determine the spatial distribution of In and Ga within these structures. Fluctuations in In sensitive images are observed on the nm-scale. Clear evidence of segregation of In during layer growth has been seen. Models of the In segregation are in good agreement with experimental results. Elementally sensitive techniques have been used to investigate the elemental distributions in TiAl and NiAu contacts to GaN. Annealing of TiAl contacts has been seen to result in the formation of a thin interfacial Ti rich phase, and of N depletion at the surface of the GaN layer to the depth of tens of nm. Annealing NiAu contacts at 700 deg. C was seen to result in the formation of Ga-rich interfacial phases, of both crystalline and amorphous structure. ZnS and ZnCdS layers grown on (001) GaP supplied by the University of Hull have been investigated. ZnS layers were found to contain a high density of inclined stacking faults throughout the layer, originating from the interface with the substrate. Energy sensitive techniques have been used to investigate ZnCdS quantum well structures. The use of a ZnCdS superlattice structure around a ZnCdS quantum well to approximate a reduced barrier was seen to result in less thickness variations than when no barrier was used. (author)

  8. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    Science.gov (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  9. Radiation Damage Studies of Materials and Electronic Devices Using Hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Pellett, David; Baldwin, Andrew; Gallagher, Garratt; Olson, David; Styczinski, Marshall

    2014-05-14

    We have irradiated NdFeB permanent magnet samples from different manufacturers and with differing values of coercivity and remanence using stepped doses of 1 MeV equivalent neutrons up to a fluence of 0:64 1015n=cm2 to evaluate effects on magnetization and B field distributions. The samples with high coercivity, irradiated in open circuit configurations, showed no or minimal effects when compared with unirradiated samples, whereas the lower coercivity magnets suffered significant losses of magnetization and changes in the shapes of their field patterns. One such magnet underwent a fractional magnetization loss of 13.1% after a fluence of 0:59 1015 n=cm2. This demagnetization was not uniform. With increasing fluence, B field scans along the centerlines of the pole faces revealed that the normal component of B decreased more near the midpoint of the scan than near the ends. In addition, a fit to the curve of overall magnetization loss with fluence showed a significant deviation from linearity. The results are discussed in light of other measurements and theory. The high coercivity materials appear suitable for use in accelerator applications subject to irradiation by fast neutrons such as dipoles where the internal demagnetizing field is comparable to or less than that of the open circuit samples tested in this study.

  10. Topological insulators/superconductors: Potential future electronic materials

    International Nuclear Information System (INIS)

    Hor, Y. S.

    2014-01-01

    A new material called topological insulator has been discovered and becomes one of the fastest growing field in condensed matter physics. Topological insulator is a new quantum phase of matter which has Dirac-like conductivity on its surface, but bulk insulator through its interior. It is considered a challenging problem for the surface transport measurements because of dominant internal conductance due to imperfections of the existing crystals of topological insulators. By a proper method, the internal bulk conduction can be suppressed in a topological insulator, and permit the detection of the surface currents which is necessary for future fault-tolerant quantum computing applications. Doped topological insulators have depicted a large variety of bulk physical properties ranging from magnetic to superconducting behaviors. By chemical doping, a TI can change into a bulk superconductor. Nb x Bi 2 Se 3 is shown to be a superconductor with T c ∼ 3.2 K, which could be a potential candidate for a topological superconductor

  11. Proceedings, strongly correlated electronic materials: The Los Alamos symposium 1993

    International Nuclear Information System (INIS)

    Bedell, K.S.

    1994-01-01

    The subject included such topics as high temperature superconductors, heavy-fermion insulators and superconductors, the metal-insulator transition, the superconductor-insulator transition and unusual (non-Fermi liquid) normal metallic states. The symposium was structured around 13 invited review talks; with each talk, there were several (about 30) related short presentations and discussion sections (90 pages). The review talks and short papers were processed separately for the data base

  12. The essential role of vibronic interactions in electron pairing in the micro- and macroscopic sized materials

    International Nuclear Information System (INIS)

    Kato, Takashi

    2010-01-01

    Graphical abstract: The electron-phonon interactions destroy the electron pairs formed by Coulomb interactions, and at the same time, form the energy gap by which the electron pairs become stable. - Abstract: In order to discuss how the nondissipative delocalized diamagnetic currents in the microscopic sized materials are closely related to the conventional superconductivity in the macroscopic sized materials, the unified theory, by which various sized superconductivity can be explained, is suggested. It has been believed for a long time that the electron-phonon interactions play an essential role in the attractive electron-electron interactions, as described in the Bardeen-Cooper-Schrieffer (BCS) theory in the conventional superconductivity. However, it is suggested in this paper that the electron-phonon interactions do not play an essential role in the attractive electron-electron interactions but play an essential role in the forming of energy gap by which the electron pairs formed by the attractive Coulomb interactions in the conventional superconducting states become more stable than those in the normal metallic states at low temperatures.

  13. Photoemission electron microscopy for the study of ferromagnetic and antiferromagnetic materials

    International Nuclear Information System (INIS)

    Anders, Simone; Scholl, Andreas; Nolting, Frithjof; Padmore, Howard A.; Luening, Jan; Stoehr, Joachim; Scheinfein, Michael

    2000-01-01

    Photoemission electron microscopy (PEEM) is a full field imaging technique where x-ray exited electrons are used to form an image of the sample surface as a function of the x-ray photon energy and polarization. Contrast in PEEM can be due to a number of mechanisms including topographical, work function, elemental, chemical, polarization, x-ray magnetic circular and linear dichroism contrast. This wide range of contrast mechanisms together with the surface sensitivity and high spatial resolution make PEEM a very useful tool for the study of magnetic materials. PEEM-II is a new microscope installed at the bending magnet beamline 7.3.1.1 of the Advanced Light Source. In the present paper we describe the design and features of PEEM-II, and show results of our recent studies. Using PEEM and its elemental specificity, it is possible to investigate the various layers in magnetic multilayer structures independently. The experiments described here include the investigation of the switching behavior of magnetic multilayer structures that are of interest for magnetic RAM applications. The study of antiferromagnetic surfaces and thin films are of great importance for devices based on the effect of exchange bias. To date, studies at high-spatial-resolution of exchange bias systems has been difficult because of the lack of appropriate investigation methods. Here we demonstrate how PEEM has been used to image antiferromagnetic structure on surfaces with high spatial resolution

  14. Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics

    DEFF Research Database (Denmark)

    de Oteyza, Dimas G.; García Lastra, Juan Maria; Toma, Francesca M.

    2016-01-01

    , respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also...

  15. Spatiotemporal Observation of Electron-Impact Dynamics in Photovoltaic Materials Using 4D Electron Microscopy

    KAUST Repository

    Shaheen, Basamat; Sun, Jingya; Yang, Ding-Shyue; Mohammed, Omar F.

    2017-01-01

    information can be obtained using the one-of-a-kind methodology of scanning ultrafast electron microscopy (S-UEM). Here, we address the fundamental issue of how the thickness of the absorber layer may significantly affect the charge carrier dynamics

  16. Corrosion control of electronic materials; Denshi zairyo no fushoku seigyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y. [Hitachi Ltd., Tokyo (Japan). Mechanical Engineering Research Lab.

    1995-11-20

    Electronic materials are used in wide varieties of materials starting from hightech products like large computers, information network facilities and so forth, to vehicles, home electrical appliances, OA facilities, video game. Again, even though the part itself may be comparatively simple, high reliability is required when used in high degree system. Further, their uses irrespective to indoor or outdoor environments, are spread to wide range starting from the severe corrosive environments like coastal industrial area, drainage treatment place and so forth to low corrosive environments like general housing, offices and so forth. However, the classification of materials according to the environments where they are used is not so much carried out because preference is given to the function as an electronic part different to the large mechanical construction materials. In this report, regarding the corrosion control technology of electronic materials specially approach is made from material side, and among the various types of electronic materials, aluminium cable for LSI and magnetic materials are outlined. 37 refs., 10 figs., 2 tabs.

  17. Investigation of crafting polymerization of acrylic acid to cellulose materials under the action of accelerated electrons

    International Nuclear Information System (INIS)

    Valiev, A.; Bazhenov, L.G.; Asamov, M.K.; Sagatov, Eh.A.

    1996-01-01

    Crafting polymerization of acrylic acid (AA) to cellulose materials in the presence of copper, zinc and silver salts under the action of accelerated electrons has been investigated with the aim to attach anti microbe properties to these materials. (author). 2 refs., 1 tab

  18. Development of new materials from waste electrical and electronic equipment: Characterization and catalytic application.

    Science.gov (United States)

    Souza, J P; Freitas, P E; Almeida, L D; Rosmaninho, M G

    2017-07-01

    Wastes of electrical and electronic equipment (WEEE) represent an important environmental problem, since its composition includes heavy metals and organic compounds used as flame-retardants. Thermal treatments have been considered efficient processes on removal of these compounds, producing carbonaceous structures, which, together with the ceramic components of the WEEE (i.e. silica and alumina), works as support material for the metals. This mixture, associated with the metals present in WEEE, represents promising systems with potential for catalytic application. In this work, WEEE was thermally modified to generate materials that were extensively characterized. Raman spectrum for WEEE after thermal treatment showed two carbon associated bands. SEM images showed a metal nanoparticles distribution over a polymeric and ceramic support. After characterization, WEEE materials were applied in ethanol steam reforming reaction. The system obtained at higher temperature (800°C) exhibited the best activity, since it leads to high conversions (85%), hydrogen yield (30%) and H 2 /CO ratio (3,6) at 750°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Science.gov (United States)

    2010-04-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,045] Bayer Material Science... January 8th, 2010, applicable to workers of Bayer Material Science, LLC, formally known as Sheffield... polycarbonate film products. Information shows that Bayer Material Science, LLC was formally known as Sheffield...

  20. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  1. Dual-mode operation of 2D material-base hot electron transistors.

    Science.gov (United States)

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  2. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    Science.gov (United States)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  3. Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices

    Directory of Open Access Journals (Sweden)

    Shojan P. Pavunny

    2014-03-01

    Full Text Available A comprehensive study on the ternary dielectric, LaGdO3, synthesized and qualified in our laboratory as a novel high-k dielectric material for logic and memory device applications in terms of its excellent features that include a high linear dielectric constant (k of ~22 and a large energy bandgap of ~5.6 eV, resulting in sufficient electron and hole band offsets of ~2.57 eV and ~1.91 eV, respectively, on silicon, good thermal stability with Si and lower gate leakage current densities within the International Technology Roadmap for Semiconductors (ITRS specified limits at the sub-nanometer electrical functional thickness level, which are desirable for advanced complementary metal-oxide-semiconductor (CMOS, bipolar (Bi and BiCMOS chips applications, is presented in this review article.

  4. Investigation of Electron Transfer-Based Photonic and Electro-Optic Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, Jerry J; Abbott, Edwin H; Dickensheets, David; Donovan, Richard P; Hobbs, J D; Spangler, Lee; McGuirl, Michele A; Spangler, Charles; Rebane, Aleksander; Rosenburg, Edward; Schmidt, V H; Singel, David J

    2008-03-28

    Montana's state program began its sixth year in 2006. The project's research cluster focused on physical, chemical, and biological materials that exhibit unique electron-transfer properties. Our investigators have filed several patents and have also have established five spin-off businesses (3 MSU, 2 UM) and a research center (MT Tech). In addition, this project involved faculty and students at three campuses (MSU, UM, MT Tech) and has a number of under-represented students, including 10 women and 5 Native Americans. In 2006, there was an added emphasis on exporting seminars and speakers via the Internet from UM to Chief Dull Knife Community College, as well as work with the MT Department of Commerce to better educate our faculty regarding establishing small businesses, licensing and patent issues, and SBIR program opportunities.

  5. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  6. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Science.gov (United States)

    Maxa, Jacob; Novikov, Andrej; Nowottnick, Mathias

    2017-01-01

    Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  7. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications

    Directory of Open Access Journals (Sweden)

    Jacob Maxa

    2017-12-01

    Full Text Available Modern high power electronics devices consists of a large amount of integrated circuits for switching and supply applications. Beside the benefits, the technology exhibits the problem of an ever increasing power density. Nowadays, heat sinks that are directly mounted on a device, are used to reduce the on-chip temperature and dissipate the thermal energy to the environment. This paper presents a concept of a composite coating for electronic components on printed circuit boards or electronic assemblies that is able to buffer a certain amount of thermal energy, dissipated from a device. The idea is to suppress temperature peaks in electronic components during load peaks or electronic shorts, which otherwise could damage or destroy the device, by using a phase change material to buffer the thermal energy. The phase change material coating could be directly applied on the chip package or the PCB using different mechanical retaining jigs.

  8. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  9. First-Principles Calculations of Electronic, Optical, and Transport Properties of Materials for Energy Applications

    Science.gov (United States)

    Shi, Guangsha

    Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the

  10. Problems in the measurement of electron-dose distribution with film dosimeters inserted into solid materials

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Fukuda, Kyue; Tabata, Tatsuo; Okabe, Shigeru

    1981-01-01

    On the insertion of film dosimeters into solid materials, thin air gaps are formed. The influence of such gaps on measured profiles of depth-dose distributions was investigated for aluminum irradiated with collimated beams of 15-MeV electrons. Measurements were made by changing the gap width or the incidence angle of the electrons. The present results showed that streaming of incident electrons through the gaps resulted in the appearance of a peak and a minimum in a depth-dose curve measured. This effect was suppressed by the increase of the angle between the film and the electron-beam axis. (author)

  11. X-ray photoemission electron microscopy for the study of semiconductor materials

    International Nuclear Information System (INIS)

    Anders, Simone; Stammler, Thomas; Padmore, Howard A.; Terminello, Louis J.; Jankowski, Alan F.; Stoehr, Joachim; Diaz, Javier; Cossy-Favre, Aline; Singh, Sangeet

    1998-01-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments

  12. Material Science

    Energy Technology Data Exchange (ETDEWEB)

    Won, Dong Yeon; Kim, Heung

    1987-08-15

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  13. Material Science

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Heung

    1987-08-01

    This book introduces material science, which includes key of a high-tech industry, new materials of dream like new metal material and semiconductor, classification of materials, microstructure of materials and characteristic. It mentions magic new materials such as shape memory alloy, fine ceramics, engineering fine ceramics, electronic ceramics, engineering plastic, glass, silicone conductor, optical fiber mixed materials and integrated circuit, challenge for new material and development of new materials.

  14. David Adler Lectureship Award in the Field of Materials Physics Talk: Novel Nitride and Oxide Electronics

    Science.gov (United States)

    Pearton, Stephen

    2011-03-01

    Recent progress in development of GaN-based transistors for gas and bio-sensing applications and amorphous IGZO layers for use thin film transistors (TFTs)on flexible substrates, including paper,will be presented. For the detection of gases such as hydrogen, the gateless GaN transistors are typically coated with a catalyst metal such as Pd or Pt to increase the detection sensitivity at room temperature. Functionalizing the surface with oxides, polymers and nitrides is also useful in enhancing the detection sensitivity for gases and ionic solutions.The use of enzymes or adsorbed antibody layers on the semiconductor surface leads to highly specific detection of a broad range of antigens of interest in the medical and security fields. We give examples of recent work showing sensitive detection of glucose, lactic acid, prostate cancer and breast cancer markers and the integration of the sensors with wireless data transmission systems to achieve robust, portable sensors. The amorphous transparent conducting oxide InZnGaO4 (IGZO) is attracting attention because of its high electron mobility (10-50 cm2.V-1.sec-1), high transparency in the visible region of the spectrum and its ability to be deposited with a wide range of conductivities.This raises the possibility of making low-cost electronics on a very wide range of arbitrary surfaces, including paper and plastics. N-type oxides such as zinc oxide, zinc tin oxide, indium gallium oxide, and indium gallium zinc tin oxide (IGZO) exhibit surprisingly high carrier mobilities even for amorphous films deposited at 300K. This has been explained by the fact that the conduction in these materials is predominantly through non-directional s orbitals which are less affected by disorder than the directional sp3 orbitals which control electron transport in Si. Examples of progress and discussion of remaining obstacles to use of IGZO TFTs will be presented Work performed in collaboration with Fan Ren.

  15. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  16. Excitation and charge transfer in He/sup +/ + H collisions. A molecular approach including two-electron translation factors

    Energy Technology Data Exchange (ETDEWEB)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-06-01

    In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He/sup +/ + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes.

  17. Excitation and charge transfer in He+ + H collisions. A molecular approach including two-electron translation factors

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1983-01-01

    In a previous paper we have pointed out that the common-translation-factor (CTF) method is the only one which, at present, and within the framework of the molecular model of atomic collisions, can be shown to be both convergent and computationally fast, even for many-electron systems. In this Communication we check that this second statement is correct, presenting, for the first time, a molecular calculation involving two-electron translation factors, for He + + H collisions. A careful study of the sensitivity of the calculated cross sections to the choice of the CTF is performed, and conclusions on that sensitivity are drawn, for several types of processes

  18. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  19. Defect creation by swift heavy ions: materials modifications in the electronic stopping power regime

    International Nuclear Information System (INIS)

    Toulemonde, M.

    1994-01-01

    The material modifications by swift heavy ions in the electronic stopping power regime are puzzling question: How the energy deposited on the electrons can induced material modifications? In order to answer to this question, the modifications induced in non-radiolytic materials are described and compared to the predictions. In first part the main experimental observations is presented taking into account the irradiation parameters. Then it is shown that the initial phases of the material are very important. Amorphous materials, whatever it is a metal, a semiconductor or an insulator, are till now all sensitive to the high electronic excitation induced by the slowing down of a swift heavy ion. All oxide materials, insulators or conductors, are also sensitive even the MgO, one of most famous exceptions. Crystalline metals or semiconductors are intermediate cases: some are insensitive like Cu and Si respectively while Fe and GeS are sensitive. The main feature is the different values of the electronic stopping power threshold of material modifications. The evolution of the damage creation is described showing that the damage morphology seems to be the same whatever the material is amorphous or crystalline. In second part a try of interpretation of the experimental results will be done on the behalf of the two following models: The Coulomb spike and the thermal spike models. It will be shown that there is some agreement with limited predictions made in the framework of the Coulomb spike model. But it appears that the thermal spike model can account for most of the experimental data using only one free parameter: The electron-phonon strength which is a physical characteristic of the irradiated material. (author). 4 figs., 1 tab., 64 refs

  20. Interpretation and Regulation of Electronic Defects in IGZO TFTs Through Materials & Processes

    Science.gov (United States)

    Mudgal, Tarun

    The recent rise in the market for consumer electronics has fueled extensive research in the field of display. Thin-Film Transistors (TFTs) are used as active matrix switching devices for flat panel displays such as LCD and OLED. The following investigation involves an amorphous metal-oxide semiconductor that has the potential for improved performance over current technology, while maintaining high manufacturability. Indium-Gallium-Zinc-Oxide (IGZO) is a semiconductor material which is at the onset of commercialization. The low-temperature large-area deposition compatibility of IGZO makes it an attractive technology from a manufacturing standpoint, with an electron mobility that is 10 times higher than current amorphous silicon technology. The stability of IGZO TFTs continues to be a challenge due to the presence of defect states and problems associated with interface passivation. The goal of this dissertation is to further the understanding of the role of defect states in IGZO, and investigate materials and processes needed to regulate defects to the level at which the associated influence on device operation is controlled. The relationships between processes associated with IGZO TFT operation including IGZO sputter deposition, annealing conditions and back-channel passivation are established through process experimentation, materials analysis, electrical characterization, and modeling of electronic properties and transistor behavior. Each of these components has been essential in formulating and testing several hypotheses on the mechanisms involved, and directing efforts towards achieving the goal. Key accomplishments and quantified results are summarized as follows: • XPS analysis identified differences in oxygen vacancies in samples before and after oxidizing ambient annealing at 400 °C, showing a drop in relative integrated area of the O-1s peak from 32% to 19%, which experimentally translates to over a thousand fold decrease in the channel free electron

  1. 'Anomalous electron transport' with 'Giant Current Density' at room temperature observed with nanogranular materials

    International Nuclear Information System (INIS)

    Koops, Hans W.P.

    2013-01-01

    Focused electron beam induced deposition is a novel bottom up nano-structurization technology. An electron beam of high power density is used to generate nano- structures with dimensions > 20 nm, but being composed from amorphous or nanogranular materials with crystals of 2 to 5 nm diameter embedded in a Fullerene matrix. Those compounds are generated in general by secondary or low energy electrons in layers of inorganic, organic, organometallic compounds absorbed to the sample. Those are converted into nanogranular materials by the electron beam following chemical and physical laws, as given by 'Mother Nature'. Metals and amorphous mixtures of chemical compounds from metals are normal resistors, which can carry a current density J 2 . Nanogranular composites like Au/C or Pt/C with metal nanocrystals embedded in a Fullerene matrix have hopping conduction with 0-dimensional Eigen-value characteristics and show 'anomalous electron transport' and can carry 'Giant Current Densities' with values from > 1 MA/cm 2 to 0.1 GA/cm 2 without destruction of the materials. However the area connecting the nanogranular material with a metal with a 3-dimensional electron gas needs to be designed, that the flowing current is reduced to the current density values which the 3-D metal can support without segregation. The basis for a theoretical explanation of the phenomenon can be geometry quantization for Coulomb blockade, of electron surface orbitals around the nanocrystals, hopping conduction, and the limitation of the density of states for phonons in geometry confined non percolated granular materials with strong difference in mass and orientation. Several applications in electronics, signal generators, light sources, detectors, and solar energy harvesting are suggested. (author)

  2. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  4. Electronic properties of moire superlattice bands in layered two dimensional materials

    Science.gov (United States)

    Jung, Jeil

    2014-03-01

    When atomically thin two-dimensional materials are layered they often form incommensurate non-crystalline structures that exhibit long period moiré patterns when examined by scanning probes. In this talk, I will present a theoretical method which can be used to derive an effective Hamiltonian for these twisted van der Waals heterostructures using input from ab initio calculations performed on short-period crystalline structures. I will argue that the effective Hamiltonian can quantitatively describe the electronic properties of these layered systems for arbitrary twist angle and lattice constants. Applying this method to the important cases of graphene on graphene and graphene on hexagonal-boron nitride, I will present a series of experimentally observable quantities that can be extracted from their electronic structure, including their density of states and local density of states as a function of twist angle, and compare with available experiments. Work done in collaboration with Allan MacDonald, Shaffique Adam, Arnaud Raoux, Zhenhua Qiao, and Ashley DaSilva; and supported by the Singapore National Research Foundation Fellowship NRF-NRFF2012-01.

  5. Electronic Waste: DOD Is Recovering Materials, but Several Factors May Hinder Near-Term Expansion of These Efforts

    Science.gov (United States)

    2016-06-01

    non-ferrous metals include aluminum, copper , lead, zinc, and tin, as well as precious metals like gold and silver. 31DLA’s operations are funded...36The rates the recyclers are paying to buy DOD’s electronic waste are based on a percentage of the American Metal Market #1 copper and...after which lighter weight and combustible materials, such as plastic and paper, are removed by burning or flotation . The remaining solids are heated

  6. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    Science.gov (United States)

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  7. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    Science.gov (United States)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  8. An algorithm to include the bremsstrahlung component in the determination of the absorbed dose in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Klevenhagen, S C [The Royal London Hospital, London (United Kingdom). Medical Physics Dept.

    1996-08-01

    Currently used dosimetry protocols for absolute dose determination of electron beams from accelerators in radiation therapy do not account for the effect of the bremsstrahlung contamination of the beam. This results in slightly erroneous doses calculated from ionization chamber measurements. In this report the deviation is calculated and an improved algorithm, which accounts for the effect of the bremsstrahlung component of the beam, is suggested. (author). 14 refs, 2 figs, 1 tab.

  9. The use of different type of electron beam radiation equipment for biotechnological materials

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Oproiu, C.; Ferdes, M.

    1998-01-01

    The potential of using electron beam radiation and bremsstrahlung for some biotechnological materials treatment is presented based on the results of the R and D programme established in 1993 at the Institute of Lasers, Plasma and Radiation Physics Bucharest, Electron Accelerator Laboratory. The main parameters of different electron accelerator types used to process biotechnological materials are presented as these machines were designed, developed and improved. In order to fulfil the radiation processing requirements for biotechnology and environmental protection, betatron, linear and microtron-type electron accelerators are considered and there is an interest to develop a dedicated one as well. The results of irradiation of different biotechnological items as cell cultures, microbial strains, enzymes and biopreparates and cellulose-based wastes are presented

  10. Generalized empirical equation for the extrapolated range of electrons in elemental and compound materials

    International Nuclear Information System (INIS)

    Lima, W. de; Poli CR, D. de

    1999-01-01

    The extrapolated range R ex of electrons is useful for various purposes in research and in the application of electrons, for example, in polymer modification, electron energy determination and estimation of effects associated with deep penetration of electrons. A number of works have used empirical equations to express the extrapolated range for some elements. In this work a generalized empirical equation, very simple and accurate, in the energy region 0.3 keV - 50 MeV is proposed. The extrapolated range for elements, in organic or inorganic molecules and compound materials, can be well expressed as a function of the atomic number Z or two empirical parameters Zm for molecules and Zc for compound materials instead of Z. (author)

  11. Modification of indole by electron-rich atoms and their application in novel electron donor materials

    Science.gov (United States)

    Zhang, Maolin; Qin, Guangjiong; Liu, Jialei; Zhen, Zhen; Fedorchuk, A. A.; Lakshminarayana, G.; Albassam, A. A.; El-Naggar, A. M.; Ozga, Katarzyna; Kityk, I. V.

    2017-08-01

    Novel nonlinear optical (NLO) chromophore based on 6-(pyrrolidin-1-yl)-1H-indole as the electron donor group was designed and synthesized. The molecular structure of this chromophore was characterized by 1H NMR spectra, 13C NMR spectra, and MS spectra. The delocalized energy level was estimated by UV-Vis. spectra. The thermal property was studied by thermogravimetric analysis (TGA). The poled films containing chromophores ZML-1 with a loading density of 10 wt% in amorphous polycarbonate (APC) afford an average electro-optic (EO) coefficient (r33) of 19 pm/V at 1310 nm. Compared to the reported aniline-based chromophore (r33 = 12 pm/V) analogues, chromophore ZML-1 exhibits enhanced electro-optical activity.

  12. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    Directory of Open Access Journals (Sweden)

    David Schuller

    2018-04-01

    Full Text Available The current work demonstrates that electron backscatter diffraction (EBSD is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations 3°.

  13. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  14. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing; El Sayed, Tamer S.

    2013-01-01

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice

  15. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  16. Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-pairs including Metal and Polymer.

    Science.gov (United States)

    Xu, Aijie; Tian, Pengyi; Wen, Shizhu; Guo, Fei; Hu, Yueqiang; Jia, Wenpeng; Dong, Conglin; Tian, Yu

    2017-10-12

    The coefficient of friction (COF) between two materials is usually believed to be an intrinsic property of the materials themselves. In this study, metals of stainless steel (304) and brass (H62), and polymers of polypropylene (PP) and polytetrafluoroethylene (PTFE) were tested on a standard ball-on-three-plates test machine. Significantly different tribological behaviors were observed when fixed and moving materials of tribo-pairs (metal/polymer) were switched. As an example, under the same applied load and rotating speed, the COF (0.49) between a rotating PP ball and three fixed H62 plates was approximately 2.3 times higher than that between switched materials of tribo-pairs. Meanwhile, the COF between H62 and PTFE was relatively stable. The unexpected tribological behaviors were ascribed to the thermal and mechanical properties of tribo-pairs. Theoretical analysis revealed that the differences in the maximum local temperature between switching the fixed and moving materials of tribo-pairs were consistent with the differences in the tested COF. This result indicated the precise prediction of the COF of two materials is complexcity, and that thermal and mechanical properties should be properly considered in designing tribo-pairs, because these properties may significantly affect tribological performance.

  17. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  18. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  19. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  20. Inkjet printing metals on flexible materials for plastic and paper electronics

    DEFF Research Database (Denmark)

    Al-Shamery, K.; Raut, N. C.

    2018-01-01

    Inorganic printed electronics is now recognized as an area of tremendous commercial, potential and technical progress. Many research groups are actively involved worldwide in developing metal nanoparticle inks and precursors for printing inorganic/organic materials using different printing....... Besides some examples demonstrating aspects on ink formulation via patterning solid surfaces such as glass and silicon oxide, special emphasis will be placed on compatibility for usage in plastic and paper electronics. Printing of nanoparticles of copper, silver, gold etc. will be discussed...... and will be compared to printing of a variety of metal-organic precursor inks. Finally, a brief account on exemplary applications using the printed inorganic nanoparticles/materials is provided....

  1. Methods of organization of SCORM-compliant teaching materials in electronic format

    Directory of Open Access Journals (Sweden)

    Jacek Marciniak

    2012-06-01

    Full Text Available This paper presents a method of organizing electronic teaching materials based on their role in the teaching process rather than their technical structure. Our method allows SCORM materials stored as e-learning courses („electronic books” to be subdivided and structured so that content can be used in multiple contexts. As a standard, SCORM defines rules for organizing content, but not how to divide and structure it. Our method uses UCTS nomenclature to divide content, define relationships between content entities, and aggregate those entities into courses. This allows content to be shared in different implementations of SCORM while guaranteeing that usability and consistency are maintained.

  2. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  3. Variations in erosive wear of metallic materials with temperature via the electron work function

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaochen; Yu, Bin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Yan, X.G. [School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China); Li, D.Y., E-mail: dongyang.li@ualberta.ca [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi (China)

    2016-04-01

    Mechanical properties of metals are intrinsically determined by their electron behavior, which is largely reflected by the electron work function (EWF or φ). Since the work function varies with temperature, the dependence of material properties on temperature could be predicted via variations in work function with temperature. Combining a hardness – φ relationship and the dependence of work function on temperature, a temperature-dependent model for predicting solid-particle erosion is proposed. Erosive wear losses of copper, nickel, and carbon steel as sample materials were measured at different temperatures. Results of the tests are consistent with the theoretical prediction. This study demonstrates a promising parameter, electron work function, for looking into fundamental aspects of wear phenomena, which would also help develop alternative methodologies for material design. - Highlights: • Metallic materials' wear resistance is influenced by temperature. • Electron work function (EWF) intrinsically determines materials' wear resistance. • An EWF-based temperature-dependent solid-particle erosion model is proposed.

  4. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    International Nuclear Information System (INIS)

    Badot, Jean-Claude; Lestriez, Bernard; Dubrunfaut, Olivier

    2016-01-01

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li_2CO_3 on LiNiO_2 and carbon coating on LiFePO_4). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO_2 (ageing and degradation in air) and LiFePO_4 (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li_1_._1V_3O_8) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  5. A combined experimental and analytical approach for interface fracture parameters of dissimilar materials in electronic packages

    International Nuclear Information System (INIS)

    Kay, N.R.; Ghosh, S.; Guven, I.; Madenci, E.

    2006-01-01

    This study concerns the development of a combined experimental and analytical technique to determine the critical values of fracture parameters for interfaces between dissimilar materials in electronic packages. This technique utilizes specimens from post-production electronic packages. The mechanical testing is performed inside a scanning electron microscope while the measurements are achieved by means of digital image correlation. The measured displacements around the crack tip are used as the boundary conditions for the analytical model to compute the energy release rate. The critical energy release rate values obtained from post-production package specimens are obtained to be lower than those laboratory specimens

  6. Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics

    International Nuclear Information System (INIS)

    Patino, M I; Wirz, R E; Raitses, Y; Koel, B E

    2015-01-01

    A facility utilizing 4-grid optics for LEED/AES (low energy electron diffraction/Auger electron spectroscopy) was developed to measure the total secondary electron yield and secondary electron energy distribution function for conducting materials. The facility and experimental procedure were validated with measurements of 50–500 eV primary electrons impacting graphite. The total yield was calculated from measurements of the secondary electron current (i) from the sample and (ii) from the collection assembly, by biasing each surface. Secondary electron yield results from both methods agreed well with each other and were within the spread of previous results for the total yield from graphite. Additionally, measurements of the energy distribution function of secondary electrons from graphite are provided for a wider range of incident electron energies. These results can be used in modeling plasma-wall interactions in plasmas bounded by graphite walls, such as are found in plasma thrusters, and divertors and limiters of magnetic fusion devices. (paper)

  7. Use of spectrophotometric readout method for free radical dosimetry in radiation processing including low energy electrons and bremsstrahlung

    International Nuclear Information System (INIS)

    Gupta, B.L.

    2000-01-01

    Our laboratory maintains standards for high doses in India. The glutamine powder dosimeter (spectrophotometric readout) is used for this purpose. Present studies show that 20 mg of unirradiated/irradiated glutamine dissolved in freshly prepared 10 ml of aerated aqueous acidic FX solution containing 2 x 10 -3 mol dm -3 ferrous ammonium sulphate and 10 -4 mol dm -3 xylenol orange in 0.033 mol dm -3 sulphuric acid is suitable for the dosimetry in the dose range of 0.1-100 kGy. Normally no corrections are required for the post-irradiation fading of the irradiated glutamine. The response of glutamine dosimeter is independent of irradiation temperature in the range of about 23-30 deg. C and at other temperatures, a correction is necessary. The dose intercomparison results for photon, electron and bremsstrahlung radiations show that glutamine can be used as a reference standard dosimeter. The use of flat polyethylene bags containing glutamine powder has proved very successful for electron dosimetry of wide energies. Several other amino acids like alanine, valine and threonine can also be used to cover wide range of doses using spectrophotometric readout method. (author)

  8. Theoretical study of the low-lying electronic states of magnesium sulfide cation including spin-orbit interaction

    Science.gov (United States)

    Chen, Peng; Wang, Ning; Li, Song; Chen, Shan-Jun

    2017-11-01

    Highly correlated ab initio calculations have been performed for an accurate determination of electronic structures and spectroscopic features for the low-lying electronic states of the MgS+ cation. The potential energy curves for the four Λ-S states correlating to the lowest dissociation asymptote are studied for the first time. Four Λ-S states split into nine Ω states through the spin-orbit coupling effect. Accurate spectroscopic constants are deduced for all bound states. The spin-orbit couplings and the transition dipole moments, as well as the PECs, are utilized to calculate Franck-Condon factors and radiative lifetimes of the vibrational levels. To verify our computational accuracy, analogous calculations for the ground state of MgS are also carried out, and our derived results are in reasonable agreement with available experimental data. In addition, photoelectron spectrum of MgS has been simulated. The predictive results are anticipated to serve as guidelines for further researches such as assisting laboratorial detections and analyzing observed spectrum.

  9. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  10. Polynomial expressions of electron depth dose as a function of energy in various materials: application to thermoluminescence (TL) dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Deogracias, E.C.; Wood, J.L.; Wagner, E.C.; Kearfott, K.J

    1999-02-11

    The CEPXS/ONEDANT code package was used to produce a library of depth-dose profiles for monoenergetic electrons in various materials for energies ranging from 500 keV to 5 MeV in 10 keV increments. The various materials for which depth-dose functions were derived include: lithium fluoride (LiF), aluminium oxide (Al{sub 2}O{sub 3}), beryllium oxide (BeO), calcium sulfate (CaSO{sub 4}), calcium fluoride (CaF{sub 2}), lithium boron oxide (LiBO), soft tissue, lens of the eye, adiopose, muscle, skin, glass and water. All materials data sets were fit to five polynomials, each covering a different range of electron energies, using a least squares method. The resultant three dimensional, fifth-order polynomials give the dose as a function of depth and energy for the monoenergetic electrons in each material. The polynomials can be used to describe an energy spectrum by summing the doses at a given depth for each energy, weighted by the spectral intensity for that energy. An application of the polynomial is demonstrated by explaining the energy dependence of thermoluminescent detectors (TLDs) and illustrating the relationship between TLD signal and actual shallow dose due to beta particles.

  11. Extended automated separation techniques in destructive neutron activation analysis; application to various biological materials, including human tissues and blood

    International Nuclear Information System (INIS)

    Tjioe, P.S.; Goeij, J.J.M. de; Houtman, J.P.W.

    1976-09-01

    Neutron activation analysis may be performed as a multi-element and low-level technique for many important trace elements in biological materials, provided that post-irradiation chemical separations are applied. This paper describes a chemical separation consisting of automated procedures for destruction, distillation, and anion-chromatography. The system developed enables the determination of 14 trace elements in biological materials, viz. antimony, arsenic, bromine, cadmium, chromium, cobalt, copper, gold, iron, mercury, molybdenum, nickel, selenium, and zinc. The aspects of sample preparation, neutron irradiation, gamma-spectrum evaluation, and blank-value contribution are also discussed

  12. All-electron study of ultra-incompressible superhard material ReB2: structural and electronic properties

    International Nuclear Information System (INIS)

    Yan-Ling, Li; Guo-Hua, Zhong; Zhi, Zeng

    2009-01-01

    This paper investigates the structural and electronic properties of rhenium diboride by first-principles calculation based on density functional theory. The obtained results show that the calculated equilibrium structural parameters of ReB 2 are in excellent agreement with experimental values. The calculated bulk modulus is 361 GPa in comparison with that of the experiment. The compressibility of ReB 2 is lower than that of well-known OsB 2 . The anisotropy of the bulk modulus is confirmed by c/a ratio as a function of pressure curve and the bulk modulus along different axes along with the electron density distribution. The high bulk modulus is attributed to the strong covalent bond between Re-d and B-p orbitals and the wider pseudogap near the Fermi level, which could be deduced from both electron charge density distribution and density of states. The band structure and density of states of ReB 2 exhibit that this material presents metallic behavior. The good metallicity and ultra-incompressibility of ReB 2 might suggest its potential application as pressure-proof conductors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  14. Analysis of alternative transportation methods for radioactive materials shipments including the use of special trains for spent fuel and wastes

    International Nuclear Information System (INIS)

    Smith, D.R.; Luna, R.E.; Taylor, J.M.

    1978-01-01

    Two studies were completed which evaluate the environmental impact of radioactive material transport. The first was a generic study which evaluated all radioactive materials and all transportation modes; the second addressed spent fuel and fuel-cycle wastes shipped by truck, rail and barge. A portion of each of those studies dealing with the change in impact resulting from alternative shipping methods is presented in this paper. Alternatives evaluated in each study were mode shifts, operational constraints, and, in generic case, changes in material properties and package capabilities. Data for the analyses were obtained from a shipper survey and from projections of shipments that would occur in an equilibrium fuel cycle supporting one hundred 1000-MW(e) reactors. Population exposures were deduced from point source radiation formulae using separation distances derived for scenarios appropriate to each shipping mode and to each exposed population group. Fourteen alternatives were investigated for the generic impact case. All showed relatively minor changes in the overall radiological impact. Since the radioactive material transport is estimated to be fewer than 3 latent cancer fatalities (LCF) for each shipment year (compared to some 300,000 yearly cancer fatalities or 5000 LCF's calculated for background radiation using the same radiological effects model), a 15% decrease caused by shifting from passenger air to cargo air is a relatively small effect. Eleven alternatives were considered for the fuel cycle/special train study, but only one produced a reduction in total special train baseline LCF's (.047) that was larger than 5%

  15. Applications of advanced electron microscopy techniques to the studies of radiation effects in ceramic materials

    International Nuclear Information System (INIS)

    Wang, L.M.

    1998-01-01

    This paper summarizes some recent results from the application of several advanced transmission electron microscopy (TEM) techniques to the studies of radiation effects in insulators with the main focus on radiation-induced amorphization. These techniques include in situ TEM during ion-beam irradiation at cryogenic and elevated temperatures, cross-sectional TEM, high-resolution TEM, and image simulation on partially damaged materials, as well as digital TEM with image processing and analysis. The combination of these techniques may often provide very detailed information about the microstructure evolution during energetic particle irradiation, especially at the early stages, which is unobtainable with any other analytical methods. These techniques have been successfully applied to the analysis of a large group of ion-beam-irradiated ceramics, including quartz, silicon carbides, uranium oxide, apatite, spinel and other complex mineral phases. The advantages and limitations of each technique, as well as some important technical details for the analysis of radiation damage in ceramics are presented. (orig.)

  16. Estimation and analysis of the sensitivity of monoenergetic electron radiography of composite materials with fluctuating composition

    International Nuclear Information System (INIS)

    Rudenko, V.N.; Yunda, N.T.

    1978-01-01

    A sensitivity analysis of the electron defectoscopy method for composite materials with fluctuating composition has been carried out. Quantitative evaluations of the testing sensitivity depending on inspection conditions have been obtained, and calculations of the instrumental error are shown. Based on numerical calculations, a comparison of error has been carried out between high-energy electron and X-ray testings. It is shown that when testing composite materials with a surface density of up to 7-10 g/cm 2 , the advantage of the electron defectoscopy method as compared to the X-ray one is the higher sensitivity and lower instrumental error. The advantage of the electron defectoscopy method over the X-ray one as regards the sensitivity is greater when a light-atom component is predomenant in the composition. A monoenergetic electron beam from a betatron with an energy of up to 30 MeV should be used for testing materials with a surface density of up to 15 g/cm 2

  17. Numerical simulation of electron behavior and beam heating on a material surface

    International Nuclear Information System (INIS)

    Shioda, K.; Hashidate, Y.; Kumagai, M.

    1991-01-01

    A method of numerical analysis is investigated for the manufacturing processes employing electron beam heating, such as hardening, cutting, and welding. High-energy electrons (10 ∼ 50 keV) impinge upon the surface of a material and diffuse by multiple elastic/nonelastic scattering caused by atoms. Although the electron collisions with atomic nuclei can be treated approximately as elastic, collisions with orbital electrons of atoms are nonelastic. Fast electrons are decelerated in the course of atomic excitation or X-ray radiation, transferring their kinetic energy to the lattice system as thermal energy. In this paper, the difference between the heat-generating density and the electron density is clarified numerically, as well as the penetration depth and the reflection ratio of the electron beam. Calculated results for these quantities show good agreement with the referenced data. In addition, the difference between the penetration depth of the electrons and that of the heat, which has never been discussed in detail before, is clarified

  18. Computational Nanotechnology of Molecular Materials, Electronics, and Actuators with Carbon Nanotubes and Fullerenes

    Science.gov (United States)

    Srivastava, Deepak; Menon, Madhu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The role of computational nanotechnology in developing next generation of multifunctional materials, molecular scale electronic and computing devices, sensors, actuators, and machines is described through a brief review of enabling computational techniques and few recent examples derived from computer simulations of carbon nanotube based molecular nanotechnology.

  19. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R.L. [Duke Univ., Durham, NC (United States)

    1996-09-01

    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  20. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  1. The prospects for very high-power electron accelerators for processing bulk materials

    International Nuclear Information System (INIS)

    Cleland, M.R.; Thompson, C.C.; Malone, H.F.

    1977-01-01

    The recent growth in the industrial usage of ionizing radiation has been stimulated by the development of reliable, high-power, electron beam generators which operate in the beam power range of 10 to 100 kilowatts. This high output has reduced the costs of radiation processes to about 0.001 dollars per megarad-pound of product material. At this rate electron beam treatment is now less expensive than conventional methods for curing plastic and rubber products and sterilizing medical disposables. Future applications of electron beam radiation to bulk chemicals and waste materials will require even larger generators operating in the power range of 100 to 1000 kilowatts to handle greater material thruputs. Unit processing costs must be further reduced because of the lower intrinsic values of these materials. Fortunately, lower unit costs will follow the development of more powerful equipment because most of the cost factors do not increase in proportion to the output power. This is demonstrated by analyzing the downward trends in radiation processing costs as the machine voltage and the beam current are increased. The Dynamitron accelerator technology is reviewed to show that this could be one method of achieving the projected power levels. Several large-scale radiation processes are discussed to show that applications can be found for electron beam systems operating in the projected range. (author)

  2. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  3. Effect of interface of electronics devices constructed with different materials to X-ray

    International Nuclear Information System (INIS)

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  4. A QUANTITATIVE STUDY OF THE EVOLUTION OF GASES FROM ELECTRON TUBES AND MATERIALS.

    Science.gov (United States)

    A continuous quantitative and qualitative gas analysis system has been designed, built and calibrated. The system incorporates an omegatron mass...processing and materials parameters as they affect the kinds and quantities of gases evolved by electron tubes. CO2, CO, and H2 in roughly equal

  5. Electron-deficient anthraquinone derivatives as cathodic material for lithium ion batteries

    Science.gov (United States)

    Takeda, Takashi; Taniki, Ryosuke; Masuda, Asuna; Honma, Itaru; Akutagawa, Tomoyuki

    2016-10-01

    We studied the electronic and structural properties of electron-deficient anthraquinone (AQ) derivatives, Me4N4AQ and TCNAQ, and investigated their charge-discharge properties in lithium ion batteries along with those of AQ. Cyclic voltammogram, X-ray structure analysis and theoretical calculations revealed that these three acceptors have different features, such as different electron-accepting properties with different reduction processes and lithium coordination abilities, and different packing arrangements with different intermolecular interactions. These differences greatly affect the charge-discharge properties of lithium ion batteries that use these compounds as cathode materials. Among these compounds, Me4N4AQ showed a high charge/discharge voltage (2.9-2.5 V) with high cyclability (>65% of the theoretical capacity after 30 cycles; no decrease after 15 cycles). These results provide insight into more in-depth design principles for lithium ion batteries using AQ derivatives as cathodic materials.

  6. Molecule@MOF: A New Class of Opto-electronic Materials.

    Energy Technology Data Exchange (ETDEWEB)

    Talin, Albert Alec [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Reese E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spataru, Dan Catalin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leonard, Francois Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); He, Yuping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavila, Vitalie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hopkins, Patrick E. [Univ. of Virginia, Charlottesville, VA (United States)

    2017-09-01

    Metal organic frameworks (MOFs) are extended, nanoporous crystalline compounds consisting of metal ions interconnected by organic ligands. Their synthetic versatility suggest a disruptive class of opto - electronic materials with a high degree of electrical tunability and without the property - degrading disorder of organic conductors. In this project we determined the factors controlling charge and energy transport in MOFs and evaluated their potential for thermoelectric energy conversion. Two strategies for a chieving electronic conductivity in MOFs were explored: 1) using redox active 'guest' molecules introduced into the pores to dope the framework via charge - transfer coupling (Guest@MOF), 2) metal organic graphene analogs (MOGs) with dispersive band structur es arising from strong electronic overlap between the MOG metal ions and its coordinating linker groups. Inkjet deposition methods were developed to facilitate integration of the guest@MOF and MOG materials into practical devices.

  7. The use of electron beam for production of tough materials: The Italian experience

    International Nuclear Information System (INIS)

    Lavalle, M.

    2004-01-01

    The Institute for the Organic Synthesis and Photoreactivity (Bologna, Italy) of the National Research Council is involved in activities carried out together with other scientific institutions (Department of Chemical Engineering, Processing and Materials of the University of Palermo) and an aerospace and defense company (Proel Tecnologie, Firenze, Italy). The research activity is related to: - study of the electron beam curing process of resins in order to better understand the curing mechanism and the influences of the processing parameters, e.g. the electron pulse frequency, which is related to the delivered dose rate; and - study of the electron beam polymerization of MMA in the presence of rubber as an alternative and innovative way to produce tough materials as compared to conventional blending (both physical and chemical). The activity carried out with private companies is related to the irradiation of single items and prototypes to be used for mechanical testing and characterization or for particular applications. (author)

  8. Multi trace element analysis of dry biological materials by neutron activation analysis including a chemical group separation

    International Nuclear Information System (INIS)

    Weers, C.A.

    1980-01-01

    The principles of activation analysis and the practical aspects of neutron activation analysis are outlined. The limits which are set to accuracy and precision are defined. The description of the evaporation process is summarised in terms of the half-volume. This quantity is then used to define the resolving power. The formulation is checked by radiotracer experiments. Dried animal blood is used as the testing material. The pretreatment of the samples and (the development of) the destruction-evaporation apparatus is described. Four successive devices were built and tested. The development of the successive adsorption steps with active charcoal, Al 2 O 3 and coprecipitation with Fe(OH) 3 is presented. Seven groups of about 25 elements in total can be determined this way. The results obtained for standard reference materials are summarized and compared with literature data. (Auth.)

  9. When Construction Material Traders Goes Electronic: Analysis of SMEs in Malaysian Construction Industry

    OpenAIRE

    Dzul Fahmi Nordin; Rosmini Omar

    2012-01-01

    This paper analyzed the perception of e-commerce application services by construction material traders in Malaysia. Five attributes were tested: usability, reputation, trust, privacy and familiarity. Study methodology consists of survey questionnaire and statistical analysis that includes reliability analysis, factor analysis, ANOVA and regression analysis. The respondents were construction material traders, including hardware stores in Klang Valley, Kuala Lumpur. Find...

  10. Evaluation of the anti-inflammatory actions of various functional food materials including glucosamine on synovial cells.

    Science.gov (United States)

    Yamagishi, Yoshie; Someya, Akimasa; Imai, Kensuke; Nagao, Junji; Nagaoka, Isao

    2017-08-01

    The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).

  11. Transmission electron microscopy of nanostructures synthesized by laser and charged particle beam interaction with materials

    International Nuclear Information System (INIS)

    Dey, G. K.

    2011-01-01

    Transmission Electron Microscopy (TEM), because of its ability to image atomic arrangements directly and its ability to give spectroscopic information at similar resolution has emerged as a very powerful tool for understanding the structure of materials at atomic level. TEM has been particularly useful in resolving the interface structures in materials. This form of microscopy is very suitable for resolving the structure and defects in ultrafine microstructures such as those of the nanocrystalline phases. After a brief description of the different characterization abilities of the aberration corrected transmission electron microscope, this presentation describes the results of TEM investigations on nanocrystalline microstructures generated by laser materials interaction and due to interaction of electrons and ions with materials. Excimer laser has become an attractive choice for new and precision application for ablation and deposition in recent times. In this work, a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source has been used to deposit zirconia on Zr-base alloy in order to explore the ability of the thin oxide film to act as a diffusion barrier to hydrogen ingress into the alloy. It has been found that the variation in pressure by an order of three has resulted in maximum influence on the roughness of the laser deposited oxide film that has not been possible to achieve by other parameters within the range of the instrument. Present study has also indicated an interrelation among the roughness, adherence and the film-thickness, where the last one is indicated by the XPS study. Transmission electron microscopy was carried out to study the size, size distribution and defects in the deposited film. Nanocrystalline phases generated by interaction of electron and ion irradiation of Zr based alloys; Ni based alloys and Fe based alloys have been examined in detail by conventional and high resolution transmission electron microscopy. Results of

  12. Multivariate statistical analysis of electron energy-loss spectroscopy in anisotropic materials

    International Nuclear Information System (INIS)

    Hu Xuerang; Sun Yuekui; Yuan Jun

    2008-01-01

    Recently, an expression has been developed to take into account the complex dependence of the fine structure in core-level electron energy-loss spectroscopy (EELS) in anisotropic materials on specimen orientation and spectral collection conditions [Y. Sun, J. Yuan, Phys. Rev. B 71 (2005) 125109]. One application of this expression is the development of a phenomenological theory of magic-angle electron energy-loss spectroscopy (MAEELS), which can be used to extract the isotropically averaged spectral information for materials with arbitrary anisotropy. Here we use this expression to extract not only the isotropically averaged spectral information, but also the anisotropic spectral components, without the restriction of MAEELS. The application is based on a multivariate statistical analysis of core-level EELS for anisotropic materials. To demonstrate the applicability of this approach, we have conducted a study on a set of carbon K-edge spectra of multi-wall carbon nanotube (MWCNT) acquired with energy-loss spectroscopic profiling (ELSP) technique and successfully extracted both the averaged and dichroic spectral components of the wrapped graphite-like sheets. Our result shows that this can be a practical alternative to MAEELS for the study of electronic structure of anisotropic materials, in particular for those nanostructures made of layered materials

  13. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

    Directory of Open Access Journals (Sweden)

    Chao Guo

    2015-03-01

    Full Text Available Electron beam selective melting (EBSM is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

  14. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu Musheng; Xu Bo; Ouyang Chuying

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. (topical review)

  15. NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems

    CERN Document Server

    Scharnberg, Kurt

    2007-01-01

    The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. Both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices are reported here. The materials studied come in a variety of forms and shapes from bulk to epitaxial films, nano- and heterostructures down to those involving single molecules and double quantum dots. In some cases the structuring serves the study of bulk properties. More often it is the change of these properties with nanostructuring and the properties of different materials in close proximity with each other that are of key interest because of possible application of these materials or heterostructures to quantum computing and spintronics.

  16. Electronic structure, excitation properties, and chemical transformations of extreme ultra-violet resist materials

    Science.gov (United States)

    Rangan, Sylvie; Bartynski, Robert A.; Narasimhan, Amrit; Brainard, Robert L.

    2017-07-01

    The electronic structure of extreme ultra violet resist materials and of their individual components, two polymers and two photoacid generators (PAGs), is studied using a combination of x-ray and UV photoemission spectroscopies, electron energy loss spectroscopy, and ab-initio techniques. It is shown that simple molecular models can be used to understand the electronic structure of each sample and describe the experimental data. Additionally, effects directly relevant to the photochemical processes are observed: low energy loss processes are observed for the phenolic polymer containing samples that should favor thermalization of electrons; PAG segregation is measured at the surface of the resist films that could lead to surface inhomogeneities; both PAGs are found to be stable upon irradiation in the absence of the polymer, contrasting with a high reactivity that can be followed upon x-ray irradiation of the full resist.

  17. Electronic structure of YBa2Cu3O/sub 7-//sub δ/ including strong correlation effects

    International Nuclear Information System (INIS)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1989-01-01

    The occupied and unoccupied valence-band density of states of YBa 2 Cu 3 O/sub 7-//sub δ/ is determined considering a coherent potential which includes the Coulomb intrasite d-d correlation. The p states tend to be all occupied and, as a consequence, the most localized d states with the XZ symmetry tend to be unoccupied giving rise to an upper Hubbard band. This picture is in good agreement with the direct and inverse photoemission spectroscopies

  18. Innovative techniques for the production of energetic radicals for lunar materials processing including photogeneration via concentrated solar energy

    Science.gov (United States)

    Osborn, D. E.; Lynch, D. C.; Fozzolari, R.

    1991-01-01

    A technique for photo generation of radicals is discussed that can be used in the recovery of oxygen and metals from extraterrestrial resources. The concept behind this work was to examine methods whereby radicals can be generated and used in the processing of refractory materials. In that regard, the focus is on the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal and quantum energy. A number of experiments were conducted in the chlorination of metals with and without the aid of UV and near UV light. The results of some of those experiments are discussed.

  19. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  20. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    Science.gov (United States)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  1. Integrating Hazardous Materials Characterization and Assessment Tools to Guide Pollution Prevention in Electronic Products and Manufacturing

    Science.gov (United States)

    Lam, Carl

    Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative

  2. Analysis of soft magnetic materials by electron backscatter diffraction as a powerful tool

    Science.gov (United States)

    Schuller, David; Hohs, Dominic; Loeffler, Ralf; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard

    2018-04-01

    The current work demonstrates that electron backscatter diffraction (EBSD) is a powerful and versatile characterization technique for investigating soft magnetic materials. The properties of soft magnets, e.g., magnetic losses strongly depend on the materials chemical composition and microstructure, including grain size and shape, texture, degree of plastic deformation and elastic strain. In electrical sheet stacks for e-motor applications, the quality of the machined edges/surfaces of each individual sheet is of special interest. Using EBSD, the influence of the punching process on the microstructure at the cutting edge is quantitatively assessed by evaluating the crystallographic misorientation distribution of the deformed grains. Using an industrial punching process, the maximum affected deformation depth is determined to be 200 - 300 μm. In the case of laser cutting, the affected deformation depth is determined to be approximately zero. Reliability and detection limits of the developed EBSD approach are evaluated on non-affected sample regions and model samples containing different indentation test bodies. A second application case is the investigation of the recrystallization process during the annealing step of soft magnetic composites (SMC) toroids produced by powder metallurgy as a function of compaction pressure, annealing parameters and powder particle size. With increasing pressure and temperature, the recrystallized area fraction (e.g., grains with crystallographic misorientations particle boundaries or areas with existing plastic deformation. The progress of recrystallization is visualized as a function of time and of different particle to grain size distributions. Here, large particles with coarse internal grain structures show a favorable recrystallization behavior which results in large bulk permeability of up to 600 - 700 and lower amount of residual misorientations (>3°).

  3. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    Science.gov (United States)

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Phase analysis of nano-phase materials using selected area electron diffraction in the TEM

    International Nuclear Information System (INIS)

    Labar, J. L.

    2002-01-01

    In analogy to X-ray power diffraction (XRD), we are developing a method to help phase identification when examining a large number of grains simultaneously by electron diffraction. Although XRD is well established, it can not be used for small quantities of materials (volumes below 1 mm 3 ). Examining a usual TEM sample with thickness of 100 nm and using a selected area of 1 mm in diameter, the selected area electron diffraction pattern (SAED) carries information about several thousands of grains from a material with an average grain size of about 10 nm. The accuracy of XRD can not be attained by electron diffraction (ED). However, simultaneous visual observation of the nanostructure is an additional benefit of TEM (beside the small amount of needed material). The first step of the development project was the development of a computer program ('ProcessDiffraction') that processes digital versions of SAED patterns and presents them in an XRD-like form (intensity vs. scattering vector). In the present version (V2.0.3) phase identification is carried out by comparing the measured distribution to 'Markers', i.e. data of known phases. XRD data cards are used if the detailed structure of a phase is not known. Kinematic electron diffraction intensities are calculated for phases with known atomic positions (Author)

  5. Electronic thermal conductivity of 2-dimensional circular-pore metallic nanoporous materials

    International Nuclear Information System (INIS)

    Huang, Cong-Liang; Lin, Zi-Zhen; Luo, Dan-Chen; Huang, Zun

    2016-01-01

    The electronic thermal conductivity (ETC) of 2-dimensional circular-pore metallic nanoporous material (MNM) was studied here for its possible applications in thermal cloaks. A simulation method based on the free-electron-gas model was applied here without considering the quantum effects. For the MNM with circular nanopores, there is an appropriate nanopore size for thermal conductivity tuning, while a linear relationship exists for this size between the ETC and the porosity. The appropriate nanopore diameter size will be about one times that of the electron mean free path. The ETC difference along different directions would be less than 10%, which is valuable when estimating possible errors, because the nanoscale-material direction could not be controlled during its application. Like nanoparticles, the ETC increases with increasing pore size (diameter for nanoparticles) while the porosity was fixed, until the pore size reaches about four times that of electron mean free path, at which point the ETC plateaus. The specular coefficient on the surface will significantly impact the ETC, especially for a high-porosity MNM. The ETC can be decreased by 30% with a tuning specular coefficient. - Highlights: • For metallic nanoporous materials, there is an appropriate pore size for thermal conductivity tuning. • ETC increases with increasing pore size until pore size reaches about four times EMFP. • The ETC difference between different directions will be less than 10%. • The ETC can be decreased by 30% with tuning specular coefficient.

  6. DEVELOPING OF ELECTRONIC TEACHING MATERIAL BASED ON MOBILE LEARNING IN THE WAVE SUBJECTS

    Directory of Open Access Journals (Sweden)

    D. H. Rif’ati

    2015-07-01

    Full Text Available In the advanced and modern era, technological sophistication led to learning which initially runs, in which teachers and students meet each other and communicate in the classroom, can be implemented through of information technology. Along with the development of information, where books and teachers who initially as a primary source of learning, are now beginning to experience growth from the internet. Mobile learning defined as mobile devices that are used in the learning process. The wave course is one of subject that must be taken by students of physics education in the third semester. This course emphasizes the concepts of wave were reviewed mathematically and the phenomenon that occurs in everyday life. Mobile learning developed in this study in the form of electronic teaching materials on subjects of waves. The aim of this study was to develop electronic teaching material in the form of mobile learning. The sample of this study is 80 students in the third semester students who are taking waves courses. The results show that mobile learning that has been developed has score 3.8 and included valid criteria. Pada era yang serba maju dan modern, kecanggihan teknologi menyebabkan pembelajaran yang awalnya berjalan satu arah, dimana guru dan siswa saling bertemu dan berkomunikasi di dalam kelas, dapat dilaksanakan melalui bantuan teknologi.informasi. Seiring dengan perkembangan informasi, buku dan guru yang awalnya sebagai sumber belajar utama, saat ini sudah mulai mengalami perkembangan dimana sumber belajar yang berasal dari internet sudah mulai sering dimanfaatkan dalam proses pembelajaran. Mobile larning didefinisikan sebagai perangkat mobile yang dipergunakan dalam proses belajar mengajar. Mata kuliah gelombang sendiri merupakan salah satu mata kuliah yang wajib ditempuh oleh mahasiswa program studi pendidikan fisika semester 3. Mata kuliah ini menekankan pada konsep gelombang yang ditinjau secara matematis dan fenomenanya yang terjadi

  7. End of FY2014 Report - Filter Measurement System for Nuclear Material Storage Canisters (Including Altitude Correction for Filter Pressure Drop)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Kirk Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-24

    Two LANL FTS (Filter Test System ) devices for nuclear material storage canisters are fully operational. One is located in PF-4 ( i.e. the TA-55 FTS) while the other is located at the Radiation Protection Division’s Aerosol Engineering Facility ( i.e. the TA-3 FTS). The systems are functionally equivalent , with the TA-3 FTS being the test-bed for new additions and for resolving any issues found in the TA-55 FTS. There is currently one unresolved issue regarding the TA-55 FTS device. The canister lid clamp does not give a leak tight seal when testing the 1 QT (quart) or 2 QT SAVY lids. An adapter plate is being developed that will ensure a correct test configuration when the 1 or 2 QT SAVY lid s are being tested .

  8. Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Lillo; R.L. Williamson; T.R. Reed; C.B. Davis; D.M. Ginosar

    2005-09-01

    The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research.

  9. An electron beam induced current study of gallium nitride and diamond materials

    International Nuclear Information System (INIS)

    Cropper, A.D.; Moore, D.J.; Scott, C.S.; Green, R.

    1995-01-01

    The continual need for microelectronic devices that operate under severe electronic and environmental conditions (high temperature, high frequency, high power, and radiation tolerance) has sustained research in wide bandgap semiconductor materials. The properties suggest these wide-bandgap semiconductor materials have tremendous potential for military and commercial applications. High frequency bipolar transistors and field effect transistors, diodes, and short wavelength optical devices have been proposed using these materials. Although research efforts involving the study of transport properties in Gallium Nitride (GaN) and Diamond have made significant advances, much work is still needed to improve the material quality so that the electrophysical behavior of device structures can be further understood and exploited. Electron beam induced current (EBIC) measurements can provide a method of understanding the transport properties in Gallium Nitride (GaN) and Diamond. This technique basically consists of measuring the current or voltage transient response to the drift and diffusion of carriers created by a short-duration pulse of radiation. This method differs from other experimental techniques because it is based on a fast transient electron beam probe created from a high speed, laser pulsed photoemission system

  10. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    Science.gov (United States)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  11. An in-situ analytical scanning and transmission electron microscopy investigation of structure-property relationships in electronic materials

    Science.gov (United States)

    Wagner, Andrew James

    As electronic and mechanical devices are scaled downward in size and upward in complexity, macroscopic principles no longer apply. Synthesis of three-dimensionally confined structures exhibit quantum confinement effects allowing, for example, silicon nanoparticles to luminesce. The reduction in size of classically brittle materials reveals a ductile-to-brittle transition. Such a transition, attributed to a reduction in defects, increases elasticity. In the case of silicon, elastic deformation can improve electronic carrier mobility by over 50%, a vital attribute of modern integrated circuits. The scalability of such principles and the changing atomistic processes which contribute to them presents a vitally important field of research. Beginning with the direct observation of dislocations and lattice planes in the 1950s, the transmission electron microscope has been a powerful tool in materials science. More recently, as nanoscale technologies have proliferated modern life, their unique ability to spatially resolve nano- and atomic-scale structures has become a critical component of materials research and characterization. Signals produced by an incident beam of high-energy electrons enables researchers to both image and chemically analyze materials at the atomic scale. Coherently and elastically-scattered electrons can be collected to produce atomic-scale images of a crystalline sample. New specimen stages have enabled routine investigation of samples heated up to 1000 °C and cooled to liquid nitrogen temperatures. MEMS-based transducers allow for sub-nm scale mechanical testing and ultrathin membranes allow study of liquids and gases. Investigation of a myriad of previously "unseeable" processes can now be observed within the TEM, and sometimes something new is found within the old. High-temperature annealing of pure a Si:H films leads to crystallization of the film. Such films provide higher carrier mobility compared to amorphous films, offering improved

  12. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams

    International Nuclear Information System (INIS)

    Liu Lizhong; Prasad, Satish C.; Bassano, Daniel A.

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within ± 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (± 1.0% for solid water and ± 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs

  13. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    Science.gov (United States)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  14. Discussion on the interrelationship between structural, optical, electronic and elastic properties of materials

    International Nuclear Information System (INIS)

    Aly, Kamal A.

    2015-01-01

    Highlights: • The calculated values of bulk modulus in Reddy et al. [1] are now recalculated correctly. • Eq. (11) suggested by Reddy et al. [1] is not suitable to calculate the bulk modulus, B, for any element or material. • Eq. (12) in Ref. [1] is suitable to calculate, B, for all elements and materials except the underlined materials in Table 4. • All values of the electronic polarizability have been recalculated by different methods. • The bulk modulus, B, and microhardness parameter, H are different; Eq. (8) gives the relation between B and H. - Abstract: In reference Reddy et al. (2009) the correlations between energy gap, optical electronegativity and electronic polarizability for different materials have been studied. The authors of this paper (Reddy et al., 2009) aimed to make extinction or complete some previous works (Bahadur and Mishra, 2013; Reddy et al., 1999, 2000, 1998, 2005, 2008; Reddy and Nazeer Ahammed, 1996; Oshcherin, 1979; Neumann, 1983, 1987; Deus and Schneider; 1985; Deus et al., 1983; Kumar et al. 1992). However, this paper (Reddy et al., 2009) contains many fundamental errors in the calculation of bulk modulus, especially Tables 4–6. As a result, all the obtained values of the bulk modulus and consequently the electronic polarizability are incorrect. Moreover in Table 4 (Reddy et al., 2009), the bulk modulus of II−VI group semiconductors have been calculated by substituting the values of the band gap, E g , into Eq. (11) (B = 14.91 E g + 23.3). The obtained values of B using Eq. (11) are conflicted with that calculated values of B based on the electronegativity and the published previously data. Therefore Eq. (11) in reference Reddy et al. (2009) is not suitable for calculating the values of B for any element or materials. When I recalculated the values of B for all materials in Tables 1 and 4–6 in paper (Reddy et al., 2009) using Eq. (12), I found that, Eq. (12) gives acceptable values of B for all materials except the

  15. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon

    2018-01-01

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas. PMID:29364861

  16. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces

    Directory of Open Access Journals (Sweden)

    Robert Herbert

    2018-01-01

    Full Text Available Flexible hybrid electronics (FHE, designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  17. Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces.

    Science.gov (United States)

    Herbert, Robert; Kim, Jong-Hoon; Kim, Yun Soung; Lee, Hye Moon; Yeo, Woon-Hong

    2018-01-24

    Flexible hybrid electronics (FHE), designed in wearable and implantable configurations, have enormous applications in advanced healthcare, rapid disease diagnostics, and persistent human-machine interfaces. Soft, contoured geometries and time-dynamic deformation of the targeted tissues require high flexibility and stretchability of the integrated bioelectronics. Recent progress in developing and engineering soft materials has provided a unique opportunity to design various types of mechanically compliant and deformable systems. Here, we summarize the required properties of soft materials and their characteristics for configuring sensing and substrate components in wearable and implantable devices and systems. Details of functionality and sensitivity of the recently developed FHE are discussed with the application areas in medicine, healthcare, and machine interactions. This review concludes with a discussion on limitations of current materials, key requirements for next generation materials, and new application areas.

  18. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    Science.gov (United States)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  19. Four-electron transfer tandem tetracyanoquinodimethane for cathode-active material in lithium secondary battery

    Science.gov (United States)

    Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito

    2018-02-01

    Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.

  20. Evaluation of surgical implantation of electronic tags in European eel and effects of different suture materials

    DEFF Research Database (Denmark)

    Thorstad, Eva B.; Økland, Finn; Westerberg, Håkan

    2013-01-01

    Effects of implanting data-storage tags in European eel, Anguilla anguilla, and the suitability of different suture materials (braided permanent silk, permanent monofilament, absorbable and absorbable antibacterial) were examined. The tags consisted of an electronic unit and three floats on a wire....... Antibacterial treatment had no effect on inflammation or healing rates. After 6 months, the tag started to become expelled through the incision in five fish (12%). The internal reaction appeared stronger around the floats, suggesting that the coating material of the floats created a tissue reaction, which...

  1. Bio-Nano ECRIS: An electron cyclotron resonance ion source for new materials production

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Tanaka, K.; Asaji, T. [Tateyama Machine Co., Ltd., 30 Shimonoban, Toyama, Toyama 930-1305 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Ter 18/c (Hungary); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2010-02-15

    We developed an electron cyclotron resonance ion source (ECRIS) for new materials production on nanoscale. Our main target is the endohedral fullerenes, which have potential in medical care, biotechnology, and nanotechnology. In particular, iron-encapsulated fullerene can be applied as a contrast material for magnetic resonance imaging or microwave heat therapy. Thus, our new ECRIS is named the Bio-Nano ECRIS. In this article, the recent progress of the development of the Bio-Nano ECRIS is reported: (i) iron ion beam production using induction heating oven and (ii) optimization of singly charged C{sub 60} ion beam production.

  2. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Energy Technology Data Exchange (ETDEWEB)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the “stopping power” of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  3. Material discrimination using scattering and stopping of cosmic ray muons and electrons: Differentiating heavier from lighter metals as well as low-atomic weight materials

    Science.gov (United States)

    Blanpied, Gary; Kumar, Sankaran; Dorroh, Dustin; Morgan, Craig; Blanpied, Isabelle; Sossong, Michael; McKenney, Shawn; Nelson, Beth

    2015-06-01

    Reported is a new method to apply cosmic-ray tomography in a manner that can detect and characterize not only dense assemblages of heavy nuclei (like Special Nuclear Materials, SNM) but also assemblages of medium- and light-atomic-mass materials (such as metal parts, conventional explosives, and organic materials). Characterization may enable discrimination between permitted contents in commerce and contraband (explosives, illegal drugs, and the like). Our Multi-Mode Passive Detection System (MMPDS) relies primarily on the muon component of cosmic rays to interrogate Volumes of Interest (VOI). Muons, highly energetic and massive, pass essentially un-scattered through materials of light atomic mass and are only weakly scattered by conventional metals used in industry. Substantial scattering and absorption only occur when muons encounter sufficient thicknesses of heavy elements characteristic of lead and SNM. Electrons are appreciably scattered by light elements and stopped by sufficient thicknesses of materials containing medium-atomic-mass elements (mostly metals). Data include simulations based upon GEANT and measurements in the HMT (Half Muon Tracker) detector in Poway, CA and a package scanner in both Poway and Socorro NM. A key aspect of the present work is development of a useful parameter, designated the "stopping power" of a sample. The low-density regime, comprising organic materials up to aluminum, is characterized using very little scattering but a strong variation in stopping power. The medium-to-high density regime shows a larger variation in scattering than in stopping power. The detection of emitted gamma rays is another useful signature of some materials.

  4. Electron spin resonance and its application to heat treated carbonaceous materials

    International Nuclear Information System (INIS)

    Emmerich, Francisco Guilherme

    1993-01-01

    This work presents the basic characteristics of the electron spin resonance technique, also called paramagnetic resonance, being discussed its application to heat treated carbonaceous materials. In the low heat treatment temperature (HTT) range (below 700 deg C) the organic free radical are the predominant unpaired spin center, which play a key role in the process of carbonization and meso phase formation. At higher temperatures, it is possible to make correlations between the low H T T range and the high HTT range (above 130 deg C), where the predominant unpaired spin center are the free charge carriers (free electrons) of the graphite like crystallites of the material, which are formed by the carbonization process. (author)

  5. An electromechanical material testing system for in situ electron microscopy and applications.

    Science.gov (United States)

    Zhu, Yong; Espinosa, Horacio D

    2005-10-11

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.

  6. [Materiality Analysis of Health Plans Based on Stakeholder Engagement and the Issues Included at ISO 26000:2010].

    Science.gov (United States)

    Moyano Santiago, Miguel Angel; Rivera Lirio, Juana María

    2017-01-18

    Health plans of the Spanish autonomous communities can incorporate sustainable development criteria in its development. There have been no analysis or proposals about development and indicators. The goal is to add a contribution to help build better health plans aimed at sustainable development and help to manage economic, social and environmental impacts of health systems criteria. We used a variation of the RAND/UCLA or modified Delphi technique method. The process consisted of a bibliographical and context matters and issues related to health and social responsibility analysis based on ISO 26000: 2010. A survey by deliberately to a selection of 70 expert members of the identified stakeholders was carried out and a discussion group was held to determine the consensus on the issues addressed in the survey sample. The research was conducted in 2015. From the literature review 33 health issues included in ISO 26000:2010 were obtained. 7 survey proved relevant high consensus, 8 relevance and average consensus and 18 with less relevance and high level of dissent. The expert group excluded 4 of the 18 subjects with less consensus. 29 issues included 33 at work, divided into 7 subjects contained in the guide ISO 26000 of social responsibility, were relevant stakeholders regarding possible inclusion in health plans. Considering the direct relationship published by ISO (International Organization for Standardization) among the issues ISO 26000 and the economic, social and environmental indicators in GRI (Global Reporting Initiative) in its G4 version, a panel with monitoring indicators related to relevant issues were elaborated.

  7. Electronic, structural, and optical properties of host materials for inorganic phosphors

    International Nuclear Information System (INIS)

    Alemany, Pere; Moreira, Ibério de P.R.; Castillo, Rodrigo; Llanos, Jaime

    2012-01-01

    Highlights: ► We performed a first-principles DFT study of the electronic structures of several wide band gap insulators (La 2 O 3 , La 2 O 2 S, Y 2 O 3 Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) used as host materials for inorganic phosphors. ► The electronic, structural, and optical properties calculated for these compounds are in good agreement with the available experimental data. ► The electronic structure of the M 2 TeO 6 phases exhibits distinct features that could allow a fine tuning of the optical properties of luminescent materials obtained by doping with rare earth metals. - Abstract: A family of large gap insulators used as host materials for inorganic phosphors (La 2 O 3 , La 2 O 2 S, Y 2 O 3 , Y 2 O 2 S, La 2 TeO 6 , and Y 2 TeO 6 ) have been studied by first-principles DFT based calculations. We have determined electronic, structural, and optical properties for all these compounds both at the LDA and GGA levels obtaining, in general, a good agreement with available experimental data and previous theoretical studies. The electronic structure for the M 2 TeO 6 phases, addressed in this work for the first time, reveals some significant differences with respect to the other compounds, especially in the region of the lower conduction band, where the appearance of a group of four isolated oxygen/tellurium based bands below the main part of the La (Y) centered conduction band is predicted to lead to significant changes in the optical properties of the two tellurium containing compounds with respect to the rest of compounds in the series.

  8. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Alloyeau, D., E-mail: alloyeau.damien@gmail.com [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Hsieh, W.K. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States); Anderson, E.H.; Hilken, L. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States); Benner, G. [Carl Zeiss NTS GmbH, Oberkochen 73447 (Germany); Meng, X. [Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720-1770 (United States); Chen, F.R. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan (China); Kisielowski, C. [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS/72, Berkeley, CA 94720 (United States)

    2010-04-15

    Using two levels of electron beam lithography, vapor phase deposition techniques, and FIB etching, we have fabricated an electrostatic Boersch phase plate for contrast enhancement of weak phase objects in a transmission electron microscope. The phase plate has suitable dimensions for the imaging of small biological samples without compromising the high-resolution capabilities of the microscope. A micro-structured electrode allows for phase tuning of the unscattered electron beam, which enables the recording of contrast enhanced in-focus images and in-line holograms. We have demonstrated experimentally that our phase plate improves the contrast of carbon nanotubes while maintaining high-resolution imaging performance, which is demonstrated for the case of an AlGaAs heterostructure. The development opens a new way to study interfaces between soft and hard materials.

  9. The role of ab initio electronic structure calculations in studies of the strength of materials

    International Nuclear Information System (INIS)

    Sob, M.; Friak, M.; Legut, D.; Fiala, J.; Vitek, V.

    2004-01-01

    In this paper we give an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical tensile strength in metals and intermetallics. First, we review previous as well as ongoing research on this subject. We then describe briefly the electronic structure calculational methods and simulation of the tensile test. This approach is then illustrated by calculations of theoretical tensile strength in iron and in the intermetallic compound Ni 3 Al. The anisotropy of calculated tensile strength is explained in terms of higher-symmetry structures encountered along the deformation paths studied. The table summarizing values of theoretical tensile strengths calculated up to now is presented and the role of ab initio electronic structure calculations in contemporary studies of the strength of material is discussed

  10. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Teruo, E-mail: t.hashimoto@manchester.ac.uk; Thompson, George E.; Zhou, Xiaorong; Withers, Philip J.

    2016-04-15

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. - Highlights: • The roughness of the ultramicrotomed block face of AA2024 in Al area was 1.2 nm. • Surface texture associated with chattering was evident in grains with 45° diamond knife. • A 76° rake angle minimises the stress on the block face. • Using the oscillating knife with a cutting speed of 0.04 mms{sup −1} minimised the surface texture. • A variety of material applications were presented.

  11. Materials and optimized designs for human-machine interfaces via epidermal electronics.

    Science.gov (United States)

    Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A

    2013-12-17

    Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electron-energy-loss spectral library and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Zaluzec, N.J.

    1983-09-01

    An electron energy loss spectral library can be an invaluable tool in materials research from a fundamental as well as a practical standpoint. Although it will not alleviate all the complications associated with quantification, this type of library can help to elucidate details of spectral profiles previously found intractable. This work was supported by the US Department of Energy. The author also wishes to express his gratitude to the organizing committee for partial financial support provided to attend this meeting.

  13. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  14. Characterisation of β-tricalcium phosphate-based bone substitute materials by electron paramagnetic resonance spectroscopy

    Science.gov (United States)

    Matković, Ivo; Maltar-Strmečki, Nadica; Babić-Ivančić, Vesna; Dutour Sikirić, Maja; Noethig-Laslo, Vesna

    2012-10-01

    β-TCP based materials are frequently used as dental implants. Due to their resorption in the body and direct contact with tissues, in order to inactivate bacteria, fungal spores and viruses, they are usually sterilized by γ-irradiation. However, the current literature provides little information about effects of the γ-irradiation on the formation and stability of the free radicals in the bone graft materials during and after sterilization procedure. In this work five different bone graft substitution materials, composed of synthetic beta tricalcium phosphate (β-TCP) and hydroxyapatite (HAP) present in the market were characterized by electron paramagnetic resonance (EPR) spectroscopy, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Paramagnetic species Mn2+, Fe3+, trapped H-atoms and CO2- radicals were detected in the biphasic material (60% HAP, 40% β-TCP), while in β-TCP materials only Mn2+ andor trapped hydrogen atoms were detected. EPR analysis revealed the details of the structure of these materials at the atomic level. The results have shown that EPR spectroscopy is a method which can be used to improve the quality control of bone graft materials after syntering, processing and sterilization procedure.

  15. Investigation of positron moderator materials for electron-linac-based slow positron beamlines

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki; Uedono, Akira

    1998-01-01

    Positron re-emission properties were studied on moderator materials in order to improve the positron moderation system of electron-linac-based intense slow positron beamlines. The re-emitted positron fraction was measured on tungsten, SiC, GaN, SrTiO 3 , and hydrogen-terminated Si with a variable-energy pulsed positron beam. The results suggested that tungsten is the best material for the primary moderator of the positron beamlines while epitaxially grown n-type 6H-SiC is the best material for the secondary moderator. Defect characterization by monoenergetic positron beams and surface characterization by Auger electron spectroscopy were carried out to clarify the mechanism of tungsten moderator degradation induced by high-energy electron irradiation. The characterization experiments revealed that the degradation is due to both radiation-induced vacancy clusters and surface carbon impurities. For the restoration of degraded tungsten moderators, oxygen treatment at ∼900degC is effective. Furthermore, it was found that oxygen at the tungsten surface inhibits positronium formation; as a result, it can increase the positron re-emission fraction. (author)

  16. Material dependence of electron inelastic mean free paths at low energies

    International Nuclear Information System (INIS)

    Tanuma, S.; Powell, C.J.; Penn, D.R.

    1990-01-01

    We present and discuss electron inelastic mean free path (IMFP) data for aluminum and gold in the 50--200 eV range. These elements serve as examples of IMFP calculations that have been made for 50--2000 eV electrons in 31 materials (27 elements and 4 compounds). Substantial differences are found in the shapes of the IMFP versus energy curves for Al and Au and these can be understood in terms of the different inelastic scattering mechanisms in the two metals. The minimum IMFP value occurs at 40 eV in aluminum and at 120 eV in gold, a result which is consistent with the trends expected from free-electron IMFP calculations. This result differs, however, from that expected from the Seah and Dench attenuation length formula which shows essentially no material dependence at low energies. We have extended a general formula derived earlier to describe the calculated IMFPs over the 200--2000 eV energy range to give the IMFP dependences on material and energy from 50 to 2000 eV

  17. [Theoretical studies of dynamics and correlations in heavy electron materials:]: Progress report, August 15, 1987-August 15, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    This paper discusses progress in heavy electron research and high temperature superconductivity research. Particular topics discussed are: quadrupolar Kondo effect; coherence in the Anderson Lattice; Hall effect in heavy electron systems, suppression of supeconductivity by disorder in strongly correlated electronic materials; and charge transfer mechanisms for high temperature superconductivity

  18. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    Science.gov (United States)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  19. Critical assessment of the performance of electronic moisture analyzers for small amounts of environmental samples and biological reference materials.

    Science.gov (United States)

    Krachler, M

    2001-12-01

    Two electronic moisture analyzers were critically evaluated with regard to their suitability for determining moisture in small amounts (environmental matrices such as leaves, needles, soil, peat, sediments, and sewage sludge, as well as various biological reference materials. To this end, several homogeneous bulk materials were prepared which were subsequently employed for the development and optimization of all analytical procedures. The key features of the moisture analyzers included a halogen or ceramic heater and an integrated balance with a resolution of 0.1 mg, which is an essential prerequisite for obtaining precise results. Oven drying of the bulk materials in a conventional oven at 105 degrees C until constant mass served as reference method. A heating temperature of 65degrees C was found to provide accurate and precise results for almost all matrices investigated. To further improve the accuracy and precision, other critical parameters such as handling of sample pans, standby temperature, and measurement delay were optimized. Because of its ponderous heating behavior, the performance of the ceramic radiator was inferior to that of the halogen heater, which produced moisture results comparable to those obtained by oven drying. The developed drying procedures were successfully applied to the fast moisture analysis (1.4-6.3 min) of certified biological reference materials of similar provenance to the investigated the bulk materials. Moisture results for 200 mg aliquots ranged from 1.4 to 7.8% and good agreement was obtained between the recommended drying procedure for the reference materials and the electronic moisture analyzers with absolute uncertainties amounting to 0.1% and 0.2-0.3%, respectively.

  20. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    Science.gov (United States)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.