WorldWideScience

Sample records for include diffusion dissolution

  1. Performance characteristics of UV imaging instrumentation for diffusion, dissolution and release testing studies

    DEFF Research Database (Denmark)

    Jensen, Sabrine S; Jensen, Henrik; Goodall, David M

    2016-01-01

    UV imaging is capable of providing spatially and temporally resolved absorbance measurements, which is highly beneficial in drug diffusion, dissolution and release testing studies. For optimal planning and design of experiments, knowledge about the capabilities and limitations of the imaging syst...

  2. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures

    Science.gov (United States)

    Brahma, Priti P.; Harmon, Thomas C.

    2003-12-01

    This paper investigates the dissolution characteristics of ternary nonaqueous phase liquid (NAPL) mixtures with the goal of comparing the relative contributions of multicomponent (intra-NAPL) diffusion, film transfer and thermodynamic nonideality. These contributions are compared at the pore scale and intermediate scale (several centimeters downstream from the source). Trichloroethene (TCE), tetrachloroethene (PCE) and 1,1,1-trichloroethane (TCA) were selected to model a reasonably ideal mixture; TCE, PCE and octanol were selected as a relevant nonideal mixture. A multicomponent diffusion-based dissolution model incorporating hydrodynamic theory was formulated to estimate intra-NAPL concentration gradients and associated aqueous interfacial concentrations for ideally shaped (spherical) NAPL blobs. Pore scale dissolution times for this model were compared to those generated using the conventional well-mixed NAPL dissolution model, applying the same film transfer boundary condition in both cases. Activity coefficients (spatially and temporally variable for the diffusion model, temporally variable for the well-mixed model) were estimated using UNIFAC. NAPL interfacial concentration histories generated using the pore scale models were used as input in a three-dimensional groundwater transport model (MT3DMS) to compare downstream concentration distributions. For the relatively large NAPL bodies simulated ( r=0.6 cm), intra-NAPL diffusion effects were found to be significant at the pore scale and were strongly impacted by the mixture's thermodynamic ideality. At the intermediate scale, and for the conditions tested, modest differences in the simulations suggested that intra-NAPL diffusion effects would be negligible compared to those associated with mixture composition uncertainty, dissolution rate processes related to NAPL-induced permeability effects and hydrodynamic issues associated with flow field heterogeneity.

  3. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors.

    Science.gov (United States)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A L David; Nishi, Yoshio; Williams, R Stanley

    2016-12-27

    Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  4. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A. L. David; Nishi, Yoshio; Williams, R. Stanley

    2016-12-27

    Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  5. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes

    Science.gov (United States)

    Santschi, Peter H.; Anderson, Robert F.; Fleisher, Martin Q.; Bowles, Walter

    1991-06-01

    Fluxes of reactive chemical species across the sediment-water interface can profoundly influence the dominant biogeochemical cycles in the worlds ocean. However, reliable in-situ measurements of benthic fluxes of many reactive species cannot be carried out without adjustment of stirring rates inside benthic flux chambers to match boundary layer conditions prevailing outside. A simple method to compare flow levels consists of measurements of gypsum dissolution rates inside benthic chambers and on the seafloor. The measurement of the diffusion-controlled dissolution rate of gypsum allows the estimation of the diffusive sublayer thickness and the time-averaged bottom stress on the seafloor. This method had previously been intercalibrated with the stress sensor method in flumes and inside benthic chambers. We describe here free-vehicle deployments of alabaster plates on the bottom of the ocean which gave results consistent with hydrodynamic theory. Errors in the calculated diffusive sublayer thicknesses were estimated to be about 10-15% for typical deployment conditions in the ocean. Current velocities 5 m off the bottom, which were measured concurrently during two deployments, allowed for comparisons with hydrodynamic predictions of diffusive sublayer thicknesses. The values obtained this way agreed within 15%. The measured mass transfer velocity was found to correlate with the plate dimension L, to the power of ⅓. This confirms the theoretical procedure for extrapolating to infinite plate size when calculating the sublayer impedance of solute fluxes from sediments (where L is large). Typical values of diffusive sublayer thicknesses, corrected to infinite plate size, were 1200 μm for current velocities, U100, of 2 cm s-1, and 500 μm at 8 cm s-1. Furthermore, values of friction velocities calculated from alabaster dissolution were compared with those using stress sensors. Gypsum plate values of u* were 0 and 30% lower than skin friction values of u*, at u* values

  6. Permeation, diffusion and dissolution of hydrogen isotopes, methane and inert gases through/in a tetrafluoroethylene film

    International Nuclear Information System (INIS)

    Matsuyama, M.; Miyake, H.; Ashida, K.; Watanabe, K.

    1982-01-01

    Tetrafluoroethylene (TFE) is widely used for conventional tritium handling systems such as vacuum seals, tubing and so on. We measured the permeation of the three hydrogen isotopes, methane and the inert gases through a TFE film at room temperature by means of the time-lag method in order to establish the physicochemical properties which determine the solubility and diffusivity of those gases. It was found that the diffusion constant of the inert gases changed exponentially with the heat of vaporization and the solubility was an exponential function of the Lennard-Jones force constant of the gases. On the other hand, hydrogen isotopes and methane deviated from these relations. It is concluded that chemical interactions between the solute and the solvent play an important role for the dissolution and the diffusion of these gases in TFE. (orig.)

  7. Diffusive transport of organic vapors in the unsaturated zone with kinetically-controlled volatilization and dissolution: analytical model and analysis

    Science.gov (United States)

    Zaidel, Jacob; Russo, David

    1994-12-01

    Kinetically-controlled volatilization and dissolution of nonaqueous-phase liquids (NAPL's) in the unsaturated (vadose) zone are a more general model as compared to the usually used local equilibrium model of mass transfer. This paper presents a one-dimensional vertical model of kinetically-controlled diffusive transport of organic vapors pertinent to pollution caused by a relatively long, ground surface-originating, mainly horizontally-spread leak of NAPL, the volatile compound of which undergoes sorption and degradation in the soil. Analytical solutions of this model are applicable to homogeneous soils with ground surface fully open to the atmosphere. Application of the solutions to several examples demonstrates the role of kinetically-controlled volatilization and dissolution at both early and advanced stages of the transport process. Asymptotic analysis of the outlined solutions is employed in order to examine the depletion of the contaminant source.

  8. Alkali-ions diffusion, mullite formation, and crystals dissolution during sintering of porcelain bodies: Microstructural approach

    DEFF Research Database (Denmark)

    Leonelli, C.; Kamseu, E.; Boccaccini, Dino

    2009-01-01

    composition (amount of alkali and alumina) between the two types of porcelain studied influenced the final microstructure: density, pore size and shape, and mullite content. Quartz dissolution was more important in soft porcelain where the mullitization was limited by the low amount of alumina compared...

  9. Coupling diffusion and high-pH precipitation/dissolution in the near field of a HLW repository in clay by means of reactive solute transport models

    Science.gov (United States)

    Samper, J.; Font, I.; Yang, C.; Montenegro, L.

    2004-12-01

    The reference concept for a HLW repository in clay in Spain includes a 75 cm thick bentonite buffer which surrounds canisters. A concrete sustainment 20 cm thick is foreseen between the bentonite buffer and the clay formation. The long term geochemical evolution of the near field is affected by a high-pH hyperalkaline plume induced by concrete. Numerical models of multicomponent reactive transport have been developped in order to quantify the evolution of the system over 1 Ma. Water flow is negligible once the bentonite buffer is saturated after about 20 years. Therefore, solute transport occurs mainly by diffusion. Models account for aqueous complexation, acid-base and redox reactions, cation exchange, and mineral dissolution precipitation in the bentonite, the concrete and the clay formation. Numerical results obtained witth CORE2D indicate that the high-pH plume causes significant changes in porewater chemistry both in the bentonite buffer and the clay formation. Porosity changes caused by mineral dissolution/precipitation are extremely important. Therefore, coupled modes of diffusion and reactive transport accounting for changes in porosity caused by mineral precipitation are required in order to obtain realistic predictions.

  10. Dynamic hysteresis modeling including skin effect using diffusion equation model

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)

    2016-07-15

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  11. A Diffuse Interface Model for solid-liquid-air dissolution problems based on a porous medium theory

    Science.gov (United States)

    Luo, H.; Quintard, M.; Debenest, G.; Laouafa, F.

    2011-12-01

    The underground cavities may be dissolved by the flows of groundwater where the dissolution mainly happens at the liquid-solid interface. In many real cases, the cavities are not occupied only by the water, but also the gas phase, e.g., air, or other gases. In this case, there are solid-liquid-gas three phases. Normally, the air does not participate the dissolution. However, it may influence the dissolution as the position of the solid-liquid interface may gradually lower down with the dissolution process. Simulating the dissolution problems with multi- moving interfaces is a difficult task but rather interesting to study the evolution of the underground cavities. In this paper, we propose a diffuse interface model (DIM) to simulate the three-phase dissolution problem, based on a porous medium theory and a volume averaging theory te{Whitaker1999,Golfier2002,Quintard1994}. The interface is regarded as a continuous layer where the phase indicator (mainly for solid-liquid interface) and phase saturation (mainly for liquid-gas interface) vary rapidly but smoothly. The DIM equations enable us to simulate the moving interface under a fixed mesh system, instead of a deformed or moving mesh. Suppose we have three phases, solid, liquid and gas. The solid phase contains only species A. The gas phase contains only the air. The volume averaging theory is used to upscale the balance equations. The final DIM equations are presented below. The balance equation of solid phase can be written as {partialrho_{s}(1-\\varepsilon_{f})}/{partial t}=-K_{sl} where \\varepsilonf represents the volume fraction of the fluids (liquid+gas) and Ksl refers to the mass exchange between the solid phase and the liquid phase. Ksl cam be expressed as K_{sl}=rho_{l}alpha(omega_{eq}-Omega_{Al}). The balance equations of liquid phase can be written as {partialrho_{l}\\varepsilon_{f}S_{l}}/{partial t}+nabla\\cdot(rho_{l}{V}_{l})= K_{sl}. The balance equation of liquid phase can be written as {partialrho

  12. Mathematical modeling of drug dissolution.

    Science.gov (United States)

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Dissolution of aluminium

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-01-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  14. Validation of the transport parameters of silica at 30°C in Boom Clay by a combined glass dissolution/diffusion experiment

    International Nuclear Information System (INIS)

    Aertsens, M.; Lemmens, K.

    2010-01-01

    Document available in extended abstract form only. In Belgium the disposal of vitrified radioactive waste in Boom Clay is considered. The Boom Clay beneath the Mol-Dessel nuclear zone is a reference methodological site for supporting R and D. Safety studies require to estimate the release rate of hazardous radionuclides from the host glass and their transport rate in Boom Clay. The radionuclides are released as a result of the glass matrix dissolution. In the present Belgian reference 'supercontainer' disposal design, the waste glass is surrounded by a concrete buffer, but in the previous disposal design, a bentonite backfill was foreseen. The close interaction between the dissolving glass and clayey materials was studied using Boom Clay as a reference clay. Dissolution of glass next to clay is described by a model initially developed by Pescatore, according to which at large times the glass dissolution rate is controlled by the transport parameters of dissolved silica in Boom Clay: the apparent diffusion coefficient D and the product?R of the diffusion accessible porosity? and the retardation factor R. The values of these parameters have been measured by diffusion experiments. These values and the Pescatore model are validated by experiments where 32 Si doped glass dissolves next to clay. These experiments allow to determine not only the glass mass loss as a function of time, but also the 32 Si profile in the clay and the pore water composition close to the glass. The combination of these measurements makes it possible to determine all parameters of the Pescatore model. Because at 90 deg. C silica precipitates have been observed next to a dissolving glass by Pozo, the Pescatore model is extended with a precipitation term. Another extension takes into account the finite size of the clay cores. Three combined glass dissolution/diffusion tests with durations up to 1600 days were performed with SON68 glass in compact Boom Clay at 30 deg. C. These tests were

  15. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  16. Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL

    International Nuclear Information System (INIS)

    WEBB, STEPHEN W.

    2001-01-01

    The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful

  17. Oxide Dissolution and Oxygen Diffusion in Solid-State Recycled Ti-6Al-4V: Numerical Modeling, Verification by Nanoindentation, and Effects on Grain Growth and Recrystallization

    Science.gov (United States)

    Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.

    2017-12-01

    The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.

  18. Dissolution processes

    International Nuclear Information System (INIS)

    Silver, G.L.

    1976-01-01

    This review contains more than 100 observations and 224 references on the dissolution phenomenon. The dissolution processes are grouped into three categories: methods of aqueous attack, fusion methods, and miscellaneous observations on phenomena related to dissolution problems

  19. Sedimentation-diffusion equilibrium of binary mixtures of charged colloids including volume effects

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Lyklema, J.

    2005-01-01

    We describe the sedimentation-diffusion equilibrium of binary mixtures of charged colloids in the presence of small ions and for non-dilute conditions, by extending the work of Biben and Hansen (1994 J. Phys.: Condens. Matter 6 A345). For a monocomponent system, they included a Carnahan-Starling

  20. Kinetics of optically - and thermally - induced diffusion and dissolution of silver in evaporated As33S33.5Se33.5 amorphous films: their properties and structure

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Wágner, T.; Frumar, M.; Vlček, Milan; Frumarová, Božena

    2006-01-01

    Roč. 47, č. 2 (2006), s. 193-197 ISSN 0031-9090. [Solid State Chemistry VI. Praha, 13.09.2004-17.09.2004] Institutional research plan: CEZ:AV0Z40500505 Keywords : diffusion and dissolution * As-S-Se films Subject RIV: CA - Inorganic Chemistry Impact factor: 0.577, year: 2006

  1. Carcinosarcoma of the uterus: MRI findings including diffusion-weighted imaging and MR spectroscopy.

    Science.gov (United States)

    Takeuchi, Mayumi; Matsuzaki, Kenji; Harada, Masafumi

    2016-10-01

    Recently carcinosarcoma has become regarded as a subset of endometrial carcinoma. Because the clinical course of carcinosarcoma is aggressive with poor prognosis, it should be differentiated from endometrial carcinomas for the appropriate surgical management and adjuvant therapy. To clarify the magnetic resonance imaging (MRI) characteristics of uterine carcinosarcoma including diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurement and MR spectroscopy (MRS) with quantitative metabolite evaluation. MRI findings of 12 pathologically diagnosed uterine carcinosarcomas obtained on 3T MRI were retrospectively evaluated. The mean and minimum ADCs, and the lipid and choline concentration levels were compared with those of pathologically diagnosed 38 endometrial carcinomas. The mean and minimum ADCs in carcinosarcomas and endometrial carcinomas were not significantly different. The mean ADC of carcinosarcomas was significantly higher than that of higher grade (G2 and G3) endometrial carcinomas. The choline concentration in carcinosarcomas was significantly lower than that in endometrial carcinomas. High lipid peak was observed in 91% of carcinosarcomas and in 24% of endometrial carcinomas. Large, exophytic heterogeneous endometrial mass containing strongly enhanced areas, which may exhibit "tumor delivery", is a suggestive of carcinosarcoma. Relatively high mean ADC and low choline concentration considering its highly malignant nature due to intra-tumoral heterogeneity with necrosis and epithelial cystic components, and the presence of necrosis-associated high lipid peak may be compatible with carcinosarcoma. © The Foundation Acta Radiologica 2016.

  2. Ovarian adenofibromas and cystadenofibromas - Magnetic resonance imaging findings including diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mayumi [Dept. of Radiology, Univ. of Tokushima, Tokushima (Japan)], e-mail: mayumi@clin.med.tokushima-u.ac.jp; Matsuzaki, Kenji; Harada, Masafumi [Dept. of Radiology, Univ. of Tokushima, Tokushima (Japan)

    2013-03-15

    Background: Ovarian adenofibromas (AF) and cystadenofibromas (CAF) belong to the surface epithelial-stromal tumors, and may appear as solid, or solid and cystic masses mimicking ovarian cancers. Purpose: To evaluate the capability of magnetic resonance imaging (MRI) including diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) measurement for the diagnosis of ovarian AF/CAF. Material and Methods: Magnetic resonance manifestations of 13 cases of ovarian AF/CAF were retrospectively evaluated. DWI was obtained in all 13 lesions, and mean ADC values in 11 lesions were compared with those in solid portions of 27 ovarian cancers. Results: Neither case with AF/CAF revealed high signal intensity on DWI, whereas all ovarian cancers showed high signal intensity on DWI. The ADC values in the solid portions of AF/CAF were significantly higher than those of ovarian cancers (P < 0.001). A cut-off value of 1.20 X 10{sup -3} mm{sup 2}/s for AF/CAF had a sensitivity of 82%, specificity of 93%, positive predictive value of 82%, and negative predictive value of 93%. Conclusion: DWI with ADC measurement may be helpful in differentiating AF/CAF from ovarian cancers.

  3. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  4. Electric fields, weighting fields, signals and charge diffusion in detectors including resistive materials

    International Nuclear Information System (INIS)

    Riegler, W.

    2016-01-01

    In this report we discuss static and time dependent electric fields in detector geometries with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive the Green's functions i.e. the field of a point charge, as well as the weighting fields for readout pads and readout strips in these geometries. The effect of 'bulk' resistivity on electric fields and signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail, and the conditions for allowing the effect to be described by the diffusion equation is discussed. We apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS detectors including resistive layers for charge spreading and discharge protection as well as detectors using resistive charge division readout like the MicroCAT detector. We also discuss in detail how resistive layers affect signal shapes and increase crosstalk between readout electrodes.

  5. Quantitative plane-resolved crystal growth and dissolution kinetics by coupling in situ optical microscopy and diffusion models : the case of salicylic acid in aqueous solution

    OpenAIRE

    Perry, Amelia R.; Peruffo, Massimo; Unwin, Patrick R.

    2013-01-01

    The growth and dissolution kinetics of salicylic acid crystals are investigated in situ by focusing on individual microscale crystals. From a combination of optical microscopy and finite element method (FEM) modeling, it was possible to obtain a detailed quantitative picture of dissolution and growth dynamics for individual crystal faces. The approach uses real-time in situ growth and dissolution data (crystal size and shape as a function of time) to parametrize a FEM model incorporating surf...

  6. Collective dissolution of microbubbles

    Science.gov (United States)

    Michelin, Sébastien; Guérin, Etienne; Lauga, Eric

    2018-04-01

    A microscopic bubble of soluble gas always dissolves in finite time in an undersaturated fluid. This diffusive process is driven by the difference between the gas concentration near the bubble, whose value is governed by the internal pressure through Henry's law, and the concentration in the far field. The presence of neighboring bubbles can significantly slow down this process by increasing the effective background concentration and reducing the diffusing flux of dissolved gas experienced by each bubble. We develop theoretical modeling of such diffusive shielding process in the case of small microbubbles whose internal pressure is dominated by Laplace pressure. We first use an exact semianalytical solution to capture the case of two bubbles and analyze in detail the shielding effect as a function of the distance between the bubbles and their size ratio. While we also solve exactly for the Stokes flow around the bubble, we show that hydrodynamic effects are mostly negligible except in the case of almost-touching bubbles. In order to tackle the case of multiple bubbles, we then derive and validate two analytical approximate yet generic frameworks, first using the method of reflections and then by proposing a self-consistent continuum description. Using both modeling frameworks, we examine the dissolution of regular one-, two-, and three-dimensional bubble lattices. Bubbles located at the edge of the lattices dissolve first, while innermost bubbles benefit from the diffusive shielding effect, leading to the inward propagation of a dissolution front within the lattice. We show that diffusive shielding leads to severalfold increases in the dissolution time, which grows logarithmically with the number of bubbles in one-dimensional lattices and algebraically in two and three dimensions, scaling respectively as its square root and 2 /3 power. We further illustrate the sensitivity of the dissolution patterns to initial fluctuations in bubble size or arrangement in the case

  7. Imaging of the brain, including diffusion-weighted imaging in methylmalonic acidemia

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Steven J.; Given, Curtis A. [Department of Diagnostic Radiology, University of Kentucky Chandler Medical Center, Room HX-311C, 800 Rose Street, Lexington, KY 40536 (United States); Robertson, William C. [Department of Pediatric Neurology, University of Kentucky Chandler Medical Center, 800 Rose Street, Lexington, KY 40536 (United States)

    2004-07-01

    Methylmalonic acidemia (MMA) is a multifactorial autosomal recessive inborn error of organic acid metabolism, often presenting with neurologic findings. We report the imaging findings in a case of a child with classic neurological and laboratory findings for MMA. Imaging studies demonstrated abnormalities within the basal ganglia, particularly the globi pallidi (GP). Diffusion-weighted abnormalities seen in patients with MMA during an acute episode of metabolic acidosis and at follow-up are discussed. The authors are aware of only one prior report of serial examinations demonstrating resolution of restricted diffusion in the GP. The biochemical and pathophysiologic basis of the imaging findings of MMA are explained. (orig.)

  8. van der Knaap syndrome: MR imaging findings including FLAIR, diffusion imaging, and proton MR spectroscopy

    International Nuclear Information System (INIS)

    Sener, R.N.

    2000-01-01

    A patient is reported with diffuse leukoencephalopathy associated with cystic degeneration of the white matter of the brain (van der Knaap syndrome). The changes were studied by fluid attenuated inversion recovery (FLAIR), and diffusion-weighted MR imaging. The FLAIR sequence revealed suppressed signal of the cysts, and widespread high-signal white matter changes associated with thinned cortices. On diffusion-weighted MR imaging, apparent diffusion coefficient (ADC) values ranged from 3.0 x 10 -3 to 2.7 x 10 -3 mm 2 /s in the temporal cysts, similar to that of CSF. The ADC values within the parenchyma ranged between 2 x 10 -3 and 2.1 x 10 -3 mm 2 /s, a value falling between normal parenchyma and cerebrospinal fluid, compared with a control group of three healthy subjects. The changes were also evaluated by proton MR spectroscopy, and were compared with a control group of 12 cases. Magnetic resonance spectroscopy revealed apparently increased NAA/Cr ratios in most parts of the brain. The NAA/Cho ratios were either high or low, and the Cho/Cr ratios were increased or normal in different regions. (orig.)

  9. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion; non-isothermal filament

    Science.gov (United States)

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem

    2018-04-01

    Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.

  10. Dissolution of aluminium; Disolucion de aluminio

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Pereira Sanchez, G.

    1968-07-01

    The dissolution of aluminum with acid solutions ( nitric acid-mercuric nitrate) and alkaline solutions (sodium hydroxide-sodium nitrate) has been studied. The instantaneous dissolution rate (IDR) has been studied in function of the concentration of the used reagents and the dissolution temperature. The complete dissolution has been included in the second part of this report, to know the total dissolution time, the consume of reagents and the stability of the resultant solutions. (Author)

  11. Mechanistic Basis of Cocrystal Dissolution Advantage.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodríguez-Hornedo, Naír; Amidon, Gregory E

    2018-01-01

    Current interest in cocrystal development resides in the advantages that the cocrystal may have in solubility and dissolution compared with the parent drug. This work provides a mechanistic analysis and comparison of the dissolution behavior of carbamazepine (CBZ) and its 2 cocrystals, carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) under the influence of pH and micellar solubilization. A simple mathematical equation is derived based on the mass transport analyses to describe the dissolution advantage of cocrystals. The dissolution advantage is the ratio of the cocrystal flux to drug flux and is defined as the solubility advantage (cocrystal to drug solubility ratio) times the diffusivity advantage (cocrystal to drug diffusivity ratio). In this work, the effective diffusivity of CBZ in the presence of surfactant was determined to be different and less than those of the cocrystals. The higher effective diffusivity of drug from the dissolved cocrystals, the diffusivity advantage, can impart a dissolution advantage to cocrystals with lower solubility than the parent drug while still maintaining thermodynamic stability. Dissolution conditions where cocrystals can display both thermodynamic stability and a dissolution advantage can be obtained from the mass transport models, and this information is useful for both cocrystal selection and formulation development. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Influence of hydrogen on the behavior of metals. IV. Permeation, diffusion, dissolution of deuterium and tritium in Z5NCTD26-15 and Z3CN18-10 austenitic stainless steels

    International Nuclear Information System (INIS)

    Broudeur, Robert; Fidelle, J.-P.; Tison, Paul; Roux, Claude; Rapin, Michel.

    1975-01-01

    After having recalled the theoritical background for dissolution diffusion and permeation of a pure gas in a pure metal and presented the methods to compute physical values which caracterize these phenomena, a review is made of the literature dealing with solubility S and diffusivity D of hydrogen and its isotopes in iron and steels. This is completed by a survey evaluating the permeability of these materials to the considered gases. Deuterium and tritium permeation tests on A 286 and 304 L steels between 100 and 200 deg C are first presented. Tritium permeation tests give ARRHENIUS lines for Psub(T), Dsub(T), Ssub(T) and show how a permeated gas accumulation on the downstream side of the permeation cell decreases the values of instantaneous flux and permeation; this in agreement with earlier experiments with hydrogen. Next, thermal loading tests with tritium between 300 and 500 deg C are presented for the two considered steels. They make it possible a computation of the diffusivity Dsub(T) of this gas in A 286, based upon the entry kinetics study. They also give tritium solubility Ssub(T) in both steels. Finally values of Dsub(T) and Ssub(T) obtained by these techniques are compared between themselves and with literature [fr

  13. Determinants of marriage dissolution

    Science.gov (United States)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  14. XRD study of laser induced crystallisation of (Ag)-Sb-S amorphous thin films prepared by thermal evaporation combined with optically induced diffusion and dissolution of Ag

    Czech Academy of Sciences Publication Activity Database

    Gutwirth, J.; Wágner, T.; Frumar, M.; Bezdička, Petr; Vlček, Milan

    2006-01-01

    Roč. 47, č. 2 (2006), s. 229-232 ISSN 0031-9090 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : laser induced crystallisation * optically induced diffusion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.577, year: 2006

  15. Diffusion, Ion Pairing and Aggregation in 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids Studied by 1 H and 19 F PFG NMR: Effect of Temperature, Anion and Glucose Dissolution.

    Science.gov (United States)

    D'Agostino, Carmine; Mantle, Mick D; Mullan, Claire L; Hardacre, Christopher; Gladden, Lynn F

    2018-01-31

    In this work, using 1 H and 19 F PFG NMR, we probe the effect of temperature, ion size/type and glucose dissolution on the rate of transport in 1-ethyl-3-methylimidazolium ([EMIM] + )-based ionic liquids by measuring self-diffusion coefficients. Using such data, we are able to establish the degree of ion pairing and quantify the extent of ionic aggregation during diffusion. For the neat 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) a strong degree of ion pairing is observed. The substitution of the [OAc] - anion with the bis{(trifluoromethyl)sulfonyl}imide ([TFSI] - ) anion reduces the pairing between the ions, which is attributed to a lower electric charge density on the [TFSI] - anion, hence a weaker electric interaction with the [EMIM] + cation. The effect of glucose, important for applications of ionic liquids as extracting media, on the strongly paired [EMIM][OAc] sample was also investigated and it is observed that the carbohydrate decreases the degree of ion pairing, which is attributed to the ability of glucose to disrupt inter-ionic interactions by forming hydrogen bonding, particularly with the [OAc] - anion. Calculations of aggregation number from diffusion data show that the [OAc] - anion diffuses as a part of larger aggregates compared to the [EMIM] + cation. The results and analysis presented here show the usefulness of PFG NMR in studies of ionic liquids, giving new insights into ion pairing and aggregation and the factors affecting these parameters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Can a one-layer optical skin model including melanin and inhomogeneously distributed blood explain spatially resolved diffuse reflectance spectra?

    Science.gov (United States)

    Karlsson, Hanna; Pettersson, Anders; Larsson, Marcus; Strömberg, Tomas

    2011-02-01

    Model based analysis of calibrated diffuse reflectance spectroscopy can be used for determining oxygenation and concentration of skin chromophores. This study aimed at assessing the effect of including melanin in addition to hemoglobin (Hb) as chromophores and compensating for inhomogeneously distributed blood (vessel packaging), in a single-layer skin model. Spectra from four humans were collected during different provocations using a twochannel fiber optic probe with source-detector separations 0.4 and 1.2 mm. Absolute calibrated spectra using data from either a single distance or both distances were analyzed using inverse Monte Carlo for light transport and Levenberg-Marquardt for non-linear fitting. The model fitting was excellent using a single distance. However, the estimated model failed to explain spectra from the other distance. The two-distance model did not fit the data well at either distance. Model fitting was significantly improved including melanin and vessel packaging. The most prominent effect when fitting data from the larger separation compared to the smaller separation was a different light scattering decay with wavelength, while the tissue fraction of Hb and saturation were similar. For modeling spectra at both distances, we propose using either a multi-layer skin model or a more advanced model for the scattering phase function.

  17. Distributed space scales in a semilinear reaction-diffusion system including a parabolic variational inequality : a well-posedness study

    OpenAIRE

    Fatima, T Tasnim; Muntean, A Adrian; Aiki, T

    2012-01-01

    This paper treats the solvability of a semilinear reaction-diffusion system, which incorporates transport (diffusion) and reaction effects emerging from two separated spatial scales: $x$ - macro and $y$ - micro. The system's origin connects to the modeling of concrete corrosion in sewer concrete pipes. It consists of three partial differential equations which are mass-balances of concentrations, as well as, one ordinary differential equation tracking the damage-by-corrosion. The system is sem...

  18. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  19. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer.

    Science.gov (United States)

    Mosavi, Firas; Laurell, Anna; Ahlström, Håkan

    2015-11-01

    Whole body (WB) magnetic resonance imaging (MRI), including diffusion-weighted imaging (DWI) has become increasingly utilized in cancer imaging, yet the clinical utility of these techniques in follow-up of testicular cancer patients has not been evaluated. The purpose of this study was to evaluate the feasibility of WB MRI with continuous table movement (CTM) technique, including multistep DWI in follow-up of patients with testicular cancer. WB MRI including DWI was performed in follow-up of 71 consecutive patients (median age, 37 years; range 19-84) with histologically confirmed testicular cancer. WB MRI protocol included axial T1-Dixon and T2-BLADE sequences using CTM technique. Furthermore, multi-step DWI was performed using b-value 50 and 1000 s/mm(2). One criterion for feasibility was patient tolerance and satisfactory image quality. Another criterion was the accuracy in detection of any pathological mass, compared to standard of reference. Signal intensity in DWI was used for evaluation of residual mass activity. Clinical, laboratory and imaging follow-up were applied as standard of reference for the evaluation of WB MRI. WB MRI was tolerated in nearly all patients (69/71 patients, 97%) and the image quality was satisfactory. Metal artifacts deteriorated the image quality in six patients, but it did not influence the overall results. No case of clinical relapse was observed during the follow-up time. There was a good agreement between conventional WB MRI and standard of reference in all patients. Three patients showed residual masses and DWI signal was not restricted in these patients. Furthermore, DWI showed abnormally high signal intensity in a normal-sized retroperitoneal lymph node indicating metastasis. The subsequent (18)F-FDG PET/CT could verify the finding. WB MRI with CTM technique including multi-step DWI is feasible in follow-up of patients with testicular cancer. DWI may contribute to important added-value data to conventional MRI sequences

  20. On the dissolution of vapors and gases.

    Science.gov (United States)

    Wüstneck, N; Wüstneck, R; Pison, U; Möhwald, H

    2007-02-13

    The captive bubble technique in combination with axisymmetric drop shape analysis (ADSA-CB) and with micro gas chromatography is used to study the dynamics of dissolution of different gases and vapors in water in situ. The technique yields the changes in the interfacial tension and bubble volume and surface. As examples, the dissolution of methanol and hexane vapors, inhaled anesthetic vapors, and gases, that is, diethyl ether, chloroform, isoflurane, enflurane, sevoflurane, desflurane, N2O, and xenon, and as nonimmobilizers perfluoropentane and 1,1,2-trichloro-1,2,2-trifluoro-ethane (R113) were investigated. The examination of interfacial tension-time and bubble volume-time functions permits us to distinguish between water-soluble and -insoluble substances, gases, and vapors. Vapors and gases generally differ in terms of the strength of their intermolecular interactions. The main difference between dissolution processes of gases and vapors is that, during the entire process of gas dissolution, no surface tension change occurs. In contrast, during vapor dissolution the surface tension drops immediately and decreases continuously until it reaches the equilibrium surface tension of water at the end of dissolution. The results of this study show that it is possible to discriminate anesthetic vapors from anesthetic gases and nonimmobilizers by comparing their dissolution dynamics. The nonimmobilizers have extremely low or no solubility in water and change the surface tension only negligibly. By use of newly defined molecular dissolution/diffusion coefficients, a simple model for the determination of partition coefficients is developed.

  1. Dissolution Methods Database

    Data.gov (United States)

    U.S. Department of Health & Human Services — For a drug product that does not have a dissolution test method in the United States Pharmacopeia (USP), the FDA Dissolution Methods Database provides information on...

  2. Monte-Carlo analysis of rarefied-gas diffusion including variance reduction using the theory of Markov random walks

    Science.gov (United States)

    Perlmutter, M.

    1973-01-01

    Molecular diffusion through a rarefied gas is analyzed by using the theory of Markov random walks. The Markov walk is simulated on the computer by using random numbers to find the new states from the appropriate transition probabilities. As the sample molecule during its random walk passes a scoring position, which is a location at which the macroscopic diffusing flow variables such as molecular flux and molecular density are desired, an appropriate payoff is scored. The payoff is a function of the sample molecule velocity. For example, in obtaining the molecular flux across a scoring position, the random walk payoff is the net number of times the scoring position has been crossed in the positive direction. Similarly, when the molecular density is required, the payoff is the sum of the inverse velocity of the sample molecule passing the scoring position. The macroscopic diffusing flow variables are then found from the expected payoff of the random walks.

  3. Diffusion and mass transfer

    CERN Document Server

    Vrentas, James S

    2013-01-01

    The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

  4. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  5. Cosmic X-ray Physics: Sounding rocket investigations of the diffuse X-ray background, including instrument development

    Science.gov (United States)

    McCammon, Dan

    We propose an investigation to improve our understanding of the Galactic diffuse X-ray background. The ultimate purpose of this is to determine the role of hot phases of the interstellar medium in mediating stellar feedback in star formation, in transport of metals, and in determining the structure and evolution of the Galaxy. It directly addresses SMD's astrophysics goal No. 2, to explore the origin and evolution of the galaxies, stars and planets that make up our universe. This work will involve a flight of an existing payload with small modifications in Woomera, South Australia, to observe the Galactic soft X-ray bulge and attempt to determine its nature and emission mechanisms. This flight should also either confirm or put strict upper limits on the "sterile neutrino" model for the 3.5 keV signal observed near the Galactic Center by XMM-Newton. Our investigation includes the development of thermal detectors with superconducting transition edge thermometers capable of 1-2 eV FWHM energy resolution in the 100-400 eV range with the intent of obtaining a scientifically useful spectrum on a sounding rocket flight of the emission from one million degree gas in this energy range. This will require a total area of 1-2 square centimeters for the detector array. To enable routine testing of such detectors in the lab and for necessary in-flight gain and resolution monitoring, we are trying to develop a pulsed-UV laser calibration source. In collaboration with Goddard Space Flight Center, we are investigating the practicality of waveguide-below-cutoff filters to provide the necessary attenuation of infrared radiation for these detectors while still allowing good x-ray transmission below 150 eV. The detectors, calibration source, filters, optimal high-rate pulse analysis and flight experience with the detector readouts are all relevant to future NASA major missions. The detectors we're working on for a low-energy sounding rocket flight would be an excellent match to what is

  6. Modeling gamma-ray burst observations by Fermi and MAGIC including attenuation due to diffuse background light

    OpenAIRE

    Gilmore, Rudy C.; Prada, Francisco; Primack, Joel R.

    2009-01-01

    Gamma rays from extragalactic sources are attenuated by pair-production interactions with diffuse photons of the extragalactic background light (EBL). Gamma-ray bursts (GRBs) are a source of high-redshift photons above 10 GeV, and could be therefore useful as a probe of the evolving UV background radiation. In this paper, we develop a simple phenomenological model for the number and redshift distribution of gamma-ray bursts that can be seen at GeV energies with the Fermi satellite and MAGIC a...

  7. Formation, transformation and dissolution of phases formed on surfaces

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1983-03-01

    The basic mechanisms of film growth, transformation, and dissolution of phases formed on surfaces are discussed. Film growth can occur via solid-state processes or via substrate (usally metal or alloy) dissolution, followed by local supersaturation and precipitation of an insoluble phase. The phase(s) formed may be metastable and transform to a more stable phase, via either solid-state or dissolution-reprecipitation processes. Film dissolution reactions can also occur via a variety of mechanisms, including: (i) direct chemical dissolution when no oxidation state change occurs; (ii) redox dissolution when the film dissolves via a redox reaction involving a reducing or oxidizing agent in solution; and (iii) autoreduction, where film dissolution is coupled to metal dissolution. Such film-growth and dissolution processes, which often produce complex multilayer films, are common in the nuclear industry. A number of examples are discussed

  8. Toward an in vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers.

    Science.gov (United States)

    Sheng, Jennifer J; McNamara, Daniel P; Amidon, Gordon L

    2009-01-01

    The purpose of this research was to evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. The intrinsic dissolution rates of ketoprofen and indomethacin were experimentally measured using a rotating disk method at 37 degrees C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin in USP and FaSSIF phosphate buffers are 1.5-3.0 times that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pK(a) and second on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pK(a), solubility and diffusivity, a simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13-15 mM and 3-4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for

  9. Interstellar simulations using a unified microscopic-macroscopic Monte Carlo model with a full gas-grain network including bulk diffusion in ice mantles

    International Nuclear Information System (INIS)

    Chang, Qiang; Herbst, Eric

    2014-01-01

    We have designed an improved algorithm that enables us to simulate the chemistry of cold dense interstellar clouds with a full gas-grain reaction network. The chemistry is treated by a unified microscopic-macroscopic Monte Carlo approach that includes photon penetration and bulk diffusion. To determine the significance of these two processes, we simulate the chemistry with three different models. In Model 1, we use an exponential treatment to follow how photons penetrate and photodissociate ice species throughout the grain mantle. Moreover, the products of photodissociation are allowed to diffuse via bulk diffusion and react within the ice mantle. Model 2 is similar to Model 1 but with a slower bulk diffusion rate. A reference Model 0, which only allows photodissociation reactions to occur on the top two layers, is also simulated. Photodesorption is assumed to occur from the top two layers in all three models. We found that the abundances of major stable species in grain mantles do not differ much among these three models, and the results of our simulation for the abundances of these species agree well with observations. Likewise, the abundances of gas-phase species in the three models do not vary. However, the abundances of radicals in grain mantles can differ by up to two orders of magnitude depending upon the degree of photon penetration and the bulk diffusion of photodissociation products. We also found that complex molecules can be formed at temperatures as low as 10 K in all three models.

  10. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    Science.gov (United States)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, I.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  11. Cosmic X-ray Physics: A Suborbital Investigation of the Diffuse X-ray Background Including Instrumentation Development

    Science.gov (United States)

    McCammon, Dan

    We propose an investigation to improve our understanding of the Galactic diffuse X-ray background. The ultimate purpose of this is to determine the role of hot phases of the interstellar medium in mediating stellar feedback in star formation, in transport of metals, and in determining the structure and evolution of the Galaxy. This work will involve a flight of an existing payload with small modifications in Woomera, South Australia, to observe the Galactic soft X-ray bulge and attempt to determine its nature and emission mechanisms. It will also involve the development of detectors capable of 1-2 eV FWHM energy resolution in the 100-400 eV range with the intent of obtaining a scientifically useful spectrum on a sounding rocket flight of the emission from one million degree gas in this energy range. This will require a total area of 1-2 cm^2 for the detector array. With the collaboration and advice of microwave experts at the Goddard Space Flight Center, we will fabricate and test waveguide-below-cutoff filters to provide the necessary attenuation of infrared radiation for these detectors while still allowing relatively good x- ray transmission below 300 eV. The detectors, filters, and flight experience with the detector readouts are all relevant to future NASA major missions. The filters would be particularly valuable in allowing thermal detectors (microcalorimeters) similar to those used here in the X-ray range to be applied to the EUV and vacuum ultraviolet, where they offer large potential gains over existing detectors. These investigations will provide the primary training for our graduate students, and will involve a substantial number of undergraduates.

  12. On the dissolution of iridium by aluminum.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  13. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  14. [Phytobezoar dissolution with Coca-Cola].

    Science.gov (United States)

    Martínez de Juan, F; Martínez-Lapiedra, C; Picazo, V

    2006-05-01

    The treatment of phytobezoar is empiric. The various therapeutic choices include dietary modifications, prokinetic drugs, gastric lavage, enzymatic dissolution, endoscopic treatment, and surgery. We present two cases of phytobezoar with successful outcome after Coca-Cola administration.

  15. Dissolution of nuclear fuels

    International Nuclear Information System (INIS)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-01-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO 2 , PuO 2 and PuO 2 -UO 2 pellets in boiling nitric acid alone and with additives. The uranium metal and UO 2 dissolved readily in nitric acid alone; PuO 2 dissolved slowly even with the addition of fluoride; PuO 2 -UO 2 pellets containing as much as 35% PuO 2 in UO 2 gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO 2 -UO 2 pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs

  16. Diffusion-weighted MR imaging including bi-exponential fitting for the detection of recurrent or residual tumour after (chemo)radiotherapy for laryngeal and hypopharyngeal cancers

    Energy Technology Data Exchange (ETDEWEB)

    Tshering Vogel, Dechen W.; Vermathen, Peter; Thoeny, Harriet C. [University of Bern, Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern (Switzerland); Zbaeren, Peter [University of Bern, Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Inselspital, Bern (Switzerland); Geretschlaeger, Andreas [University of Bern, Department of Radiation Oncology, Inselspital, Bern (Switzerland); Keyzer, Frederik de [University Hospitals Leuven, Department of Radiology, Leuven (Belgium)

    2013-02-15

    To assess whether diffusion-weighted magnetic resonance imaging (DW-MRI) including bi-exponential fitting helps to detect residual/recurrent tumours after (chemo)radiotherapy of laryngeal and hypopharyngeal carcinoma. Forty-six patients with newly-developed/worsening symptoms after (chemo)radiotherapy for laryngeal/hypopharyngeal cancers were prospectively imaged using conventional MRI and axial DW-MRI. Qualitative (visual assessment) and quantitative analysis (mono-exponentially: total apparent diffusion coefficient [ADC{sub T}], and bi-exponentially: perfusion fraction [F{sub P}] and true diffusion coefficient [ADC{sub D}]) were performed. Diffusion parameters of tumour versus post-therapeutic changes were compared, with final diagnosis based on histopathology and follow-up. Mann-Whitney U test was used for statistical analysis. Qualitative DW-MRI combined with morphological images allowed the detection of tumour with a sensitivity of 94% and specificity 100%. ADC{sub T} and ADC{sub D} values were lower in tumour with values 120 {+-} 49 x 10{sup -5} mm{sup 2}/s and 113 {+-} 50 x 10{sup -5} mm{sup 2}/s, respectively, compared with post-therapeutic changes with values 182 {+-} 41 x 10{sup -5} mm{sup 2}/s (P < 0.0002) and 160 {+-} 47 x 10{sup -5} mm{sup 2}/s (P < 0.003), respectively. F{sub P} values were significantly lower in tumours than in non-tumours (13 {+-} 9% versus 31 {+-} 16%, P < 0.0002), with F{sub P} being the best quantitative parameter for differentiation between post-therapeutic changes and recurrence. DW-MRI in combination with conventional MRI substantially improves detection and exclusion of tumour in patients with laryngeal and hypopharyngeal cancers after treatment with (chemo)radiotherapy on both qualitative and quantitative analysis, with F{sub P} being the best quantitative parameter in this context. (orig.)

  17. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  18. Nonaqueous Phase Liquid Dissolution in Porous Media: Multi-Scale Effects of Multi-Component Dissolution Kinetics on Cleanup Time

    Energy Technology Data Exchange (ETDEWEB)

    McNab, W; Ezzedine, S; Detwiler, R

    2007-02-26

    Industrial organic solvents such as trichloroethylene (TCE) and tetrachloroethylene (PCE) constitute a principal class of groundwater contaminants. Cleanup of groundwater plume source areas associated with these compounds is problematic, in part, because the compounds often exist in the subsurface as dense nonaqueous phase liquids (DNAPLs). Ganglia (or 'blobs') of DNAPL serve as persistent sources of contaminants that are difficult to locate and remediate (e.g. Fenwick and Blunt, 1998). Current understanding of the physical and chemical processes associated with dissolution of DNAPLs in the subsurface is incomplete and yet is critical for evaluating long-term behavior of contaminant migration, groundwater cleanup, and the efficacy of source area cleanup technologies. As such, a goal of this project has been to contribute to this critical understanding by investigating the multi-phase, multi-component physics of DNAPL dissolution using state-of-the-art experimental and computational techniques. Through this research, we have explored efficient and accurate conceptual and numerical models for source area contaminant transport that can be used to better inform the modeling of source area contaminants, including those at the LLNL Superfund sites, to re-evaluate existing remediation technologies, and to inspire or develop new remediation strategies. The problem of DNAPL dissolution in natural porous media must be viewed in the context of several scales (Khachikian and Harmon, 2000), including the microscopic level at which capillary forces, viscous forces, and gravity/buoyancy forces are manifested at the scale of individual pores (Wilson and Conrad, 1984; Chatzis et al., 1988), the mesoscale where dissolution rates are strongly influenced by the local hydrodynamics, and the field-scale. Historically, the physico-chemical processes associated with DNAPL dissolution have been addressed through the use of lumped mass transfer coefficients which attempt to

  19. Low temperature dissolution flowsheet for plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Almond, P. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  20. Physical heterogeneity control on effective mineral dissolution rates

    Science.gov (United States)

    Jung, Heewon; Navarre-Sitchler, Alexis

    2018-04-01

    Hydrologic heterogeneity may be an important factor contributing to the discrepancy in laboratory and field measured dissolution rates, but the governing factors influencing mineral dissolution rates among various representations of physical heterogeneity remain poorly understood. Here, we present multiple reactive transport simulations of anorthite dissolution in 2D latticed random permeability fields and link the information from local grid scale (1 cm or 4 m) dissolution rates to domain-scale (1m or 400 m) effective dissolution rates measured by the flux-weighted average of an ensemble of flow paths. We compare results of homogeneous models to heterogeneous models with different structure and layered permeability distributions within the model domain. Chemistry is simplified to a single dissolving primary mineral (anorthite) distributed homogeneously throughout the domain and a single secondary mineral (kaolinite) that is allowed to dissolve or precipitate. Results show that increasing size in correlation structure (i.e. long integral scales) and high variance in permeability distribution are two important factors inducing a reduction in effective mineral dissolution rates compared to homogeneous permeability domains. Larger correlation structures produce larger zones of low permeability where diffusion is an important transport mechanism. Due to the increased residence time under slow diffusive transport, the saturation state of a solute with respect to a reacting mineral approaches equilibrium and reduces the reaction rate. High variance in permeability distribution favorably develops large low permeability zones that intensifies the reduction in mixing and effective dissolution rate. However, the degree of reduction in effective dissolution rate observed in 1 m × 1 m domains is too small (equilibrium conditions reduce the effective dissolution rate by increasing the saturation state. However, in large domains where less- or non-reactive zones develop, higher

  1. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus.

    Science.gov (United States)

    Mudie, Deanna M; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L; Amidon, Gregory E

    2012-10-01

    In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors.

    Science.gov (United States)

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-03-01

    We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT.

  3. Short-time dissolution mechanisms of kaolinitic tropical soils

    International Nuclear Information System (INIS)

    Malengreau, N.; Sposito, Garrison

    1996-01-01

    Previous research on the short-time dissolution behavior of kaolinitic Oxisols suggested pH-dependent kinetics involving ligand-promoted dissolution, metal readsorption, and colloidal dispersion, with soil organic matter conjectured to play a decisive role. A novel combination of spectroscopy, lightscattering, and batch dissolution experiments, conducted at controlled pH and ionic strength over five dissolution periods ranging from 1 to 12 h, was applied to evaluate this mechanism for samples of a representative kaolinitic Oxisol; collected at both forested and cultivated field sites (leading to significant differences in organic matter content and field soil pH). The overall characteristics of the pH-dependent net release kinetics of Al, Fe, and Si by the soil samples, for any dissolution period in the range investigated, were determined by the pH value at which colloid dispersion commenced, which decreased significantly as the soil organic matter content increased. Plots of log(Si/Al released) (or Si/Fe released) vs. -log [H+] ([H+] is proton concentration) were superimposable for all dissolution periods studied, rising to a plateau value above the point of zero net charge of the soils (pH 3.2). Light-scattering and X-ray diffraction data showed conclusively that this plateau represented the release of siliceous colloids containing kaolinite and X-ray amorphous material. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and electron spin resonance spectroscopy, applied to the soil samples before and after dissolution, and after conventional chemical extractions to remove Al, C, Fe, and Si, showed that kaolinite and iron oxide phases (the latter being highly Al-substituted and present in both coatings and occlusions) were essentially unaltered by dissolution, even at -log [H+] = 2, whereas substantial dissolution loss of soil quartz occurred. Diffuse reflectance spectroscopy gave strong evidence that C in these soils occurs principally in discrete

  4. Dissolution of pollucite

    International Nuclear Information System (INIS)

    Henderson, T.; Vezza, T.; White, W.B.; Pantano, C.G.

    1982-01-01

    The dissolution of single crystal and polycrystalline pollucite (Cs 2 O.Al 2 O 3 .4SiO 2 ) has been investigated under static and Soxhlet conditions. Polycrystalline ceramics were prepared from a commercial pollucite powder by sintering at 1100 0 C, 1200 0 C and 1300 0 C, and also by hot isostatic pressing (hip) at 1200 0 C. The static tests were run at 40 0 C and 90 0 C in water (for up to 183 days) and in brine and silicate solutions (for 28 days). The solutions were analyzed with DC-plasma emission and the leached surfaces were examined with scanning electron microscopy (SEM) and other surface analysis techniques. It is concluded that the dissolution of polycrystalline pollucite is due largely to the preferential release of the glassy phase constituents since the single crystal studies verify the insolubility of the pollucite grains at near-neutral pH under static conditions. The dissolution behavior of polycrystalline pollucite under static and Soxhlet conditions is drastically different. Under static conditions, the pollucite grains are in equilibrium with the solution and the dissolved species originate only from the glassy phase. The glassy phase is more prevalent and has a higher Cs 2 O content in the denser ceramics sintered at 1200 0 C; thus, the denser ceramics exhibit higher Cs leach rates. Under Soxhlet conditions the leach rates are linear and proportional to the specific surface area. Thus, the glassy phase is depleted from the surface region of the ceramics very rapidly, and the congruent dissolution of the pollucite grain continues at a linear rate. The Cs leach rates were highest in water, and lowest in the brine solution. 1 table

  5. Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2018-02-01

    Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.

  6. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  7. Dissolution of metallic uranium and its alloys. Part 1. Review of analytical and process-scale metallic uranium dissolution

    International Nuclear Information System (INIS)

    Laue, C.A.; Gates-Anderson, D.; Fitch, T.E.

    2004-01-01

    This review focuses on dissolution/reaction systems capable of treating uranium metal waste to remove its pyrophoric properties. The primary emphasis is the review of literature describing analytical and production-scale dissolution methods applied to either uranium metal or uranium alloys. A brief summary of uranium's corrosion behavior is included since the corrosion resistance of metals and alloys affects their dissolution behavior. Based on this review, dissolution systems were recommended for subsequent screening studies designed to identify the best system to treat depleted uranium metal wastes at Lawrence Livermore National Laboratory (LLNL). (author)

  8. Role of the Capillary Transition Zone on the Dissolution of CO2 into Brine in Saline Reservoirs

    Science.gov (United States)

    Martinez, M. J.; Hesse, M. A.

    2014-12-01

    Geologic carbon storage in deep saline reservoirs is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single phase region below the gas-water contact (GWC) and have ignored the over-lying two-phase region where dissolution actually takes place. Our objective is to improve estimates of the long-term dissolution rate of CO2 into brine by including the two-phase region above the gas-water contact in model simulations. In the two-phase model, there is a capillary transition zone above the GWC over which the brine saturation decreases with increasing elevation. Our simulations show that when the capillary fringe height is small, which corresponds to very low entry pressure, assuming CO2-saturated brine in the two-phase region is well-motivated, as has been assumed in analyses of dissolution without the capillary transition. For typical finite entry pressures, the fringe thickness is finite and upwelling convection currents of fresh, un-carbonated brine must extend above the GWC to saturate the brine with CO2. Our results show the long-term dissolution rate can be enhanced by greater than 3 times the dissolution rates derived from ignoring the capillary transition zone. The single-phase, closed-top dissolution rate is recovered in the limit of vanishing entry pressure. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science

  9. The kinetics of Dissolution of Biologically Formed Calcific Deposits.

    Science.gov (United States)

    Rokidi, Stamatia; Koutsoukos, Petros

    2015-04-01

    The calcification of aortic valves results in the formation of non stoichiometric apatitic deposits which may have serious health implications because of the fact that these minerals adhere tenaciously on tissues like heart valves and arteries causing permanent damage which is partly due to their low solubility. In the present work, calcium phosphate biominerals were extracted from clinically removed tissues and were characterized with respect to their mineralogical constituents and other properties including morphology, specific surface area analyses and thermogravimetric analysis. In all cases, the biominerals may be described as non stoichiometric apatitic materials, although traces of the precursor phase of octacalcium phosphate (Ca8H2(PO4)6•5H2O, OCP) were identified on the basis of their morphological examination. The kinetics of dissolution of the biomineral deposits was investigated in solutions undersaturated with respect to hydroxyapatite (Ca5(PO4)3OH, HAP) at conditions of constant undersaturation at pH 7.40, 37°C, 0.15M NaCl. Synthetic stoichiometric HAP was used as the control mineral. The experiments in the present work used solutions prepared from calcium chloride and sodium hydrogen phosphate and the relative undersaturation, σ, was in the range 0.38-0.74 with respect to HAP and 0.49-0.85 with respect to OCP (σ=1 in water). The dissolution process started immediately upon the introduction of an accurately weighted amount of powdered biomineral in the undersaturated solutions homogenized by magnetic stirring. Inert atmosphere was ensured with the bubbling of water vapor saturated nitrogen through the demineralizing solutions. A glass/Ag/AgCl combination electrode was used as a probe to monitor the process and to control the addition of diluent solutions with the stoichiometry of the dissolving mineral. The measurements of the rates of crystal dissolution, showed a parabolic dependence on the relative solution undersaturation for HAP and higher

  10. The Influence of Various Process Parameters on Dissolution Kinetics and Mechanism of Struvite Seed Crystals

    Science.gov (United States)

    Ariyanto, Eko; Ang, Ha Ming; Sen, Tushar Kanti

    2017-09-01

    The basic understanding of struvite dissolution chemistry is essential to designers and operators for anticipating struvite problem and remediating existing struvite damage in a wastewater treatment. The dissolution kinetic of struvite seed crystals is very important parameters to determine a solid substance entering in solvent to yield a solution. In this study the dissolution kinetics of struvite crystals (MgNH4PO4·6H2O) in deionized water was investigated in a batch crystallizer. The effects of stirrer speeds, temperature and seed crystals size on the dissolution rate were determined. The results showed that an increase of struvite dissolution rate with increasing stirring speed. Struvite dissolution occurred via a diffusion-controlled mechanism in the range of stirrer speeds 120-400 rpm but became interfacial-reaction-controlling at over 400 rpm. The influence of temperature on dissolution kinetic of struvite crystals was also investigated at stirrer speeds of 200 and 500 rpm. The dissolution rates increased with an increase in the temperature for both stirrer speeds. The change in activation energies at different stirrer speeds confirmed that the change of dissolution mechanism from a diffusion-controlled mechanism at low stirrer speeds to an interfacial-reaction-controlled mechanism at higher stirrer speeds. The dissolution rate of struvite crystals increased with smaller crystal sizes.

  11. Role of natural convection in the dissolution of sessile droplets

    NARCIS (Netherlands)

    Dietrich, E.; Wildeman, S.; Visser, C.W.; Hofhuis, K.A.; Kooij, Ernst S.; Zandvliet, Henricus J.W.; Lohse, Detlef

    2016-01-01

    The dissolution process of small (initial (equivalent) radius R0 < 1 mm) long-chain alcohol (of various types) sessile droplets in water is studied, disentangling diffusive and convective contributions. The latter can arise for high solubilities of the alcohol, as the density of the alcohol–water

  12. Predictive value of diffusion-weighted imaging without and with including contrast-enhanced magnetic resonance imaging in image analysis of head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Noij, Daniel P., E-mail: d.noij@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Pouwels, Petra J.W., E-mail: pjw.pouwels@vumc.nl [Department of Physics and Medical Technology, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Ljumanovic, Redina, E-mail: rljumanovic@adventh.org [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Knol, Dirk L., E-mail: dirklknol@gmail.com [Department of Epidemiology and Biostatistics, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Doornaert, Patricia, E-mail: p.doornaert@vumc.nl [Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Bree, Remco de, E-mail: r.debree@vumc.nl [Department of Otolaryngology – Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Castelijns, Jonas A., E-mail: j.castelijns@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands); Graaf, Pim de, E-mail: p.degraaf@vumc.nl [Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, Noord-Holland (Netherlands)

    2015-01-15

    Highlights: • Primary tumor volume and lymph node ADC1000 are predictors of survival. • CE-T1WI does not improve the prognostic capacity of DWI. • Using CE-T1WI for ROI placement results in lower interobserver agreement. - Abstract: Objectives: To assess disease-free survival (DFS) in head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy ([C]RT). Methods: Pretreatment MR-images of 78 patients were retrospectively studied. Apparent diffusion coefficients (ADC) were calculated with two sets of two b-values: 0–750 s/mm{sup 2} (ADC{sub 750}) and 0–1000 s/mm{sup 2} (ADC{sub 1000}). One observer assessed tumor volume on T1-WI. Two independent observers assessed ADC-values of primary tumor and largest lymph node in two sessions (i.e. without and with including CE-T1WI in image analysis). Interobserver and intersession agreement were assessed with intraclass correlation coefficients (ICC) separately for ADC{sub 750} and ADC{sub 1000}. Lesion volumes and ADC-values were related to DFS using Cox regression analysis. Results: Median follow-up was 18 months. Interobserver ICC was better without than with CE-T1WI (primary tumor: 0.92 and 0.75–0.83, respectively; lymph node: 0.81–0.83 and 0.61–0.64, respectively). Intersession ICC ranged from 0.84 to 0.89. With CE-T1WI, mean ADC-values of primary tumor and lymph node were higher at both b-values than without CE-T1WI (P < 0.001). Tumor volume (sensitivity: 73%; specificity: 57%) and lymph node ADC{sub 1000} (sensitivity: 71–79%; specificity: 77–79%) were independent significant predictors of DFS without and with including CE-T1WI (P < 0.05). Conclusions: Pretreatment primary tumor volume and lymph node ADC{sub 1000} were significant independent predictors of DFS in HNSCC treated with (C)RT. DFS could be predicted from ADC-values acquired without and with including CE-T1WI in image analysis. The inclusion of CE-T1WI did not result in significant improvements in the predictive value of

  13. Breast cancer detection using double reading of unenhanced MRI including T1-weighted, T2-weighted STIR, and diffusion-weighted imaging: a proof of concept study.

    Science.gov (United States)

    Trimboli, Rubina M; Verardi, Nicola; Cartia, Francesco; Carbonaro, Luca A; Sardanelli, Francesco

    2014-09-01

    The purpose of this study was to investigate the diagnostic performance of unenhanced MRI in detecting breast cancer and to assess the impact of double reading. A total of 116 breasts of 67 women who were 36-89 years old were studied at 1.5 T using an unenhanced protocol including axial T1-weighted gradient-echo, T2-weighted STIR, and echo-planar diffusion-weighted imaging (DWI). Two blinded readers (R1 and R2) independently evaluated unenhanced images using the BIRADS scale. A combination of pathology and negative follow-up served as the reference standard. McNemar and kappa statistics were used. Per-breast cancer prevalence was 37 of 116 (32%): 30 of 37 (81%) invasive ductal carcinoma, five of 37 (13%) ductal carcinoma in situ, and two of 37 (6%) invasive lobular carcinoma. Per-breast sensitivity of unenhanced MRI was 29 of 37 (78%) for R1, 28 of 37 (76%) for R2, and 29 of 37 (78%) for double reading. Specificity was 71 of 79 (90%) for both R1 and R2 and 69 of 79 (87%) for double reading. Double reading did not provide a significant increase in sensitivity. Interobserver agreement was almost perfect (Cohen κ = 0.873). An unenhanced breast MRI protocol composed of T1-weighted gradient echo, T2-weighted STIR, and echo-planar DWI enabled breast cancer detection with sensitivity of 76-78% and specificity of 90% without a gain in sensitivity from double reading.

  14. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  15. Biorelevant dissolution media

    DEFF Research Database (Denmark)

    Ilardia-Arana, David; Kristensen, Henning G; Müllertz, Anette

    2006-01-01

    Biorelevant dissolution media containing bile salt and lecithin at concentrations appropriate for fed and fasted state are useful when testing oral solid formulations of poorly water-soluble drugs. Dilution of amphiphile solutions affects the aggregation state of the amphiphiles because bile salt......, and oleic acid) and a combination of these were prepared at high bile salt concentration. Micelles in the glycocholate solutions decreased in size when diluted. The addition of insoluble amphiphiles led to bigger micelles with no clear correlation between size of the micelles and amphiphile concentration....... Dilution of the two- and four component media caused enlargement of the mixed micelles and formation of vesicles. The solubility of estradiol in the buffer solution was increased with addition of the amphiphiles. A good correlation (R(2) = 0.987) was found between estradiol solubility and mass...

  16. Robotic dissolution station

    Energy Technology Data Exchange (ETDEWEB)

    Beugelsdijk, T.J.; Hollen, R.M.; Temer, D.J.; Haggart, R.J.; Erkkila, T.H.

    1991-12-31

    This invention is comprised of a robotic station for dissolving active metals in acid in an automated fashion. A vessel with cap, containing the active metal is placed onto a shuttle which retracts to a point at which it is directly beneath a cap removing and retaining mechanism. After the cap is removed, a tube carrying an appropriate acid is inserted into the vessel, and the acid is introduced. The structure of the station forms an open hood which is swept of gases generated by the dissolution and the air removed to a remote location for scrubbing. After the reaction is complete, the shuttle extends and the vessel may be removed by a robot arm.

  17. Estimation of biological chromophores using diffuse optical spectroscopy: benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    Nachabé, Rami; Hendriks, Benno H. W.; van der Voort, Marjolein; Desjardins, Adrien E.; Sterenborg, Henricus J. C. M.

    2010-01-01

    With an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of our technique

  18. Estimation of biological chromophores using diffuse optical spectroscopy: Benefit of extending the UV-VIS wavelength range to include 1000 to 1600 nm

    NARCIS (Netherlands)

    R. Nachabé (Rami); B.H.W. Hendriks (Benno); M. van der Voort (Marjolein); A.E. Desjardins (Adrien); H.J.C.M. Sterenborg (Dick)

    2010-01-01

    textabstractWith an optical fiber probe, we acquired spectra from swine tissue between 500 and 1600 nm by combining a silicon and an InGaAs spectrometer. The concentrations of the biological chromophores were estimated by fitting a mathematical model derived from diffusion theory. The advantage of

  19. Nontronite dissolution rates and implications for Mars

    Science.gov (United States)

    Gainey, S. R.; Hausrath, E. M.; Hurowitz, J. A.; Milliken, R. E.

    2014-02-01

    The Fe-rich smectite nontronite M+1.05[Si6.98Al1.02][Al0.29Fe3.68Mg0.04]O20(OH)4 has been detected using orbital data at multiple locations in ancient terrains on Mars, including Mawrth Vallis, Nilli Fossae, north of the Syrtis Major volcanic plateau, Terra Meridiani, and the landing site of the Mars Science Laboratory (MSL), Gale Crater. Given the antiquity of these sites (>3.0 Ga), it is likely that nontronite has been exposed to the martian environment for long periods of time and therefore provides an integrated record of processes in near surface environments including pedogenesis and diagenesis. In particular, nontronite detected at Mawrth Vallis is overlain by montmorillonite and kaolinite, and it has been previously suggested that this mineralogical sequence may be the result of surface weathering. In order to better understand clay mineral weathering on Mars, we measured dissolution rates of nontronite in column reactors at solution pH values of 0.9, 1.7, and 3.0, and two flow rates (0.16 ml/h and 0.32 ml/h). Solution chemistry indicates stoichiometric dissolution at pH = 0.9 and non-stoichiometric dissolution at pH = 1.7 and 3.0. Mineral dissolution rates based on elemental release rates at pH = 1.7 and 3.0 of Ca, Si and Fe follow the order interlayer > tetrahedral > octahedral sites, respectively. The behavior of all experiments suggests far from equilibrium conditions, with the exception of the experiment performed at pH 3.0 and flow rate 0.16 ml/h. A pH-dependent dissolution rate law was calculated through Si release from experiments that showed no dependence on saturation (far from equilibrium conditions) under both flow rates and is r = 10-12.06 (±0.123) · 10-0.297 (±0.058)·pH where r has the units mol mineral m-2 s-1. When compared to dissolution rates from the literature, our results indicate that nontronite dissolution is significantly slower than dissolution of the primary phases present in basalt under acidic conditions, suggesting that once

  20. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    silicates dissolution to the high salinity conditions in subsurface environments. In addition to cations, the role of anions in geochemical reactions in subsurfaces are important. This study investigated the anion effects by studying sulfate and oxalate. Sulfate formed monodentate surface complexes with the Al sites on plagioclase surface and enhanced the dissolution. Oxalate was also found to enhance the plagioclase dissolution. Co-existing oxalate and sulfate suppressed the effects of sulfate on plagioclase dissolution. This information provides useful insights for understanding the roles of sulfate and organic compounds on the CO2 water-mineral interactions during scCO2 enhanced oil recovery. The results also aid in formulating a scientific guideline of the proper amount of SO2 co-injection with CO2. Water in GCS sites can exist in water-bearing scCO2 in addition to the aqueous phase in brine. Thus, it is important to understand the effects of water-bearing scCO2 on the carbonation of silicates. To address the gap between the nano- and micro-sized particles used in the laboratory to the large grains in field sites, we utilized wollastonite and investigated the effects of particle sizes on the wollastonite carbonation in water-bearing scCO2. The thickness of the reacted layer on the particle surfaces was found to be constant for different sized particles. The amorphous silica layer formed act as a diffusion barrier for water-bearing scCO2. In addition, the reaction extent was higher with more water, lower temperature, and higher pressure. Further, higher water saturation percentage and lower temperature can lead to the formation of more permeable amorphous silica layers. This thesis included the investigations of both liquid phase and vapor phase water that contacted with scCO2, and the effects of cations and anions on both formation and caprock minerals. The findings from this work improve our knowledge of the geochemical reactions at CO2-water-mineral interfaces, which

  1. The velocity dependent dissolution of spent nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Nutt, W.M.

    1990-02-01

    A model describing the dissolution of fission products and transuranic isotopes from spent nuclear fuel into flowing ground water has been developed. This model is divided into two parts. The first part of the model calculates the temperature within a consolidated spent fuel waste form at a given time and ground water velocity. This model was used to investigate whether water flowing at rates representative of a geological repository located at Yucca Mountain, Nevada, will cool a wasteform consisting of consolidated spent nuclear fuel pins. Time and velocity dependent temperature profiles were generated. These profiles were input into the second model, which calculates the dissolution rate of waste isotopes from a spent fuel pin. Two dissolution limiting processes were modeled; the processes are dissolution limited by the solubility limit of an isotopes in the ground water, and dissolution limited by the diffusion of waste isotopes from the interior of a spent fuel pin to the surface where dissolution can occur

  2. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    Science.gov (United States)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics

  3. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  4. Field-scale forward and back diffusion through low-permeability zones

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle.

  5. Field-scale forward and back diffusion through low-permeability zones.

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2017-07-01

    Understanding the effects of back diffusion of groundwater contaminants from low-permeability zones to aquifers is critical to making site management decisions related to remedial actions. Here, we combine aquifer and aquitard data to develop recommended site characterization strategies using a three-stage classification of plume life cycle based on the solute origins: aquifer source zone dissolution, source zone dissolution combined with back diffusion from an aquitard, and only back diffusion. We use measured aquitard concentration profile data from three field sites to identify signature shapes that are characteristic of these three stages. We find good fits to the measured data with analytical solutions that include the effects of advection and forward and back diffusion through low-permeability zones, and linearly and exponentially decreasing flux resulting from source dissolution in the aquifer. Aquifer contaminant time series data at monitoring wells from a mature site were well described using analytical solutions representing the combined case of source zone and back diffusion, while data from a site where the source had been isolated were well described solely by back diffusion. The modeling approach presented in this study is designed to enable site managers to implement appropriate remediation technologies at a proper timing for high- and low-permeability zones, considering estimated plume life cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dissolution of FFTF vendor fuel

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone

  7. Dissolution of FFTF vendor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, R.E.

    1979-08-01

    Dissolution experiments were performed on FFTF vendor fuel (both mechanically mixed and coprecipitated) during 1974, 1975, and 1976. A marked improvement was noted in the completeness of fuel dissolution from 1974 to 1976. The reason for this is unknown but may have been attributable to slight changes in fuel fabrication conditions. In general, the bulk of the fuel pellets tested dissolved to greater than 99.9% in nitric acid alone.

  8. Dissolution glow curve in LLD

    International Nuclear Information System (INIS)

    Haverkamp, U.; Wiezorek, C.; Poetter, R.

    1990-01-01

    Lyoluminescence dosimetry is based upon light emission during dissolution of previously irradiated dosimetric materials. The lyoluminescence signal is expressed in the dissolution glow curve. These curves begin, depending on the dissolution system, with a high peak followed by an exponentially decreasing intensity. System parameters that influence the graph of the dissolution glow curve, are, for example, injection speed, temperature and pH value of the solution and the design of the dissolution cell. The initial peak does not significantly correlate with the absorbed dose, it is mainly an effect of the injection. The decay of the curve consists of two exponential components: one fast and one slow. The components depend on the absorbed dose and the dosimetric materials used. In particular, the slow component correlates with the absorbed dose. In contrast to the fast component the argument of the exponential function of the slow component is independent of the dosimetric materials investigated: trehalose, glucose and mannitol. The maximum value, following the peak of the curve, and the integral light output are a measure of the absorbed dose. The reason for the different light outputs of various dosimetric materials after irradiation with the same dose is the differing solubility. The character of the dissolution glow curves is the same following irradiation with photons, electrons or neutrons. (author)

  9. Bacterial Association with Particles: Aggregation to Dissolution

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.

    an important role in the trophic dynamics of an ecosystem (Fig. 1) Bacterial role in aggregation formation and dissolution In aquatic systems particles are important components in the turnover, decomposition and sinking flux of both organic and inorganic... (Nicholas and Walling, 1998). Although bacteria are responsible for assimilating most of the DOC in aquatic ecosystem, yet the fluxes of DOC through bacteria include a wide variety of compounds derived from unknown sources and composition (Azam et al., 1993...

  10. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    Science.gov (United States)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  11. Dissolution behavior of negative-type photoresists for display manufacture studied by quartz crystal microbalance method

    Science.gov (United States)

    Tsuneishi, Asuka; Uchiyama, Sachiyo; Kozawa, Takahiro

    2018-04-01

    Photoresists have been widely used as patterning materials for electronic devices such as displays and semiconductors. Understanding pattern formation mechanisms is essential for the efficient development of resist materials. In particular, the dissolution mechanism of resist materials is an important process in pattern formation. In this study, the dissolution mechanisms of negative-type resists for display manufacture were investigated using a quartz crystal microbalance (QCM) method. The changes in frequency during development were measured for polymer and resist films. The observed major trend was as follows. The development type changed from an insoluble state to a peeling type and a dissolution type with Case II diffusion with an increase in the acid value of the polymers. The characteristics of the dissolution with Case II diffusion are the formation of a transient swelling layer (dissolution front) and steady-state front motion (linear weight loss). For the dissolution with Case II diffusion, the dissolution time and the original thickness of the transient swelling layer decreased with an increase in the acid value of the polymers.

  12. How does natural groundwater flow affect CO2 dissolution in saline aquifers?

    Science.gov (United States)

    Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.

    2017-12-01

    The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.

  13. Development of Dissolution Test Method for Drotaverine ...

    African Journals Online (AJOL)

    Methods: Sink conditions, drug stability and specificity in different dissolution media were tested to optimize a dissolution test method using a USP paddle type dissolution test apparatus set at a speed of. 50 rpm. The dissolution medium consisted of 900 ml of phosphate buffer (pH 6.8) containing 0.25% w/v cetrimide at 37 ...

  14. Study of dissolution process and its modelling

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available The use of mathematical concepts and language aiming to describe and represent the interactions and dynamics of a system is known as a mathematical model. Mathematical modelling finds a huge number of successful applications in a vast amount of science, social and engineering fields, including biology, chemistry, physics, computer sciences, artificial intelligence, bioengineering, finance, economy and others. In this research, we aim to propose a mathematical model that predicts the dissolution of a solid material immersed in a fluid. The developed model can be used to evaluate the rate of mass transfer and the mass transfer coefficient. Further research is expected to be carried out to use the model as a base to develop useful models for the pharmaceutical industry to gain information about the dissolution of medicaments in the body stream and this could play a key role in formulation of medicaments.

  15. The impact of ART on union dissolution

    DEFF Research Database (Denmark)

    Martins, Mariana Veloso; Vassard, Ditte; Hougaard, Charlotte Ørsted

    2018-01-01

    and to deal with the surrounding stigma. Using a population-based study and couple-level data, we investigated the extent to which ART treatment increases the risk for divorce/marital dissolution during up to 16 years of follow-up. STUDY DESIGN SIZE, DURATION: Register-based national cohort study including...... was prospectively sampled. Participants could change status during follow-up if they entered ART. The final sample had 148 972 couples, followed until marital dissolution, death of self/spouse, migration or until 31 December 2010. We used Cox regression models adjusting for female and male age, education, marriage......, common child at baseline and live-born child during follow-up. MAIN RESULTS AND THE ROLE OF CHANCE: At baseline, the majority of couples were married (69%). More non-ART couples opted for marriage (70% versus 64%; P

  16. Characterizing the Dissolution Rate of CO2-Brine in Porous Media under Gaseous and Supercritical Conditions

    Directory of Open Access Journals (Sweden)

    Bohao Wu

    2017-12-01

    Full Text Available The CO2-brine dissolution homogenizes the distribution of residual CO2 and reduces the leakage risk in the saline aquifer. As a key parameter to immobilize the free CO2, the dissolution rate of CO2-brine could be accelerated through mechanisms like diffusion and dispersion, which are affected by the subsurface condition, pore structure, and background hydrological flow. This study contributed the calculated dissolution rates of both gaseous and supercritical CO2 during brine imbibition at a pore-scale. The flow development and distribution in porous media during dynamic dissolution were imaged in two-dimensional visualization using X-ray microtomography. The fingerings branching and expansion resulted in greater dissolution rates of supercritical CO2 with high contact between phases, while the brine bypassed the clusters of gaseous CO2 with a slower dissolution and longer duration due to the isolated bubbles. The dissolution rate of supercritical CO2 was about two or three orders of magnitude greater than that of gaseous CO2, while the value distributions both spanned about four orders of magnitude. The dissolution rates of gaseous CO2 increased with porosity, but the relationship was the opposite for supercritical CO2. CO2 saturation and the Reynolds number were analyzed to characterize the different impacts on gaseous and supercritical CO2 at different dissolution periods.

  17. Structural characterization of M(IV)1-xLn(III)xO2-x/2 (M = Ce, Th) mixed-oxides prepared from oxalate precursors. Multi-parametric study of dissolution and microstructural evolution

    International Nuclear Information System (INIS)

    Horlait, D.

    2011-01-01

    In the framework of Gen IV program development, several physico-chemical properties of some foreseen fuels, including the chemical durability, have to be evaluated. In this aim, a study was undertaken on M(IV) 1-x Ln(III) x O 2 (M=Ce,Th) model compounds prepared from oxalate precursors. The fluorite-type structure of CeO 2 and ThO 2 remains stable up to x ≅ 0.4, the substitution of M(IV) by Ln(III) occurring simultaneously to the formation of oxygen vacancies. For higher x values, a cubic superstructure is formed as a result of oxygen vacancies ordering. The normalized dissolution rates of such solids were found to be strongly enhanced by the Ln(III) fraction. On the contrary, the nature of the M(IV) and Ln(III) elements did not modify significantly the normalized dissolution rates. The effect of temperature and acid concentration suggested the existence of surface-controlling dissolution reactions. Simultaneously, the microstructural evolution of both powdered and sintered samples revealed some important changes in the reactive surface during dissolution tests. ESEM images allowed observing the existence of preferential dissolution sites located at grains boundaries and around crystalline defects, leading to the formation of corrosion pits. In addition, the formation of gelatinous phases, acting as diffusion barriers (thus slowing down the dissolution process) was also evidenced. (author) [fr

  18. Fault controlled dissolution of bedded rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Neil L.; Knapp, Ralph W. [Kansas Geological Survey, Lawrence, KS (United States); Brown, R. James [Calgary Univ., AB (Canada)

    1993-12-31

    Analysis of well log and seismic data suggest that about 40 m of Famennian-age bedded rock salt was uniformly deposited within the Wabamun Group in the Stettler area, southeastern Alberta, Canada. Subsequent to deposition, this original rock salt was leached to the extent that is preserved, now only as isolated-to-contiguous bodies of irregular shape and variable thickness. In the immediate study area, dissolution appears to have been initiated by regional faulting and/or fracturing during the mid-Late Cretaceous, and accentuated thereafter by various large-scale mechanisms including glaciation. In this paper, seismic data across a prominent NNE trending salt-dissolution feature in the Stettler area are presented. In short cross-section, this subsidence feature is manifested as an up-ward-expanding zone of measurable subsidence, characterized by increased structural relief at greater depths, and small-amplitude near-vertical offsets. This subsidence feature is consistent with: the onset of salt dissolution as a result of regional faulting and/or fracturing during mid-Late Cretaceous time; the plastic deformation of rock salt creep; the gradual (as opposed to catastrophic) subsidence of the post-salt strata; and accelerated rates of leaching during the Pleistocene and Holocene in response to glacial loading and unloading. (author). 12 refs., 4 figs

  19. Microbubble dissolution in a multigas environment.

    Science.gov (United States)

    Kwan, James J; Borden, Mark A

    2010-05-04

    Microbubbles occur naturally in the oceans and are used in many industrial and biomedical applications. Here, a theoretical and experimental study was undertaken to determine the fate of a microbubble suddenly suspended in a medium with several gas species as in, for example, the injection of an ultrasound contrast agent into the bloodstream. The model expands on Epstein and Plesset's analysis to include any number of gases. An experimental system was developed which isolates the microbubble in a permeable hollow fiber submerged in a perfusion chamber, allowing rapid exchange of the external aqueous medium. Experimental verification of the model was performed with individual sulfur hexafluoride (SF(6)) microbubbles coated with the soluble surfactant, sodium dodecyl sulfate (SDS). SDS-coated microbubbles suddenly placed in an air-saturated medium initially grew with the influx of O(2) and N(2) and then dissolved under Laplace pressure. SF(6)-filled microbubbles coated with the highly insoluble lipid, dibehenoylphosphatidylcholine, were found to exhibit significantly different behavior owing to a dynamic surface tension. The initial growth phase was diminished, possibly owing to a shell "breakup" tension that exceeded the pure gas/liquid surface tension. Three dissolution regimes were observed: (1) an initial rapid dissolution to the initial diameter followed by (2) steady dissolution with monolayer collapse and finally (3) stabilization below 10 microm diameter. Results indicated that the lipid shell becomes increasingly rigid as the microbubble dissolves, which has important implications on microbubble size distribution, stability, and acoustic properties.

  20. Alloy dissolution in argon stirred steel

    Science.gov (United States)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  1. In vitro dissolution of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cusbert, P.J.; Carter, M.W. (Alligator Rivers Region Research Inst., Jabiru, NT (Australia)); Woods, D.A. (Office of the Supervising Scientist, Parkes, ACT (Australia))

    1994-01-01

    As part of the recommended procedure for calculating radiation doses from inhaled radioactive material, the ICR divides radionuclides into three transportability classes on the basis of their dissolution half-times. A method of measuring dissolution rates of uranium compounds in lung fluid using a batch replacement method has been commonly used to determine the transportability class for dosimetry purposes. A report by Stockwell et al however, suggested that the batch replacement technique produced results that varied with the experimental design. Studies are reported of measurements of the dissolution rate of uranium concentrate from an Australian mill and a NBS uranium reference material and the results confirm that the batch replacement method does not produce valid results. The apparent transportability of the uranium is affected by the frequency of solvent replacement. Hence a change in technique will cause a change in the result. (Author).

  2. Transient refractory material dissolution by a volumetrically-heated melt

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Jean Marie, E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ratel, Gilles [CEA, DEN, DTN, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Combeau, Hervé [Institut Jean Lamour, UMR 7198, Lorraine University, Ecole des Mines de Nancy, Parc de Saurupt, 54042 Nancy Cedex (France); Gaus-Liu, Xiaoyang; Kretzschmar, Frank; Miassoedov, Alexei [Karlsruhe Institut of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Highlights: • We describe a test investigating ceramic dissolution by a molten non-eutectic melt. • The evolution of the interface temperature between melt and refractory is measured. • A theoretical model describing dissolution kinetics is proposed. • When dissolution stops, interface temperature is the liquidus temperature of the melt. - Abstract: The present work addresses the question of corium–ceramic interaction in a core catcher during a core-melt accident in a nuclear power plant. It provides an original insight into transient aspects concerning dissolution of refractory material by a volumetrically heated pool. An experiment with simulant material (LIVECERAM) is presented. Test results clearly show that dissolution of solid refractory material can occur in a non-eutectic melt at a temperature which is lower than the melting temperature of the refractory material. During the dissolution transient, the interface temperature rises above the liquidus temperature, corresponding to the instantaneous average composition of the melt pool. With constant power dissipation in the melt and external cooling of the core-catcher, a final steady-state situation is reached. Dissolution stops when the heat flux (delivered by the melt to the refractory) can be removed by conduction through the residual thickness of the ceramic, with T{sub interface} = T{sub liquidus} (calculated for the average composition of the final liquid pool). The final steady state corresponds to a uniform pool composition and uniform interface temperature distribution. Convection in the pool is governed by natural thermal convection and the heat flux distribution is therefore similar to what would be obtained for a single component pool. An interpretation of the experiment with two model-based approaches (0D and 1D) is presented. The mass transfer kinetics between the interface and the bulk is controlled by a diffusion sublayer within the boundary layer. During the dissolution transient

  3. Actor bonds after relationship dissolution

    DEFF Research Database (Denmark)

    Skaates, Maria Anne

    2000-01-01

    Most of the presented papers at the 1st NoRD Workshop can be classified as belonging to the business marketing approach to relationship dissolution. Two papers were conceptual, and the remaining six were empirical studies. The first conceptual study by Skaates (2000) focuses on the nature...... of the actor bonds that remain after a business relationship has ended. The study suggests that an interdisciplinary approach would provide a richer understanding of the phenomenon; this could be achieved by using e.g. Bourdieu's sociological concepts in dissolution research....

  4. Dissolution Threats and Legislative Bargaining

    DEFF Research Database (Denmark)

    Becher, Michael; Christiansen, Flemming Juul

    2015-01-01

    Chief executives in many parliamentary democracies have the power to dissolve the legislature. Despite a well-developed literature on the endogenous timing of parliamentary elections, political scientists know remarkably little about the strategic use of dissolution power to influence policymaking....... To address this gap, we propose and empirically evaluate a theoretical model of legislative bargaining in the shadow of executive dissolution power. The model implies that the chief executive's public support and legislative strength, as well as the time until the next constitutionally mandated election...

  5. Effect of pseudo-gravitational acceleration on the dissolution rate of miscible drops.

    Science.gov (United States)

    Viner, Gloria; La Monica, Tatiana; Lombardo, Renato; Pojman, John A

    2017-10-01

    The effect of pseudo-gravitational acceleration on the dissolution process of two phase miscible systems has been investigated at high acceleration values using a spinning drop tensiometer with three systems: 1-butanol/water, isobutyric acid/water, and triethylamine/water. We concluded that the dissolution process involves at least three different transport phenomena: diffusion, barodiffusion, and gravitational (buoyancy-driven) convection. The last two phenomena are significantly affected by the centrifugal acceleration acting at the interface between the two fluids, and the coupling with the geometry of the dissolving drop leads to a change of the mass flux during the course of the dissolution process.

  6. Mechanism and Kinetics for the Dissolution of Apatitic Materials in Acid Solutions

    Directory of Open Access Journals (Sweden)

    Calmanovici C.E.

    1997-01-01

    Full Text Available Abstract - This work concerns the study of the digestion step in the production process of phosphoric acid. Some qualitative experiments indicate that the difference between the pH at the surface of the phosphate and that in the bulk of the solution is negligible and that the dissolution is controlled by diffusion of products away from the phosphate particle. In further experiments, to isolate the dissolution phenomenon from the formation of calcium sulfate, the sulfuric acid normally used industrially is replaced by hydrochloric acid. The phosphate material used in our experiments is a model apatitic material: synthetic hydroxyapatite (HAP. The dissolution of calcium hydroxyapatite was studied with increasing amounts of calcium and phosphate at different temperatures. A simple method was developed for this observation based on the time required for complete dissolution of the HAP powder. The results confirm that the dissolution is controlled by a diffusional process through an interface of calcium and phosphate ions released from the solid surface. A kinetic model for the dissolution of apatitic materials is proposed which assumes a shrinking particle behaviour controlled by diffusion of calcium ions. The experimental results are fitted to this model to determine the mass transfer constant for HAP dissolution in acid solutions. The activation energy of the reaction is about 14kJ/mol. This study was carried on in conditions similar to the industrial ones for the production of phosphoric acid by the dihydrate-process

  7. Random effects in drug dissolution

    Czech Academy of Sciences Publication Activity Database

    Čupera, J.; Lánský, Petr

    2010-01-01

    Roč. 41, 3-4 (2010), s. 430-439 ISSN 0928-0987 Grant - others:GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z50110509 Keywords : dissolution * stochastic differential equations * Wiener process Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.291, year: 2010

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 10: Summary report to phase 3 academic library respondents including frequency distributions

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1991-01-01

    Phase 3 of a 4 part study was undertaken to study the use of scientific and technical information (STI) in the academic aerospace community. Phase 3 of this project used three questionnaires that were sent to three groups (i.e., faculty, librarians, and students) in the academic aerospace community. Specific attention was paid to the types of STI used and the methods in which academic users acquire STI. The responses of the academic libraries are focussed on herein. Demographic information on academic aerospace libraries is provided. Data regarding NASA interaction with academic aerospace libraries is also included, as is the survey instrument.

  9. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  10. Thin film modeling of crystal dissolution and growth in confinement

    Science.gov (United States)

    Gagliardi, Luca; Pierre-Louis, Olivier

    2018-01-01

    We present a continuum model describing dissolution and growth of a crystal contact confined against a substrate. Diffusion and hydrodynamics in the liquid film separating the crystal and the substrate are modeled within the lubrication approximation. The model also accounts for the disjoining pressure and surface tension. Within this framework, we obtain evolution equations which govern the nonequilibrium dynamics of the crystal interface. Based on this model, we explore the problem of dissolution under an external load, known as pressure solution. We find that in steady state, diverging (power-law) crystal-surface repulsions lead to flat contacts with a monotonic increase of the dissolution rate as a function of the load. Forces induced by viscous dissipation then surpass those due to disjoining pressure at large enough loads. In contrast, finite repulsions (exponential) lead to sharp pointy contacts with a dissolution rate independent of the load and the liquid viscosity. Ultimately, in steady state, the crystal never touches the substrate when pressed against it. This result is independent from the nature of the crystal-surface interaction due to the combined effects of viscosity and surface tension.

  11. Dissolution of organic solvents from painted surfaces into water

    International Nuclear Information System (INIS)

    Wren, J.C.; Jobe, D.J.; Sanipelli, G.G.; Ball, J.M.

    2000-01-01

    The presence of volatile iodine in containment buildings is one of the major safety concerns in the potential event of nuclear reactor accidents. Organic impurities in containment water, originating from various painted structural surfaces and organic materials, could have a significant impact on iodine volatility following an accident. To determine the source and magnitude of organic impurities and their effects on time-dependent iodine volatility, the dissolution for organic constituents from paints used in reactor buildings has been studied under postulated accident conditions. The studies of the organic dissolution from carbon steel coupons coated with zinc-primed vinyl, epoxy-primed polyurethane or epoxy paints over the temperature range 25-90 deg C are reported. Relatively large activation energies were measured for the release of the principal organic compounds from painted surfaces, suggesting it is the release of the solvents from the paint matrix rather than their diffusion through the solution that is the rate determining step for the dissolution mechanism. The similarities in the values of activation energies for the dissolution of different organic compounds from the paints suggest the release rate is independent of the nature of the painted surface or the type of organic being released from the surface. These two observations indicate that it may be possible to write a generalized rate expression for the release of organic compounds from painted surfaces in containment following an accident. The possible implications of these results for predicting iodine volatility in containment are also discussed. (author)

  12. Enhanced performance large volume dissolution-DNP

    DEFF Research Database (Denmark)

    Bowen, Sean; Ardenkjær-Larsen, Jan Henrik

    2014-01-01

    A systematic study of the performance of the dissolution process in dissolution-DNP is presented. A relatively simple set of modifications is made to the standard Hypersense dissolution system to enable polarization of large volume samples. These consist of a large volume sample cup along with su...

  13. Dissolution and compaction instabilities in geomaterials

    Science.gov (United States)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  14. Dissolution Kinetics of Alumina Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  15. Uranothorite solid solutions: From synthesis to dissolution

    International Nuclear Information System (INIS)

    Costin, Dan-Tiberiu

    2012-01-01

    USiO 4 coffinite appears as one of the potential phases formed in the back-end of the alteration of spent fuel, in reducing storage conditions. A study aiming to assess the thermodynamic data associated with coffinite through an approach based on the preparation of Th 1-x U x SiO 4 uranothorite solid solutions was then developed during this work. First, the preparation of uranothorite samples was successfully undertaken in hydrothermal conditions. However, the poly-phased samples systematically formed for x ≥ 0,2 underlined the kinetic hindering linked with the preparation of uranium-enriched samples, including coffinite end-member. Nevertheless, the characterization of the various samples led to confirm the formation of an ideal solid solution and allowed the constitution of a spectroscopic database. The purification of the samples was then performed by the means of different protocols based on physical (dispersion-centrifugation) or chemical (selective dissolution of secondary phases) methods. This latter led to a complete of the impurities (Th 1-y U y O 2 mixed oxide and amorphous silica) through successive washing steps in acid then basic media. Finally, dissolution experiments were undertaken on uranothorite samples (0 ≤ xexp. ≤ 0,5) and allowed pointing out the influence of composition, pH and temperature on the normalized dissolution rate of the compounds. Also, the associated thermodynamic data, such as activation energy, indicate that the reaction is controlled by surface reactions. Once the equilibrium is reached, the analogous solubility constants were determined for each composition studied, then allowing the extrapolation to coffinite value. It was then finally possible to conclude on the inversion of coffinitisation reaction with temperature. (author) [fr

  16. Observation of the Dissolution from Residual Phase Multicomponent Nonaqueous Phase Liquids

    Science.gov (United States)

    Brahma, P. P.; Harmon, T. C.

    2001-05-01

    Nonaqueous phase liquid (NAPL) subsurface contaminants (e.g., fuels, solvents) are typically complex mixtures. This work examines the impact of intra-NAPL diffusion and mixture nonideality on dissolution from multicomponent NAPL mixtures through a computational and experimental approach. Downstream concentrations are observed during the controlled dissolution of three-component residual NAPL in a three-dimensional model aquifer. These results, when compared to single-component residual NAPL results, are used to identify (1) if and when intra-NAPL interactions contribute significantly to the overall dissolution process, and (2) the role that factors, such as length scale, hydrodynamic conditions, and/or mixture ideality, play in determining (1). Model ternary mixtures were chosen to represent a range of ideality based on UNIFAC-estimated activity coefficients. In this case, tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA) were selected as the ideal mixture. The mixture of PCE, TCE, and octanol was shown to exhibit significant deviations from ideality and selected to represent a nonideal mixture. Experimental results for the two mixtures are compared to each other and to analogous results from pure PCE dissolution experiments. The experimental results are further interpreted using a three-dimensional transport model subject to a boundary concentration history calculated using a ternary intra-NAPL diffusion/dissolution submodel. The combined experimental and computational findings are used to delineate conditions for which a detailed physical-chemical description of NAPL dissolution is warranted and those for which a simplified description will suffice.

  17. Buffering children from marital conflict and dissolution.

    Science.gov (United States)

    Katz, L F; Gottman, J M

    1997-06-01

    Examined several protective mechanisms that may reduce deleterious correlates of marital conflict and marital dissolution in young children. One set of potential buffers focused on parent-child interaction: parental warmth, parental scaffolding/praise, and inhibition of parental rejection. As a second set of potential buffers, each parent was interviewed about their "meta-emotion philosophy"--that is, their feelings about their own emotions, and their attitudes and responses to their children's anger and sadness. The third set of potential buffers concerned intraindividual characteristics of the child, including the child's intelligence and regulatory physiology (basal vagal tone and vagal suppression). Fifty-six families with a preschool child were studied at two time points: when the children were 5 years old (Time 1) and again when the children were 8 years old (Time 2). At Time 1, naturalistic observations of marital and parent-child interaction were conducted and assessment of child regulatory physiology was obtained through measures of basal vagal tone and suppression of vagal tone. Parents were also interviewed individually about their feelings about their own and their children's emotions, and children's intelligence was assessed. At Time 2, assessment of child outcomes were obtained, including observations of peer interaction, mother ratings of behavior problems and mother and teacher ratings of peer aggression, mother ratings of child physical illness, and measures of achievement. Results indicated that all Time 1 buffering factors protected children in face of marital conflict and dissolution.

  18. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  19. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    International Nuclear Information System (INIS)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs

  20. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    Science.gov (United States)

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    USP apparatus I and II are gold standard methodologies for determining the in vitro dissolution profiles of test drugs. However, it is difficult to use in vitro dissolution results to predict in vivo dissolution, particularly the pH-dependent solubility of weak acid and base drugs, because the USP apparatus contains one vessel with a fixed pH for the test drug, limiting insight into in vivo drug dissolution of weak acid and weak base drugs. This discrepancy underscores the need to develop new in vitro dissolution methodology that better predicts in vivo response to assure the therapeutic efficacy and safety of oral drug products. Thus, the development of the in vivo predictive dissolution (IPD) methodology is necessitated. The major goals of in vitro dissolution are to ensure the performance of oral drug products and the support of drug formulation design, including bioequivalence (BE). Orally administered anticancer drugs, such as dasatinib and erlotinib (tyrosine kinase inhibitors), are used to treat various types of cancer. These drugs are weak bases that exhibit pH-dependent and high solubility in the acidic stomach and low solubility in the small intestine (>pH 6.0). Therefore, these drugs supersaturate and/or precipitate when they move from the stomach to the small intestine. Also of importance, gastric acidity for cancer patients may be altered with aging (reduction of gastric fluid secretion) and/or co-administration of acid-reducing agents. These may result in changes to the dissolution profiles of weak base and the reduction of drug absorption and efficacy. In vitro dissolution methodologies that assess the impact of these physiological changes in the GI condition are expected to better predict in vivo dissolution of oral medications for patients and, hence, better assess efficacy, toxicity and safety concerns. The objective of this present study is to determine the initial conditions for a mini-Gastrointestinal Simulator (mGIS) to assess in vivo

  1. Dissolution kinetics of calcined ulexite in ammonium sulfate solutions

    Directory of Open Access Journals (Sweden)

    Nizamettin Demirkıran

    2018-03-01

    Full Text Available Ulexite is one of the boron minerals, which include a respectable amount of hydration water. It can be used as a raw material in the production of boron compounds. Some part of water in the composition of ulexite can be removed from the solid matrix applying dehydration treatment, and a porous structure can be obtained to increase the reaction rate. In the present study, the effect of dehydration temperature on dissolution kinetics of ulexite in ammonium sulfate solutions was researched in a batch reactor utilizing the parameters of solution concentration, solid-to-liquid ratio, stirring speed and reaction temperature. It was determined that the dissolution rate of calcined material increased with increasing solution concentration and reaction temperature and with decreasing solid-to-liquid ratio. The highest dissolution rate was attained with the sample calcined at 150 °C. It was found that the dissolution rate fit to the first order pseudo-homogeneous model. The activation energy of the dissolution process was estimated to be 42 kJ·mol-1.

  2. Thorium oxide dissolution: kinetics and mechanism

    International Nuclear Information System (INIS)

    Simonnet, Marie

    2015-01-01

    Studies of new energy sources are necessary to meet the rising global demand. In the nuclear area, Th-U cycle has been reinvestigated to supplement or replace the currently used U-Pu cycle. This project though needs further improvement to be operated in an industrial plant, especially on the reprocessing process, which consists in fuel dissolution in nitric acid medium, followed by liquid-liquid extraction. Still, unlike uranium, thorium oxide does not dissolve in concentrated nitric acid. Small amounts of fluoride are required to achieve the dissolution. The dissolution is rather slow and HNO 3 -HF mixture is very corrosive. The aim of this project is thus to find an efficient dissolution method which both decreases corrosion and improves dissolution rate. The synthesized thorium oxide powder has been dissolved in chosen conditions. Effects of solid parameters, dissolution method and dissolution medium have been studied. Results show a strong dependence on oxide crystallinity. No improvement on dissolution rate was observed with power ultrasounds, except for the temperature increase, which greatly enhances dissolution rate. No other complexing agents than fluoride allows total dissolution. Rising HNO 3 and HF concentrations increases dissolution rate until the amount of fluorides is so high that a precipitate forms at the surface. This study led to the proposal of a dissolution mechanism whose limiting step is the formation of an activated complex. Based on kinetics and equilibrium equations, initial dissolution rate was then written as a function of the different studied parameters. Experimental results were finally fitted by this relation to find kinetics and thermodynamics constants, proving the accuracy of the proposed mechanism. (author)

  3. Bench Scale Saltcake Dissolution Test Report

    International Nuclear Information System (INIS)

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-01-01

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird(reg s ign) sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method

  4. Calcination/dissolution residue treatment

    International Nuclear Information System (INIS)

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O'Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination

  5. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    Science.gov (United States)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  6. Factors affecting the differences in reactivity and dissolution rates between UO2 and spent nuclear fuel

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Tait, J.C.; Sunder, S.; Steward, S.; Russo, R.E.; Rudnicki, J.D.

    1996-08-01

    Strategies for the permanent disposal of spent nuclear fuel are being investigated by the U.S. Department of Energy at the Yucca Mountain site and by Atomic Energy of Canada Limited (AECL) in plutonic rock formations in the Canadian Shield. Uranium dioxide is the primary constituent of spent nuclear fuel and dissolution of the matrix is regarded as a necessary step for the release of radionuclides to repository groundwaters. In order to develop models to describe the dissolution of the U0 2 fuel matrix and subsequent release of radionuclides, it is necessary to understand both chemical and oxidative dissolution processes and how they can be affected by parameters such as groundwater composition, pH, temperature, surface area, radiolysis and redox potential. This report summarizes both published and on-going dissolution studies of U0 2 and both LWR and CANDU spent fuels being conducted at the Pacific Northwest Laboratory, Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory in the U.S. and at AECL's Whiteshell Laboratories in Canada. The studies include both dissolution tests and electrochemical experiments to measure uranium dissolution rates. The report focuses on identifying differences in reactivity towards aqueous dissolution between U0 2 and spent fuel samples as well as estimating bounding values for uranium dissolution rates. This review also outlines the basic tenets for the development of a dissolution model that is based on electrochemical principles. (author). 49 refs., 2 tabs., 11 figs

  7. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations.

    Science.gov (United States)

    Hellweg, Arnim; Rappoport, Dmitrij

    2015-01-14

    We report optimized auxiliary basis sets for use with the Karlsruhe segmented contracted basis sets including moderately diffuse basis functions (Rappoport and Furche, J. Chem. Phys., 2010, 133, 134105) in resolution-of-the-identity (RI) post-self-consistent field (post-SCF) computations for the elements H-Rn (except lanthanides). The errors of the RI approximation using optimized auxiliary basis sets are analyzed on a comprehensive test set of molecules containing the most common oxidation states of each element and do not exceed those of the corresponding unaugmented basis sets. During these studies an unsatisfying performance of the def2-SVP and def2-QZVPP auxiliary basis sets for Barium was found and improved sets are provided. We establish the versatility of the def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets for RI-MP2 and RI-CC (coupled-cluster) energy and property calculations. The influence of diffuse basis functions on correlation energy, basis set superposition error, atomic electron affinity, dipole moments, and computational timings is evaluated at different levels of theory using benchmark sets and showcase examples.

  8. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  9. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  10. Accelerated dissolution of iron oxides in ice

    OpenAIRE

    D. Jeong; K. Kim; W. Choi

    2012-01-01

    Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a~new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4), the dissolution of iron oxides was greatly enhanced in the ice phas...

  11. Dissolution enhancement of curcumin via curcumin-prebiotic inulin nanoparticles.

    Science.gov (United States)

    Fares, Mohammad M; Salem, Mu'taz Sheikh

    2015-01-01

    Dissolution enhancement of curcumin via prebiotic inulin designed to orally deliver poorly water-soluble curcumin at duodenum low acidity (pH 5.5) was investigated. Different prebiotic inulin-curcumin nanoparticles were synthesized in ethanol-water binary system at different pre-adjusted pH values. Characterization via FTIR, XRD and TGA revealed the formation of curcumin-inulin conjugates, whereas surface morphology via SEM and TEM techniques implied the formation of nanoparticle beads and nanoclusters. Prebiotic inulin-curcumin nanoparticles prepared at pH 7.0 demonstrated a maximum curcumin dissolution enhancement of ≈90% with respect to 30% for curcumin alone at pH 5.5. Power law constant values were in accordance with dissolution enhancement investigations. All samples show Fickian diffusion mechanism. XRD investigations confirm that inulin maintain its crystalline structure in curcumin-inulin conjugate structure, which confirms that it can exert successfully its prebiotic role in the gastrointestinal (GI) tract. Therefore, the use of curcumin-inulin nanoparticles can perform dual-mission in the GI tract at the duodenum environment; release of 90% of curcumin followed by prebiotic activity of inulin, which will probably play a significant role in cancer therapeutics for the coming generations.

  12. Optimization of Dissolution Compartments in a Biorelevant Dissolution Apparatus Golem v2, Supported by Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Ivan Stupák

    2017-11-01

    Full Text Available Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus—Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium, we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.

  13. Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model

    Science.gov (United States)

    Cornet, Thomas; Fleurant, Cyril; Seignovert, Benoît; Cordier, Daniel; Bourgeois, Olivier; Le Mouélic, Stéphane; Rodriguez, Sebastien; Lucas, Antoine

    2017-04-01

    Titan is an Earth-like world possessing a nitrogen-rich atmosphere that covers a surface with signs of lacustrine (lakes, seas, depressions), fluvial (channels, valleys) and aeolian (dunes) activity [1]. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan's extremely cold environment (T -180°C) allows water to exist only under the form of icy "bedrock". The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. Based on comparisons between Titan's landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called "labyrinthic terrain", located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan's surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD) [2] modified to include karstic dissolution as the major geological process [3]. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs

  14. PRINCIPAL COMPONENT ANALYSIS OF FACTORS DETERMINING PHOSPHATE ROCK DISSOLUTION ON ACID SOILS

    Directory of Open Access Journals (Sweden)

    Yusdar Hilman

    2016-10-01

    Full Text Available Many of the agricultural soils in Indonesia are acidic and low in both total and available phosphorus which severely limits their potential for crops production. These problems can be corrected by application of chemical fertilizers. However, these fertilizers are expensive, and cheaper alternatives such as phosphate rock (PR have been considered. Several soil factors may influence the dissolution of PR in soils, including both chemical and physical properties. The study aimed to identify PR dissolution factors and evaluate their relative magnitude. The experiment was conducted in Soil Chemical Laboratory, Universiti Putra Malaysia and Indonesian Center for Agricultural Land Resources Research and Development from January to April 2002. The principal component analysis (PCA was used to characterize acid soils in an incubation system into a number of factors that may affect PR dissolution. Three major factors selected were soil texture, soil acidity, and fertilization. Using the scores of individual factors as independent variables, stepwise regression analysis was performed to derive a PR dissolution function. The factors influencing PR dissolution in order of importance were soil texture, soil acidity, then fertilization. Soil texture factors including clay content and organic C, and soil acidity factor such as P retention capacity interacted positively with P dissolution and promoted PR dissolution effectively. Soil texture factors, such as sand and silt content, soil acidity factors such as pH, and exchangeable Ca decreased PR dissolution.

  15. Modeling of anodic dissolution of U Pu Zr ternary alloy in the molten LiCl KCl electrolyte

    Science.gov (United States)

    Iizuka, Masatoshi; Kinoshita, Kensuke; Koyama, Tadafumi

    2005-02-01

    The metallic fuel anode in the molten salt electrorefining step for the pyrometallurgical reprocessing was modeled based on the findings from the anodic dissolution tests using a U Pu Zr ternary alloy. This anode model simulates selective dissolution of uranium and plutonium at lower anode potential, growth of a diffusion controlling layer consisting of a mixture of the molten salt electrolyte and the remaining zirconium metal, and simultaneous dissolution of all the constituents at higher anode potential. The calculation with this model reproduced well the actual anodic behavior of the U Pu Zr ternary alloy such as two-step rapid rise in the anode potential.

  16. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  17. Emotional and Cognitive Coping in Relationship Dissolution

    Science.gov (United States)

    Wrape, Elizabeth R.; Jenkins, Sharon Rae; Callahan, Jennifer L.; Nowlin, Rachel B.

    2016-01-01

    Dissolution of a romantic relationship can adversely affect functioning among college students and represents one primary reason for seeking campus counseling. This study examined the associations among common coping strategies and distress following relationship dissolution. Avoidance and repetitive negative thinking (RNT) were significantly…

  18. Numerical modelling of multicomponent LNAPL dissolution kinetics ...

    Indian Academy of Sciences (India)

    During the initial phase, the dissolution rate of a soluble compound is very high due to the high concentration gradient, and as dissolution progresses, its effective solubility decreases with change in mole fraction. At higher pore volumes, the mole fractions of lower solubility fractions increase which can result in higher ...

  19. Dissolution of a new explosive formulation containing TNT and HMX: comparison with octol.

    Science.gov (United States)

    Monteil-Rivera, Fanny; Deschamps, Stéphane; Ampleman, Guy; Thiboutot, Sonia; Hawari, Jalal

    2010-02-15

    GIM (Greener Insensitive Material) is a new explosive formulation made of HMX (51.5%), TNT (40.7%), and a binder, ETPE (7.8%), which is currently investigated by the Canadian Department of National Defense for a wider use by the Army. In the present study, dissolution of GIM in water was measured and compared to the dissolution of octol (HMX/TNT: 70/30). Although the presence of ETPE did not prevent completely TNT and HMX from dissolving, GIM appeared to dissolve more slowly than octol. The ETPE was shown to prevent the formulation particles from collapsing and to retard the dissolution of both TNT and HMX by limiting their exposure to water. In both octol and GIM, the dissolution rate of the particles was governed by the compound(s) that are slower to dissolve, i.e. HMX in octol, and HMX and ETPE in GIM. A model based on Fick's diffusion law allowed fitting well the dissolution data of octol but was less appropriate to fit the data of GIM likely due to a physical rearrangement of the solid upon dissolution. The present findings demonstrate that ETPE in GIM decreases the risks of explosives leakage from particles of the new formulation and should facilitate the collecting of non-exploded GIM particles in training sites.

  20. EFFECT OF ANION, PH, AND TEMPERATURE ON THE DISSOLUTION BEHAVIOR OF ALUMINUM OXIDE FILMS.

    Energy Technology Data Exchange (ETDEWEB)

    LEE,H.; ISAACS,H.S.

    2001-09-02

    The growth and dissolution behavior of oxide film on abraded pure Al has been investigated using cyclic polarization and has been found to be highly dependent on solution chemistry and temperature. The nature of the anions, borate, chromate, phosphate, and sulfate, at pH 3 to 11, and temperatures 0 to 60 C were examined. In near neutral solutions the dissolution behavior was greatly affected by each anion. In borate and chromate solutions at near neutral pH and room temperature, the currents continued to decrease with each subsequent cycle due to oxide thickening. In contrast, a significant rate of oxide dissolution occurred to produce reproducible repetitive curves during subsequent cycles in a phosphate and sulfate. Sulfate also produced a distinctly different mode during high field oxide growth. In increasing acidic (pH < 4) or basic (pH >9) solutions the oxide dissolution rate increased rapidly. The oxide dissolution rate was always enhanced with increasing temperature. At high pH (>9) or elevated temperature (60 C), a current maximum was observed in chromate, due to a diffusion controlled monochromate ion enhanced dissolution reaction at the oxide/solution interface.

  1. Artemisinin-Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement.

    Science.gov (United States)

    Kakran, M; Sahoo, N G; Li, L; Judeh, Z; Panda, P

    2011-01-01

    Nanoparticles of a poorly water-soluble anti-malarial drug, artemisinin (ART), and its composite particles with a hydrophilic polymer, polyvinylpyrrolidone (PVP), were synthesized using a nanofabrication method called the evaporative precipitation of nanosuspension (EPN). ART nanoparticles and ART/PVP composite particles containing ART nanoparticles coated with PVP were successfully prepared with the aim of improving the dissolution rate of ART. The effect of polymer concentration on the physical and morphological properties, and dissolution rate of the EPN-prepared ART/PVP composite particles was investigated. The crystallinity of ART nanoparticles decreased with increasing polymer concentration, as suggested by the differential scanning calorimetry and X-ray diffraction studies. The phase solubility studies revealed an AL-type of curve, indicating a linear increase in the drug solubility with PVP concentration. The dissolution of the ART nanoparticles and ART/PVP composite particles markedly increased as compared to that of the original ART powder due to lower particle size and reduced crystallinity of the drug particles. The percent dissolution efficiency (DE), relative dissolution (RD), t 75% and similarity factor (f 2) were calculated for the statistical analysis. Various mathematical models, viz., zero-order, first-order, Korsemeyer-Peppas and Higuchi, were applied to fit the experimental drug-dissolution data and diffusion was found to be the drug release mechanism.

  2. Kinetics of oxidic phase dissolution in acids

    International Nuclear Information System (INIS)

    Gorichev, I.G.; Kipriyanov, N.A.

    1981-01-01

    The critical analysis of the experimental data on dissolution kinetics of metal oxides (BeO, V 2 O 5 , UO 2 , Nb 2 O 5 , Ta 2 O 5 etc.) in acid media is carried out. Kinetic peculiarities of oxide dissolution are explained on the basis of the notions of electron- proton theory. It is established that the surface nonstoichiometric ccomposition of oxide phase and potential jump, appearing on the interface of the oxide-electrolyte phase are the important factors, determining the dissolution rate of a solid phase. The dissolution rate of metal oxides is limited by the transition of protons into the solid oxide phase. Morphological models of heterogeneous kinetics are used when explaining kinetic regularities of oxide dissolution process [ru

  3. Influence of dissolution media pH and USP1 basket speed on erosion and disintegration characteristics of immediate release metformin hydrochloride tablets.

    Science.gov (United States)

    Desai, Divyakant; Wong, Benjamin; Huang, Yande; Tang, Dan; Hemenway, Jeffrey; Paruchuri, Srinivasa; Guo, Hang; Hsieh, Daniel; Timmins, Peter

    2015-01-01

    To investigate the influence of the pH of the dissolution medium on immediate release 850 mg metformin hydrochloride tablets. A traditional wet granulation method was used to manufacture metformin hydrochloride tablets with or without a disintegrant. Tablet dissolution was conducted using the USP apparatus I at 100 rpm. In spite of its pH-independent high solubility, metformin hydrochloride tablets dissolved significantly slower in 0.1 N HCl (pH 1.2) and 50 mM pH 4.5 acetate buffer compared with 50 mM pH 6.8 phosphate buffer, the dissolution medium in the USP. Metformin hydrochloride API compressed into a round 1200 mg disk showed a similar trend. When basket rotation speed was increased from 100 to 250 rpm, the dissolution of metformin hydrochloride tablets was similar in all three media. Incorporation of 2% w/w crospovidone in the tablet formulation improved the dissolution although the pH-dependent trend was still evident, but incorporation of 2% w/w croscarmellose sodium resulted in rapid pH-independent tablet dissolution. In absence of a disintegrant in the tablet formulation, the dissolution was governed by the erosion-diffusion process. Even for a highly soluble drug, a super-disintegrant was needed in the formulation to overcome the diffusion layer limitation and change the dissolution mechanism from erosion-diffusion to disintegration.

  4. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  5. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  6. Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strain.

    Science.gov (United States)

    Hernandez, Eduardo; Pawar, Pallavi; Keyvan, Golshid; Wang, Yifan; Velez, Natasha; Callegari, Gerardo; Cuitino, Alberto; Michniak-Kohn, Bozena; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-01-05

    This study describes how the strain on formulation components affects dissolution and how near infrared spectroscopy can be used to predict dissolution. Strain (exposure to shear stress) applied during powder mixing affects the interaction between formulation components. Particles experience shear strain when they move relative to each other in a process affecting the properties of the final product. This stress affects the dissolution of oral solid dosages forms. However, dissolution testing destroys the entire tablet, making it impossible to further evaluate tablet properties when an out of specification result is obtained. Thus, a nondestructive technique such as near infrared spectroscopy is desirable to predict dissolution. The aim of this study was to predict dissolution on tablets with different levels of strain (shear) using near infrared spectroscopy in combination with multivariate data analysis. Shear was induced using a modified Couette cell on the powder mixture and tablets from these mixtures were produced using a tablet press emulator. Tablets produced with different strain levels were measured using near infrared spectroscopy. Spectra were obtained in diffuse reflectance mode and pretreated with baseline correction to maintain the physical and chemical information of the tablets. Dissolution profiles were obtained using USP Apparatus 2 as a reference method. Principal component analysis was used to study the sources of variation in the spectra obtained. Partial least squares 2 was used to predict dissolution on tablets with different levels of strain.

  7. Solid–liquid phase equilibrium and dissolution properties of ethyl vanillin in pure solvents

    International Nuclear Information System (INIS)

    Wu, Hao; Wang, Jingkang; Zhou, Yanan; Guo, Nannan; Liu, Qi; Zong, Shuyi; Bao, Ying; Hao, Hongxun

    2017-01-01

    Highlights: • Solubility of ethyl vanillin in eight pure solvents were determined by a static analytical method. • The experimental solubility data of ethyl vanillin were correlated and analyzed by four thermodynamic models. • Dissolution thermodynamic properties of ethyl vanillin were calculated and discussed. - Abstract: The solubility of ethyl vanillin (EVA) in eight pure solvents were determined in different temperature ranges from (273.15 to 318.15) K by a static analytical method. In the temperature ranges investigated, it was found that the solubility of EVA in all the selected solvents increased with the rising of temperature. Furthermore, four thermodynamic models were used to correlate the experimental solubility data and the calculation results showed that selected models can be used to correlate the solubility data with satisfactory accuracy. Finally, the dissolution thermodynamic properties, including dissolution Gibbs energy, dissolution enthalpy and dissolution entropy of EVA in the eight selected solvents were calculated.

  8. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  9. Chrono-potentiometry by chemical re-dissolution - Electrochemistry in two phase medium

    International Nuclear Information System (INIS)

    Chivot, Jacques

    1988-01-01

    In this document which comprises two research thesis, the first one addresses the technique of chrono-potentiometry by chemical re-dissolution (or potentiometric stripping analysis). The author, after a presentation of this technique, reports the search for relationships which govern this analytical technique with respect to diffusion transport regimes imposed to species involved in the pre-concentration and chemical re-dissolution stages. The second research thesis addresses dispersed media like emulsions, micro-emulsions and micellar solutions which are interesting potential applications in organic electrochemistry. The author recalls some properties of tensio-active compounds, and then describes electrochemical investigations and electro-synthesis performed within these media

  10. Importance of surface structure on dissolution of fluorite: Implications for surface dynamics and dissolution rates

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Balic-Zunic, T.

    2014-02-01

    Dissolution rates are usually calculated as a function of surface area, which is assumed to remain constant ignoring the changes occurring on the surface during dissolution. Here we present a study of how topography of natural fluorite surfaces with different orientation changes during up to 3200 h of dissolution. Results are analyzed in terms of changes in surface area, surface reactivity and dissolution rates. All surfaces studied present fast changes in topography during the initial 200 h of dissolution. The controlling factors that cause the development of topography are the stability of the step edges forming the initial surface and its inclination to the closest stable planes, which are specific for each surface orientation. During an initial dissolution regime dissolution rates decrease significantly, even though the total surface area increases. During a second dissolution regime, some surfaces continue to present significant changes in topography, while for others the topography tends to remain approximately constant. The observed variation of dissolution rates are attributed to a decrease of the density of step edges on the surface and the continuous increase in exposure of more stable surfaces. Calculations of dissolution rates, which assume that dissolution rates are directly proportional to surface area, are not valid for the type of surfaces studied. Instead, to develop accurate kinetic dissolution models and more realistic stochastic dissolution simulations the surface reactivity, determined by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure.

  11. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Science.gov (United States)

    Jerden, James L.; Frey, Kurt; Ebert, William

    2015-07-01

    The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO2 and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO2 and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO2 and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H2O2 and O2). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit fuel degradation to chemical dissolution, which results in radionuclide source term values that are four or five orders of magnitude lower than when oxidative dissolution processes are operative. This paper presents the scientific basis of the model, the approach for modeling used fuel in a disposal system, and preliminary

  12. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    ); while drug released much slower than the polymer when molecular level mixing or drug-polymer interaction was absent (SDD-PB systems). For ASDs without drug-polymer interaction (i.e., KTZ/HPMC systems), the mixing homogeneity had little impact on the release rate of either the drug or the polymer thus SDD and SDD-PB demonstrated the same drug or polymer release rate, while the drug released slowly and independently of polymer release. The initial drug release from an ASD was controlled by 1) the polymer release rate; 2) the strength of drug-polymer interaction, including the intrinsic interaction caused by the chemistry of the drug and the polymer (measured by the χ value), as well as that the apparent interaction caused by the drug-polymer ratio (measure by the extent of peak shift on spectroscopic analysis); and 3) the level of mixing homogeneity between the drug and polymer. In summary, the selection of polymer, drug-polymer ratio, and ASD processing conditions have profound impacts on the dissolution behavior of ASDs. Graphical Abstract Relationship between initial drug and polymer dissolution rates from amorphous solid dispersions with different mixing uniformity and drug-polymer interactions.

  13. Scale and distribution of marine carbonate burial dissolution pores

    Directory of Open Access Journals (Sweden)

    Anjiang Shen

    2016-06-01

    Full Text Available It is gradually accepted that porosity can be created in burial settings via dissolution by organic acid; TSR derived or hydrothermal fluids. The role of deep-buried carbonate reservoirs is becoming more and more important since the degree and difficulty in petroleum exploration of shallow strata are increasing. A profound understanding of the development scale and prediction of the deep-buried carbonate reservoirs is economically crucial. In addition to the formation mechanism, scale and distribution of burial dissolution pores in burial settings are focused on in recent studies. This paper is based on case studies of deep-buried (>4500 m carbonate reservoirs from the Tarim Basin and Sichuan Basin. Case studies mentioned includes dissolution simulation experiments proposes that an open system is of crucial importance in the development of large-scale burial dissolution pores, the distribution pattern of which is controlled by lithology, pre-existing porosity, and pore throat structures. These findings provided the basis for evaluation and prediction of deep-buried carbonate reservoirs.

  14. Dissolution of steel slags in aqueous media.

    Science.gov (United States)

    Yadav, Shashikant; Mehra, Anurag

    2017-07-01

    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.

  15. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  16. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  17. In silico dissolution rates of pharmaceutical ingredients

    Science.gov (United States)

    Dogan, Berna; Schneider, Julian; Reuter, Karsten

    2016-10-01

    The correlation between in vitro dissolution rates and the efficiency of drug formulations establishes an opportunity for accelerated drug development. Using in silico methods to predict the dissolution rates bears the prospect of further efficiency gains by avoiding the actual synthesis of candidate formulations. Here, we present a computational protocol that achieves such prediction for molecular crystals at low undersaturation. The protocol exploits the classic spiral dissolution model to minimize the number of material parameters that require explicit molecular simulations. Comparison to available data for acetylsalicylic acid and alpha lactose monohydrate indicates a tunable accuracy within one order of magnitude.

  18. Dissolution of metallic uranium in alkalis

    International Nuclear Information System (INIS)

    Mondino, Angel V.; Wilkinson, Maria V.; Manzini, Alberto C.

    1999-01-01

    The dissolution of U metallic foils has been studied in the framework of the development of an improved 99 Mo-production process. The best conditions for the dissolution of uranium foils of approximately 150 μm are the following: a) NaClO concentrations of 0.20 and 0.23 M with NaOH of 0.27 and 0.31 M respectively; b) temperature of the solution, 70 C degrees; c) volume of the solution, 15 ml / cm 2 of uranium foil; d) dissolution time, 30 minutes. (author)

  19. Dissolution of cinnabar (HgS) in the presence of natural organic matter

    Science.gov (United States)

    Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.

    2005-01-01

    Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.

  20. Test Objectives for the Saltcake Dissolution Retrieval Demonstration

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    This document describes the objectives the Saltcake Dissolution Retrieval Demonstration. The near term strategy for single-shell tank waste retrieval activities has shifted from focusing on maximizing the number of tanks entered for retrieval (regardless of waste volume or content) to a focus on scheduling the retrieval of wastes from those single-shell tanks with a high volume of contaminants of concern. These contaminants are defined as mobile, long-lived radionuclides that have a potential of reaching the groundwater and the Columbia River. This strategy also focuses on the performance of key retrieval technology demonstrations, including the Saltcake Dissolution Retrieval Demonstration, in a variety of waste forms and tank farm locations to establish a technical basis for future work. The work scope will also focus on the performance of risk assessment, retrieval performance evaluations (RPE) and incorporating vadose zone characterization data on a tank-by-tank basis, and on updating tank farm closure/post closure work plans. The deployment of a retrieval technology other than Past-Practice Sluicing (PPS) allows determination of limits of technical capabilities, as well as, providing a solid planning basis for future SST retrievals. This saltcake dissolution technology deployment test will determine if saltcake dissolution is a viable retrieval option for SST retrieval. CH2M Hill Hanford Group (CHG) recognizes the SST retrieval mission is key to the success of the River Protection Project (RPP) and the overall completion of the Hanford Site cleanup. The objectives outlined in this document will be incorporated into and used to develop the test and evaluation plan for saltcake dissolution retrievals. The test and evaluation plan will be developed in fiscal year 2001

  1. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  2. Spent fuel dissolution rates: from experiments to models

    International Nuclear Information System (INIS)

    Gimenez, J.; Casa, I.; Clarens, F.; Rovira, M.; Pablo, J. de

    2003-01-01

    In this work we made a review on the different models and mechanisms that have been developed by different authors to explain the dissolution of spent nuclear fuel under oxic conditions. In most cases the oxidizing reagent used has been the molecular oxygen, but also some works with hydrogen peroxide or even with hypochloric acid can be found. Leaching experiments have been carried out with different types of spent nuclear fuel as well as with either chemical or natural analogues such as non irradiated uranium dioxide or natural uraninites, respectively. In oxygen and in the absence of bicarbonate ion, the data found in literature can be fitted considering the two-step oxidative dissolution mechanism developed by Torrero et al. (1998). This mechanism is able to explain the different reaction orders for pH oxygen concentration obtained depending on the experimental conditions. In the presence of bicarbonate, the data can be fitted considering the mechanism described de Pablo et al. (1999), which consists on two different steps: (1) oxidation of the surface of the solid and (2) surface co-ordination of the bicarbonate ion and dissolution of the complex formed. This model allows to explain different reaction orders for bicarbonate and oxygen concentration obtained by different authors. The development of a mechanism of UO 2 oxidation and dissolution in the presence of hydrogen peroxides is much more complied than in the case of oxygen because of the decomposition of the hydrogen peroxide, which is probably catalysed by the UO 2 (s). At present, more work is being directed to the elucidation of this mechanism, including the study of the influence of some radicals such as OH on the UO 2 dissolution. (Author)

  3. Spent fuel. Dissolution and oxidation

    International Nuclear Information System (INIS)

    Grambow, B.

    1989-03-01

    Data from studies of the low temperature air oxidation of spent fuel were retrieved in order to provide a basis for comparison between the mechanism of oxidation in air and corrosion in water. U 3 O 7 is formed by diffusion of oxygen into the UO 2 lattice. A diffusion coefficient of oxygen in the fuel matric was calculated for 25 degree C to be in the range of 10 -23 to 10 -25 m 2 /s. The initial rates of U release from spent fuel and from UO 2 appear to be similar. The lowest rates (at 25 degree c >10 -4 g/(m 2 d)) were observed under reducing conditions. Under oxidizing conditions the rates depend mainly of the nature and concentraion of the oxidant and/or on corbonate. In contact with air, typical initial rates at room temperature were in the range between 0.001 and 0.1 g/(m 2 d). A study of apparent U solubility under oxidizing conditions was performed and it was suggested that the controlling factor is the redox potential at the UO 2 surface rather than the E h of the bulk solution. Electrochemical arguments were used to predict that at saturation, the surface potential will eventually reach a value given by the boundaries at either the U 3 O 7 /U 3 O 8 or the U 3 O 7 /schoepite stability field, and a comparison with spent fuel leach data showed that the solution concentration of uranium is close to the calculated U solubility at the U 3 O 7 /U 3 O 8 boundary. The difference in the cumulative Sr and U release was calculated from data from Studsvik laboratory. The results reveal that the rate of Sr release decreases with the square root of time under U-saturated conditions. This time dependence may be rationalized either by grain boundary diffusion or by diffusion into the fuel matrix. Hence, there seems to be a possibility of an agreement between the Sr release data, structural information and data for oxygen diffusion in UO 2 . (G.B.)

  4. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets.

    Science.gov (United States)

    Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-04-01

    The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  5. SIMFUEL dissolution studies in granitic groundwater

    International Nuclear Information System (INIS)

    Casas, I.; Caceci, M.S.; Bruno, J; Sandino, A.

    1991-09-01

    The dissolution behavior of an unirradiated chemical analogue of spent nuclear fuel (SIMFUEL) has been studied in the presence of two different synthetic groundwaters at 25 degrees C and under both oxic and anoxic conditions. The release of U, Mo, Ba, Y and Sr was monitored during static (batch) leaching experiments of long duration (about 250 days). Preliminary results from continuous flow-through reactor experiments are also reported. The results obtained indicate the usefulness and limitations of SIMFUEL in the study of the kinetics and mechanism of dissolution of the minor components of spent nuclear fuel. Molybdenum, barium and strontium have shown a trend of congruent dissolution with the SIMFUEL matrix after a higher initial fractional release has been found to be solubility controlled under the experimental conditions. A clear dependence on the partial pressure of O 2 of the rate of dissolution of uranium has been observed. (au)

  6. Dissolution studies of synthetic soddyite and uranophane

    International Nuclear Information System (INIS)

    Casas, I.; Perez, I.; Torrero, E.; Bruno, J.; Cera, E.; Duro, L.

    1997-09-01

    The dissolution of synthetically obtained soddyite and uranophane has been studied in solutions of low ionic strength. These are the likely final phases of the oxidative alternation pathway of uranium dioxide. The thermodynamic and kinetic dissolution properties of these phases have been determined at different bicarbonate concentrations. The solubilities determined in the experiments with soddyite correspond fairly well to the theoretical model calculated with a log K 0 s0 =3.9±0.7. For uranophane, the best fitting was obtained for a log K 0 s0 =11.7±0.6. The dissolution rate in the presence of bicarbonate gave for soddyite an average value of 6.8(±4.4) 10 -10 mol m -2 s -1 . For uranophane, under the same experimental conditions, the following dissolution rate equation has been derived: r 0 (mol m -2 s -1 )=10 -9±2. [HCO 3 - ] 0.69±0.09 2

  7. Dissolution of UO2 in redox conditions

    International Nuclear Information System (INIS)

    Casas, I.; Pablo de, J.; Rovira, M.

    1998-01-01

    The performance assessment of the final disposal of the spent nuclear fuel in geological formations is strongly dependent on the spent fuel matrix dissolution. Unirradiated uranium (IV) dioxide has shown to be very useful for such purposes. The stability of UO 2 is very dependent on vault redox conditions. At reducing conditions, which are expected in deep groundwaters, the dissolution of the UO 2 -matrix can be explained in terms of solubility, while under oxidizing conditions, the UO 2 is thermodynamically unstable and the dissolution is kinetically controlled. In this report the parameters which affect the uranium solubility under reducing conditions, basically pH and redox potential are discussed. Under oxidizing conditions, UO 2 dissolution rate equations as a function of pH, carbonate concentration and oxidant concentration are reported. Dissolution experiments performed with spent fuel are also reviewed. The experimental equations presented in this work, have been used to model independent dissolution experiments performed with both unirradiated and irradiated UO 2 . (Author)

  8. Experimental determination of chlorite dissolution rates

    International Nuclear Information System (INIS)

    Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Wetton, P.D.; Savage, D.

    1995-01-01

    Current concepts of the geological disposal of low- and intermediate-level radioactive wastes in the UK envisage the construction of a mined facility (incorporating cementitious engineered barriers) in chlorite-bearing rocks. To model accurately the fluid-rock reactions within the disturbed zone surrounding a repository requires functions that describe mineral dissolution kinetics under pH conditions that vary from near neutral to highly alkaline. Therefore, an experimental study to determine the dissolution rates of Fe-rich chlorite has been undertaken as part of the Nirex Safety Assessment Research Program. Four experiments have been carried out at 25 C and four at 70 C, both sets using a range of NaCl/NaOH solutions of differing pH (of nominal pH 9.0, 10.3, 11.6 and 13.0 [at 25 C]). Dissolution rates have been calculated and were found to increase with increasing pH and temperature. However, increased pH resulted in non-stoichiometric dissolution possibly due to preferential dissolution of part of the chlorite structure relative to another, or reprecipitation of some elements as thin hydroxide or oxyhydroxide surface coatings on the chlorite. These results also show that chlorite dissolution is appreciably slower than that of albite and quartz at both 25 and 70 C, but slightly faster than that of muscovite at 70 C

  9. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in vivo dissolution.

    Science.gov (United States)

    Takeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E; Amidon, Gordon L

    2014-11-01

    In vitro dissolution tests are performed for new formulations to evaluate in vivo performance, which is affected by the change of gastrointestinal (GI) physiology, in the GI tract. Thus, those environmental changes should be introduced to an in vitro dissolution test. Many studies have successfully shown the improvement of in vitro-in vivo correlations (IVIVC) by introducing those physiological changes into dissolution tests. The gastrointestinal simulator (GIS), a multicompartment in vitro dissolution apparatus, was developed to evaluate in vivo drug dissolution. A gastric-emptying rate along with transit rate are key factors to evaluate in vivo drug dissolution and, hence, drug absorption. Dissolution tests with the GIS were performed with Biopharmaceutical Classification System class I drugs at five different gastric-emptying rates in the fasted state. Computational models were used to determine in vivo gastric-emptying time for propranolol and metoprolol based on the GIS dissolution results. Those were compared with published clinical data to determine the gastric half-emptying time. In conclusion, the GIS is a practical tool to assess dissolution properties and can improve IVIVC. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Carbonate ions and arsenic dissolution by groundwater

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  11. Dissolution, agglomerate morphology, and stability limits of protein-coated silver nanoparticles.

    Science.gov (United States)

    Martin, Matthew N; Allen, Andrew J; MacCuspie, Robert I; Hackley, Vincent A

    2014-09-30

    Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.

  12. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    Science.gov (United States)

    Sun, Jiao; Wang, Fan; Sui, Yue; She, Zhennan; Zhai, Wenjun; Wang, Chunling; Deng, Yihui

    2012-01-01

    In this paper work, four naked nanocrystals (size range 80–700 nm) were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold. PMID:23166438

  13. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin

    DEFF Research Database (Denmark)

    Wang, Wenbo; Zhou, Qi Tony; Sun, Si-Ping

    2016-01-01

    Colistin is often the only effective antibiotic against the respiratory infections caused by multidrug-resistant Gram-negative bacteria. However, colistin-resistant multidrug-resistant isolates have been increasingly reported and combination therapy is preferred to combat resistance. In this study...... is hygroscopic and rifampicin is hydrophobic, moisture absorption of combination formulations was significantly lower than the pure colistin formulation in the dynamic vapour sorption results. To investigate the dissolution characteristics, four dissolution test methods (diffusion Franz cell, modified Franz cell......, flow-through and beaker methods) were employed and compared. The modified Franz cell method was selected to test the dissolution behaviour of aerosolised powder formulations to eliminate the effect of membrane on dissolution. The results showed that surface enrichment of hydrophobic rifampicin neither...

  14. Development and Validation of a Dissolution Test Method for ...

    African Journals Online (AJOL)

    Purpose: To develop and validate a dissolution test method for dissolution release of artemether and lumefantrine from tablets. Methods: A single dissolution method for evaluating the in vitro release of artemether and lumefantrine from tablets was developed and validated. The method comprised of a dissolution medium of ...

  15. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Jiang, Chuanjia; Aiken, George R; Hsu-Kim, Heileen

    2015-10-06

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L(-1)) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  16. Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles

    Science.gov (United States)

    Jiang, Chuanjia; Aiken, George R.; Hsu-Kim, Heileen

    2015-01-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L–1) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  17. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

    Science.gov (United States)

    Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan

    2017-04-01

    The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

  18. Use of carbonate rocks for flue gas desulfurization: Reactive dissolution of limestone particles

    International Nuclear Information System (INIS)

    Blasio, Cataldo De; Mäkilä, Ermei; Westerlund, Tapio

    2012-01-01

    Sedimentary rocks, such as limestone, are widely utilized in flue gas desulfurization (FGD) processes because of their ability to form sulfur compounds. The most common system adopted for FGD is the wet scrubbing process, in which the dissolution rate of sedimentary rocks represents one of the most important factors. Evaluation of the dissolution and the reactivity of solid particles involved is therefore a key factor for FGD process design and plant operation. The rate of dissolution affects the cost of makeup and waste disposal. For this reason a method to test different qualities of raw materials can give us a better understanding of the desulfurization process and reasonable economical effects. In the present work the dissolution of carbonate rocks was investigated by utilizing hydrochloric acid and the mass transport phenomena involved in batch stirred tank reactors (BSTRs) were modeled. By evaluating the ratio of convective to diffusive mass transport and the ratio of momentum and mass diffusivity, it was possible to relate the quality of raw materials in terms of a defined Time Of Exposure (TOE). The model involved takes into account the variation of the particle size distribution derived from the allocation of the scattered light energy using the Fraunhofer diffraction theory. Improvements from previous studies were done .

  19. A multiphase interfacial model for the dissolution of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jerden, James L., E-mail: jerden@anl.gov [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States); Frey, Kurt [University of Notre Dame, Notre Dame, IN 46556 (United States); Ebert, William [Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439 (United States)

    2015-07-15

    Highlights: • This model accounts for chemistry, temperature, radiolysis, U(VI) minerals, and hydrogen effect. • The hydrogen effect dominates processes determining spent fuel dissolution rate. • The hydrogen effect protects uranium oxide spent fuel from oxidative dissolution. - Abstract: The Fuel Matrix Dissolution Model (FMDM) is an electrochemical reaction/diffusion model for the dissolution of spent uranium oxide fuel. The model was developed to provide radionuclide source terms for use in performance assessment calculations for various types of geologic repositories. It is based on mixed potential theory and consists of a two-phase fuel surface made up of UO{sub 2} and a noble metal bearing fission product phase in contact with groundwater. The corrosion potential at the surface of the dissolving fuel is calculated by balancing cathodic and anodic reactions occurring at the solution interfaces with UO{sub 2} and NMP surfaces. Dissolved oxygen and hydrogen peroxide generated by radiolysis of the groundwater are the major oxidizing agents that promote fuel dissolution. Several reactions occurring on noble metal alloy surfaces are electrically coupled to the UO{sub 2} and can catalyze or inhibit oxidative dissolution of the fuel. The most important of these is the oxidation of hydrogen, which counteracts the effects of oxidants (primarily H{sub 2}O{sub 2} and O{sub 2}). Inclusion of this reaction greatly decreases the oxidation of U(IV) and slows fuel dissolution significantly. In addition to radiolytic hydrogen, large quantities of hydrogen can be produced by the anoxic corrosion of steel structures within and near the fuel waste package. The model accurately predicts key experimental trends seen in literature data, the most important being the dramatic depression of the fuel dissolution rate by the presence of dissolved hydrogen at even relatively low concentrations (e.g., less than 1 mM). This hydrogen effect counteracts oxidation reactions and can limit

  20. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  1. Dissolution kinetics of purified and synthetic smectites at 25°C and PH∼9

    International Nuclear Information System (INIS)

    Marty, Nicolas C.M.; Tournassat, Christophe; Gaucher, Eric C.; Chino, Daisuke; Sato, Tsutomu; Villieras, Frederic; Giffaut, Eric; Cama, Jordi; Soler, J.M.

    2010-01-01

    Document available in extended abstract form only. Mineral rate laws that account for the kinetics of dissolution/precipitation of clays and other minerals are used in reactive transport codes to simulate and evaluate the evolution of geochemical conditions in the near-field of high level radioactive waste (HLW) in deep geological repositories. Smectite is the main component in the compacted bentonite used in the Multi-barrier system to lower permeability. As a consequence, molecular diffusion becomes the main mechanism of mass transport, and dissolution and precipitation reactions take place in close-to-equilibrium conditions. Nonetheless, in the reactive transport codes, databases utilized mainly incorporate rate laws derived at far-from- equilibrium conditions, which are not representative of near-field and far-field conditions of concrete-clay or iron-clay interfaces. Hence, there is an important need to derive kinetic rate laws that allow extrapolation of mineral dissolution/precipitation as a function of the solution saturation state (i.e., Gibbs free energy, ΔG r ). Once the effect of the environmental variables, such as pH, T and ΔG r , etc. exert on smectite dissolution is discerned, evaluation of the evolution of geochemical conditions in the HLW repository is carried out using reactive transport codes that couple the rate laws with transport equations. Several studies related dissolution of natural smectites with pH, and just a few dealt with the rate dependency on Gibbs free energy. The present study aims at estimating dissolution rates of montmorillonite in conditions as close as possible to those expected in the Callovo-Oxfordian formation, i.e. pH∼7.2 and 25 deg. C. Dissolution kinetics of two montmorillonites (natural Na-montmorillonite purified from MX80 and synthetic smectite) were investigated by means of flow-through experiments and solution-chemistry data obtained. The calculated rates were based on release of Si, Al and Mg and normalized

  2. Characterization of spent fuel hulls and dissolution residues

    International Nuclear Information System (INIS)

    Gue, J.P.; Andriessen, H.

    1985-04-01

    The main results obtained within the framework of CEC programmes, by KFK, UKAEA and CEA, are reviewed concerning the characterization of dissolution wastes. The contents were determined of the main radioactive emitters contained in the hulls originating in a whole fuel assembly sampled at the La Hague plant, or from Dounreay PFR fuels. Radiochemical characterizations were carried out by different methods including neutron emission measurement, alpha and beta-gamma spectrometry, and mass spectrometry. Decontamination of the hulls by using rinsings and supplementary treatment were also dealt with. The ignition and explosion risks associated with the zircaloy fines formed during the shearing of LWR fuels were examined, and the ignition properties of irradiated and unirradiated zircaloy powders were determined and compared. The physical properties and compositions of the dissolution residues of PFR fuels were defined, in order to conduct tests on the immobilization of these wastes in cement

  3. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  4. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    International Nuclear Information System (INIS)

    Pike, J

    2008-01-01

    Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat

  5. Use of fission track for deciphering the dissolution mechanism of silicates glasses

    International Nuclear Information System (INIS)

    Petit, J.C.; Brousse, C.

    1985-09-01

    Polished sections of silicate glasses containing latent or pre-etched fission tracks have been subjected to corrosion in deionized water or NaCl brines at 20, 50 and 100 0 C. The evolution of glass surface helps deciphering among reported dissolution models. We show that ion-exchange is dominant in simple glasses while in complex ones, dissolution involves several steps including an in-situ transformation of the pristine material and a reprecipitation of dissolved species

  6. Accelerating action of water on dissolution of stainless steel in the anodic regime of pitting corrosion

    International Nuclear Information System (INIS)

    Frejman, L.I.; Zamaletdinov, I.I.

    1982-01-01

    Anode limiting current of the 12Kh18N10T steel dissolution completely activated by chlorine ions in water-methanol 5 M LiCl solutions at 30-90 deg C exponentially increases with the increase of water concentration at the expense of decrease of the seeming activation energy epsilon of the process. Low epsilon values indicates diffusion nature of deceleration stage

  7. Arresting dissolution by interfacial rheology design

    Science.gov (United States)

    Beltramo, Peter J.; Gupta, Manish; Alicke, Alexandra; Liascukiene, Irma; Gunes, Deniz Z.; Baroud, Charles N.

    2017-01-01

    A strategy to halt dissolution of particle-coated air bubbles in water based on interfacial rheology design is presented. Whereas previously a dense monolayer was believed to be required for such an “armored bubble” to resist dissolution, in fact engineering a 2D yield stress interface suffices to achieve such performance at submonolayer particle coverages. We use a suite of interfacial rheology techniques to characterize spherical and ellipsoidal particles at an air–water interface as a function of surface coverage. Bubbles with varying particle coverages are made and their resistance to dissolution evaluated using a microfluidic technique. Whereas a bare bubble only has a single pressure at which a given radius is stable, we find a range of pressures over which bubble dissolution is arrested for armored bubbles. The link between interfacial rheology and macroscopic dissolution of ∼ 100 μm bubbles coated with ∼ 1 μm particles is presented and discussed. The generic design rationale is confirmed by using nonspherical particles, which develop significant yield stress at even lower surface coverages. Hence, it can be applied to successfully inhibit Ostwald ripening in a multitude of foam and emulsion applications. PMID:28893993

  8. Crystal modifications and dissolution rate of piroxicam.

    Science.gov (United States)

    Lyn, Lim Yee; Sze, Huan Wen; Rajendran, Adhiyaman; Adinarayana, Gorajana; Dua, Kamal; Garg, Sanjay

    2011-12-01

    Piroxicam is a nonsteroidal anti-inflammatory drug with low aqueous solubility which exhibits polymorphism. The present study was carried out to develop polymorphs of piroxicam with enhanced solubility and dissolution rate by the crystal modification technique using different solvent mixtures prepared with PEG 4000 and PVP K30. Physicochemical characteristics of the modified crystal forms of piroxicam were investigated by X-ray powder diffractometry, FT-IR spectrophotometry and differential scanning calorimetry. Dissolution and solubility profiles of each modified crystal form were studied and compared with pure piroxicam. Solvent evaporation method (method I) produced both needle and cubic shaped crystals. Slow crystallization from ethanol with addition of PEG 4000 or PVP K30 at room temperature (method II) produced cubic crystal forms. Needle forms produced by method I improved dissolution but not solubility. Cubic crystals produced by method I had a dissolution profile similar to that of untreated piroxicam but showed better solubility than untreated piroxicam. Cubic shaped crystals produced by method II showed improved dissolution, without a significant change in solubility. Based on the XRPD results, modified piroxicam crystals obtained by method I from acetone/benzene were cube shaped, which correlates well with the FTIR spectrum; modified needle forms obtained from ethanol/methanol and ethanol/acetone showed a slight shift of FTIR peak that may be attributed to differences in the internal structure or conformation.

  9. Catalysed electrolytic metal oxide dissolution processes

    International Nuclear Information System (INIS)

    Machuron-Mandard, X.

    1994-01-01

    The hydrometallurgical processes designed for recovering valuable metals from mineral ores as well as industrial wastes usually require preliminary dissolution of inorganic compounds in aqueous media before extraction and purification steps. Unfortunately, most of the minerals concerned hardly or slowly dissolve in acidic or basic solutions. Metallic oxides, sulfides and silicates are among the materials most difficult to dissolve in aqueous solutions. They are also among the main minerals containing valuable metals. The redox properties of such materials sometimes permit to improve their dissolution by adding oxidizing or reducing species to the leaching solution, which leads to an increase in the dissolution rate. Moreover, limited amounts of redox promoters are required if the redox agent is regenerated continuously thanks to an electrochemical device. Nuclear applications of such concepts have been suggested since the dissolution of many actinide compounds (e.g., UO 2 , AmO 2 , PuC, PuN,...) is mainly based on redox reactions. In the 1980s, improvements of the plutonium dioxide dissolution process have been proposed on the basis of oxidation-reduction principles, which led a few years later to the design of industrial facilities (e.g., at Marcoule or at the french reprocessing plant of La Hague). General concepts and well-established results obtained in France at the Atomic Energy Commission (''Commissariat a l'Energie Atomique'') will be presented and will illustrate applications to industrial as well as analytical problems. (author)

  10. Lyoluminescence of irradiated carbohydrates - the role of dissolution rate and oxygen

    International Nuclear Information System (INIS)

    Baugh, P.J.; Laflin, P.

    1980-01-01

    The lyoluminescent emission from γ-irradiated carbohydrates is shown to be strictly controlled by the rate of dissolution of the solid and the availability of oxygen for reaction during dissolution. These effects are explained in terms of oxidation of trapped radicals diffusing from the dissolving carbohydrate which react in an 'active volume' set up at the onset of dissolution at the crystal-water interface. At irradiation doses greater than 82.5 krad for mannose there is a suppression of the emission which results from an incomplete oxidation of the diffusing radicals due to insufficient O 2 in the active volume leading to a reaction involving unoxidised radicals and peroxyl radicals which are believed to be the precursors of the emission. This reaction is suppressed when the oxygen supply to the 'active volume' is increased. This can be achieved by increasing the oxygen content of the injector gas and indirectly by decreasing the solubility of the carbohydrate. Under these conditions the linear dose range of the lyoluminescence response is extended to ca. 330 krad close to the dose at which trapped radicals saturate in the irradiated solid carbohydrate. Although lyoluminescence is a liquid surface-layer effect as expected the generation of the emission is greatly influenced by oxygen present in the injection atmosphere. Quenching of lyoluminescence by adding peroxyl radical quenchers Cu(II) ions and hydroquinone, suggests that the reaction involving these quenchers also occurs in the 'active volume'. The results generally can be interpreted in terms of a diffusion model. (author)

  11. Dissolution from a liquid CO2 lake disposed in the deep ocean

    OpenAIRE

    Fer, Ilker; Haugan, Peter Mosby

    2003-01-01

    The dissolution from a liquid CO2 lake source located at a flat ocean bottom at 3,000 m depth is investigated. Using the unsteady, two-dimensional advection–diffusion equation, temporal and spatial distribution of CO2 dissolved from the source of 500 m length and of unit span is sought in a domain of 20 km horizontal and 200 m vertical extent. Different cases were run with uniform longitudinal speed and constant horizontal and vertical diffusion coefficients and with vertical prof...

  12. Make and break - Facile synthesis of cocrystals and comprehensive dissolution studies

    Science.gov (United States)

    Batzdorf, L.; Zientek, N.; Rump, D.; Fischer, F.; Maiwald, M.; Emmerling, F.

    2017-04-01

    Mechanochemistry is increasingly used as a 'green alternative' for synthesizing various materials including pharmaceutical cocrystals. Herein, we present the mechanochemical synthesis of three new cocrystals containing the API carbamazepine (cocrystals CBZ:Indometacin 1:1, CBZ:Benzamide 1:1, and CBZ:Nifedipine 1:1). The mechanochemical reaction was investigated in situ documenting a fast and complete reaction within one minute. Online NMR spectroscopy proved the direct influence of the dissolution behaviour of the coformers to the dissolution behaviour of the API carbamazepine. The dissolution behaviour of the organic cocrystals is compared to the behaviour of the pure drug indicating a general applicability of this approach for detailed cocrystal dissolution studies.

  13. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  14. Potential of Bio-Enhanced DNAPL Dissolution

    Science.gov (United States)

    Chu, J. M.; Kitanidis, P. K.; McCarty, P. L.

    2006-12-01

    DNAPL contamination is one of most challenging environmental problems. According to EPA's estimation, the total number of dense non-aqueous phase liquid (DNAPL) impacted sites in the U.S. could range from 15,000 to 25,000. It has been generally believed that promoting biological reactions that transform contaminants in DNAPL source zones can increase mass transfer rates, thereby shortening source longevity and total cleanup time. Use of bioremediation to enhance residual DNAPL dissolution, therefore, has potential as an economical and effective approach to accelerate DNAPL cleanup. While promising, some biological processes, such as biomass growth and gas production (CO2 and CH4), may occur together with biodegradation in source zones and adversely affect dissolution enhancement. In addition, the toxic effects of DNAPL compounds and transformation products produced by microorganisms may also adversely affect microbial activity and the extent of the bio-active zones. An understanding of how such factors control the efficiency of bio-enhanced dissolution is of great importance in helping to predict the potential benefits of DNAPL bioremediation. In this presentation, we will integrate the results of experimental and theoretical studies over the past six years on bio-enhanced tetrachloroethene (PCE) DNAPL dissolution to illustrate the effects on dissolution enhancement. Specifically, we will discuss the significance of our theoretical work on: (1) how biomass accumulation can affect dissolution enhancement for a PCE DNAPL pool and (2) the evolution of a bio-active zone in a residual DNAPL area under the influence of DNAPL toxicity. In addition, we will show the interplay between various groups of microorganisms within and around PCE DNAPL source zones as well as how our experimental work can help better understand the toxic effects of PCE and its transformation products on the activity of PCE dehalogenating bacteria. Finally, the presentation will highlight

  15. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film

    International Nuclear Information System (INIS)

    Olvera, O.G.; Quiroz, L.; Dixon, D.G.; Asselin, E.

    2014-01-01

    Graphical abstract: - Highlights: • FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes. • Fe 3+ reduction was the rate controlling step in the dissolution of fresh CuFeS 2 . • Diffusion within the passive film controlled the dissolution rate of passivated CuFeS 2 . - Abstract: The effect of pyrite (FeS 2 ) on the electrochemical dissolution of fresh and passivated chalcopyrite (CuFeS 2 ) electrodes has been studied. Current density values for the dissolution of CuFeS 2 were calculated from EIS measurements. FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes indicating that the galvanic effect continued even after the electrode was chemically passivated. The dissolution rate of CuFeS 2 decreased by a factor of 3 after the passivation treatment. Due to the low diffusion rates of ions within the CuFeS 2 passive film and due to an increase in the resistance to the transfer of electrons at the electrode/film interface, the activity of FeS 2 for the reduction of Fe 3+ ions was also reduced by a factor of 2.3 even though FeS 2 was not exposed to any chemical treatment. The results in this work indicate that the dissolution rate of the fresh CuFeS 2 electrode was controlled by the reduction of Fe 3+ ions whereas for the passivated CuFeS 2 electrode the dissolution rate was controlled by diffusion within the passive film

  16. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO 4 , has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO 4 . The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  17. Modeling of Dissolution Effects on Waterflooding

    DEFF Research Database (Denmark)

    Alexeev, Artem; Shapiro, Alexander; Thomsen, Kaj

    2015-01-01

    Physico-chemical interactions between the fluid and reservoir rock due to the presence of active components in the injected brine produce changes within the reservoir and can significantly impact the fluid flow. We have developed a 1D numerical model for waterflooding accounting for dissolution...... and precipitation of the components. Extending previous studies, we consider an arbitrary chemical non-equilibrium reaction-induced dissolution. We account for different individual volumes that a component has when precipitated or dissolved. This volume non-additivity also affects the pressure and the flow rate......-additivity is found to be responsible for insignificant change in the velocity of the displacement front....

  18. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  19. Assessing the effect of dissolved organic ligands on mineral dissolution rates: An example from calcite dissolution

    International Nuclear Information System (INIS)

    DeMaio, T.; Grandstaff, D.E.

    1997-01-01

    Experiments suggest that dissolved organic ligands may primarily modify mineral dissolution rates by three mechanisms: (1) metal-ligand (M-L) complex formation in solution, which increases the degree of undersaturation, (2) formation of surface M-L complexes that attack the surface, and (3) formation of surface complexes which passivate or protect the surface. Mechanisms (1) and (2) increase the dissolution rate and the third decreases it compared with organic-free solutions. The types and importance of these mechanisms may be assessed from plots of dissolution rate versus degree of undersaturation. To illustrate this technique, calcite, a common repository cementing and vein-filling mineral, was dissolved at pH 7.8 and 22 C in Na-Ca-HCO 3 -Cl solutions with low concentrations of three organic ligands. Low citrate concentrations (50 microM) increased the dissolution rate consistent with mechanism (1). Oxalate decreased the rate, consistent with mechanism (3). Low phthalate concentration (<50 microM) decreased calcite dissolution rates; however, higher concentrations increased the dissolution rates, which became faster than in inorganic solutions. Thus, phthalate exhibits both mechanisms (2) and (3) at different concentrations. In such cases linear extrapolations of dissolution rates from high organic ligand concentrations may not be valid

  20. Dissolution kinetics of heulandite at pH 2--12 and 25 degrees C

    International Nuclear Information System (INIS)

    Ragnarsdottir, K.V.

    1993-01-01

    Because of their favourable cation exchange reactions, heulandite and clinoptilolite have been suggested as being capable of immobilizing radionuclides and therefore could possibly act as an important barrier for nuclear waste. Recent studies of laboratory-reacted minerals indicate, however, that hydrated surface layers tend to accumulate highly hydrolyzable heavy elements. These hydrated layers may therefore be the most important retardants for radionuclides. The dissolution rate of heulandite depends strongly on pH. Based on silica release, the logarithm of the steady-state dissolution rate at pH 2 is -13.1 mol cm -2 s -1 . The logarithm of the rate decreases to -15.8 mol cm -2 s -1 at pH 7.2 and increases again to -14.6 mol cm -2 s -1 at pH 12.2. At low pH, Al is released preferentially to silica; but at intermediate and high pH, the release of silica appears to be congruent relative to Al. The change in dissolution rate with pH indicates that at low pH, the dissolution mechanism is controlled by the detachment of a positively charged Al species, >Al-OH 2 + . Below pH 5, however, a silica-rich surface layer is formed requiring diffusion through the layer. At intermediate and high pH, it is likely that the dissolution rate is controlled by the detachment of a negatively charged silica species, >Si - O - . The reaction order of the hydrogen ion under low pH conditions is 0.7, and the reaction order of the OH - ion is 0.3 at high pH. The measured dissolution rates indicate that a 1 mm heulandite crystal would dissolve in 300,000 yrs if the solution composition is maintained undersaturated. 75 refs., 11 figs., 3 tabs

  1. Simulation of surface dynamics during dissolution as a function of the surface orientation: Implications for non-constant dissolution rates

    Science.gov (United States)

    Godinho, J. R. A.; Piazolo, S.; Evans, L.

    2014-12-01

    An important problem in geochemistry is the understanding of how changes occurring on a surface during dissolution affect the variability of measured dissolution rates. In this study a new approach to study the effect of surface dynamics on dissolution rates is tested by coupling experimental data with a numerical model that simulates the retreat of surface profiles during dissolution. We present specific results from the simulation of dissolution of fluorite surfaces. The equations that determine the retreat of a surface are based on experimentally obtained equations that relate the retreat rate of a surface to a single variable, the crystallographic orientation of the surface. Our results show that depending on the starting orientation, different types of topography are developed, similar to those observed experimentally. During the initial dissolution phase, changes of topography are rapid and associated with fast dissolution rates. The progressively slower dissolution rates are coupled with the development of surface segments with orientations that dissolve at a slower rate. Consequently, the overall retreat rate of a profile decreases during the simulation, and tends to a near-constant value. The results show a close relationship between dissolution rates, surface orientation and surface dynamics, which suggests that the dissolution rate of a specific mineral phase is not constant but varies with dissolution time and surface structure. This variability needs to be considered in the evaluation of experimentally derived dissolution rates, future dissolution experiments, and predictive kinetic models of dissolution.

  2. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  3. Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation

    Science.gov (United States)

    Bednaršek, Nina; Tarling, Geraint A.; Bakker, Dorothee C. E.; Fielding, Sophie; Feely, Richard A.

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean. PMID:25285916

  4. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    Science.gov (United States)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  5. Numerical modelling of multicomponent LNAPL dissolution kinetics ...

    Indian Academy of Sciences (India)

    Abstract. Characterization of aquifers contaminated by petroleum hydrocarbons is limited by the use of dissolution mass transfer correlations developed for single com- pounds without considering the effects of the mass transfer limitations in presence of other components. A one-dimensional implicit numerical model is ...

  6. Physicochemical characterization and dissolution properties of ...

    African Journals Online (AJOL)

    calorimetry (DSC), powder x-ray diffractometry (PXRD) and Fourier transform infrared (FT-IR) spectroscopy. Phase solubility studies revealed an AL-type diagram indicating a 1:1 stoichiometric inclusion complex and a stability constant value of 914 M-1. Solubility and dissolution rates of PYR and the binary systems were ...

  7. 25 CFR 11.605 - Dissolution.

    Science.gov (United States)

    2010-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either..., or provided for child custody, the support of any child entitled to support, the maintenance of...

  8. Numerical modelling of multicomponent LNAPL dissolution kinetics ...

    Indian Academy of Sciences (India)

    Johnson et al 2003; Liu et al 2007). The complexity associated with dissolution mass transfer of organic compounds is closely related to their relative hydrophobic nature, distribution of the non-aqueous phase mass within the aquifer pore volume, prevailing flow and other geochemical properties of the porous medium.

  9. Efavirenz Dissolution Enhancement I: Co-Micronization

    Directory of Open Access Journals (Sweden)

    Helvécio Vinícius Antunes Rocha

    2012-12-01

    Full Text Available AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV, one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS and polyvinylpyrrolidone (PVP. The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25 proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level.

  10. Dissolution of aluminium-cladded fuel elements

    International Nuclear Information System (INIS)

    Bernhard, G.; Boessert, W.; Hladik, O.; Schwarzbach, R.

    1984-01-01

    In the molybdenum production plant at Rossendorf (AMOR) short-term irradiated aluminium-cladded fuel elements from the Rossendorf research reactor RFR are dissolved for the purpose of molybdenum 99 production. The dissolution behaviour of these fuel elements and the appropriate dissolver are described. (author)

  11. Facies, dissolution seams and stable isotope compositions

    Indian Academy of Sciences (India)

    Stable isotope analysis of the limestone shows that 13C and 18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution ...

  12. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Mohammad Barzegar-jalali

    2014-09-01

    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  13. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    Science.gov (United States)

    Ravichandran, Mahalingam; Aiken, George R.; Reddy, Michael M.; Ryan, Joseph N.

    1998-01-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release (up to 35 μM total dissolved mercury) from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca2+. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in DI water (pH = 6.0) had no detectable (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates (determined by 13C NMR) correlated positively with enhanced cinnabar dissolution. ζ-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar (pHpzc = 4.0) at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  14. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    Energy Technology Data Exchange (ETDEWEB)

    Ravichandran, M.; Ryan, J.N. [Univ. of Colorado, Boulder, CO (United States). Dept. of Civil, Environmental, and Architectural Engineering; Aiken, G.R.; Reddy, M.M. [Geological Survey, Boulder, CO (United States)

    1998-11-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  15. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  16. Oxidative dissolution of spent fuel and release of nuclides from a copper/iron canister. Model developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu

    2001-12-01

    Three models have been developed and applied in the performance assessment of a final repository. They are based on accepted theories and experimental results for known and possible mechanisms that may dominate in the oxidative dissolution of spent fuel and the release of nuclides from a canister. Assuming that the canister is breached at an early stage after disposal, the three models describe three sub-systems in the near field of the repository, in which the governing processes and mechanisms are quite different. In the model for the oxidative dissolution of the fuel matrix, a set of kinetic descriptions is provided that describes the oxidative dissolution of the fuel matrix and the release of the embedded nuclides. In particular, the effect of autocatalytic reduction of hexavalent uranium by dissolved H{sub 2}, using UO{sub 2} (s) on the fuel pellets as a catalyst, is taken into account. The simulation results suggest that most of the radiolytic oxidants will be consumed by the oxidation of the fuel matrix, and that much less will be depleted by dissolved ferrous iron. Most of the radiolytically produced hexavalent uranium will be reduced by the autocatalytic reaction with H{sub 2} on the fuel surface. It will reprecipitate as UO{sub 2} (s) on the fuel surface, and thus very little net oxidation of the fuel will take place. In the reactive transport model, the interactions of multiple processes within a defective canister are described, in which numerous redox reactions take place as multiple species diffuse. The effect of corrosion of the cast iron insert of the canister and the reduction of dissolved hexavalent uranium by ferrous iron sorbed onto iron corrosion products and by dissolved H{sub 2} are particularly included. Scoping calculations suggest that corrosion of the iron insert will occur primarily under anaerobic conditions. The escaping oxidants from the fuel rods will migrate toward the iron insert. Much of these oxidants will, however, be consumed

  17. Simultaneous UV Imaging and Raman Spectroscopy for the Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Wu, Jian; Naelapää, Kaisa

    2014-01-01

    The current work reports the simultaneous use of UV imaging and Raman spectroscopy for detailed characterization of drug dissolution behavior including solid-state phase transformations during dissolution. The dissolution of drug substances from compacts of sodium naproxen in 0.1 HCl as well...... as theophylline anhydrate and monohydrate in water was studied utilizing a flow-through setup. The decreases in dissolution rates with time observed by UV imaging were associated with concomitant solid form changes detected by Raman spectroscopy. Sodium naproxen and theophylline anhydrate were observed to convert...... of UV imaging and Raman spectroscopy offers a detailed characterization of drug dissolution behavior in a time-effective and sample-sparing manner. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1149-1156, 2014....

  18. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ionic conductivity and 1H, 7Li, and 19F NMR studies on diffusion coefficients and local motions.

    Science.gov (United States)

    Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo

    2008-01-31

    A room-temperature ionic liquid (RTIL) of a quaternary ammonium cation having an ether chain, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)amide (DEME-TFSA), is a candidate for use as an electrolyte of lithium secondary batteries. In this study, the electrochemical ionic conductivity, sigma, of the neat DEME-TFSA and DEME-TFSA-Li doped with five different concentrations of lithium salt (LiTFSA) was measured and correlated with NMR measurements of the diffusion coefficients D and the spin-lattice relaxation times T1 of the individual components DEME (1H), TFSA (19F), and lithium ion (7Li). The ion conduction of charged ions can be activated with less thermal energy than ion diffusion which contains a contribution from paired ions in DEME-TFSA. In the doped DEME-TFSA-Li samples, the sigma and D values decreased with increasing salt concentration, and within the same sample generally DLisalt concentration at low temperatures. Since plots of the temperature dependence of T1 of the 1H and 7Li resonances showed T1 minima, the correlation times tauc(H) and tauc(Li) were calculated for reorientational motions of DEME and the lithium jump, respectively. At the same temperature, tauc(Li) is longer than tauc(H), suggesting that the molecular motion of DEME occurs more rapidly than the lithium jump. Combining the DLi and tauc(Li), averaged distances for the lithium jump were estimated.

  19. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    Science.gov (United States)

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-05

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  1. Effect of different water conditions on dissolution of nanosilver.

    Science.gov (United States)

    Chen, Shao-Feng; Zhang, Hongyin; Lin, Qing-Yu

    2013-01-01

    This study evaluates the time-dependent dissolution of nanosilver (nAg) in common electrolytes and natural waters. nAg was synthesized via Tollens' method using sodium citrate as stabilizer; its morphology, UV-Vis spectrum, and particle size were characterized. The dissolved silver was monitored over time using filtration, centrifugation, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Our results indicated that nanoparticle aggregation, Cl(-) presence, and natural organic compounds could affect the dissolution behavior of nAg. The dissolution of nAg was highly dependent on Cl(-) concentration. Excessive Cl(-) enhanced nanoparticle dissolution, whereas natural organic compound inhibited the dissolution. The dissolution data fitted well with the first-order kinetic model, and the dissolution rate coefficients were calculated using the first-order equation. This study showed the dissolution of nAg under various water conditions. The obtained results may be helpful in predicting nAg behavior in relevant environmental aquatic systems.

  2. Evaluating the role of re-adsorption of dissolved Hg{sup 2+} during cinnabar dissolution using isotope tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Li, Yanbin [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100 (China); Liu, Guangliang [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States); Yang, Guidi [College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Lagos, Leonel [Applied Research Center, Florida International University, Miami, FL 33199 (United States); Yin, Yongguang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Gu, Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 (United States); Jiang, Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Cai, Yong, E-mail: cai@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 (United States); Southeast Environmental Research Center, Florida International University, Miami, FL 33199 (United States)

    2016-11-05

    Highlights: • Develop a new method to study Hg re-adsorption in cinnabar. • Both isotope dilution and tracer techniques were adopted. • The presence of O{sub 2} can significantly enhance the dissolution of cinnabar. • Prove the necessity of including re-adsorption in estimating cinnabar dissolution. - Abstract: Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked {sup 202}Hg{sup 2+}. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μg L{sup −1}, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.

  3. Dissolution comparisons using a Multivariate Statistical Distance (MSD) test and a comparison of various approaches for calculating the measurements of dissolution profile comparison.

    Science.gov (United States)

    Cardot, J-M; Roudier, B; Schütz, H

    2017-07-01

    The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.

  4. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  5. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  6. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    Science.gov (United States)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of

  7. Mass Transfer in the Dissolution of a Multi-Component Liquid Droplet in an Immiscible Liquid Environment

    Science.gov (United States)

    Su, Jonathan T.; Needham, David

    2013-01-01

    The Epstein Plesset equation has recently been shown to accurately predict the dissolution of a pure liquid microdroplet into a second immiscible solvent, such as oil into water. Here, we present a series of new experiments and a modification to this equation to model the dissolution of a two-component oil-mixture microdroplet into a second immiscible solvent, in which the two materials of the droplet have different solubilities. The model is based upon a reduced surface area approximation and the assumption of ideal homogenous mixing: Massfluxdmidt=AfraciDi(ci-cs){1R+1πDit}, where Afraci is the area fraction of component I; ci and cs are the initial and saturation concentrations of the droplet material in the surrounding medium; R is the radius of the droplet; t is time; and Di is the coefficient of diffusion of component I in the surrounding medium. This new model has been tested by use of a two-chamber micropipette-based method, which measured the dissolution of single individual microdroplets of mutually-miscible liquid mixtures (ethyl acetate/butyl acetate, and butyl acetate/amyl acetate) into water. We additionally measured the diffusion coefficient of the pure materials: ethyl acetate, butyl acetate, and amyl acetate, in water at 22 deg C. Diffusion coefficients for the pure acetates in water were: 8.65 x 10−6, 7.61 x 10−6, and 9.14 x 10−6 cm2/s respectively. This model accurately predicts the dissolution of microdroplets for the ethyl acetate/butyl acetate and butyl acetate/amyl acetate systems given the solubility and diffusion coefficients of each of the individual components in water as well as the initial droplet radius. The average mean squared error was 8.96%. The dissolution of a spherical ideally mixed multi-component droplet closely follows the modified Epstein Plesset model presented here. PMID:24050124

  8. The effect of the mineral dissolution and deformation of slope stability on nature terrane

    Science.gov (United States)

    Choi, J.; Chae, B.

    2012-12-01

    A landslide on nature terrane is mainly occurred by rainfall, snowmelt, earthquakes and rock/soil weathering process. Especially, the role of rainfall and rock/soil weathering in slope stability is very important because it causes decreased in shear strength by reducing the soil cohesion. Quartz is the most abundant crust-forming mineral on earth. This mineral contributes to the formation of crystalline rocks such as granite, gneiss, and sandstone. Therefore, in case of the slope consisted by granite, gneiss, and sandstone, the slope stability can be affected by the mineral weathering process such as mineral dissolution and deformation because the shear strength, one of the key factors to calculate the slope stability, can be reduced by mineral weathering. That is, mineral weathering including dissolution and deformation between the minerals can reduce the soil cohesion on nature terrane. Many studies have found that quartz exhibits a notably slow rate of dissolution at room temperature. Therefore, to achieve rapid dissolution at room temperature, other methods should be considered, including 1) expanding the surface area of quartz to increase the reaction area and 2) applying high pressure to the contact area of crystals to increase the dissolution rate. However, dissolution of the surface of quartz is difficult to observe when using powdered quartz to maximize the surface area. Therefore, we used beads and single quartz crystals to observe and analyze the dissolution of the surface. The former can be used to maximize the surface area of quartz, and high-pressure conditions can be applied to the latter. A confocal laser scanning microscope (CLSM) was subsequently used to observe the dissolution patterns on the quartz surface. Numerical analyses using the finite element method (FEM) were also performed to quantify the deformation of the contact area. Quartz dissolution was observed in both experiments. This deformation was due to a concentrated compressive stress

  9. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    The dissolution method which uses USP apparatus I (Basket) with rotating at 100 rpm, 900 ml of different dissolution medium, ultra violet spectroscopy for quantification was demonstrated to be robust, discriminating and transferable. Dissolution tests conditions were selected after it was demonstrated that the Metoprolol ...

  10. Investigation of dissolution kinetics of a Nigerian columbite in ...

    African Journals Online (AJOL)

    Investigation of dissolution kinetics of a Nigerian columbite in hydrofluoric acid using the shrinking core model. ... Experimental results indicate that the dissolution rate is chemical reaction controlled, with reaction order of 0.57. Dissolution of over 90 % of the columbite was achieved in 5 h, using 20 M HF at 90 oC with 100 ...

  11. Characterization and Dissolution Kinetics Testing of Radioactive H-3 Calcine

    Energy Technology Data Exchange (ETDEWEB)

    Garn, Troy Gerry; Batcheller, Thomas Aquinas

    2002-09-01

    Characterization and dissolution kinetics testing were performed with Idaho radioactive H-3 calcine. Calcine dissolution is the key front-end unit operation for the Separations Alternative identified in the Idaho High Level Waste Draft EIS. The impact of the extent of dissolution on the feasibility of Separations must be clearly quantified.

  12. Mass transfer in the dissolution of a multicomponent liquid droplet in an immiscible liquid environment.

    Science.gov (United States)

    Su, Jonathan T; Needham, David

    2013-11-05

    The Epstein-Plesset equation has recently been shown to predict accurately the dissolution of a pure liquid microdroplet into a second immiscible solvent, such as oil into water. Here, we present a series of new experiments and a modification to this equation to model the dissolution of a two-component oil-mixture microdroplet into a second immiscible solvent in which the two materials of the droplet have different solubilities. The model is based on a reduced surface area approximation and the assumption of ideal homogeneous mixing [mass flux d(m(i))/dt = A(frac(i))D(i)(c(i) - c(s)){(1/R) + (1/(πD(i)t)(1/2)}] where A(frac(i)) is the area fraction of component i, c(i) and c(s) are the initial and saturation concentrations of the droplet material in the surrounding medium, R is the radius of the droplet, t is time, and D(i) is the coefficient of diffusion of component i in the surrounding medium. This new model has been tested by the use of a two-chamber micropipet-based method, which measured the dissolution of single individual microdroplets of mutually miscible liquid mixtures (ethyl acetate/butyl acetate and butyl acetate/amyl acetate) in water. We additionally measured the diffusion coefficient of the pure materials-ethyl acetate, butyl acetate, and amyl acetate-in water at 22 °C. Diffusion coefficients for the pure acetates in water were 8.65 × 10(-6), 7.61 × 10(-6), and 9.14 × 10(-6) cm(2)/s, respectively. This model accurately predicts the dissolution of microdroplets for the ethyl acetate/butyl acetate and butyl acetate/amyl acetate systems given the solubility and diffusion coefficients of each of the individual components in water as well as the initial droplet radius. The average mean squared error was 8.96%. The dissolution of a spherical ideally mixed multicomponent droplet closely follows the modified Epstein-Plesset model presented here.

  13. HEME and HEPA filter element dissolution process

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1992-01-01

    High Efficiency Mist Eliminators (HEME) and High Efficiency Particulate Airfilters (HEPA) are to be used in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant to remove volatile and semi-volatile effluents from the off-gases generated during the vitrification process. When removed, these filters are likely to contain radioactive contaminants, organics, and hazardous materials, which make their disposal by normal methods impractical. Hence, an alternative disposal method is needed. The alternative disposal method evaluated in this study is dissolution of the filters with caustic and acid solutions. Dissolution converts the waste into an aqueous stream, which can be transferred to the Tank Farm and disposed of by normal means. This process was shown to be effective on a small scale in earlier studies, but the results were not well documented and the studies were not performed on fouled filters

  14. [Direct gallstone dissolution therapy with GS-100].

    Science.gov (United States)

    Yamamoto, F; Igimi, H

    1993-07-01

    We have developed GS-100, a new direct dissolving drug with strong dissolution property for cholesterol stone by supplementing d-limonene, a dissolvent used since 1974, with 30% medium-chain monoglyceride (MCM). The new drug was applied in 23 patients with gallbladder stones and three with bile duct stone. The presumptive analysis of the composition of the stones was drawn from the CT recordings. As non-invasive therapies, methyl tert-butyl ether (MTBE) dissolution and extracorporeal shock wave lithotripsy (ESWL), which are commonly used in Europe and America, have been reported as being favourable; however, GS-100 is superior in respect to safety and applicative dimension, suggesting of the possibility of using GS-100 as an important drug in the non-invasive therapy for gallstone in the near future.

  15. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions.

    Science.gov (United States)

    Chen, Yuejie; Liu, Chengyu; Chen, Zhen; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2015-02-02

    The in vitro dissolution mechanism of an amorphous solid dispersion (ASD) remains elusive and highly individualized, yet rational design of ASDs with optimal performance and prediction of their in vitro/in vivo performance are very much desirable in the pharmaceutical industry. To this end, we carried out comprehensive investigation of various ASD systems of griseofulvin, felodipine, and ketoconazole, in PVP-VA or HPMC-AS at different drug loading. Physiochemical properties and processes related to drug-polymer-water interaction, including the drug crystallization tendency in aqueous medium, drug-polymer interaction before and after moisture exposure, supersaturation of drug in the presence of polymer, polymer dissolution kinetics, etc., were characterized and correlated with the dissolution performance of ASDs at different dose and different drug/polymer ratio. It was observed that ketoconazole/HPMC-AS ASD outperformed all other ASDs in various dissolution conditions, which was attributed to the drug's low crystallization tendency, the strong ketoconazole/HPMC-AS interaction and the robustness of this interaction against water disruption, the dissolution rate and the availability of HPMC-AS in solution, and the ability of HPMC-AS in maintaining ketoconazole supersaturation. It was demonstrated that all these properties have implications for the dissolution performance of various ASD systems, and further quantification of them could be used as potential predictors for in vitro dissolution of ASDs. For all ASDs investigated, HPMC-AS systems performed better than, or at least comparably with, their PVP-VA counterparts, regardless of the drug loading or dose. This observation cannot be solely attributed to the ability of HPMC-AS in maintaining drug supersaturation. We also conclude that, for fast crystallizers without strong drug-polymer interaction, the only feasible option to improve dissolution might be to lower the dose and the drug loading in the ASD. In this

  16. Aggregation, sedimentation, dissolution and bioavailability of ...

    Science.gov (United States)

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  17. Dissolution and permeation characteristics of artemether tablets ...

    African Journals Online (AJOL)

    U.S.P. dissolution apparatus (Panomex Inc,. India) using the modified method of Sharma et al. [17]. Segments of the intestine of freshly sacrificed pig were obtained and used as donor compartments. Each segment was tied at one end and filled with 5 ml of SGF (pH 1.2) or SIF. (pH 6.8) produced based on USP 33 – NF 28.

  18. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  19. Oxygen migration enthalpy likely limits oxide precipitate dissolution during tabula rasa

    Energy Technology Data Exchange (ETDEWEB)

    Looney, E. E.; Laine, H. S.; Youssef, A.; Jensen, M. A.; LaSalvia, V.; Stradins, P.; Buonassisi, T.

    2017-09-25

    In industrial silicon solar cells, oxygen-related defects lower device efficiencies by up to 20% (rel.). In order to mitigate these defects, a high-temperature homogenization anneal called tabula rasa (TR) that has been used in the electronics industry is now proposed for use in solar-grade wafers. This work addresses the kinetics of tabula rasa by elucidating the activation energy governing oxide precipitate dissolution, which is found to be 2.6 +/- 0.5 eV. This value is consistent within uncertainty to the migration enthalpy of oxygen interstitials in silicon, implying TR to be kinetically limited by oxygen point-defect diffusion. This large activation energy is observed to limit oxygen precipitate dissolution during standard TR conditions, suggesting that more aggressive annealing conditions than conventionally used are required for complete bulk microdefect mitigation.

  20. Anomalous dissolution of metals and chemical corrosion

    Directory of Open Access Journals (Sweden)

    DRAGUTIN M. DRAZIC

    2005-03-01

    Full Text Available An overview is given of the anomalous behavior of some metals, in particular Fe and Cr, in acidic aqueous solutions during anodic dissolution. The anomaly is recognizable by the fact that during anodic dissolutionmore material dissolves than would be expected from the Faraday law with the use of the expected valence of the formed ions. Mechanical disintegration, gas bubble blocking, hydrogen embrittlement, passive layer cracking and other possible reasons for such behavior have been discussed. It was shown, as suggested by Kolotyrkin and coworkers, that the reason can be, also, the chemical reaction in which H2O molecules with the metal form metal ions and gaseous H2 in a potential independent process. It occurs simultaneously with the electrochemical corrosion process, but the electrochemical process controls the corrosion potential. On the example of Cr in acid solution itwas shown that the reason for the anomalous behavior is dominantly chemical dissolution, which is considerably faster than the electrochemical corrosion, and that the increasing temperature favors chemical reaction, while the other possible reasons for the anomalous behavior are of negligible effect. This effect is much smaller in the case of Fe, but exists. The possible role of the chemical dissolution reacton and hydrogen evolution during pitting of steels and Al and stress corrosion cracking or corrosion fatigue are discussed.

  1. Applications of plutonium dioxide oxydising dissolution process

    International Nuclear Information System (INIS)

    Lecomte, M.; Bourges, J.; Madic, C.

    1987-01-01

    Laboratory investigations having demonstrated the outstanding effectiveness of Ag 2+ ions for the dissolution of plutonium dioxide in nitric medium, two applications of this method were developed at the CEA: dissolution of off-standard PuO 2 , recovery of the plutonium contained in ashes produced by incineration of solid wastes. With respect to PuO 2 dissolution, the parametric investigation of the electrogeneration of Ag (II) and of its reaction with PuO 2 , led to the development of a process and of the equipment required for its implementation. The prototype facility used to dissolve in 4 hours 1 kg of plutonium, in oxide form, was built and tested in the laboratory. This equipment was used to dissolve 30 kg of plutonium oxide in batches of about 700 grams. An in-line spectrophotometric method was developed for process control. The application of this process to the recovery of plutonium from incineration ash is currently being developed. Tested on the scale of about 1 kg of ash, the process helps to recover the plutonium with yields higher than 98 % [fr

  2. Solubility and dissolution studies of tibolone polymorphs

    Directory of Open Access Journals (Sweden)

    Rudy Bonfilio

    2018-03-01

    Full Text Available ABSTRACT Different solid forms of an active pharmaceutical ingredient can have distinct chemical and physical characteristics. In this work, we studied the solubility and dissolution properties of the described tibolone polymorphic forms (I and II. Both forms were successively recrystallized and characterized by powder X-ray diffraction and attenuated total reflection infrared spectroscopy. Equilibrium solubility and dissolution profiles were performed for both forms. Solubility studies demonstrated that form II is statistically more soluble in water, 0.01 mol L-1 HCl and pH 4.5 acetate buffer. The solubility of forms I and II were explained in terms of crystal packing. Dissolution tests of tablets showed a lower release of polymorphic form II than form I from tablets. The results showed an impact of polymorphism on the quality of tibolone tablets and suggest that tibolone forms I and II can show distinct interactions with pharmaceutical excipients used in tablets. Therefore, only form I is acceptable for the preparation of tablet forms. Based on our results, we propose the quality control on tibolone raw materials using X-ray diffraction analysis and attenuated total reflection infrared spectroscopy.

  3. Results of urinary dissolution therapy for radiolucent calculi

    Directory of Open Access Journals (Sweden)

    Sinha Maneesh

    2013-01-01

    Full Text Available Purpose In this paper we present our experience with dissolution therapy of radiolucent calculi. Materials and Methods This was a retrospective analysis of patients who were offered urinary dissolution therapy between January 2010 and June 2011. Patients were treated with tablets containing potassium citrate and magnesium oxide. Partial dissolution was defined as at least a 50% reduction in stone size. Patients with complete or partial dissolution were classified in the successful dissolution group. Patients with no change, inadequate reduction, increase in stone size and those unable to tolerate alkali therapy were classified as failures. Patient sex, stenting before alkalinization, stone size, urine pH at presentation and serum uric acid levels were analyzed using Fisher t-test for an association with successful dissolution. Results Out of 67, 48 patients reported for follow up. 10 (15% had complete dissolution and 13 (19% had partial dissolution. Alkalinization was unsuccessful in achieving dissolution in 25 (37%. Stenting before alkalinization, patient weight ( 75kg and serum uric acid levels (≤ 6 vs. > 6 were the only factors to significantly affected dissolution rates (p = 0.039, p 0.035, p 0.01 respectively. CONCLUSIONS A policy of offering dissolution therapy to patients with radiolucent calculi had a successful outcome in 34% of patients.

  4. Monitoring Lidocaine Single-Crystal Dissolution by Ultraviolet Imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Ye, Fengbin; Rantanen, Jukka

    2011-01-01

    ) imaging for conducting single‐crystal dissolution studies was performed. Using lidocaine as a model compound, the aim was to develop a setup capable of monitoring and quantifying the dissolution of lidocaine into a phosphate buffer, pH 7.4, under stagnant conditions. A single crystal of lidocaine...... was placed in the quartz dissolution cell and UV imaging was performed at 254 nm. Spatially and temporally resolved mapping of lidocaine concentration during the dissolution process was achieved from the recorded images. UV imaging facilitated the monitoring of lidocaine concentrations in the dissolution...... media adjacent to the single crystals. The concentration maps revealed the effects of natural convection due to density gradients on the dissolution process of lidocaine. UV imaging has great potential for in vitro drug dissolution testing...

  5. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field.

    Science.gov (United States)

    Sathaye, Kiran J; Hesse, Marc A; Cassidy, Martin; Stockli, Daniel F

    2014-10-28

    The injection of carbon dioxide (CO2) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO2 emissions from fossil fuels. Dissolution of the injected CO2 into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO2 storage. We use thermochronology to estimate the timing of CO2 emplacement at Bravo Dome, a large natural CO2 field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints on the magnitude, mechanisms, and rates of CO2 dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2-1.5 Ma. The CO2 accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO2 storage is possible. Integrating geophysical and geochemical data, we estimate that 1.3 Gt CO2 are currently stored at Bravo Dome, but that only 22% of the emplaced CO2 has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO2 dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m(2)y). The similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO2 are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO2 on the 10-ky timescale typically considered for storage projects.

  6. The Pearson diffusions: A class of statistically tractable diffusion processes

    DEFF Research Database (Denmark)

    Forman, Julie Lyng; Sørensen, Michael

    classification is presented for the ergodic Pearson diffusions. The class of stationary distributions equals the full Pearson system of distributions. Well-known instances are the Ornstein-Uhlenbeck processes and the square root (CIR) processes. Also diffusions with heavy-tailed and skew marginals are included....... Special attention is given to a skew t-type distribution. Explicit formulae for the conditional moments and the polynomial eigenfunctions are derived. The analyti- cal tractability is inherited by transformed Pearson diffusions, integrated Pearson diffusions, sums of Pearson diffusions, and stochastic...

  7. Partnership formation and dissolution among immigrants in the Spanish context

    Directory of Open Access Journals (Sweden)

    Amparo González-Ferrer

    2016-07-01

    Full Text Available Background: The diversification of partnership patterns away from the traditional marriage standard emerged in Spain relatively late. This makes Spain an interesting case for the study of the partnership dynamics of natives and immigrant groups. Objective: This paper analyzes partnership formation and dissolution among immigrant women of various origins, in comparison to natives in Spain. The study aims to identify variations in timing and incidence of partnership transitions. Methods: Data from the Fertility and Values Survey 2006 is used to conduct discrete-time logistic regressions for several union transitions. In a further step, the data are analyzed including cohort interactions to explore the extent to which differences are due to the younger profile of the migrant population. Results: The obtained results lend support to the selection and disruption hypotheses in the case of immigrant women who arrived in Spain before their first union formation. However, when explaining the high propensity of Latin American and EU-15 women to enter cohabiting unions, socialization effects cannot be ruled out. Immigrant women also show higher risk of union dissolution than natives. Conclusions: Immigrant women differ consistently from native Spanish women across the various partnership transitions. They generally display higher risks of forming a union, particularly a cohabiting union, and of separating from their first partner. Models including interactions between birth cohort and migrant status showed that differentials between immigrants and natives are not due to compositional effects.

  8. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; Kneafsey, Timothy J.; Mehta, Hardeep

    2017-02-01

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO2 (scCO2) and a prolonged depletion of residual scCO2. In this study, pore-scale scCO2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO2 into the sandstone-analogue pore network initially saturated by water without dissolved CO2 (dsCO2). During the experiments, time-lapse images of dye intensity, reflecting water pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO2 dissolution and phase equilibrium occurs when scCO2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO2 dissolution at phase interfaces and diffusion of dsCO2 at the pore scale (10-100 µm) observed after scCO2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase

  9. Coupling between different superficial kinetics: segregation, precipitation and dissolution; Cinetiques couplees au voisinage des surfaces: segregation, precipitation et dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Delage, St

    1998-12-31

    In most of alloys, the surface composition is different from bulk one. This phenomenon, called `surface segregation` have drawn up to now much attention in this case of alloys which have reached thermodynamic equilibrium in the solid solution. Using a kinetic model including bulk and surface driving forces, we study segregation phenomenon during dissolution and precipitation kinetics, in the case of the Fe-Cu alloy. Within a mean field approximation, we point out the dissolution modes for Fe/Cu and Cu/Fe deposit. If the substrate surface energy is lower than the deposit one (case of Fe/Cu deposit) the substrate element climbs through the deposit to reach the surface and forms a layer of the substrate element floating on the deposit. In the case of thick deposit (typically 10 monolayers), a competition between two layer by layer dissolution modes leads to a wide range of behaviours, depending on temperature and deposit thickness. Furthermore, the major part of the concentration profiles obtained during kinetics is at local equilibrium in a region near the surface. In the second part of this work, we study the surface influence during phase separation kinetics in thin layers using Monte-Carlo simulations. A surface directed spinodal decomposition occurs, leading to the appearance of a Cu-rich layer at the surface, which goes toward the layer`s core with time. This process is linked with bulk precipitation in layer`s core, and leads to different behaviours depending on average concentration and layer thickness. (authors) 125 refs.

  10. Theoretical models of mercury dissolution from dental amalgams in neutral and acidic flows

    Science.gov (United States)

    Keanini, Russell G.; Ferracane, Jack L.; Okabe, Toru

    2001-06-01

    This article reports an experimental and theoretical investigation of mercury dissolution from dental amalgams immersed in neutral (noncorrosive) and acidic (corrosive) flows. Atomic absorption spectrophotometric measurements of Hg loss indicate that in neutral flow, surface oxide films formed in air prior to immersion persist and effectively suppress significant mercury release. In acidic (pH 1) flows, by contrast, oxide films are unstable and dissolve; depending on the amalgam’s material composition, particularly its copper content, two distinct mercury release mechanisms are initiated. In low copper amalgam, high initial mercury release rates are observed and appear to reflect preferential mercury dissolution from unstable Sn8Hg ( γ 2) grains within the amalgam matrix. In high copper amalgam, mercury release rates are initially low, but increase with time. Microscopic examination suggests that this feature reflects corrosion of copper from grains of Cu6Sn5 ( η') and consequent exposure of Ag2Hg3 ( γ 1) grains; the latter serve as internal mercury release sites and become more numerous as corrosion proceeds. Three theoretical models are proposed in order to explain observed dissolution characteristics. Model I, applicable to high and low copper amalgams in neutral flow, assumes that mercury dissolution is mediated by solid diffusion within the amalgam, and that a thin oxide film persists on the amalgam’s surface and lumps diffusive in-film transport into an effective convective boundary condition. Model II, applicable to low copper amalgam in acidic flow, assumes that the amalgam’s external oxide film dissolves on a short time scale relative to the experimental observation period; it neglects corrosive suppression of mercury transport. Model III, applicable to high copper amalgam in acidic flow, assumes that internal mercury release sites are created by corrosion of copper in η' grains and that corrosion proceeds via an oxidation-reduction reaction

  11. Dissolution-precipitation processes in tank experiments for testing numerical models for reactive transport calculations: Experiments and modelling

    Science.gov (United States)

    Poonoosamy, Jenna; Kosakowski, Georg; Van Loon, Luc R.; Mäder, Urs

    2015-06-01

    In the context of testing reactive transport codes and their underlying conceptual models, a simple 2D reactive transport experiment was developed. The aim was to use simple chemistry and design a reproducible and fast to conduct experiment, which is flexible enough to include several process couplings: advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. A small tank was filled with a reactive layer of strontium sulfate (SrSO4) of two different grain sizes, sandwiched between two layers of essentially non-reacting quartz sand (SiO2). A highly concentrated solution of barium chloride was injected to create an asymmetric flow field. Once the barium chloride reached the reactive layer, it forced the transformation of strontium sulfate into barium sulfate (BaSO4). Due to the higher molar volume of barium sulfate, its precipitation caused a decrease of porosity and lowered the permeability. Changes in the flow field were observed with help of dye tracer tests. The experiments were modelled using the reactive transport code OpenGeosys-GEM. Tests with non-reactive tracers performed prior to barium chloride injection, as well as the density-driven flow (due to the high concentration of barium chloride solution), could be well reproduced by the numerical model. To reproduce the mineral bulk transformation with time, two populations of strontium sulfate grains with different kinetic rates of dissolution were applied. However, a default porosity permeability relationship was unable to account for measured pressure changes. Post mortem analysis of the strontium sulfate reactive medium provided useful information on the chemical and structural changes occurring at the pore scale at the interface that were considered in our model to reproduce the pressure evolution with time.

  12. Simultaneous UV imaging and raman spectroscopy for the measurement of solvent-mediated phase transformations during dissolution testing.

    Science.gov (United States)

    Østergaard, Jesper; Wu, Jian X; Naelapää, Kaisa; Boetker, Johan P; Jensen, Henrik; Rantanen, Jukka

    2014-04-01

    The current work reports the simultaneous use of UV imaging and Raman spectroscopy for detailed characterization of drug dissolution behavior including solid-state phase transformations during dissolution. The dissolution of drug substances from compacts of sodium naproxen in 0.1 HCl as well as theophylline anhydrate and monohydrate in water was studied utilizing a flow-through setup. The decreases in dissolution rates with time observed by UV imaging were associated with concomitant solid form changes detected by Raman spectroscopy. Sodium naproxen and theophylline anhydrate were observed to convert to the more stable forms (naproxen, and theophylline monohydrate) within approximately 5 min. Interestingly, the new approach revealed that three intermediate forms are involved in the dissolution process prior to the appearance of the neutral naproxen during dissolution in an acidic medium. The combination of UV imaging and Raman spectroscopy offers a detailed characterization of drug dissolution behavior in a time-effective and sample-sparing manner. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Using Pteropod Shells to Trace Aragonite Dissolution: Toward a Multi-Basin Calibration

    Science.gov (United States)

    Mekik, F. A.

    2013-12-01

    We developed a new proxy for tracing aragonite dissolution in marine sediments. The core tops we used are from the tropical and subtropical latitudes of two ocean basins: Atlantic and Pacific. This allows for a multi-basin calibration for our proxy which is based on the fragmentation trend of pteropod shells. The ratio of fragmented pteropod shells to whole plus fragmented pteropod shells within our core tops has an excellent relationship with the aragonite saturation of bottom waters. Combining our pteropod-based aragonite dissolution proxy with the Globorotalia menradii Fragmentation Index, which is a calcite dissolution proxy, allows tracing carbonate chemistry of bottom waters for the entire ocean depth profile including regions well above the calcite saturation horizon. We also present new data on size normalized weights of pteropod shells which supports the aragonite dissolution trend seen in the pteropod fragmentation data. Unlike previous findings with other proxies, both aragonite and calcite dissolution data from a high resolution core in the western equatorial Pacific reveal no evidence of a degacial carbonate preservation maximum.

  14. Development of dissolution process for metal foil target containing low enriched uranium

    International Nuclear Information System (INIS)

    Srinivasan, B.; Hutter, J.C.; Johnson, G.K.; Vandegrift, G.F.

    1994-01-01

    About six times more low enriched uranium (LEU) metal is needed to produce the same quantity of 99 Mo as from a high enriched uranium (HEU) oxide target, under similar conditions of neutron irradiation. In view of this, the post-irradiation processing procedures of the LEU target are likely to be different from the Cintichem process procedures now in use for the HEU target. The authors have begun a systematic study to develop modified procedures for LEU target dissolution and 99 Mo separation. The dissolution studies include determination of the dissolution rate, chemical state of uranium in the solution, and the heat evolved in the dissolution reaction. From these results the authors conclude that a mixture of nitric and sulfuric acid is a suitable dissolver solution, albeit at higher concentration of nitric acid than in use for the HEU targets. Also, the dissolver vessel now in use for HEU targets is inadequate for the LEU target, since higher temperature and higher pressure will be encountered in the dissolution of LEU targets. The desire is to keep the modifications to the Cintichem process to a minimum, so that the switch from HEU to LEU can be achieved easily

  15. Effect of magnesium stearate concentration on dissolution properties of ranitidine hydrochloride coated tablets.

    Science.gov (United States)

    Uzunović, Alija; Vranić, Edina

    2007-08-01

    Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmacopeial test for similarity of dissolution profiles ( f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.

  16. Effect of Magnesium Stearate Concentration on Dissolution Properties of Ranitidine Hydrochloride Coated Tablets

    Directory of Open Access Journals (Sweden)

    Alija Uzunović

    2007-08-01

    Full Text Available Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates.The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked.During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation, previously proposed by Moore and Flanner.Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.

  17. Computational Diffusion MRI

    CERN Document Server

    Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle

    2018-01-01

    This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...

  18. Dissolution rate enhancement of piroxicam by ordered mixing.

    Science.gov (United States)

    Saharan, Vikas Anand; Choudhury, Pratim Kumar

    2012-07-01

    Micronized piroxicam was mixed with lactose, mannitol, sorbitol, maltitol and sodium chloride to produce ordered mixture in a glass vial by manual hand shaking method. The effect of excipients, surfactant, superdisintegrant, drug concentration and carrier particle size on dissolution rate was investigated. Dissolution rate studies of the prepared ordered mixtures revealed that all water soluble excipients increased the dissolution rate of piroxicam when compared to the dissolution rate of piroxicam or its suspension. Ordered mixture formulation PLF4, consisting of lactose as water soluble excipient, SSG (8% w/s) and SLS (1% w/w), released piroxcam at a very fast rate so much so that about 90% of the composition had passed into solution within 2 min. The order of the dissolution rate enhancement for ordered mixtures of various water soluble excipients was: lactose > mannitol > maltitol > sorbitol > sodium chloride. Carrier granules of size 355-710 µm were most effective in increasing the dissolution rate of drug from ordered mixtures. Decreasing the carrier particle size reduced drug dissolution from ordered mixtures. The dissolution rate of ordered mixtures consisting of 1-5% w/w piroxicam was superior to dissolution rate of piroxicam suspension. The dissolution data fitting and the resulting regression parameters indicated Hixson Crowell, cube root law, as the best fit to drug release data of ordered mixtures.

  19. Modeling charged defects, dopant diffusion and activation mechanisms for TCAD simulations using kinetic Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Bragado, Ignacio [Synopsys Inc, 700 East Middlefield Road, Mountain View, 94043 CA (United States)]. E-mail: Ignacio.martin-bragado@synopsys.com; Tian, S. [Synopsys Inc, 700 East Middlefield Road, Mountain View, 94043 CA (United States); Johnson, M. [Synopsys Inc, 700 East Middlefield Road, Mountain View, 94043 CA (United States); Castrillo, P. [Department of Electronics, University of Valladolid Campus Miguel Delibes, Camino del Cementerio S/N, 47011 Valladolid (Spain); Pinacho, R. [Department of Electronics, University of Valladolid Campus Miguel Delibes, Camino del Cementerio S/N, 47011 Valladolid (Spain); Rubio, J. [Department of Electronics, University of Valladolid Campus Miguel Delibes, Camino del Cementerio S/N, 47011 Valladolid (Spain); Jaraiz, M. [Department of Electronics, University of Valladolid Campus Miguel Delibes, Camino del Cementerio S/N, 47011 Valladolid (Spain)

    2006-12-15

    This work will show how the kinetic Monte Carlo (KMC) technique is able to successfully model the defects and diffusion of dopants in Si-based materials for advanced microelectronic devices, especially for non-equilibrium conditions. Charge states of point defects and paired dopants are also simulated, including the dependency of the diffusivities on the Fermi level and charged particle drift coming from the electric field. The KMC method is used to simulate the diffusion of the point defects, and formation and dissolution of extended defects, whereas a quasi-atomistic approach is used to take into account the carrier densities. The simulated mechanisms include the kick-out diffusion mechanism, extended defect formation and the activation/deactivation of dopants through the formation of impurity clusters. Damage accumulation and amorphization are also taken into account. Solid phase epitaxy regrowth is included, and also the dopants redistribution during recrystallization of the amorphized regions. Regarding the charged defects, the model considers the dependencies of charge reactions, electric bias, pairing and break-up reactions according to the local Fermi level. Some aspects of the basic physical mechanisms have also been taken into consideration: how to smooth out the atomistic dopant point charge distribution, avoiding very abrupt and unphysical charge profiles and how to implement the drift of charged particles into the existing electric field. The work will also discuss the efficiency, accuracy and relevance of the method, together with its implementation in a technology computer aided design process simulator.

  20. The sonochemical dissolution of colloidal CdS

    International Nuclear Information System (INIS)

    Sostaric, J.; Mulvaney, P.; Grieser, F.

    1996-01-01

    Full text: The passage of ultrasonic radiation through water leads to the formation and subsequent violent collapse of gas/vapour filled microbubbles in solution. The collapse of these microbubbles is extremely rapid, resulting in a virtually adiabatic process in which high temperatures and pressures are produced. In fact, the conditions are vigorous enough to lead to the thermal homolysis of water molecules within the microbubble, resulting in the formation of the highly reactive hydrogen and hydroxyl radicals. These radicals can recombine or, in the presence of air, react with oxygen to produce a number of chemically active species which can readily diffuse into the bulk solution. The dissolution of colloidal CdS at pH=10.5 appears to be due to the reaction of H 2 O 2 and O 2 - with the colloid. It was found that the reaction could be inhibited by the addition of Na 2 S to the colloidal solution. Results also show that the reactions involved in the presence of Na 2 S are complex and that sulfur oxyanions most likely partake in the overall scheme once they are formed. The Cd 2+ concentration was measured directly using an ion selective electrode and compared well with an indirect measurement of the concentration obtained from the absorbance of the colloid at 300 nm

  1. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux

    Science.gov (United States)

    Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole

  2. The Common Intermediates of Oxygen Evolution and Dissolution Reactions during Water Electrolysis on Iridium.

    Science.gov (United States)

    Kasian, Olga; Grote, Jan-Philipp; Geiger, Simon; Cherevko, Serhiy; Mayrhofer, Karl J J

    2018-02-23

    Understanding the pathways of catalyst degradation during the oxygen evolution reaction is a cornerstone in the development of efficient and stable electrolyzers, since even for the most promising Ir based anodes the harsh reaction conditions are detrimental. The dissolution mechanism is complex and the correlation to the oxygen evolution reaction itself is still poorly understood. Here, by coupling a scanning flow cell with inductively coupled plasma and online electrochemical mass spectrometers, we monitor the oxygen evolution and degradation products of Ir and Ir oxides in situ. It is shown that at high anodic potentials several dissolution routes become possible, including formation of gaseous IrO 3 . On the basis of experimental data, possible pathways are proposed for the oxygen-evolution-triggered dissolution of Ir and the role of common intermediates for these reactions is discussed. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    International Nuclear Information System (INIS)

    Zook, Justin M.; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E.

    2012-01-01

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings’ effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated ∼23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs’ hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag + ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  4. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    Science.gov (United States)

    Zook, Justin M.; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E.

    2012-10-01

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings' effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated 23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs' hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag+ ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  5. Disentangling the effects of polymer coatings on silver nanoparticle agglomeration, dissolution, and toxicity to determine mechanisms of nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zook, Justin M., E-mail: jzook@nist.gov; Halter, Melissa D.; Cleveland, Danielle; Long, Stephen E. [National Institute of Standards and Technology, Material Measurement Laboratory (United States)

    2012-10-15

    Silver nanoparticles (AgNPs) are frequently coated with a variety of polymers, which may affect various interdependent mechanisms of toxicity or antimicrobial action, including agglomeration and dissolution rates. Here, we systematically measure how citrate, dextran, 5 and 20 kDa poly(ethylene glycol) (PEG), and poly(vinyl pyrrolidone) coatings affect AgNP agglomeration, dissolution, and toxicity. In addition, to disentangle the coatings' effects on agglomeration from their other effects, we produce multiple stable agglomerate sizes of several of the coated {approx}23 nm AgNPs ranging from singly-dispersed to mean agglomerate sizes of several hundred nanometers. These dispersions allow us to independently study the effects of agglomeration and polymer coating on dissolution rate and hemolytic toxicity. We find that both hemolytic toxicity and dissolution rate are highest for the 5 kDa PEG coating, and toxicity and dissolution rate decrease significantly with increasing agglomerate size independent of coating. This correlation between toxicity and dissolution rate suggests that both polymer coating and agglomeration may affect hemolytic toxicity largely through their effects on dissolution. Because both the AgNP dissolution rate and hemolysis decrease only moderately compared to the large increases in agglomerate size, AgNPs' hemolytic toxicity may be caused by their large surface area and consequently high dissolution rate, rather than from other size-specific effects. At the silver concentrations used in this work, silver dissolved from AgNPs is expected to be primarily in the form of AgCl NPs, which are therefore more likely than Ag{sup +} ions to be the primary drivers of hemolytic toxicity. In addition, all AgNPs we tested are much more toxic to horse red blood cells than sheep red blood cells, highlighting the complexity of toxic responses and the need to test toxicity in multiple biological systems.

  6. Dissolution of LMFBR fuel-sodium aerosols

    International Nuclear Information System (INIS)

    Allen, M.D.; Moss, O.R.

    1979-01-01

    Plutonium dioxide, normally insoluble in biological fluids, becomes much more soluble when mixed with sodium as the aerosol is formed. Sodium-fuel aerosols are approximately 20 times less soluble in simulated lung fluid than in distilled water. Solubility of sodium-fuel aerosols increases when Na 2 CO 3 are added to the distilled-water dissolution fluid. Mixed-oxide fuel aerosols without sodium present are relatively insoluble in distilled water, simulated lung fluid, and distilled water with Na 2 CO 3 and NaHCO 3 added

  7. System and process for dissolution of solids

    Energy Technology Data Exchange (ETDEWEB)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  8. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  9. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-01-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  10. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    International Nuclear Information System (INIS)

    Maurice, P.

    2004-01-01

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals

  11. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  12. Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores

    Science.gov (United States)

    Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.

    2003-12-01

    Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very

  13. A Study on the Anodic Dissolution of Aluminum(II)

    International Nuclear Information System (INIS)

    Nam, C. W.; Park, C. S.; Park, C. S.

    1978-01-01

    In many cases oxide films formed on metals in atmosphere or aqueous solution are chemically inactive, especially it is the case with aluminum. In this study, anodic dissolution of aluminum was done using various electrolyte and cathode, mechanism of which was examined. As a consequence, oxide film on aluminum surface was dissolved together with the dissolution reaction of metal by the anodic current. It was shown that the dissolution reaction due to the contact between electrolyte and metal happened in the same time

  14. Dissolution Model Development: Formulation Effects and Filter Complications

    DEFF Research Database (Denmark)

    Berthelsen, Ragna; Holm, Rene; Jacobsen, Jette

    2016-01-01

    This study describes various complications related to sample preparation (filtration) during development of a dissolution method intended to discriminate among different fenofibrate immediate-release formulations. Several dissolution apparatus and sample preparation techniques were tested. The fl....... With the tested drug–formulation combination, the best in vivo–in vitro correlation was found after filtration of the dissolution samples through 0.45-μm hydrophobic PTFE membrane filters....

  15. Effect of alteration phase formation on the glass dissolution rate

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W.L. [Argonne National Laboratory, Chemical Technology Div. (United States)

    1997-07-01

    The dissolution rates of many glasses have been observed to increase upon the formation of certain alteration phases. While simulations have predicted the accelerating effect of formation of certain phases, the phases predicted to form in computer simulations are usually different than those observed to form in experiments. This is because kinetically favored phases form first in experiments, while simulations predict the thermodynamically favored phases. Static dissolution tests with crushed glass have been used to measure the glass dissolution rate after alteration phases form. Because glass dissolution rates are calculated on a per area basis, an important effect in tests conducted with crushed glass is the decrease in the surface area of glass that is available for reaction as the glass dissolves. This loss of surface area must be taken into account when calculating the dissolution rate. The phases that form and their effect on the dissolution rate are probably related to the glass composition. The impact of phase formation on the glass dissolution rate also varies according to the solubility products of the alteration phases and how the orthocilicic acid activity is affected. Insight into the relationship between the glass dissolution rate, solution chemistry and alteration phase formation is provided by the results of accelerated dissolution tests.

  16. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  17. Dissolution studies with pilot plant and actual INTEC calcines

    International Nuclear Information System (INIS)

    Herbst, R.S.; Garn, T.G.

    1999-01-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive Al(NO 3 ) 3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt.% of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt.% dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt.% dissolution, a result consistent with previous studies using other similar types of pilot plant calcines

  18. Dissolution studies on Nickel ferrite in dilute chemical decontamination formulations

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S. [New Brunswick Univ., Fredericton, NB (Canada). Dept. of Chemical Engineering; Srinivasan, M.P. [Bhabha Atomic Research Centre (BARC) (India). Water and Steam Chemistry Laboratory; Raghavan, P.S. [Madras Christian College, Chennai (India); Narasimhan, S.V. [Bhabha Atomic Research Centre, Bombay (India); Gopalan, R. [Madras Christian College, Chennai (India). Department of Chemistry

    2004-09-01

    Nickel ferrite is one of the important corrosion products in the pipeline surfaces of water-cooled nuclear reactors. The dissolution of the nickel ferrite by chelating agents is very sensitive to the nature of the chelant, the nature of the reductant used in the formulation and the temperature at which the dissolution studies are performed. The dissolution is mainly controlled by the reductive dissolution of the ferrite particles, but complexing agents also play a significant role in the dissolution process. This study deals with the leaching of iron and nickel from nickel ferrite prepared by the solid-state method. The dissolution studies are performed in pyridine-2,6-dicarboxylic acid (PDCA), nitrilotriacetic acid (NTA), and ethylenediaminetetraacetic acid (EDTA) formulations containing organic reductants like ascorbic acid and low oxidation state transition metal ion reductants like Fe(II)-L (where L = PDCA, NTA, EDTA) at 85 C. The dissolution of nickel ferrite in PDCA, NTA and EDTA formulations is influenced by the presence of reductants in the formulations. The addition of Fe(II)-L in the formulation greatly enhances the dissolution of nickel ferrite. The preferential leaching of nickel over iron during the dissolution of nickel ferrite was observed in all the formulations. (orig.)

  19. Mathematical methods for quantification and comparison of dissolution testing data.

    Science.gov (United States)

    Vranić, Edina; Mehmedagić, Aida; Hadzović, Sabira

    2002-12-01

    In recent years, drug release/dissolution from solid dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. This work discusses the analysis of data obtained for dissolution profiles under different media pH conditions using mathematical methods of analysis described by Moore and Flanner. These authors have described difference factor (f1) and similarity factor (f2), which can be used to characterise drug dissolution/release profiles. In this work we have used these formulas for evaluation of dissolution profiles of the conventional tablets in different pH of dissolution medium (range of physiological variations).

  20. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    Science.gov (United States)

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure-saturation curves. The predicted network residual styrene blob-size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous-phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  1. pH-metric solubility. 3. Dissolution titration template method for solubility determination.

    Science.gov (United States)

    Avdeef, A; Berger, C M

    2001-12-01

    The main objective of this study was to develop an effective potentiometric saturation titration protocol for determining the aqueous intrinsic solubility and the solubility-pH profile of ionizable molecules, with the specific aim of overcoming incomplete dissolution conditions, while attempting to shorten the data collection time. A modern theory of dissolution kinetics (an extension of the Noyes-Whitney approach) was applied to acid-base titration experiments. A thermodynamic method was developed, based on a three-component model, to calculate interfacial, diffusion-layer, and bulk-water reactant concentrations in saturated solutions of ionizable compounds perturbed by additions of acid/base titrant, leading to partial dissolution of the solid material. Ten commercial drugs (cimetidine, diltiazem hydrochloride, enalapril maleate, metoprolol tartrate, nadolol, propoxyphene hydrochloride, quinine hydrochloride, terfenadine, trovafloxacin mesylate, and benzoic acid) were chosen to illustrate the new titration methodology. It was shown that the new method is about 10 times faster in determining equilibrium solubility constants, compared to the traditional saturation shake-flask methods.

  2. Role of Water Sorption in Tablet Crushing Strength, Disintegration, and Dissolution.

    Science.gov (United States)

    Sacchetti, M; Teerakapibal, R; Kim, K; Elder, E J

    2017-08-01

    Drugs formulated as tablets are subjected to accelerated stability conditions with the goal of identifying a stable formulation that will exhibit a sufficiently long shelf life. Water sorption at a condition such as 40°C/75% RH can result in significant changes in tablet properties such as a decrease in dissolution rate, the cause of which may be difficult to interpret, given the complex nature of ingredients and their interactions in a tablet. In this research, three drugs, displaying a wide range of physicochemical properties, were formulated with commonly used diluents, disintegrants, and binders, using a design of experiments approach. The tablets were stored at accelerated conditions and assessed for content, dissolution, disintegration, and crushing strength, as well as other properties. The research demonstrated many water-induced effects in tablet properties. Due to the experimental design approach that revealed many interactions, it was possible to interpret all of the changes observed in tablet crushing strength, disintegration, and dissolution for the drugs using a common set of physical principles. Specifically, the relevant factors considered were (1) mechanical properties of materials, (2) water sorption surface effects in surface diffusion and capillary condensation, (3) water sorption bulk effects for amorphous materials such as viscous flow/spreading, and (4) water-induced stress on interparticle bonding arising from volume expansion. These physical principles enable a comprehensive interpretation of the complex changes observed in tablet properties, which should be valuable in the design of tablet formulations that will be stable to accelerated storage conditions.

  3. Kinetics of dissolution of sapphire in melts in the CaO-Al2O3-SiO2 system

    Science.gov (United States)

    Shaw, Cliff S. J.; Klausen, Kim B.; Mao, Huahai

    2018-05-01

    The dissolution rate of sapphire in melts in the CAS system of varying silica activity, viscosity and degree of alumina saturation has been determined at 1600 °C and 1.5 GPa. After an initiation period of up to 1800 s, dissolution is controlled by diffusion of cations through the boundary layer adjacent to the dissolving sapphire. The dissolution rate decreases with increasing silica activity, viscosity and molar Al2O3/CaO. The calculated diffusion matrix for each solvent melt shows that CAS 1 and 9 which have molar Al2O3/CaO of 0.33 and 0.6 and dissolution rate constants of 0.65 × 10-6 and 0.59 × 10-6 m/s0.5 have similar directions and magnitudes of diffusive coupling: DCaO-Al2O3 and DAl2O3-CaO are both negative are approximately equal. The solvent with the fastest dissolution rate: CAS 4, which has a rate constant of 1.5 × 10-6 m/s0.5 and Al2O3/CaO of 0.31 has positive DCaO-Al2O3 and negative DAl2O3-CaO and the absolute values vary by a factor of 4. Although many studies show that aluminium is added to the melts via the reaction: Si4+ =Al3+ + 0.5Ca2+ the compositional profiles show that this reaction is not the only one involved in accommodating the aluminium added during sapphire dissolution. Rather, aluminium is incorporated as both tetrahedrally coordinated Al charge balanced by Ca and as aluminium not charge balanced by Ca (termed Alxs). This reaction: AlIV -Ca =Alxs +CaNBO where CaNBO is a non-bridging oxygen associated with calcium, may involve the formation of aluminium triclusters. The shape of the compositional profiles and oxide-oxide composition paths is controlled by the aluminium addition reaction. When Alxs exceeds 2%, CaO diffusion becomes increasingly anomalous and since the bond strength of Alxs correlates with CaO/CaO + Al2O3, the presence of more than 2% Alxs leads to significantly slower dissolution than when Alxs is absent or at low concentration. Thus, dissolution is controlled by diffusion of cations through the boundary layer, but this

  4. Scope and dissolution studies and characterization of irradiated nuclear fuel in Atalante Hot Cell Facilities (abstract and presentation slides)

    International Nuclear Information System (INIS)

    Dancausse, Jean-Philippe; Reynier Tronche, Nathalie; Ferlay, Gilles; Herlet, Nathalie; Eysseric, Cathrine; Esbelin, Eric

    2005-01-01

    Since 1999, several studies on nuclear fuels were realised in C11/C12 Atalante Hot Cell. This paper presents firstly an overview of the apparatus used for fuel dissolution and characterisation like reactor design, gas trapping flask and solid/liquid separation. Then, the general methodology is described as a function of fuel, temperature, reagents, showing for each step, the reachable experimental data: Dissolution rate, chemical and radiochemical fuel composition including volatile LLRN, insoluble mass, composition, morphology, cladding chemical, radiochemical and physical characterisation using SIMS (made in Cadarache/LECA facilities), MEB. To conclude, some of the obtained results on 129I and 14C composition of oxide fuels, rate of dissolution and first results on dissolution studies of RERTR UMo fuel will be detailed. (Author)

  5. Rate of production, dissolution and accumulation of biogenic solids in the ocean.

    Science.gov (United States)

    Arrhenius, G

    1988-01-01

    The equatorial current system, by its response to global circulation changes, provides a unique recording mechanism for long range climatic oscillations. A permanent record of the changes in rate of upwelling and organic production is generated in the equatorial deep sea sediments, particularly by such biogenic components which are unaffected by secondary dissolution. In order to determine the rates of accumulation of various sedimentary components, a reliable differential measurement of age of the strata must be obtained. Various approaches to this problem are reviewed, and sources of error discussed. Secondary dissolution of calcium carbonate introduces a substantial and variable difference between the dissolution-modified, and hence a priori unknown, rate of deposition on one hand and the rate of accumulation, derivable from the observed concentration, on the other. The cause and magnitude of these variations are of importance, particularly since some current dating schemes are based on assumed constancy in the rate of accumulation of this and, in some cases, also all other sedimentary components. The concepts used in rate evaluation are discussed with emphasis on the difference between the state of dissolution, an observable property of the sediment, and the rate of dissolution, a parameter that requires deduction of the carbonate fraction dissolved, and of the time differential. As a most likely cause of the enhanced state of dissolution of the interglacial carbonate sediments is proposed the lowered rates of biogenic production and deposition, which cause longer exposure of the carbonate microfossils to corrosion in the bioturbated surface layer of the sediment. Historical perspective is included in the discussion in view of the dedication of the Symposium to Hans Pettersson, the leader of the Swedish Deep Sea Expedition 1947-1948, an undertaking that opened a new era in deep sea research and planetary dynamics.

  6. Systematic analysis of silver nanoparticle ionic dissolution by tangential flow filtration: toxicological implications.

    Science.gov (United States)

    Maurer, Elizabeth I; Sharma, Monita; Schlager, John J; Hussain, Saber M

    2014-11-01

    In the field of toxicology of nanomaterials, scientists have not clearly determined if the observed toxicological events are due to the nanoparticles (NPs) themselves or the dissolution of ions released into the biophysiological environment or both phenomenon participate in combination based upon their bioregional and temporal occurrence during exposure conditions. Consequently, research involving the toxicological analysis of silver NPs (Ag-NPs) has shifted towards assessment of 'nanosized' silver in comparison to its solvated 'ionic' counterpart. Current literature suggests that dissolution of ions from Ag-NPs may play a key role in toxicity; however, the present assessment methodology to separate ions from NPs still requires improvement before a definitive cause of toxicity can be determined. Recently, centrifugation-based techniques have been employed to obtain solvated ions from the NP solution, but this approach leads to NP agglomeration, making further toxicological analysis difficult to assess. Additionally, extremely small NPs are retained in the supernatant even after ultracentrifugation, leading to incomplete separation of ions from their respective NPs. To address these complex toxicology issues we applied enhanced separation techniques with the aim to study levels of ions originating from the Ag-NP using separation by a recirculating tangential flow filtration system. This system uses a unique diffusion-driven filtration method that retains large particles within the continuous flow path, while allowing the solution (ions) to pass through molecular filters by lateral diffusion separation. Use of this technique provides reproducible NP separation from their solvated ions which permits for further quantification using an inductively coupled plasma mass spectrometry or comparison use in bioassay exposures to biological systems. In this study, we thoroughly characterised NPs in biologically relevant solutions to understand the dissolution of Ag-NPs (10 and

  7. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  8. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  9. Griseofulvin/carrier blends: application of partial least squares (PLS) regression analysis for estimating the factors affecting the dissolution efficiency.

    Science.gov (United States)

    Cutrignelli, Annalisa; Trapani, Adriana; Lopedota, Angela; Franco, Massimo; Mandracchia, Delia; Denora, Nunzio; Laquintana, Valentino; Trapani, Giuseppe

    2011-12-01

    The main aim of the present study was to estimate the carrier characteristics affecting the dissolution efficiency of griseofulvin (Gris) containing blends (BLs) using partial least squares (PLS) regression analysis. These systems were prepared at three different drug/carrier weight ratios (1/5, 1/10, and 1/20) by the solvent evaporation method, a well-established method for preparing solid dispersions (SDs). The carriers used were structurally different including polymers, a polyol, acids, bases and sugars. The BLs were characterised at the solid-state by spectroscopic (Fourier transform infrared spectroscopy), thermoanalytical (differential scanning calorimetry) and X-ray diffraction studies and their dissolution behaviours were quantified in terms of dissolution efficiencies (log DE/DE(Gris)). The correlation between the selected descriptors, including parameters for size, lipophilicity, cohesive energy density, and hydrogen bonding capacity and log DE/DE(Gris) (i.e., DE and DE(Gris) are the dissolution efficiencies of the BLs and the pure drug, respectively) was established by PLS regression analysis. Thus two models characterised by satisfactory coefficient of determination were derived. The generated equations point out that aqueous solubility, density, lipophilic/hydrophilic character, dispersive/polar forces and hydrogen bonding acceptor/donor ability of the carrier are important features for dissolution efficiency enhancement. Finally, it could be concluded that the correlations developed may be used to predict at a semiquantitative level the dissolution behaviour of BLs of other essentially neutral drugs possessing hydrogen bonding acceptor groups only.

  10. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  11. K Basin sludge dissolution engineering study

    International Nuclear Information System (INIS)

    Westra, A.G.

    1998-01-01

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  12. Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets.

    Science.gov (United States)

    Ishikawa, Daitaro; Murayama, Kodai; Awa, Kimie; Genkawa, Takuma; Komiyama, Makoto; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-11-01

    We have recently developed a novel portable NIR imaging device (D-NIRs), which has a high speed and high wavelength resolution. This NIR imaging approach has been developed by utilizing D-NIRs for studying the dissolution of a model tablet containing 20 % ascorbic acid (AsA) as an active pharmaceutical ingredient and 80 % hydroxypropyl methylcellulose, where the tablet is sealed by a special cell. Diffuse reflectance NIR spectra in the 1,000 to 1,600 nm region were measured during the dissolution of the tablet. A unique band at around 1,361 nm of AsA was identified by the second derivative spectra of tablet and used for AsA distribution NIR imaging. Two-dimensional change of AsA concentration of the tablet due to water penetration is clearly shown by using the band-based image at 1,361 nm in NIR spectra obtained with high speed. Moreover, it is significantly enhanced by using the intensity ratio of two bands at 1,361 and 1,354 nm corresponding to AsA and water absorption, respectively, showing the dissolution process. The imaging results suggest that the amount of AsA in the imaged area decreases with increasing water penetration. The proposed NIR imaging approach using the intensity of a specific band or the ratio of two bands combined with the developed portable NIR imaging instrument, is a potentially useful practical way to evaluate the tablet at every moment during dissolution and to monitor the concentration distribution of each drug component in the tablet.

  13. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  14. Effect of drug loading method against drug dissolution mechanism of encapsulated amoxicillin trihydrate in matrix of semi-IPN chitosan-poly(N-vinylpyrrolidone) hydrogel with KHCO3 as pore forming agent in floating drug delivery system

    Science.gov (United States)

    Fimantari, Khansa; Budianto, Emil

    2018-04-01

    Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.

  15. Dissolution kinetics of smectite in geological repository system of TRU waste

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2005-02-01

    Extensive use of cement for encapsulation, mine timbering, and grouting purposes is envisaged in geological repositories of TRU waste. Degradation of cement materials in the repositories can produce a high pH pore fluid initially ranging from pH 13.0 to 13.5. The high pH pore fluids can migrate and react chemically with the host rock and bentonites which were employed to enhance repository's integrity. These chemical reactions can effect the capacity of the rocks and bentonites in retarding the migration of radionuclides. Smectite, main component of bentonite, can lose some of their desirable properties at the early stages of bentonite-cement fluid interaction. This has been a key research issue in performance assessment of TRU waste disposal. In this study, firstly, the factors affected on dissolution rate of smectite and equations describing dissolution rate were reviewed. Secondly, the effect of dissolved silica on the dissolution behavior of Na-montmorillonite was investigated. Bulk sample flow-through dissolution experiments at alkaline condition (pH 13.3) with different dissolved silica concentrations at different temperatures were performed. Titration experiments were also carried out at similar conditions. Atomic Force Microscopy (AFM) ex situ observations (i.e. on samples from flow-through experiments) was also performed to obtain the dissolution rate. Current results from bulk sample surface titration experiments indicate that dissolved silica has no pronounced effect on the surface titration behavior of Na-montmorillonite at any temperature. However, the trends for the surface titration behavior represent the averaged behavior of all particle sizes (i.e. including colloids) such that within an order of magnitude change cannot be quantified appreciably. Bulk flow-through dissolution experiments coupled with ex situ AFM observations indicate that there is also no effect of dissolved silica with comparatively low concentration of the reacting solution on

  16. Effects of Surface Composition on the Aerosolisation and Dissolution of Inhaled Antibiotic Combination Powders Consisting of Colistin and Rifampicin.

    Science.gov (United States)

    Wang, Wenbo; Zhou, Qi Tony; Sun, Si-Ping; Denman, John A; Gengenbach, Thomas R; Barraud, Nicolas; Rice, Scott A; Li, Jian; Yang, Mingshi; Chan, Hak-Kim

    2016-03-01

    Colistin is often the only effective antibiotic against the respiratory infections caused by multidrug-resistant Gram-negative bacteria. However, colistin-resistant multidrug-resistant isolates have been increasingly reported and combination therapy is preferred to combat resistance. In this study, five combination formulations containing colistin (COL) and rifampicin (RIF) were prepared by spray drying. The lowest minimum inhibitory concentration (MIC) value against Pseudomonas aeruginosa PAO1 was measured for the formulation of COL/RIF = 4:1 with relatively high emitted doses (over 80%) and satisfactory fine particle fractions (over 60%). Data from X-ray photoelectron spectroscopy (XPS) and nano-time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed the surfaces of particles were mainly covered by rifampicin even for the formulation with a mass ratio of COL/RIF = 4:1. Because colistin is hygroscopic and rifampicin is hydrophobic, moisture absorption of combination formulations was significantly lower than the pure colistin formulation in the dynamic vapour sorption results. To investigate the dissolution characteristics, four dissolution test methods (diffusion Franz cell, modified Franz cell, flow-through and beaker methods) were employed and compared. The modified Franz cell method was selected to test the dissolution behaviour of aerosolised powder formulations to eliminate the effect of membrane on dissolution. The results showed that surface enrichment of hydrophobic rifampicin neither affected aerosolisation nor retarded dissolution rate of colistin in the combination formulations. For the first time, advanced surface characterisation techniques of XPS and ToF-SIMS have shown their capability to understand the effect of surface composition on the aerosolisation and dissolution of combination powders.

  17. Dissolution kinetics of pyrite ore by hydrochloric acid | Baba ...

    African Journals Online (AJOL)

    The effects of HCl concentration, tem-perature and particle size on the dissolution rate indicated that about 76.4 % of the ore of < 0.1 mm particle size was dissolved at 80 ¢ªC and stirring rate of 360 rpm. The dissolution rate was also dependence on hydrogen ion concentration of the reaction system. Activation energy of ...

  18. 20 CFR 404.1219 - Dissolution of political subdivision.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a political...

  19. Dissolution rate enhancement of repaglinide by solid dispersion

    African Journals Online (AJOL)

    formation, cyclodextrin complexation, salt formation, use of surface active agents, co-solvency are some of the approaches to improve the dissolution rate of the drugs [3]. Solid dispersion (SD) is one of the most widely used techniques to improve solubility as well as dissolution rate of poorly water soluble drugs. This method ...

  20. Hydro-chemo-mechanical coupling in sediments: Localized mineral dissolution

    KAUST Repository

    Cha, Minsu

    2016-06-11

    Mineral dissolution is inherently a chemo-hydro-mechanical coupled process. Field evidence and laboratory results show that dissolution may localize and form open conduits in cohesive media such as carbonate rocks. This study focuses on the evolution of localized dissolution in soils (i.e., frictional and non-cohesive granular materials) under effective confining stresses. Experimental results show the development of localized dissolution (“pipe”) when a carbonate-quartz sand is subjected to reactive fluid flow: only loosely packed quartz grains remain within pipes, and the number of pipes decreases away from the inlet port. Concurrent shear wave velocity measurements show a decrease in stiffness during dissolution due to stress and fabric changes, and more complex signal codas anticipate the development of internal heterogeneity. The discrete element method is used to simulate localized vertical dissolution features in granular materials, under constant vertical stress and zero lateral strain far-field boundaries. As porosity increases along dissolution pipes, vertical load is transferred to the surrounding soils and marked force chains develop. In terms of equivalent stress, principal stress rotation takes place within pipes and the sediment reaches the Coulomb failure condition inside pipes and in the surrounding medium. Dissolution pipes alter the geo-plumbing of the subsurface, enhance fluid transport but limit the long term performance of storage systems, alter the fluid pressure and effective stress fields, soften the sediment and may trigger shear failures.

  1. Development and validation of dissolution test for Metoprolol ...

    African Journals Online (AJOL)

    GREGO

    2007-03-02

    Mar 2, 2007 ... Dissolution test for sustained release capsules of Metoprolol 125 mg was developed and validated according to FDA and ICH guidelines. Metoprolol coated pellets were coated with microcrystalline wax and glyceryl distearate for slow release of drug. The dissolution method which uses USP apparatus I.

  2. Dissolution enhancement of drugs. part i: technologies and effect of ...

    African Journals Online (AJOL)

    and steam aided granulation. In these techniques carrier plays an important role in improving solubility and dissolution rate. Polymers, superdisintegrants, surfactants are extensively studied in recent years for dissolution enhancement in drugs. This part of this review discusses technological overview and effect of polymers,

  3. The effect of sentencing types on singlehood and relationship dissolution

    DEFF Research Database (Denmark)

    Fallesen, Peter; Andersen, Lars Højsgaard

    Prior research shows that imprisonment may matter for the risk of experiencing divorce or other types of relationship dissolution, as imprisonment implies separation and the social stigma of criminal conviction. Despite these straightforward theoretical mechanisms, we currently lack empirical kno...... monitoring significantly and persistently lower the risk of both singlehood and relationship dissolution following conviction....

  4. Ambipolar diffusion in plasma

    International Nuclear Information System (INIS)

    Silva, T.L. da.

    1987-01-01

    Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)

  5. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    Science.gov (United States)

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  6. Aluminum Target Dissolution in Support of the Pu-238 Program

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Benker, Dennis [ORNL; DePaoli, David W [ORNL; Felker, Leslie Kevin [ORNL; Mattus, Catherine H [ORNL

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  7. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  8. A novel high throughput method to investigate polymer dissolution.

    Science.gov (United States)

    Zhang, Ying; Mallapragada, Surya K; Narasimhan, Balaji

    2010-02-16

    The dissolution behavior of polystyrene (PS) in biodiesel was studied by developing a novel high throughput approach based on Fourier-transform infrared (FTIR) microscopy. A multiwell device for high throughput dissolution testing was fabricated using a photolithographic rapid prototyping method. The dissolution of PS films in each well was tracked by following the characteristic IR band of PS and the effect of PS molecular weight and temperature on the dissolution rate was simultaneously investigated. The results were validated with conventional gravimetric methods. The high throughput method can be extended to evaluate the dissolution profiles of a large number of samples, or to simultaneously investigate the effect of variables such as polydispersity, crystallinity, and mixed solvents. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A new method for alkaline dissolution of uranium metal foil

    International Nuclear Information System (INIS)

    Mondino, A.V.; Wilkinson, M.V.; Manzini, A.C.

    2001-01-01

    In order to develop a production process of 99 Mo by fission of low-enriched uranium, the first purification step, which consists of dissolution of a uranium metal foil target, was studied. It was found that alkaline NaClO gave good results, reaching the dissolution of up to 300 μm of uranium foil. The different conditions for the dissolution were studied and the optimum ones were found. The influence of NaClO and NaOH concentration, temperature, dissolving solution volume per unit of surface and dissolution time were investigated. During this step, a gas identified as H 2 , was generated, and a precipitate characterized as Na 2 U 2 O 7 was observed. A stoichiometric reaction for this uranium dissolution is proposed. (author)

  10. Anomalous Diffusion Near Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  11. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  12. Osmosis and Diffusion Conceptual Assessment

    Science.gov (United States)

    Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts

    2011-01-01

    Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…

  13. Regulatory Perspectives on Strength-Dependent Dissolution Profiles and Biowaiver Approaches for Immediate Release (IR) Oral Tablets in New Drug Applications.

    Science.gov (United States)

    Suarez-Sharp, Sandra; Delvadia, Poonam R; Dorantes, Angelica; Duan, John; Externbrink, Anna; Gao, Zongming; Ghosh, Tapash; Miksinski, Sarah Pope; Seo, Paul

    2016-05-01

    Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.

  14. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhi; Zachara, John M.; Wang, Zheming; Shi, Liang; Fredrickson, Jim K.

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive than hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.

  15. Diffus lungesygdom hos børn

    DEFF Research Database (Denmark)

    Buchvald, Frederik; Nielsen, Kim G

    2014-01-01

    Diffuse lung disease in children represents a heterogeneous group of respiratory disorders with high morbidity and mortality. Typical features include tachypnoea, failure to thrive, diffuse radiological and histopathological abnormalities. Advances in genetics and pathophysiology, combined...

  16. Influence of pH and temperature on alunite dissolution rates and products

    Science.gov (United States)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  17. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.

    Science.gov (United States)

    Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2014-04-01

    Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  19. Diffusion in building wakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1988-03-01

    Straight-line Gaussian models adequately describe atmospheric diffusion for many applications. They have been modified for use in estimating diffusion in building wakes by adding terms that include projected building area and by redefining the diffusion coefficients so that the coefficients have minimum values that are related to building dimensions. In a recent study, Ramsdell reviewed the building-wake dispersion models used by the Nuclear Regulatory Commission (NRC) in its control room habitability assessments. The review included comparison of model estimates of centerline concentrations with concentrations observed in experiments at seven nuclear reactors. In general, the models are conservative in that they tend to predict concentrations that are greater than those actually observed. However, the models show little skill in accounting for variations in the observed concentrations. Subsequently, the experimental data and multiples linear regression techniques have been used to develop a new building wake diffusion model. This paper describes the new building wake model and compares it with other models. 8 refs., 2 figs

  20. Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for preformulation.

    Science.gov (United States)

    Alsenz, Jochem; Haenel, Elisabeth; Anedda, Aline; Du Castel, Pauline; Cirelli, Giorgio

    2016-05-25

    This study describes a novel Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for measuring disk intrinsic dissolution rates (DIDR). In MINDISS, compacted mini disks of drugs (2-5mg/disk) are prepared in custom made holders with a surface area of 3mm(2). Disks are immersed, pellet side down, into 0.35ml of appropriate dissolution media per well in 96-well microtiter plates, media are stirred and disk-holders are transferred to new wells after defined periods of time. After filtration, drug concentration in dissolution media is quantified by Ultra Performance Liquid Chromatography (UPLC) and solid state property of the disk is characterized by Raman spectroscopy. MINDISS was identified as an easy-to-use tool for rapid, parallel determination of DIDR of compounds that requires only small amounts of compound and of dissolution medium. Results obtained with marketed drugs in MINDISS correlate well with large scale DIDR methods and indicate that MINDISS can be used for (1) rank-ordering of compounds by intrinsic dissolution in late phase discovery and early development, (2) comparison of polymorphic forms and salts, (3) screening and selection of appropriate dissolution media, and (4) characterization of the intestinal release behavior of compounds along the gastro intestinal tract by changing biorelevant media during experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. High temperature dissolution of oxides in complexing media

    Science.gov (United States)

    Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam

    2011-12-01

    Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.

  2. Evaluation of fluorinated dissolution inhibitors for 157-nm lithography

    Science.gov (United States)

    Hamad, Alyssandrea H.; Houlihan, Francis M.; Seger, Larry; Chang, Chun; Ober, Christopher K.

    2003-06-01

    Fluorinated diesters were synthesized and evaluated as dissolution inhibitors (DIs) for 157 nm lithography. The results of dissolution rate measurements, exposure studies, and etching experiments on blends of fluorinated polymers containing these dissolution inhibitors are reported. It was shown that the DIs effectively slow the dissolution rate of the matrix polymer, poly(hexafluorohydroxyisopropyl styrene) (PHFHIPS). Etching studies show that they enhance the plasma etch resistance of poly(methyl methacrylate) using tetrafluoromethane plasma. Addition of the best performing dissolution inhibitor, cyclohexane-1,4-dicarboxylic acid bis-(1-cyclohexyl-2,2,2-trifluoro-1-methyl-ethyl) ester) (FCDE1) to candidate 157 nm photoresist polymers, Duvcor and poly(hexafluorohydroxyisopropyl styrene)-co-poly(t-butyl methacrylate) [pPHFHIPS-co-pt-BMA], improves the imaging behavior of these polymers. Our attempts to elucidate the mechanism of dissolution inhibition for this series of compounds will be discussed. Fourier Transform Infrared (FTIR) studies in conjunction with dissolution rate measurements performed on a series of DI analogues suggest a mechanism based on hydrogen bonding.

  3. Cytotoxicity and intracellular dissolution of nickel nanowires

    KAUST Repository

    Perez, Jose E.

    2015-12-22

    The assessment of cytotoxicity of nanostructures is a fundamental step for their development as biomedical tools. As widely used nanostructures, nickel nanowires (Ni NWs) seem promising candidates for such applications. In this work, Ni NWs were synthesized and then characterized using vibrating sample magnetometry, energy dispersive X-Ray analysis and electron microscopy. After exposure to the NWs, cytotoxicity was evaluated in terms of cell viability, cell membrane damage and induced apoptosis/necrosis on the model human cell line HCT 116. The influence of NW to cell ratio (10:1 to 1000:1) and exposure times up to 72 hours was analyzed for Ni NWs of 5.4 µm in length, as well as for Ni ions. The results show that cytotoxicity markedly increases past 24 hours of incubation. Cellular uptake of NWs takes place through the phagocytosis pathway, with a fraction of the dose of NWs dissolved inside the cells. Cell death results from a combination of apoptosis and necrosis, where the latter is the outcome of the secondary necrosis pathway. The cytotoxicity of Ni ions and Ni NWs dissolution studies suggest a synergistic toxicity between NW aspect ratio and dissolved Ni, with the cytotoxic effects markedly increasing after 24 hours of incubation.

  4. Analysis of dissolution residues of irradiated fuels

    International Nuclear Information System (INIS)

    Regnaud, F.; Tcherniatine, N.

    1980-12-01

    In the industrial dissolution conditions obtaining in reprocessing plants, the acid digests the irradiated nuclear fuels and leaves an insoluble product. This phenomenon is particularly conspicuous in the case of the UO 2 , PuO 2 mixed oxides of the fast neutron system irradiated at high specific burn-up. It is observed to a lesser degree in the case of UO 2 oxides of the ordinary water system. The quantity of insoluble product appears to depend on the specific burn-up. These residues are attributed to metallic phases comprising uranium, plutonium, ruthenium, palladium, rhodium and molybdenum. Owing to the existence of these residues, the radioactivity of which is high, the reprocessing plant requires a separation process, particular care in order to avoid their build-up, and packaging and storage facilities. This is why a programme on the physical-chemical study of the compounds has been initiated to develop a chemical digestion method, elemental analysis methods and the study of certain physical parameters such as granulometry [fr

  5. Importance of surface structure on dissolution of fluorite

    DEFF Research Database (Denmark)

    Godinho, Jose; Piazolo, Sandra; Balic Zunic, Tonci

    2014-01-01

    Dissolution rates are usually calculated as a function of surface area, which is assumed to remain constant ignoring the changes occurring on the surface during dissolution. Here we present a study of how topography of natural fluorite surfaces with different orientation changes during up to 3200...... by the relative stability of the planes and type of edges that constitute a surface needs to be considered. Significant differences between dissolution rates calculated based on surface area alone, and based on surface reactivity are expected for materials with the fluorite structure....

  6. Mongol Warfare in the Pre-Dissolution Period »

    Directory of Open Access Journals (Sweden)

    Timothy May

    2015-01-01

    Full Text Available Although the Mongols used many of the tactics and strategies that steppe nomads had used for centuries, the Mongols refined steppe warfare so that this style of warfare reached its apogee during the Mongol Empire. Furthermore, the Mongols developed a style of warfare that made them possibly the greatest military force in history. This work examines several facets of the pre-dissolution period (1200–1260. With the dissolution of the Mongol Empire, Mongol warfare once again changed. In some areas it remained complex while in others it regressed to traditional forces of steppe warfare, still potent but not as effective as the pre-dissolution period.

  7. Dissolution behaviour of silicon nitride coatings for joint replacements

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Maria [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Bryant, Michael [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Schmidt, Susann [Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping (Sweden); Engqvist, Håkan [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden); Hall, Richard M. [Institute of Medical and Biological Engineering (iMBE), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Neville, Anne [Institute of Functional Surfaces (iFS), School of Mechanical Engineering, University of Leeds, Leeds (United Kingdom); Persson, Cecilia, E-mail: cecilia.persson@angstrom.uu.se [Materials in Medicine Group, Div. of Applied Materials Science, Dept. of Engineering Sciences, Uppsala University, Uppsala (Sweden)

    2016-05-01

    In this study, the dissolution rate of SiN{sub x} coatings was investigated as a function of coating composition, in comparison to a cobalt chromium molybdenum alloy (CoCrMo) reference. SiN{sub x} coatings with N/Si ratios of 0.3, 0.8 and 1.1 were investigated. Electrochemical measurements were complemented with solution (inductively coupled plasma techniques) and surface analysis (vertical scanning interferometry and x-ray photoelectron spectroscopy). The dissolution rate of the SiN{sub x} coatings was evaluated to 0.2–1.4 nm/day, with a trend of lower dissolution rate with higher N/Si atomic ratio in the coating. The dissolution rates of the coatings were similar to or lower than that of CoCrMo (0.7–1.2 nm/day). The highest nitrogen containing coating showed mainly Si–N bonds in the bulk as well as at the surface and in the dissolution area. The lower nitrogen containing coatings showed Si–N and/or Si–Si bonds in the bulk and an increased formation of Si–O bonds at the surface as well as in the dissolution area. The SiN{sub x} coatings reduced the metal ion release from the substrate. The possibility to tune the dissolution rate and the ability to prevent release of metal ions encourage further studies on SiN{sub x} coatings for joint replacements. - Graphical abstract: Dissolution rates of SiN{sub 0.3}, SiN{sub 0.8}, and SiN{sub 1.1} coatings on CoCrMo compared to uncoated CoCrMo. Dissolution rates were obtained from i) electrochemical measurements of I{sub corr}, ii) the step height between covered and solution-exposed surfaces, measured using VSI, and iii) the ion concentration in the solution, measured with ICP. - Highlights: • The dissolution of SiN{sub x} coatings was investigated in comparison to (bulk) CoCrMo. • The coatings gave a lower or similar dissolution rate to CoCrMo, of 0.2–1.2 nm/day. • An increased nitrogen content in the coatings gave lower dissolution rates. • SiN{sub x} coatings on CoCrMo reduced the metal ion release

  8. Nickel-plating for active metal dissolution resistance in molten fluoride salts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States); Anderson, Mark; Allen, Todd [Department of Engineering Physics, 1500 Engineering Drive, University of Wisconsin, Madison, WI 53706 (United States)

    2011-04-15

    Ni electroplating of Incoloy-800H was investigated with the goal of mitigating Cr dissolution from this alloy into molten 46.5%LiF-11.5%NaF-42%KF eutectic salt, commonly referred to as FLiNaK. Tests were conducted in graphite crucibles at a molten salt temperature of 850 deg. C. The crucible material graphite accelerates the corrosion process due to the large activity difference between the graphite and the alloy. For the purposes of providing a baseline for this study, un-plated Incoloy-800H and a nearly pure Ni-alloy, Ni-201 were also tested. Results indicate that Ni-plating has the potential to significantly improve the corrosion resistance of Incoloy-800H in molten fluoride salts. Diffusion of Cr from the alloy through the Ni-plating does occur and if the Ni-plating is thin enough this Cr eventually dissolves into the molten salt. The post-corrosion test microstructure of the Ni-plating, particularly void formation was also observed to depend on the plating thickness. Diffusion anneals in a helium environment of Ni-plated Incoloy-800H and an Fe-Ni-Cr model alloy were also investigated to understand Cr diffusion through the Ni-plating. Further enhancements in the efficacy of the Ni-plating as a protective barrier against Cr dissolution from the alloy into molten fluoride salts can be achieved by thermally forming a Cr{sub 2}O{sub 3} barrier film on the surface of the alloy prior to Ni electroplating.

  9. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution.

    Science.gov (United States)

    Millière, Raphaël

    2017-01-01

    There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as "drug-induced ego dissolution (DIED)", for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR). While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the "minimal" or "embodied" self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves self-awareness. On the other

  10. Effect of the scan rate on the kinetic parameters of active dissolution and passivation of iron in a neutral solution

    International Nuclear Information System (INIS)

    Garmanov, M.E.; Kuznetsov, Yu.I.

    2004-01-01

    The effect of polarization rate (V = 0.2-100 mV/s) of a rotating disk-like electrode (with rotation rate v = 6000 rot/min) on kinetics of active anodic dissolution and active-passive transition of Armco iron in deaerated borate duffer solution with 7.40 pH is studied by the method of cyclic volt-amperometry. It is shown that in the whole V range studied without diffusion limitations the rate of active dissolution and formation of a primary passivating film is determined by slow electrochemical stages of electron transport, and a cyclic volt-ampere curve is a nonstationary thermodynamically nonequilibrium one. A linear growth of current at anodic maximum and a positive shift of its potential with a lg V increase are observed [ru

  11. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  12. Predicting the dissolution kinetics of silicate glasses using machine learning

    Science.gov (United States)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  13. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  14. Comparative dissolution study on counterfeit medicines of PDE-5 inhibitors

    Directory of Open Access Journals (Sweden)

    E. Deconinck

    2014-08-01

    Full Text Available Counterfeit medicines are a growing problem in both developing and industrialised countries. In general the evaluation of these medicines is limited to the identification and the dosage of the active ingredients. In this study in vitro dissolution tests were conducted on two sets of counterfeit medicines containing PDE-5 inhibitors (sildenafil citrate and tadalafil. The dissolution profiles were statistically compared to the ones of the genuine products using the f2-method and a comparison at each time point using the Cochran test.The results showed low equivalences between counterfeit and genuine products as well as higher variations around the mean dissolution value at the different time points for the counterfeit products. Keywords: Counterfeit, PDE-5 inhibitors, In vitro dissolution, f2-Method, Cochran test

  15. Evolution, dissolution and reversible generation of gold and silver ...

    Indian Academy of Sciences (India)

    with variable flux density) in the presence of nonionic micelle, TX-100. Even their cyano complexes break down in TX-100 under UV and hence dissolution and reevolution of almost monodispersed nanoparticles (∼ 3 nm) are possible.

  16. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  17. Influence of the Efavirenz Micronization on Tableting and Dissolution

    Directory of Open Access Journals (Sweden)

    Lucio Mendes Cabral

    2012-09-01

    Full Text Available The purpose of this study was to propose an analytical procedure that provides the effects of particle size and surface area on dissolution of efavirenz. Five different batches obtained by different micronization processes and with different particle size distribution and surface area were studied. The preformulation studies and dissolution curves were used to confirm the particle size distribution effect on drug solubility. No polymorphic variety or amorphization was observed in the tested batches and the particle size distribution was determined as directly responsible for the improvement of drug dissolution. The influence of the preparation process on the tablets derived from efavirenz was observed in the final dissolution result in which agglomeration, usually seen in non-lipophilic micronized material, was avoided through the use of an appropriate wet granulation method. For these reasons, micronization may represent one viable alternative for the formulation of brick dust drugs.

  18. Silver-catalyzed PuO2 dissolution with persulfate

    International Nuclear Information System (INIS)

    Fisher, F.D.; Barney, G.S.; Cooper, T.D.; Duchsherer, M.J.

    1991-06-01

    This report consists of 14 slides and associated narrative for a presentation to be given at the 15th Annual Actinide Separations Conference on silver-catalyzed PuO 2 dissolution with persulfate. (JL)

  19. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  20. The effect of sentencing types on singlehood and relationship dissolution

    DEFF Research Database (Denmark)

    Fallesen, Peter; Andersen, Lars Højsgaard

    Prior research shows that imprisonment may matter for the risk of experiencing divorce or other types of relationship dissolution, as imprisonment implies separation and the social stigma of criminal conviction. Despite these straightforward theoretical mechanisms, we currently lack empirical...

  1. In vivo dissolution measurement with indium-111 summation peak ratios

    International Nuclear Information System (INIS)

    Jay, M.; Woodward, M.A.; Brouwer, K.R.

    1985-01-01

    Dissolution of [ 111 In]labeled tablets was measured in vivo in a totally noninvasive manner by using a modification of the perturbed angular correlation technique known as the summation peak ratio method. This method, which requires the incorporation of only 10-12 microCi into the dosage form, provided reliable dissolution data after oral administration of [ 111 In]lactose tablets. These results were supported by in vitro experiments which demonstrated that the dissolution rate as measured by the summation peak ratio method was in close agreement with the dissolution rate of salicylic acid in a [ 111 In]salicylic acid tablet. The method has the advantages of using only one detector, thereby avoiding the need for complex coincidence counting systems, requiring less radioactivity, and being potentially applicable to a gamma camera imaging system

  2. Biologically mediated dissolution of volcanic glass in seawater

    NARCIS (Netherlands)

    Staudigel, H.; Chastain, R.A.; Yayanos, A.; Davies, G.R.; Verdurmen, E.; Schiffman, P.; Bourcier, R.; de Baar, H.

    1998-01-01

    We studied the effects of biological mediation on the dissolution of basaltic glass in seawater. Experiments with typical seawater microbial populations were contrasted with a sterile control, and reactions were monitored chemically and isotopically. Biologically mediated experiments produce twice

  3. Mathematical methods for diffusion MRI processing

    International Nuclear Information System (INIS)

    Lenglet, C.; Lenglet, C.; Sapiro, G.; Campbell, J.S.W.; Pike, G.B.; Campbell, J.S.W.; Siddiqi, K.; Descoteaux, M.; Haro, G.; Wassermann, D.; Deriche, R.; Wassermann, D.; Anwander, A.; Thompson, P.M.

    2009-01-01

    In this article, we review recent mathematical models and computational methods for the processing of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on Diffusion Tensor Images (DTI) and Q-Ball Images (QBI). (authors)

  4. Explosive instabilities of reaction-diffusion equations

    Science.gov (United States)

    Wilhelmsson, H.

    1987-07-01

    Explicit solutions are obtained for evolution equations for explosively unstable situations. These solutions include the effects of diffusion with linear or quadratic density dependence of the diffusion coefficient. As a result of balance between the diffusion and nonlinear terms, explosive growth in time can occur with a preservation in shape of certain spatial distributions. The solutions are generalized to cases of two interacting populations.

  5. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique.

    Science.gov (United States)

    Tabbakhian, M; Hasanzadeh, F; Tavakoli, N; Jamshidian, Z

    2014-01-01

    Glibenclamide (GLIB) is a poorly soluble drug with formulation-dependent bioavailability. Therefore, we attempted in this study to improve GLIB dissolution rate by preparing drug solid dispersions by solvent evaporation (SE) and supercritical fluid solvent-antisolvent techniques (SCF-SAS). A D-optimal mixture design was used to investigate the effects of different ratios of HPMCE5 (50-100%), PEG6000 (0-40%), and Poloxamer407 (0-20%) on drug dissolution from different solid dispersion (SD) formulations prepared by SE. The ratios of carriers used in SCF-SAS method were HPMCE5 (fixed at 60%), PEG6000 (20-40%), and Poloxamer407 (0-20%). A constant drug: carrier weight ratio of 1:10 was used in all experiments. The SDs obtained were physically characterized and subjected to the dissolution study. The major GLIB bands in FTIR spectra were indicative of drug integrity. The reduced intensity and the fewer number of peaks observed in X-ray diffractograms (XRD) of GLIB formulations was the indicative of at least partial transformation of crystalline to amorphous GLIB. This change and/or dilution of drug in much higher amounts of carriers present caused disappearance of distinctive endothermic peaks in differential scanning calorimetry thermograms of GLIB formulations. The model generated according to the results of the D-optimal mixture design indicated that GLIB formulations comprising HPMC (50%-60%), PEG (34-40%), and poloxamer (6-10%) had enhanced dissolution performances. As compared to SE method, the SCF-SAS technique produced formulations of higher dissolution performances, likely due to the effects of solution and the supercritical CO2 (SC-CO2) on enhanced plasticization of polymers and thus increased diffusion of the drug into the polymer matrix.

  6. First-order dissolution rate law and the role of surface layers in glass performance assessment

    Science.gov (United States)

    Grambow, B.; Müller, R.

    2001-09-01

    potential mechanical destruction it will be reformed instantaneously. The same is true for radiation damage. The dissolution of silica from the surface in this concept is considered as rate limiting for the release of soluble elements from the glass. After surface stabilization by local solid/solution equilibrium the release of soluble radionuclides continues with lower rates, but this is considered as resulting from parallel leaching mechanism. In fact, the deconvolutions of the overall leach mechanism into individual parallel and sequential rate limiting steps (not necessarily elementary reactions) is fundamental to this concept. In concept (2) surface stability as well as surface morphology are fundamental. A fracture in the protective surface would increase glass corrosion. The protective effect is based on the low diffusivities of radionuclides and other glass constituents in this layer. However, a true relation between layer thickness and rates is seldom observed. Diffusion coefficients are considered to vary with time as well as with the surface area to solution volume S/ V ratio. Sometimes, extremely low diffusivities in extremely thin layers are invoked to explain experimental data. The two concepts are not so different from each other and one is tempted to think of a problem of semantics. In fact, there are two alternative ways by which the protective layer concept can be coupled to the saturation concept: (a) the layer may be formed by solubility effects as proposed in [loc.cit] and/or (b) the layer plays the role of a silica diffusion barrier limiting glass dissolution rates according to the first-order rate law at the interface between the pristine glass and the surface layer. However, the mathematical models based on these conceptual models yield quite different long-term predictions, even though the models may equally well fit a given set of experimental data. The models are also different with respect to the number of interrelated parameters. In the case of

  7. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Hurd, Ralph E.; Yen, Yi‐Fen; Chen, Albert

    2012-01-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this techn......This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution‐DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation...

  8. Dissolution of mega-voids in resin transfer molding

    OpenAIRE

    Clark, Paul Nordstrom

    2007-01-01

    Resin transfer molding (RTM) is a common composite manufacturing process. Voids are a common defect encountered in RTM components. A new type of void, the 'Mega-Void', has been identified and addressed by this research. To produce acceptable RTM components requires that the mega-void be eliminated either through prevention or through dissolution. The latter is the topic of this research. Three process parameters affecting mega-void dissolution are researched; 1) Preform/mold vacuum , 2) Resin...

  9. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  10. Experimental results: Pilot plant calcine dissolution and liquid feed stability

    International Nuclear Information System (INIS)

    Herbst, R.S.; Fryer, D.S.; Brewer, K.N.; Johnson, C.K.; Todd, T.A.

    1995-02-01

    The dissolution of simulated Idaho Chemical Processing Plant pilot plant calcines, containing none of the radioactive actinides, lanthanides or fission products, was examined to evaluate the solubility of calcine matrix materials in acidic media. This study was a necessary precursor to dissolution and optimization experiments with actual radionuclide-containing calcines. The importance of temperature, nitric acid concentration, ratio of acid volume to calcine mass, and time on the amount, as a weight percentage of calcine dissolved, was evaluated. These parameters were studied for several representative pilot plant calcine types: (1) Run No. 74 Zirconia calcine; (2) Run No. 17 Zirconia/Sodium calcine; (3) Run No. 64 Zirconia/Sodium calcine; (3) Run No. 1027 Alumina calcine; and (4) Run No. 20 Alumina/Zirconia/Sodium calcine. Statistically designed experiments with the different pilot plant calcines indicated the effect of the studied process variables on the amount of calcine dissolved decreases in the order: Acid/Calcine Ratio > Temperature > HNO 3 Concentration > Dissolution Time. The following conditions are suitable to achieve greater than 90 wt. % dissolution of most Zr, Al, or Na blend calcines: (1) Maximum nitric acid concentration of 5M; (2) Minimum acid/calcine ratio of 10 mL acid/1 gram calcine; (3) Minimum dissolution temperature of 90 degrees C; and (4) Minimum dissolution time of 30 minutes. The formation of calcium sulphate (CaSO 4 ) precipitates was observed in certain dissolved calcine solutions during the dissolution experiments. Consequently, a study was initiated to evaluate if and under what conditions the resulting dissolved calcine solutions would be unstable with regards to precipitate formation. The results indicate that precipitate formation in the calcine solutions prepared under the above proposed dissolution conditions are not anticipated

  11. Characterization of the hydrodynamics in a miniaturized dissolution apparatus

    DEFF Research Database (Denmark)

    Johansson, Kristoffer E; Plum, Jakob; Mosleh, Majid

    2018-01-01

    The hydrodynamics of a miniaturized dissolution apparatus was characterized using computational fluid dynamics (CFD) simulations and analyzed in relation to the biorelevance and robustness of measurements of drug dissolution and precipitation kinetics from supersaturated drug solutions. The effect...... geometry influences the hydrodynamics of the system and indicates that an off-center probe position may result in more robust measurements. Furthermore, the study shows that the agitator geometry has a significant effect on supersaturation studies due to differences in the hydrodynamic shear produced...

  12. Dissolution of Kansas evaporites: the radioactive waste disposal problem

    International Nuclear Information System (INIS)

    Smith, B.J.

    1977-01-01

    The radioactive waste repository at Lyons, Kansas, focused attention on the problem of evaporite dissolution. More study is needed in the determination of the mechanisms responsible for deterioration. Also, recent water-use policies have been questioned with the need pointed out for increased effectiveness in planning. Good water planning has to take into account the role of evaporite dissolution in water quality. 23 references

  13. Etudes des mecanismes de dissolution des phosphates naturels de ...

    African Journals Online (AJOL)

    Dans le cadre de la recherche sur la dissolution du phosphate calcique apatitique, une étude du mécanisme de cette dissolution basé sur la complexation des ions métalliques du minerai par deux acides humiques extraits d'un sol (AHS) et d'un compost (AHC) a été réalisée. L'ion calcium (Ca2+), ion majoritaire dans les ...

  14. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  15. Reflectometric monitoring of the dissolution process of thin polymeric films.

    Science.gov (United States)

    Laitinen, Riikka; Räty, Jukka; Korhonen, Kristiina; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2017-05-15

    Pharmaceutical thin films are versatile drug-delivery platforms i.e. allowing transdermal, oral, sublingual and buccal administration. However, dissolution testing of thin films is challenging since the commonly used dissolution tests for conventional dosage forms correspond rather poorly to the physiological conditions at the site of administration. Here we introduce a traditional optical reflection method for monitoring the dissolution behavior of thin polymeric films. The substances, e.g. drug molecules, released from the film generate an increase in the refractive index in the liquid medium which can be detected by reflectance monitoring. Thin EUDRAGIT ® RL PO poly(ethyl acrylate-co-methyl methacrylate-co trimethylammonioethyl methacrylate chloride) (RLPO) films containing the model drug perphenazine (PPZ) were prepared by spraying on a glass substrate. The glass substrates were placed inside the flow cell in the reflectometer which was then filled with phosphate buffer solution. Dissolution was monitored by measuring the reflectance of the buffer liquid. The method was able to detect the distinctive dissolution characteristics of different film formulations and measured relatively small drug concentrations. In conclusion, it was demonstrated that a traditional optical reflection method can provide valuable information about the dissolution characteristics of thin polymeric films in low liquid volume surroundings. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  17. DISSOLUTION CHARACTERISTIC OF CHLORAMPHENICOL PALMITATE-LIPOSOMAL PREPARATION

    Directory of Open Access Journals (Sweden)

    Morteza Rafiee-Tehrani

    1990-07-01

    Full Text Available Solid dispersions of chloramphenicol palmitate and dipalmitoyl-phosphatidylcholine (lecithin have been produced both as copreci-pitate and physical mixtures. The dissolution behavior of both forms were compared with pure chloramphenicol palrnitate st different weight ratios of chloramphenicol palrnitate-lecithin (liposomal system; as well as various pH. The dissolution characteristic of physical mixtures for different weight ratios of chloramphenicol palmitate-lecithin was similar to the pure drug. Whereas, the coprecipitates produced a 2.8 fold greater initial dissolution rate (1DR and a 2.4 fold greater drug release concentration after 60 min at a chloramphenicol palmitatc-lecithin weight ratio of 19:1. However, lecithin content enhancement to 9:1, 4:1 and 1.5:1 compositions, resulted in a further increase of 6%, 21%. and 24%. respectively in the initial dissolution rate. In¬creasing the lecithin content shows only a slight increase (8.5°c on drug release after 60 min when, the chloramphenicol palrnitate lecithin weight ratio was 1.5:1. However, other weight ratios did not show any effect on the improvement of drug release after 60 min. I he effect of pH of the medium on dissolution was slight, but varied with composition of the system."nIn conclusion, liposome encapsulation of chloramphenicol palmitale has a significant effect on dissolution improvement of this drug.

  18. Dissolution of mixed oxide spent fuel from FBR

    International Nuclear Information System (INIS)

    Sanyoshi, H.; Nishina, H.; Toyota, O.; Yamamoto, R.; Nemoto, S.; Okamoto, F.; Togashi, A.; Kawata, T.; Hayashi, S.

    1991-01-01

    At the Tokai Works of the Power Reactor and Nuclear Fuel Development Corporation (PNC), the Chemical Processing Facility (CPF) has been continuing operation since 1982 for laboratory scale hot experiments on reprocessing of FBR mixed oxide fuel. As a part of these experiments, dissolution experiments have been performed to define the key parameters affecting dissolution rates such as concentration of nitric acid, temperature and burnup and also to confirm the amount of insoluble residue. The dissolution rate of the irradiated fuel was determined to be in proportion to the 1.7 power of the nitric acid concentration. The activation energy determined from the experiments varied from 6 to 11 kcal/mol depending on the method of dissolution. The dissolution rate decreased as the fuel burnup increased in low nitric acid media below 5 mol/l. However, it was found that the effect of the burnup became negligible in a high concentration of nitric acid media. The amount of insoluble residue and its constituents were evaluated by changing the dissolution condition. (author)

  19. Dissolution profiles of perindopril and indapamide in their fixed-dose formulations by a new HPLC method and different mathematical approaches

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2015-09-01

    Full Text Available A new HPLC method was introduced and validated for simultaneous determination of perindopril and indapamide. Validation procedure included specificity, sensitivity, robustness, stability, linearity, precision and accuracy. The method was used for the dissolution test of perindopril and indapamide in three fixed-dose formulations. The dissolution procedure was optimized using different media, different pH of the buffer, surfactants, paddle speed and temperature. Similarity of dissolution profiles was estimated using different model-independent and model-dependent methods and, additionally, by principal component analysis (PCA. Also, some kinetic models were checked for dissolved amounts of drugs as a function of time.

  20. Calcination/dissolution testing for Hanford Site tank wastes

    International Nuclear Information System (INIS)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack

  1. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  2. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Science.gov (United States)

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  3. Excess pore pressure and slope failures resulting from gas-hydrates dissociation and dissolution

    OpenAIRE

    Sultan, Nabil

    2007-01-01

    Parameters affecting gas hydrate formation include temperature, pore pressure, gas chemistry, and pore-water salinity. Any change in the equilibrium of these parameters may result in dissociation (gas-hydrate turns into free gas/water mixture) and/or dissolution (gas-hydrate becomes mixture of water and dissolved gas) of the gas hydrate. While, gas-hydrate dissociation at the base of the Gas Hydrate Occurrence Zone (GHOZ) is often considered as a major cause of sediment deformation and submar...

  4. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  5. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions.

    Science.gov (United States)

    Liu, Peng; De Wulf, Odile; Laru, Johanna; Heikkilä, Teemu; van Veen, Bert; Kiesvaara, Juha; Hirvonen, Jouni; Peltonen, Leena; Laaksonen, Timo

    2013-06-01

    Sink conditions used in dissolution tests lead to rapid dissolution rates for nanosuspensions, causing difficulties in discriminating dissolution profiles between different formulations. Here, non-sink conditions were studied for the dissolution testing of poorly water-soluble drug nanosuspensions. A mathematical model for polydispersed particles was established to clarify dissolution mechanisms. The dissolution of nanosuspensions with either a monomodal or bimodal size distribution was simulated. In the experimental part, three different particle sizes of indomethacin nanosuspensions were prepared by the wet milling technique. The effects of the dissolution medium pH and agitation speed on dissolution rate were investigated. The dissolution profiles in sink and non-sink conditions were obtained by changing the ratio of sample amount to the saturation solubility. The results of the simulations and experiments indicated that when the sample amount was increased to the saturation solubility of drug, the slowest dissolution rate and the best discriminating dissolution profiles were obtained. Using sink conditions or too high amount of the sample will increase the dissolution rate and weaken the discrimination between dissolution profiles. Furthermore, the low solubility by choosing a proper pH of the dissolution medium was helpful in getting discriminating dissolution profiles, whereas the agitation speed appeared to have little influence on the dissolution profiles. This discriminatory method is simple to perform and can be potentially used in any nanoproduct development and quality control studies.

  6. Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a single-pass flow-through (SPFT) test method that can be used to measure the dissolution rate of a homogeneous silicate glass, including nuclear waste glasses, in various test solutions at temperatures less than 100°C. Tests may be conducted under conditions in which the effects from dissolved species on the dissolution rate are minimized to measure the forward dissolution rate at specific values of temperature and pH, or to measure the dependence of the dissolution rate on the concentrations of various solute species. 1.2 Tests are conducted by pumping solutions in either a continuous or pulsed flow mode through a reaction cell that contains the test specimen. Tests must be conducted at several solution flow rates to evaluate the effect of the flow rate on the glass dissolution rate. 1.3 This practice excludes static test methods in which flow is simulated by manually removing solution from the reaction cell and replacing it with fresh solution. 1.4 Tests may be conducted wit...

  7. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    Science.gov (United States)

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Prediction of in vivo drug performance using in vitro dissolution coupled with STELLA: a study with selected drug products.

    Science.gov (United States)

    Chakraborty, Sumon; Yadav, Lokesh; Aggarwal, Deepika

    2015-01-01

    Prediction of the in vivo performance of the drug product from the in vitro studies is the major challenging job for the pharmaceutical industries. From the current regulatory perspective, biorelevant dissolution media should now be considered as quality control media in order to avoid the risk associated. Physiological based pharmacokinetic models (PBPK) coupled with biorelevant dissolution medium is widely used in simulation and prediction of the plasma drug concentration and in vivo drug performance. The present investigation deals with the evaluation of biorelevant dissolution media as well as in vivo drug performance by PBPK modelling using STELLA® simulation software. The PBPK model was developed using STELLA® using dissolution kinetics, solubility, standard gastrointestinal parameters and post-absorptive disposition parameters. The drug product selected for the present study includes Linezolid film-coated immediate-release tablets (Zyvox), Tacrolimus prolonged-release capsules (Advagraf), Valganciclovir tablets (Valcyte) and Mesalamine controlled-release capsules (Pentasa) each belonging to different biopharmaceutics classification system (BCS). The simulated plasma drug concentration was analyzed and pharmacokinetic parameters were calculated and compared with the reported values. The result from the present investigation indicates that STELLA® when coupled with biorelevant dissolution media can predict the in vivo performance of the drug product with prediction error less than 20% irrespective of the dosage form (immediate release versus modified release) and BCS Classification. Thus, STELLA® can be used for in vivo drug prediction which will be helpful in generic drug development.

  9. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  10. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  11. Clarithromycin Dissolution Enhancement by Preparation of Aqueous Nanosuspensions Using Sonoprecipitation Technique

    Science.gov (United States)

    Esfandi, Es ׳hagh; Ramezani, Vahid; Vatanara, Alireza; Rouholamini Najafabadi, Abdolhossein; Hadipour Moghaddam, Seyyed Pouya

    2014-01-01

    Clarithromycin (CLM) is a member of macrolide family with broad spectrum antibiotic activity. It is practically insoluble in water and its poor solubility is pH dependent. In this study, series of nanosuspensions containing CLM and stabilizer such as HPMC, NaCMC, polysorbate 80, poloxamer 188 and polyvinyl alcohol in various ratios were prepared using sonoprecipitation method. Briefly, CLM was dissolved in acid solution and the pH of solution was raised under sonication and the effects of different stabilizers on particle size of nanoparticles were evaluated. Characterization of nanoparticles in terms of size, polydispersity index, zeta potential, differential scanning calorimetery and dissolution studies was performed. Antimicrobial activity of CLM nanosuspension was compared with coarse powder by using an agar well diffusion method. The results showed that HPMC was more efficient in size reduction of particles and presence of HPMC E5 with ratio of 3:5 to CLM in formulation led to develop the stable nanosuspension with particle size of 340 nm. The obtained nanosuspension successfully showed enhanced dissolution rate and antimicrobial activity. PMID:25276181

  12. Review of enhanced vapor diffusion in porous media

    International Nuclear Information System (INIS)

    Webb, S.W.; Ho, C.K.

    1998-01-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper

  13. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  14. Urban diffusion problems

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1976-01-01

    It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces

  15. Diffuse galactic annihilation radiation

    Science.gov (United States)

    Ramaty, R.; Lingenfelter, R. E.

    1993-01-01

    The study reports observations of positron annihilation radiation from the inner region of the Galaxy which show that there are two components of the radiation: a steady, diffuse Galactic component and a variable component from discrete, presumably compact sources. The existence of the variable component is supported by the ensemble of all narrow FOV 511 keV line observations, including recent detections with OSSE. The fit of this ensemble to a time-independent source distribution can be excluded at the approximately 3-sigma level. The same ensemble, combined with the broad FOV SMM observations of Galactic 511 keV line emission, sets constraints on the Galactic distribution of the diffuse component.

  16. High contrast XMT studies of in-situ electrochemical dissolution of broken dental tools

    Science.gov (United States)

    Mills, David; Mitchell, Alison; Khine, Sean; Davis, Graham

    2016-10-01

    Fracture of nickel-titanium (NiTi) endodontic files is an uncommon but potentially damaging occurrence during root canal preparation. If the broken portion of the file remains inside the tooth canal it can prevent complete preparation of the root canal with consequent negative impact on treatment outcomes. Removal of file fragment from the tooth canal is currently a mechanical process, which due to the limited working space and restricted view can lead to further problems including perforation of the tooth. Electrochemical dissolution is a relatively new method proposed to dissolve a fractured instrument, fully or partially within the canal, to enable its removal. In this article we explore the effects of electrochemical dissolution on the root canal environment using high contrast time delay integration (TDI) X-ray micro-tomography (XMT) designed specifically for dental research.

  17. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Park, Gayoung; Kim, Kyungmin; Hwang, Suk-Won; Cheng, Huanyu; Shin, Jiho; Chung, Sangjin; Kim, Minjin; Yin, Lan; Lee, Jeong Chul; Lee, Kyung-Mi; Rogers, John A

    2015-05-06

    Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.

  18. Mockup testing of remote systems for zirconium fuel dissolution process at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Paige, D.M.

    1979-01-01

    A facility is being constructed at the Idaho National Engineering Laboratory for storage and dissolution of spent zirconium reactor fuels. The dissolution is carried out in chemical type equipment contained in a large shielded cell. The design provides for remote operations and maintenance as required. Equipment predicted to fail within 5 years is designed for remote maintenance. Each system was fabricated for mockup testing using readily available materials. The mockups were tested, redesigned, and retested until satisfactory remote designs were achieved. Records were made of all the work. All design changes were then incorporated into the ongoing detailed design for the actual equipment. Several of these systems are discussed and they include valve replacement, pump replacement, waste solids handling, mechanism operations and others. The mockup program has saved time and money by eliminating many future problems. In addition, the mockup program will continue through construction, cold startup, and hot operations

  19. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    Science.gov (United States)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as U in porous geomedia.

  20. Study of dissolution factors of U, Th and Ta

    International Nuclear Information System (INIS)

    Santos, Maristela; Medeiros, Geiza; Zouain, Felipe; Cunha, Kenya Dias da; Pitassi, Gabriel; Lima, Cintia; Leite, Carlos Vieira Barros; Nascimento, Jose Eduardo; Dalia, Kely Cristina

    2009-01-01

    Air pollution can be a problem in industrial processes, but monitoring and controlling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U) and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U and Ta dissolution factors in vitro were obtained using the Gamble solution (Simulant Lung Fluid, SLF), PIXE (Particle Induced X ray Emission) and alpha spectrometry as analytical techniques. Ta, Th and U are present in the pyrochlore crystal lattice as oxide; however they have shown different dissolution parameters. The rapid dissolution fraction (fr), rapid dissolution rate (λr); slow dissolution rate (fs) and slow dissolution fraction ((λs) measured for tantalum oxide were equal to 0.1, 0.45 d -1 and 0.00007 d -1 , respectively; for uranium oxide fr was equal to 0.05, (λr equal to 1.1 d -1 ; (λs equal to 0.000068 d -1 ; for thorium oxide fr was 0.025, (λr was 1.5 d -1 and (λs: 0.000065 d -1 . These results show that chemical behavior of these 3 compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore. (author)

  1. Mechanism of single-layer 193-nm dissolution inhibition resist

    Science.gov (United States)

    Yan, Zhenglin; Houlihan, Francis M.; Reichmanis, Elsa; Nalamasu, Omkaram; Reiser, Arnost; Dabbagh, Gary; Hutton, Richard S.; Osei, Dan; Sousa, Jose; Bolan, Kevin J.

    2000-06-01

    We have found that the progress of developer base into films of terpolymers of norbornene (NB)-maleic anhydride (MA) and acrylic acid (AA) is a percolation process with a critical site concentration of x(c) equals 0.084 which suggests that every acrylic acid site in the terpolymer of norbornene-maleic anhydride-acrylic acid can make 12 monomer units of the polymer water compatible. In practice these systems are being used with various tert-butyl esters of cholic acid as dissolution inhibitors. The cholates differ very much in their dissolution inhibition factors (lowest t-butyl cholate (1.3) to highest t-butyl lithocholate glutarate dimer (7.4). The change in these factors corrected for molarity follow the hydrophobic character of the dissolution as measured by log(p). A quick screening method has also been established to evaluate dissolution inhibitors based on our observation that the cloud point (the volume % acetone in a water/acetone which gives persistent cloudiness) parallels the dissolution inhibiting power as measured by the dissolution inhibition factor. For dissolution promotion, optimal results are obtained with t-butyl 1,3,5-cyclohexanetricarboxylate (f equals -6.3) and poorest results with t-butyl lithocholate (f equals -2.8); this appears to track with the number of carboxyl groups and the hydrophobicity of the carboxylic acids. The Rmax found for resist formulations tracks well with these findings. Another factor in determining the ultimate achievable contrast is the degree of acidolytic deprotection achieved by the material. It appears that acidolyticaly cleaveable carboxylate esters with a higher concentration of electron withdrawing groups such as t-butyl 1,3,5-cyclohexanetricarboxylate are more effective.

  2. Dissolution of biogenic ooze over basement edifices in the equatorial Pacific with implications for hydrothermal ventilation of the oceanic crust

    Science.gov (United States)

    Bekins, B.A.; Spivack, A.J.; Davis, E.E.; Mayer, L.A.

    2007-01-01

    Recent observations indicate that curious closed depressions in carbonate sediments overlying basement edifices are widespread in the equatorial Pacific. A possible mechanism for their creation is dissolution by fluids exiting basement vents from off-axis hydrothermal flow. Quantitative analysis based on the retrograde solubility of calcium carbonate and cooling of basement fluids during ascent provides an estimate for the dissolution capacity of the venting fluids. Comparison of the dissolution capacity and fluid flux with typical equatorial Pacific carbonate mass accumulation rates shows that this mechanism is feasible. By maintaining sediment-free basement outcrops, the process may promote widespread circulation of relatively unaltered seawater in the basement in an area where average sediment thicknesses are 300-500 m. The enhanced ventilation can explain several previously puzzling observations in this region, including anomalously low heat flux, relatively unaltered seawater in the basement, and aerobic and nitrate-reducing microbial activity at the base of the sediments. ?? 2007 The Geological Society of America.

  3. The Biopharmaceutics Classification System: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC.

    Science.gov (United States)

    Tsume, Yasuhiro; Mudie, Deanna M; Langguth, Peter; Amidon, Greg E; Amidon, Gordon L

    2014-06-16

    The Biopharmaceutics Classification System (BCS) has found widespread utility in drug discovery, product development and drug product regulatory sciences. The classification scheme captures the two most significant factors influencing oral drug absorption; solubility and intestinal permeability and it has proven to be a very useful and a widely accepted starting point for drug product development and drug product regulation. The mechanistic base of the BCS approach has, no doubt, contributed to its wide spread acceptance and utility. Nevertheless, underneath the simplicity of BCS are many detailed complexities, both in vitro and in vivo which must be evaluated and investigated for any given drug and drug product. In this manuscript we propose a simple extension of the BCS classes to include sub-specification of acid (a), base (b) and neutral (c) for classes II and IV. Sub-classification for Classes I and III (high solubility drugs as currently defined) is generally not needed except perhaps in border line solubility cases. It is well known that the , pKa physical property of a drug (API) has a significant impact on the aqueous solubility dissolution of drug from the drug product both in vitro and in vivo for BCS Class II and IV acids and bases, and is the basis, we propose for a sub-classification extension of the original BCS classification. This BCS sub-classification is particularly important for in vivo predictive dissolution methodology development due to the complex and variable in vivo environment in the gastrointestinal tract, with its changing pH, buffer capacity, luminal volume, surfactant luminal conditions, permeability profile along the gastrointestinal tract and variable transit and fasted and fed states. We believe this sub-classification is a step toward developing a more science-based mechanistic in vivo predictive dissolution (IPD) methodology. Such a dissolution methodology can be used by development scientists to assess the likelihood of a

  4. The role of mass balance equations in growth mechanics illustrated in surface and volume dissolutions.

    Science.gov (United States)

    Ateshian, Gerard A

    2011-01-01

    Growth mechanics problems require the solution of mass balance equations that include supply terms and account for mass exchanges among constituents of a mixture. Though growth may often be accompanied by a variety of concomitant phenomena that increase modeling complexity, such as solid matrix deformation, evolving traction-free configurations, cell division, and active cell contraction, it is important to distinguish these accompanying phenomena from the fundamental growth process that consists of deposition or removal of mass from the solid matrix. Therefore, the objective of this study is to present a canonical problem of growth, namely, dissolution of a rigid solid matrix in a solvent. This problem illustrates a case of negative growth (loss of mass) of the solid in a mixture framework that includes three species, a solid, a solvent, and a solute, where the solute is the product of the solid dissolution. By analyzing both volumetric and surface dissolutions, the two fundamental modes of growth are investigated within the unified framework of mixture theory.

  5. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  6. Combined Neutron and X-Ray Radiographic/Tomographic Analysis of Dissolution Limestones under Acidic Conditions

    Science.gov (United States)

    Anovitz, L. M.; Cole, D. R.; Hussey, D. S.; LaManna, J.; Swift, A.; Jacobson, D. L.

    2016-12-01

    Carbon dioxide capture and sequestration in deep geological formations is an important option for reducing greenhouse gas emissions. While the importance of porosity and pore-evolution has long been recognized, the evolution of porosity and permeability in reactive carbonates exposed to CO2-loaded brines is not well constrained. A typical pH range for CO2-acidified brine is 3 to 4.5 depending on alkalinity. This represents a substantial perturbation of typical brines that range from pH 6 to 8. The key questions include how accessible are the pores to fluid transport and how does the pore network evolve as the matrix reacts with the acidic solution? Limestones and dolostones contain nano- to macroscale porosity comprised of cracks, grain boundaries, fluid inclusions, single pores, vugs and networks of pores of random shapes and orientations. Accessible, interconnected pores may act as pore throats, constraining overall flow and are the most likely locations for extensive rock alteration. Neutron imaging is well suited to interrogation of fluid flow in porous media. Because of the large scattering cross section of hydrogen it can be used to directly image water or hydrocarbons without an added contrast medium that might modify interfacial tension and fluid/fluid interactions. In order to understand the reaction of acidified fluids we used simultaneous neutron and X-ray tomography to study the uptake and reaction of water and an acidic fluid (pH 1 HCl) with two types of Indiana limestone, one with a permeability of 2-4 mD, and the other 70 mD. One set of experiments explored capillary uptake in a dry core. These documented rapid uptake and CO2 bubble formation at the inlet. A second set introduced at a constant forced flow rate of 10 ml/min. Both core types exhibited wormhole formation, but the low perm limestone wormhole consisted of one well-delineated channel with a few side "tributaries," whereas the high perm core exhibited a more diffuse array of channels. Post

  7. In vivo in vitro correlations for a poorly soluble drug, danazol, using the flow-through dissolution method with biorelevant dissolution media

    DEFF Research Database (Denmark)

    Sunesen, Vibeke Hougaard; Pedersen, Betty Lomstein; Kristensen, Henning Gjelstrup

    2005-01-01

    .H., Vedelsdal, R., Kristensen, H.G., Christrup, L., Müllertz, A. 2005. Effect of liquid volume and food intake on the absolute bioavailability of danazol, a poorly soluble drug, Eur. J. Pharm. Sci. 24, 297-303]. In the fasted state, the physiologically most relevant correlation with in vivo results was achieved...... it was possible to obtain correlations with in vivo release of danazol under fasted and fed conditions. Both hydrodynamics and medium composition were important for the dissolution of danazol. In the fed state an IVIVC could only be obtained by including monoglycerides and fatty acids in the medium....

  8. Magnetic resonance imaging of clays: swelling, sedimentation, dissolution

    Science.gov (United States)

    Dvinskikh, Sergey; Furo, Istvan

    2010-05-01

    measure of clay distribution in extended samples during different physical processes such as swelling, dissolution, and sedimentation on the time scale from minutes to years [1-3]. To characterize the state of colloids that form after/during clay swelling the water self-diffusion coefficient was measured on a spatially resolved manner. Both natural clays and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. These results have a significant impact for engineering barriers for storage of spent nuclear fuel where clay erosion by low salinity water must be addressed. Presented methods were developed under the motivation of using bentonite clays as a buffer medium to build in-ground barriers for the encapsulation of radioactive waste. Nevertheless, the same approaches can be found suitable in other applications in soil and environmental science to study other types of materials as they swell, dissolve, erode, or sediment. Acknowledgements: This work has been supported by the Swedish Nuclear Fuel and Waste Management Co (SKB) and the Swedish Research Council VR. [1] N. Nestle, T. Baumann, R. Niessner, Magnetic resonance imaging in environmental science. Environ. Sci. Techn. 36 154A (2002). [2] S. V. Dvinskikh, K. Szutkowski, I. Furó. MRI profiles over a very wide concentration ranges: application to swelling of a bentonite clay. J. Magn. Reson. 198 146 (2009). [3] S. V. Dvinskikh, I. Furó. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems. Technical Report, TR-09-27, SKB (2009), www.skb.se.

  9. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of solution saturation state and temperature on diopside dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, S; Carroll, S A

    2007-03-23

    Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175 C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175 C. At 175 C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface.

  11. Dissolution rates of amorphous silica in highly alkaline solution

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Tochiyama, Osamu; Kunita, Masahisa; Chida, Tadashi

    2000-01-01

    Cement is an essential materials to construct the subsurface radioactive waste disposal system. However, cementitious materials alter the groundwater pH to highly alkaline condition about 13. To comprehend the effect of such a hyperalkaline condition on the repository surroundings, this study focused on the dissolution rates of amorphous silica at [NaOH]=10 -1 mol·dm -3 . The used samples were three kinds of pure commercial silica and a natural silica scale which was obtained from inside wall of the hot-water pipe of a geothermal power plant. The observed dissolution rates were interpreted with using the model, which assumed that the particle sizes decrease with the progress of dissolution. Moreover, due to the particle size distribution anticipated in the natural silica scale, this analysis assumed it contained particles with various initial diameters. In the results, (1) all pure silica samples and at least 60 wt% of the silica scale showed good agreement of the activation energy of the dissolution in the range of 77 through 88 kJ·mol -1 in the highly alkaline solution, (2) these rate constants were of the order of 10 -8 - 10 -7 mol·m -2 ·s -1 at around 310 K and were definitely larger than those already reported for quartz, (3) the specific surface area based on BET method was revealed to be an important factor to give the main difference in the dissolution rates between the synthetic silica and the natural silica. (author)

  12. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    Science.gov (United States)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  13. Dissolution Enhancement of Rosuvastatin Calcium by Liquisolid Compact Technique

    Directory of Open Access Journals (Sweden)

    V. J. Kapure

    2013-01-01

    Full Text Available In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT. The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR analysis, X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.

  14. Implementation of 350-2500 nm diffuse reflectance spectroscopy and High-Performance Thin-Layer Chromatography to rapidly assess manufacturing consistency and quality of cotrimoxazole tablets in Tanzania.

    Science.gov (United States)

    Kaale, Eliangiringa; Hope, Samuel M; Jenkins, David; Layloff, Thomas

    2016-01-01

    To assess the quality of cotrimoxazole tablets produced by a Tanzanian manufacturer by a newly instituted quality assurance programme. Tablets underwent a diffuse reflectance spectroscopy procedure with periodic quality assessment confirmation by assay and dissolution testing using validated HPTLC techniques (including weight variation and disintegration evaluations). Based on results from the primary test methods, the first group of product was 99% compliance. This approach provides a model for rapidly assuring product quality of future procurements of other products that is more cost-effective than traditional pharmaceutical testing techniques. © 2015 John Wiley & Sons Ltd.

  15. Simulation of dissolution in porous media in three dimensions with lattice Boltzmann, finite-volume, and surface-rescaling methods

    Science.gov (United States)

    Gray, F.; Cen, J.; Boek, E. S.

    2016-10-01

    We present a pore-scale dissolution model for the simulation of reactive transport in complex porous media such as those encountered in carbon-storage injection processes. We couple a lattice Boltzmann model for flow calculation with a finite-volume method for solving chemical transport equations, and allow the computational grid to change as mineral surfaces are dissolved according to first-order reaction kinetics. We appraise this scheme for use with high Péclet number flows in three-dimensional geometries and show how the popular first-order convection scheme is affected by severe numerical diffusion when grid Péclet numbers exceed unity, and confirm that this can be overcome relatively easily by using a second-order method in conjunction with a flux-limiter function. We then propose a surface rescaling method which uses parabolic elements to counteract errors in surface area exposed by the Cartesian grid and avoid the use of more complex embedded surface methods when surface reaction kinetics are incorporated. Finally, we compute dissolution in an image of a real porous limestone rock sample injected with HCl for different Péclet numbers and obtain dissolution patterns in concordance with theory and experimental observation. A low injection flow rate was shown to lead to erosion of the pore space concentrated at the face of the rock, whereas a high flow rate leads to wormhole formation.

  16. Diffusion in solids

    International Nuclear Information System (INIS)

    Tiwari, G.P.; Kale, G.B.; Patil, R.V.

    1999-01-01

    The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)

  17. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization.

    Science.gov (United States)

    Basalious, Emad B; Shawky, Nevine; Badr-Eldin, Shaimaa M

    2010-05-31

    The aim of this study was to develop and optimize SNEDDS formulations containing surfactants reported to be bioenhancers for improvement of dissolution and oral absorption of lacidipine (LCDP). Preliminary screening was carried out to select proper components combination. D-optimal mixture experimental design was applied to optimize a SNEDDS that contains a minimum amount of surfactant, a maximum amount of lipid, and possesses enhanced emulsification and dissolution rates. Three formulation variables; the oil phase X(1) (a mixture of Labrafil/Capmul), the surfactant X(2) (a mixture of Cremophor/Tween 80) and the co-surfactant X(3), were included in the design. The systems were assessed for droplet size, light absorbance, optical clarity, drug release and emulsification efficiency. Following optimization, the values of formulation components (X(1), X(2), and X(3)) were 34.20%, 40.41% and 25.39%, respectively. There is a good correlation between light absorbance and droplet size analysis of diluted SNEDDS (R(2)=0.883). Transmission electron microscopy demonstrated spherical droplet morphology. The stability of the optimized formulation was retained after storage at 40 degrees C/75% RH for three months. The optimized formulation of LCDP showed a significant increase in dissolution rate compared to the drug suspension under the same conditions. Our results proposed that the optimized SNEDDS formulation, containing bioenhancing surfactants, could be promising to improve oral absorption of LCDP. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    International Nuclear Information System (INIS)

    Fu Tingming; Guo Liwei; Le Kang; Wang Tianyao; Lu Jin

    2010-01-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20 PO 70 EO 20 ) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  19. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    Energy Technology Data Exchange (ETDEWEB)

    Fu Tingming, E-mail: futingming@gmail.com [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Guo Liwei; Le Kang; Wang Tianyao; Lu Jin [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China)

    2010-09-15

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO{sub 20}PO{sub 70}EO{sub 20}) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N{sub 2} adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  20. Coparenting after marital dissolution and children's mental health: a systematic review,

    Directory of Open Access Journals (Sweden)

    Diogo Lamela

    2016-08-01

    Full Text Available Abstract Objective: Research has shown that coparenting is a vital family mechanism in predicting mental health in children and adolescents. Considering the increasing prevalence of marital dissolution in Western societies, the objective of this systematic review was to summarize the key results of empirical studies that tested the association between mental health of children and coparenting after marital dissolution. Data source: The studies were obtained from three databases (PsycInfo, PubMed, and Web of Knowledge, published between January 2000 and October 2014. The titles, abstracts, and key words of the generated citations were independently reviewed by two investigators to consensually select the articles that met the inclusion criteria. Articles that used psychometrically valid tools to measure at least one mental health indicator and at least one dimension of coparenting in samples with divorced parents were included in the review. Data synthesis: Of the 933 screened articles, 11 met the inclusion criteria. Significant positive associations were found between coparental conflict and behavioral problems and symptoms of anxiety, depression, and somatization. Significant positive associations were also found between other specific dimensions of coparenting (coparental support, cooperation, and agreement, overall mental health, self-esteem, and academic performance. Conclusions: The integrated analysis of these studies suggests that coparenting is a key mechanism within the family system for the prediction of child mental health after marital dissolution, and thus, it is recommended that pediatricians, psychologists, and other health professionals consider coparenting as a psychosocial variable for children's mental health assessment and diagnosis.

  1. In Vitro Dissolution Profile of Dapagliflozin: Development, Method Validation, and Analysis of Commercial Tablets

    Directory of Open Access Journals (Sweden)

    Rafaela Zielinski Cavalheiro de Meira

    2017-01-01

    Full Text Available Dapagliflozin was the first of its class (inhibitors of sodium-glucose cotransporter to be approved in Europe, USA, and Brazil. As the drug was recently approved, there is the need for research on analytical methods, including dissolution studies for the quality evaluation and assurance of tablets. The dissolution methodology was developed with apparatus II (paddle in 900 mL of medium (simulated gastric fluid, pH 1.2, temperature set at 37±0.5°C, and stirring speed of 50 rpm. For the quantification, a spectrophotometric (λ=224 nm method was developed and validated. In validation studies, the method proved to be specific and linear in the range from 0.5 to 15 μg·mL−1 (r2=0.998. The precision showed results with RSD values lower than 2%. The recovery of 80.72, 98.47, and 119.41% proved the accuracy of the method. Through a systematic approach by applying Factorial 23, the robustness of the method was confirmed (p>0.05. The studies of commercial tablets containing 5 or 10 mg demonstrated that they could be considered similar through f1, f2, and dissolution efficiency analyses. Also, the developed method can be used for the quality evaluation of dapagliflozin tablets and can be considered as a scientific basis for future official pharmacopoeial methods.

  2. Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures

    International Nuclear Information System (INIS)

    Cai, J.; Zhang, L.; Liu, S.; Liu, Y.; Xu, X.; Chen, X.; Chu, B.; Guo, X.; Xu, J.

    2008-01-01

    Cellulose can be dissolved in precooled (-12 C) 7 wt % NaOH-12 wt % urea aqueous solution within 2 min. This interesting process, to our knowledge, represents the most rapid dissolution of native cellulose. The results from 13C NMR, 15N NMR, 1H NMR, FT-IR, small-angle neutron scattering (SANS), transmission electron microscopy (TEM), and wide-angle X-ray diffraction (WAXD) suggested that NaOH 'hydrates' could be more easily attracted to cellulose chains through the formation of new hydrogen-bonded networks at low temperatures, while the urea hydrates could not be associated directly with cellulose. However, the urea hydrates could possibly be self-assembled at the surface of the NaOH hydrogen-bonded cellulose to form an inclusion complex (IC), leading to the dissolution of cellulose. Scattering experiments, including dynamic and static light scattering, indicated that most cellulose molecules, with limited amounts of aggregation, could exist as extended rigid chains in dilute solution. Further, the cellulose solution was relatively unstable and could be very sensitive to temperature, polymer concentration, and storage time, leading to additional aggregations. TEM images and WAXD provided experimental evidence on the formation of a wormlike cellulose IC being surrounded with urea. Therefore, we propose that the cellulose dissolution at -12 C could arise as a result of a fast dynamic self-assembly process among solvent small molecules (NaOH, urea, and water) and the cellulose macromolecules.

  3. The effect of superdisintegrants on the properties and dissolution profiles of liquisolid tablets containing rosuvastatin.

    Science.gov (United States)

    Vraníková, Barbora; Gajdziok, Jan; Doležel, Petr

    2017-03-01

    The preparation of liquisolid systems (LSS) represents a promising method for enhancing a dissolution rate and bioavailability of poorly soluble drugs. The release of the drug from LSS tablets is affected by many factors, including the disintegration time. The evaluation of differences among LSS containing varying amounts and types of commercially used superdisintegrants (Kollidon® CL-F, Vivasol® and Explotab®). LSS were prepared by spraying rosuvastatin solution onto Neusilin® US2 and further processing into tablets. Varying amounts of superdisintegrants were used and the differences among LSS were evaluated. The multiple scatter plot method was used to visualize the relationships within the obtained data. All disintegrants do not showed negative effect on the flow properties of powder blends. The type and concentration of superdisintegrant had an impact on the disintegration time and dissolution profiles of tablets. Tablets with Explotab® showed the longest disintegration time and the smallest amount of released drug. Fastest disintegration and dissolution rate were observed in tablets containing Kollidon® CL-F (≥2.5% w/w). Also tablets with Vivasol® (2.5-4.0% w/w) showed fast disintegration and complete drug release. Kollidon® CL-F and Vivasol® in concentration ≥2.5% are suitable superdisintegrants for LSS with enhanced release of drug.

  4. Determination of uranium metal concentration in irradiated fuel storage basin sludge using selective dissolution

    International Nuclear Information System (INIS)

    Delegard, C.H.; Sinkov, S.I.; Chenault, J.W.; Schmidt, A.J.; Pool, K.N.; Welsh, T.L.

    2014-01-01

    Irradiated uranium metal fuel was stored underwater in the K East and K West storage basins at the US Department of Energy Hanford Site. The uranium metal under damaged cladding reacted with water to generate hydrogen gas, uranium oxides, and spalled uranium metal particles which intermingled with other particulates to form sludge. While the fuel has been removed, uranium metal in the sludge remains hazardous. An expeditious routine method to analyze 0.03 wt% uranium metal in the presence of >30 wt% total uranium was needed to support safe sludge management and processing. A selective dissolution method was designed based on the rapid uranium oxide dissolution but very low uranium metal corrosion rates in hot concentrated phosphoric acid. The uranium metal-bearing heel from the phosphoric acid step then is rinsed before the uranium metal is dissolved in hot concentrated nitric acid for analysis. Technical underpinnings of the selective dissolution method, including the influence of sludge components, were investigated to design the steps and define the reagents, quantities, concentrations, temperatures, and times within the selective dissolution analysis. Tests with simulant sludge proved the technique feasible. Tests with genuine sludge showed a 0.0028 ± 0.0037 wt% (at one standard deviation) uranium metal analytical background, a 0.011 wt% detection limit, and a 0.030 wt% quantitation limit in settled (wet) sludge. In tests using genuine K Basin sludge spiked with uranium metal at concentrations above the 0.030 wt% ± 25 % (relative) quantitation limit, uranium metal recoveries averaged 99.5 % with a relative standard deviation of 3.5 %. (author)

  5. High Level Waste System Impacts from Acid Dissolution of Sludge

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  6. On the present and future of dissolution-DNP

    DEFF Research Database (Denmark)

    Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    Dissolution-DNP is a method to create solutions of molecules with nuclear spin polarization close to unity. The many orders of magnitude signal enhancement have enabled many new applications, in particular in vivo MR metabolic imaging. The method relies on solid state dynamic nuclear polarization...... where new ideas will make an impact. Most certainly, the future will take unpredicted directions, but hopefully the thoughts presented here will stimulate new ideas that can further advance the field. (C) 2016 Elsevier Inc. All rights reserved....... at low temperature followed by a dissolution to produce the room temperature solution of highly polarized spins. This work describes the present and future of dissolution-DNP in the mind of the author. The article describes some of the current trends in the field as well as outlines some of the areas...

  7. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    Science.gov (United States)

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  8. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)

  9. Dissolution-recrystallization method for high efficiency perovskite solar cells

    International Nuclear Information System (INIS)

    Han, Fei; Luo, Junsheng; Wan, Zhongquan; Liu, Xingzhao; Jia, Chunyang

    2017-01-01

    Highlights: • Dissolution-recrystallization method can improve perovskite crystallization. • Dissolution-recrystallization method can improve TiO 2 /perovskite interface. • The optimal perovskite solar cell obtains the champion PCE of 16.76%. • The optimal devices are of high reproducibility. - Abstract: In this work, a dissolution-recrystallization method (DRM) with chlorobenzene and dimethylsulfoxide treating the perovskite films during the spin-coating process is reported. This is the first time that DRM is used to control perovskite crystallization and improve the device performance. Furthermore, the DRM is good for reducing defects and grain boundaries, improving perovskite crystallization and even improving TiO 2 /perovskite interface. By optimizing, the DRM2-treated perovskite solar cell (PSC) obtains the best photoelectric conversion efficiency (PCE) of 16.76% under AM 1.5 G illumination (100 mW cm −2 ) with enhanced J sc and V oc compared to CB-treated PSC.

  10. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  11. Computational Diffusion MRI : MICCAI Workshop

    CERN Document Server

    Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle

    2018-01-01

    This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...

  12. Oxidation and dissolution of UO{sub 2} in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, J. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Clarens, F. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Casas, I. [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Rovira, M. [CTM Centre Tecnologic, Avda. Bases de Manresa 1. 08240 Manresa (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Bruno, J. [Enresa-Enviros Environmental Science and Waste Management Chair, UPC, Jordi Girona 1-3 B2, 08034 Barcelona (Spain)

    2005-10-15

    The objective of this work is to study the UO{sub 2} oxidation by O{sub 2} and dissolution in bicarbonate media and to extrapolate the results obtained to improve the knowledge of the oxidative dissolution of spent nuclear fuel. The results obtained show that in the studied range the oxygen consumption rate is independent on the bicarbonate concentration while the UO{sub 2} dissolution rate does depend on. Besides, at 10{sup -4} mol dm{sup -3} bicarbonate concentration, the oxygen consumption rate is almost two orders of magnitude higher than the UO{sub 2} dissolution rate. These results suggest that at low bicarbonate concentration (<10{sup -2} mol dm{sup -3}) the alteration of the spent nuclear fuel cannot be directly derived from the measured uranium concentrations in solution. On the other hand, the study at low bicarbonate concentrations of the evolution of the UO{sub 2} surface at nanometric scale by means of the SFM technique shows that the difference between oxidation and dissolution rates is not due to the precipitation of a secondary solid phase on UO{sub 2}.

  13. Development of in situ ion selective sensors for dissolution

    International Nuclear Information System (INIS)

    Bohets, Hugo; Vanhoutte, Koen; De Maesschalck, Roy; Cockaerts, Paul; Vissers, Bert; Nagels, Luc J.

    2007-01-01

    The dissolution of formulations of the drugs dapoxetine, paliperidone, cinnarizine, tetrazepam, mebeverine, loperamide, galantamine and ibuprofen was studied by an in-line potentiometric measurement system. The transpose of a Nikolskii-Eisenman type function performed the conversion of potential to percentage of dissolution. A novel gradient membrane electrode was developed especially for dissolution, varying continuously in composition from an ionically conducting rubber phase to an electronically conducting solid state PVC/graphite composite. The gradient part had a thickness of 200 μm. The electrodes life span exceeded 6 months. An ion exchange procedure was used to prepare them for one specific drug. This enabled us to use one universal electrode built to measure a wide array of drugs. The system parameters such as accuracy, reproducibility and linearity were presented with the data obtained for the drug dapoxetine. In dissolution, accurate measurements were possible from 10 -9 to 10 -3 M concentrations, for high log P drugs. The effect of t 90 response times on the measurement error was estimated. The t 90 response times of the electrodes were concentration dependent, and varied between 50 and 10 s for, respectively, 10 -6 and 10 -3 M concentrations. Potential drift was studied in detail. The measurements performed with these electrodes showed an accuracy of 1%, and inter- and intra electrode variabilities of 0.6 and 1.7%, respectively. The electrodes were successfully applied in colloidal media containing suspended matter, typically formed during dissolution of tablets. The advantages and pitfalls of potentiometry over the presently used techniques for dissolution testing are discussed

  14. Development of in situ ion selective sensors for dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Bohets, Hugo [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Vanhoutte, Koen [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); De Maesschalck, Roy [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); Cockaerts, Paul [Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B-2340 Beerse (Belgium); Vissers, Bert [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Nagels, Luc J. [Antwerp University, Chemistry Department, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)]. E-mail: luc.nagels@ua.ac.be

    2007-01-02

    The dissolution of formulations of the drugs dapoxetine, paliperidone, cinnarizine, tetrazepam, mebeverine, loperamide, galantamine and ibuprofen was studied by an in-line potentiometric measurement system. The transpose of a Nikolskii-Eisenman type function performed the conversion of potential to percentage of dissolution. A novel gradient membrane electrode was developed especially for dissolution, varying continuously in composition from an ionically conducting rubber phase to an electronically conducting solid state PVC/graphite composite. The gradient part had a thickness of 200 {mu}m. The electrodes life span exceeded 6 months. An ion exchange procedure was used to prepare them for one specific drug. This enabled us to use one universal electrode built to measure a wide array of drugs. The system parameters such as accuracy, reproducibility and linearity were presented with the data obtained for the drug dapoxetine. In dissolution, accurate measurements were possible from 10{sup -9} to 10{sup -3} M concentrations, for high log P drugs. The effect of t {sub 90} response times on the measurement error was estimated. The t {sub 90} response times of the electrodes were concentration dependent, and varied between 50 and 10 s for, respectively, 10{sup -6} and 10{sup -3} M concentrations. Potential drift was studied in detail. The measurements performed with these electrodes showed an accuracy of 1%, and inter- and intra electrode variabilities of 0.6 and 1.7%, respectively. The electrodes were successfully applied in colloidal media containing suspended matter, typically formed during dissolution of tablets. The advantages and pitfalls of potentiometry over the presently used techniques for dissolution testing are discussed.

  15. Principles of calcite dissolution in human and artificial otoconia.

    Directory of Open Access Journals (Sweden)

    Leif Erik Walther

    Full Text Available Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV. The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic otoconia (calcite gelatin nanocomposits and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM. Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV.

  16. Diffusion archeology for diffusion progression history reconstruction

    OpenAIRE

    Sefer, Emre; Kingsford, Carl

    2015-01-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...

  17. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...

  18. Plutonium dissolution from Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1985-06-01

    Rockwell Hanford Operations (Rockwell) soon will commence recovery of plutonium from Rocky Flats Plant incinerator ash. In preparation for this processing, Rockwell undertook literature and laboratory studies to identify, select and optimize plutonium dissolution methods for treating the ash. Ash reburning, followed by dissolution in nitric acid containing calcium fluoride, was selected as the processing method for the ash. Recommended values of process parameters were identified. Using the selected process, 99.5% plutonium recovery was achieved, leaving about 12.7 wt % heel residue for an equal weight composite of the three ashes tested. 15 refs., 26 figs

  19. Effects of alteration product precipitation on glass dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Neeway, James J.

    2014-06-01

    Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H4SiO4) with higher [H4SiO4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H4SiO4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alteration products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi2O6)∙H2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH)3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of

  20. Experimental observations of dolomite dissolution in geologic carbon sequestration conditions

    Science.gov (United States)

    Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

    2013-12-01

    One sequestration scenario proposed to reduce CO2 emissions involves injecting CO2 into saline formations or hydrocarbon reservoirs, where dolomite frequently occurs. To better understand fluid-mineral interactions in these sequestration settings, we have conducted a series of single-pass, flow-through experiments on dolomite core samples with CO2-bearing brine. An important component of the experimental design was to maintain the fabric of the rock so as to more accurately simulate fluid flow in natural dolomite-bearing systems. Seven experiments were conducted at 100°C and a pore-fluid pressure of 150 bars with a fluid containing 1 molal NaCl and 0.6 molal dissolved CO2. Flow rates ranged from 0.01 to 1 ml/min. Each experiment was terminated before dissolution breakthrough, but permeability increased by approximately an order of magnitude for all experiments. In general, Ca and Mg concentrations were initially high, but then decreased with reaction progress. We hypothesize that time-dependent changes in fluid chemistry reflect reduction in reactive surface area. Fluid chemistry also indicates preferential removal of Ba, Mn, and Sr with respect to Ca and Mg. In the extreme case, 70% of the Ba was removed from one core, while only 3% of the Ca, Mg, or the entire core mass was removed by dissolution. Ongoing work is focused on identifying elemental distributions throughout the rock to better understand the dissolution process. With fluid chemistry and BET surface area, we model dissolution rate as a function of core length using reactive transport simulations and compare our whole rock, far from equilibrium dissolution rates with analogous data reported in the literature. Finally, X-ray computed tomography images enable reconstructions of dissolution patterns, and they are being used to explore the effect of pore space heterogeneity on flow path development. Geologic carbon sequestration in dolomite will produce significant dissolution at the brine/CO2 interface

  1. Evaluation of a dynamic dissolution/permeation model

    DEFF Research Database (Denmark)

    Sironi, Daniel; Christensen, Mette; Rosenberg, Jörg

    2017-01-01

    -steady state). To this end, a model case was construed: compacts of pure crystalline hydrocortisone methanolate (HC·MeOH) of slow release rates were prepared, and their dissolution and permeation determined simultaneously in a side-by-side setup, separated by a biomimetic barrier (Permeapad...... dissolution rate and flux influenced each other. Interestingly, for all the dynamic scenarios, the incremental flux values obtained correlated nicely with the corresponding actual donor concentrations. Furthermore, donor depletion was tested using a HC solution. The dynamic interplay between decrease in donor...

  2. Dissolution Kinetics of Stilbite at Various Temperatures under ...

    African Journals Online (AJOL)

    The pH conditions of the buffer solutions ranged from 8.5 to 12.5. The dissolution rates calculated from silicon concentration of the reacting fluid increased with increasing temperature (4–60 oC) and pH. The dissolution rates ranged from 3.45 x 10-15 (mol cm-2 s-1) at pH 10.7 and 4oC to 1.93 x 10-9 (mol cm-2 s-1) at pH 12 ...

  3. Glass composition and solution speciation effects on stage III dissolution

    International Nuclear Information System (INIS)

    Trivelpiece, Cory L.; Rice, Jarret A.; Pantano, Carlo G.

    2017-01-01

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  4. Glass composition and solution speciation effects on stage III dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, Cory L. [Pennsylvania State Univ., University Park, PA (United States); Rice, Jarret A. [Pennsylvania State Univ., University Park, PA (United States); Pantano, Carlo G. [Pennsylvania State Univ., University Park, PA (United States)

    2017-10-03

    To understand and mitigate the onset of Stage III corrosion of multicomponent oxides waste glasses. Stage III refers to a resumption of the high initial rate of glass dissolution in some glass samples that have otherwise exhibited dissolution at the much lower residual rate for a long time (Stage II). Although the onset of Stage III is known to occur concurrently with the precipitation of particular alteration products, the root cause of the transition is still unknown. Certain glass compositions (notably AFCI) and high pH environmental conditions are also associated with this observed transition.

  5. Observance of polymorphic behaviour during dissolution of insulin and lysozyme

    Directory of Open Access Journals (Sweden)

    A. Bernardo

    2005-09-01

    Full Text Available Although protein crystallization is a unit operation with potentially high separation factors, it has not been widely used in industry. Protein crystallization studies and practices have hitherto been largely limited to crystallography protocols. Knowledge of the behaviour of protein in solution would help to overcome empiric limitations in protein crystallisation. Thus, dissolution of porcine insulin and hen egg white lysozyme was studied and an unusual variation in solute concentration, with a concentration peak for short dissolution times, was verified. Polymorphic behaviour of protein in solution was observed, which altered physical properties such as solubility.

  6. In situ monitoring of the electrochemical dissolution of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Krebsz, Melinda [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Kollender, Jan Philipp [Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria); Hassel, Achim Walter [Christian Doppler Laboratory for Combinatorial Oxide Chemistry at ICTAS, Johannes Kepler University Linz (Austria); Institute for Chemical Technology of Inorganic Materials (ICTAS), Johannes Kepler University Linz (Austria)

    2017-09-15

    In the present work, which is aimed to monitor in situ the electrochemical dissolution of tungsten by using a Flow-Type Scanning Droplet Cell Microscope (FT-SDCM) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), novel results are reported. The anodic oxide growth and its dissolution on the surface of W have been monitored in situ. The results of this current study show the importance of coupling electrochemical experiments to ICP-MS. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Do Workplace Sex Ratios Affect Partnership Formation and Dissolution?

    DEFF Research Database (Denmark)

    Svarer, Michael

    In this paper, I analyse the association between workplace sex ratios and partnership formation and dissolution. I find that the risk of dissolution increases with the fraction of coworkers of the opposite sex at both the female and male workplace. On the other hand, workplace sex ratios...... are not important for the overall transition rate from singlehood to partnership. The results suggest that the workplace constitutes a more important marriage market segment for individuals who are already in a partnership presumably due to higher search cost for (alternative) partners in general....

  8. Diffusion or bulk flow

    DEFF Research Database (Denmark)

    Schulz, Alexander

    2015-01-01

    assimilate movement includes an apoplasmic step, this mode is called apoplasmic loading. Well established is also the polymer-trap loading mode, where the phloem-transport sugars are raffinose-family oligomers in herbaceous plants. Also this mode depends on the investment of energy, here for sugar...... is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...

  9. Stationary plume induced by carbon dioxide dissolution

    International Nuclear Information System (INIS)

    Nadal, F.; Meunier, P.; Pouligny, B.; Laurichesse, E.

    2013-01-01

    In this paper, laminar convection flows induced by carbon dioxide absorption are addressed from experimental, numerical and theoretical points of view. A vertical glass tube (of centimetre scale) filled with distilled water is subjected to a sudden increase in the partial pressure of carbon dioxide. As a result of the diffusion of the gas into the unsaturated solution, a thin layer of fluid located underneath the surface becomes heavier. This initial density gradient first destabilizes to form a plume, which goes downwards through the entire cell. After a first transient pulsating regime (periodic succession of such Rayleigh-Benard plumes), a stationary flow settles in the tube, which is maintained by the constant supply of gas at the surface. At late stages, this stationary regime is followed by an aperiodic regime, which lasts until the complete saturation of the solution (thermodynamic equilibrium). The present study only focuses on the stationary regime, whose characteristics appear to be almost independent of the Bond number and the aspect ratio but strongly dependent on the chemical Rayleigh number. Three decades of Rayleigh numbers are explored using particle image velocimetry measurements, which allows for a precise determination of the scaling exponents for the vertical velocity amplitude and the plume width. The assumption that gravity and a constant pressure gradient balance the viscous effects enables us to derive an analytic expression for the stationary vertical velocity on the axis, which scales as Ra 2/3 (ln Ra) 1/3 . As a consequence, the width of the plume scales as Ra -1/6 (ln Ra) -1/3 and the mass Nusselt number as (Ra= ln Ra) 1/3 . These scalings are in excellent agreement with the experimental and numerical results. The multiplicative constants of these scalings can also be calculated and show a fairly good agreement if a rigid boundary condition (no-slip) is assumed at the free surface. (authors)

  10. Aspects of diffusion in the stadium billiard

    Science.gov (United States)

    Lozej, Črt; Robnik, Marko

    2018-01-01

    We perform a detailed numerical study of diffusion in the ɛ stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of ɛ with the following conclusions: (i) the diffusion is normal for all values of ɛ (≤0.3 ) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.

  11. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.

    Science.gov (United States)

    de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes

    2012-01-05

    This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  13. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy, and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas, allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the

  14. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jincheng

    2018-03-16

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goals initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal

  15. The use of commercial microwave dissolution equipment for the fast and reliable dissolution of high-fired POX and MOX samples

    International Nuclear Information System (INIS)

    Tushingham, J.; McInnes, C.; Firkin, S.

    1998-09-01

    The use of commercially available microwave dissolution equipment for the fast and reliable dissolution of high-fired plutonium dioxide (POX) and mixed oxide (MOX) samples has been evaluated for application to Safeguards Analysis. Under the auspices of the UK R and D Support Programme to the IAEA, equipment has been purchased and tested for the high-pressure microwave dissolution of POX samples fired to 1250 deg. C and MOX samples fired to 1600 deg. C, in concentrated nitric acid and hydrofluoric acid mixture. Considerable problems were encountered during development of procedures for microwave dissolution, resulting largely from sudden changes in pressure within dissolution vessels, which resulted in actuation of safety interlocks designed to prevent overpressurisation. These difficulties were alleviated by controlling the microwave power to reduce the reaction temperature and pressure, and also by introducing additional safety valves into the digestion vessels. Using microwave digestion, dissolution times for high fired POX and MOX samples were substantially reduced. Samples which required ca. 10 hours to dissolve by conventional means could be dissolved in ca. 80 minutes by microwave digestion. Whilst a similar performance in terms of plutonium recovery was achieved for some materials by microwave and conventional dissolution, for other materials microwave dissolution gave higher plutonium recoveries but with poorer precision. This suggests the possible presence of some plutonium oxide within high-fired materials which is more difficult to dissolve than the bulk, and which is perhaps dissolved to an additional but variable degree by the current microwave dissolution procedure. Microwave dissolution has been demonstrated to increase the speed of dissolution of high-fired POX and MOX materials, compared with conventional dissolution. However, the technique has not yet proved satisfactory for the complete dissolution of all high-fired materials tested because of

  16. Impact of porosity variation on diffusive transport: experimentation vs simulation

    International Nuclear Information System (INIS)

    Fatnassi, Ikram

    2015-01-01

    Reactions induced by the diffusion of reactants from different sources may alter rock confinement properties, and are therefore critical processes to assess short-term and long-term behaviour of rocks displaying a low permeability, such as argillites which are used as barriers in underground storage installation. In order to test transport-chemistry codes based on a continuous approach, the author of this research thesis reports the development and performance of simplest as possible experiments of sealing/dissolution diffusion, by using porous media of increasing complexity: compact sand, sintered glass, stoneware, chalk, until a material close to that envisaged within the frame of a storage like a Tournemire argillite. The principle of these experiments relies on the characterisation of the diffusive behaviour of an inert tracer within a porous medium submitted to dissolution reactions (attack of a carbonate matrix by an acid solution) and/or precipitation of mineral compounds (calcium oxalate, gypsum or barite) which results in an evolution of porosity and a modification of the diffusive transport of the studied tracer. At the end of the experiment, porous media and precipitates are characterised by SEM-EDS [fr

  17. Buoyancy and Dissolution of the Floating Crust Layer in Tank 241-SY-101 During Transfer and Back-Dilution

    International Nuclear Information System (INIS)

    Stewart, C.W.; Sukamto, J.H.; Cuta, J.M.; Rassat, S.D.

    1999-01-01

    To remediate gas retention in the floating crust layer and the potential for buoyant displacement gas releases from below the crust, waste will be transferred out of Hanford Tank 241-SY-101 (SY-101) in the fall of 1999 and back-diluted with water in several steps of about 100,000 gallons each. To evaluate the effects of back-dilution on the crust a static buoyancy model is derived that predicts crust and liquid surface elevations as a function of mixing efficiency and volume of water added during transfer and back-dilution. Experimental results are presented that demonstrate the basic physics involved and verify the operation of the models. A dissolution model is also developed to evaluate the effects of dissolution of solids on crust flotation. The model includes dissolution of solids suspended in the slurry as well as in the crust layers. The inventory and location of insoluble solids after dissolution of the soluble fraction are also tracked. The buoyancy model is applied to predict the crust behavior for the first back-dilution step in SY-101. Specific concerns addressed include conditions that could cause the crust to sink and back-dilution requirements that keep the base of the crust well above the mixer pump inlet

  18. Diffusion through statically compacted clay

    International Nuclear Information System (INIS)

    Ho, C.L.; Shebl, M.A.A.

    1994-01-01

    This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs

  19. Microfabricated diffusion source

    Science.gov (United States)

    Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  20. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  1. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    International Nuclear Information System (INIS)

    STALLINGS, MARY

    2004-01-01

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  2. Effects of pore forming agents of potassium bicarbonate and drug loading method against dissolution mechanisms of amoxicillin drugs encapsulated in hydrogel full-Ipn chitosan-poly(N-vinylcaprolactam) as a floating drug delivery system

    Science.gov (United States)

    Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil

    2018-04-01

    The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.

  3. Stability and Comparative Dissolution Studies of Five Brands of ...

    African Journals Online (AJOL)

    The dissolution profiles of five different brands of norfloxacin (400 mg) tablets designated as A, B, C, D, and E, marketed in Addis Ababa were compared with those of an innovator product (F). The stability of these tablets was evaluated under the influence of accelerated conditions (40 °C + 2 °C and 75% ± 5% RH).

  4. Dissolution and Quantification of Tantalum-Containing Compounds ...

    African Journals Online (AJOL)

    NICO

    The 100 % recovery for both the halide salts clearly indicates the complete dissolution and accurate quantification of the tantalum compounds using nitric acid or a methanol/nitric acid mixture. The small standard deviation also points to good precision in these analyses. The recovery results for Ta2O5 and Ta metal powder ...

  5. Facility for electrochemical dissolution of rejected fuel elements

    International Nuclear Information System (INIS)

    Deniskin, V.P.; Filatov, O.N.; Konovalov, E.A.; Kolesnikov, B.P.; Bukharin, A.D.

    2003-01-01

    A facility for electrochemical dissolution of rejected fuel elements with the stainless steel can and uranium of 90% enrichment is described. The start-adjustment works and trial-commercial tests of the facility are carried out. A s a result its technological parameters are determined [ru

  6. Aluminium dissolution for spray pulverization with nitric acid

    International Nuclear Information System (INIS)

    Rodrigo Otero, A.; Rodrigo Vilaseca, F.; Morales Calvo, G.

    1977-01-01

    A comparative study of the nitric acid dissolution of aluminium, by immersion and spray pulverization has been carried out in laboratory scale. As a result, the optimum operation conditions to control reaction in the plant are fixed. Operation costs are also evaluated. (author) [es

  7. Saving Sinking Ships: Implications from a Theory of Marital Dissolution

    Science.gov (United States)

    Laner, Mary Riege

    1978-01-01

    A recently developed theory of marital dissolution that utilizes a systems perspective is briefly presented. The theory was derived from almost 1,300 propositions in extant literature, and is readily understandable to layman, practitioner, and academician. Implications contained within the theory for those concerned with saving floundering marital…

  8. Dissolution of basaltic glass in seawater: Mechanism and rate

    International Nuclear Information System (INIS)

    Crovisier, J.L.; Honnorez, J.; Eberhart, J.P.

    1987-01-01

    Basaltic glasses are considered as natural analogues for nuclear waste glasses. Thermodynamic computer codes used to evaluate long term behavior of both nuclear waste and basaltic glasses require the knowledge of the dissolution mechanism of the glass network. The paper presents the results of a series of experiments designed to study the structure and chemical composition of alteration layers formed on the surface of artificial tholeiitic glass altered in artificial seawater. Experiments were performed at 60 degree C, 1 bar and 350 bars in non-renewed conditions. A natural sample from Palagonia (Sicily) has been studied by electron microscopy and comparison between natural and experimental palagonitic layers is made. The behavior of dissolved silica during experiments, and both the structure and the chemical composition of the palagonitic layers, indicate that they form by precipitation of secondary minerals from solution after a total breakdown of the glassy network, i.e., congruent dissolution of the glass. Hence the dissolution equation necessary for thermodynamic modelling of basaltic glass dissolution in seawater at low temperature must be written as a simple stoichiometric process. These experiments indicate that the transformation of glass to palagonitic material is not isovolumetric. Hence it is preferable to use Fe or Ti as conservative elements for chemical budget calculations

  9. Enhanced dissolution of sildenafil citrate as dry foam tablets.

    Science.gov (United States)

    Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon

    2017-01-30

    Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.

  10. An autoclave system for uranium oxide dissolution experiments

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1985-05-01

    According to the decision in principle of the Council of State of Finland the nuclear energy producers must provide preparedness for carrying out the final disposal of spent nuclear fuel in Finland. By the present principal concept the spent fuel will be disposed deep into the granitic bedrock. A parameter needed by risk analysis models is the dissolution rate of the uranium oxide matrix in the fuel pellets. In order to approach conditions prevailing deep in the groundwater, and autoclave system for dissolution experiments was developed at the Technical Research Centre of Finland. The low oxygen content and high pressure at elevated temperatures are simulated in the system. 20 MPa and 100 deg C are the upper operation limits of pressure and temperature. Water can be changed in the experiment autoclave without remarkable pressure and temperature variations. This has been arranged by using three pressure vessels: a supply vessel, a dissolution vessel and a depletion vessel. The extreme vessels serve pressure balancing purposes during water exchange. The water is deoxygenated during a preparation phase in the supply vessel by flushing it with nitrogen gas. Polytetrafluoroethylene is the principal material in contact with the water. A redox electrode couple was developed for potential measurements inside the dissolution vessel. The reference electrode is of Ag/AgCl-type with saturated KC1 electrolyte. A platinum wire operates as a measuring electrode

  11. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Science.gov (United States)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  12. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  13. Evaluation of dissolution of nonconventional phosphate fertilizers in ...

    African Journals Online (AJOL)

    Dissolution of phosphate rock (PR) depends on inherent chemical and physical properties of the rock and on external factors such as soils and plants. The objective of this study was to investigate, with a soil incubation experiment, the relationship between selected soil factors and extractable phosphorus (P) in order to ...

  14. Enhancement of solubility and dissolution rate of atorvastatin ...

    African Journals Online (AJOL)

    Purpose: To investigate the formation of atorvastatin calcium (AC) co-crystal to improve its solubility and dissolution rate. Method: Co-crystallization of AC in equimolar ratio with isonicotinamide (INA) was carried out by slow solvent evaporation method using methanol. The solid obtained was characterized by powder x-ray ...

  15. Stability and drug dissolution evaluation of Qingkailing soft/hard ...

    African Journals Online (AJOL)

    Purpose: To carry out a post-marketing evaluation of the stability and drug dissolution of Qingkailing soft/hard capsules. Methods: High performance liquid chromatography with diode array detection (HPLC-DAD) method was developed for the determination of three key ingredients (chlorogenic acid, geniposide and ...

  16. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized, with ...

  17. Dissolution kinetics and mechanism of pandermite in acetic acid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... In this study, the dissolution kinetics and mechanism of pandermite mineral was investigated using a batch reactor employing the parameters of particle size, acid concentration, solid/liquid ratio, stirring speed and reaction temperature. From experimental data, it was determined that the conversion rate of.

  18. Anodic dissolution of alloys during electrochemical dimensional machining of parts

    International Nuclear Information System (INIS)

    Davydov, A.D.

    1980-01-01

    Analysis of the main regularities of anodic dissolution of alloys at current high densities, which is necessary for the explanation and prediction of the results of electrochemical dimensional machining of parts, is carried out. Examples when chemical composition produces the determining effect upon anodic behaviour and electrochemical treatment of the alloys are analyzed

  19. The influence of milling on the dissolution performance of simvastatin

    DEFF Research Database (Denmark)

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen

    2012-01-01

    Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered proper...

  20. Ocean acidification: Towards a better understanding of calcite dissolution

    Science.gov (United States)

    Wilhelmus, Monica M.; Adkins, Jess; Menemenlis, Dimitris

    2016-11-01

    The drastic increase of anthropogenic CO2 emissions over the past two centuries has altered the chemical structure of the ocean, acidifying upper ocean waters. The net impact of this pH decrease on marine ecosystems is still unclear, given the unprecedented rate at which CO2 is being released into the atmosphere. As part of the carbon cycle, calcium carbonate dissolution in sediments neutralizes CO2: phytoplankton at the surface produce carbonate minerals, which sink and reach the seafloor after the organisms die. On time scales of thousands of years, the calcium carbonate in these shells ultimately reacts with CO2 in seawater. Research in this field has been extensive; nevertheless, the dissolution rate law, the impact of boundary layer transport, and the feedback with the global ocean carbon cycle remain controversial. Here, we (i) develop a comprehensive numerical framework via 1D modeling of carbonate dissolution in sediments, (ii) approximate its impact on water column properties by implementing a polynomial approximation to the system's response into a global ocean biogeochemistry general circulation model (OBGCM), and (iii) examine the OBGCM sensitivity response to different formulations of sediment boundary layer properties. We find that, even though the burial equilibration time scales of calcium carbonate are in the order of thousands of years, the formulation of a bottom sediment model along with an improved description of the dissolution rate law can have consequences on multi-year to decadal time scales.

  1. Dissolution Kinetics of Icel-Aydincik Dolomite in Hydrochloric Acid

    African Journals Online (AJOL)

    NJD

    sium oxide (MgO) from dolomite, dissolution is distinguished ... magnesium oxide from magnesium chloride (MgCl2) solutions obtained by leaching of .... S. Afr. J. Chem., 2008, 61, 127–132,. . Table 1 Chemical analysis of the dolomite ore. Component: CaO. MgO. SiO2. Fe2O3. Al2O3.

  2. Solubility and dissolution enhancement strategies: current understanding and recent trends.

    Science.gov (United States)

    Jain, Shashank; Patel, Niketkumar; Lin, Senshang

    2015-06-01

    Identification of lead compounds with higher molecular weight and lower aqueous solubility has become increasingly prevalent with the advent of high throughput screening. Poor aqueous solubility of these lipophilic compounds can drastically affect the dissolution rate and subsequently the drug absorbed in the systemic circulation, imposing a significant burden of time and money during drug development process. Various pre-formulation and formulation strategies have been applied in the past that can improve the aqueous solubility of lipophilic compounds by manipulating either the crystal lattice properties or the activity coefficient of a solute in solution or both, if possible. However, despite various strategies available in the armor of formulation scientist, solubility issue still remains an overriding problem in the drug development process. It is perhaps due to the insufficient conceptual understanding of solubility and dissolution phenomenon that hinders the judgment in selecting suitable strategy for improving aqueous solubility and/or dissolution rate. This article, therefore, focuses on (i) revisiting the theoretical and mathematical concepts associated with solubility and dissolution, (ii) their application in making rationale decision for selecting suitable pre-formulation and formulation strategies and (iii) the relevant research performed in this field in past decade.

  3. 10 CFR 960.4-2-6 - Dissolution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... structural collapse—such that a hydraulic interconnection leading to a loss of waste isolation could occur...

  4. Surface sediment characteristics and tower karst dissolution, Guilin, southern China

    Science.gov (United States)

    Tang, Tao

    2003-01-01

    Dissolution of extensive outcrops of limestone and dolostone in humid tropical and subtropical southern China produced numerous caves and residual hills that are referred as tower karst. This study identifies and relates the physical and chemical characteristics of the surface sediment with the limestone bedrock in Guilin to assess the influence of the limestone dissolution process on sediment composition. The results of this study indicated that (i) both limestone and dolostone of the region are very pure (99.5% and 98.5% of CaCO 3 and MgCO 3, respectively); (ii) the material composition of limestone and dolostone is different from that of soil and sediment of the region: constituents of surface sediments are highly related with the clastic sedimentary rocks, such as the mudstone, but show negative correlation with limestone and dolostone; (iii) the limestone formations are highly resistant to physical weathering and disintegration; their durability versus physical weathering and their high susceptibility to chemical dissolution account for why residual towers can form and persist; (iv) a dual-zone environmental structure exists vertically downward from the surface in Guilin: the zone of unconsolidated clastic sediments that is predominantly acidic, and the zone of karstified limestone that is predominantly basic. The evidence suggests that the environment and processes differ in these two zones. The chemical dissolution of limestone that formed tower karst of the region is not mainly responsible for the accumulation of clastic sediment on the surface.

  5. Evolution, dissolution and reversible generation of gold and silver ...

    Indian Academy of Sciences (India)

    Unknown

    tration of HAuCl4 or cyanide ion led to the aggregation of particles (electrolytic effect), which was concluded from red shifting of the peak position. Similar was the case of silver without the need of any trace metal. The evolution, dissolution and reversible generation of. Au and Ag nanoparticles in TX-100 micelle are depicted.

  6. Dissolution test of herbal medicines containing Passiflora sp.

    Directory of Open Access Journals (Sweden)

    Ane R. T. Costa

    2011-05-01

    Full Text Available The dissolution test is an essential tool to assess the quality of herbal medicines in the solid dosage form for oral use. This work aimed to evaluate the dissolution behavior of three herbal medicines in the form of capsules and tablet containing Passiflora, produced with powder or dried extract. Assay of total flavonoids and dissolution methods were validated and obtained results allowed the quantification of flavonoids with precision, accuracy and selectivity. The percentage of total flavonoids found was 2% for capsule A (containing only powder, 0.97% for capsule B (containing only dried extract and 5.5% for tablet. Although the content was lower, the release of flavonoids present in the capsule containing dried extract was 12% higher over 30 min, with dissolved percentage values of 87 and 75, for the capsules containing extract and powder, respectively. The tablet containing dried extract presented dissolution of 76%, despite the higher content of flavonoids, which may be due to pharmacotechnical problems. Obtained data demonstrated the need to implement these tests in the quality control of herbal medicines, confirming the release of the active ingredients that underlie the pharmacological action of these medicines.

  7. Dissolution of heavy metals from electrostatic precipitator (ESP) dust ...

    African Journals Online (AJOL)

    Coal based sponge iron industries in India generate considerable quantity of solid waste, 40% of which is flue dust produced from the electrostatic precipitator (ESP) connected to rotary kiln. This paper reports the dissolution of Zn, Cu, Pb, Mn and Fe from the ESP dust using three fungal species, Aspergillus niger, ...

  8. Facies, dissolution seams and stable isotope compositions of the ...

    Indian Academy of Sciences (India)

    Stable isotope analysis of the limestone shows that 13C and 18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution ...

  9. FY 2000 Saltcake Dissolution and Feed Stability Workshop

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Weber, C.F.; Welch, T.D.; Jewett, J.R.

    2000-01-01

    The Tanks Focus Area (TFA) continues to work closely with the Office of River Protection (ORP) to better understand the chemistry involved with the retrieval, transport, and pretreatment of nuclear wastes at Hanford. Since a private contractor is currently responsible for the pretreatment and immobilization activities in this remediation effort, the TFA has concentrated on saltcake dissolution and waste transport at the request of the ORP. Researchers at Hanford have performed a series of dissolution experiments on actual saltcake samples. Staff members at Mississippi State University (MSU) continue to model the dissolution results with the Environmental Simulation Program (ESP), which is used extensively by ORP personnel. Several ways to improve the predictive capabilities of the ESP were identified. Since several transfer lines at Hanford have become plugged, TFA tasks at AEA Technologies, Florida International University (FIU), MSU, and Oak Ridge National Laboratory (ORNL) are investigating the behavior of the supernatants and slurries during transport. A combination of experimental and theoretical techniques is used to study the transport chemistry. This effort is expected to develop process control tools for waste transfer. The results from these TFA tasks were presented to ORP personnel during the FY 2000 Saltcake Dissolution and Feed Stability Workshop, which was held on May 16-17 in Richland, Washington. The minutes from this workshop are provided in this report

  10. Premarital Cohabitation and Marital Dissolution: An Examination of Recent Marriages

    Science.gov (United States)

    Manning, Wendy D.; Cohen, Jessica A.

    2012-01-01

    An ongoing question remains for family researchers: Why does a positive association between cohabitation and marital dissolution exist when one of the primary reasons to cohabit is to test relationship compatibility? Drawing on recently collected data from the 2006-2008 National Survey of Family Growth, the authors examined whether premarital…

  11. Peroxide formation and kinetics of sodium dissolution in alcohols

    International Nuclear Information System (INIS)

    Muralidaran, P.; Chandran, K.; Ganesan, V.; Periaswami, G.

    1997-01-01

    Suitable techniques for sodium removal and decontamination of sodium wetted components of Liquid Metal Fast Reactors (LMFRs) are necessary both for repair, reuse and decommissioning of such components. Among the methods followed for sodium removal, alcohol dissolution is usually employed for small components like bellow sealed valves, gripping tools to handle core components and sodium sampling devices (primary and secondary). One of the concerns in the alcohol dissolution method is the possible role of peroxide formation in the ethoxy group during storage and handling leading to explosion. This paper describes the study of peroxide formation in ethyl carbitol and butyl cellosolve as well as some of the results of dissolution kinetic studies carried out in our laboratory using different alcohols. The peroxide formation of ethyl carbitol and butyl cellosolve were studied by iodometric technique. It has been found that the peroxide formation is less in sodium containing alcohol than in pure one. Ethyl carbitol, butyl cellosolve and Jaysol-SS (mixture of ethyl alcohol, methyl alcohol, isopropyl alcohol and methyl isobutyl ketone) were used in dissolution kinetics studies. The effects due to area and orientation of the fresh sodium surface have also been investigated. The reaction rates were studied in the temperature range of 303-343 K. The rate of dissolution was estimated by measuring the sodium content of alcohol at periodic intervals. It is found that the reaction rate varies in the order of ethyl alcohol-water mixture > Jaysol-SS > butyl cellosolve > ethyl carbitol. While cleaning sodium using alcohol, the concentration of alcohol is held essentially constant throughout the process. The rate of reaction depends only on the amount of sodium and follows pseudo-first order kinetics. Increase in surface area has a marked impact on the dissolution rate at lower temperatures while at higher temperatures, the temperature factor overrides the effect due to surface area

  12. A Model for Dissolution of Lime in Steelmaking Slags

    Science.gov (United States)

    Sarkar, Rahul; Roy, Ushasi; Ghosh, Dinabandhu

    2016-08-01

    In a previous study by Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015), a dynamic model of the LD steelmaking was developed. The prediction of the previous model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) for the bath (metal) composition matched well with the plant data (Cicutti et al. in Proceedings of 6th International Conference on Molten Slags, Fluxes and Salts, Stockholm City, 2000). However, with respect to the slag composition, the prediction was not satisfactory. The current study aims to improve upon the previous model Sarkar et al. (Metall. Mater. Trans. B 46B:961 2015) by incorporating a lime dissolution submodel into the earlier one. From the industrial point of view, the understanding of the lime dissolution kinetics is important to meet the ever-increasing demand of producing low-P steel at a low basicity. In the current study, three-step kinetics for the lime dissolution is hypothesized on the assumption that a solid layer of 2CaO·SiO2 should form around the unreacted core of the lime. From the available experimental data, it seems improbable that the observed kinetics should be controlled singly by any one kinetic step. Accordingly, a general, mixed control model has been proposed to calculate the dissolution rate of the lime under varying slag compositions and temperatures. First, the rate equation for each of the three rate-controlling steps has been derived, for three different lime geometries. Next, the rate equation for the mixed control kinetics has been derived and solved to find the dissolution rate. The model predictions have been validated by means of the experimental data available in the literature. In addition, the effects of the process conditions on the dissolution rate have been studied, and compared with the experimental results wherever possible. Incorporation of this submodel into the earlier global model (Sarkar et al. in Metall. Mater. Trans. B 46B:961 2015) enables the prediction of the lime dissolution rate

  13. The Influence of Milling on the Dissolution Performance of Simvastatin

    Directory of Open Access Journals (Sweden)

    Thomas Rades

    2010-12-01

    Full Text Available Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed by scanning electron microscopy (SEM and image analysis. Process induced disorder was determined by partial least squares (PLS regression modeling of respective X-ray powder diffractograms (XRPD and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling settings using the maximum number of milling balls (60 balls with 4 mm diameter was determined to be at a milling frequency of 21 Hz and a milling time of 36 min with a resulting primary particle size of 1.4 μm and a process induced disorder of 6.1% (assessed by Raman spectroscopy and 8.4% (assessed by XRPD, at a set optimization limit of < 2 μm for particle size and < 10% for process induced disorder. This optimum was tested experimentally and the process induced disorder

  14. Looking for the Self: Phenomenology, Neurophysiology and Philosophical Significance of Drug-induced Ego Dissolution

    Directory of Open Access Journals (Sweden)

    Raphaël Millière

    2017-05-01

    Full Text Available There is converging evidence that high doses of hallucinogenic drugs can produce significant alterations of self-experience, described as the dissolution of the sense of self and the loss of boundaries between self and world. This article discusses the relevance of this phenomenon, known as “drug-induced ego dissolution (DIED”, for cognitive neuroscience, psychology and philosophy of mind. Data from self-report questionnaires suggest that three neuropharmacological classes of drugs can induce ego dissolution: classical psychedelics, dissociative anesthetics and agonists of the kappa opioid receptor (KOR. While these substances act on different neurotransmitter receptors, they all produce strong subjective effects that can be compared to the symptoms of acute psychosis, including ego dissolution. It has been suggested that neuroimaging of DIED can indirectly shed light on the neural correlates of the self. While this line of inquiry is promising, its results must be interpreted with caution. First, neural correlates of ego dissolution might reveal the necessary neurophysiological conditions for the maintenance of the sense of self, but it is more doubtful that this method can reveal its minimally sufficient conditions. Second, it is necessary to define the relevant notion of self at play in the phenomenon of DIED. This article suggests that DIED consists in the disruption of subpersonal processes underlying the “minimal” or “embodied” self, i.e., the basic experience of being a self rooted in multimodal integration of self-related stimuli. This hypothesis is consistent with Bayesian models of phenomenal selfhood, according to which the subjective structure of conscious experience ultimately results from the optimization of predictions in perception and action. Finally, it is argued that DIED is also of particular interest for philosophy of mind. On the one hand, it challenges theories according to which consciousness always involves

  15. Dynamics of Crust Dissolution and Gas Release in Tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    SD Rassat; CW Stewart; BE Wells; WL Kuhn; ZI Antoniak; JM Cuta; KP Recknagle; G Terrones; VV Viswanathan; JH Sukamto; DP Mendoza

    2000-01-26

    Due primarily to an increase in floating crust layer thickness, the waste level in Hanford Tank 241-SY-101 (SY-101) has grown appreciably, and the flammable gas volume stored in the crust has become a potential hazard. To remediate gas retention in the crust and the potential for buoyant displacement gas releases from the nonconnective layer at the bottom of the tank, SY-101 will be diluted to dissolve a large fraction of the solids that allow the waste to retain gas. In this work we develop understanding of the state of the tank waste and some of its physical properties, investigate how added water will be distributed in the tank and affect the waste, and use the information to evaluate mechanisms and rates of waste solids dissolution and gas release. This work was completed to address these questions and in support of planning and development of controls for the SY-101 Surface Level Rise Remediation Project. Particular emphasis is given to dissolution of and gas release from the crust, although the effects of back-dilution on all waste layers are addressed. The magnitude and rates of plausible gas release scenarios are investigated, and it is demonstrated that none of the identified mechanisms of continuous (dissolution-driven) or sudden gas release, even with conservative assumptions, lead to domespace hydrogen concentrations exceeding the lower flammability limit. This report documents the results of studies performed in 1999 to address the issues of the dynamics, of crust dissolution and gas release in SY-101. It contains a brief introduction to the issues at hand; a summary of our knowledge of the SY-101 crust and other waste properties, including gas fractions, strength and volubility; a description of the buoyancy and dissolution models that are applied to predict the crust response to waste transfers and back dilution; and a discussion of the effectiveness of mixing for water added below the crust and the limited potential for significant stratification

  16. Solvents effects on crystallinity and dissolution of β-artemether.

    Science.gov (United States)

    Xu, Jianghui; Singh, Vikramjeet; Yin, Xianzhen; Singh, Parbeen; Wu, Li; Xu, Xiaonan; Guo, Tao; Sun, Lixin; Gui, Shuangying; Zhang, Jiwen

    2017-03-01

    β-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 μm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm -1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.

  17. Lung diffusion testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. This ...

  18. Nonlinear ambipolar diffusion waves

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T.; Rowlands, G.

    1985-07-01

    The evolution of a plasma perturbation in a neutral gas is considered using the ambipolar diffusion approximation. A nonlinear diffusion equation is derived and, in the one-dimensional case, exact solutions of shock type are obtained.

  19. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier

    International Nuclear Information System (INIS)

    Sahoo, Nanda Gopal; Kakran, Mitali; Li Lin; Judeh, Zaher; Mueller, Rainer H.

    2011-01-01

    A spray drier with a modified multi-fluid nozzle was used to prepare microparticles of a poorly water-soluble antimalarial drug, artemisinin (ART), with the aim of improving its dissolution in water. ART was co-spray dried with a hydrophilic polymer, polyethylene glycol (PEG). The differential scanning calorimetry and X-ray diffraction studies showed that the crystallinity of ART decreased after spray drying. Compared to the physical mixture of ART and PEG, the amorphous phase of ART in the spray dried ART-PEG composites increased, which depended on the weight ratio of drug to polymer. The phase-solubility studies revealed that the aqueous solubility of ART was improved by the presence of PEG. The dissolution of ART from the spray dried ART-PEG composites was more rapid than that from their respective physical mixture and the original ART powder. For example, the dissolution of ART from the spray dried ART-PEG composite (1:6) was 6.5 times higher than that from the original ART powder in the first 30 min. In the mathematical modeling, the Weibull and Korsemeyer-Peppas models were found to best fit to the in vitro dissolution data and then the drug release mechanism was considered as the Fickian diffusion.

  20. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Kakran, Mitali [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Li Lin, E-mail: mlli@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Judeh, Zaher [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Mueller, Rainer H. [Free University of Berlin, Department of Pharmacy, Biopharmaceutics and Nutricosmetics, Kelchstrass 31, Berlin (Germany)

    2011-03-12

    A spray drier with a modified multi-fluid nozzle was used to prepare microparticles of a poorly water-soluble antimalarial drug, artemisinin (ART), with the aim of improving its dissolution in water. ART was co-spray dried with a hydrophilic polymer, polyethylene glycol (PEG). The differential scanning calorimetry and X-ray diffraction studies showed that the crystallinity of ART decreased after spray drying. Compared to the physical mixture of ART and PEG, the amorphous phase of ART in the spray dried ART-PEG composites increased, which depended on the weight ratio of drug to polymer. The phase-solubility studies revealed that the aqueous solubility of ART was improved by the presence of PEG. The dissolution of ART from the spray dried ART-PEG composites was more rapid than that from their respective physical mixture and the original ART powder. For example, the dissolution of ART from the spray dried ART-PEG composite (1:6) was 6.5 times higher than that from the original ART powder in the first 30 min. In the mathematical modeling, the Weibull and Korsemeyer-Peppas models were found to best fit to the in vitro dissolution data and then the drug release mechanism was considered as the Fickian diffusion.

  1. Hereditary diffuse gastric cancer

    DEFF Research Database (Denmark)

    van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima

    2015-01-01

    Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects......, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3...... the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic...

  2. The effects of composition on glass dissolution rates: The application of four models to a data base

    Energy Technology Data Exchange (ETDEWEB)

    Geldart, R.W.; Kindle, C.H.

    1988-01-01

    Four models have been applied to a data base to relate glass dissolution in distilled water to composition. The data base is used to compare the precisions obtained from the models in fitting actual data. The usefulness of the data base in formulating a model is also demonstrated. Two related models in which the composite or pH-adjusted free energy of hydration of the glass is the correlating parameter are compared with experimental data. In a structural model, the nonbridging oxygen content of the glasses is used to correlate glass dissolution rate to composition. In a model formulated for this report, the cation valence and the oxygen content of the glass are compared with observed dissolution rates. The models were applied to the 28-day normalized silica release at 90/sup 0/C for over 285 glass compositions with surface area to volume ratios of 10 m/sup -1/ (Materials Characterization Center MCC-1 glass durability test using distilled water). These glasses included the nonradioactive analogs of WV205 and SRL-165, as well as SRL-131, PNL 76-68, and a European glass, UK209. Predicted glass dissolution rates show similar fits to the data for all four models. The predictions of the models were also plotted for two subsets of the glasses: waste glasses and Savannah River Laboratory glasses. The model predictions fit the data for these groups much better than they fit the data for the entire set of glasses. 14 refs., 12 figs., 7 tabs.

  3. Carbonate mineral dissolution kinetics in high pressure experiments

    Science.gov (United States)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  4. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  5. The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles

    Science.gov (United States)

    Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.

    2007-12-01

    Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.

  6. Surface and bulk dissolution properties, and selectivity of DNA-linked nanoparticle assemblies

    NARCIS (Netherlands)

    Lukatsky, D.B.; Frenkel, D.

    2005-01-01

    Using a simple mean-field model, we analyze the surface and bulk dissolution properties of DNA-linked nanoparticle assemblies. We find that the dissolution temperature and the sharpness of the dissolution profiles increase with the grafting density of the single-stranded DNA "probes" on the surface

  7. The Rate-equation for Biogenic Silica Dissolution in Seawater – New Hypotheses

    NARCIS (Netherlands)

    Truesdale, V.W.; Greenwood, J.E.; Rendell, A.R.

    2005-01-01

    This paper investigates the kinetics of biogenic silica dissolution in seawater, through batch dissolution, where the reaction is observed as the increase in dissolved silicic acid concentration with time. It utilises new data from dissolution of the marine diatom Cyclotella cryptica, and the

  8. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy

    NARCIS (Netherlands)

    Fussell, A.L.; Garbacik, E.T.; Offerhaus, Herman L.; Kleinebudde, Peter; Strachan, Clare

    2013-01-01

    The solid-state form of an active pharmaceutical ingredient (API) in an oral dosage form plays an important role in determining the dissolution rate of the API. As the solid-state form can change during dissolution, there is a need to monitor the oral dosage form during dissolution testing. Coherent

  9. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    Science.gov (United States)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir

  10. Rotational diffusion in dense suspensions

    NARCIS (Netherlands)

    Hagen, M. H. J.; Frenkel, D.; Lowe, C.P.

    1999-01-01

    We have computed the rotational diffusion coefficient for a suspension of hard spheres. We find excellent agreement with experimental results over a density range up to, and including, the colloidal crystal. However, we find that theories derived to second order in the volume fraction overestimate

  11. Some Aspects of Diffusion Theory

    CERN Document Server

    Pignedoli, A

    2011-01-01

    This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t

  12. Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids

    International Nuclear Information System (INIS)

    Valero-Pedraza, María José; Martín-Cortés, Alexandra; Navarrete, Alexander; Bermejo, María Dolores; Martín, Ángel

    2015-01-01

    Ammonia borane is a promising hydrogen storage material that liberates hydrogen by thermolysis at moderate temperatures, but it also presents major limitations for practical applications including a long induction time before the initiation of hydrogen release and a difficult regeneration. Previous works have demonstrated that by dissolution of ammonia borane into several ionic liquids, and particularly in 1-butyl-3-methylimidazolium chloride bmimCl, the induction period at the beginning of the thermolysis is eliminated, but some problems persist, including foaming and the formation of a residue after thermolysis that is insoluble in the ionic liquid. In this work, the release of hydrogen from ammonia borane dissolved in different ionic liquids has been analyzed, measuring the kinetics of hydrogen release, visually following the evolution of the sample during the process using pressure glass tube reactors, and analyzing the residue by spectroscopic techniques. While dissolutions of ammonia borane in most ionic liquids analyzed show similar properties as dissolutions in bmimCl, using ionic liquids with bis(trifluoromethylsulfanyl)imide Tf 2 N anion the foaming problem is reduced, and in some cases the residue remains dissolved in the ionic liquid, while with ionic liquids with choline anion higher hydrogen yields are achieved that indicate that the decomposition of ammonia borane proceeds through a different path. - Highlights: • Hydrogen release from ammonia borane dissolved in 13 ionic liquids has been studied. • Induction time is shortened and hydrogen release rate is accelerated in all cases. • The best results are obtained using ionic liquids with Tf 2 N anion. • Ch cation ionic liquids enable higher H 2 yield, but cyclotriborazane is produced.

  13. From drug delivery systems to drug release, dissolution, IVIVC, BCS, BDDCS, bioequivalence and biowaivers.

    Science.gov (United States)

    Karalis, Vangelis; Magklara, Eleni; Shah, Vinod P; Macheras, Panos

    2010-09-01

    This is a summary report of the conference on drug absorption and bioequivalence issues held in Titania Hotel in Athens (Greece) from the 28(th) to the 30(th) of May 2009. The conference included presentations which were mainly divided into three sections. The first section focused on modern drug delivery systems such as polymer nanotechnology, cell immobilization techniques to deliver drugs into the brain, nanosized liposomes used in drug eluting stents, encapsulation of drug implants in biocompatible polymers, and application of differential scanning calorimetry as a tool to study liposomal stability. The importance of drug release and dissolution were also discussed by placing special emphasis on camptothecins and oral prolonged release formulations. The complexity of the luminal environment and the value of dissolution in lyophilized products were also highlighted. The second session of the conference included presentations on the Biopharmaceutics Classification Scheme (BCS), the Biopharmaceutics Drug Disposition Classification System (BDDCS), and the role of transporters in the classification of drugs. The current status of biowaivers and a modern view on non-linear in vitro-in vivo (IVIVC) correlations were also addressed. Finally, this section ended with a special topic on biorelevant dissolution media and methods. The third day of the conference was dedicated to bioequivalence. Emphasis was placed on high within-subject variability and its impact on study design. Two unresolved issues of bioequivalence were also discussed: the use of generic antiepileptic drugs and the role of metabolites in bioequivalence assessment. Finally, the conference closed with a presentation of the current regulatory status of WHO and EMEA.

  14. Enhanced dissolution of meloxicam from orodispersible tablets prepared by different methods

    Directory of Open Access Journals (Sweden)

    Ahmed Abd Elbary

    2012-12-01

    Full Text Available The objective of this study was formulation, development and evaluation of meloxicam orodispersible tablets. ODTs were prepared by two methods including sublimation technique where different subliming agents like camphor, menthol and thymol were used with Ac-Di-Sol as a superdisintegrant. Each subliming agent was used in three different concentrations (5, 10 and 15% w/w. Tablets were first prepared and later exposed to vacuum. Meloxicam ODTs were also prepared by freeze-drying an aqueous dispersion of meloxicam containing a matrix former, a sugar alcohol, and a collapse protectant. In addition, different disintegration accelerators were tested (each in 1% w/v including PVP K25, PVP K90, PEG 6000, PEG 4000, PEG 400, tween 80 and tween 20. The prepared ODTs from two methods were evaluated for weight variation, thickness, drug content, friability, hardness, wetting time, in vitro disintegration time and in vitro dissolution study. The best formulation was subjected to stability testing for 3 months at temperatures 40 °C and 75% relative humidity and at 60 °C. All formulations showed disintegration time ranging from 1 to 46 s. All the prepared formulae complied with the pharmacopoeial requirements of the drug contents. T17 gave the best in vitro disintegration and dissolution results. ODT formula T17 has shown no appreciable changes with respect to physical characters, meloxicam content and dissolution profiles when stored at elevated temperatures. In conclusion the results of this work suggest that orodispersible tablets of meloxicam with rapid disintegration time, fast drug release and good hardness can be efficiently and successfully formulated by employing freeze drying and sublimation methods.

  15. Measurements of cesium and strontium diffusion in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1988-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interactions between the nuclides in the ground water and the rock material, such as sorption. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result shows that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurement of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel

  16. MR diffusion imaging of human intracranial tumours

    DEFF Research Database (Denmark)

    Krabbe, K; Gideon, P; Wagn, P

    1997-01-01

    We used MRI for in vivo measurement of brain water self-diffusion in patients with intracranial tumours. The study included 28 patients (12 with high-grade and 3 with low-grade gliomas, 7 with metastases, 5 with meningiomas and 1 with a cerebral abscess). Apparent diffusion coefficients (ADC) wer...

  17. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs.

    Science.gov (United States)

    Maleki, Aziz; Kettiger, Helene; Schoubben, Aurélie; Rosenholm, Jessica M; Ambrogi, Valeria; Hamidi, Mehrdad

    2017-09-28

    New approaches in pharmaceutical chemistry have resulted in more complex drug molecules in the quest to achieve higher affinity to their targets. However, these 'highly active' drugs can also suffer from poor water solubility. Hence, poorly water soluble drugs became a major challenge in drug formulation, and this problem is increasing, as currently about 40 of the marketed drugs and 90% of drug candidates are classified as poorly water soluble. Various approaches exist to circumvent poor water solubility and poor dissolution rate in aqueous environment, however, each having disadvantages and certain limitations. Recently, mesoporous silica materials (MSMs) have been proposed to be used as matrices for enhancing the apparent solubility and dissolution rate of different drug molecules. MSMs are ideal candidates for this purpose, as silica is a "generally regarded as safe" (GRAS) material, is biodegradable, and can be readily surface-modified in order to optimize drug loading and subsequent release in the human body. The major advantage of mesoporous silica as drug delivery systems (DDSs) for poorly water soluble drugs lies in their pore size, pore morphology, and versatility in alteration of the surface groups, which can result in optimized interactions between a drug candidate and MSM carrier by modifying the pore surfaces. Furthermore, the drug of interest can be loaded into these pores in a preferably amorphous state, which can increase the drug dissolution properties dramatically. The highlights of this review include a critical discussion about the modification of the physico-chemical properties of MSMs and how these physico-chemical modifications influence the drug loading and the subsequent dissolution of poorly water soluble drugs. It aims to further promote the use of MSMs as alternative strategy to common methods like solubility enhancement by cyclodextrins, micronization, or microemulsion techniques. This review can provide guidance on how to tailor MSMs

  18. Dissolution of unirradiated UO2-pellets in nitric acid

    International Nuclear Information System (INIS)

    Herrmann, B.

    1984-02-01

    Cinetics of dissolution of UO 2 -pellets in nitric acid and the gaseous reaction products, N 2 O, NO, NO 2 are determined for different temperatures and acid concentrations. NO 2 :NO ratio increases with temperature and nitrate concentration. The amount of N 2 O formed increases with temperature and acid concentration. At 90 0 C and dissolution in 12 m nitric acid 1l weight-% of UO 2 are dissolved forming N 2 O. The oxidation of UO 2 takes place on the crystal surface or at the interface UO 2 /HNO 3 . U(IV)-ions cannot be detected in the solution. The nitrous acid resulting from reduction of HNO 3 or the species which is in equilibrium with nitrous acid e.g. the nitrosyl-ion is responsible for UO 2 -oxidation. (orig./PW) [de

  19. Dissolution -- A new approach to NORM processing and disposal

    Energy Technology Data Exchange (ETDEWEB)

    LeLeux, D.E.

    1995-11-01

    Naturally occurring radioactive material (NORM) has become a significant issue for regulatory agencies and oil companies in recent years. With oil and gas production, Radium 226 and Radium 228 are carried to the surface dissolved in the produced saltwater. NORM is formed when these radioactive isotopes are precipitated from the produced waters in the form of metal scales in tubulars and production equipment. One NORM disposal technique, developed by AMBAR, Inc., of Lafayette, Louisiana, employs a dissolution process using proprietary chemistry which dissolves scales, releasing the radioactive isotopes back into their natural liquid state. The resulting by products of the process are solids and liquids which meet regulatory requirements for non-hazardous oilfield waste (NOW) disposal. This article will present: A NORM description; Problems associated with NORM; Solutions to the problems; The dissolution method and chemistry; Field operational procedures, and future regulator impact.

  20. Improvement of dissolution rate of indomethacin by inkjet printing