WorldWideScience

Sample records for include coal generation

  1. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  2. Power Generation from Coal 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This report focuses mainly on developments to improve the performance of coal-based power generation technologies, which should be a priority -- particularly if carbon capture and storage takes longer to become established than currently projected. A close look is taken of the major ongoing developments in process technology, plant equipment, instrumentation and control. Coal is an important source of energy for the world, particularly for power generation. To meet the growth in demand for energy over the past decade, the contribution from coal has exceeded that of any other energy source. Additionally, coal has contributed almost half of total growth in electricity over the past decade. As a result, CO2 emissions from coal-fired power generation have increased markedly and continue to rise. More than 70% of CO2 emissions that arise from power generation are attributed to coal. To play its role in a sustainable energy future, its environmental footprint must be reduced; using coal more efficiently is an important first step. Beyond efficiency improvement, carbon capture and storage (CCS) must be deployed to make deep cuts in CO2 emissions. The need for energy and the economics of producing and supplying it to the end-user are central considerations in power plant construction and operation. Economic and regulatory conditions must be made consistent with the ambition to achieve higher efficiencies and lower emissions. In essence, clean coal technologies must be more widely deployed.

  3. Power Generation from Coal 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Coal is the biggest single source of energy for electricity production and its share is growing. The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide. This book explores how efficiency is measured and reported at coal-fired power plants. With many different methods used to express efficiency performance, it is often difficult to compare plants, even before accounting for any fixed constraints such as coal quality and cooling-water temperature. Practical guidelines are presented that allow the efficiency and emissions of any plant to be reported on a common basis and compared against best practice. A global database of plant performance is proposed that would allow under-performing plants to be identified for improvement. Armed with this information, policy makers would be in a better position to monitor and, if necessary, regulate how coal is used for power generation. The tools and techniques described will be of value to anyone with an interest in the more sustainable use of coal.

  4. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  5. Coal-fired diesel generator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  6. Education Program on Fossil Resources Including Coal

    Science.gov (United States)

    Usami, Masahiro

    Fossil fuels including coal play a key role as crucial energies in contributing to economic development in Asia. On the other hand, its limited quantity and the environmental problems causing from its usage have become a serious global issue and a countermeasure to solve such problems is very much demanded. Along with the pursuit of sustainable development, environmentally-friendly use of highly efficient fossil resources should be therefore, accompanied. Kyushu-university‧s sophisticated research through long years of accumulated experience on the fossil resources and environmental sectors together with the advanced large-scale commercial and empirical equipments will enable us to foster cooperative research and provide internship program for the future researchers. Then, this program is executed as a consignment business from the Ministry of Economy, Trade and Industry from 2007 fiscal year to 2009 fiscal year. The lecture that uses the textbooks developed by this program is scheduled to be started a course in fiscal year 2010.

  7. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  8. Environmental externalities: Applying the concept to Asian coal-based power generation. [Includes external environmental and societal costs and methods of evaluating them

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  9. Coal's sleeping market: non-utility generators

    International Nuclear Information System (INIS)

    McMahan, R.L.; Knutson, K.S.

    1992-01-01

    The article briefly profiles the coal market for non-utility generation (NUG). Coal consumption by NUGs, currently estimated at around 6.1 million tons, is projected to reach nearly 13.6 million tons by 1995 and 21.2 million tons by 2000. If the projected growth is achieved the NUG market may become one of the strongest market segments for the coal industry into the next century. 3 figs., 2 tabs

  10. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...

  11. Coal based electric generation comparative technologies report

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  12. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    It is estimated that World coal trade remained strong during the second quarter of 1991, with contributing factors including unseasonally large shipments to Japan for power generation, sustained Japanese steel production at around 112 Mt and some buildup in stocks in that country. Purchases by North Asian and European consumers also remained high. At the same time Soviet output and exports declined because of strikes and political unrest. In addition, exportable supplies in Poland fell. As a result the demand for Indonesian coal increased, and Australia exported larger than previously expected quantities of coal. ills

  13. Coal-fueled diesels for modular power generation

    Science.gov (United States)

    Wilson, R. P.; Rao, A. K.; Smith, W. C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970's. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980's, Morgantown Energy Technology Center (METC) of the US Department of Energy initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10-100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990's and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  14. Optimal use of coal for power generation in India

    International Nuclear Information System (INIS)

    Mathur, Ritu; Chand, Sharat; Tezuka, Tetsuo

    2003-01-01

    There is growing consensus among energy planners that electricity requirements in India would increase rapidly in the next couple of decades, and that coal would continue to dominate the generating capacity mix. Comparatively high levels of ash in Indian coal causes concern both in terms of the high costs of coal movement and the associated environmental impacts. As per the notification of September 1997, all power plants located in sensitive areas, metropolitan cities and in areas distant from the coalfields, must use coal with <34% ash. However, little progress has been made towards coal beneficiation and some consumers have already started to import non-coking coal for blending in order to comply with environmental requirements. The importance of planning for optimal utilization and transportation of thermal coal cannot be underestimated, especially at a juncture where the Indian coal industry is already facing competition from rising imports of non-coking coal. This paper assesses the optimality of the current patterns of coal movement and examines the economics of beneficiating thermal coals. A linear programming model has been developed based on the framework of the general transportation problem. The authors conclude that the washery is not economically attractive given the current costs, beneficiation technique and quality of Indian non-coking coal. Model simulations have been attempted to assess the possibility of coal beneficiation based on techno-economic considerations rather than political or other considerations. The paper also stresses the possibility of overall gains to the economy by modifying the current patterns of coal movement

  15. Effects of new environmental regulations on coal-fired generation

    International Nuclear Information System (INIS)

    LaCount, R.

    1999-01-01

    As restructuring of the electricity industry places downward pressure on power production costs, new environmental regulations are having the opposite effect. Although power plants may be subject to a variety of environmental regulations over the next ten years including reductions in mercury, toxics, and carbon dioxide, new regulations for sulfur dioxide (SO2) and nitrogen oxides (NOX) are poised to impact the electricity industry in the very short term. The cost for coal-fired power plants to comply with these new regulations has the potential to alter their competitive position. January 1, 2000 marks the beginning of Phase II for the Environmental Protection Agency's SO2 allowance market. Starting in January, all coal and oil plants above 25 MW will be required to comply with the federal SO2 provisions. Regulatory deadlines for NOX are also fast approaching; though the ultimate requirements are still subject to change. On May 1, 1999, a NOX allowance market began for states within the Northeast Ozone Transport Commission (OTC). A second phase of this program is scheduled to begin in 2003 that will lower the overall cap for allowable NOX emissions in the participating states. EPA is also working to expand the reach of regional NOX reductions in 2003 through its NOX SIP call. This program, which is currently subject to litigation, would require NOX reductions in 14 states outside of the OTC. A new study by Resource Data International (RDI), Coal-Fired Generation in Competitive Power Markets, assessed the potential impact that the new SO2 and NOX regulations may have on the competitiveness of coal-fired generation. Overall, the study shows that coal-fired generation will continue to grow despite significant environmental costs and competition from natural gas-fired units. The new environmental regulations have the effect of increasing the dispatch cost of coal-fired units from $0.65/MWh on average in the WSCC to $4.14/MWh on average in the MAAC region. The addition

  16. New coal-fired generation: a summary of developments and impacts to the US coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Boulder, CO (United States)

    2001-07-01

    20 overheads/slides summarise the coverage of this presentation. RDI has identified close to 34000 NW of proposed new coal-fired generating capacity in the USA. The talk reviewed where new plants may be built, the coal combustion technologies they will employ, sources of coal supply and transport, and plant retirements and offsets. Government policy today favours construction of large plants to ensure security of supply in regions where new base loaded capacity is needed. Costs of producing power from coal and natural gas are compared. Impacts of new plants to coal suppliers and coal transporters are considered. RDI will publish a study on winners and losers in the race for new coal-fired generation in July 2001.

  17. Integrated gasification combined cycle versus supercritical pulverized coal for power generation from coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Integrated Gasification Combined Cycle (IGCC) plants provide potential performance, environmental, and fuel flexibility advantages over more conventional combustion technologies such as Supercritical Pulverized Coal (SCPC) plants. Projected pollutant emissions from IGCC plants are the lowest of all coal power generation technologies. Mercury and carbon dioxide emissions reductions can be achieved at a much lower cost for IGCC plants than for conventional pulverized coal-fired power plants. Future IGCC developments, such as improvements in process technologies and development of larger, more efficient combustion turbines, offer the potential to further increase the competitiveness and performance of IGCC. For these reasons, IGCC is likely to evolve as the future technology of choice for generation of electricity from coal. An overview is presented of the components of an IGCC plant, along with a discussion of integration options and commercial status. IGCC plant performance and economics are compared against SCPC power generation for Chinese coals. 1 fig., 4 tabs.

  18. Resuspension of coal and coal/municipal sewage sludge combustion generated fine particles for inhalation health effects studies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Art; Wendt, Jost O.L. [Department of Chemical and Environmental Engineering, University of Arizona, 85721 Tucson, AZ (United States); Cenni, Roberta [Institut fuer Verfahrenstechnik und Dampfkesselwesen, Universitaet Stuttgart, Stuttgart (Germany); Young, R. Scott; Witten, Mark L. [Lung Injury Laboratory, Department of Pediatrics, Arizona Health Sciences Center, 85721 Tucson, AZ (United States)

    2002-03-27

    Airborne particulate matter (PM) is an important environmental issue because of its association with acute respiratory distress in humans, although the specific particle characteristics that cause lung damage have yet to be identified. Particle size, acid aerosols, water-soluble transition metals (e.g. Cu, Fe, V, Ni and Zn), polyaromatic hydrocarbons, and particle composition are the focus of several popular hypotheses addressing respiratory distress. All of the above mentioned characteristics are contained in PM generated from the combustion of both pulverized coal, and biomass, including dried municipal sewage sludge (MSS). In this investigation, we report results from collaborative interdisciplinary research on the inhalation health risks caused by particles emitted from the co-combustion of municipal sewage sludge (MSS) and coal. A solid particle resuspension system was implemented to resuspend ash particles. Mice were exposed to resuspended coal and MSS/coal ash particles. Mice exposed to MSS/coal ash particulate demonstrated significant increases in lung permeability, a marker of the early stages of pathological lung injury, while the mice exposed to coal-only ash did not. These results show that the composition of particles actually inhaled is important in determining lung damage. Zinc was significantly more concentrated in the MSS/coal ash than coal ash particles and the pH of these particles did not differ significantly. Specifically, an MSS/coal mixture, when burned, emits particles that may cause significantly more lung damage than coal alone, and that consequently, the use of MSS as a 'green', CO{sub 2}-neutral replacement fuel should be carefully considered.

  19. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  20. Assessment of Hydrocarbon Generation Potential of Permian Gondwana Coals, Bangladesh

    Directory of Open Access Journals (Sweden)

    H. M. Zakir Hossain

    2013-06-01

    Full Text Available This paper represents the geochemical characteristics of Gondwana coals from the Barapukuria coal mine, Bangladesh in order to investigate the potential for hydrocarbon generation. A total number of twenty three coal samples were analyzed Rock-Eval pyrolysis, CHNS elemental analyses, maceral analysis and vitrinite reflectance. The samples were collected from drill hole GDH-40 of the Barapukuria coal mine encountered within Gondwana succession of Permian age. The TOC contents of the coal samples range between ~50 and 76 wt.% and the organic matter consists predominantly of type III and type IV kerogen with respect to hydrocarbon generation. The GP, HI, PI and Tmax values range between 7 and 35 mg HC/g rock, 20 and 62 mg HC/g TOC, 0.02 and 0.04, and 430 and 437oC, respectively. The organic matter is mainly gas prone and thermally immature to early mature level. The potential coal bed methane (CBM generation of the Barapukuria basin is estimated to be 11 Gm3. Thus, underground coal gasification (UCG is helpful for better development of subsurface coals at the Barapukuria basin, Bangladesh.

  1. Power generation method including membrane separation

    Science.gov (United States)

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  2. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  3. Overview of United States coal export terminals. [Includes description of present coal port terminal facilities

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Existing coal export ports in the United States are in general not designed to the standards compatible with the current state of the art. The United States has a current coal export capacity in the order of 83 million tons per year. This could be increased to 138 million tons per year through a process of modernization and expansion which would take about six to eight years for full realization. Even if this expansion program took place it would not result in an overall coal export system that was economically competitive due to the fact that our export terminals are generally outmoded and cannot accommodate the large vessels engaged in the world coal trade and which can be accommodated at the major coal destination ports in Europe and Japan. In order for the United States to achieve an economically competitive posture in the world coal trade, new ports that will handle 150,000 to 250,000 DWT ships are needed. The new terminals must be designed to receive coal efficiently and minimize the demurrage costs for both railcars on the delivery side and ships on the load out side. There are port sites available in the US which could be developed to effectively handle the increased requirements. Each major new port could easily be designed to handle 20 to 50 million tons per year at ultimate capacity subject to the availability of coal from the source at a reasonable cost. New port construction is needed to satisfy the projected demand at a reasonable cost and to provide for the obsolescence of existing facilities. Decisions are needed now so that the ports will be operating 20 years from now and serve as replacements for present facilities which are becoming obsolete. The government of the United States can and must play a major role if success is to be achieved.

  4. The economics of coal power generation in China

    International Nuclear Information System (INIS)

    Zhao, Changhong; Zhang, Weirong; Wang, Yang; Liu, Qilin; Guo, Jingsheng; Xiong, Minpeng; Yuan, Jiahai

    2017-01-01

    The Chinese government recently released the 13th FYP (five-year plan) power development plan and proposed a capacity installation target of 1100 GW for coal power. Considering the weak demand growth of coal power since 2014, continuous decline in the annual utilisation hour and the coming market competition, such a planning target is unwelcome and could further the economic deterioration of coal power. In this paper, we employ LCOE (levelised cost of electricity) and project evaluation models to conduct a nationwide survey on the economics of coal power. The economic analysis has clearly indicated that the recent boom of coal power investment in China, which is absurd in many perspectives, is largely the aftermath of uncompleted market reform in the power sector. However, the fundamentals of electricity demand and supply are changing at a speed beyond the imagination of power generators and have foreboded a gloomy prospect for coal power. Our study shows that by 2020, with several exceptions, in most provinces the internal rate of return for coal power will drop below the social average return rate or will even be negative. In this regard, the 13th FYP capacity planning target for coal power is economically untenable and requires radical revision. - Highlights: • Conduct a first-of-its-kind nationwide economic analysis for coal power in China. • Distorted price by improper regulation is the root of investment bubble since 2014. • Cost uplift and market competition foretell a gloomy prospect of coal power. • The 1100 GW capacity planning target for coal power should be abandoned.

  5. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A. [NIOSH, Pittsburgh, PA (United States). Pittsburgh Research Lab.

    2002-06-01

    Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals to investigate the various factors influencing airborne respirable dust generation. Bituminous coal samples from 8 mines (5 U.S. and 3 Polish) were uniformly prepared and processed through a double roll crusher located in a low air velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific quantity of airborne respirable dust generated. A combination of factors is associated with the generation of airborne respirable dust. One factor involved is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics. However, since coals of high moist fuel ratio (high rank) are generally more extensively cleated, it is suggested that the degree of cleating is directly responsible for the quantity of respirable-sized particles produced in the crushed product material for eastern U.S. coals. This is implied by the relationship of ash content and at least one mineral constituent (pyrite, determined from pyritic sulfur analysis) to the percentage of airborne respirable dust. A clear delineation of coals, based on well-known proximate analysis characteristics, that generate the most respirable dust appears to be possible. It was also shown that the dust-generating characteristics of coals could be reasonably described by both the moist fuel ratio and the Hardgrove Grindability Index (HGI). These results show a clear distinction between eastern and western U.S. coals. However, no consistent distinction for Polish coal was observed.

  6. The Efficiency Improvement by Combining HHO Gas, Coal and Oil in Boiler for Electricity Generation

    Directory of Open Access Journals (Sweden)

    Chia-Nan Wang

    2017-02-01

    Full Text Available Electricity is an essential energy that can benefit our daily lives. There are many sources available for electricity generation, such as coal, natural gas and nuclear. Among these sources, coal has been widely used in thermal power plants that account for about 41% of the worldwide electricity supply. However, these thermal power plants are also found to be a big pollution source to our environment. There is a need to explore alternative electricity sources and improve the efficiency of electricity generation. This research focuses on improving the efficiency of electricity generation through the use of hydrogen and oxygen mixture (HHO gas. In this research, experiments have been conducted to investigate the combined effects of HHO gas with other fuels, including coal and oil. The results show that the combinations of HHO with coal and oil can improve the efficiency of electricity generation while reducing the pollution to our environment.

  7. Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sheesley, D.; King, S.B.

    1998-12-31

    This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

  8. Importance of hard coal in electricity generation in Poland

    Science.gov (United States)

    Plewa, Franciszek; Strozik, Grzegorz

    2017-11-01

    Polish energy sector is facing a number of challenges, in particular as regards the reconstruction of production potential, diversification of energy sources, environmental issues, adequate fuels supplies and other. Mandatory implementation of Europe 2020 strategy in terms of “3x20” targets (20% reduction of greenhouse gases, 20% of energy from renewable sources, and 20% increase of efficiency in energy production) requires fast decision, which have to be coordinated with energetic safety issues, increasing demands for electric energy, and other factors. In Poland almost 80% of power is installed in coal fired power plants and energy from hard coals is relatively less expensive than from other sources, especially renewable. The most of renewable energy sources power plants are unable to generate power in amounts which can be competitive with coal fires power stations and are highly expensive, what leads o high prices of electric energy. Alternatively, new generation of coal fired coal power plants is able to significantly increase efficiency, reduce carbon dioxide emission, and generate less expensive electric power in amounts adequate to the demands of a country.

  9. Power generation from lignite coal in Bulgaria - problems and solutions

    International Nuclear Information System (INIS)

    Batov, S.; Gadjanov, P.; Panchev, T.

    1997-01-01

    The bulk of lignite coal produced in Bulgaria is used as fuel for the thermal power plants (TPP) built in Maritsa East coal field. A small part of it goes to production of briquettes and to fuel the auxiliary power plants of industrial enterprises. The total installed capacity of the power plants in the region of Maritsa East is 2490 MW, and the electric power generated by them is about 30% of the total power generated in the country. It should be noted that these power plants were subjected to a number of rehabilitations aiming to improve their technical and economic parameters. Irrespective of that, however, solution has still to be sought to a number of problems related to utilisation of the low-grade lignite coal for power generation. On the whole, they can be divided in the following groups: Those related to lignite coal mining can be referred to the first group. Lignite coal is mined in comparatively complicated mining and geological conditions characterized mainly by earth creep and deformation. The second group of problems is related to coal quality control. It is a fact of major significance that the quality indices of coal keep changing all the time in uneven steps without any definite laws to govern it. That creates hard problems in the process of coal transportation, crushing and combustion. The next group of problems concerns operation and upgrading of the power generation equipment. That applies especially to the existing boilers which bum low-grade fuel in order to improve their operation in terms of higher thermal efficiency, controllability, reliability, improved environmental indices, etc. An increasingly high importance is attached to environmental impact problems incident to lignite coal utilisation. Abatement of sulphur oxide emissions and dust pollution is a problem solution of which cannot wait. The possibilities for partial solution of the environmental problems through increasing the thermal efficiency of facilities at the thermal Power

  10. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  11. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  12. Electricity. Hydropower imports down, coal-fired generation up

    International Nuclear Information System (INIS)

    2004-01-01

    The low water levels in the Nordic countries typical of summer 2002 continued in 2003, keeping spot prices on the Nordic electricity market high throughout the year. This second successive dry summer had a major impact on market developments. Finnish imports of electricity from Sweden and Norway ended virtually completely, and Finland became a net electricity exporter to these markets. For short periods, Finland exported more electricity westwards in 2003 than the country imported from Russia. The role of coal- fired capacity increased, and more coal was burned to generate electricity in Finland in 2003 than at any time previously

  13. Environment Friendly Coal Based Power Generation in Pakistan

    Science.gov (United States)

    Qureshi, S. A.; Javed, M. Adnan

    2010-06-01

    The main emphasis of this paper is on the engineering economics and design developments in the field of thermal power generation in Pakistan. Pakistan is rich with coal fields but is making no use of this available natural resource to fulfil its energy demands. The shortage of power is getting worst day by day and to align with the power requirements, Pakistan needs to add 2000 MW each year to national grid. With the increasing prices of natural gas and oil, Pakistan should consider coal, the abundantly available natural resource, as an alternate fuel for its new power plants to overcome the power crises.

  14. Radioactivity in coal, ashes and selected wastewaters from Canadian coal-fired steam electric generating stations

    International Nuclear Information System (INIS)

    1985-09-01

    Coal is known to contain naturally occurring radioactive elements and there has been speculation that as a results, coal-fuelled power generation stations may be significant emitters of these substances. In this report, the subject of radioactivity is introduced. The kinds of radioactive substances which occur naturally in coal formations, the nature of their emissions and the existing information on their behaviour and their effects on environmental organisms are also reviewed. The results of an examination of levels of alpha, beta and gamma radiaton levels, and the substances which produce them in coals, fly ashes, bottom ashes and related wastewaters at six Canadian coal-fuelled power stations are presented. Difficulties in studies of this nature and the potential effects of these releases on organisms in the adjacent aquatic environment are discussed. Existing and potential technologies for the removal of these substances from wastewaters are examined. In general the releases in wastewaters from the six stations were found to be lower than those known to cause short-term or acute biological effects. The potential for long-term effects from such low-level releases could not be accurately assessed because of the paucity of information. A number of recommendations for: improvements in further studies of this nature; the further examination of the fate of naturally occurring radionuclides in the environment; and the determination of the long-term effects of low levels of naturally occurring radioactive substances on aquatic organisms, are made

  15. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never

  16. New generation concretes including reactive powder concretes

    Directory of Open Access Journals (Sweden)

    Stefania Grzeszczyk

    2015-09-01

    Full Text Available Based on a broad literature review, this paper presents characteristics of new generation composites on the basis of cements which are applied in engineering structures and in rehabilitation of structures. The role of cement, microfillers, superplasticizers and fibers in the above stated composites i.e. factors which allow for the maximum packing of particles in the cement matrix and a minimum pore volume, and the increase in composite bending strength, have been discussed. Special attention was paid to Reactive Powder Concrete in which coarse aggregate was replaced by ground quartz and sand. Such composites contain active microfillers and the applied new-generation superplasticizers allow us to decrease the water-cement ratio in the composite up to 0.2. Whereas, steel fibre additive allows us to significantly improve the bending strength.The paper presents the properties of the excellent Ductal — a composite from Reactive Powder Concrete, which at compressive strength from 180 to 230 MPa achieves the tensile strength of 30 to 50 MPa. Its application allows us to create slim profiles and tall light and slender, and simultaneously durable and corrosion-resistant structural elements of considerable span. This paper gives a few examples of Ductal application in practice.[b]Keywords[/b]: civil engineering, composite materials, reactive powder concrete

  17. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    International Nuclear Information System (INIS)

    Faaij, A.; Meuleman, B.

    1997-12-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated by means of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from other studies. In addition, external costs are estimated for nitrogen leaching and for the use of agrochemicals for energy crop production. The average private costs for biomass and coal based power generation are projected to be 68 and 38 mECU/kWh respectively in the year 2005. It is assumed that biomass production takes place on fallow land. Coal mining is excluded from the analysis. If the quantified external damages and benefits are included the cost range for bio-electricity is 53-70 mECU/kWh and 45-72 mECU/kWh for coal. Indirect economic effects (increment of Gross Domestic Product) and the difference in CO2 emissions are the most important distinguishing factors between coal and biomass in economic terms. Damage costs of other emissions to air (NOx, SO2, dust and CO) are of the same order of magnitude for both coal and biomass (coal mining excluded). In this analysis environmental impacts of energy farming are compared mainly to fallow land focused on the use of fertilizers and agrochemicals. The related damage costs appear to be low but should be considered as a preliminary estimate only. The quantitative outcomes should not be considered as the external costs of the two fuel cycles studied. Many impacts have not been valued and large uncertainties persist e.g. with respect to the costs of climate change and numerous dose response relations. More detailed analysis is required with respect to macro-economic impacts. The results serve as a first indication, but the outcomes plead for the support of bio-electricity production and/or taxation of coal based power generation. 88 refs

  18. Thermal energy storage for coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    Drost, M.K.; Somasundaram, S.; Brown, D.R.; Antoniak, Z.I.

    1990-11-01

    This paper presents an engineering and economic evaluation of using thermal energy storage (TES) with coal-fired conventional and combined cycle power plants. In the first case, conventional pulverized coal combustion equipment was assumed to continuously operate to heat molten nitrate salt which was then stored in a tank. During intermediate-load demand periods, hot salt was withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allowed the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The use of nitrate salt TES also reduced the levelized cost of power by between 5% and 24% depends on the operating schedule. The second case evaluate the use of thermal energy storage with an integrated gasification combined cycle (IGCC) power plant. In this concept, the nitrate salt was heated by a combination of the gas turbine exhaust and the hot fuel gas. The IGCC plant also contained a low-temperature storage unit that uses a mixture of oil and rock as the thermal storage medium. Thermal energy stored in the low-temperature TES was used to preheat the feedwater after it leaves the condenser and to produce process steam for other applications in the IGCC plant. This concept study also predicted a 5% to 20% reduction in levelized cost of power compared to other coal-fired alternatives. If significant escalation rates in the price of fuel were assumed, the concept could be competitive with natural-gas-fired intermediate-load power generation. A sensitivity analysis of using a direct-contact heat exchanger instead of the conventional finned-tube design showed a significant reduction in the installed capital cost. 3 refs., 2 figs., 6 tabs.

  19. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  20. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.)

  1. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.

    Science.gov (United States)

    Lakra, Kalpana C; Lal, B; Banerjee, T K

    2017-06-03

    Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.

  2. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics, Inc., Columbia, MD (United States)

    2018-02-01

    findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.

  3. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  4. Cost comparison of 4x500 MW coal-fuelled and 4x850 MW CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Costa, M.

    1981-01-01

    The lifetime costs for a 4x850 MW CANDU generating station are compared to those for 4x500 MW bituminous coal-fuelled generating stations. Two types of coal-fuelled stations are considered; one burning U.S. coal which includes flue gas desulfurization and one burning Western Canadian coal. Current estimates for the capital costs, operation and maintenance costs, fuel costs, decommissioning costs and irradiated fuel management costs are shown. The results show: (1) The accumulated discounted costs of nuclear generation, although initially higher, are lower than coal-fuelled generation after two or three years. (2) Fuel costs provide the major contribution to the total lifetime costs for coal-fuelled stations whereas capital costs are the major item for the nuclear station. (3) The break even lifetime capacity factor between nuclear and U.S. coal-fuelled generation is projected to be 5%; that for nuclear and Canadian coal-fuelled generation is projected to be 9%. (4) Large variations in the costs are required before the cost advantage of nuclear generation is lost. (5) Comparison with previous results shows that the nuclear alternative has a greater cost advantage in the current assessment. (6) The total unit energy cost remains approximately constant throughout the station life for nuclear generation while that for coal-fuelled generation increases significantly due to escalating fuel costs. The 1978 and 1979 actual total unit energy cost to the consumer for several Ontario Hydro stations are detailed, and projected total unit energy costs for several Ontario Hydro stations are shown in terms of escalated dollars and in 1980 constant dollars

  5. Quality of coal - base for optimal electric power generation

    International Nuclear Information System (INIS)

    Jankov, Jovan

    1997-01-01

    Bitola Mines Plant and Energy Combine is the largest electric power producer in the Republic of Macedonia. It is established on two separately production units: coal (lignite) open pit mine 'Suvodol' and the power plants 'Bitola'. The lignite from the mine is used only for electric power generation in the thermal power plants. The coal quality is the first, basic point in the production line, while the electric power, transformed to the high tension transmission system is the last , final production point. Between the two points, there are all equipment, production units, materials and very hard work to get optimal and economical solutions as well as production. This material gives a short explanation between that two points. (Author)

  6. The role of IGCC technology in power generation using low-rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Juangjandee, Pipat

    2010-09-15

    Based on basic test results on the gasification rate of Mae Moh lignite coal. It was found that an IDGCC power plant is the most suitable for Mae Moh lignite. In conclusion, the future of an IDGCC power plant using low-rank coal in Mae Moh mine would hinge on the strictness of future air pollution control regulations including green-house gas emission and the constraint of Thailand's foreign currency reserves needed to import fuels, in addition to economic consideration. If and when it is necessary to overcome these obstacles, IGCC is one variable alternative power generation must consider.

  7. Coal-fired high performance power generating system

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO[sub x] SO [sub x] and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW[sub e] combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO[sub x] production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  8. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  9. Studies of MHD generator performance with oxygen enriched coal combustion

    Science.gov (United States)

    Wormhoudt, J.; Yousefian, V.; Kolb, C. E.; Martinez-Sanchez, M.

    1980-07-01

    This paper presents calculations made using the Aerodyne PACKAGE (Plasma Analysis, Chemical Kinetics, and Generator Efficiency) computer code which bear on two questions which arise in connection with choices between oxygen enrichment and air preheating to attain the high combustion temperatures needed for open-cycle, coal-fired MHD power generation. The first question is which method produces the highest enthalpy extraction per unit channel length. The second is, in test facilities intended to study tradeoffs between oxygen enrichment and preheated air, can good generator performance be obtained from the same physical channel for different combustor compositions. The answer to the first question is found to depend on what combustor conditions are taken to be comparable. As for the second question, it is found that operation with channel input from off-design combustor conditions can cause serious problems, which can be partially alleviated by changing the channel load factors.

  10. Coal-fired magnetohydrodynamic (MHD) electric power generation

    International Nuclear Information System (INIS)

    Sens, P.F.

    1992-01-01

    Since 1986 Directorate-General XII 'Science, Research and Development' of the Commission of the European Communities has kept a watching brief on the development of coal-fired magnetohydrodynamic (MHD) electric power generation from the 'solid fuels' section of its non-nuclear energy R and D programme. It established, in 1987, the Faraday Working Group (FWG) to assess the development status of coal-fired MHD and to evaluate its potential contribution to the future electricity production in the Community. The FWG expressed as its opinion, at the end of 1987, that in sufficient data were available to justify a final answer to the question about MHD's potential contribution to future electricity production and recommended that studies be undertaken in three areas; (i) the lifetime of the generator, (ii) cost and performance of direct air preheating, (iii) cost and efficiency of seed recovery/reprocessing. These studies were contracted and results were presented in the extended FWG meeting on 15 November 1990, for an audience of about 70 people. The present volume contains the proceedings of this meeting. The introduction describes the reasons for establishing the FWG, its activities and the content of its extended meeting followed by the summary of the discussions and the concluding remarks of this meeting. The main part of the volume consists of the text either of the oral presentations during the meeting or of the final reports resulting from the studies under contract

  11. Efficient lighting in a coal fired generating station

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, B. [Ontario Power Generation, Toronto, ON (Canada)

    2001-02-01

    Upgrading the lighting in one of Ontario Power Generation's (formerly Ontario Hydro) coal-fired generating plants by replacing the open strip Very High Output (VHO) and F40 fixtures with metal halide fixtures (30-40 watt and 10-25 watt fixtures, respectively) is discussed. The wholesale replacement was preceded by a one year long trial in which 81 VHO and 79 F40 were replaced with 40 metal halide fixtures. The subsequent choice of metal halide for the entire plant was based on the results of this pilot project. Results showed a four-fold increase in light levels, a significant reduction in the number and types of lamps and ballasts used, a 60 per cent reduction in energy consumption and a 50 per cent reduction in maintenance costs. 2 photos.

  12. Coal price prospects and availability of coal in the U.K. power generation market

    International Nuclear Information System (INIS)

    Parker, M.J.

    1983-02-01

    The availability and cost of National Coal Board coal is discussed with respect to the CEGB's economic case for Sizewell B nuclear power station. It is concluded that an investment which depended for its viability on an early or rapid escalation in international coal prices, or upon this escalation continuing indefinitely into the future, would not be sound. (U.K.)

  13. Coal

    International Nuclear Information System (INIS)

    Muir, D.A.

    1991-01-01

    The international coal market trends are outlined and the place of Australian coal industry is discussed. It is shown that while the world supply and demand for coal has begun to tighten, the demand for coal is expected to remain strong in both Asia and Europe. Consequently, in 1991-1992 Australian black coal production and export returns are forecast to rise by 4% and 7% respectively. 1 fig

  14. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  15. Application of computer graphics to generate coal resources of the Cache coal bed, Recluse geologic model area, Campbell County, Wyoming

    Science.gov (United States)

    Schneider, G.B.; Crowley, S.S.; Carey, M.A.

    1982-01-01

    Low-sulfur subbituminous coal resources have been calculated, using both manual and computer methods, for the Cache coal bed in the Recluse Model Area, which covers the White Tail Butte, Pitch Draw, Recluse, and Homestead Draw SW 7 1/2 minute quadrangles, Campbell County, Wyoming. Approximately 275 coal thickness measurements obtained from drill hole data are evenly distributed throughout the area. The Cache coal and associated beds are in the Paleocene Tongue River Member of the Fort Union Formation. The depth from the surface to the Cache bed ranges from 269 to 1,257 feet. The thickness of the coal is as much as 31 feet, but in places the Cache coal bed is absent. Comparisons between hand-drawn and computer-generated isopach maps show minimal differences. Total coal resources calculated by computer show the bed to contain 2,316 million short tons or about 6.7 percent more than the hand-calculated figure of 2,160 million short tons.

  16. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  17. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  18. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.

    Science.gov (United States)

    Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S

    2015-01-01

    In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide.

  19. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A, Part 1. Coal preparation and cleaning assessment study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report evaluates the state of the art and effectiveness of physical coal cleaning as a potential strategy for controlling SO/sub x/ emissions in coal fired power generation. Coal properties which are significantly altered by physical coal cleaning were determined. The effects of the changes in properties as they relate to pulverized coal firing, fluidized bed combustion and low Btu gasification for combined cycle powered generation were studied. Available coal washability data were integrated by computer with U.S. coal reserve data. Approximately 18% of the demonstrated coal reserve were matched with washability data. Integrated data appear in the Appendix. Current coal preparation practices were reviewed. Future trends were determined. Five process flow sheets representing increasing levels of cleaning sophistication were prepared. The clean product from each flow sheet will meet U.S. EPA New Source Performance Standards. Capital and operating costs for each case were estimated. Environmental control technology and environmental impact associated with current coal preparation and cleaning operations were assessed. Physical coal cleaning is widely practiced today. Where applicable it represents the least expensive method of coal sulfur reduction. Developmental physical and chemical coal cleaning processes were studied. The chemical methods have the advantage of being able to remove both pyritic sulfur and organic sulfur present in the coal matrix. Further R and D efforts will be required before commercialization of these processes.

  20. Process for control of pollutants generated during coal gasification

    Science.gov (United States)

    Frumerman, Robert; Hooper, Harold M.

    1979-01-01

    The present invention is directed to an improvement in the coal gasification process that effectively eliminates substantially all of the environmental pollutants contained in the producer gas. The raw producer gas is passed through a two-stage water scrubbing arrangement with the tars being condensed essentially water-free in the first stage and lower boiling condensables, including pollutant laden water, being removed in the second stage. The pollutant-laden water is introduced into an evaporator in which about 95 percent of the water is vaporized and introduced as steam into the gas producer. The condensed tars are combusted and the resulting products of combustion are admixed with the pollutant-containing water residue from the evaporator and introduced into the gas producer.

  1. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  2. What drives the efficiency of hard coal fuelled electricity generation? : an empirical assessment

    OpenAIRE

    Hoffmann, Tim; Voigt, Sebastian

    2009-01-01

    The efficiency of electricity generation in hard coal fired power plants varies considerably from country to country and over time. These differences occur both between developing and developed countries and between industrialised nations. The econometric analysis presented in this paper tests for the reasons of these discrepancies. In this examination abundance of hard coal and the price of hard coal are the two variables of our major interest. We assume that countries with an abundance of h...

  3. Micrinite maceral evidence of hydrocarbon generation in cretaceous coal measures of the middle Benue trough, Nigeria

    International Nuclear Information System (INIS)

    Obaje, N. G.; Ukpabio, E. J.; Funtua, I. I.

    1999-01-01

    Maceral analysis on samples from the coal and coal-bearing strata of the Awgu Formation in the Middle Benue Trough of Nigeria allows the subdivision of the coal beds and inter seam sediments into three different petrographic/coal facies, namely: a vitrinite-fusinite coal facies which is rich in vitrinite, poor in liptinite, with variable amounts of inertinite and low mineral matter content; a trimaceritic coal facies which is rich in vitrinite, liptinite and inertinite with low mineral matter content; and a shaley coal facies which, expectedly, is dominated by mineral matter and has variable amounts of vitrinite, liptinite and inertinite. Micrinite macerals constitute 8.2% and 4.5 on mineral matter-counted basis in samples from the trimaceritic and shaley coal facies respectively. These amounts, in both cases, are considered to be very high. They occur as finely particulate, rounded grains approximately I um in diameter. Most of the micrinite are closely associated with highly reflecting, almost unrecognizable liptinite. The nature and origin of micrinite and its significance to oil and gas generation have been studied extensively. As secondary macerals, they are generally believed to be relics of oil generation from oil-prone macerals, mainly liptinitic and vitrinitic macerals with which they are closely associated. Reflectance measurements on the associated vitrinite macerals indicate a thermal maturity range of 0.74 - 1.25 % Rm. This range corresponds to the zone of oil generation in most minerogenic oil source rocks. In the study area, however, only the trimaceritic coal facies and some parts of the shaley coal facies that are rich in liptinite alongside the associated micrinite macerals are considered to have generated oil. The vitrinite-fusinite coal facies with its high content of humic organic matter (vitrinite + Inertinite) can only generate gas (wet + dry) within the given thermal maturity range

  4. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  5. Comparative costs of coal and nuclear-generated electricity in the united states

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1987-01-01

    This paper compares the future first-year operating costs and lifetime levelized costs of producing baseload coal- and nuclear-generated electricity under schedules shorter than those recently experienced at U.S. plants. Nuclear appears to have a clear economic advantage. Coal is favorable only when it is assumed that the units will operate at very low capacity factors and/or when the capital cost differential between nuclear and coal is increased far above the recent historical level. Nuclear is therefore a cost-competitive electric energy option for utilities and should be considered as an alternative to coal when large baseload capacity is required. (author)

  6. Assessing the environmental impacts of using demineralized coal for electricity generation

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Laurent, Alexis

    2014-01-01

    The energy sector is the source of two-thirds of global greenhouse-gas emissions, and is the main target ofclimate policies among authorities and governments. The share of fossil coals (hard coal and lignite) in world total net electricity generation is 40% in 2010. Demineralization or ash removal...... of the coal is thought to be beneficial for reducing ash-related problems, such as slagging and fouling in the combustion chamber,increasing the heating value, increasing thermal efficiency and reducing airborne emissions. A novel method for removing ash is alkali-acid leaching where the coal is washed...... and possible improvements. Experimental studies conducted so far have shown better performance of demineralized coal than its original raw coal during combustion, gasification, and coke making process. However a thorough analysis ofthe impacts from demineralization has not yet been conducted. We take a life...

  7. Changes in New Source Review and coal-fired generation, potential benefits to producers of low sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI, Boulder, CO (USA)

    2003-10-01

    On August 27, 2003, the US EPA issued its final ruling on revisions to the New Source Review (NSR) provision of the Clean Air Act. The new NSR helps define routine maintenance, repair and replacement (RMRR) at coal-fired and other generating units. Specifically, the new rule clarifies RMRR and exempts coal-fired units from federal rules that require operators to install pollution-control equipment when they perform upgrades designed to maintain the life of the units. 2 figs., 1 tab.

  8. Energy Analysis of a Biomass Co-firing Based Pulverized Coal Power Generation System

    Directory of Open Access Journals (Sweden)

    Marc A. Rosen

    2012-03-01

    Full Text Available The results are reported of an energy analysis of a biomass/coal co-firing based power generation system, carried out to investigate the impacts of biomass co-firing on system performance. The power generation system is a typical pulverized coal-fired steam cycle unit, in which four biomass fuels (rice husk, pine sawdust, chicken litter, and refuse derived fuel and two coals (bituminous coal and lignite are considered. Key system performance parameters are evaluated for various fuel combinations and co-firing ratios, using a system model and numerical simulation. The results indicate that plant energy efficiency decreases with increase of biomass proportion in the fuel mixture, and that the extent of the decrease depends on specific properties of the coal and biomass types.

  9. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    Energy Technology Data Exchange (ETDEWEB)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan; Winans, Randall E.; Mathews, Jonathan P.

    2016-01-21

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. The inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars

  10. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M.; Yokoyama, R.; Yasuda, K. [Tokyo Metropolitan Univ. (Japan); Sasaki, H. [Hiroshima Univ. (Japan); Ogimoto, K. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  11. Indonesian government's policy on the use of domestic coal for electric power generation with special reference to private power

    International Nuclear Information System (INIS)

    Arismunandar, A.

    1991-01-01

    This paper reports that Indonesia is amply endowed with all types of primary energy resources including: (1) conventional resources such as oil, gas and coal; (2) renewable resources such as water, geothermal and bioenergy; (3) new resources such as solar and wind. This wealth of primary energy resources and in particular the abundance of oil lead to excessive reliance on fuel oil and diesel fuel and to a much lesser degree on hydroelectric power. In the early 1980s the Government initiated a program of diversifying primary energy resources used for power generation. In this diversification program the use of coal was given a high priority. The Government has established that base-loaded coal fired power plants meet the least cost system expansion objectives. Therefore, significant additional coal fired capacity will be installed to meet the growing demand within the Java-Bali grid in particular and in other off-Java areas as well. In the Java-Bali grid 400 and 600 MW unit sizes will be used since these units offer the lowest cost per kW installed. The installed capacity within the grid facilitates the operation of these large units without jeopardizing the stability of the entire system. Off-Java smaller units, of 25 to 65 MW capacity will be used due to the relatively small size of the system within which these units will operate. Prime off-Java target areas for the installation of new coal-fired units are Sumatra and Kalimantan, two coal producing islands

  12. Perspectives for the coal thermoelectric generation; Perspectivas para a geracao termeletrica a carvao

    Energy Technology Data Exchange (ETDEWEB)

    Marreco, Juliana de M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Planejamento Energetico; Pereira Junior, Amaro; Tavares, Marina E. [EPE - Empresa de Pesquisa Energetica, Rio de Janeiro, RJ (Brazil)

    2006-07-01

    This paper presents coal future perspectives on power generation. Based on a global market point of view and on demand scenarios. Positive and negative aspects are analysed: if on one hand it may be the solution for safety energy supply, by the other hand it may jeopardize the environment. Nevertheless, new clean coal technologies are now available overcoming some of these difficulties. Without any bias, the paper objective is to provide data for a fair valuation over the coal expansion on power generation in the world and in Brazil. (author)

  13. Using proximate analysis to characterize airborne dust generation from bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Page, S.J.; Organiscak, J.A.

    2005-11-01

    Prolonged exposure to airborne respirable coal dust is responsible for coal workers pneumoconiosis (CWP), commonly called black lung. Health research studies have identified that the prevalence and severity of CWP are directly related to both the amount of dust exposure and the coal rank. The amount of airborne respirable dust (ARD) smaller than 10 micrometers generated from breakage of different coals varies widely. To investigate the cause, researchers for the National Institute for Occupational Safety and Health (NIOSH) have conducted experiments to identify the causes of airborne respirable dust liberation. Laboratory crushing experiments were conducted on a range of low to high volatile bituminous coals from eight mines. The results indicate that the proximate analysis of a coal sample can provide a very good indicator of the potential for a dust problem. For application to the coal mining, processing, and utilization industries, data from 977 US coal seams compiled by the Department of Energy (DoE) has been used to calculate this dust generation potential from an equation based on the NIOSH measured data. A simple procedure for this calculation is provided. 1 fig.

  14. Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, J.M.; Marchant, D.D.

    1980-11-01

    The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

  15. Technical report on NEDO-conducted Western US steam coal (for power generation and boiler) survey

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    The New Energy and Industrial Technology Development Organization (NEDO) conducted studies covering Wyoming, Utah, Colorado, New Mexico, and North Dakota, all in the West. Illinois and Gulf-Texas are also included. The bituminous coal of Utah and Colorado is given the highest priority as coal to be exported to Japan. It is feared, however, that the price of the bituminous coal from these areas may soar if demand increases. As for sub-bituminous coal, its price is far more stable because its reserves are basically limitless. The sub-bituminous coal, however, is not expected to be imported to Japan in the very near future because it is low in calorific power and fails to meet the conditions prerequisite to Japan's boiler fuel. Illinois can receive large orders but its coal contains more sulfur than the Western coal and a longer distance has to be covered for its transportation. As for transportation to the West Cost, freight cars are available and the port capacity can be enlarged dependent on the magnitude of demand for coal. Loading a deep draft bulk ship off shore with coarse coal slurry by pipeline is an attractive scheme. (NEDO)

  16. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  17. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Science.gov (United States)

    Stala-Szlugaj, Katarzyna; Grudziński, Zbigniew

    2017-10-01

    In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA) whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS) changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i) and CO2 emission allowances, cover all costs (ii), or constitute positive prices (iii), but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh). The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  18. Environmental costs resulting from the use of hard coal to electricity generation in Poland

    Directory of Open Access Journals (Sweden)

    Stala-Szlugaj Katarzyna

    2017-01-01

    Full Text Available In the world's fuel mix used for generating electricity, the most common fossil fuel is coal. In the EU, coal combustion and electricity generation entail the need to purchase emission allowances (EUA whose purchase costs affect the costs of electricity generation significantly. The research described in the article shows how current market conditions shape the profitability of generating electricity from coal and how Clean Dark Spread (CDS changes as a function of changes in energy and coal prices at the assumed levels of emission and prices of EUA allowances. The article compares the results of CDS calculations in two variants. Areas have been highlighted where prices of both coal and EUA allowances cause CDS to assume values at which the prices of generated electricity do not cover the costs of fuel (i and CO2 emission allowances, cover all costs (ii, or constitute positive prices (iii, but still do not cover all fixed costs. With higher power plant efficiency, CO2 emissions are lower (0.722 t/MWh. The costs of purchasing fuel required to generate 1 MWh of electricity are also lower. In such case—even with relatively high prices of coal—a power plant can achieve profitability of electricity generation.

  19. Expanding exports, increasing smog : Ontario Power Generation's and Hydro One's strategies to continue coal-fired electricity generation in Ontario

    International Nuclear Information System (INIS)

    Gibbons, J.

    2002-06-01

    The production of coal-fired electricity increased by approximately 150 per cent in Ontario between 1995 and 2000. As a result, the smog-causing emissions generated by the five coal-fired power plants operated by Ontario Power Generation caused an increase in smog and worsened air quality in the province as well as affecting air quality as far afield as the Atlantic provinces. Between 2002 and 2005, it is expected that the Pickering and Bruce nuclear plants will be returned to service, making the electricity generated by the coal plants surplus to Ontario's needs. Increasing this surplus are the planned natural gas generating stations. Ontario Power Generation is planning on using this surplus to export it to the United States rather than phasing out its reliance on coal. The increase in exports to the United States Northeast and Midwest is planned with Hydro One, already busy increasing its transmission capacity to the United States by 1,000 megawatt (MW). This plan involves laying 975 MW submarine cable from the Nanticoke Generating Station (operated by Ontario Power Generation) under Lake Erie to Pennsylvania, Ohio, or both states. At the moment, the exports are constrained by the government emissions limits imposed by the Ontario government on sulphur dioxide and nitrogen oxides. This constraint could be removed if Ontario Power Generation decides to pay further for pollution controls for sulphur dioxide and nitrogen oxides at its coal stations. Unfortunately, increasing the exports would also result in emissions increases for 28 other uncapped pollutants such as lead, mercury and arsenic. The author recommended that the Ontario government ban non-emergency coal-fired electricity exports to improve air quality in the province. refs., 8 figs

  20. Interim report on the performance of 400-megawatt and larger nuclear and coal-fired generating units: performance through 1976

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This report is an update of DOE/ERA-0007, Interim Report on the Performance of 400 Megawatt and Larger Nuclear and Coal-Fired Generating Units - Performance Through 1975. The most recent EEI data for nuclear units and for coal units less than 600 MW(e) and having at least one full year of commercial operation are included in this analysis. The analyses cover the following: coal and nuclear units, 400-MW nameplate and larger; historical data through 1976; four industry-recognized performance indices (capacity factor, availability factor, equivalent availability, and forced outage rate); four types of geographical analysis (national, individual, individual utilities, and individual utilities by states); and rankings of states and utilities by performance indices. (MCW)

  1. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  2. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing

    DEFF Research Database (Denmark)

    Elberling, B.; Søndergaard, J.; Jensen, L.A.

    2007-01-01

    Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm...... summer period. Here we show that heat generation within an oxidizing, sulfidic, coal-mining waste-rock pile in Svalbard (78° N) is high enough to keep the pile warm (roughly 5 °C throughout the year) despite mean annual air temperatures below -5 °C. Consequently, weathering processes continue year...... of these metals are taken up and accumulated in plants where they reach phytotoxic levels, including aluminum and manganese. Laboratory experiments document that uptake of Al and Mn in native plant species is highly correlated with dissolved concentrations. Therefore, future remedial actions to control...

  3. Power-generating process of obtaining gas-energy carrier and reducer from coal

    International Nuclear Information System (INIS)

    Tleugabulov, S.; Duncheva, E.; Zubkevich, M.

    1999-01-01

    The manufacture of power-generating gas has the important economic value for Kazakhstan having large territory, raw and fuel resources especially power coal and clean coal wastes. The technology of reception of gas-energy carrier and reducer from power coal is developed. The basic product of technological process is heated reducing gas. Reducing potential of the gas is characterized by a volumetric share of components (CO+H 2 )-RC in relation to volume of whole mix of gases received with gasification of coal. The value of parameter RC is regulated by a degree of enrichment of air by oxygen r 0 , and the temperature - by the charge of a parity of endothermic reaction in the chamber of gas regeneration. The dependence of the gas structure and temperature on the degree of enrichment of air by oxygen is shown and the circuit of the gas generator is given. (author)

  4. Increasing coal-fired power generation efficiency to reduce electric cost and environmental emissions

    International Nuclear Information System (INIS)

    Torrens, I.M.; Stenzel, W.C.

    1997-01-01

    New generating capacity required globally between 1993 and 2010 is estimated to be around 1500 GW, of which some two-thirds will be outside the OECD, and some 40 % in the Asian non-OECD countries. Coal is likely to account for a substantial fraction of this new generation. Today's state-of-the-art supercritical coal-fired power plant has a conversion efficiency of some 42-45 %. The capital cost increase associated with the supercritical or ultra-supercritical pulverized coal power plant compared to a conventional subcritical plant is small to negligible. The increased efficiency associated with the supercritical plant leads to an actual reduction in the total cost of electricity generated in cents/kWh, relative to a conventional plant. Despite this, the power sector continues to build subcritical plants and has no near term plans to increase the efficiency of power plants in the projects it is developing. Advanced clean coal technologies such as integrated gasification combined cycle and pressurized fluidized bed combustion will be selected for independent power projects only in very specific circumstances. Advanced clean coal plants can be operated reliably and with superior performance, and specifically that their present estimated capital costs can be reduced substantially to a point where they are competitive with state-of-the-art pulverized coal technologies. (R.P.)

  5. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  6. Projected costs of generating electricity from nuclear and coal-fired power stations for commissioning in 1995

    International Nuclear Information System (INIS)

    1986-01-01

    This report updates and extends the previous NEA study, ''The Costs of Generating Electricity in Nuclear and Coal-fired Power Stations'', published by the OECD in late 1983. Despite the changed expectations concerning coal prices and the considerable movements in exchange rates since the first study was completed, the conclusions remain essentially the same. Nuclear Power is projected to be economically superior by a significant margin to coal-fired plants for base load electricity production in Europe, Japan and some regions of North America. In areas of North America in close proximity to supplies of cheap coal, this would be the more economic fuel, unless future nuclear investment costs can be reduced to match the best US and Canadian experience. In all regions considered, the economic advantage of both coal and nuclear over oil and gas-fired plants for commissioning in the mid-1990s is expected to be substantial. These conclusions are based on an analysis of cost projections for 900 MWe to 1400 MWe Light Water Reactors to be commissioned in 1995, operating at a levelised load factor of about 72 per cent over an assumed 25 years economic life and calculated with a 5 per cent (real) discount rate. This parallels the reference reactor selected for the NEA report ''The Economics of the Nuclear Fuel Cycle'', which was published by the OECD in June 1985, though it deviates somewhat from the reference conditions of the previous generation cost study. Contemporary coal-fired stations ranging in capacity from 330 MWe to 700 MWe with the same assumed economic life and load factor provide the basis for comparison. Some data are included on CANDU Pressurised Heavy Water Reactors, and a brief comment is annexed on the relevance of the comparisons for the smaller plants that may be of interest to countries with smaller electricity networks or where special circumstances apply

  7. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  8. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... proposed rule is an important element in MSHA's Comprehensive Initiative to ``End Black Lung--Act Now..., and chronic bronchitis, known collectively as ``black lung.'' These diseases are debilitating... reducing the respirable coal mine dust levels, miners continue to develop black lung. Based on recent data...

  9. Comparative Analysis of Pine Needles and Coal for Electricity Generation using Carbon Taxation and Emission Reductions

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2015-06-01

    Full Text Available Mitigating global climate change via emission control and taxation is promising for strengthening the economic benefits of bioenergy generation and utilization. This study examines the cost effectiveness of pine needles as an alternative fuel for off-grid electricity generation in India. We first examined the changes of prices in coal for electricity generation due to CO2 emission reductions and taxes using experimental data of gasification plants. The time value of money and depreciation scale were used to find out the real levellized cost of electricity generation of gasification plants. Then, the costs of electricity generation fuelled by pine needles and coal were estimated using the cost analysis method. Our results indicate that pine needles would have more competitive edge than coal if emission had taxed at about an emission tax INR 525.15 Mg-1 of CO2 (US$ 8.4, or higher would be needed for pine needles at a yield of 202.176 dry Mg hm-2 yr. The price of coal used for electricity generation would have significantly increased if global CO2 emission had abridged by 20% or more. However, pine needles were found a much better fuel source with an increasing yield of 5.05 Mg hm-2 yr (with respect to power generation and 2.335 Mg hm-2 yr (with respect to feedstock production.

  10. Thermodynamic analyses of a biomass-coal co-gasification power generation system.

    Science.gov (United States)

    Yan, Linbo; Yue, Guangxi; He, Boshu

    2016-04-01

    A novel chemical looping power generation system is presented based on the biomass-coal co-gasification with steam. The effects of different key operation parameters including biomass mass fraction (Rb), steam to carbon mole ratio (Rsc), gasification temperature (Tg) and iron to fuel mole ratio (Rif) on the system performances like energy efficiency (ηe), total energy efficiency (ηte), exergy efficiency (ηex), total exergy efficiency (ηtex) and carbon capture rate (ηcc) are analyzed. A benchmark condition is set, under which ηte, ηtex and ηcc are found to be 39.9%, 37.6% and 96.0%, respectively. Furthermore, detailed energy Sankey diagram and exergy Grassmann diagram are drawn for the entire system operating under the benchmark condition. The energy and exergy efficiencies of the units composing the system are also predicted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Revised models for hydrocarbon generation, migration and accumulation in Jurassic coal measures of the Turpan basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Li Maowen; Stasiuk, L.D. [Geological Survey of Canada, Calgary, Alberta (Canada); Bao Jianping [Jianghan Petroleum University, Hubei (China); Lin, R. [Petroleum University (Beijing), Changping (China); Yuan Mingsheng [PetroChina Tu-Ha Oilfield Company, Xingjiang (China)

    2001-07-01

    Whether or not the Lower-Middle Jurassic coal measures in the Turpan basin of NW China have generated commercial quantities of liquid petroleums is a problem of considerable importance that remains contentious as it has not yet been resolved unequivocally. This study provides evidence against the Jurassic humic coals as the only major source for the oils discovered in the Taibei depression of this basin and suggests additional significant contributions from the Upper Permian and Middle-Lower Jurassic lacustrine source rocks. The Carboniferous-Permian marine source rocks may have been important also in limited locations along the major basement faults. Molecular and petrographic data indicate that the majority of the Middle Jurassic strata are currently immature or marginally mature with respect to hydrocarbon generation. Within the major depocenters, the Middle-Lower Jurassic coal-bearing strata of the Baodaowan and Xishanyao formations has reached the conventional oil window (i.e. with vitrinite reflectance >0.7 per cent Ro). Pre-Jurassic (Upper Permian in particular) derived hydrocarbons appear to be widespread in extracts of fractured Jurassic coal and fine-grained rocks. Large differences have been observed in the absolute concentrations of biomarker compounds in rock extracts of various source intervals. Thus, 'coaly' biomarker signatures of the oils most likely resulted from mixing and migration contamination when hydrocarbons derived from mature source rocks migrated up through highly fractured coal seams along deep-seated faults. In addition to conventional exploration targets, revised petroleum generation and accumulation models predict that the focus in the Turpan basin should also include deep structures within the Carboniferous-Permian strata and subtle, low magnitude anticlines and stratigraphic traps within thr Triassic-Jurassic sections. (author)

  12. The external costs of electricity generation. A comparison of environmental damage of silicon photovoltaic electricity, produced with different electricity mixes, vs natural gas and coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Veltkamp, A.C.; Sinke, W.C. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In this paper the environmental damages of crystalline silicon photovoltaics are calculated, using the most recent photovoltaics data, and compared with those of the prevalent conventional energy technologies. A life cycle assessment of selected environmental impacts of 1kWh of electricity generated by various technologies was performed using Simapro software (version 7.2.4) in conjunction with the Ecoinvent database (version 2.2). The environmental impacts were assessed using the ReCiPe methodology. Because of the important role of coal and natural gas in the global electricity generation portfolio, special attention is given to the comparison of PV with those technologies. The environmental consequences of manufacturing PV modules with renewable, UCTE or 100% coal electricity mixes are explored. A brief update of the estimated monetarization of damages due to coal and climate change is included. A rough estimate of the true cost of coal and PV electricity is made in 2011.

  13. Liquid hydrocarbon generation potential from Tertiary Nyalau Formation coals in the onshore Sarawak, Eastern Malaysia

    Science.gov (United States)

    Hakimi, Mohammed Hail; Abdullah, Wan Hasiah

    2013-01-01

    Tertiary coals exposed in the north-central part of onshore Sarawak are evaluated, and their depositional environments are interpreted. Total organic carbon contents (TOC) of the coals range from 58.1 to 80.9 wt. % and yield hydrogen index values ranging from 282 to 510 mg HC/g TOC with low oxygen index values, consistent with Type II and mixed Type II-III kerogens. The coal samples have vitrinite reflectance values in the range of 0.47-0.67 Ro %, indicating immature to early mature (initial oil window). T max values range from 428 to 436 °C, which are good in agreement with vitrinite reflectance data. The Tertiary coals are humic and generally dominated by vitrinite, with significant amounts of liptinite and low amounts of inertinite macerals. Good liquid hydrocarbons generation potential can be expected from the coals with rich liptinitic content (>35 %). This is supported by their high hydrogen index of up to 300 mg HC/g TOC and Py-GC ( S 2) pyrograms with n-alkane/alkene doublets extending beyond C30. The Tertiary coals are characterised by dominant odd carbon numbered n-alkanes ( n-C23 to n-C33), high Pr/Ph ratio (6-8), high T m / T s ratio (8-16), and predominant regular sterane C29. All biomarkers parameters clearly indicate that the organic matter was derived from terrestrial inputs and the deposited under oxic condition.

  14. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  15. Wasteless combined aggregate-coal-fired steam-generator/melting-converter

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2003-01-01

    A method of reprocessing coal sludge and ash into granulate for the building industry in a combined wasteless aggregate-steam-generator/melting-converter was developed and tested. The method involves melting sludge and ash from coal-fired steam-generators of power plants in a melting-converter installed under the steam-generator, with direct sludge drain from the steam generator combustion chamber. The direct drain of sludge into converter allows burnup of coal with high ash levels in the steam-generator without an additional source of ignition (natural gas, heating oil, etc.). Specific to the melting process is the use of a gas-air mixture with direct combustion inside a melt. This feature provides melt bubbling and helps to achieve maximum heat transfer from combustion products to the melt, to improve mixing, to increase rate of chemical reactions and to improve the conditions for burning the carbon residue from the sludge and ash. The 'gross' thermal efficiency of the combined aggregate is about 93% and the converter capacity is about 18 t of melt in 100 min. The experimental data for different aspects of the proposed method are presented. The effective ash/charging materials feeding system is also discussed. The reprocessed coal ash and sludge in the form of granules can be used as fillers for concretes and as additives in the production of cement, bricks and other building materials

  16. Energy generation potential from coals of the Charqueadas Coalfield, RS, Brazil

    Science.gov (United States)

    Correa da Silva, Z. C.; Heemann, R.; Castro, L.; Ketzer, J. M.

    2009-04-01

    Three coal seams, I2B (Inferior 2), I1F (Inferior 1) and MB, from the Charqueadas Coalfield located in the central-east region of the State of Rio Grande do Sul, Southern Brazil were studied on the basis of geological, petrographic, chemical and geochemical techniques and correlated to the SR1, SR2 and SR3 coal seams from the Santa Rita Coalfield. The Charqueadas Coalfield reserves reach 2,993x106 metric tons of coal distributed in six coal seams. The study of sedimentary and organic facies is made on the subsurface data from five boreholes drilled in the area. There show a well marked lateral facies change from sub aquatic to sub aerial environment, conditioned by both the water level variations and the irregular palaeotopography of the basement. The coals change from limnic to forest-terrestrial moor types characterized by variations of composition in terms of macerals, microlithotypes and mineral matter. The coals are rich in mineral matter (28 to 40%); the vitrinite content reaches 50 %, inertinite 44 % and liptinite varies from 10 to 30 %, in mineral matter free basis. Among the microlithotypes carbominerite and vitrite are predominant. Rank studies carried out by different methods (vitrinite reflectance, max and red-green quotient among others) gave conflicting results, which are explained by the strong bituminization of the vitrinite. However, agreement between fluorescence measurements and organic geochemical parameters (e.g. CPI values) confirm that the coals are of a High Volatile Bituminous B/C (ASTM) or Gasflammkohle (DIN) rank. Based on these characteristics, the Charqueadas coal seams show great potential for use in Underground Coal Gasification (UCG) and Enhanced Coalbed Methane (ECBM) projects. Nowadays the state of Rio Grande do Sul is rapidly growing and needs to increase the energy efficiency to attend the industrial demands, filling the gap between supply and energy generation. As with conventional IGCC, UCG gas can be used to generate

  17. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... and developing a relevant dose-response curve. ...

  18. Imported mineral coal: competitiveness for electric power generation in northeast of Brazil

    International Nuclear Information System (INIS)

    Codeceira Neto, A.; Ribeiro Filho, A.P.R.; Silva, S.P.R. da

    1993-01-01

    With the hydroelectric potential exhaustion of northeast and with the increase of costs to the use of hydroelectric uses available in Brazil, the thermoelectric generation will be able to become a competitive solution to attend the market of electric power. This work has as purpose describe the options of imported coal use to Brazilian northeast its technological aspects, the environmental question, and the preliminary studies of localization and the costs associated on implantation of coal thermoelectric power plants. 7 refs, 3 figs, 6 tabs

  19. Key factors for assessing climate benefits of natural gas versus coal electricity generation

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Caldeira, Ken; Myhrvold, Nathan P

    2014-01-01

    Assessing potential climate effects of natural gas versus coal electricity generation is complicated by the large number of factors reported in life cycle assessment studies, compounded by the large number of proposed climate metrics. Thus, there is a need to identify the key factors affecting the climate effects of natural gas versus coal electricity production, and to present these climate effects in as clear and transparent a way as possible. Here, we identify power plant efficiencies and methane leakage rates as the factors that explain most of the variance in greenhouse gas emissions by natural gas and coal power plants. Thus, we focus on the role of these factors in determining the relative merits of natural gas versus coal power plants. We develop a simple model estimating CO 2 and CH 4 emissions from natural gas and coal power plants, and resulting temperature change. Simple underlying physical changes can be obscured by abstract evaluation metrics, thus we focus our analysis on the time evolution of global mean temperature. We find that, during the period of plant operation, if there is substantial methane leakage, natural gas plants can produce greater near-term warming than coal plants with the same power output. However, if methane leakage rates are low and power plant efficiency is high, natural gas plants can produce some reduction in near-term warming. In the long term, natural gas power plants produce less warming than would occur with coal power plants. However, without carbon capture and storage natural gas power plants cannot achieve the deep reductions that would be required to avoid substantial contribution to additional global warming. (letter)

  20. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  1. Mercury rising : mercury emissions from Ontario Power Generation's coal-fired plants

    International Nuclear Information System (INIS)

    Rang, S.

    2004-09-01

    Ontario Power Generation (OPG) operates 5 coal-fired power plants which are the largest single source of mercury emissions in Ontario. Mercury is a persistent, bioaccumulative neurotoxin which is considered toxic under the Canadian Environmental Protection Act. This report examines the health and environmental impacts of mercury, and the trends for mercury emission in Ontario. In 2002, the 5 coal-fired plants emitted 527 kg of mercury into the atmosphere and contributed 39 per cent of the total amount of mercury emitted into the air. While many other sectors have reduced their mercury emissions since 1988, Ontario's coal-fired plants have lagged behind and have actually increased mercury emissions by 16 per cent since 1988. This paper suggests that phasing out OPG coal-fired plants by 2007 could lead to a 39 per cent reduction in airborne mercury emissions. It would also allow Ontario to achieve the Canada Wide Standard for mercury emissions 3 years early, and would help both Ontario and Canada meet air pollution reduction commitments under international agreements. It was noted that phasing out coal-fired power plants by one-third will help Ontario achieve its goal of a 90 per cent reduction in mercury emissions by 2010. It was suggested that alternative power sources can offer a wide range of environmental advantages. 16 refs., 3 tabs., 2 figs

  2. Nuclear energy cost data base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1988-09-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on a once-through cycle, and high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In addition to current generation light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on improved and advanced light-water reactors, liquid metal reactor plants and fuel cycle facilities. This report includes an updated data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, a sample calculation for illustrative and benchmark purposes and projected power generation costs for fission and coal-fired alternatives. Effects of the 1986 Tax Reform Act are included. 126 refs., 17 figs., 47 tabs

  3. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization

    International Nuclear Information System (INIS)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger

    2017-01-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  4. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2005-08-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power, and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  5. Comparing Statewide Economic Impacts of New Generation from Wind, Coal, and Natural Gas in Arizona, Colorado, and Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.

    2006-05-01

    With increasing concerns about energy independence, job outsourcing, and risks of global climate change, it is important for policy makers to understand all impacts from their decisions about energy resources. This paper assesses one aspect of the impacts: direct economic effects. The paper compares impacts to states from equivalent new electrical generation from wind, natural gas, and coal. Economic impacts include materials and labor for construction, operations, maintenance, fuel extraction, and fuel transport, as well as project financing, property tax, and landowner revenues. We examine spending on plant construction during construction years, in addition to all other operational expenditures over a 20-year span. Initial results indicate that adding new wind power can be more economically effective than adding new gas or coal power and that a higher percentage of dollars spent on coal and gas will leave the state. For this report, we interviewed industry representatives and energy experts, in addition to consulting government documents, models, and existing literature. The methodology for this research can be adapted to other contexts for determining economic effects of new power generation in other states and regions.

  6. Evaluation methods of solar contribution in solar aided coal-fired power generation system

    International Nuclear Information System (INIS)

    Zhu, Yong; Zhai, Rongrong; Zhao, Miaomiao; Yang, Yongping; Yan, Qin

    2015-01-01

    Highlights: • Five methods for evaluating solar contribution are analyzed. • Method based on the second law of thermodynamics and thermal economics is more suitable for SACPGS. • Providing reliable reference for the formulation of feed-in tariff policies in China. - Abstract: Solar aided coal-fired power plants utilize solar thermal energy to couple with coal-fired power plants of various types by adopting characteristics of different thermal needs of plants. In this way, the costly thermal storage system and power generating system will become unnecessary, meanwhile the intermittent and unsteady nature of power generation can be avoided. In addition, large-scale utilization of solar thermal power and energy saving can be achieved. With the ever-deepening analyses of solar aided coal-fired power plants, the contribution evaluating system of solar thermal power is worth further exploration. In this paper, five common evaluation methods of solar contribution are analyzed, and solar aided coal-fired power plants of 1000 MW, 600 MW and 330 MW are studied with these five methods in a comparative manner. Therefore, this study can serve as a theoretical reference for future research of evaluation methods and subsidies for new energy

  7. Cost estimating relationships for coal conversion process units. Volume 1. Technical report. [Includes in some cases dependence on capacity and data references from which estimates were derived

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, E.N.; Carden, H.W.; Curtis, R.L.; Heidler, L.M.; Roppel, J.D.

    1981-04-01

    Cost estimating relationships for commercial-scale coal conversion process units are developed in this study. The specific units include: coal preparation, oxygen plant, gasification, shift conversion, acid gas/CO/sub 2/ removal, sulfur recovery, and the dissolver. Also set forth is a detailed Cost Chart of Accounts, together with a discussion of cost analysis procedures and problems.

  8. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    A major objective of the coal-fired high performance power systems (HIPPS) program is to achieve significant increases in the thermodynamic efficiency of coal use for electric power generation. Through increased efficiency, all airborne emissions can be decreased, including emissions of carbon dioxide. High Performance power systems as defined for this program are coal-fired, high efficiency systems where the combustion products from coal do not contact the gas turbine. Typically, this type of a system will involve some indirect heating of gas turbine inlet air and then topping combustion with a cleaner fuel. The topping combustion fuel can be natural gas or another relatively clean fuel. Fuel gas derived from coal is an acceptable fuel for the topping combustion. The ultimate goal for HIPPS is to, have a system that has 95 percent of its heat input from coal. Interim systems that have at least 65 percent heat input from coal are acceptable, but these systems are required to have a clear development path to a system that is 95 percent coal-fired. A three phase program has been planned for the development of HIPPS. Phase 1, reported herein, includes the development of a conceptual design for a commercial plant. Technical and economic feasibility have been analysed for this plant. Preliminary R&D on some aspects of the system were also done in Phase 1, and a Research, Development and Test plan was developed for Phase 2. Work in Phase 2 include s the testing and analysis that is required to develop the technology base for a prototype plant. This work includes pilot plant testing at a scale of around 50 MMBtu/hr heat input. The culmination of the Phase 2 effort will be a site-specific design and test plan for a prototype plant. Phase 3 is the construction and testing of this plant.

  9. Utilizing Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel for industrial steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Archie B. Maglaya [De La Salle University, Manila (Philippines). Department of Mechanical Engineering

    2005-01-01

    The fast depletion of fuel oil and the continuous increase in the demand for power is a global issue. In the Philippines, the demand for diesel oil is expected to increase significantly in a 20-year period as projected by the Department of Energy. In line with the Philippine Government's thrust to lessen the dependence on imported energy, the agenda for the search for alternative fuel is highly prioritized. Thus, this paper presents the results of the study on performance analysis and efficiency test of a diesel oil fired industrial steam generator using Philippine Calatrava coal-diesel oil mixture (CDOM) as alternative fuel. A computer program was developed in HyperText Markup Language (HTML{copyright}) and JavaScript{copyright} to aid the computation of the adiabatic flame temperature from the governing system of equations based on the heat interaction between CDOM fuel, combustion air and products of combustion to determine the most desirable alternative fuel. Actual experimentation for the determination of CDOM fuel properties was also conducted to verify the alternative fuel selected through theoretical calculations. Results showed that the CDOM fuel with a particle size passing 75 {mu}m (-200 mesh) sieve having a proportion of 5% pulverized coal-95% diesel oil and 10% pulverized coal-90% diesel oil could be handled throughout the test with no degradation of the industrial steam generator. The steam generator efficiency using diesel oil is close to the steam generator efficiency using both CDOM fuels. 20 refs., 5 figs., 4 tabs.

  10. Prediction of the acid generating potential of coal mining spoils

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, C.; Macias, F. [Universidad de Santiago, Santiago (Spain). Dept. de Edafologia y Quimica Agricola

    1998-07-01

    The sulfide oxidation impact on mined land reclamation makes it necessary for mine spoils to be classified according to their acidifying potential. In this paper predictions were made of the acid generating potential of sulfide-containing spoils from the Puentes lignite mine (Galicia, NW Spain), and the limits of sulfur contents allowable for their storage in aerobic conditions, were established. Using samples of fresh spoils, analyses were made of the content and speciation of sulfur, pH was measured after oxidation of the sample with H{sub 2}O{sub 2} (pH of oxidation = pH{sub OX}), and titration of the oxidation extract with 0.1N NaOH to pH = 7 was carried out (Net Acid Production = NAP). The total sulfur content (S{sub T}) varied between {lt} 0.01% and {gt} 3%, with pyritic-S being the most common form ({gt} 80%). pH{sub OX} varied between 1.6 and 6.4 and NAP between 1.2 and 85.0 Kg-CaCO{sub 3}t{sup -1}. A high correlation was found between the NAP and the S{sub T}(r-0.98, p{lt} 0.001). Spoils with S{sub T} {gt} 0.15% cause high risks of mine-soil acidification, and create the need for large doses of CaCO{sub 3} to be used on final surface of the mine dump. Use of fly ash, produced from the combustion of lignite, as an alternative to commercial lime is more effective in the control of acidity generated by spoils with high S{sub T}. 20 refs., 5 figs., 1 tab.

  11. Reliability assessment of distribution power systems including distributed generations

    International Nuclear Information System (INIS)

    Megdiche, M.

    2004-12-01

    Nowadays, power systems have reached a good level of reliability. Nevertheless, considering the modifications induced by the connections of small independent producers to distribution networks, there's a need to assess the reliability of these new systems. Distribution networks present several functional characteristics, highlighted by the qualitative study of the failures, as dispersed loads at several places, variable topology and some electrotechnical phenomena which must be taken into account to model the events that can occur. The adopted reliability calculations method is Monte Carlo simulations, the probabilistic method most powerful and most flexible to model complex operating of the distribution system. We devoted a first part on the case of a 20 kV feeder to which a cogeneration unit is connected. The method was applied to a software of stochastic Petri nets simulations. Then a second part related to the study of a low voltage power system supplied by dispersed generations. Here, the complexity of the events required to code the method in an environment of programming allowing the use of power system calculations (load flow, short-circuit, load shedding, management of units powers) in order to analyse the system state for each new event. (author)

  12. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  13. Electricity generation from coal: a review of impacts on human health and the environment

    International Nuclear Information System (INIS)

    Catsaros, Nicolas.

    1985-09-01

    In this report the risk induced by the generation of electricity by burning coal on humans and the environment is analysed. The main conclusion of the study is that the health risk, expressed in terms of deaths or injuries per GW(e)-yr produced, appears to be non-trivial. The impacts on the invironment, although difficult to quantify, seem to be important too. (author)

  14. Methodology for calculation of carbon emission and energy generation efficiency by fossil coal thermal power plants

    International Nuclear Information System (INIS)

    Licks, Leticia A.; Pires, Marcal

    2008-01-01

    This work intends to evaluate the emissions of carbon dioxide (CO 2 ) emitted by the burning of fossil coal in Brazil. So, a detailed methodology is proposed for calculation of CO 2 emissions from the carbon emission coefficients specific for the Brazilian carbons. Also, the using of secondary fuels (fuel oil and diesel oil) were considered and the power generation for the calculation of emissions and efficiencies of each power plant as well. The obtained results indicate carbon emissions for the year 2002 approximately of the order of 1,794 Gg, with 20% less than the obtained by the official methodology (MCT). Such differences are related to the non consideration of the humidity containment of the coals as well as the using of generic coefficients not adapted to the Brazilian coals. The obtained results indicate the necessity to review the emission inventories and the modernization of the burning systems aiming the increase the efficiency and reduction of the CO 2 and other pollutants, as an alternative for maintaining the sustainable form of using the fossil coal in the country

  15. Complete biocycle for solar energy conversion, storage, fuel and power generation, and coal conservation for future use

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1993-01-01

    A complete carbon biocycle has been described, starting from coal in in situ condition in coal seams underground. Various steps involved are: (i) Biogasification of coal to methane, using a consortia of bacteria, has been reported. A group of bacteria degrades complex structure of coal to simpler structure. This simpler structure of coal, is then converted to methane by methanogens; (ii) Biophotolysis of methane and associated biodegradation, results in products, such as hydrogen and oxygen for use in fuel cells for power generation; (iii) Bioconversion of products so obtained is carried out to produce methanol or methane that could be used as fuel or recycled; (iv) In complete biocycle some methane is converted to biomass. In order to replace this methane, coal is converted to methane using group of bacteria, only to the extent methane has been converted to biomass; (v) The biomass so produced could be dumped underground from where coal has been gasified. Alternatively it could be burnt as fuel or else used as substitute of protein in animal food. Detailed concept of proposed technology for: (a) an alternative to conventional coal mining, (b) generation of power using products of bioconversion in fuel cell, and (c) conversation of solar energy for generation of alternative source of fuel and power, has been discussed. Possibility of developing a biofuel cell for conversion of solar energy through bioelectrochemical route has been suggested. (author). 48 refs., 3 figs

  16. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  17. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    Science.gov (United States)

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Scrubbing King Coal's dirty face : a new gasification project southeast of Edmonton hopes to make coal cleaner now and for future generations

    Energy Technology Data Exchange (ETDEWEB)

    Collison, M.

    2008-01-15

    This article described the proposed Dodds-Roundhill Coal Gasification Project. This first commercial coal gasification plant in Canada will be developed by Edmonton-based Sherritt International Corporation, in a 50/50 partnership with the Ontario Teachers' Pension Plan. The project will include a surface coal mine and a coal gasification facility located approximately 80 km southeast of Edmonton, Alberta. Coal gasification is emerging as a clean alternative for converting coal into energy products. It involves the gasification process which breaks down coal to produce hydrogen, carbon monoxide and carbon dioxide, collectively known as synthesis gas (syngas). The syngas can then be used for fuel, as a petrochemical feedstock, or it can be further processed into hydrogen for use by bitumen upgraders and crude oil refineries in Alberta. Carbon dioxide, which is highly concentrated are relatively easy to capture will be either sequestered or used in enhanced oil recovery. Construction will begin in mid-2009 following project application and an environmental impact assessment. 3 figs.

  19. Energy-recuperative coal-integrated gasification/gas turbine power generation system

    Energy Technology Data Exchange (ETDEWEB)

    Kuchonthara, P.; Tsutsumi, A. [Chulalongkorn University, Bangkok (Thailand). Dept. of Chemical Technology

    2006-05-15

    Coal-integrated gasification/gas turbine (CIG/GT) based power plants are well known for achieving electricity more efficient and at a lower cost than direct combustion based power plants. Since the gasification is an endothermic, thermochemical conversion process, it requires heat to proceed. In general, this heat is furnished by internal combustion taking place in the gasifier by virtue of oxygen-blown or air-blown gasification. However, the direct combustion of the solid fuel is seen to be inefficient because of the large amount of exergy destruction posed during the combustion, especially at relatively low temperatures like gasification temperatures. This causes the overall performance deterioration of the CIG/GT system. Therefore, a decrease in the destruction of exergy during the combustion can contribute to improve overall system efficiency. In this paper, an innovative concept of energy-recuperative gasification was proposed and incorporated in the CIG/GT system. The idea is to make use of the waste heat from the gas turbine exhaust as the reaction heat for the gasification instead of the internal combustion. This type of energy recuperation is also called thermochemical recuperation. In addition, the proposed CIG/GT incorporates other effective energy recuperation, including heat and steam recuperation, in order to maximize the generation efficiency. The feasibility of the concept implementation and the system improvement were preliminarily examined and discussed.

  20. The Power Generation from Coal in Pakistan: Assessment of Physicochemical Pollutant Indicators in Indigenous Reserves in Comparison to the Foreign Coal

    Directory of Open Access Journals (Sweden)

    Ghazia Anjum

    2017-06-01

    Full Text Available Electricity production through coal combustion is the only viable solution in minimum timing. As environmental chemists, our primary goal is to assess environmental hazards and suggest cost-effective technologies for reducing combustion pollutants. In the present study, indigenous coal samples from different mines were analyzed for their physicochemical properties and toxic metals. Five samples from foreign coal mines were also studied for comparison purposes and already in use for power generation. The sulfur content in Thar coal (0.62 % is similar to foreign samples of Indonesian and Mozambique samples (0.35 – 1.63 %. Heating values of local coals show their potential as future fuel. The principal component analysis was applied to the data. It interprets that the concentration of toxic metals in indigenous and foreign samples is lower than the reported Greece samples. The concentration of metals in Badin coal samples is similar to foreign studied samples and is lower than the reported China, South Africa and other local samples. Copper (77.64 mg/kg, Zinc (63.23 mg/kg, Chromium (75.80 mg/kg, Mercury (0.22 mg/kg and Manganese (119.07 mg/kg are found to be high in Thar and Lead (49.41 mg/kg in Lakhra. Balochistan is elevated in the concentration of nickel (52.63 mg/kg. It becomes obligatory for the policy makers of the country to suggest legislation for the use of appropriate Clean Coal Technologies (CCT in the use of the coal in power sector.

  1. Indaba 2009. Clean coal technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Topics covered include coal reserves/mining beneficiation, combustion and power generation, underground coal gasification, coalbed methane, coal gasification and conversion, coke, and emission reduction. The presentations (overheads/viewgraphs) are included on the CD-ROM, along with 12 of the papers, and a delegates list.

  2. Individual and big technology: a comparative attitudinal research to electricity generation from coal and uranium

    International Nuclear Information System (INIS)

    Midden, C.J.H.

    1986-01-01

    The basic issue addressed in this research can be formulated as follows: how can peoples reactions to high risk energy technologies be described, analysed and compared. In this study the technologies for electricity generation of nuclear power and coal were chosen for comparison. The thesis gives a general introduction and considers: 1. policy issues involved in the introduction and implementation of large scale technologies. 2. the current electricity supply situation with particular emphasis on the contribution of nuclear power and coal. 3. recent research which has contributed to the formulation of energy policy decisions. The attitudinal framework adopted in this study is discussed in relation to other approaches for the analysis of risk perception, classification of risks and personal and collective decisions about risk taking. (Auth.)

  3. Assessment of geothermal assisted coal-fired power generation using an Australian case study

    International Nuclear Information System (INIS)

    Zhou, Cheng; Doroodchi, Elham; Moghtaderi, Behdad

    2014-01-01

    Highlights: • Systematic techno-economic analyses of GAPG system completed for Australian conditions. • Greater utilisation efficiency of both geothermal and fossil fuel resources was achieved. • Reference maps developed to predict conditions when hybrid plant outperforms two stand-alone plants. • Carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are adequate. • HDR resources should be located no further than 20 km from the plant. - Abstract: A systematic techno-economic analysis of geothermal assisted power generation (GAPG) was performed for a 500 MW unit of a typical coal-fired power plant located at the upper Hunter region of New South Wales, Australia. Specifically, the GAPG viability and performance was examined by investigating the impacts of reservoir temperature, resource distance, hybridisation scheme, and economic conditions including carbon tax and Renewable Energy Certificates (REC). The process simulation package, Aspen HYSYS, was employed for all simulation purposes. Thermodynamically, GAPG system was found to increase the power output of the plant by up to 19% under the booster mode whilst in fuel saving mode the coal consumption reduced by up to 0.3 million tonne/year decreasing the Green House Gas (GHG) emission by up to 15% (0.6 million tonne/year). Economic analyses showed that for a typical HDR resource with a reservoir temperature about 150 °C located within a 5 km radius from the power plant, the GAPG system becomes economically competitive to the stand-alone fossil fuel based plant when minimum carbon tax and RECs rates of 40 $/tonne and 60 cents/kW h are introduced. The figure of merit analyses comparing GAPG system with both stand-alone fossil fuel and stand-alone geothermal plants showed that an economically feasible GAPG system requires the use of HDR resources located no further than 20 km from the plants. Reference maps were also developed to predict suitable conditions for which the hybrid plant outperforms the

  4. Economic evaluation of environmental externalities in China’s coal-fired power generation

    International Nuclear Information System (INIS)

    Zhao, Xiaoli; Cai, Qiong; Ma, Chunbo; Hu, Yanan; Luo, Kaiyan; Li, William

    2017-01-01

    Serious environmental externalities exist in China’s power industry. Environmental economics theory suggests that the evaluation of environmental externality is the basis of designing an efficient regulation. The purposes of this study are: (1) to identify Chinese respondents’ preferences for green development of electric power industry and the socio-economic characteristics behind them; (2) to investigate the different attitudes of the respondents towards pollution and CO 2 reduction; (3) to quantitatively evaluate the environmental cost of China’s coal-fired power generation. Based on the method of choice experiments (CE) and the 411 questionnaires with 2466 data points, we found that Chinese respondents prefer PM2.5, SO 2 and NO x reduction to CO 2 reduction and that the environment cost of coal-fired power plants in China is 0.30 yuan per kWh. In addition, we found that the socio-economic characteristics of income, education, gender, and environmental awareness have significant impacts on respondents’ choices. These findings indicate that the environmental cost of coal-fired power generation is a significant factor that requires great consideration in the formulation of electric power development policies. In addition, importance should also be attached to the implementation of green power price policy and enhancement of environmental protection awareness. - Highlights: • Chinese respondents have willingness to pay premium for green development. • The environment cost of coal-fired power plants in China is 0.30 yuan/kwh. • Chinese respondents prefer PM2.5, SO 2 and NO x reduction to CO 2 reduction. • Environmental awareness has significant impacts on respondents’ preferences. • Income, education and gender affect the evaluation results.

  5. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  6. The Research of Utilization Hours of Coal-Fired Power Generation Units Based on Electric Energy Balance

    Science.gov (United States)

    Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui

    2018-01-01

    With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.

  7. Stakeholder participation in investigating the health impacts from coal-fired power generating stations in Alberta, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, C.G.; Predy, G.; Mackenzie, A. [University of Alberta, Edmonton, AB (Canada)

    2007-07-01

    Developing an effective stakeholder participation process and communication dialogue continues to be a challenge in dealing with risk issues, particularly those in which the risk is uncertain and people are fearful about the potential impacts. The complex public stakeholder relations and risk communication issues associated with investigating the potential human health effects associated with exposure to the emissions of coal-fired power generating stations are discussed. Residents in the area around Lake Wabamun (west of Edmonton, Alberta, Canada) have raised concerns about potential health impacts from four nearby coal-fired power generating stations. The Wabamun and Area Community Exposure and Health Effects Assessment Programme (WACEHEAP) was developed to look specifically at what people are being exposed to in this area as well as some of the health effects from these exposures. Public stakeholders to this process included the general public, community interest groups and the Paul First Nation. Two surveys were conducted to better understand community concerns, communication and information needs, and desire for involvement. Consultations were also held with the Paul First Nation. The results provided important insights into the risk perspectives of these groups, including communication needs and desired means of participating in the risk assessment process.

  8. 75 FR 73995 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-11-30

    ... Health Administration, Labor. ACTION: Proposed rule; rescheduling of public hearings; correction. SUMMARY... also corrects one error in the preamble to the proposed rule. On November 15, 2010, MSHA published the... from any interested party, including those not presenting oral statements. Comments must be received by...

  9. 76 FR 12648 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2011-03-08

    ... suggested alternative timeframes, particularly in light of the CPDM's limited memory capacity of about 20... concentrations that exceed proposed standards. For example, the proposed plan would include pre-operational examination, testing and set-up procedures to verify the operational readiness of the CPDM before each shift...

  10. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.; Haimes, R.; Martinez-Sanchez, M.; Kerrebrock, J.L.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGE code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented

  11. A comparative study of health hazards and environmental impacts for electricity generation through nuclear energy hidroelectricity and coal fired thermoeletrical generation

    International Nuclear Information System (INIS)

    Guimaraes, C.A.

    1982-01-01

    Environmental impacts and health hazards were comparatively assessed in regard to electricity generation via nuclear energy, hidraulic dams and coal firing. The main aspects covered the nuclear reactor and its associated nuclear fuel cycle, coal fired thermoelectrical power plant its associated coal industry, and hidroelectrical power plant and its dam. Besides specific comparisons of impacts in the air, water, soil and health hazards an evaluation for the Brazilian case was made based on a forecast of electricity demand up to the year 2020. For the nuclear option the consequences were analysed based on American data since no data is yet available for Brazil. Coal firing option was also analised for based heavily on American data due to small Brazilian experience in this sector of energy generation. For hydroelectrical option Brazilian data were used mostly from CESP for comparative purposes. These alternatives for generation of electricity considered in this study are the most relevant for the next four decades for Brazil. (Author) [pt

  12. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  13. Assessment of environmental impacts generated by solid waste from coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Aguero, A.; Alonso, L.F.; Simon, I.; Vera, R.; Cortes, V.; Little, R.; Venter, A. [CIEMAT, Madrid (Spain)

    1999-07-01

    As part of a research contract in the targeted project 'Disposal of solid residues arising from coal' funded by the European Commission (ECSC contract 7220-ED/070), the Departamento de Impacto Ambiental de la Energia of the Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (DIAE/CIEMAT), QuantiSci, the Laboratorio de Informatica of the Universidad Politecnica de Madrid (UPM) and the Departamento de Ingenieria Quimica y Ambiental of the Universidad de Sevilla have developed and tested a methodology, based on the SACo (Safety Assessment Comparison) methodology previously developed by QuantiSci and CIEMAT, that is considered to be appropriate for assessing and comparing reuse and disposal strategies of solid residues generated from the coal fuel cycle. The first phase of the project consisted of a review of solid residues produced in the coal fuel cycle, identifying contaminants that affect management of these residues from a physical and chemical point of view. Additionally, management options as well as environmental impacts associated with the reuse and disposal of the residues have been analysed together with previously used assessment methods. This Methodology framework has been applied to two test cases and is being applied to real cases in projects other than the targeted project. Some preliminary results have been obtained. 34 refs.; 5 figs.; 17 tabs.

  14. Coal-fired high performance power generating system. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of > 47% thermal efficiency; NO{sub x} SO {sub x} and Particulates < 25% NSPS; Cost of electricity 10% lower; coal > 65% of heat input and all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. Most of this report discusses the details of work on these components, and the R&D Plan for future work. The discussion of the combustor designs illustrates how detailed modeling can be an effective tool to estimate NO{sub x} production, minimum burnout lengths, combustion temperatures and even particulate impact on the combustor walls. When our model is applied to the long flame concept it indicates that fuel bound nitrogen will limit the range of coals that can use this approach. For high nitrogen coals a rapid mixing, rich-lean, deep staging combustor will be necessary. The air heater design has evolved into two segments: a convective heat exchanger downstream of the combustion process; a radiant panel heat exchanger, located in the combustor walls; The relative amount of heat transferred either radiatively or convectively will depend on the combustor type and the ash properties.

  15. Environmental control implications of generating electric power from coal. Appendix B. Assessment of status of technology for solvent refining of coal. 1977 technology status report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report reviews the technology and environmental impacts of the solvent refined coal process to produce clean solid fuel (SRC-I). Information on SRC-I pilot plant operation, process design, and economics is presented. A bibliography of current available literature in this technology area, divided into fourteen categories with abstracts of the references, is appended. The history, current operations, and future plans for the SRC pilot plants at Fort Lewis and Wilsonville are reviewed. Process data generated at these pilot plants for various coals are used as a basis for a conceptual commercial plant design with a capacity to process 20,000 tons per day (TPD) of prepared coal. Block flow diagrams, material balances, an energy balance, and a list of raw materials for the plant are also provided. Capital cost estimates for a 20,000 TPD coal feed plant derived from four prior economic studies range from $706 million to $1093 million in 1976 dollars. The annual net operating cost is estimated at $238.6 million (1976 dollars) and the average product cost at $2.71/MM Btu based on utility financing (equity 25:debt 75) with $25/ton as the delivered price of the dry coal. The report also discusses special technical considerations associated with some of the process operations and major equipment items and enumerates technical risks associated with the commercialization of the SRC-I process.

  16. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  17. Assessment of energy and economic impacts of particulate-control technologies in coal-fired power generation

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Under contract to Argonne National Laboratory, Midwest Research Institute has derived models to assess the economic and energy impacts of particulate-control systems for coal-fired power plants. The models take into account the major functional variables, including plant size and location, coal type, and applicable particulate-emission standards. The algorithms obtained predict equipment and installation costs, as well as operating costs (including energy usage), for five control devices: (1) cold-side electrostatic precipitators, (2) hot-side electrostatic precipitators, (3) reverse-flow baghouses, (4) shake baghouses, and (5) wet scrubbers. A steam-generator performance model has been developed, and the output from this model has been used as input for the control-device performance models that specify required design and operating parameters for the control systems under study. These parameters then have been used as inputs to the cost models. Suitable guideline values have been provided for independent variables wherever necessary, and three case studies are presented to demonstrate application of the subject models. The control-equipment models aggregate the following cost items: (1) first costs (capital investment), (2) total, first-year annualized costs, and (3) integrated cost of ownership and operation over any selected plant lifetime. Although the models have been programmed for rapid computation, the algorithms can be solved with a hand calculator.

  18. Environmental control implications of generating electric power from coal. Technology status report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-12-01

    This is the first in a series of reports evaluating environmental control technologies applicable to the coal-to-electricity process. The technologies are described and evaluated from an engineering and cost perspective based upon the best available information obtained from utility experience and development work in progress. Environmental control regulations and the health effects of pollutants are also reviewed. Emphasis is placed primarily upon technologies that are now in use. For SO/sub 2/ control, these include the use of low sulfur coal, cleaned coal, or flue-gas desulfurization systems. Electrostatic precipitators and fabric filters used for the control of particulate matter are analyzed, and combustion modifications for NO/sub x/ control are described. In each area, advanced technologies still in the development stage are described briefly and evaluated on the basis of current knowledge. Fluidized-bed combustion (FBC) is a near-term technology that is discussed extensively in the report. The potential for control of SO/sub 2/ and NO/sub x/ emissions by use of FBC is analyzed, as are the resulting solid waste disposal problems, cost estimates, and its potential applicability to electric utility systems. Volume II presents the detailed technology analyses complete with reference citations. This same material is given in condensed form in Volume I without references. A brief executive summary is also given in Volume I.

  19. On the economics of nuclear and coal-fired electric generation

    International Nuclear Information System (INIS)

    Pouris, A.

    1987-01-01

    This article addresses the relative merit of nuclear versus coal-fired electricity generation for plants beginning base-load service in South Africa after the year 2000. Emphasis is placed on the economic merits of the two technologies, and environmental and social implications are taken into account only in so far as legislation, security, and other considerations affect the economics of the technologies. It is assumed that nuclear and coal-fired generating plants wil represent the most cost-effective and feasible options for base-load service in the foreseeable future. Socio-political consideration and lack of indigenous oil production forbid the use of oil for the production of electricity, independently of economic merits. Similarly, the absence of local research on alternative renewable technologies, their stage of development abroad and their current economics limit the possibility of their extensive use in the time horizon under examination. The measure of economic merit used in the study is the 'levelized busbar cost' over the lifetime of the station

  20. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  1. Technical notes for the conceptual design for an atmospheric fluidized-bed direct combustion power generating plant. [Comparison of AFB plant and pulverized coal plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-01

    The first part of this report presents a comparison of the conceptual designs of a large (570 MW(e)) pulverized coal (PC) steam generator equipped with a wet limestone flue gas desulfurization (FGD) system and two equivalent sized atmospheric fluidized bed (AFB) steam generators including balance of plants for electric-power generation. The reader is cautioned that this portion of the report compares a zero generation AFB technology to pulverized coal technology which has been operationally and economically optimized for the past half-century. This comparison is intended to be indicative of whether further development of the AFB concept as a viable alternative to the PC/FGD concept for electric-power generation is merited. In the second part, the load-following capability of a once-through subcritical atmospheric fluidized bed boiler is analyzed. Digital computer simulation predictions of the plant's response to open loop step changes in firing rate, feedwater flow, governor valve, unit load demand, etc, are made. The predicted response of throttle pressure, steam temperature, unit load, etc, are compared to the response of a conventional coal-fired, once-through, subcritical unit. The load-following capability is assessed through this qualitative comparison. Additional model response predictions are also presented for which no test data are presently available.

  2. Fossil fuel-fired power generation. Case studies of recently constructed coal- and gas-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. [IEA Clean Coal Centre, London (United Kingdom)

    2007-10-23

    To meet future energy demand growth and replace older or inefficient units, a large number of fossil fuel-fired plants will be required to be built worldwide in the next decade. Yet CO{sub 2} emissions from fossil-fired power generation are a major contributor to climate change. As a result, new plants must be designed and operated at highest efficiency both to reduce CO{sub 2} emissions and to facilitate deployment of CO{sub 2} capture and storage in the future. The series of case studies in this report, which respond to a request to the IEA from the G8 Summit in July 2005, were conducted to illustrate what efficiency is achieved now in modern plants in different parts of the world using different grades of fossil fuels. The plants were selected from different geographical areas, because local factors influence attainable efficiency. The case studies include pulverized coal combustion (PCC) with both subcritical and supercritical (very high pressure and temperature) steam turbine cycles, a review of current and future applications of coal-fuelled integrated gasification combined cycle plants (IGCC), and a case study of a natural gas fired combined cycle plant to facilitate comparisons. The results of these analyses show that the technologies for high efficiency (low CO{sub 2} emission) and very low conventional pollutant emissions (particulates, SO{sub 2}, NOx) from fossil fuel-fired power generation are available now through PCC, IGCC or NGCC at commercially acceptable cost. This report contains comprehensive technical and indicative cost information for modern fossil fuel-fired plants that was previously unavailable. It serves as a valuable sourcebook for policy makers and technical decision makers contemplating decisions to build new fossil fuel-fired power generation plants.

  3. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  4. Nuclear Energy Cost Data Base: a reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1985-06-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line in the last decade of this century. In addition to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  5. Nuclear Energy Cost Data Base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1986-12-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In additions to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative benchmark purposes

  6. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    International Nuclear Information System (INIS)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-01-01

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables

  7. Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity

    International Nuclear Information System (INIS)

    Aravindhakshan, Sijesh C.; Epplin, Francis M.; Taliaferro, Charles M.

    2010-01-01

    Switchgrass (Panicum virgatum) serves as a model dedicated energy crop in the U.S.A. Miscanthus (Miscanthus x giganteus) has served a similar role in Europe. This study was conducted to determine the most economical species, harvest frequency, and carbon tax required for either of the two candidate feedstocks to be an economically viable alternative for cofiring with coal for electricity generation. Biomass yield and energy content data were obtained from a field experiment conducted near Stillwater, Oklahoma, U.S.A., in which both grasses were established in 2002. Plots were split to enable two harvest treatments (once and twice yr -1 ). The switchgrass variety 'Alamo', with a single annual post-senescence harvest, produced more biomass (15.87 Mg ha -1 yr -1 ) than miscanthus (12.39 Mg ha -1 yr -1 ) and more energy (249.6 million kJ ha -1 yr -1 versus 199.7 million kJ ha -1 yr -1 for miscanthus). For the average yields obtained, the estimated cost to produce and deliver biomass an average distance of 50 km was $43.9 Mg -1 for switchgrass and $51.7 Mg -1 for miscanthus. Given a delivered coal price of $39.76 Mg -1 and average energy content, a carbon tax of $7 Mg -1 CO 2 would be required for switchgrass to be economically competitive. For the location and the environmental conditions that prevailed during the experiment, switchgrass with one harvest per year produced greater yields at a lower cost than miscanthus. In the absence of government intervention such as requiring biomass use or instituting a carbon tax, biomass is not an economically competitive feedstock for electricity generation in the region studied. (author)

  8. Thermal-maturity limit for primary thermogenic-gas generation from humic coals as determined by hydrous pyrolysis

    Science.gov (United States)

    Lewan, Michael; Kotarba, M.J.

    2014-01-01

    Hydrous-pyrolysis experiments at 360°C (680°F) for 72 h were conducted on 53 humic coals representing ranks from lignite through anthracite to determine the upper maturity limit for hydrocarbon-gas generation from their kerogen and associated bitumen (i.e., primary gas generation). These experimental conditions are below those needed for oil cracking to ensure that generated gas was not derived from the decomposition of expelled oil generated from some of the coals (i.e., secondary gas generation). Experimental results showed that generation of hydrocarbon gas ends before a vitrinite reflectance of 2.0%. This reflectance is equivalent to Rock-Eval maximum-yield temperature and hydrogen indices (HIs) of 555°C (1031°F) and 35 mg/g total organic carbon (TOC), respectively. At these maturity levels, essentially no soluble bitumen is present in the coals before or after hydrous pyrolysis. The equivalent kerogen atomic H/C ratio is 0.50 at the primary gas-generation limit and indicates that no alkyl moieties are remaining to source hydrocarbon gases. The convergence of atomic H/C ratios of type-II and -I kerogen to this same value at a reflectance of indicates that the primary gas-generation limits for humic coal and type-III kerogen also apply to oil-prone kerogen. Although gas generation from source rocks does not exceed vitrinite reflectance values greater than , trapped hydrocarbon gases can remain stable at higher reflectance values. Distinguishing trapped gas from generated gas in hydrous-pyrolysis experiments is readily determined by of the hydrocarbon gases when a -depleted water is used in the experiments. Water serves as a source of hydrogen in hydrous pyrolysis and, as a result, the use of -depleted water is reflected in the generated gases but not pre-existing trapped gases.

  9. Economic and social costs of coal and nuclear electric generation, a framework for assessment and illustrative calculations for the coal and nuclear fuel cycles. Discussion paper

    International Nuclear Information System (INIS)

    Barrager, S.M.; Judd, B.R.; North, D.W.

    1976-03-01

    A method is presented for extending economic comparisons of nuclear and coal-fired electric power to include health, safety, and environmental impacts in the same quantitative framework. The method is illustrated by considering the decision between a light water nuclear reactor and a conventional coal-fired power plant to satisfy a 1000 MWe increase in electrical demand in the northeastern United States. For both alternatives, preliminary calculations of the economic and social costs expressed in mills per kilowatt-hour are reported. Economic costs consist of those faced by the utility, including capital charges, operating expenses, and fuel cycle costs. Social costs for each plant and its associated fuel cycle include routine environmental impacts such as air pollution as well as risk to the public from reactor accidents or sabotage

  10. A flowsheet model of a coal-fired MHD/steam combined electricity generating cycle, using the access computer model

    International Nuclear Information System (INIS)

    Davison, J.E.; Eldershaw, C.E.

    1992-01-01

    This document forms the final report on a study of a coal-fired magnetohydrodynamic (MHD)/steam electric power generation system carried out by British Coal Corporation for the Commission of the European Communities. The study objective was to provide mass and energy balances and overall plant efficiency predictions for MHD to assist the Commission in their evaluation of advanced power generation technologies. In early 1990 the British Coal Corporation completed a study for the Commission in which a computer flowsheet modelling package was used to predict the performance of a conceptual air blown MHD plant. Since that study was carried out increasing emphasis has been placed on the possible need to reduce CO 2 emissions to counter the so-called greenhouse effect. Air blown MHD could greatly reduce CO 2 emissions per KWh by virtue of its high thermal efficiency. However, if even greater reductions in CO 2 emissions were required the CO 2 produced by coal combustion may have to be disposed of, for example into the deep ocean or underground caverns. To achieve this at minimum cost a concentrated CO 2 flue gas would be required. This could be achieved in an MHD plant by using a mixture of high purity oxygen and recycled CO 2 flue gas in the combustor. To assess this plant concept the European Commission awarded British Coal a contract to produce performance predictions using the access computer program

  11. 11th annual conference on clean coal technology, proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Topics covered at the conference include coal combustion technology, multi-purpose coal conversion technology (including entrained-bed coal flash pyrolysis process (CPX), hydrogen production from coal and coal liquefaction), coal ash utilization technology, next general technology (including dry coal cleaning technologies and coal conversion by supercritical water) and basic coal utilization technology (including ash behaviour during coal gasification).

  12. 78 FR 52973 - ICG Knott County, LLC, a Subsidiary of ICG, Inc., a Subsidiary of Arch Coal, Inc.; Including On...

    Science.gov (United States)

    2013-08-27

    ... Regarding Application for Reconsideration for the workers and former workers of ICG Knott County, LLC, a... Officer, a mis- interpretation of facts or of the law justified reconsideration of the decision. The... increased use of natural gas instead of bituminous coal by customers of the subject firm and customers of...

  13. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.

    Science.gov (United States)

    Blodau, Christian

    2006-10-01

    Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iron oxidation and precipitation. Rates of acidity generation in mine tailings and dumps, and surface water are often similar (1 to >10 mol m(-2) yr(-1)). Weathering processes, however, often suffice to buffer groundwaters to only moderately acidic or neutral pH, depending on the suite of minerals present. In mine lakes, the acidity balance is further influenced by proton release from transformation of metastable iron hydroxysulfate minerals to goethite, and proton and ferrous iron sequestration by burial of iron sulfides and carbonates in sediments. These processes mostly cannot compensate acidity loading from the watershed, though. A master variable for almost all processes is the pH: rates of pyrite oxidation, ferrous iron oxidation, mineral dissolution, iron precipitation, iron hydroxide transformation, and iron and sulfate reduction are strongly pH dependent. While the principle mechanism of acidity generation and consumption and several controls are mostly understood, this cannot be said about the fate of acidity on larger spatial and temporal scales. Little is also known about critical loads and the internal regulation of biogeochemical iron, sulfur, and carbon cycling in acidic mine lakes.

  14. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds

    International Nuclear Information System (INIS)

    Blodau, Christian

    2006-01-01

    Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iron oxidation and precipitation. Rates of acidity generation in mine tailings and dumps, and surface water are often similar (1 to >10 mol m -2 yr -1 ). Weathering processes, however, often suffice to buffer groundwaters to only moderately acidic or neutral pH, depending on the suite of minerals present. In mine lakes, the acidity balance is further influenced by proton release from transformation of metastable iron hydroxysulfate minerals to goethite, and proton and ferrous iron sequestration by burial of iron sulfides and carbonates in sediments. These processes mostly cannot compensate acidity loading from the watershed, though. A master variable for almost all processes is the pH: rates of pyrite oxidation, ferrous iron oxidation, mineral dissolution, iron precipitation, iron hydroxide transformation, and iron and sulfate reduction are strongly pH dependent. While the principle mechanism of acidity generation and consumption and several controls are mostly understood, this cannot be said about the fate of acidity on larger spatial and temporal scales. Little is also known about critical loads and the internal regulation of biogeochemical iron, sulfur, and carbon cycling in acidic mine lakes. (author)

  15. Clean utilization of low-rank coals for low-cost power generation

    International Nuclear Information System (INIS)

    Sondreal, E.A.

    1992-01-01

    Despite the unique utilization problems of low-rank coals, the ten US steam electric plants having the lowest operating cost in 1990 were all fueled on either lignite or subbituminous coal. Ash deposition problems, which have been a major barrier to sustaining high load on US boilers burning high-sodium low-rank coals, have been substantially reduced by improvements in coal selection, boiler design, on-line cleaning, operating conditions, and additives. Advantages of low-rank coals in advanced systems are their noncaking behavior when heated, their high reactivity allowing more complete reaction at lower temperatures, and the low sulfur content of selected deposits. The principal barrier issues are the high-temperature behavior of ash and volatile alkali derived from the coal-bound sodium found in some low-rank coals. Successful upgrading of low-rank coals requires that the product be both stable and suitable for end use in conventional and advanced systems. Coal-water fuel produced by hydrothermal processing of high-moisture low-rank coal meets these criteria, whereas most dry products from drying or carbonizing in hot gas tend to create dust and spontaneous ignition problems unless coated, agglomerated, briquetted, or afforded special handling

  16. Localized interaction between coal-included minerals and Ca-based CO{sub 2} sorbents during the high-pressure steam coal gasification (HyPr-RING) process

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, K.; Ohtomo, K.; Suzuki, K.; Fujimoto, S.; Shibano, S.; Matsuoka, K.; Suzuki, Y.; Hatano, H.; Yamada, O.; Shi-Ying, L.; Harada, M.; Morishita, K.; Takarada, T. [National Institute of Advanced Industrial Science & Technology, Ibaraki (Japan)

    2004-12-08

    Pulverized Japanese bituminous coal (Taiheiyo coal) samples with diameter ranges of 38-75 {mu}m and 180-250 {mu}m were gasified with high-pressure steam in the presence of Ca-based CO{sub 2} sorbents. The experiments were carried out at 873 and 973 K and at holding times ranging from 0 to 120 min using a laboratory-scale fixed-bed reactor, and the solid-solid reaction between the Ca-based sorbents and the coal-included minerals during the steam gasification was investigated. Local scanning electron microscopy-energy-dispersive X-ray analysis of the solid residues obtained under different conditions showed that some constituents of the coal-included minerals, such as Si and Al, were contained in the sorbent particles. The solid-solid interaction between the Ca-based sorbents and coal-included minerals became significant at the higher temperature and at longer holding periods. This interaction will locally decrease the CO{sub 2} sorption ability of the sorbents. However, when a holding time of less than 10 min was employed, the solid-solid reaction between the minerals and the sorbents was suppressed, even at 973 K, because the rate of formation of inorganic compounds through solid-solid reaction was low. In this case, our target carbon conversion (about 50%) was attainable, owing to the devolatilization during the heating period. Our results indicate that the holding time of the feedstock in the reactor should be shortened to avoid deactivation of the Ca-based sorbents during high-pressure steam gasification.

  17. Coal-fired generation benefits power markets in an era of shortages

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI, Boulder, CO (USA). Coal Consulting Practice

    2001-03-01

    To illustrate the importance of coal-fired energy in a major power grid, Resource Data International (RDI) conducted a review of the Pennsylvania, New Jersey and Maryland Power Pool, better known as the PJM Interconnection PJM was chosen because it has many of the same characteristics as troubled California, a large proportion of the region having experienced some form of electricity deregulation. However, in PJM approximately one-half of its electric energy comes from coal, unlike in California. Costs for coal-powered plants in PJM have declined steadily over recent years ever though much coal is provided from outside the Appalachian coal region. An efficient transportation infrastructure with ready access to rail transport has helped control costs. The merging of Conrail into CSX and Norfolk Southern (NS) rail systems has facilitated the purchase of low-sulfur coal from central Appalachia. 3 figs.

  18. Direct determination of Ge in hot spring waters and coal fly ash samples by hydride generation-ETAAS

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso-Perez, Carmen; Moreda-Pineiro, Jorge; Lopez-Mahia, Purificacion; Muniategui-Lorenzo, Soledad; Fernandez-Fernandez, Esther; Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna, Campus da Zapateira, s/n. E-15071, A Coruna (Spain)

    2004-10-08

    A method for Ge determination in hot spring water and acid extracts from coal fly ash samples involving hydride generation, trapping and atomisation of the hydride generated from Ir-treated graphite tubes (GTs) has been developed. Hydride was generated from hydrochloric acid medium using sodium tetrahydroborate. Several factors affecting the hydride generation, transport, trapping and atomisation efficiency were studied by using a Plackett-Burman design. Results obtained from Plackett-Burman designs suggest that trapping and atomisation temperatures are the significant factors involved on the procedure. The accuracy was studied using NIST-1633a (coal fly ash) reference material. The detection limit of the proposed method was 2.4{mu}gl{sup -1} and the characteristic mass of 233pg was achieved. The Ge concentrations in fly ash and hot spring samples were between 6.25-132{mu}gg{sup -1} and 12.84-36.2{mu}gl{sup -1}.

  19. Beyond black lung: scientific evidence of health effects from coal use in electricity generation.

    Science.gov (United States)

    Buchanan, Susan; Burt, Erica; Orris, Peter

    2014-08-01

    While access to electricity affects health positively, combustion of coal in power plants causes well-documented adverse health effects. We review respiratory, cardiovascular, reproductive, and neurologic health outcomes associated with exposure to coal-fired power plant emissions. We also discuss population-level health effects of coal combustion and its role in climate change. Our review of scientific studies suggests that those we present here can be used to inform energy policy.

  20. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    Science.gov (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a

  1. The role of new technologies in expanding useful coal reserves

    Energy Technology Data Exchange (ETDEWEB)

    Sligar, J. [Pacific Power, Sydney, NSW (Australia)

    1995-12-31

    The range of new high efficiency coal utilisation technologies for power generation will have a marked effect in increasing marketable coal reserves from world sources as the technologies are integrated into new and retrofitted power stations. These technologies are substantially more efficient than pulverised coal technology; so if marketable coal reserves are viewed as energy reserves there will be an increase of at least 28% due to this factor alone. In addition, the new technologies use coals with different sets of properties to present internationally traded coals. In many cases reserves of these coals exist but are not presently included in reserves for power generation but which will need to be included in the future. These changes, which require a reassessment of marketable resources for the reliable generation of cheap and environmentally friendly energy and generally extend coal resources by a conservative 33%.

  2. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  3. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  4. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  5. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  6. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  7. World coal outlook to the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The 1983 edition of the World Coal Outlook to the Year 2000 examines the worldwide impact of lower oil prices and lower economic activity on the demand, production, and international trade in coal. The report includes detailed regional forecasts of coal demand by end-use application. Regions include the US, Canada, Western Europe, Japan, Other Asia, Latin America, Africa, Australia/New Zealand, Communist Europe, and Communist Asia. In addition, regional coal production forecasts are provided with a detailed analysis of regional coal trade patterns. In all instances, the changes relative to Chase's previous forecasts are shown. Because of the current situation in the oil market, the report includes an analysis of the competitive position of coal relative to oil in the generation of electricity, and in industrial steam applications. The report concludes with an examination of the impact of an oil price collapse on the international markets for coal.

  8. Levels and patterns of polycyclic aromatic hydrocarbons in fly ash generated in Coal-fired power plant

    International Nuclear Information System (INIS)

    Ajmal, P.Y.; Sahu, S.K.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.

    2005-01-01

    The burning of pulverized coal to produce energy for generation of electricity in thermal power plants results in huge quantity of coal ash of varying properties. Because of the increase in electricity production, the amount of ash produced will increase proportionally. A large percentage of coal fly ash is comprised of relatively inert materials, such as silica and other trace and toxic elements. The coal ash also contain organic constituents of potential environmental concern. So far, very few studies on characterization of organic constituents in fly ash have been reported in the literature. In the present study, the fly ashes generated from the power stations are investigated regarding the distribution of 14 PAHs. The total amount of PAHs in the fly ash samples varied between 45.8 ng/g and 257.7 ng/g. Lower molecular weight (MW) PAHs, were found to be predominant in the fly ash samples. The concentration of Benzo(a)pyrene, which is the most potent carcinogenic PAH was found to vary between 0.8 ng/g to 6.3 ng/g with a mean concentration of 2.5 ng/g. (author)

  9. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  10. Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit

    International Nuclear Information System (INIS)

    Zhang, Maolong; Du, Xiaoze; Pang, Liping; Xu, Chao; Yang, Lijun

    2016-01-01

    An approach of high-efficiency utilization of solar energy was proposed, by which the high concentrated heat received by the solar tower was integrated to the supercritical coal-fired boiler. Two schemes that solar energy was used to heat superheat steam or subcooled feed water were presented. The thermodynamic and heat transfer models were established. For a practical 660 MW supercritical power generating unit, the standard coal consumption of power generation could be decreased by more than 17 g/kWh by such double source boiler. The drawbacks of both schemes were found and then were amended by adding a flue gas bypass to the boiler. It also can be concluded that the maximum solar contribution of two schemes for the gross power generation are 6.11% and 4.90%, respectively. The solar power efficiency of the re-modified designs were demonstrated be superior to that of PS10. In terms of turbine efficiency, the comparisons with Solar Two plant having similar initial temperature found that the efficiency of Scheme I was 5.25% higher than that of Solar Two while the advantage of Scheme II was existing either. Additionally, in two schemes with flue bypass when the medium was extracted, the thermal efficiency of boiler could be improved as well. - Highlights: • High concentrated solar tower heat is integrated to the supercritical coal-fired boiler. • The double source boiler can use solar energy to heat superheat steam or subcooled feed water. • Power generating coal consumption can be reduced by more than 17 g/kWh by the double source boiler. • The solar contribution of double source boiler for the gross power generation can be as high as 6.11%.

  11. A new method to assess mercury emissions: a study of three coal-fired electric-generating power station configurations.

    Science.gov (United States)

    Boylan, Helen M; Cain, Randy D; Kingston, H M

    2003-11-01

    U.S. Environmental Protection Agency (EPA) Method 7473 for the analysis of mercury (Hg) by thermal decomposition, amalgamation, and atomic absorption spectroscopy has proved successful for use in Hg assessment at coal-fired power stations. In an analysis time of approximately 5 min per sample, this instrumental methodology can directly analyze total Hg--with no discrete sample preparation--in the solid matrices associated with a coal-fired power plant, including coal, fly ash, bottom ash, and flue gas desulfurization (FGD) material. This analysis technique was used to investigate Hg capture by coal combustion byproducts (CCBs) in three different coal-fired power plant configurations. Hg capture and associated emissions were estimated by partial mass balance. The station equipped with an FGD system demonstrated 68% capture on FGD material and an emissions estimate of 18% (11 kg/yr) of total Hg input. The power plant equipped with low oxides of nitrogen burners and an electrostatic precipitator (ESP) retained 43% on the fly ash and emitted 57% (51 kg/yr). The station equipped with conventional burners and an ESP retained less than 1% on the fly ash, emitting an estimated 99% (88 kg/yr) of Hg. Estimated Hg emissions demonstrate good agreement with EPA data for the power stations investigated.

  12. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  13. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  14. OXYCOAL-AC: Towards development of a zero-CO2-emission coal combustion process for efficient power generation

    International Nuclear Information System (INIS)

    Toporov, D.; Heil, P.; Foerster, M.; Kneer, R.

    2010-01-01

    The OXYCOAL-AC cooperative research project, presented here, aims at the development of the main components for an integrated zero-CO 2 emission power plant process which comprises combustion of pulverised coal in a mixture of recirculated flue gas (RFG) and oxygen produced from a ceramic ion transport membrane (ITM). This article focuses on the specifics of coal combustion in a CO 2 /O 2 atmosphere including flame stability and related burner design as well as the changes in the heat transfer inside an oxy-firing utility scale furnace. The membrane-based air separation modules and their design for oxycoal conditions are reviewed as well. (authors)

  15. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  16. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  17. Coal-fired high performance power generating system. Draft quarterly progress report, January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report covers work carried out under Task 3, Preliminary R and D, under contract DE-AC22-92PC91155, ``Engineering Development of a Coal-Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of >47% thermal efficiency; NO{sub x}, SO{sub x} and particulates {le} 25% NSPS; cost {ge}65% of heat input; all solid wastes benign. A crucial aspect of the authors design is the integration of the gas turbine requirements with the HITAF output and steam cycle requirements. In order to take full advantage of modern highly efficient aeroderivative gas turbines they have carried out a large number of cycle calculations to optimize their commercial plant designs for both greenfield and repowering applications.

  18. Fractionation of chemical elements including the REEs and 226Ra in stream contaminated with coal-mine effluent

    International Nuclear Information System (INIS)

    Centeno, L.M.; Faure, G.; Lee, G.; Talnagi, J.

    2004-01-01

    Water draining from abandoned open-pit coal mines in southeastern Ohio typically has a low pH and high concentrations of Fe, Al and Mn, as well as of trace metals (Pb, Cu, Zn, Ni, Co, etc.) and of the rare earth elements (REEs). The cations of different elements are sorbed selectively by Fe and Al hydroxide precipitates which form with increasing pH. As a result, the trace elements are separated from each other when the hydroxide precipitates are deposited in the channel of a flowing stream. Therefore, the low-energy environment of a stream contaminated by mine effluent is a favorable site for the chemical fractionation of the REEs and of other groups of elements with similar chemical properties. The interpretation of chemical analyses of water collected along a 30-km-stretch of Rush Creek near the town of New Lexington, Perry County, Ohio, indicates that the abundances of the REEs in the water appear to change downstream when they are normalized to the REE concentrations of the mine effluent. In addition, the Ce/La ratios (and those of all REEs) in the water decrease consistently downstream. The evidence indicates that the REEs which remain in solution are enriched La and Ce because the other REEs are sorbed more efficiently. The solid Fe(OH) 3 precipitates in the channel of Rush Creek upstream of New Lexington also contain radioactive 226 Ra that was sorbed from the water. This isotope of Ra is a decay product of 238 U which occurs in the Middle Pennsylvanian (Upper Carboniferous) coal and in the associated shale of southeastern Ohio. The activity of 226 Ra of the Fe(OH) 3 precipitates increases with rising pH, but then declines farther downstream as the concentration of Ra remaining in the water decreases

  19. Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Final report, September 1989--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This project has successfully advanced the technology for MSOFCs for coal-based power generation. Major advances include: tape-calendering processing technology, leading to 3X improved performance at 1000 C; stack materials formulations and designs with sufficiently close thermal expansion match for no stack damage after repeated thermal cycling in air; electrically conducting bonding with excellent structural robustness; and sealants that form good mechanical seals for forming manifold structures. A stack testing facility was built for high-spower MSOFC stacks. Comprehensive models were developed for fuel cell performance and for analyzing structural stresses in multicell stacks and electrical resistance of various stack configurations. Mechanical and chemical compatibility properties of fuel cell components were measured; they show that the baseline Ca-, Co-doped interconnect expands and weakens in hydrogen fuel. This and the failure to develop adequate sealants were the reason for performance shortfalls in large stacks. Small (1-in. footprint) two-cell stacks were fabricated which achieved good performance (average area-specific-resistance 1.0 ohm-cm{sup 2} per cell); however, larger stacks had stress-induced structural defects causing poor performance.

  20. Gas associated to coal in Colombia. An energetic alternative of non-conventional gas fields

    International Nuclear Information System (INIS)

    Garcia Gonzalez, Mario

    2005-01-01

    Colombia possesses the biggest coal reserves of Latin America, in such a way that the potential reserves of Gas Associated to the Coal (GAC) they are of great magnitude; the paper includes topics like the generation of the gas associated to the coal, geologic factors that control the gas occurrence, development of the gas associated to the coal in the world, and potential reserves of gas associated to the coal in Colombia

  1. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  2. Coal bed sequestration of carbon dioxide

    Science.gov (United States)

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  3. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant

    International Nuclear Information System (INIS)

    Pinheiro, H.S.; Nogueira, R.E.F.Q.; Lobo, C.J.S.; Nobre, A.I.S.; Sales, J.C.; Silva, C.J.M.

    2012-01-01

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  4. Coal-fired water pump

    Energy Technology Data Exchange (ETDEWEB)

    Zeilinger, J.E.; Kawa, W.; Lewis, P.S.; Hiteshue, R.W.

    1966-01-01

    The technical feasibility of using energy from explosive ignitions of coal dust to pump water was demonstrated in an exploratory investigation. Ignition of small amounts of pulverized coal that were dispersed in air over columns of water pumped 5.3 gallons of water per cycle when operated against a head of 30.75 feet. Water displacement was accomplished by either manual or automatic operation through a single cycle and by automatic operation through a continuous series of cycles of 1-minute duration. Operating through single cycles, slurries containing up to 3 pounds of coal and 4.6 gallons of water were also pumped. Possible uses of an efficient coal-fired pump would include pumping water for irrigation purposes, removing water from mines, transporting coal from mines in the form of a slurry, and pumping water to elevated reservoirs at electric power-plants so that it could be used to generate electricity during peak periods of demand.

  5. Composition, peat-forming vegetation and kerogen paraffinicity of Cenozoic coals: Relationship to variations in the petroleum generation potential (Hydrogen Index)

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, H.I.; Lindstroem, S.; Nytoft, H.P.; Rosenberg, P. [Geological Survey of Denmark and Greenland (GEUS), Oester Voldgade 10, DK-1350 Copenhagen (Denmark)

    2009-04-01

    Coals with similar thermal maturity and from the same deposit normally show a considerable range in petroleum generation potential as measured by the Hydrogen Index (HI). This variation may partly be related to variations in plant input to the precursor mires and organic matter preservation. It is widely accepted that some Cenozoic coals and coaly sediments have the potential to generate oil, which is related to the coal's paraffinicity. Coal paraffinicity is not readily reflected in the bulk HI. In this paper, the relationships between measured HI and coal composition, coal kerogen paraffinicity and floral input have been investigated in detail for three sets of coals from Colombia/Venezuela, Indonesia, and Vietnam. The samples in each coal set are largely of iso-rank. The petroleum generation potential was determined by Rock-Eval pyrolysis. Reflected light microscopy was used to analyse the organic matter (maceral) composition and the thermal maturity was determined by vitrinite reflectance (VR) measurements. The botanical affinity of pollen and spores was analysed by palynology. Coal kerogen paraffinicity was determined by ruthenium tetroxide-catalysed oxidation (RTCO) followed by chain length analysis and quantification (mg/g TOC) of the liberated aliphatic chains. The coals are dominated by huminite, in particular detrohuminite. Only the Vietnamese coals are rich in microscopically visible liptinite. The pollen and spores suggest that the coals were derived principally from complex angiosperm mire vegetations, with subordinate proportions of ferns that generally grew in a subtropical to tropical climate. Measured HI values vary considerably, but for the majority of the coals the values lie between approximately 200 mg HC/g TOC and 300 mg HC/g TOC. Aliphatics yielding monocarboxylic acids dominate in the coal kerogen, whereas aliphatics yielding dicarboxylic acids are secondary. However, the dicarboxylic acids show that cross-linking long-chain aliphatics

  6. Externalities of biomass based electricity production compared to power generation from coal in the Netherlands

    NARCIS (Netherlands)

    Faaij, A.; Meuleman, B.

    1997-01-01

    Externalities of electricity production from biomass and coal are investigated and compared for the Dutch context. Effects on economic activity and employment are investigated with help of Input/Output and multiplier tables. Valuations of damage from emissions to air are based on generic data from

  7. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  8. The Power Generation from Coal in Pakistan: Assessment of Physicochemical Pollutant Indicators in Indigenous Reserves in Comparison to the Foreign Coal

    OpenAIRE

    Ghazia Anjum; M. Nasiruddin Khan

    2017-01-01

    Electricity production through coal combustion is the only viable solution in minimum timing. As environmental chemists, our primary goal is to assess environmental hazards and suggest cost-effective technologies for reducing combustion pollutants. In the present study, indigenous coal samples from different mines were analyzed for their physicochemical properties and toxic metals. Five samples from foreign coal mines were also studied for comparison purposes and already in use for power gen...

  9. Environmental control implications of generating electric power from coal. Appendix C. Gasification/combined-cycle power generation: comparison of alternative systems. 1977 technology status report. [246 references w. abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The technical, economic, and environmental aspects of low-Btu gasification/combined-cycle power-generation (LBG/CCPG) plants are assessed, using available published data. Six base-case plants, based on three different gasifiers and two different coals, are investigated. A representative combined power cycle is selected for analysis, and material and energy balances for the six systems are developed. Emissions of various air pollutants, including sulfur dioxide and nitrogen oxides, and discharge rates of aqueous effluents are also calculated. The costs of electricity produced are derived for the six systems, using estimated plant-investment and operating costs. These costs and the emissions of various pollutants are compared with those for a conventional 500-MWe coal-based power plant using flue-gas cleaning and in compliance with the federal New Source Performance Standards. Finally, the commercialization potential of coal-based combined-cycle plants, based on the technical feasibility of building a first plant in the 1985 period and on economic viability, is evaluated. This evaluation is based on the current status of research and development programs for various components of the combined-cycle plant, such as gas turbines and fuel-gas-cleaning systems, and on the status of the demonstration plant.

  10. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  11. Perspectives of coal power generation at Brazil in the horizon 2010-2030; Perspectivas da geracao termeletrica a carvao no Brasil no horizonte 2010-2030

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Edmar Antunes de

    2009-06-15

    Coal is the fossil fuel with the largest world reserves spread over 70 countries. It is also the main source of power generation in the world accounting for 40% of electric power generation. In Brazil, however, this fuel has an inexpressive share in power generation. In spite of that, national energy security issues, relative low fuel prices and price stability can make this option economically attractive. On the other hand, present environment issues require a search for social and environment responsible solutions, following the sustainable development. Thus, this dissertation's main objective is to present the perspectives of coal power generation in Brazil showing the technologies that seek a reduction of its impacts over the environment as well as an economic evaluation of these options. As it will be shown, coal does not have yet an important paper at the power generation in Brazil in the analyzed horizon due to its characteristics, which can change in a later time. (author)

  12. MHD power station with coal gasification

    International Nuclear Information System (INIS)

    Brzozowski, W.S.; Dul, J.; Pudlik, W.

    1976-01-01

    A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)

  13. Environmental externalities: Applying the concept to Asian coal-based power generation

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies

  14. Environmental externalities: Applying the concept to Asian coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  15. Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum.

    Science.gov (United States)

    Jayaranjan, Madawala Liyanage Duminda; Annachhatre, Ajit P

    2013-01-01

    Investigations were undertaken to utilize flue gas desulfurization (FGD) gypsum for the treatment of leachate from the coal ash (CA) dump sites. Bench-scale investigations consisted of three main steps namely hydrogen sulfide (H(2)S) production by sulfate reducing bacteria (SRB) using sulfate from solubilized FGD gypsum as the electron acceptor, followed by leaching of heavy metals (HMs) from coal bottom ash (CBA) and subsequent precipitation of HMs using biologically produced sulfide. Leaching tests of CBA carried out at acidic pH revealed the existence of several HMs such as Cd, Cr, Hg, Pb, Mn, Cu, Ni and Zn. Molasses was used as the electron donor for the biological sulfate reduction (BSR) process which produced sulfide rich effluent with concentration up to 150 mg/L. Sulfide rich effluent from the sulfate reduction process was used to precipitate HMs as metal sulfides from CBA leachate. HM removal in the range from 40 to 100% was obtained through sulfide precipitation.

  16. Gas generation by co-gasification of biomass and coal in an autothermal fluidized bed gasifier

    International Nuclear Information System (INIS)

    Wang, Li-Qun; Chen, Zhao-Sheng

    2013-01-01

    In this study, thermochemical biomass and coal co-gasification were performed on an autothermal fluidized bed gasifier, with air and steam as oxidizing and gasifying media. The experiments were completed at reaction temperatures of 875 °C–975 °C, steam-to-biomass ratio of 1.2, and biomass-to-coal ratio of 4. This research aims to determine the effects of reaction temperature on gas composition, lower heating value (LHV), as well as energy and exergy efficiencies, of the product gas. Over the ranges of the test conditions used, the product gas LHV varies between 12 and 13.8 MJ/Nm 3 , and the exergy and energy efficiencies of the product gas are in the ranges of 50.7%–60.8% and 60.3%–85.1%, respectively. The results show that high reaction temperature leads to higher H 2 and CO contents, as well as higher exergy and energy efficiencies of the product gas. In addition, gas LHV decreases with temperature. The molar ratio of H 2 /CO is larger than 1 at temperatures above 925 °C. Our experimental analysis shows that co-gasification of biomass and coal in an autothermal fluidized bed gasifier for gas production is feasible and promising. -- Highlights: • An innovative steam co-gasification process for gas production was proposed. • Co-gasification of biomass and coal in an autothermal fluidized bed gasifier was tested. • High temperature favors H 2 production. • H 2 and CO contents increase, whereas CO 2 and CH 4 levels decrease with increase in T. • Exergy and energy efficiencies of gases increase with increase in T

  17. Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines

    International Nuclear Information System (INIS)

    Derafshian, Mehdi; Amjady, Nima

    2015-01-01

    This paper presents an evolutionary algorithm-based approach for optimal design of power system stabilizer (PSS) for multi-machine power systems that include doubly fed induction generator wind turbines. The proposed evolutionary algorithm is an improved particle swarm optimization named chaotic particle swarm optimization with passive congregation (CPSO-PC) applied for finding the optimal settings of PSS parameters. Two different eigenvalue-based objectives are combined as the objective function for the optimization problem of tuning PSS parameters. The first objective function comprises the damping factor of lightly damped electro-mechanical modes and the second one includes the damping ratio of these modes. The effectiveness of the proposed method to design PSS for the power systems including DFIG (Doubly Fed Induction Generator) is extensively demonstrated through eigenvalue analysis and time-domain simulations and also by comparing its simulation results with the results of other heuristic optimization approaches. - Highlights: • A new optimization model for design of PSS in power systems including DFIG is proposed. • A detailed and realistic modeling of DFIG is presented. • A new evolutionary algorithm is suggested for solving the optimization problem of designing PSS

  18. The unconstitutionality of the compensatory fee according to section 8 of the Third Act on Enhanced Use of Coal for Electricity Generation ('Coal Pfennig'). Federal Constitutional Court, judgment of 11 Oct. 1994 - 2BvR 633/86

    International Nuclear Information System (INIS)

    Haager, K.; Lauffer, P.

    1995-01-01

    In order to protect the financial system of the federation as well as the appropriations power of the Bundestag from interference, and in order to account for the requirement of individual protection of the tax payers with regard to equality of burdens, a special levy shall be permitted by constitutional law only under very stringent conditions, and in very exceptional cases. The compensatory fee according to section 8 of the Third Act on Enhanced Use of Coal for Electricity Generation ('Coal Pfennig') thus is unconstitutional, as it puts an additional burden on the body of tax payers who as such do not bear responsibility for the financing of the purpose, to subsidise the use of coal for electricity generation. (orig.) [de

  19. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  20. The European Coal Market: Will Coal Survive the EC's Energy and Climate Policies?

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2012-01-01

    The European coal industry is at a crossroads. The European Commission (EC) Energy Policy by 2020, the 20/20/20 targets, is not favourable to coal: a 20% decrease in CO 2 emissions does not favour coal compared with natural gas, its main competitor in electricity generation; a 20% increase in energy efficiency will lead to a decrease in energy/coal consumption; a 20% increase in renewables will displace other energy sources, including coal. The recent EC Energy road-map to 2050 targets a cut in GHG emissions by 80-95%. Under such a tough emissions reduction target, the future use of coal is tied with CCS technologies for which public acceptance and an adequate CO 2 price are crucial. The Large Combustion Plants Directive has already had a huge impact on EU coal-fired electricity generation. In UK, a third of coal-fired power capacity will be closed by the end of 2015 at the latest. Phase III of the EU Emissions Trading Scheme requires CO 2 allowances to be auctioned from January 2013, adding a new burden on fossil fuel power plants. The end of state aid to European hard coal production by 2018, in line with EC Council Decision 2010/787/EU, means that domestic production is going to decrease. Does this mean the end of coal in Europe? Maybe not, and certainly not by 2020, although its future after that date is quite uncertain. Coal provides 17% of the EU s primary energy supply, and represents 25% of electricity generation. With the phasing out of nuclear energy in some countries (mainly Germany), coal has gained a period of grace before the transition to a less-carbonised economy. Its consumption by European power utilities increased by 7% in the first half of 2012, boosted by low CO 2 prices and relatively high gas prices. European production still accounts for 60% of the total coal supply in the EU. Coal therefore gives the EU a certain degree of independence and contributes to its security of supply. Hard coal and lignite represent approximately 80% of EU

  1. Performance evaluation of solar aided feedwater heating of coal-fired power generation (SAFHCPG) system under different operating conditions

    International Nuclear Information System (INIS)

    Hong-juan, Hou; Zhen-yue, Yu; Yong-ping, Yang; Si, Chen; Na, Luo; Junjie, Wu

    2013-01-01

    Highlights: • The performance of a SAFHCPG system at design point is analyzed. • The solar radiation intensity and the electrical load demand on the grid side are considered in the annual performance analysis. • The optimum aperture area of the solar field has been discussed based on the annual performance. - Abstract: Integrating solar energy with a coal-fired power plant or other power systems has been proved to be an efficient way to utilize solar energy for power generation. Solar aided feedwater heating of a coal-fired power generation (SAFHCPG) system, which is mainly discussed in this paper, is chosen as an option for its easy operation and flexible control nature. The performance of a SAFHCPG system at design point is analyzed under various load conditions in the paper. As the results show in Table 4, the lower load of coal-fired unit that solar aid, the lower solar-to-electric efficiency will be. For a SAFHCPG system, its performance is influenced by the solar radiation intensity and the electrical load demand on the grid side. The correlation between the annual performance of a SAFHCPG plant and the two key factors is discussed and then the optimal aperture area of solar field is derived. The result shows that, for the case studied the optimal aperture area of solar field and the lowest LEC (Levelized Electricity Costs) are: 115395 m 2 and 0.472 ¥/kW h in a typical year; 138945 m 2 and 1.010 ¥/kW h in an extremely low radiation year; 91845 m 2 and 0.426 ¥/kW h in an extremely high radiation year respectively

  2. Energy-Water Nexus Relevant to Baseload Electricity Source Including Mini/Micro Hydropower Generation

    Science.gov (United States)

    Fujii, M.; Tanabe, S.; Yamada, M.

    2014-12-01

    Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and

  3. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  4. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  5. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  6. Combined compressed air storage-low BTU coal gasification power plant

    Science.gov (United States)

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  7. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  8. A systematic review of income generation interventions, including microfinance and vocational skills training, for HIV prevention.

    Science.gov (United States)

    Kennedy, Caitlin E; Fonner, Virginia A; O'Reilly, Kevin R; Sweat, Michael D

    2014-01-01

    Income generation interventions, such as microfinance or vocational skills training, address structural factors associated with HIV risk. However, the effectiveness of these interventions on HIV-related outcomes in low- and middle-income countries has not been synthesized. The authors conducted a systematic review by searching electronic databases from 1990 to 2012, examining secondary references, and hand-searching key journals. Peer-reviewed studies were included in the analysis if they evaluated income generation interventions in low- or middle-income countries and provided pre-post or multi-arm measures on behavioral, psychological, social, care, or biological outcomes related to HIV prevention. Standardized forms were used to abstract study data in duplicate and study rigor was assessed. Of the 5218 unique citations identified, 12 studies met criteria for inclusion. Studies were geographically diverse, with six conducted in sub-Saharan Africa, three in South or Southeast Asia, and three in Latin America and the Caribbean. Target populations included adult women (N = 6), female sex workers/bar workers (N = 3), and youth/orphans (N = 3). All studies targeted females except two among youth/orphans. Study rigor was moderate, with two group-randomized trials and two individual-randomized trials. All interventions except three included some form of microfinance. Only a minority of studies found significant intervention effects on condom use, number of sexual partners, or other HIV-related behavioral outcomes; most studies showed no significant change, although some may have had inadequate statistical power. One trial showed a 55% reduction in intimate partner violence (adjusted risk ratio 0.45, 95% confidence interval 0.23-0.91). No studies measured incidence/prevalence of HIV or sexually transmitted infections among intervention recipients. The evidence that income generation interventions influence HIV-related behaviors and outcomes is inconclusive. However, these

  9. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  10. Growth responses of selected freshwater algae to trace elements and scrubber ash slurry generated by coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Vocke, R.W.

    1979-01-01

    The development and implementation of standard toxicity tests is a necessity if consistent and reliable data are to be obtained for water quality criteria. The adapted EPA AAPBT is an ideal static algal toxicity test system. The algal test medium has a chemical composition similar to natural unpolluted waters of low ionic strength. It is appropriate to use MATC water quality criteria when assessing the potential impact of pollutants generated by coal-fired power stations because these energy-generated pollutants typically enter aquatic systems in small quantities over long periods. The MATC water quality criteria are estimates of trace element and SASE levels, based on the most sensitive alga investigated, that will not cause significant changes in naturally-functioning algal populations. These levels are 0.016f mg L/sup -1/ As(V), 0.001 mg L/sup -1/ Cd(II), 0.004 mg L/sup -1/ Hg(II), 0.006 mg L/sup -1/ Se(VI), and 0.344% SASE. To provide viable working water quality criteria, an extrapolation from the laboratory to the natural environment must be made. Therefore, those oxidation states of the trace elements were selected which are the dominant states occurring in natural, unpolluted, slightly alkaline freshwaters. It must be pointed out that these MATC values are based on algal responses to single toxicants and no allowance is made for synergistic, additive, or antagonistic relationships which could occur in natural aquatic systems. Additionally, natural chelation may influence toxicity. The highly toxic nature of potential pollutants from coal-fired generating plants emphasizes the need for minimizing stack effluent pollutants and retaining scrubber ash slurry for proper disposal in an effort to maintain trace elements in concentration ranges compatible with naturally-functioning ecosystems.

  11. Preliminary experimental studies of waste coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.; Jin, Y.G.; Yu, X.X.; Worrall, R. [CSIRO, Brisbane, QLD (Australia). Advanced Coal Technology

    2013-07-01

    Coal mining is one of Australia's most important industries. It was estimated that coal washery rejects from black coal mining was approximately 1.82 billion tonnes from 1960 to 2009 in Australia, and is projected to produce another one billion tonnes by 2018 at the current production rate. To ensure sustainability of the Australian coal industry, we have explored a new potential pathway to create value from the coal waste through production of liquid fuels or power generation using produced syngas from waste coal gasification. Consequently, environmental and community impacts of the solid waste could be minimized. However, the development of an effective waste coal gasification process is a key to the new pathway. An Australian mine site with a large reserve of waste coal was selected for the study, where raw waste coal samples including coarse rejects and tailings were collected. After investigating the initial raw waste coal samples, float/sink testing was conducted to achieve a desired ash target for laboratory-scale steam gasification testing and performance evaluation. The preliminary gasification test results show that carbon conversions of waste coal gradually increase as the reaction proceeds, which indicates that waste coal can be gasified by a steam gasification process. However, the carbon conversion rates are relatively low, only reaching to 20-30%. Furthermore, the reactivity of waste coal samples with a variety of ash contents under N{sub 2}/air atmosphere have been studied by a home-made thermogravimetric analysis (TGA) apparatus that can make the sample reach the reaction temperature instantly.

  12. Transient performances analysis of wind turbine system with induction generator including flux saturation and skin effect

    DEFF Research Database (Denmark)

    Li, H.; Zhao, B.; Han, L.

    2010-01-01

    In order to analyze correctly the effect of different models for induction generators on the transient performances of large wind power generation, Wind turbine driven squirrel cage induction generator (SCIG) models taking into account both main and leakage flux saturation and skin effect were...

  13. Nuclear energy cost data base. A reference data base for nuclear and coal-fired powerplant power-generation cost analysis

    International Nuclear Information System (INIS)

    1982-10-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for DOE/NE. Proposals are presented for such a methodology and for reference assumptions and data to be used with the methodology. This report is intended to provide basic guidelines or a starting point for analysis and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base-load light water reactors on either a current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil and natural gas-fired electric generating plant coming on line in the last decade of this century. This paper includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  14. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    Major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use are evaluated. Only existing technology is evaluated. The only health effects of concern are those leading to definable human disease and injury. Health effects are scaled to a nominal 1000 Megawatt (electric) plant fueled by either option. Comparison of the total health effects to the general public gives: nuclear, 0.03 to 0.05 major health effects per 1000 MWe per year; coal, 0.7 to 3.7 per 1000 MWe per year. Thus for the general public the health risks from the coal cycle are about 50 times greater than for the nuclear cycle. Health effects to workers in the industry are currently quite high. For the nuclear cycle, 4.6 to 5.1 major health impacts per 1000 MWe per year; for coal, 6.5 to 10.9. The two-fold greater risk for the coal cycle is primarily due to high injury rates in coal miners. There is no evidence that electrical transmission contributes any health effects to the general public, except for episodes where broken power lines come in contact with people. For power line workers, the risk is estimated at 0.1 serious injury per 1000 MWe per year

  15. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  16. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.

    Science.gov (United States)

    McNevin, Thomas F

    2016-01-01

    The most effective control technology available for the reduction of oxides of nitrogen (NOx) from coal-fired boilers is selective catalytic reduction (SCR). Installation of SCR on coal-fired electric generating units (EGUs) has grown substantially since the onset of the U.S. Environmental Protection Agency's (EPA) first cap and trade program for oxides of nitrogen in 1999, the Ozone Transport Commission (OTC) NOx Budget Program. Installations have increased from 6 units present in 1998 in the states that encompass the current Cross-State Air Pollution Rule (CSAPR) ozone season program to 250 in 2014. In recent years, however, the degree of usage of installed SCR technology has been dropping significantly at individual plants. Average seasonal NOx emission rates increased substantially during the Clean Air Interstate Rule (CAIR) program. These increases coincided with a collapse in the cost of CAIR allowances, which declined to less than the cost of the reagent required to operate installed SCR equipment, and was accompanied by a 77% decline in delivered natural gas prices from their peak in June of 2008 to April 2012, which in turn coincided with a 390% increase in shale gas production between 2008 and 2012. These years also witnessed a decline in national electric generation which, after peaking in 2007, declined through 2013 at an annualized rate of -0.3%. Scaling back the use of installed SCR on coal-fired plants has resulted in the release of over 290,000 tons of avoidable NOx during the past five ozone seasons in the states that participated in the CAIR program. To function as designed, a cap and trade program must maintain allowance costs that function as a disincentive for the release of the air pollutants that the program seeks to control. If the principle incentive for reducing NOx emissions is the avoidance of allowance costs, emissions may be expected to increase if costs fall below a critical value, in the absence of additional state or federal

  17. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  18. Electricity generation from solid biomass via co-combustion with coal. Energy and emission balances from a German case study

    International Nuclear Information System (INIS)

    Hartmann, D.; Kaltschmitt, M.

    1999-01-01

    The environmental effects of electricity production from different biofuels by means of co-combustion with hard coal in existing coal fired power plants are analysed and compared to electricity production from hard coal alone based on Life Cycle Analysis (LCA). The use of straw and residual wood at a 10% blend with coal in an existing power plant in the southern part of Germany shows that all investigated environmental effects are significantly lower if biomass is used instead of coal. Thus based on the available and proven technology of co-combustion of hard coal and biomass in existing power plants a significant contribution could be made to a more environmentally sound energy system compared to using coal alone. (author)

  19. A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase

    Science.gov (United States)

    Marigo, Paola; Girardi, Léo; Bressan, Alessandro; Rosenfield, Philip; Aringer, Bernhard; Chen, Yang; Dussin, Marco; Nanni, Ambra; Pastorelli, Giada; Rodrigues, Thaíse S.; Trabucchi, Michele; Bladh, Sara; Dalcanton, Julianne; Groenewegen, Martin A. T.; Montalbán, Josefina; Wood, Peter R.

    2017-01-01

    We introduce a new generation of PARSEC-COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

  20. Question marks of the Czech coal mining industry

    International Nuclear Information System (INIS)

    Dopita, M.; Pesek, J.

    1995-01-01

    An overview of brown and black coal mining in the Czech Republic is presented, and problems of the extent of coal reserves and of the profitability of deep black coal mining are discussed. Costs of coal mining in foreign countries are given. Coal mining in the Czech Republic can be expected to be loss-making unless coal prices are increased. Since coal resources in the Czech Republic are limited, additional nuclear power plants will have to be constructed or else coal for power generation will have to be imported. The environmental aspects of coal mining and burning are discussed. Medium-term and long-term solutions to reduce the environmental burden include thermal power plant desulfurization, application of the fluidized-bed combustion regime to coals with large ash and/or sulfur contents, and introduction of gas in towns and power plants. In the short run, large-scale consumers in towns and coal basins should be obliged to accumulate reserves of low-sulfur coal for later use. (J.B.). 2 tabs., 3 figs., 8 refs

  1. The future of coal in the power generation in Germany. An environmentally economic consideration of the public discussion; Die Zukunft der Kohle in der Stromerzeugung in Deutschland. Eine umweltoekonomische Betrachtung der oeffentlichen Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Loeschel, Andreas [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany)

    2009-07-01

    The future role of coal in the power production is in the area of conflict of economic efficiency, supply reliability, and environmental compatibility. A radical exit from the power generation from coal is not possible due to the actual supply reliability. In order to make coal really dispensable, a large technological breakthrough would have to be obtained with the renewable energies. By means of the consistent conversion of the emission trade system of the European Union, incentives can be created for investing in other technologies for power generation or efficient coal-fired power stations, respectively. Thereby, by means of a full auction of the contamination rate, the trade with carbon dioxide also enables the introduction of technologies for CO{sub 2} separation in the new construction of coal-fired power stations. In order to increase the energy efficiency, this technology can be used as a bridging technology in the transition to renewable energies. Considering the different arguments for and against coal, the following conclusions can be drawn: (a) Also in the future, coal plays a crucial role in the power generation in Germany, Europe and world-wide; (b) Compared with other sources of energy, the largest reserves and resources are proven for coal; (c) Also in the future, coal will clearly be cheaper than natural gas; (d) Coal production, coal transport as well as power generation from coal are environmentally harmful and climatically harmful in a large scale; (e) The European Union wide emissions trading is a suitable instrument for the internationalization of external costs of power generation from coal; (f) The splitting off and storage of CO{sub 2} is a crucial technology option for attaining the long-term climatic goals.

  2. Use of aqueous slurries of coal fly ash samples for the direct determination of As, Sb, and Se by hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moreda-Pineiro, J.; Moscoso-Perez, C.; Lopez-Mahia, P.; Muniategui-Lorenzoa, S.; Fernandez-Fernandez, E.; Prada-Rodriguez, D. [University of La Coruna, La Coruna (Spain). Faculty of Science

    2006-01-15

    A highly sensitive and simple method was developed based on the continuous hydride generation of aqueous coal fly ash slurry samples and the direct atomic fluorescence detection of As, Sb, and Se. A 2{sup 8} x 3/64 Plackett-Burman design was used as the multivariate strategy for evaluation of the effects of several variables involved in hydride generation efficiency (HCl, NaBH{sub 4}, NaBH{sub 4} flow rate, particle size, and slurry concentration). In addition, measurement time was also considered. Slurry concentration was the significant variable for As, hydrochloric acid concentration for Sb determination; no significant variable was found for Se. Optimum values for the significant variables were selected by using univariate approaches. The precision obtained ({lt} 8.0 %) was adequate for the determination of several hydride-forming elements in coal fly ash samples. Since there was a matrix effect, the standard addition method was required. Accuracy was assessed by analyzing NIST 1633b Coal Fly Ash certified reference material. Detection limits within the range of 0.03-0.67 {mu} g g{sup -1} were achieved. The developed methods were applied to several coal fly ash samples obtained from a coal-fired power plant.

  3. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology

    International Nuclear Information System (INIS)

    Yan, Qiuhui; Hou, Yanwan; Luo, Jieren; Miao, Haijun; Zhang, Hong

    2016-01-01

    Graphical abstract: The exergy release mechanism of coal oxidation in SCW is revealed, and energy level, exergy losses as well as exergy efficiency are quantitatively investigated. Finally, based on the SCWO technology of coal, a new power generation system is constructed, and the exergy efficiency of the new system and conventional system is compared and analyzed. - Highlights: • Revealed release mechanism of exergy in supercritical water oxidation of coal. • Energy level, exergy losses and exergy efficiency are quantitatively investigated. • Exergy efficiency of supercritical water oxidation reactors is 80.1%. • Built a new power generation system based on supercritical water oxidation of coal. • Exergy efficiency of new power generation system is 21% higher than the conventional. - Abstract: The oxidation environment has important influence on the transformation of the energy contained in fuel and generation of pollutants. To the problem of nearly 50% exergy losses in coal oxidation at air atmosphere, this research intends to change oxidation atmosphere from air to supercritical water/oxidant and achieve efficient release of exergy in coal at about 650 °C with the aid of a high solubility and unique performance of heat and mass transfer of supercritical water. Therefore, firstly, based on the exergy analysis theory and the energy-utilization diagrams, the release mechanism of exergy of coal in supercritical water oxidation process is revealed. It is pointed out that supercritical water oxidation has changed the release pathways of chemical exergy, and decreased the level difference between chemical exergy and thermal energy, and more exergy is released. Meanwhile, there is also no exergy loss of physical heat transfer. As a result, supercritical water oxidation has higher exergy efficiency than conventional oxidation. Secondly, the exergy losses, level difference between chemical exergy and thermal energy as well as exergy efficiency, are

  4. Benefits of coal-fired power generation with flexible CCS in a future northwest European power system with large scale wind power

    NARCIS (Netherlands)

    Van der Wijk, Pieter Cornelis; Brouwer, Anne Sjoerd|info:eu-repo/dai/nl/330822748; Van den Broek, Machteld|info:eu-repo/dai/nl/092946895; Slot, Thijs; Stienstra, Gerard; Van der Veen, Wim; Faaij, André P C

    Coal-fired power generation with carbon capture and storage (CCS) is projected as a cost-effective technology to decarbonize the power sector. Intermittent renewables could reduce its load factor and revenues, so flexible capture unit operation strategies (flexible CCS) have been suggested to

  5. A new South Africa: coal exports in transition

    Energy Technology Data Exchange (ETDEWEB)

    Botha, R.F. [Ministry of Mineral and Energy Affairs (South Africa)

    1995-11-01

    Discusses aspects of the coal industry in South Africa particularly in the light of the recent political changes i.e. the ending of apartheid and the election of the South African Government of National Unity. Areas covered include: increased foreign investment; the Government`s Reconstruction and Development Programme; improved health and safety; production of coal based liquid fuels; coal reserves; power generation; and exports and terminal facilities.

  6. A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

    Energy Technology Data Exchange (ETDEWEB)

    Marigo, Paola; Aringer, Bernhard; Chen, Yang; Dussin, Marco; Nanni, Ambra; Pastorelli, Giada; Rodrigues, Thaíse S.; Trabucchi, Michele; Bladh, Sara; Montalbán, Josefina [Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Girardi, Léo [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Bressan, Alessandro [SISSA, via Bonomea 365, I-34136 Trieste (Italy); Rosenfield, Philip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Dalcanton, Julianne [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Groenewegen, Martin A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, B-1180 Brussels (Belgium); Wood, Peter R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)

    2017-01-20

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z {sub i} < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in the stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.

  7. Proceedings, the 5th international conference and exhibition on Coal Tech 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The theme of Coal Tech 2004 was 'Coal for regional development' and aimed to give the opportunity for the Malaysian and Indonesian energy sector (in particular the coal sector and power generation sector) to collaborate and exchange experiences with a view to expanding business opportunities. Day 1 consisted of training on coal combustion in coal fired power plant; Day 2 and 3 a wide section of papers were presented on various aspects of power generation and clean coal technology. Papers on utilization of coal with biomass are included . The proceedings contain, in a loose leaf binder, text of papers or viewgraphs/overheads of the presentations. A total of 24 papers has been abstracted separately for the Coal Abstracts database.

  8. Environmental externalities: An ASEAN application to coal-based power generation

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms

  9. Environmental externalities: An ASEAN application to coal-based power generation. Extract

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  10. Determination of As, Bi and Se in acidified slurries of marine sediment, soil and coal samples by hydride generation electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moreda-Pineiro, J.; Lopez-Mahia, P.; Muniategui-Lorenzo, S.; Fernandez-Fernandez, E.; Prada-Rodriguez, D. [University of La Coruna, La Coruna (Spain). Faculty of Science, Dept. of Analytical Chemistry

    2002-07-01

    Ir-treated graphite tubes were used for preconcentration and atomisation of the As, Bi and Se hydrides generated from acidified slurries of marine sediment, soil and coal samples. A batch mode generation system was used for the hydride generation. The variables affecting the acidified slurry preparation procedure (assisted by ultrasonic energy) and the hydride generation/trapping/atomisation processes were studied by using a Plackett-Burman design. The sensitivity (characteristic masses of 65, 75 and 100 pg, for As, Bi and Se, respectively) and precision (RSD% lower than 10%) obtained were adequate for As, Bi and Se determination in slurry samples. The accuracy of the method was verified by analysing PACS-1 (Marine Sediment), GBW-07401 (Soil) and NIST SRM 1632c (Coal) certified reference materials.

  11. Case study on comparative assessment of nuclear and coal-fueled electricity generation options and strategy for nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Shiping; Shi Xiangjun; Bao Yunqiao; Mo Xuefeng; Wei Zhihong; Fang Dong; Ma Yuqing; Li Hong; Pan Ziqiang; Li Xutong

    2001-01-01

    China, as other countries in the world, is seeking for a way of sustainable development. In energy/electricity field, nuclear power is one of electric energy options considering the Chinese capability of nuclear industry. The purpose of this study is to investigate the role of nuclear power in Chinese energy/electricity system in future by comprehensive assessment. The main conclusions obtained from this study are: (1) China will need a total generation capacity of 750 - 879 GW in 2020, which means new power units of 460 - 590 GW generation capacity will be built from 2001 to 2020. (2) the total amount of SO 2 emission from power production will rise to 16 - 18 Mt in 2020, about 2.8 - 3.2 times of 1995, even if the measures to control SO 2 emission are taken for all new coal units. (3) CO 2 emission from electricity generation will reach 21 - 24 Gt in 2020. (4) the environmental impacts and health risks of coal-fired energy chain are greater than that of nuclear chain. The normalized health risk caused by coal chain is 20.12 deaths/GW·a but 4.63 deaths/GW·a by nuclear chain in China. (5) As estimated by experts, there will be a shortage of 200 GW in 2050 in China even if considering the maximum production of coal, the utilization of hydropower and renewable resource. Nuclear power is the only way to fill the gap between demand and supply

  12. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  13. Coal and petroleum resources in the Appalachian basin: index maps of included studies: Chapter B.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Trippi, Michael H.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This chapter B.1 of U.S. Geological Survey (USGS) Professional Paper 1708 provides index maps for many of the studies described in other chapters of the report. Scientists of the USGS and State geological surveys studied coal and petroleum resources in the central and southern Appalachian structural basins. In the southern Appalachian basin, studies focused on the coal-bearing parts of the Black Warrior basin in Alabama. The scientists used new and existing geologic data sets to create a common spatial geologic framework for the fossil-fuel-bearing strata of the central Appalachian basin and the Black Warrior basin in Alabama.

  14. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    Science.gov (United States)

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  15. China's Coal: Demand, Constraints, and Externalities

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of

  16. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  17. Arctic vegetation damage by winter-generated coal mining pollution released upon thawing

    DEFF Research Database (Denmark)

    Elberling, B.; Søndergaard, J.; Jensen, L.A.

    2007-01-01

    Acid mine drainage (known as AMD) is a well-known environmental problem resulting from the oxidation of sulfidic mine waste. In cold regions, AMD is often considered limited by low temperatures most of the year and observed environmental impact is related to pollution generated during the warm...

  18. Balance of natural radionuclides in the brown coal based power generation and harmlessness of the residues and side product utilization; Bilanz natuerlicher Radionuklide in der Braunkohleverstromung und Unbedenklichkeit bei der Verwendung von Rueckstaenden und Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Hartmut; Kunze, Christian; Hummrich, Holger [IAF-Radiooekologie GmbH, Radeberg (Germany)

    2017-04-01

    During brown coal combustion a partial enrichment of natural radionuclides occurs in different residues. Residues and side product from brown coal based power generation are used in different ways, for example filter ashes and gypsum from flue gas desulfurization facilities are used in the construction materials fabrication and slags for road construction. Detailed measurement and accounting of radionuclides in the mass throughputs in coal combustion power plants have shown that the utilized gypsum and filter ashes are harmless in radiologic aspects.

  19. Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units

    Directory of Open Access Journals (Sweden)

    Saroj Padhan

    2014-09-01

    Full Text Available In the present work, an attempt has been made to understand the dynamic performance of Automatic Generation Control (AGC of multi-area multi-units thermal–thermal power system with the consideration of Reheat turbine, Generation Rate Constraint (GRC and Time delay. Initially, the gains of the fuzzy PID controller are optimized using Differential Evolution (DE algorithm. The superiority of DE is demonstrated by comparing the results with Genetic Algorithm (GA. After that performance of Thyristor Controlled Series Compensator (TCSC has been investigated. Further, a TCSC is placed in the tie-line and Superconducting Magnetic Energy Storage (SMES units are considered in both areas. Finally, sensitivity analysis is performed by varying the system parameters and operating load conditions from their nominal values. It is observed that the optimum gains of the proposed controller need not be reset even if the system is subjected to wide variation in loading condition and system parameters.

  20. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    Rose, A.; Torries, T.; Labys, W.

    1991-01-01

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  1. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  2. Influence of thermoplastic properties on coking pressure generation: Part 1 - A study of single coals of various rank

    Energy Technology Data Exchange (ETDEWEB)

    John J. Duffy; Merrick R. Mahoney; Karen M. Steel [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2010-07-15

    In this study a number of high coking pressure coals with different fluidities were evaluated alongside a number of low pressure coals also with differing fluidities. This was to establish rheological parameters within which a coal may be considered potentially dangerous with regards to coking pressure. The results have confirmed and elaborated on previous findings which show that parallel plate displacement ({Delta}L) and axial force profiles can be used to distinguish between high and low pressure coals, with peak values indicating cell rupture and subsequent pore network formation. This is thought to correspond with plastic layer compaction in the coke oven. For low pressure coals pore coalescence occurs quite early in the softening process when viscosity/elasticity are decreasing and consequently a large degree of contraction/collapse is observed. For higher pressure coals the process is delayed since pore development and consequently wall thinning progress at a slower rate. If or when a pore network is established, a lower degree of contraction/collapse is observed because the event occurs closer to resolidification, where viscosity and elasticity are increasing. For the higher fluidity, high coking pressure coals, a greater degree of swelling is observed prior to cell rupture, and this is considered to be the primary reason for the high coking pressure observed with these coals. An additional consequence of these events is that high pressure coals are likely to contain a higher proportion of closed cells both at and during resolidification, reducing permeability in both the semi-coke and high temperature plastic layers, respectively. Using a rheological mapping approach to follow viscoelastic changes during carbonisation it has been possible to identify specific regions associated with dangerous coals. 76 refs., 11 figs., 3 tabs.

  3. Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines

    International Nuclear Information System (INIS)

    Aneke, Mathew; Wang, Meihong

    2015-01-01

    Highlights: • We model a 573 MW pressurized oxy-coal combustion with supercritical steam cycle. • A 126 MW liquid air power plant was integrated to utilize the nitrogen stream. • We used organic Rankine cycle to recover heat from compressors. • The model was analysed for with and without carbon capture consideration. • Efficiency increase of 12–15% was achieved due to integration and heat recovery. - Abstract: In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal combustion supercritical steam power generation cycle is investigated through modeling and simulation using Aspen Plus® simulation software version 8.4. The study shows that the integration of LAPG process and the use of binary cycle heat engine which convert waste heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion supercritical steam power generation cycle improves the thermodynamic efficiency of the pressurized oxy-coal process. The analysis indicates that such integration can give about 12–15% increase in thermodynamic efficiency when compared with a standalone pressurized oxy-coal process with or without CO 2 capture. It was also found that in a pressurized oxy-coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently expand the gaseous oxygen to the required combustor pressure than either compressing the atmospheric gaseous oxygen produced from the cryogenic ASU directly to the combustor pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the cryogenic ASU main heat exchanger. The power generated from the compressor heat in the flue gas purification, carbon capture and compression unit using binary cycle heat engine was also found to offset about 65% of the

  4. Power generation scheduling. A free market based procedure with reserve constraints included

    International Nuclear Information System (INIS)

    Huse, Einar Staale

    1998-01-01

    This thesis deals with the short-term scheduling of electric power generation in a competitive market. This involves determination of start-ups and shut-downs, and production levels of all units in all hours of the optimization period, considering unit characteristics and system restrictions. The unit characteristics and restrictions handled are minimum and maximum production levels, fuel cost function, start-up costs, minimum up time and minimum down time. The system restrictions handled are power balance (supply equals demand in all hours) and spinning reserve requirement. The thesis has two main contributions: (1) A new organization of an hourly electric power market that simultaneously sets the price of both energy and reserve power is proposed. A power exchange is used as a trading place for electricity. Its responsibility is to balance supply and demand bids and to secure enough spinning reserve. Routines for bidding and market clearing are developed. (2) A computer programme that simulates the proposed electricity market has been implemented. The program can also be used as a new method for solving the single owner generation scheduling problem. Simulations show that the performance of the program is excellent. Simulations also show that it is possible to obtain efficient schedules through the proposed electricity market. 37 refs., 20 figs., 15 tabs

  5. Power generation scheduling. A free market based procedure with reserve constraints included

    Energy Technology Data Exchange (ETDEWEB)

    Huse, Einar Staale

    1998-12-31

    This thesis deals with the short-term scheduling of electric power generation in a competitive market. This involves determination of start-ups and shut-downs, and production levels of all units in all hours of the optimization period, considering unit characteristics and system restrictions. The unit characteristics and restrictions handled are minimum and maximum production levels, fuel cost function, start-up costs, minimum up time and minimum down time. The system restrictions handled are power balance (supply equals demand in all hours) and spinning reserve requirement. The thesis has two main contributions: (1) A new organization of an hourly electric power market that simultaneously sets the price of both energy and reserve power is proposed. A power exchange is used as a trading place for electricity. Its responsibility is to balance supply and demand bids and to secure enough spinning reserve. Routines for bidding and market clearing are developed. (2) A computer programme that simulates the proposed electricity market has been implemented. The program can also be used as a new method for solving the single owner generation scheduling problem. Simulations show that the performance of the program is excellent. Simulations also show that it is possible to obtain efficient schedules through the proposed electricity market. 37 refs., 20 figs., 15 tabs.

  6. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  7. 75 FR 70741 - TPF Generation Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2010-11-18

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-1936-000] TPF Generation Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... proceeding TPF Generation Holdings, LLC's application for market-based rate authority, with an accompanying...

  8. 78 FR 44109 - AEP Generation Resources Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-07-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1896-000] AEP Generation Resources Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Generation Resources Inc.'s application for market-based rate authority, with an accompanying rate schedule...

  9. 77 FR 279 - Brea Generation LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Science.gov (United States)

    2012-01-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-673-000] Brea Generation LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... Generation LLC's application for market-based rate authority, with an accompanying rate tariff, noting that...

  10. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  11. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  12. Discovery and ramifications of incidental Magnéli phase generation and release from industrial coal-burning.

    Science.gov (United States)

    Yang, Yi; Chen, Bo; Hower, James; Schindler, Michael; Winkler, Christopher; Brandt, Jessica; Di Giulio, Richard; Ge, Jianping; Liu, Min; Fu, Yuhao; Zhang, Lijun; Chen, Yuru; Priya, Shashank; Hochella, Michael F

    2017-08-08

    Coal, as one of the most economic and abundant energy sources, remains the leading fuel for producing electricity worldwide. Yet, burning coal produces more global warming CO 2 relative to all other fossil fuels, and it is a major contributor to atmospheric particulate matter known to have a deleterious respiratory and cardiovascular impact in humans, especially in China and India. Here we have discovered that burning coal also produces large quantities of otherwise rare Magnéli phases (Ti x O 2x-1 with 4 ≤ x ≤ 9) from TiO 2 minerals naturally present in coal. This provides a new tracer for tracking solid-state emissions worldwide from industrial coal-burning. In its first toxicity testing, we have also shown that nanoscale Magnéli phases have potential toxicity pathways that are not photoactive like TiO 2 phases, but instead seem to be biologically active without photostimulation. In the future, these phases should be thoroughly tested for their toxicity in the human lung.Solid-state emissions from coal burning remain an environmental concern. Here, the authors have found that TiO2 minerals present in coal are converted into titanium suboxides during burning, and initial biotoxicity screening suggests that further testing is needed to look into human lung consequences.

  13. Determination of leveled costs of electric generation for gas plants, coal and nuclear; Determinacion de costos nivelados de generacion electrica para plantas de gas, carbon y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: galonso@nuclear.inin.mx

    2005-07-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  14. Coal -94

    International Nuclear Information System (INIS)

    Sparre, C.

    1994-05-01

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO 2 and NO x . Co-generation plants all have some sort of SO 2 -removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NO x -duties is a 40% reduction

  15. Coal at the crossroads : energy panacea or environmental sunset?

    International Nuclear Information System (INIS)

    Page, B.

    2008-01-01

    This presentation provided information on the global scene for climate change and coal reserves. While the trend of rising prices for declining conventional oil and gas reserves is expected to continue, the index of coal reserves remains high, therefore the price for coal is rising more slowly. New environmental regulations will soon be mandated in both Canada and the United States for emissions of carbon dioxide, sodium oxide, nitrogen oxide, mercury, as well as water use and water quality. Coal reserves in Canada and around the world were presented along with rates of growth in global coal markets and its price advantage. Coal was noted as being essential for Canada's energy future. Although it is the least expensive generating fuel in Alberta, followed by natural gas, the gap between the two fuels is gradually widening, not because of the cost of coal for existing super-critical pulverized coal steam boilers, but because of the additional costs associated with new environmental technologies and cost overruns for construction. The reliability of new technologies to maximize hours on line and avoid unplanned stoppages or interruptions is also a cost factor. This presentation also addressed other topics involving the coal sector and the geo-political situation, including coal in Alberta; the sustainability challenge; and new federal regulations. The presentation included a schematic indicating the polygeneration potential of coal gasification. Another environmental solution to coal use includes carbon capture and sequestration (CCS) in which carbon dioxide is captured and pipelined to an underground storage site or used for enhanced oil recovery. It was concluded that the coal industry must do a much better job at communicating its message, addressing its critics, and influencing the public. figs

  16. Fault Reactivation Can Generate Hydraulic Short Circuits in Underground Coal Gasification—New Insights from Regional-Scale Thermo-Mechanical 3D Modeling

    Directory of Open Access Journals (Sweden)

    Christopher Otto

    2016-09-01

    Full Text Available Underground coal gasification (UCG has the potential to increase worldwide coal reserves by utilization of coal deposits not mineable by conventional methods. This involves combusting coal in situ to produce a synthesis gas, applicable for electricity generation and chemical feedstock production. Three-dimensional (3D thermo-mechanical models already significantly contribute to UCG design by process optimization and mitigation of the environmental footprint. We developed the first 3D UCG model based on real structural geological data to investigate the impacts of using isothermal and non-isothermal simulations, two different pillar widths and four varying regional stress regimes on the spatial changes in temperature and permeability, ground surface subsidence and fault reactivation. Our simulation results demonstrate that non-isothermal processes have to be considered in these assessments due to thermally-induced stresses. Furthermore, we demonstrate that permeability increase is limited to the close reactor vicinity, although the presence of previously undetected faults can introduce formation of hydraulic short circuits between single UCG channels over large distances. This requires particular consideration of potentially present sub-seismic faults in the exploration and site selection stages, since the required pillar widths may be easily underestimated in presence of faults with different orientations with respect to the regional stress regime.

  17. Electricity generation of Maritsa-Iztok coal-fired power plant in Bulgaria and its complex impact on the environment

    International Nuclear Information System (INIS)

    Mitrikov, M.; Antonov, A.; Hristov, Hr.

    2001-01-01

    Soil, water and vegetable samples from the region of Maritsa-Iztok Coal-Fired Power Plants (CFPP) in Bulgaria have been studied using a large variety of methods for analysis: γ- and neutron activation analysis, γ-spectrometry, radiometry, mass- spectrometry, physicochemical analysis, soil sciences study. Detailed information about the concentration of ecologically important elements in the chain coal bottom ash, fly ashes environment (soil, water, air, vegetation) has been obtained, allowing to estimate the present ecological state of the region. (author)

  18. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  19. Oil from coal by flash pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I.W. (and others)

    1985-12-01

    This report summarizes the final stage of the NERDDP-funded work on coal liquefaction by flash pyrolysis. A working model pyrolyser, simulating a full-scale unit, has been operated over extended periods with Liddell and Piercefield (NSW), Acland, Millmerran and Macalister (Qld), and Loy Yang (Vic) coals. For several of the coals pyrolysed process heat was generated by combustion of some of the by-product char. Tar from Millmerran, Piercefield, Loy Yang, and Yallourn coals, produced in a separate pilot-scale pyrolyser, have been hydrogenated in continuous reactors to produce synthetic crude oils. Chars from Millmerran and Macalister sub-bituminous coals have been burned in the pilot-scale furnace with results as satisfactory as for the parent coals. The report shows that the flash pyrolysis method of making oil from coal is technically feasible, but cost studies show that in the present economic environment this method produces oil some three to four times more costly than natural oil. The report includes a summary of the overall CSIRO project of which this project formed a part, with emphasis on recent work of significance: e.g. methods of control of coke lay-down on tar hydrogenation catalysts; the combustion reactivity of pyrolysis chars; and various alternative uses of the flash pyrolysis method. Also included is an outline of related work carried out in other Australian and overseas laboratories, and a complete (to end of 1985) bibliography of all publications arising from the project.

  20. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

    2000-10-24

    The following are proposed activities for quarter 1 (6/15/00-9/14/00): (1) Finalize the allocation of funds within TAMU to co-principal investigators and the final task lists; (2) Acquire 3 D computer code for coal combustion and modify for cofiring Coal:Feedlot biomass and Coal:Litter biomass fuels; (3) Develop a simple one dimensional model for fixed bed gasifier cofired with coal:biomass fuels; and (4) Prepare the boiler burner for reburn tests with feedlot biomass fuels. The following were achieved During Quarter 5 (6/15/00-9/14/00): (1) Funds are being allocated to co-principal investigators; task list from Prof. Mukhtar has been received (Appendix A); (2) Order has been placed to acquire Pulverized Coal gasification and Combustion 3 D (PCGC-3) computer code for coal combustion and modify for cofiring Coal: Feedlot biomass and Coal: Litter biomass fuels. Reason for selecting this code is the availability of source code for modification to include biomass fuels; (3) A simplified one-dimensional model has been developed; however convergence had not yet been achieved; and (4) The length of the boiler burner has been increased to increase the residence time. A premixed propane burner has been installed to simulate coal combustion gases. First coal, as a reburn fuel will be used to generate base line data followed by methane, feedlot and litter biomass fuels.

  1. Proceedings of the workshop on radioactivity associated with coal use

    International Nuclear Information System (INIS)

    1981-12-01

    A workshop on radioactivity in coal use was held on September 15 through 17, 1981, under the auspices of the US Department of Energy, Office of Environmental Programs, and the Los Alamos National Laboratory. The purpose of the workshop was to identify research issues associated with radioactivity resulting from the use of coal for electric power generation. The concensus of the 10 scientists participating in the workshop was that a moderate to strong need exists for research in solubility of fly ash in different fluids and for determination of radioactivity in construction materials. Several additional research issues were identified but were given a lower priority. Summaries of each presentation are included. Titles are: some effects of coal combustion on the radiation environment; radionuclides in western coal at Mound; low-level radiation in coals utilized and ashes produced at New York State electric utilities; radioactivity from coal use - where are the problems; chemistry of radionuclides in coal preparation; uranium daughters in natural atmospheric aerosols and coal-fired power plant emissions; possible contributions of coal extraction and utilization to radioactivity contributions in drinking water; and impact on water quality from radionuclides in coal. One paper has been abstracted separately for inclusion in the Energy Data Base

  2. A STUDY ON THE GRINDABILITY OF SERBIAN COALS

    Directory of Open Access Journals (Sweden)

    Dragoslava D Stojiljković

    2011-01-01

    Full Text Available Thermal power plants in the Republic of Serbia are making considerable efforts and even more considerable investments, not only to maintain electricity production at maximum design levels, but even to additionally increase the power output of existing generating units. Capacities of mills used in pulverized coal preparation are identified as one of the main constraints to achieving maximum mill plant capacity, while coal grindability is seen as one of the factors that directly affect capacities of the coal mills utilized in thermal power plants. The paper presents results of experimental investigation conducted for the purpose of determining Hardgrove grindability index of coal. The investigation was conducted in accordance with ISO 5074 and included analysis of approximately 70 coal samples taken from the open pit mine of Kolubara coal basin. Research results obtained indicate that coal rich in mineral matter and thus, of lower heating value is characterized by higher grindability index. Therefore, analyses presented in the paper suggest that characteristics of solid fuels analyzed in the research investigation conducted are such that the use coals less rich in mineral matter i. e. coals characterized by lower grindability index will cause coal mills to operate at reduced capacity. This fact should be taken into account when considering a potential for electricity production increase.

  3. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  4. Generation of complete electronic nuclear medicine reports including static, dynamic and gated images

    International Nuclear Information System (INIS)

    Beretta, M.; Pilon, R.; Mut, F.

    2002-01-01

    Aim: To develop a procedure for the creation of nuclear medicine reports containing static and dynamic images. The reason for implementing this technique is the lack of adequate solutions for an electronic format of nuclear medicine results allowing for rapid transmission via e-mail, specially in the case of dynamic and gated SPECT studies, since functional data is best presented in dynamic mode. Material and Methods: Clinical images were acquired in static, whole body, dynamic and gated mode, corresponding to bone studies, diuretic renogram, radionuclide cystography and gated perfusion SPECT, as well as respective time-activity curves. Image files were imported from a dedicated nuclear medicine computer system (Elscint XPert) to a Windows-based PC through a standard ethernet network with TCP-IP communications protocol, using a software developed by us which permits the conversion from the manufacturer's original format into a bitmap format (.bmp) compatible with commercially available PC software. For cardiac perfusion studies, background was subtracted prior to transferring to reduce the amount of information in the file; this was not done for other type of studies because useful data could be eliminated. Dynamic images were then processed using commercial software to create animated files and stored in .gif format. Static images were re-sized and stored in .jpg format. Original color or gray scale was always preserved. All the graphic material was then merged with a previously prepared report text using HTML format. The report also contained reference diagrams to facilitate interpretation. The whole report was then compressed into a self-extractable file, ready to be sent by electronic mail. Reception of the material was visually checked for data integrity including image quality by two experienced nuclear medicine physicians. Results: The report presented allows for simultaneous visualization of the text, diagrams and images either static, dynamic, gated or

  5. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  6. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.

    Science.gov (United States)

    Burns, Andrew S; Pugh, Charles W; Segid, Yosief T; Behum, Paul T; Lefticariu, Liliana; Bender, Kelly S

    2012-06-01

    The effectiveness of a passive flow sulfate-reducing bioreactor processing acid mine drainage (AMD) generated from an abandoned coal mine in Southern Illinois was evaluated using geochemical and microbial community analysis 10 months post bioreactor construction. The results indicated that the treatment system was successful in both raising the pH of the AMD from 3.09 to 6.56 and in lowering the total iron level by 95.9%. While sulfate levels did decrease by 67.4%, the level post treatment (1153 mg/l) remained above recommended drinking water levels. Stimulation of biological sulfate reduction was indicated by a +2.60‰ increase in δ(34)S content of the remaining sulfate in the water post-treatment. Bacterial community analysis targeting 16S rRNA and dsrAB genes indicated that the pre-treated samples were dominated by bacteria related to iron-oxidizing Betaproteobacteria, while the post-treated water directly from the reactor outflow was dominated by sequences related to sulfur-oxidizing Epsilonproteobacteria and complex carbon degrading Bacteroidetes and Firmicutes phylums. Analysis of the post-treated water, prior to environmental release, revealed that the community shifted back to predominantly iron-oxidizing Betaproteobacteria. DsrA analysis implied limited diversity in the sulfate-reducing population present in both the bioreactor outflow and oxidation pond samples. These results support the use of passive flow bioreactors to lower the acidity, metal, and sulfate levels present in the AMD at the Tab-Simco mine, but suggest modifications of the system are necessary to both stimulate sulfate-reducing bacteria and inhibit sulfur-oxidizing bacteria.

  7. Study on the source of polycyclic aromatic hydrocarbons (PAHs) during coal pyrolysis by PY-GC-MS.

    Science.gov (United States)

    Dong, Jie; Li, Fan; Xie, Kechang

    2012-12-01

    Hazardous organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) generated during the course of coal pyrolysis are highly mutagenic and carcinogenic. The relation between the amount of PAHs from the raw coal and that generated from coal pyrolysis were studied. Firstly, three Chinese coals from Huolinhe, Ximeng and Fenxi were respectively extracted by dichloromethane, and then, online pyrolysis analysis of the raw coals, their extraction residues and extracts were carried out respectively by PY (Pyro-probe CDS 5250)-GC-MS. The experimental results showed that the PAHs generated from the Huolinhe, Ximeng and Fenxi coals in the course of their pyrolysis was 523, 327 and 1707 μg/g, respectively, which were much higher than the free PAHs extracted from their corresponding raw coals. The PAHs in the raw coals were dominated by 4,5-ring PAHs, while those generated from the coal pyrolysis were dominated by lower-ring (2,3-rings) PAHs. A lot of important information about the generation of PAHs from residue pyrolysis was also included in the paper which indicated that the PAHs were mainly from complex chemical reactions of the coal pyrolysis, and PAHs were more likely to be generated from the residue pyrolysis due to the increased pores that appeared on the coal surface during the course of extraction operation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  9. Direct As, Bi, Ge, Hg and Se(IV) cold vapor/hydride generation from coal fly ash slurry samples and determination by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moreda-Pineiro, J.; Lopez-Mahia, P; Muniategui-Lorenzo, S.; Fernandez-Fernandez, E.; Prada-Rodriguez, D. [University of La Coruna, La Coruna (Spain). Faculty of Science, Dept. of Analytical Chemistry

    2002-07-01

    Direct cold vapor and hydride generation procedures for As, Bi, Ge, Hg and Se(IV) from aqueous slurry of coal fly ash samples have been developed by using a batch mode generation system. Ir-treated graphite tubes have been used as a preconcentration and atomization medium of the vapors generated. A Plackett-Burman experimental design has been used as a strategy for evaluation of the effects of several parameters affecting the vapor generation efficiency from solid particles, vapor trapping and atomization efficiency from Ir-treated graphite tubes. The effects of parameters such as hydrochloric acid and sodium tetrahydroborate, argon flow rate, trapping and atomization temperatures, trapping time, acid solution volume and mean particle size have been investigated. Optimum values of the parameters have been selected for the development of direct cold vapor/hydride generation methods from slurry particles. The accuracy of methods have been verified by using NIST-1633a coal fly ash certified reference material. Absolute detection limits of 11.5, 48.0, 600, 55.0 and 11.0 ng l{sup -1} for As, Bi, Ge, Hg and Se have been achieved, respectively. A particle size less than 50 {mu}m has shown to be adequate to obtain total cold vapor/hydride generation of metals content in the aqueous slurry particles.

  10. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  11. Coal and our environment

    International Nuclear Information System (INIS)

    1992-01-01

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  12. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  13. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  14. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    Science.gov (United States)

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  15. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  16. Impacts on human health from the coal and nuclear fuel cycles and other technologies associated with electric power generation and transmission

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-07-01

    The report evaluates major public health impacts of electric power generation and transmission associated with the nuclear fuel cycle and with coal use. Only existing technology is evaluated. For the nuclear cycle, effects of future use of fuel reprocessing and long-term radioactive waste disposal are briefly considered. The health effects of concern are those leading to definable human disease and injury. Health effects are scaled to numbers of persons and activities associated with a nominal 1000-megawatt electric plant fueled by either option. Comparison of the total health effects to the general public shows that the health risks from the coal cycle are about 50 times greater than for the nuclear cycle (coal, 0.7-3.7 major health effects per 1000 MWe per year; nuclear, 0.03-0.05 per 1000 MWe per year). For workers, these rates are higher. No evidence is found that electrical transmission contributes any health effects to the general public, except when broken power lines come in contact with people

  17. Coal market outlook in China

    International Nuclear Information System (INIS)

    Yu Zhufeng; Zheng Xingzhou

    2005-01-01

    Coal is the major primary energy source in China. It is forecast that coal will account for over 60% of the primary energy consumption mix, and the total coal demand will reach 2.3-2.9 billion tons in 2020. However, ensuring the coal supply will be faced with a lot of obstacles in fields such as the degree of detailed exploration of coal reserves, the level of mining technology and mine safety, the production capacity building of mines, transport conditions, and ecological and environmental impacts. More comprehensive measures should be adopted, including improvements in energy efficiency, strengthening coal production and transportation capacity, to rationalise coal mine disposition and the coal production structure, and to raise the levels of coal mining technologies and mine safety management, etc. (author)

  18. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  19. Multiple time-scale optimization scheduling for islanded microgrids including PV, wind turbine, diesel generator and batteries

    DEFF Research Database (Denmark)

    Xiao, Zhao xia; Nan, Jiakai; Guerrero, Josep M.

    2017-01-01

    the adjustment of the day-ahead scheduling and giving priority to the use of renewable energy. According to the forecast of the critical and noncritical load, the wind speed, and the solar irradiation, mixed integer linear programming (MILP) optimization method is used to solve the multi-objective optimization......A multiple time-scale optimization scheduling including day ahead and short time for an islanded microgrid is presented. In this paper, the microgrid under study includes photovoltaics (PV), wind turbine (WT), diesel generator (DG), batteries, and shiftable loads. The study considers the maximum...... efficiency operation area for the diesel engine and the cost of the battery charge/discharge cycle losses. The day-ahead generation scheduling takes into account the minimum operational cost and the maximum load satisfaction as the objective function. Short-term optimal dispatch is based on minimizing...

  20. Thermo-economic optimization of the impact of renewable generators on poly-generation smart-grids including hot thermal storage

    International Nuclear Information System (INIS)

    Rivarolo, M.; Greco, A.; Massardo, A.F.

    2013-01-01

    Highlights: ► We model a poly-generation grid including thermal storage and renewable generators. ► We analyze the impact of random renewable generators on the grid performance. ► We carry out the grid optimization using a time-dependent thermo-economic approach. ► We present the importance of the storage system to optimize the RES impact. - Abstract: In this paper, the impact of not controllable renewable energy generators (wind turbines and solar photovoltaic panels) on the thermo-economic optimum performance of poly-generation smart grids is investigated using an original time dependent hierarchical approach. The grid used for the analysis is the one installed at the University of Genoa for research activities. It is based on different prime movers: (i) 100 kWe micro gas turbine, (ii) 20 kWe internal combustion engine powered by gases to produce both electrical and thermal (hot water) energy and (iii) a 100 kWth adsorption chiller to produce cooling (cold water) energy. The grid includes thermal storage tanks to manage the thermal demand load during the year. The plant under analysis is also equipped with two renewable non-controllable generators: a small size wind turbine and photovoltaic solar panels. The size and the management of the system studied in this work have been optimized, in order to minimize both capital and variable costs. A time-dependent thermo-economic hierarchical approach developed by the authors has been used, considering the time-dependent electrical, thermal and cooling load demands during the year as problem constraints. The results are presented and discussed in depth and show the strong interaction between fossil and renewable resources, and the importance of an appropriate storage system to optimize the RES impact taking into account the multiproduct character of the grid under investigation.

  1. Hydrogen from coal: Production and utilisation technologies

    International Nuclear Information System (INIS)

    Shoko, E.; McLellan, B.; Dicks, A.L.; da Costa, J.C. Diniz

    2006-01-01

    Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H 2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (author)

  2. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  7. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  8. Scenario-Based Analysis on Water Resources Implication of Coal Power in Western China

    OpenAIRE

    Jiahai Yuan; Qi Lei; Minpeng Xiong; Jingsheng Guo; Changhong Zhao

    2014-01-01

    Currently, 58% of coal-fired power generation capacity is located in eastern China, where the demand for electricity is strong. Serious air pollution in China, in eastern regions in particular, has compelled the Chinese government to impose a ban on the new construction of pulverized coal power plants in eastern regions. Meanwhile, rapid economic growth is thirsty for electric power supply. As a response, China planned to build large-scale coal power bases in six western provinces, including ...

  9. Utilization of coal/biomass fly ash and bentonite as a low permeability barrier for the containment of acid-generating mine tailings

    International Nuclear Information System (INIS)

    Penney, K.; Mohamedelhassan, E.; Catalan, L.J.J.

    2009-01-01

    The control and treatment of acid mine drainage (AMD) in decommissioned mine sites is a major environmental challenge. In general, AMD has a low pH, high acidity, and elevated concentrations of heavy metals. This study investigated the use of coal/biomass fly ash (CBFA) and CBFA/bentonite mixtures as a low permeability seal to contain acid generating mine tailings and treat AMD. Although pure CBFA is effective as a reactive barrier to treat most toxic metals in AMD, its initial hydraulic conductivity exceeds the maximum regulatory requirement of 1 x 10 -7 cm/s. Therefore, 3 cases were investigated, notably CBFA only; CBFA amended with low percentages of bentonite; and layering of CBFA and CBFA amended with bentonite. Practical geoenvironmental applications for low permeability CBFA or bentonite/CBFA mixtures include a cap overlying reactive mine tailings, a containment pond liner, and a core in containment dams and dykes. Mixing 10 per cent by mass bentonite with CBFA decreased the hydraulic conductivity to 1 x 10 -7 cm/s or less throughout the entire permeation by water and AMD. The installation of a layer of pure CBFA upstream of the bentonite/CBFA mixture resulted in a further decrease in hydraulic conductivity over time by preventing the collapse of the bentonite double layer and promoting precipitation of gypsum and ettringite in the CBFA layer. The effluent from all tested bentonite/CBFA barriers met the regulatory requirements for chemical parameters, except for aluminum which was leached from the CBFA. 14 refs., 3 tabs., 10 figs.

  10. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2005-10-01

    Low rank fuels such as subbituminous coals and lignites contain significant amounts of moisture compared to higher rank coals. Typically, the moisture content of subbituminous coals ranges from 15 to 30 percent, while that for lignites is between 25 and 40 percent, where both are expressed on a wet coal basis. High fuel moisture has several adverse impacts on the operation of a pulverized coal generating unit. High fuel moisture results in fuel handling problems, and it affects heat rate, mass rate (tonnage) of emissions, and the consumption of water needed for evaporative cooling. This project deals with lignite and subbituminous coal-fired pulverized coal power plants, which are cooled by evaporative cooling towers. In particular, the project involves use of power plant waste heat to partially dry the coal before it is fed to the pulverizers. Done in a proper way, coal drying will reduce cooling tower makeup water requirements and also provide heat rate and emissions benefits. The technology addressed in this project makes use of the hot circulating cooling water leaving the condenser to heat the air used for drying the coal (Figure 1). The temperature of the circulating water leaving the condenser is usually about 49 C (120 F), and this can be used to produce an air stream at approximately 43 C (110 F). Figure 2 shows a variation of this approach, in which coal drying would be accomplished by both warm air, passing through the dryer, and a flow of hot circulating cooling water, passing through a heat exchanger located in the dryer. Higher temperature drying can be accomplished if hot flue gas from the boiler or extracted steam from the turbine cycle is used to supplement the thermal energy obtained from the circulating cooling water. Various options such as these are being examined in this investigation. This is the eleventh Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits

  11. Outlook and Challenges for Chinese Coal

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is

  12. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s

    Science.gov (United States)

    Severnini, Edson

    2017-04-01

    The Fukushima nuclear accident in March 2011 generated deep public anxiety and uncertainty about the future of nuclear energy. However, differently to fossil fuel plants, nuclear plants produce virtually no greenhouse gas emissions or air pollutants during power generation. Here we show the effect on air pollution and infant health in the context of the temporary closure of nuclear plants by the Tennessee Valley Authority (TVA) in the 1980s. After the Three Mile Island accident in 1979, the US Nuclear Regulatory Commission intensified inspections throughout the nation, leading to the shutdown of two large nuclear power plants in the TVA area. In response to that shutdown, electricity generation shifted one to one to coal-fired power plants within TVA, increasing particle pollution in counties where they were located. Consequently, infant health may have deteriorated in the most affected places, indicating deleterious effects to public health.

  13. Role of coal in the world and Asia

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning.

  14. Role of coal in the world and Asia

    International Nuclear Information System (INIS)

    Johnson, C.J.; Li, B.

    1994-10-01

    This paper examines the changing role of coal in the world and in Asia. Particular attention is given to the rapidly growing demand for coal in electricity generation, the importance of China as a producer and consumer of coal, and the growing environmental challenge to coal. Attention is given to the increasing importance of low sulfur coal and Clean Coal Technologies in reducing the environmental impacts of coal burning

  15. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  16. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    Science.gov (United States)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  17. Direct As, Bi, Ge, Hg and Se(IV) cold vapor/hydride generation from coal fly ash slurry samples and determination by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Moreda-Piñeiro, Jorge; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Fernández-Fernández, Esther; Prada-Rodríguez, Darío.

    2002-05-01

    Direct cold vapor and hydride generation procedures for As, Bi, Ge, Hg and Se(IV) from aqueous slurry of coal fly ash samples have been developed by using a batch mode generation system. Ir-treated graphite tubes have been used as a preconcentration and atomization medium of the vapors generated. A Plackett-Burman experimental design has been used as a strategy for evaluation of the effects of several parameters affecting the vapor generation efficiency from solid particles, vapor trapping and atomization efficiency from Ir-treated graphite tubes. The effects of parameters such as hydrochloric acid and sodium tetrahydroborate, argon flow rate, trapping and atomization temperatures, trapping time, acid solution volume and mean particle size have been investigated. The significant parameters obtained (trapping and atomization temperatures for As and Ge; trapping temperature and trapping time for Bi; argon flow rate and atomization temperature for Se) have been optimized by 2 2+star central composite design. For Hg, the trapping temperature has been also significant. Optimum values of the parameters have been selected for the development of direct cold vapor/hydride generation methods from slurry particles. The accuracy of methods have been verified by using NIST-1633a coal fly ash certified reference material. Absolute detection limits of 11.5, 48.0, 600, 55.0 and 11.0 ng l -1 for As, Bi, Ge, Hg and Se have been achieved, respectively. A particle size less than 50 μm has shown to be adequate to obtain total cold vapor/hydride generation of metals content in the aqueous slurry particles.

  18. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  19. Coals of Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Landis, E.R.; Rohrbacher, T.J.; Gluskoter, H.; Fodor, B.; Gombar, G.; Sebestyen, I.

    1999-07-01

    As part of the activities conducted under the U.S. Hungarian Science and Technology Fund, a total of 39 samples from five coal mines in Hungary were selected for standard coal analyses and major, minor and trace elements analysis. The mine areas sampled were selected to provide a spectrum of coal quality information for comparison with other coal areas in central Europe and worldwide. All of the areas are of major importance in the energy budget of Hungary. The five sample sites contain coal in rocks of Jurassic, Cretaceous, Eocene, Miocene, and Pliocene age. The coals, from four underground and one surface mine, range in rank from high volatile bituminous to lignite B. Most of the coal produced from the mines sampled is used to generate electricity. Some of the power plants that utilize the coals also provide heat for domestic and process usage. The standard coal analysis program is based on tests performed in accordance with standards of the American Society for Testing and Materials (ASTM). Proximate and ultimate analyses were supplemented by determinations of the heating value, equilibrium moisture, forms of sulfur, free-swelling index, ash fusion temperatures (both reducing and oxidizing), apparent specific gravity and Hardgrove Grindability index. The major, minor and trace element analyses were performed in accordance with standardized procedures of the U.S. Geological Survey. The analytical results will be available in the International Coal Quality Data Base of the USGS. The results of the program provide data for comparison with test data from Europe and information of value to potential investors or cooperators in the coal industry of Hungary and Central Europe.

  20. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  1. Overview on 1st and 2nd generation coal-fired membrane power plants (with and without turbo machinery in the membrane environment)

    Energy Technology Data Exchange (ETDEWEB)

    L. Blum; E. Riensche; J. Nazarko; R. Menzer; D. Stolten [Forschungszentrum Juelich GmbH Institute of Energy Research - Fuel Cells (IEF-3), Juelich (Germany)

    2009-07-01

    A systematic classification of the capture concepts with conventional separation as well as membrane separation is discussed in a 2-dimensional matrix: The 4 capture principles (post-combustion, oxyfuel, pre-combustion-capture of CO{sub 2} and pre-combustion-capture of H{sub 2}), characterized by the 4 separation tasks CO{sub 2}/N{sub 2}, O{sub 2}/N{sub 2}, CO{sub 2}/H{sub 2} and H{sub 2}/CO{sub 2}, have to be applied to the 3 different coal power plant (PP) routes: SPP (steam PP), IGCC/standard and IGCC/CO-shift/H{sub 2}-turbine. In case of membrane separation a further dimension of PP concepts is created by the fact, that different measures exist for realization of positive driving forces for permeation. For example the O{sub 2}/N{sub 2} separating membranes in oxyfuel SPPs can be operated with feed gas compression, permeate vacuum, application of a sweep gas at the permeate side or combinations of these 3 measures. An overview is given on the actually developed membrane PP concepts (post-combustion and oxyfuel in SPPs, pre-combustion in IGCC). In all cases energy consuming turbo machinery is required for membrane operation or for CO{sub 2} or H{sub 2} recompression in case of pre-combustion (1st generation of membrane coal PPs). Calculated efficiency losses are not significantly below 10 %-points. An outlook is given to a new IGCC concept, where a suitable sweep gas (N{sub 2} with low O{sub 2} content) of sufficient high flow rate is produced (related to the permeated H{sub 2}). Now the swept H{sub 2}/CO{sub 2} membrane operates without turbo machinery (2nd generation of membrane coal PPs). Lower efficiency losses (between 5 and 10 %-points) seem to be possible now. 10 refs., 18 figs.

  2. Recovery of Rare Earth Elements from Coal and Coal Byproducts via a Closed Loop Leaching Process: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Richard [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Michael [Battelle Memorial Inst., Columbus, OH (United States); Argumedo, Darwin [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Winecki, Slawomir [Battelle Memorial Inst., Columbus, OH (United States); Johnson, Kathryn [Battelle Memorial Inst., Columbus, OH (United States); Lane, Ann [Battelle Memorial Inst., Columbus, OH (United States); Riordan, Daniel [Battelle Memorial Inst., Columbus, OH (United States)

    2017-08-31

    REEs using the ADP technology. In AOI 1, Ohio coal sources with the potential to provide a consistent source of rare earth element concentrations above 300 parts per million will be identified. Coal sample inventories from West Virginia and Pennsylvania will also be assessed for purposes of comparison. Three methods of preparing the coal ash will be evaluated for their potential to enhance the technical feasibility and economics of REE recovery. Three sources of coal ash are targeted for evaluation of the economics of REE recovery in this project: (1) coal ash from power generation stations, to include fly ash and/or bottom ash, (2) ash generated in a lower temperature ashing process, and (3) ash residual from Battelle’s coal liquefaction process. Making use of residual ash from coal liquefaction processes directly leverages work currently being conducted by Battelle for DOE NETL in response to DE-FOA-0000981 entitled “Greenhouse Gas Emissions Reductions Research and Development Leading to Cost-Competitive Coal-to-Liquids Based Jet Fuel Production.” Using the sample characterization results and regional information regarding REE concentration, availability and cost, a TEA will be developed. The previously generated laboratory testing results for leaching and REE recovery via the ADP will be used to perform the TEA, along with common engineering assumptions for scale up of equipment and labor costs. Finally, upon validation of the economic feasibility of the process by the TEA, limited laboratory testing will be performed to support the design of a bench scale system. In a future project phase, it is envisioned that the bench scale system will be constructed and operated to prove the process on a continuous basis.

  3. The new deal of coal

    International Nuclear Information System (INIS)

    Kalaydjian, F.; Cornot-Gandolphe, S.

    2008-01-01

    While coal appears as an inescapable resource to answer the energy needs of the 21. century, its highly CO 2 emitting combustion represents a major risk with respect to the requirements of the fight against climate change. In the first part of this book, the basic aspects of energy markets are explained and in particular the role that coal is going to play in the world's energy supplies. In the second part, the new coal usages are presented, which, combined with CO 2 capture and sequestration techniques, should allow to conciliate a massive use of coal and the respect of environmental constraints. This book is based on the works presented in February 2008 by the French institute of petroleum (IFP) about the new outlets of coal and the risks for climate change. Content: 1 - coal, energy of the 21. century: abundant and well distributed reserves; growing up world production; exponential world demand; international trade: still limited but in full expansion; 2 - Technologies for a CO 2 -free coal: CO 2 capture and sequestration technologies; towards poly-generation; production of coal-derived liquid fuels; 3 - Appendices: coals formation; coal in China: status and perspectives; coal in the USA: status and perspectives; coal in India: status and perspectives; COACH: an ambitious European project; CBM - E-CBM, status and perspectives. (J.S.)

  4. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  5. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  6. Global thermal coal trade outlook

    International Nuclear Information System (INIS)

    Ewart, E.

    2008-01-01

    Wood Mackenzie operates coal consulting offices in several cities around the world and is the number one consulting company in terms of global coal coverage. The company offers a unique mine-by-mine research methodology, and owns a proprietary modeling system for coal and power market forecasting. This presentation provided an overview of global thermal markets as well as recent market trends. Seaborne markets have an impact on price far greater than the volume of trade would imply. Research has also demonstrated that the global thermal coal market is divided between the Pacific and Atlantic Basins. The current status of several major coal exporting countries such as Canada, the United States, Venezuela, Colombia, Indonesia, Australia, China, South Africa, and Russia was displayed in an illustration. The presentation included several graphs indicating that the seaborne thermal coal market is highly concentrated; traditional coal flow and pricing trends shift as Asian demand growth and supply constraints lead to chronic under supply; coal prices have risen to historic highs in recent times; and, the Asian power sector demand is a major driver of future growth. The correlation between oil and gas markets to thermal coal was illustrated along with two scenarios of coal use in the United States in a carbon-constrained world. The impact of carbon legislation on coal demand from selected coal regions in the United States was also discussed. Wood Mackenzie forecasts a very strong growth in global thermal coal demand, driven largely by emerging Asian economies. tabs., figs

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  8. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  9. Mitigating community impacts of energy development: some examples for coal and nuclear generating plants in the U.S

    International Nuclear Information System (INIS)

    Peelle, E.

    1979-01-01

    Three mitigation plans aimed at internalizing community-level social costs are examined at the Tennessee Valley Authority four-unit nuclear plant in Hartsville, Tennessee; the Puget Sound Power and Light two-unit nuclear plant in Skagit, Washington; and the Missouri Basin Power Project three-unit coal plant in Wheatland, Wyoming. Viewed as new institutional responses to social impact mitigation planning, these plans are analyzed in terms of their origins, scope, goals, local participation, financing, and costs. The significance of the plans derives from: (1) their pioneer status; (2) their similarity of scope despite highly diverse regulatory environments; and (3) their custom tailoring to local circumstances

  10. Personal attitudes towards large-scale technologies. The perception of risks and benefits of electricity generation with uranium and coal

    Energy Technology Data Exchange (ETDEWEB)

    Midden, C.J.H.; Daamen, D.D.L.; Verplanken, B.

    1984-06-01

    The distribution of attitudes towards the large-scale application of coal and uranium, belief systems underlying these attitudes, the perceived probabilities of a number of consequences from these energy sources and the consequences of these attitudes for behaviour and behavioural intentions are discussed. Attention is paid to other aspects of people's evaluations of these energy technologies: involvement with the problems perceived, personal effectivity to influence collective decisions, information acquisition and level, imaginability of accidents, anxiety, reactions to local plants. The study has been designed following an extended and adapted version of the attitude-behaviour model by Fishbein and Ajzen.

  11. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  12. ROCK-EVAL DATA, MACERAL COMPOSITION AND THEIR IMPLICATIONS ON HYDROCARBON GENERATIVE PROSPECTS OF SOME NIGERIAN COALS

    International Nuclear Information System (INIS)

    Ukur, A; Obaje, N.G; Abubakar; Jauro, A.

    2004-01-01

    Shale beds containing dispersed sedimentary organic matter source most conventional oil and gas accumulations. In Nigeria, Akata shale is the source of the huge gas oil reserves of the Niger Delta. However, the thick and laterally intensive coal beds across the Benue Trough can also act as potential hydrocarbon sources rocks. Twenty-one coal samples from the three segments of the Benue Trough have been analyzed for hydrocarbon source potential using Rock-Eval pyrolysis and vitrinite reflectance study. The TOC for 91 % of the samples is satisfactory. 81 % of the samples have HI above 150 mgHC/g TOC. Base on HI, the samples from Lower from Middle and Upper Benue have type III organic matter. 91 % of the samples have T max above 4300C. The vitrinite reflectance values are within the first coalification jump. Liptinite macerals dominate the samples from Lower Benue while the samples from Middle and Upper Benue are dominated by vitrinite maceral with appreciable presence of Liptinite and Inertinite macerals

  13. Co-firing coal with wood pellets for U.S. electricity generation: A real options analysis

    International Nuclear Information System (INIS)

    Xian, Hui; Colson, Gregory; Mei, Bin; Wetzstein, Michael E.

    2015-01-01

    In contrast to EU, U.S. electric utilities are not employing the bioenergy technology of co-firing wood pellets with coal. This difference in employment patterns is explored within a real options analysis (ROA) for possible U.S. utilization of wood pellets, considering fuel-price series from 2009 to 2014. For analysis, these series are divided into two sub-periods based on different market conditions: Infancy (2009–2011) and Substitution (2012–2014). ROA indicates co-firing wood pellets with coal is feasible considering adoption during wood pellets' infancy, under low discount rates, and long power-plant lifespans. A portfolio effect of employing multiple fuels underlies this result. However, co-firing is not currently economically feasible. The different adoption decisions are likely a consequence of recent cheap and abundant U.S. natural gas. For co-fired wood pellets to be feasible, government incentives and/or a market increase in natural gas prices appear necessary. -- Highlights: •Real options analysis indicates co-firing is not currently economically feasible within the U.S. •The recent U.S. natural-gas boom is likely hindering the adoption of co-firing. •For co-fired adoption, government incentives or an increase in natural-gas prices are necessary

  14. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  15. Preliminary assessment of coal-based industrial energy systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  16. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    Science.gov (United States)

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  17. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  18. Greenhouse gas emissions reduction in China by cleaner coal technology towards 2020

    DEFF Research Database (Denmark)

    Zhao, Guangling; Chen, Sha

    2015-01-01

    The Chinese energy system, a major CO2 emitter, relies heavily on fossil fuels, especially coal. Coal will continue to play a major role in the new installed power generation capacity in the future, which will cause unavoidable environmental problems. Clean coal technologies (CCTs) are essential...... for emissions reduction in the power sector. In general, CCTs cover coal upgrading, efficiency improvements, advanced technologies and zero emissions technologies. Besides these, CCTs also include other emissions reduction technologies and comprehensive utilization technologies in China.This paper review...... generation technology, CO2 emissions reduction is 6.4% for super-C, 37.4% for USC and 61.5% for IGCC. Four coal power scenarios are developed based on the assumption of potential investment power for CCTs in 2020, which are super-C, USC, USC and old low efficiency generation substitution by USC, IGCC...

  19. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  20. Coal power and combustion. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    ERDA's coal combustion and power program has focused on two major areas: Direct combustion of coal and advanced power systems. Efforts in the area of direct combustion are concentrated on: Development of atmospheric and pressurized systems capable of burning high-sulfur coal of all rank and quality in fluidized-bed combustors; development of advanced technology power systems to generate power more economically than present technology permits while using medium- and high-sulfur coal in an environmentally-acceptable manner; development of the technology enabling coal-oil slurries to be substituted as feedstock for gas or oil-fired combustors; and improvement of the efficiency of present boilers. Compared with conventional coal-fired systems, fluidized-bed combustion systems give higher power generation efficiencies and cleaner exhaust gases, even when burning high-sulfur coals. If the fluidized-bed system is pressurized, additional economies in capital and operating costs may be realized. The benefits from high-pressure combustion are a reduction of furnace size due to decreased gas volume and better sulfur removal. High-pressure combustion, however, requires the development of equipment to clean the hot combustion products to make them suitable for use in power generation turbines. The advanced power systems program is directed toward developing electric power systems capable of operating on coal or coal-derived fuels. These systems involve the use of high temperature gas turbines burning low-Btu gas and turbine systems using inert gases and alkali metal vapors. Some 25 projects in these areas are described, including a brief summary of progress during the quarter. (LTN)

  1. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    Science.gov (United States)

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  2. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    Science.gov (United States)

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  3. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  4. Policy Brief: India's coal reserves are vastly overstated. Is anyone listening?

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K.; Chand, S.K.

    2011-03-15

    In India's energy sector, coal accounts for over 50% of primary commercial energy supply. With the economy poised to grow at the rate of 8-10% per annum, energy requirements will also rise at a level of 6% (approx.). Coal will continue to be a dominant commercial fuel two decades from now and beyond, despite our nuclear energy programme, development of natural gas supplies, increased hydropower generation, and emphasis on renewables. There are many issues with regard to domestic coal production, including its quality, beneficiation of lower grades, transportation to distant consumers, environment impacts (both in mining and burning of coal), efficiency of thermal power plants, and so on. This policy brief, however, focuses on our domestic coal inventories. In other words, how much coal is there underground, how much of it can be extracted, how much do we need to import, and what are the associated energy security implications?.

  5. Clean coal combustion in domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.; Kubica, K.; Sciazko, M. [Institute for Chemical Processing of Coal, Zabrze (Poland)

    1998-12-31

    Combustion of raw coal in existing domestic furnaces with a low efficiency (usually below 50%) is a source of pollutants generation like dust, SO{sub 2} and PAH including cancerogenic BAP, resulting in serious environmental problems. Emission of pollutants depends on solid fuels quality and fuel combustion parameters. Pollutants emission can be decreased by the use of upgraded coal derived solid fuels or replacement of old heating appliances with new ones with high thermal efficiency and ecological affectivity. Several ecological fuels manufacturing methods have been elaborated in the Institute for Chemical Processing of Coal. Thermal and emission tests of heating devices and solid fuels were performed with the use of IChPW experimental plant. Results were confirmed in heating devices in real heating objects. Taking results into account proposal of legal regulation for Polish domestic sector was elaborated. 4 figs., 2 tabs.

  6. Clean coal combustion in domestic sector

    Energy Technology Data Exchange (ETDEWEB)

    Dreszer, K.; Kubica, K.; Sciazko, M. (Institute for Chemical Processing of Coal, Zabrze (Poland))

    1998-01-01

    Combustion of raw coal in existing domestic furnaces with a low efficiency (usually below 50%) is a source of pollutants generation like dust, SO[sub 2] and PAH including cancerogenic BAP, resulting in serious environmental problems. Emission of pollutants depends on solid fuels quality and fuel combustion parameters. Pollutants emission can be decreased by the use of upgraded coal derived solid fuels or replacement of old heating appliances with new ones with high thermal efficiency and ecological affectivity. Several ecological fuels manufacturing methods have been elaborated in the Institute for Chemical Processing of Coal. Thermal and emission tests of heating devices and solid fuels were performed with the use of IChPW experimental plant. Results were confirmed in heating devices in real heating objects. Taking results into account proposal of legal regulation for Polish domestic sector was elaborated. 4 figs., 2 tabs.

  7. Coal distribution, January--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-17

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. This issue presents information for January through June 1990. Coal distribution data are shown (in tables 1--34) by coal-producing state of origin, consumer use, method of transportation, and state of destination. 6 figs., 34 tabs.

  8. Analysis of thermal coal pricing and the coal price distortion in China from the perspective of market forces

    International Nuclear Information System (INIS)

    Cui, Herui; Wei, Pengbang

    2017-01-01

    The price of thermal coal has always been the focus of the debate between coal mining industry and electric power industry. The thermal coal price is always lower than other same quality coal, and this phenomenon of thermal coal price distortion has been existing in China for a long time. The distortion coal price can not reflect the external cost and the resource scarcity of coal, which could result in environment deteriorating and inefficient resource allocation. This paper studied the phenomenon of thermal coal price distortion through economic theoretical modeling and empirical cointegration analysis from the perspective of market forces. The results show that thermal coal price is determined by electricity price, the prediction elasticity of a electricity enterprise, price elasticity of demand of electricity, the input prediction elasticity of a electricity enterprise and the price elasticity of supply of thermal coal. The main reason of coal price distortion is the unbalance market force of coal industry and thermal coal generation industry. The distortion rate of coal price is positively related to the market force of electric power industry and negatively related to the industrial concentration of coal industry. - Highlights: • This paper studied thermal coal pricing and the coal price distortion in China. • The main reason of coal price distortion is the unbalance market force. • Thermal coal price is also influenced by electricity price and price elasticity of demand of electricity. • The distortion rate of coal price is negatively related to the industrial concentration of coal industry.

  9. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  10. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  11. Extreme coal handling

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, S; Homleid, D. [Air Control Science Inc. (United States)

    2004-04-01

    Within the journals 'Focus on O & M' is a short article describing modifications to coal handling systems at Eielson Air Force Base near Fairbanks, Alaska, which is supplied with power and heat from a subbituminous coal-fired central plant. Measures to reduce dust include addition of an enclosed recirculation chamber at each transfer point and new chute designs to reduce coal velocity, turbulence, and induced air. The modifications were developed by Air Control Science (ACS). 7 figs., 1 tab.

  12. GIS Representation of Coal-Bearing Areas in Africa

    Science.gov (United States)

    Merrill, Matthew D.; Tewalt, Susan J.

    2008-01-01

    The African continent contains approximately 5 percent of the world's proven recoverable reserves of coal (World Energy Council, 2007). Energy consumption in Africa is projected to grow at an annual rate of 2.3 percent from 2004 through 2030, while average consumption in first-world nations is expected to rise at 1.4 percent annually (Energy Information Administration, 2007). Coal reserves will undoubtedly continue to be part of Africa's energy portfolio as it grows in the future. A review of academic and industrial literature indicates that 27 nations in Africa contain coal-bearing rock. South Africa accounts for 96 percent of Africa's total proven recoverable coal reserves, ranking it sixth in the world. This report is a digital compilation of information on Africa's coal-bearing geology found in the literature and is intended to be used in small scale spatial investigations in a Geographic Information System (GIS) and as a visual aid for the discussion of Africa's coal resources. Many maps of African coal resources often include points for mine locations or regional scale polygons with generalized borders depicting basin edges. Point locations are detailed but provide no information regarding extent, and generalized polygons do not have sufficient detail. In this dataset, the polygons are representative of the actual coal-bearing lithology both in location and regional extent. Existing U.S. Geological Survey (USGS) digital geology datasets provide the majority of the base geologic polygons. Polygons for the coal-bearing localities were clipped from the base geology that represented the age and extent of the coal deposit as indicated in the literature. Where the 1:5,000,000-scale geology base layer's ages conflicted with those in the publications, polygons were generated directly from the regional African coal maps (1:500,000 scale, approximately) in the published material. In these cases, coal-bearing polygons were clipped to the literature's indicated coal

  13. The Global Value of Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal plays an essential role in our global energy mix, particularly for power generation; and through that to the alleviation of energy poverty. The use of coal continues to grow rapidly and will continue, together with other fuels, to support world economic and social development particularly in rapidly developing world economies such as China and India. The purpose of this paper is to highlight for policy makers the value of coal to world economic and social development and so encourage development of a policy environment that will allow the coal and electricity industries to make the necessary investments in production capacity and CO2 emissions reduction technologies.

  14. Awakening a sleeping coal giant

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, B.

    2007-08-15

    Botswana, a southern African country that in the 1980s could not economically land a tonne of coal at the closest export terminal and even today mines no more than 1 million tpa, is to increase production to beyond 30 million tpa. A first ever coal conference in Gaborone called it the awakening of a coal giant. The alarm call for the coal giant is the realisation that without more generating capacity than its power utility Eskom can itself build in time, South Africa will in four to five years face a severe shortage of power. 1 ref., 5 figs., 2 tabs.

  15. Electric Power Monthly, August 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    The Electric Power Monthly (EPM) presents monthly summaries of electric utility statistics at the national, Census division, and State level. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data includes generation by energy source (coal, oil, gas, hydroelectric, and nuclear); generation by region; consumption of fossil fuels for power generation; sales of electric power, cost data; and unusual occurrences. A glossary is included.

  16. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  17. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  18. Organization, activities, and issues with particular emphasis on coal

    International Nuclear Information System (INIS)

    Cole, D.R.

    1992-01-01

    The paper discusses Colorado's coal industry; the Colorado Mining Association; lobbying and legislative actions; industry networking, information, and communications; coal issues and activities; and Colorado issues and activities. Some of the latter include: land reclamation of mined lands; oil and gas drilling and coal mine conflicts; wild and scenic river designations; general permitting of coal mining discharges; and coal mine land reclamation awards

  19. Impact of petroleum industry horizontal divestiture on the coal market

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, D.L.; Dymond, L.H.; Marris, R.L.

    1979-06-22

    Volume 2 contains appendices as follows: coal supply curves, coal supply model modifications, coal mine financing data, legislative proposals for horizontal divestiture, overview of oil companies in coal industry (including their coal reserves) and the major sources of data and bibliography. (LTN)

  20. The South African coal mining industry: A need for a more efficient and collaborative supply chain

    Directory of Open Access Journals (Sweden)

    David Pooe

    2011-11-01

    Full Text Available It is estimated that about two-thirds of global coal is used for power generation and that, in the next 20 years, over 70% of the demand for coal will come from China and India. Coal accounts for approximately 41% of the world's electricity generation. Demand for thermal coal is influenced by factors that include availability, prices of competing products such as oil, gas and nuclear power, and the demand for electricity. The aim of this article is to provide an exposition of supply chain dynamics within the South African coal mining industry and to argue for a more efficient and collaborative supply chain. The authors attempt to investigate at local and global level, the current trends pertaining to the level of reserves, production and consumption of coal. The article further demonstrates the shortcomings of current logistics in meeting the demand for coal in both domestic and export markets. The article draws from secondary data sourced from academic papers, government and agency documents in the exposition of the coal mining supply chain. The paper concludes by recommending the need for a scientific study on supply chain constraints facing the coal mining industry in South Africa.

  1. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  2. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  3. Coal quality monitoring at Whitewood Operations coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.C. [Fording Coal Limited, Wabamun, AB (Canada)

    1998-04-01

    The development of a Live Stockpile model to simulate the stacking and draw down features of a stockpile at the Wabamun power plant in Alberta, Canada is described. The model is used as an inventory management tool to optimize quality of fuel fed to the plant and to improve power generation and plant efficiency. Background of the Wabamun power plant and the associated Whitewood mine, programme objectives and development, critical limitations, results of the coal quality management programme, and recent improvements that include commissioning of an on-line ash and moisture analyzer are described. 6 figs.

  4. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  5. Beluga coal field development: social effects and management alternatives. [West side of Cook Inlet

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, M.; Cluett, C.; Trimble, J.; Brody, S.; Howell, C.; Leman, L.; Svendsen, G.

    1979-05-01

    Plans are under way to mine the Beluga coal fields on the west side of Cook Inlet. The coal will be strip-mined for export, or to supply local electric generating plants, or both. Over the next 20 years, this coal development activity is likely to generate social and economic impacts at the local, regional, and state levels. The purpose of this study is to assess the potential social and economic effects of coal development, including employment and population growth, regional impacts, and the facility and service needs of a new settlement in the Beluga area. Of special concern is identifying the role of various governmental agencies in the development process. Potential effects on the natural environment are not examined in detail since they are expected to be controlled to acceptable levels through existing Federal and state laws. This report examines three possible levels of coal-field development and the settlement requirements associated with each. The most probable regional impacts associated with this development will include effects on the regional labor force, the market for coal, and the generation and distribution of revenues. The main regional labor force impacts will be positive in nature. The rate of regional unemployment is likely to decline slightly for the duration of the project, with an increase in wage income available for reinvestment in the region and a reduction in the number of individuals receiving unemployment insurance payments. Coal development is not expected to induce any significant inmigration of workers from outside the region.The development of the Beluga coal resources and the production of electricity from coal would add to the Kenai Peninsula Borough's tax base. The assessed value of coal lands around Beluga would likely increase and, in addition, Cook Inlet Region, Inc. would be the recipient of royalties from coal leases. A number of recommendations for research and governmental activities are presented.

  6. Expected ozone benefits of reducing nitrogen oxide (NOx) emissions from coal-fired electricity generating units in the eastern United States.

    Science.gov (United States)

    Vinciguerra, Timothy; Bull, Emily; Canty, Timothy; He, Hao; Zalewsky, Eric; Woodman, Michael; Aburn, George; Ehrman, Sheryl; Dickerson, Russell R

    2017-03-01

    On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NO x emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NO x emissions were adjusted to match the lowest NO x rates observed during the ozone seasons (April 1-October 31) of 2005-2012 (Scenario A), where ozone decreased by 3-4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ∼4-7 ppb. NO x emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ∼4-5 ppb. Finally in Scenario D, the impact of additional NO x reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2-4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NO x originates, even if additional capital investments are not made (Scenario A). With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NO x ) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone

  7. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  8. Oil from coal

    Energy Technology Data Exchange (ETDEWEB)

    Thurlow, G.G.

    1978-10-01

    Our great-grandchildren will view the petroleum age as a brief perturbation in the life-style of mankind, less than a hundred years in which we discovered, exploited, squandered and exhausted the natural resource of liquid petroelum laid down over many million years of pre-history. What the sources of energy in common use in our great-grandchildren's day will be is something we cannot know. By then, the need for liquid hydrocarbon fuels may have passed. What is more sure, however, is that for a while, man will want to continue to use the equipment and the methods familiar to him from this petroleum-product dominated age beyond the time when natural petroleum sources become scarce. During these decades there will be a need to produce liquid hydrocarbons from other sources and one of these sources, abundantly available at this time, will be coal. Converting coal to liquid basically entails accomplishing two steps: (1) the separation of the coal substance from the ash and impurities associated with the coal, and (2) breaking down the complex coal molecules into simpler molecules and increasing the hydrogen-to-carbon ratio. It is also necessary, of course, to develop processes which will lead to the production of a range of liquid products to meet the demands of the commerical market, whether as fuels or as chemical feedstocks. Converting coal to a liquid needs energy, both heat and power, and hydrogen; if all these have to be generated starting from coal, their production may use approaching half of the Btu value of the coal fed to the plant. The economic advantage of one process over another will be mainly dependent on the products required and the price assigned to them and on the effectiveness with which the plant can be engineered to minimize energy loss and to operate effectively.

  9. Environmental externalities: An ASEAN application to coal-based power generation. [Association of South East Asian Nations (ASEAN)

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  10. Geomorphology of coal seam fires

    Science.gov (United States)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  11. Advanced All-Gas Chemical Generation of Atomic Iodine for a COIL, and Testing the COIL Operation Including This Method of Atomic Iodine Generation

    National Research Council Canada - National Science Library

    Kodymova, Jarmila; Spalek, Otomar; Jirasek, Vit; Censky, Miroslav

    2004-01-01

    This report results from a contract tasking Academy of Sciences as follows: The Grantee will investigate advanced methods for chemical generation of atomic iodine for a Chemical Oxygen-Iodine Laser (COIL...

  12. Coal utilization in the twenty-first century: How much and for how long?

    International Nuclear Information System (INIS)

    Gluskoter, H.

    1993-01-01

    It is projected that coal usage in the US will increase at approximately the historic rate as electricity consumption increases. Because the life expectancy of powerplants and coal mines is in the tens of years, the electricity to be produced from coal in 2001 will be generated in plants currently on line or under construction, and almost all of the coal consumed will come from existing mines. Coal produces two-thirds of the world's electricity and, on a worldwide basis, will continue to be a major source of energy for the remainder of this century and for some time to come. It is the longer term projections of coal utilization, beyond the next few decades, that remain much more difficult to predict. Fossil fuels are present in the Earth in finite amounts and are not renewable on the human scale of existence. Therefore, a shift to other sources of energy must occur eventually. A doubling of population will create a demand for greatly increased energy production. Historically, a 1% increase in world domestic product has been accompanied by a 1% increase in energy consumption. In most regions of the world, coal could supply a major portion of the increased energy and could do so without requiring major technological advances in coal mining and coal utilization technologies. The large, extensive, and accessible resources of coal, the ability to utilize it, and the demand pressures from an expanding population all bode well for the future of coal. However, there are also factors that may contribute to limiting the future use of coal. They include environmental concerns (acid rain, air toxics, and global warming) and the rate at which nonfossil-fuel sources (perhaps solar and nuclear) are developed. Although many of the decisions that will influence the future use of coal will be based on economic and environmental considerations, it is more than likely that politics will also play an important role in all of those decisions

  13. Quarterly coal report

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  14. The impact of TTIP agreement on the European Union-United States coal trade potential

    Directory of Open Access Journals (Sweden)

    Olkuski Tadeusz

    2016-01-01

    Full Text Available The main aim of the paper is to assess the impact of currently negotiated TTIP agreement (Transatlantic Trade and Investment Partnership on the use of hard coal in the EU and the US. Hard coal is the most important fuel in global electricity generation. This also applies to the United States, a leading manufacturer and exporter of this energy source. The US coal is exported to the EU market. The article presents the estimated exports of hard coal from the US to the EU. Due to the fact that price has a major impact on the size of exports, the paper presents the estimated prices, including freight costs, of power coal for the analyzed scenarios. According to one scenario, the US and European prices will be equalized (including freight costs by 2020, while from 2025 on the comparative advantage and competitiveness of the US hard coal will decrease. Taking into account the fact that the export of coal from the United States is free from customs duties, the acceptance of TIPP should not affect the currently existing trade between the two continents and the amount of exported coal. Nevertheless, the question of hard coal economy cannot be separated from other sectors of the energy market, which can be significantly affected by the future agreement.

  15. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  17. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  18. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  19. 75 FR 26797 - Cummins Power Generation, Including On-Site Leased Workers of Adecco USA, Inc., Aerotek, Inc...

    Science.gov (United States)

    2010-05-12

    ... Networks, Entegee, Inc., DBA Midstates Technical, Manpower, Inc., Robert Half International, Summit... import articles like or directly competitive with the generators and transfer switches produced at the... articles abroad during the same period. The investigation also revealed that, during the relevant period...

  20. Public attitudes to coal use in the context of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Rohan Fernando [IEA Clean Coal Centre, London (United Kingdom)

    2010-11-15

    Though coal remains the main fuel for power generation worldwide, concerns regarding the contribution of coal-fired power generation to global warming have also increased considerably in recent years. These concerns have somewhat eclipsed the many advantages of the use of coal for power generation. The attitudes of the public towards power generation from a particular fuel is an important factor in shaping government policy. For example, such attitudes are crucial in determining whether new coal-fired projects can proceed. This report describes current public attitudes towards coal-fired power plant in several countries both in the developed and developing world. It compares these attitudes with those reported in an earlier report on this subject produced in 2006. Since then, the publication of the IPCC report in 2007 and the greater worldwide consensus on the reality of global warming following the change in administrations in the USA and Australia would be expected to affect public attitudes. However, events in late 2009 have increased the levels of public scepticism. The report principally collates opinion poll data available on the public's attitude towards energy, environment and the use of coal for power generation. Whereas before 2006, surveys of attitudes towards energy sources commonly included coal-fired plant, more recently coal plant are rarely included, presumably as it is assumed that the public would be overwhelmingly opposed. Hence the subject has been broadened to include attitudes to climate changeand CCS. It also reports what national and international organisations say about the use of coal. It investigates what the general public and concerned organisations say should be done to reduce the greenhouse effect. Countries and regions chosen for particular focus are the USA, the European Union, the UK, India, Thailand and Australia. 121 refs., 38 figs., 26 tabs.

  1. Electric power monthly, September 1990. [Glossary included

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  2. Reduction of the safety and health risk associated with the generation of dust on strip coal mine haul roads.

    CSIR Research Space (South Africa)

    Thompson, RJ

    2000-01-01

    Full Text Available mine haul roads. This would be used to identify suitable spray-on or mix-in surface treatments to reduce the generation of dust, within the constraints of cost effectiveness and maintainability, through consideration of wearing course material type...

  3. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  4. Environmental procedures for thermoelectric power plants by national mineral coal

    International Nuclear Information System (INIS)

    Serra, M.T.F.; Verney Gothe, C.A. de; Silva Ramos, R. da

    1990-01-01

    This paper presents the environmental impacts decursive of utilization of South-Brazilian mineral coal to generation of electric energy. This environmental impacts and alternatives of attenuating measures are presented and evaluated, containing the totality of productive cycle: mining, processing, transport, stock piling and use in thermoelectric power plants. Environmental procedures are systematized for first time, in order to be observed in whole expansion of coal thermoelectric generator park. The conception of power plants and site studies of their useful lives are also included. (C.M.). 19 figs, 24 tabs

  5. Coal, energy and environment: Proceedings

    International Nuclear Information System (INIS)

    Mead, J.S.; Hawse, M.L.

    1994-01-01

    This international conference held in Czechoslovakia was a bold attempt to establish working relationships among scientists and engineers from three world areas: Taiwan, the United States of America, and Czechoslovakia. The magic words unifying this gathering were ''clean coal utilization.'' For the ten nationalities represented, the common elements were the clean use of coal as a domestic fuel and as a source of carbon, the efficient and clean use of coal in power generation, and other uses of coal in environmentally acceptable processes. These three world areas have serious environmental problems, differing in extent and nature, but sufficiently close to create a working community for discussions. Beyond this, Czechoslovakia is emerging from the isolation imposed by control from Moscow. The need for each of these nations to meet and know one another was imperative. The environmental problems in Czechoslovakia are extensive and deep-seated. These proceedings contain 63 papers grouped into the following sections: The research university and its relationship with accrediting associations, government and private industry; Recent advances in coal utilization research; New methods of mining and reclamation; Coal-derived waste disposal and utilization; New applications of coal and environmental technologies; Mineral and trace elements in coal; Human and environmental impacts of coal production and utilization in the Silesian/Moravian region; and The interrelationships between fossil energy use and environmental objectives. Most papers have been processed separately for inclusion on the data base

  6. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  7. The transnationalisation of the Indian coal economy and the Australian political economy: The fusion of regimes of accumulation?

    International Nuclear Information System (INIS)

    Rosewarne, Stuart

    2016-01-01

    The Indian government's economic development program is predicated on increasing electricity generating capacity. Coal fired power and removal of obstacles to private corporations investing in generating capacity are core elements in this program. With difficulties in boosting national coal production, the state-owned Coal India Limited and energy corporations have spearheaded a range of global coal sourcing endeavours, including investing in offshore deposits. Energy security has become reflected in engineering global supply chains, securing control of coal, with two of the largest projects involving Adani and GVK proposing to develop mines in the Galilee Basin in Queensland, Australia. These investments become the institutional and organisational architecture that locks in demand, a global demand which helps to explain successive Australian governments support for and approval of the projects. Notwithstanding considerable environmental opposition, and questions about the economic merits and commercial viability of the projects, Australian governments are wedded to the conviction that expanded development of the economy is tied to extracting and exporting fossil fuels, to consolidating Australia as an ‘energy superpower’. - Highlights: • Expansion of India's electricity generation capacity is contingent on coal imports. • Exporting coal is critical to Australia's ambitions as an energy superpower. • The moral case for exporting coal is made in terms of poverty alleviation. • Continued expansion of coal mining will compromise global climate change ambitions.

  8. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  9. Improving Competitiveness of U.S. Coal Dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Angelos [Energetics, Inc., Colubmia, MD (United States)

    2018-02-01

    The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal and waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While

  10. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  11. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.

    Science.gov (United States)

    Gitari, Wilson M; Petrik, Leslie F; Key, David L; Okujeni, Charles

    2011-01-01

    Fly ash (FA) has been investigated as a possible treatment agent for Acid mine drainage (AMD) and established to be an alternative, cheap and economically viable agent compared to the conventional alkaline agents. However, this treatment option also leads to generation of solid residues (SR) that require disposal and one of the proposed disposal method is a backfill in coal mine voids. In this study, the interaction of the SR with AMD that is likely to be present in such backfill scenario was simulated by draining columns packed with SR and SR + 6% Ordinary Portland Cement (OPC) unsaturated with simulated AMD over a 6 month period. The evolving geochemistry of the liquid/solid (L/S) system was evaluated in-terms of the mineral phases likely or controlling contaminants attenuation at the different pH regimes generated. Stepwise acidification of the percolates was observed as the drainage progressed. Two pH buffer zones were observed (7.5-9 and 3-4) for SR and (11.2-11.3 and 3.5-4) for SR + 6% OPC. The solid residue cores (SR) appeared to have a significant buffering capacity, maintaining a neutral to slightly alkaline pH in the leachates for an extended period of time (97 days: L/S 4.3) while SR + 6% OPC reduced this neutralization capacity to 22 days (L/S 1.9). Interaction of AMD with SR or SR + 6% OPC generated alkaline conditions that favored precipitation of Fe, Al, Mn-(oxy) hydroxides, Fe and Ca-Al hydroxysulphates that greatly contributed to the contaminants removal. However, precipitation of these phases was restricted to the pH of the leachates remaining at neutral to circum-neutral levels. Backfill of mine voids with SR promises to be a feasible technology for the disposal of the SR but its success will greatly depend on the disposal scenario, AMD generated and the alkalinity generating potential of the SR. A disadvantage would be the possible re-dissolution of the precipitated phases at pH water column. However extrapolation of this concept to a field

  12. An Effective Method to Detect Volatile Intermediates Generated in the Bioconversion of Coal to Methane by Gas Chromatography-Mass Spectrometry after In-Situ Extraction Using Headspace Solid-Phase Micro-Extraction under Strict Anaerobic Conditions.

    Science.gov (United States)

    Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong

    2016-01-01

    Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.

  13. Quality aspects of thermal coal marketing

    International Nuclear Information System (INIS)

    Dunstone, D.

    1998-01-01

    Australia's thermal coal industry is under increasing competition. A successful marketing strategy must distinguish the product from that of Australian competitors, leaving the buyer in no doubt as to its value. The marketing of thermal coal is a very different experience and encompasses an interesting commercial and technical mix. The technical merits of a coal may be effectively used to prepare the way for a sale. However, once the technical hurdle is passed (i.e. the coal is classified as acceptable), the three factors which influence the sale are price, price and price. The other aspect of marketing is that marketing, especially technical market support, must realize that the buyer often has no experience in using the coals purchased. This is particularly true with thermal coals. Virtually no thought is given as to how the coal performs or how much is used. Consequently, it is not uncommon for cheap, low quality coals to be purchased, even though it is not the choice that will result in the lowest power generation cost when all other factors are taken into consideration. The author has developed a model which allows to differentiate between coals for a range of properties relative to the use of the coal, so that a coal company can calculate the break-even price in term of cost per kWh of electricity generated and enable a more valid cost comparison between coals to be made

  14. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  15. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  16. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  17. Staged fluidized-bed coal combustor for boiler retrofit

    International Nuclear Information System (INIS)

    Rehmat, A.; Dorfman, L.; Shibayama, G.; Waibel, R.

    1991-01-01

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO x , SO x , and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs

  18. Delays and cancellations of coal-fired generating capacity: review, data evaluation, and recommendations for improved forecasting

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    This report documents the extent of the electric utilities' difficulty in planning power generating units and proposes a technique for improving the predictions. Additional work is currently under way to test the methodology proposed here. The results of these efforts will be reported in a companion volume as soon as they are available. Chapter 1 examines delays and cancellations from a historical perspective. It evaluates the reasons for the difficulty and the potential impact on the electric utility industry and the electric power consumer. Chapter 2 examines the relationships between delays and cancellations, and identifies the data that could be used in an improved prediction method. Three methods are discussed, based on three types of data, and one system is recommended for implementation.

  19. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment

    Energy Technology Data Exchange (ETDEWEB)

    Kalaitzidis, Stavros; Siavalas, George; Christanis, Kimon [Dept. of Geology, University of Patras, 26504 Rio-Patras (Greece); Skarpelis, Nikos [Dept. of Geology and Geoenvironment, University of Athens, 15784 Zografou (Greece); Araujo, Carla Viviane [Petrobras-Cenpes GEOQ/PDEXP, Rua Horacio Macedo n 950, Cidade Universitaria - Ilha do Fundao, 21941-915 Rio de Janeiro (Brazil)

    2010-04-01

    The Pera-Lakkos coal located on top of bauxite deposits in the Ghiona mining district (Central Greece), is the only known Mesozoic (Late Cretaceous) coal in the country. It was derived from herbaceous plants and algae growing in mildly brackish mires that formed behind a barrier system during a regression of the sea, on a karstified limestone partly filled in with bauxitic detritus. Petrological, mineralogical and geochemical data point to the predominance of reducing conditions and intense organic matter degradation in the palaeomires. O/C vs. H/C and OI vs. HI plots, based on elemental analysis and Rock-Eval data, characterize kerogen types I/II. This reflects the relatively high liptinite content of the coal. Besides kerogen composition, O/C vs. H/C plot for the Pera-Lakkos coals is in accordance with a catagenesis stage of maturation in contrast with vitrinite reflectance and T{sub max} from Rock-Eval pyrolysis, which indicate the onset of oil window maturation stage. Suppression of vitrinite reflectance should be considered and the high liptinite content corroborates this hypothesis. Despite some favourable aspects for petroleum generation presented by the Pera-Lakkos coal, its maximum thickness (up to 50 cm) points to a restricted potential for petroleum generation. Coal oxidation took place either during the late stage of peat formation, due to wave action accompanying the subsequent marine transgression, or epigenetically after the emergence of the whole sequence due to percolation of drainage waters. Both options are also supported by the REE shale-normalized profiles, which demonstrate an upwards depletion in the coal layer. Oxidation also affected pyrite included in the coal; this led to the formation of acidic (sulfate-rich) solutions, which percolated downwards resulting in bleaching of the upper part of the underlying bauxite. (author)

  20. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  2. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature.

    Science.gov (United States)

    Tuomivaara, Sami T; Yaoi, Katsuro; O'Neill, Malcolm A; York, William S

    2015-01-30

    Xyloglucans are structurally complex plant cell wall polysaccharides that are involved in cell growth and expansion, energy metabolism, and signaling. Determining the structure-function relationships of xyloglucans would benefit from the availability of a comprehensive and structurally diverse collection of rigorously characterized xyloglucan oligosaccharides. Here, we present a workflow for the semi-preparative scale generation and purification of neutral and acidic xyloglucan oligosaccharides using a combination of enzymatic and chemical treatments and size-exclusion chromatography. Twenty-six of these oligosaccharides were purified to near homogeneity and their structures validated using a combination of matrix-assisted laser desorption/ionization mass spectrometry, high-performance anion exchange chromatography, and 1H nuclear magnetic resonance spectroscopy. Mass spectrometry and analytical chromatography were compared as methods for xyloglucan oligosaccharide quantification. 1H chemical shifts were assigned using two-dimensional correlation spectroscopy. A comprehensive update of the nomenclature describing xyloglucan side-chain structures is provided for reference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    Science.gov (United States)

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  4. Geological and economic characteristics of Yugoslav coal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Cicic, S.; Cveticanin, R.; Ercegovac, M.; Knezevic, V. (Rudarski Fakultet, Tuzla (Yugoslavia))

    1988-01-01

    Discusses Yugoslav coal reserves, which amount to 486 t of coal equivalent per capita. Since exploration started in 1804, 22 hard coal, 13 lignite and more than 40 brown coal basins have been discovered. Their geological condition and average calorific value of the coal are given, as are recommendations to improve geological exploration of all types of basin, with a view to bettering coal production, preparation and processing. Descriptions of individual mines are given, including geological, hydrogeological and tectonic properties, coal quality, coal reserves and other parameters. 14 refs.

  5. Brown coal gasification made easy

    International Nuclear Information System (INIS)

    Hamilton, Chris

    2006-01-01

    Few Victorians will be aware that gas derived from coal was first used in 1849 to provide lighting in a baker's shop in Swanston Street, long before electric lighting came to the State. The first commercial 'gas works' came on stream in 1856 and Melbourne then had street lighting run on gas. By 1892 there were 50 such gas works across the State. Virtually all were fed with black coal imported from New South Wales. Brown coal was first discovered west of Melbourne in 1857, and the Latrobe Valley deposits were identified in the early 1870s. Unfortunately, such wet brown coal did not suit the gas works. Various attempts to commercialise Victorian brown coal met with mixed success as it struggled to compete with imported New South Wales black coal. In June 1924 Yallourn A transmitted the first electric power to Melbourne, and thus began the Latrobe Valley's long association with generating electric power from brown coal. Around 1950, the Metropolitan Gas Company applied for financial assistance to build a towns gas plant using imported German gasification technology which had been originally designed for a brown coal briquette feed. The State Government promptly acquired the company and formed the Gas and Fuel Corporation. The Morwell Gasification Plant was opened on 9 December 1956 and began supplying Melbourne with medium heating value towns gas

  6. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  7. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES; FINAL

    International Nuclear Information System (INIS)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-01-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO(sub x)). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process

  8. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  9. World coal prices and future energy demand

    International Nuclear Information System (INIS)

    Bennett, J.

    1992-01-01

    The Clean Air Act Amendments will create some important changes in the US domestic steam coal market, including price increases for compliance coal by the year 2000 and price decreases for high-sulfur coal. In the international market, there is likely to be a continuing oversupply which will put a damper on price increases. The paper examines several forecasts for domestic and international coal prices and notes a range of predictions for future oil prices

  10. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  11. [Study on Microwave Co-Pyrolysis of Low Rank Coal and Circulating Coal Gas].

    Science.gov (United States)

    Zhou, Jun; Yang, Zhe; Liu, Xiao-feng; Wu, Lei; Tian, Yu-hong; Zhao, Xi-cheng

    2016-02-01

    The pyrolysis of low rank coal to produce bluecoke, coal tar and gas is considered to be the optimal method to realize its clean and efficient utilization. However, the current mainstream pyrolysis production technology generally has a certain particle size requirements for raw coal, resulting in lower yield and poorer quality of coal tar, lower content of effective components in coal gas such as H₂, CH₄, CO, etc. To further improve the yield of coal tar obtained from the pyrolysis of low rank coal and explore systematically the effect of microwave power, pyrolysis time and particle size of coal samples on the yield and composition of microwave pyrolysis products of low rank coal through the analysis and characterization of products with FTIR and GC-MS, introducing microwave pyrolysis of low rank coal into the microwave pyrolysis reactor circularly was suggested to carry out the co-pyrolysis experiment of the low rank coal and coal gas generated by the pyrolysis of low rank coal. The results indicated that the yield of the bluecoke and liquid products were up to 62.2% and 26.8% respectively when the optimal pyrolysis process conditions with the microwave power of 800W, pyrolysis time of 40 min, coal samples particle size of 5-10 mm and circulating coal gas flow rate of 0.4 L · min⁻¹ were selected. The infrared spectrogram of the bluecoke under different microwave power and pyrolysis time overlapped roughly. The content of functional groups with -OH, C==O, C==C and C−O from the bluecoke through the pyrolysis of particle size coal samples had a larger difference. To improve microwave power, prolonging pyrolysis time and reducing particle size of coal samples were conducive to converting heavy component to light one into coal tar.

  12. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili [Pennsylvania State Univ., University Park, PA (United States); Schobert, Harold H. [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  14. The World Coal Quality Inventory: South America

    Science.gov (United States)

    Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.

    2006-01-01

    Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.

  15. Coal production, 1991

    International Nuclear Information System (INIS)

    1992-10-01

    Coal production in the United States in 1991 declined to a total of 996 million short tons, ending the 6-year upward trend in coal production that began in 1985. The 1991 figure is 33 million short tons below the record level of 1.029 billion short tons produced in 1990 (Table 1). Tables 2 through 33 in this report include data from mining operations that produced, prepared, and processed 10,000 or more short tons during the year. These mines yielded 993 million short tons, or 99.7 percent of the total coal production in 1991, and their summary statistics are discussed below. The majority of US coal (587 million short tons) was produced by surface mining (Table 2). Over half of all US surface mine production occurred in the Western Region, though the 60 surface mines in this area accounted for only 5 percent of the total US surface mines. The high share of production was due to the very large surface mines in Wyoming, Texas and Montana. Nearly three quarters of underground production was in the Appalachian Region, which accounted for 92 percent of underground mines. Continuous mining methods produced the most coal among those underground operations that responded. Of the 406 million short tons, 59 percent (239 million short tons) was produced by continuous mining methods, followed by longwall (29 percent, or 119 million short tons), and conventional methods (11 percent, or 46 million short tons)

  16. Coal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kroenig, W.

    1944-02-11

    Some considerations in the selection of a catalyst for the liquid phase of coal hydrogenation are discussed. Some of the previous history of such selections is mentioned. At one stage of the development, the principal catalyst had been iron sulfate (FeSO/sub 4/.7H/sub 2/O). Later, for reasons of cost and availability of large supplies, selections had turned to mixtures of iron sulfate and one or another of some iron oxide- and aluminum oxide-containing byproducts of aluminum manufacture, namely Bayermasse, Luxamsse, or Lautamasse. Much of the discussion centered on optimal proportions for such mixtures, particularly as related to pH values of resulting coal pastes. Upper Silesian coal was more alkaline than Ruhr coal, and Bayermasse, etc., were quite alkaline. Thus, since the iron sulfate served as a partial neutralizer for the coal as well as a catalyst, it seemed necessary to increase the proportions of iron sulfate in the catalyst mixture when processing coal of greater alkalinity. A further reason for a greater proportion of iron sulfate seemed to be that most of the catalytic activity of the iron came from the ferrous iron of iron sulfate rather than from the ferric iron of the other materials. Ferrous-ferric ratios also seemed to indicate that Luxmasse or Lautamasse might be better catalyst components than Bayermasse but their water content sometimes caused handling problems, so Bayermasse had been more widely used. Formation of deposits in the preheater was more likely due to the Bayermasse than to the iron sulfate; sodium sulfide could help to prevent them.

  17. Critical paths to coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.R.

    1977-01-01

    The present dilemma of energy producers, converters, and policy decision makers is presented. The consequences of environmental control regulations, coupled with the need for conservation and energy, and of energy resources on the increased utilization of coal, are discussed. Several recent technical accomplishments that make possible increased utilization of coal for power generation are described. Groundwork is laid for discussion of the technical development that must occur if the United States is to retain its energy viability.

  18. Next-generation coal utilization technology development study. Environmentally-friendly coal combustion technology; topping cycles; Sekitan riyo jisedai gijutsu kaihatsu chosa. Kankyo chowagata sekitan nensho gijutsu bun`ya (topping nensho gijutsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    As a realistic measure to reduce environmental pollutants emitted from coal-fueled boilers, a developmental study was conducted of high-efficient combustion systems. In fiscal 1994, four types of topping cycles which are different in system structure and gasifier type were selected, and topping cycles assuming a 300MW-class power plant were trially designed. Further, an evaluation of adaptability of these systems was made, and an selection of the optimum system for the early development was made among the systems. As a result, the evaluation was obtained that `a system using air blown gasifier` is most suitable for conducting the next-stage research. In the element test on the topping combustion technology, collection was made of data of desulfurization activity, desulfurization oxidation mechanism and alkali metal behavior at the laboratory level, data of temperatures and gas concentration distribution in coal gasification, data of simulation of the gasifier reaction, and the other data. 262 figs., 66 tabs.

  19. Determination of inorganic elements in coal and coal combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Koklu, U.; Akman, S.; Ruppert, L.F. [Istanbul Technical University, Istanbul (Turkey)

    1994-12-31

    Many different methods are applicable to the analysis of inorganic elements in coal and other geological materials. There are only a few elements, namely Cl, F, and P, that are still routinely determined by chemical methods; the majority of elements are determined by instrumental methods. The instrumental techniques commonly employed by coal analysts which will be briefly reviewed here include: instrumental neutron activation analysis (INAA), atomic emission spectroscopy (AES), atomic absorption spectroscopy (AAS), mass spectroscopy (MS), electron microscopy, and X-ray fluorescence (XRF). All of these methods, with the possible exception of electron microscopy, offer rapid and accurate multielement results for the bulk analyses of coal and coal products. There is no single method that can be used to determine all of the elements found in coal. However, nowadays AAS may be the most commonly used instrumental technique. For example, in 1983 about 70% of the geochemical exploration samples collected annually were analyzed with AAS. 105 refs., 1 tab.

  20. Coal marketing in Asia: Opportunities and challenges

    International Nuclear Information System (INIS)

    Klingner, D.

    1996-01-01

    In Asia, coal currently accounts for over 40 percent of the fossil fuel used for commercial energy. This paper briefly surveys the forces that are likely to decide the future role coal will play as a prime source of energy in the vigorous economies of Asia. As Australia is well placed to profit from Asia's growing need for coal, the challenge to Australian coal suppliers is how to maximize its potential contribution. Four-fifths of all new coal fired electrical generating capacity in the world in the next decade will be located in Asia. Three-quarters of Australia's coal exports are to Asian customers and, conversely, 40 percent of Asian imports are from Australia. Australian coal suppliers have established ties and a depth of marketing experience in the region on which to build. However, pricing policies, and the emergence of the private power producers, together with environmental pressures, will present challenges for the future. (author). 1 fig

  1. Coal terminal developments

    Energy Technology Data Exchange (ETDEWEB)

    Venter, J.

    2008-02-15

    The article reports developments at many coal terminals worldwide. These include Bulgaria's Port of Bourgas Temrinal 2A, Spain's Tarragona Port Services (TPS) terminal, New Zealand's Lyttleton Port of Christchurch (LPC), Kinder Morgan's terminals in the USA (the International Marine terminal, Cora terminal, Grand Rivers terminal and Fairless Hills terminal) and Croatia's Port of Ploce. Developments at coal terminals in France and Belgium are also summarized. Global transportation services offered by Rhenus are described. 12 photos.

  2. Remediation of sites with coal tar contamination. A case study

    International Nuclear Information System (INIS)

    Zapf-Gilje, R.; Patrick, G.C.; Lindroos, P.

    2000-01-01

    The production and use of coal tar was tied to the industrial revolution and its dependence on coal for energy and as chemical feedstock for a large range of organic and inorganic products. Coal tar was produced, often as a byproduct, by coal gasification plants. The North American coal tar production in the mid 1950s was in the order of 25 billion litres. The production, handling, storage and use of coal tar and its derivatives generated a legacy of soil and groundwater contamination that today requires remediation at high costs. At one such site, coal tar was manufactured into a variety of roofing and tarbased products, as well as the production of creosote, oil stains, solvents and anhydrous ammonia. Over its 60 years of operation, a number of chemicals were leaked, dumped or released to the soil and groundwater on the site, of which the most significant was a brown dense non-aqueous phase liquid (DNAPL) with an oil-like viscosity. This DNAPL migrated from the fill, through a pre-development floodplain silt layer and into an underlying sand aquifer. Portions of the DNAPL moved along preferential pathways associated with the coarser material in the aquifer and reached the nearby river sediments, resulting in elevated concentrations of polyaromatic hydrocarbons (PAH). Site remediation was conducted mitigate risks posed by the coal tar. Remediation has included: in-place management of deep soil contamination, removal of shallow soil with high PAH concentrations (i.e., 10 times the provincial concentration standards for commercial land use), control of dissolved contamination in groundwater, and recovery of free- phase creosote. The remediation also provided long-term protection of the adjacent aquatic habitat through a combination of groundwater and DNAPL control and recovery, removal of near-shore contaminated sediments, and containment and natural attenuation of far-shore contaminated sediments through the use of a layer of crushed rock placed as a protective cap

  3. Pyrolysis of coal

    Science.gov (United States)

    Babu, Suresh P.; Bair, Wilford G.

    1992-01-01

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  4. Current experiences in applied underground coal gasification

    Science.gov (United States)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  5. Pulverized coal vs. circulating fluidized bed: An economic comparison

    International Nuclear Information System (INIS)

    Johns, R.F.

    1991-01-01

    As the power industry looks to the 1990s for expanded steam generation capacity, boiler owners will continue on their long-standing assignment to evaluate and select the best, lowest cost alternative to meet their energy needs. For coal-fired plants, this evaluation process includes pulverized coal-fired boilers (PC) and circulating fluidized bed boilers (CFB). The cost difference between these products is site specific and depends on several variables, including: Boiler size, pressure, and temperature; Operating variables, such as the cost for fuel, auxiliary power, SO 2 reagent, and ash disposal; Capital cost; and Financial variables, such as evaluation period and interest rate. This paper provides a technical and economic comparison between a pulverized coal-fired boiler and circulating fluidized bed boiler

  6. Methanol from coal

    Science.gov (United States)

    Miller, D. R.

    1978-01-01

    Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.

  7. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  8. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  9. Chemical characterization of bottom ashes generated during combustion of a Colombian mineral coal in a thermal power plant; Caracterizacao quimica das cinzas de fundo originadas pela combustao, em usina termoeletrica, de um carvao mineral do nordeste da Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, H.S.; Nogueira, R.E.F.Q.; Lobo, C.J.S.; Nobre, A.I.S.; Sales, J.C.; Silva, C.J.M., E-mail: hspfisica@hotmail.com [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Tecnologia. Dept. de Engenharia Metalurgica e de Materiais

    2012-07-01

    Bottom ashes generated during combustion of a mineral coal from Colombia were characterized by X-ray fluorescence spectrometry and X-ray diffraction. The interest in this particular coal is due to the fact that it will be used by a thermal power plant in Ceara, Northeastern Brazil, where it could produce over 900 tons of different residues/combustion products every day. Results from Xray fluorescence allowed identification and quantification of elements present in the sample: silicon (59,17%), aluminum (13,17%), iron (10,74%), potassium (6,11%), titanium (2,91%), calcium (4,97%), sulphur (0,84%) and others (2,09%). The X-ray diffraction revealed patterns from silica, mullite, calcium sulphate and hydrated sodium. Results obtained so far indicate that the material is a potential raw-material for use in the formulation of ceramic components (author)

  10. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  11. Underground coal mining section data

    Science.gov (United States)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  12. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  13. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  14. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  15. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  16. Review of a Proposed Quarterly Coal Publication

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  17. Nuclear vs coal: comparing cost trends

    International Nuclear Information System (INIS)

    Harrer, B.; Nieves, L.

    1981-01-01

    The leading competitors in the new-capacity-addition options, from now to 1990, will be nuclear and coal-fired units. As an alternative viewpoint to the coal vs nuclear economic comparison presented in the October 1981 issue of Electrical World, this study represents an analysis of cost data for generating electricity from the two fuel sources. The economic impacts on nuclear and coal units of varying the levels of several key cost parameters are examined and analyzed. 13 figures

  18. British coal-down to the line

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The long-running saga of British Coal's decline is in its final stages with virtually no change from last October when the British government announced plants to close 31 of the 50 remaining mines. That announcement produced a political outcry but having privatized the electricity industry in 1990 the government had effectively left itself up the creek without a paddle. It had no powers to force the generators to buy more coal. The status of the British coal industry is discussed

  19. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  20. Australia's coal industry bottoms out

    International Nuclear Information System (INIS)

    Edwards, G.E.

    2000-01-01

    The last decade has been a tough period for the Australian coal industry, despite increases in production, productivity and exports. Profitability has fallen, mines have closed and ownerships have changed hands. The start of the new millennium seems to be heralding in a welcome change of fortune for the Australian coal industry, with signs that a recovery is finally arriving. Coal provides around 26% of global primary energy needs (compared with oil at 40%, gas at 24%, nuclear at 7% and renewables at 3%) and generates about 37% of the world's electricity (compared with renewables at 21%, nuclear at 17%, gas at 16% and oil at 9%). This is in spite of the adverse publicity that coal has been receiving regarding its contribution to the Greenhouse Effect, even relative to other fossil fuels, principally natural gas

  1. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  2. FY 2000 Report on the results of international cooperative research scheme (power generation - No.7). Development of combustion for mixed firing of waste and low-quality coal in external circulating fluidized bed boiler for power generation; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo seika hokokusho (hatsuden No.7). Gaibu junkan ryudoso boiler wo riyoshita toshi gomi to teihin'itan tono kongo nensho hatsuden gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the results of the experimental studies on combustion for mixed firing of waste (city garbage) and low-quality coal in external circulating fluidized bed (CFB) boiler for power generation, and the studies on high-efficiency mixed firing power generation system. The program for the basic research on the waste/coal mixed firing conducts thermal analysis of each sample type, to collect the basic data related to the burning profile from the ignition to completion of firing, and energy of activation, among others. The program for the flow characteristics of waste and coal in CFB conducts the experiments of the cold model. The program for the mixed firing with actual waste in the CFB pilot boiler conducts the mixed firing of low-quality coal of high ash content and high fuel ratio and actual waste (ash content: 60%, low heating value: 860kcal/kg), to confirm that the stable combustion is achieved at a mixed firing ratio of up to 40%. It is also found that the mixed firing produces smaller quantities of NOx, SO{sub 2} and CO emissions than the combustion of coal alone. The program for evaluation of the power generation system achieves a power generation efficiency of 28% at a mixed firing ratio of 22% with Chinese waste of low heating value and low-quality coal. (NEDO)

  3. Coal and nuclear electricity fuels

    International Nuclear Information System (INIS)

    Rahnama, F.

    1982-06-01

    Comparative economic analysis is used to contrast the economic advantages of nuclear and coal-fired electric generating stations for Canadian regions. A simplified cash flow method is used with present value techniques to yield a single levelized total unit energy cost over the lifetime of a generating station. Sensitivity analysis illustrates the effects of significant changes in some of the cost data. The analysis indicates that in Quebec, Ontario, Manitoba and British Columbia nuclear energy is less costly than coal for electric power generation. In the base case scenario the nuclear advantage is 24 percent in Quebec, 29 percent in Ontario, 34 percent in Manitoba, and 16 percent in British Columbia. Total unit energy cost is sensitive to variations in both capital and fuel costs for both nuclear and coal-fuelled power stations, but are not very sensitive to operating and maintenance costs

  4. Control of Self Burning in Coal, Piles by Detection of the generated gases; Control de autoencendidos en Parvas de Carbon por Deteccion de los Gases Producidos

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    The purpose of this Research Project is to find the most appropriate method for immediate and remote detection of the phenomena that take place in Thermic Power Plant coal piles, due to the piling up of great quantities of this fuel and its large surface area. These phenomena are: Slow self-oxidation of the coal, producing loss of its calorific power, with its consequent financial loss. Self-combustion of the coal caused when the gases produced by self-oxidation and temperature conditions combine, and they reach a critical point (that of ignition). One of the most recent and novel methods for detection is the Formation of images of Gases, based on the use of laser turned into the vibration wavelengths of the molecules in the gases. This technique, coupled with Thermography, would give as a spatial map of thus distribution and temperatures of gave. It is necessary, in order to extend the use of this equipment to Thermic Power Plant coal piles, to accurately determine which different gases are emanated as well as the minimum concentration of each one of these and the temperature distribution in space. (Author)

  5. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Close control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.

  6. Cost and performance of coal-based energy in Brazil

    International Nuclear Information System (INIS)

    Temchin, J.; DeLallo, M.R.

    1998-01-01

    As part of the US Department of Energy's (DOE) efforts to establish the strategic benefits of Clean Coal Technologies (CCT), there is a need to evaluate the specific market potential where coal is a viable option. One such market is Brazil, where significant growth in economic development requires innovative and reliable technologies to support the use of domestic coal. While coal is Brazil's most abundant and economic fossil energy resource, it is presently under utilized in the production of electrical power. This report presents conceptual design for pulverized coal (PC) and circulating fluidized-bed combustion (CFBC) options with resulting capital, operating and financial parameters based on Brazil application conditions. Recent PC and CFBC plant capital costs have dropped with competition in the generation market and have established a competitive position in power generation. Key issues addressed in this study include: Application of market based design approach for FBC and PC, which is competitive within the current domestic, and international power generation markets. Design, fabrication, purchase, and construction methods which reduce capital investment while maintaining equipment quality and plant availability. Impact on coast and performance from application of Brazilian coals, foreign trade and tax policies, construction logistics, and labor requirements. Nominal production values of 200 MWe and 400 MWe were selected for the CFBC power plant and 400 MWe for the PC. The 400 MWe size was chosen to be consistent with the two largest Brazilian PC units. Fluidized bed technology, with limited experience in single units over 200 MW, would consist of two 200 MWe circulating fluidized bed boilers supplying steam to one steam turbine for the 400 MWe capacity. A 200 MWe capacity unit was also developed for CFBC option to support opportunities in re-powering and where specific site or other infrastructure constraints limit production

  7. Energy strategy would slow coal's growth, says DOE

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The National Energy Strategy (NES) recently announced by the Bush Administration would slow the growth in use of coal by hundreds of millions of tons of coal by hundreds of millions of tons after 2000, according to the Department of Energy's (DOE) own figures. If today's policies are continued, coal consumption will nearly triple by 2030. Current annual consumption of more than 900 million tons (19 quadrillion Btus) would rise to 1,550 million tons in 2010 and to nearly 2,600 million tons by 2030. Coal's share of electricity generation, now about 55%, would grow to 75% by 2030 under the current policy base assumptions of the DOE. The NES, however, projects that surge of nuclear power plant construction will stem the growth of coal use. The strategy would still increase coal use, from 19 quadrillion Btus today to about 28 quads in 2010, but to only 32 quads by 2030. By 2030, coal would account for less than 50% of electricity generation under the NES. Total clean coal technologies capacity is substantially lower under the NES scenario case than under the clean coal actions alone. The strategy also contains good news for the coal industry in the short run. It holds out two main goals for coal policy: maintaining coal's competitiveness while meeting environmental, health and safety requirements; and creating a favorable export climate for US coal and coal technology

  8. Analysis of Co-Effects on Air Pollutants and CO2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants

    Directory of Open Access Journals (Sweden)

    Haijun Zhao

    2017-03-01

    Full Text Available China is now facing great challenges resulting from climate change and air pollution, driven by the processes of industrialization and urbanization. Greenhouse gas and air pollutant emissions produced by the coal-fired power industry represent approximately 70% of the total emissions in China’s industrial sector. In this study, 39 coal-fired power plants built in China between 2014 and 2015 were analyzed in regards to the co-effects oncarbon dioxide and air pollutant emissions generated directly and indirectly by end-of-pipe measures of pollution control. After completing the quantitative analysis with input data from 83units of power plants, we found that co-effects were positive only for air pollutant reductions through the implementation of desulfurization, denitrification, and dedusting measures, but co-effects were negative for carbon dioxide production because of the corresponding electricity use and chemical reactions that led to the increases in carbon dioxide emissions. We also performed an assessment of the synergistic coefficients to better understand the degree of co-effects. It will be important for researchers to take a comprehensive view of China’s coal-fired power plants and look for solutions that can maximize positive co-effects and achieve overall co-benefits of reductions in greenhouse gas emissions and air pollutants.

  9. Report on the FY 1999 survey for making a data book related to new energy technology development. Trends of solar energy utilization, waste power generation, clean energy vehicle, geothermal power generation, clean coal technology, other new energy technology and new energy technology development; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Taiyonetsu riyo, haikibutsu hatsuden, clean energy jidosha, chinetsu hatsuden, clean coal technology, sonota no shin energy gijutsu, shin energy gijutsu kaihatsu kanren doko

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper collected/arranged the most up-to-date data made public in the new energy technology field. As to the solar energy utilization, the utilization is on the decrease with the beginning of the 1980s as a peak, and the solar systems introduced in FY 1998 totaled 15,000 and the water heaters 56,000. The waste power generation is showing a steady growth both in the general use and in the industrial use, and the introduction of 5 million KW is expected for FY 2010. The sale of the hybrid car started at the end of 1997, and the subjects are the price/performance/fuel supply system. Concerning the geothermal power generation, 497,000 KW and 36,000 KW were introduced for business use and non-utility use, respectively. Japan ranks sixth among nations of the world. Relating to the coal liquefaction, the pilot plant (PP) of Japan's original bituminous coal liquefaction NEDOL process finished operation in 1998, and the construction of technology package, international cooperation, etc. are being conducted. About the coal gasification, the construction of demonstrative equipment and operation are planned during FY 2002 - FY 2007, making use of the PP achievements of IGCC. In regard to the biomass-based waste power generation, the lignocellulose system is large in potential quantity. As to the hydrogen energy, the WE-NET project entered Period II. With respect to the ocean thermal energy conversion, the demonstrative study started. In relation to the wave power generation, a small size of approximately several hundred W was commercialized. (NEDO)

  10. Coal producers can smile, says NERA

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Coal is expected to continue to displace gas and oil and to gain a substantial fraction of the new electric-generation market from nuclear during the rest of this century. Canadian hydropower is expected to be in competition with coal in Wisconsin, Minnesota and Michigan.

  11. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  12. Quarterly coal report, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-26

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  13. Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

  14. GC/MS analysis of coal tar composition produced from coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Jianfang Jiang

    2007-08-01

    Full Text Available Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS, this work presents a composition analysis on the coal tar generated in the experiment. The analysis gives a satisfactory result, which offers a referable theoretical foundation for the further processing and utilization of coal tar.

  15. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  16. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  17. Clean coal technology demonstration program: Program update 1996-97

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  18. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW ...

    Indian Academy of Sciences (India)

    The Ören and Yatağan Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays ...

  19. Palaeoenvironmental reconstruction of Hüsamlar coal seam, SW

    Indian Academy of Sciences (India)

    The Ören and Yatağan Basins in SW Turkey host several Miocene coal deposits currently under exploitation for power generation. The present study aims to provide insight into the palaeoenvironmental conditions, which controlled the formation of the Hüsamlar coal seam located in Ören Basin. The coal seam displays ...

  20. Prospects for the development of coal-steam plants in Russia

    Science.gov (United States)

    Tumanovskii, A. G.

    2017-06-01

    Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.

  1. British Coal Corporation report and accounts 1995/96

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report reviews the year at British Coal and summarises its financial performance for the year ended 30 March 1996. For the first time it records no direct contribution from coal mining in the UK, although it remained responsible at the beginning of the year for employing some 3,500 people in activities ranging from fuel distribution to pensions administration. Achievements included the sale or outsourcing of 10 business and various property sales, bringing the total amount generated from the privatisation of British Coal by May 1996 to over 1.2 billion pounds. The corporation has continued to provide a mine rescue service for which a new company was formed in March 1996. An occupational health service was continued until December 1995. A number of research projects initiated prior to privatisation, sponsored by ECSC, or carried out by the Coal Technology Development Division have continued. The Non-Operational Collieries Group completed the task of managing mine closures. Restoration work on 12 of the 14 former opencast sites has been completed. Responsibility for certain employee benefits and liabilities remains administered by British Coal until the end of 1997.

  2. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  3. Estimation of electric power generation using coal from the fruit peel of cupuassu in Amazonas State, Brazil; Estimativa de geracao de energia eletrica utilizando o carvao da casca do fruto do cupuacuzeiro no estado do Amazonas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio Cleuder Lima da [Manaus Energia S/A., Manaus, AM (Brazil); Santos, Eyde Cristiane Saraiva dos [Universidade Federal do Amazonas (FCA/UFAM), Manaus, AM (Brazil). Faculdade de Ciencias Agrarias. Dept. de Engenharia Agricola e Solos], e-mail: eyde_cristianne@yahoo.com.br

    2008-07-01

    The application of the charcoal of agroforestry residue for the generation of electric energy, for being renewable power plant and possessing technology for application, comes being evidenced. In this research the potential of generation of electric energy was estimated, in the main producing cities of the State of Amazonas of the fruit of the cupuacuzeiro (Theobroma grandiflorum Wild. Ex. Spreng. Shum.), using the rind carbonized in technology of gasification, substitution of diesel. The charcoal of the rind of the fruit of the cupuacuzeiro presents to be able calorific next to the one to the deriving coal of the wood. Known the annual production of each one the cities, the amount and the cost of production of the generated electric energy, determined in this research, it justifies the exploitation of this residue, for having economic advantages, when comparative with the tariff of the adopted electric energy in the region for the concessionaire. (author)

  4. Summary of coal production data

    International Nuclear Information System (INIS)

    Kuhn, E.A.

    1992-01-01

    The paper contains two tables which give data on coal production for both 1990 and 1991. The states included are: Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming. Data on the following are given: number of active mines (total, underground, surface, and auger mines), average number of men working, man hours, total production, number of fatalities, and average value per ton of coal

  5. Environmental protection during coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, N.G.; Vavilin, V.P.; Reznikov, I.G.; Perel' , Eh.P.; Kirilenko, V.M.

    1983-03-01

    The paper evaluates effects of surfactants used in underground coal mining for dust suppression on efficiency of water treatment and on mine water pollution. Two surfactant types are compared: conventional surfactants such as BD, OP-7 or OP-10 and a new generation of soft surfactants which do not have a negative influence on water treatment systems (active sludge, nitrification process, etc.). The results of tests carried out by the KGMI Institute and the VNIIPAV Institute are discussed. About 100 surfactants of both types were evaluated. Coal samples of the following coal types were used: PZh, Zh, G, K, A, T and D coal. Coal samples with grain size from 0.315 mm to 0.4 mm were wet by surfactant solutions in water. The following surfactant concentrations were used: 0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 g/l. Fresh water and mine water with increased mineral content was used. Selected results of the experiments aimed at determining the optimum surfactants for use in underground coal mining are shown in a table. The following surfactants are described: secondary alkyl sulfates (of the 'Progress' type), diethanolamides, monoethanolamides, alkyl sulfonates, Avirol', Savo, Sintanol DC-10, etc.

  6. Uncertainty Analysis using Experimental Design Methods for Assessing CO2 Sequestration and Coal Bed Methane Production Potential of Subbituminous Coals of the Nenana Basin, Interior Alaska

    Science.gov (United States)

    Dixit, N.; Ahmadi, M.; Hanks, C.; Awoleke, O.

    2016-12-01

    Naturally fractured, unmineable coal seam reservoirs are attractive targets for geological sequestration of CO2 because of their high CO2-adsorption capacities and possible cost offsets from enhanced coal bed methane production (ECBM). In this study, we have investigated CO2 sequestration and CH4 production potential of the subbituminous Healy Creek Formation coals through preliminary sensitivity analyses, experimental design methods and fluid flow simulations. Our primary sensitivity analyses indicated that the total cumulative volumes of CO2 sequestered and CH4 produced from the Healy Creek coals are mostly sensitive to bottomhole injection pressure, coal matrix porosity, fracture porosity and permeability, and coal volumetric strain. The results of Plackett-Burman experimental design were used to further constrain the most influential reservoir parameters and generate proxy models for probabilistic reservoir forecasts. Our probabilistic estimates for the mature, subbituminous Healy Creek coals in the entire Nenana basin indicate that it is possible to sequestrate between 0.87 TCF (P10) and 0.2 TCF (P90) of CO2 while producing between 0.29 TCF (P10) and 0.1 TCF (P90) of CH4 at the end of 20-year forecast. Our study demonstrated application of experimental design methods and Monte Carlo analysis in reducing these uncertainties in reservoir properties and quantifying their effect on reservoir performance. In addition, the results of fluid flow scenarios show that the CO2 sequestration through a primary reservoir depletion method is the most effective way to inject CO2 in the coals of the Nenana basin. Including a horizontal well instead of the vertical well resulted in relatively high average gas production rates and subsequent faster production decline. Our CO2 buoyancy scenario suggested that the effect of CO2 buoyancy and the nature of the caprock should be considered when identifying potential geologic sites for CO2 sequestration and in CO2 storage capacity

  7. Performance and mechanism on a high durable silica alumina based cementitious material composed of coal refuse and coal combustion byproducts

    Science.gov (United States)

    Yao, Yuan

    Coal refuse and combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. Recycling is one practical solution to utilize this huge amount of solid waste through activation as substitute for ordinary Portland cement. The central goal of this dissertation is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to ordinary Portland cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economy benefit for construction and building materials. The results show that thermal activation temperature ranging from 20°C to 950°C significantly increases the workability and pozzolanic property of the coal refuse. The optimal activation condition is between 700°C to 800°C within a period of 30 to 60 minutes. Microanalysis illustrates that the improved pozzolanic reactivity contributes to the generated amorphous materials from parts of inert aluminosilicate minerals by destroying the crystallize structure during the thermal activation. In the coal refuse, kaolinite begins to transfer into metakaol in at 550°C, the chlorite minerals disappear at 750°C, and muscovite 2M1 gradually dehydroxylates to muscovite HT. Furthermore, this research examines the environmental

  8. Development of a high-performance, coal-fired power generating system with a pyrolysis gas and char-fired high-temperature furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, J.

    1995-11-01

    A high-performance power system (HIPPS) is being developed. This system is a coal-fired, combined-cycle plant that will have an efficiency of at least 47 percent, based on the higher heating value of the fuel. The original emissions goal of the project was for NOx and SOx to each be below 0.15 lb/MMBtu. In the Phase 2 RFP this emissions goal was reduced to 0.06 lb/MMBtu. The ultimate goal of HIPPS is to have an all-coal-fueled system, but initial versions of the system are allowed up to 35 percent heat input from natural gas. Foster Wheeler Development Corporation is currently leading a team effort with AlliedSignal, Bechtel, Foster Wheeler Energy Corporation, Research-Cottrell, TRW and Westinghouse. Previous work on the project was also done by General Electric. The HIPPS plant will use a high-Temperature Advanced Furnace (HITAF) to achieve combined-cycle operation with coal as the primary fuel. The HITAF is an atmospheric-pressure, pulverized-fuel-fired boiler/air heater. The HITAF is used to heat air for the gas turbine and also to transfer heat to the steam cycle. its design and functions are very similar to conventional PC boilers. Some important differences, however, arise from the requirements of the combined cycle operation.

  9. Etude Climat no. 42 'Power sector in Phase 2 of the EU ETS: fewer CO2 emissions, but just as much coal'

    International Nuclear Information System (INIS)

    Berghmans, Nicolas; Alberola, Emilie

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: Since 2005, 1,453 power and combined heat and power (CHP) generation plants have participated in the European Union Emission Trading Scheme, or EU ETS, which requires them to comply with an annual CO 2 emission cap set by the European Commission. Thermal power plants that use coal (bituminous coal, lignite, and other kinds of coal) and natural gas as their primary fuel jointly account for 86% of the generation capacity included in the EU ETS. There are twice as many gas-fired power plants as coal-fired ones, with 671 gas-fired power plants compared with 352 coal-fired ones

  10. Old King Coal to the rescue as gas supplies dwindle

    International Nuclear Information System (INIS)

    Westbury, R. J.; Balash, A.

    2000-01-01

    Rumours persist about an impending shortage of natural gas, despite solid evidence to suggest that there are vast reserves yet to be discovered. The foundation for the rumours are the fact of increasing per capita demand for natural gas; insufficient financial incentive to vigorously pursue exploration since the easily discoverable reserves of oil and gas have been found long ago, and the cost of discovering oil and natural gas in more difficult formations have risen faster than the rate of inflation. Other reasons cited from time to time include the lack of present day technology that can extract the vast amounts of gas and oil in remaining reserves, and references to the exploding population of the developing world such as India, Pakistan and China, who are major users of oil and gas. It is not expected that nuclear power, wind, solar and geothermal energy sources will become fashionable in the near future, leaving hydrocarbons, and mainly coal, as the only readily available energy source. Although because of the high sulphur content coal gets a bad press, it is a fact that coal-fired power plants, equipped with modern scrubbing equipment, could meet the same pollution limits as natural gas-fired plants. For the moment, the power generating industry is reluctant to invest in the costly equipment for clean coal-fired plants, however, this short-sighted view may well lead to increases in the price of natural gas that will mimic the results of the OPEC increases in crude oil in the 1970s. These authors contend that if gas is wasted in power generation, society will suffer the reappearance of coal-fired home heating furnaces with all the attendant increases in air pollution due to the relatively inefficient combustion of coal in domestic space heating appliances

  11. Clean coal technology: gasification of South African coals - IFSA 2008

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2008-11-01

    Full Text Available Electricity demand in South Africa is increasing at a rate of 1000 MW per year. Whilst there is increasing pressure to adopt non-fossil fuel electricity generating technologies, the abundant reserves and low cost of coal make it the preferred energy...

  12. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  13. Proceedings of the Third APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-26

    This proceedings includes papers presented at the Third APEC Coal Flow Seminar held at Terrigal, Australia in November, 1996. Keynote addresses, three sessions for discussions, and presentations by members economies are included. `Future investment requirements for coal in the APEC region,` `Barriers to investment across the APEC region coal chain,` `International commercial financier`s perspective on coal,` `The role of advanced coal technologies in greenhouse gas abatement and financing its development and uptake,` `Investment issues affecting the uptake of clean coal technology (CCT),` `Role of multilateral development banks in financing CCT to reduce greenhouse gas emissions,` and `Strategies for addressing regional coal issues` were presented as keynote addresses. In the sessions, investment issues facing coal power development, financing coal and investment, and investment strategies for CCT were discussed. 58 refs., 42 figs., 40 tabs.

  14. MHD Power Generation

    Science.gov (United States)

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  15. The state of documentation of methane resources of coal mines in the Upper Silesian coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Kwarcinski, J. [Polish Geological Institute, Sosnowiec (Poland). Upper Silesian Branch

    1995-08-01

    The Polish Ministers` Council Economic Committee Resolution of 27 July 1962 required that coalbed methane reserves should be treated as a coal associated resource. Thus it is necessary to estimate the reserves of methane occurring within mining properties or coal exploration projects. The methodology for methane resource calculation is described. As of 1 January 1994, 22 coal mines had documented methane reserves as a coal associated resource. However, considerable reserves of coalbed methane in the Upper Silesian Coal Basin are not yet documented according to formal procedures and are not included into the State Resource Balance Sheets. 10 refs., 3 figs., 1 tab.

  16. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  17. Coal: a South African success story

    Energy Technology Data Exchange (ETDEWEB)

    Boers, R.

    1990-01-01

    Describes the South African coal mining industry, including exports domestic use of coal, coal geology and mining methods, employment, labour relations, benefits and social amenities provided for workers, safety and environmental aspects including land reclamation. Also discusses the implications of sanctions on coal and the mining industry, and argues that sanctions have not achieved and cannot achieve the stated objective of the social and political emancipation of black South Africa. Concludes that in order to defeat apartheid, South Africa, needs economic growth and encouragement for those attempting reform.

  18. Programming system for rapid evaluation of coal deposits

    Directory of Open Access Journals (Sweden)

    Stanìk František

    2002-09-01

    Full Text Available Programming system for rapid evaluation of coal deposits (calculation of coal reserves based on data stored in coal deposit database including processing of textual and graphic outputs was elaborated. The nature of such outputs is based on conventional coal reserve calculations so that connection with coal reserve calculations made in the past is secured. Differences in particular coal deposits as well as in individual coal seams are respected in the system. Coal seams differ one from another in their development by variability of seam thickness and seam quality within coal deposit etc. In addition to this, coal deposits are disturbed by tectonic failures and deformations. The system of evaluation of coal deposits is based on development of planar models of particular seams where calculation blocks are created and coal reserves contained in them are determined. Subsequently coal reserves of particular seams and of the whole deposit are determined. Natural limitation of seam model is given by determined minimum seam thickness and maximum ash content (i.e. content of inorganic component in coal. Basic model is structured according to detected main tectonic lines into tectonic blocks. According to further geological factors (e.g. erosion and contractual boundaries (e.g. demarcations, the deposit is structured into smaller units - calculation blocks. The whole system operates in a maximum automated regime with minimum manual interventions into solving procedure. The system enables rapid alternative calculations of coal reserves according to varying limit values of basic calculation parameters.

  19. Coal in Asia-Pacific. Vo.9 No.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This article includes `JAPAC International Symposium: Coal Flow 1997,` `Study to consolidate infrastructure to import overseas coal,` and `China`s coal-fired thermal power development plans and Japan`s subjects.` The theme of Coal Flow 1997 was `The supply and demand of coal up to 2020 - Its outlook and related issues.` The main subject for discussion was `a review of the long-term outlook for coal supply and demand from now into the year 2020 in coal producing and consuming members of the Asia-Pacific community, of which economic growth rate is expected to continue.` For the study to consolidate infrastructure to import overseas coal, subjects for stable Australian coal supply under environmental constraints are outlined. Coal resources and reserves in Australia, Australia`s coal supply capabilities, and export markets for Australian coal and its supply capabilities to Japan are discussed. For China`s coal-fired thermal power development plans and Japan`s subjects, subjects of coal-fired thermal power, coal-fired thermal power development plans and foreign-funded projects, and Japan`s cooperation and subjects are outlined. 26 figs., 26 tabs.

  20. Geology in coal resource utilization

    International Nuclear Information System (INIS)

    Peters, D.C.

    1991-01-01

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base

  1. Geochemical Characteristics of the Bismuth and Antimony Occurrence in Some Coal Seams in the Lublin Coal Basin (LCB)

    Science.gov (United States)

    Parzentny, Henryk R.; Róg, Leokadia

    2017-06-01

    The study included 24 samples of coal with 7 cores, boreholes (7 coal seams), made by the Polish Geological Institute in Warsaw at the site of a Chelm field and 6 coal samples taken from 2 decks in the Lublin Coal mine "Bogdanka" S.A. in LCB. Based on performed tests found generally low levels of Sb and Bi in coal. In the vertical profile of the LCB contents of Bi and Sb in coal generally increases from coal seams younger to older age. Content of Bi in coal from roof part coal seams is usually higher, and ash content in the coal content of Sb are generally lower than in the carbon of the middle part decks. The content of Bi in the lateral coal deposits is unlikely to vary, and the gap in the coal content of Bi between the sampling regions coal do not exceed 1.7 g / Mg. In contrast gap Sb content in coal on the extent LCB is from 1.7 g / Mg of 5.8 g / Mg. The biggest influence on the content of Bi and Sb in coal from the LCB is probably organic matter in which these elements are scattered and do not form their own minerals.

  2. Minor element distribution in iron disulfides in coal: a geochemical review

    Science.gov (United States)

    Kolker, Allan

    2012-01-01

    Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to

  3. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  4. FT-IR and XRD analysis of coal from Makum coalfield of Assam

    Indian Academy of Sciences (India)

    iliary fuels, such as natural gas or imported coals to satisfy the coal quality requirement for ther- mal power generation, particularly from the emis- sion point of view. Since mineral matter affects almost all aspects of coal utilization, the accep- tance of coal for industrial application depends critically on both organic and ...

  5. Investigating the Energy Potential from Co-firing Coal with Municipal ...

    African Journals Online (AJOL)

    At the same time, there are several coal power plant in the country that generate both heat and power. This study was, therefore, initiated to investigate the effect of co-firing MSW and coal. Proximate and ultimate analyses were conducted on both MSW and coal. The optimum blending ratio of MSW and coal was found to be ...

  6. Coal Quality Expert: Status and software specifications

    International Nuclear Information System (INIS)

    Harrison, C.D.

    1992-01-01

    Under the Clean Coal Technology Program (Clean Coal Round 1), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) are funding the development and demonstration of a computer program called the Coal Quality Expert (CQE trademark). When finished, the CQE will be a comprehensive PC-based program which can be used to evaluate several potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The CQE will be flxible in nature and capable of evaluating various qualities of coal, available transportation options, performance issues, and alternative emissions control strategies. This allows the CQE to determine the most cost-effective coal and the least expensive emissions control strategy for a given plant. To accomplish this, the CQE will be composed of technical models to evaluate performance issues; environmental models to evaluate environmental and regulatory issues; and cost estimating models to predict costs for installations of new and retrofit coal cleaning processes, power production equipment, and emissions control systems as well as other production costs such as consumables (fuel, scrubber additive, etc.), waste disposal, operating and maintenance, and replacement energy costs. These technical, environmental, and economic models as well as a graphical user interface will be developed for the CQE. And, in addition, to take advantage of already existing capability, the CQE will rely on seamless integration of already proven and extensively used computer programs such as the EPRI Coal Quality Information Systems, Coal Quality Impact Model (CQIM trademark), and NO x Pert. 2 figs

  7. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  8. Bulk analysis of coal

    International Nuclear Information System (INIS)

    Sowerby, B.D.

    1982-01-01

    Nuclear techniques used in the coal industry to determine specific energy, ash and moisture are outlined. Ash analysis by radioisotope X-ray techniques include a single X-ray measurement using a transmission or backscatter geometry and techniques with compensation for iron variations. Neutron techniques can be used to measure the concentration of some specific elements in coal. The measurement of specific energy, ash and moisture then depends on the correlation of the particular parameter with the measured elemental composition. Carbon can be determined by a combination of a measurement of 4.43 MeV 12 C gamma-rays from neutron inelastic scattering with a separate 60 Co gamma-ray scattering measurement. Sulphur meters are based on the measurement of 5.42 MeV neutron capture of gamma rays

  9. Wabash River coal gasification repowering project: Public design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Wabash River Coal Gasification Repowering Project (the Project), conceived in October of 1990 and selected by the US Department of Energy as a Clean Coal IV demonstration project in September 1991, is expected to begin commercial operations in August of 1995. The Participants, Destec Energy, Inc., (Destec) of Houston, Texas and PSI Energy, Inc., (PSI) of Plainfield, Indiana, formed the Wabash River Coal Gasification Repowering Project Joint Venture (the JV) to participate in the DOE`s Clean Coal Technology (CCT) program by demonstrating the coal gasification repowering of an existing 1950`s vintage generating unit affected by the Clean Air Act Amendments (CAAA). The Participants, acting through the JV, signed the Cooperative Agreement with the DOE in July 1992. The Participants jointly developed, and separately designed, constructed, own, and will operate an integrated coal gasification combined cycle (CGCC) power plant using Destec`s coal gasification technology to repower Unit {number_sign}1 at PSI`s Wabash River Generating Station located in Terre Haute, Indiana. PSI is responsible for the new power generation facilities and modification of the existing unit, while Destec is responsible for the coal gasification plant. The Project demonstrates integration of the pre-existing steam turbine generator, auxiliaries, and coal handling facilities with a new combustion turbine generator/heat recovery steam generator tandem and the coal gasification facilities.

  10. Novel electrochemical process for coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1989-07-01

    The feasibility of two distinctly different routes to coal conversion at low severity conditions was investigated. An electrochemical approach utilizing both the electro-oxidation and electro-reduction routes was employed. The electro-oxidation route consists of an electrochemical reaction involving H{sub 2}O and coal, leading to the breakup of coal molecules. The observed reaction rate has been explained as a combination of the coal and pyrite electro-oxidation currents. Organic sulfur has been identified as the contributing factor for the observation of more than 100% H{sub 2} production current efficiency with several coal samples. Also, an attractive coal pre-treatment process has been identified which results in production of useful products and simultaneous upgrading of the coal. Electrochemical oxidation of coal with H{sub 2}O leads to the production of hydrogen, CO{sub 2}, simultaneous removal of pyritic sulfur, and significant reduction of ash content. There is also indirect evidence that the organic sulfur may be removed in the process. A preliminary economic evaluation of this process has projected a cost advantage of > $8 per ton of Illinois {number sign}2 coal. A lab-scale cell has been successfully employed in this study for generating process data useful for future design calculations. This study also explored the electro-reduction route of coal conversion and has successfully demonstrated production of liquid products from different coal types at low severity conditions. A variety of aliphatic and aromatic compounds have been identified in the products. Coal type appeared to be the most important parameter affecting the product spectrum. 32 refs., 26 figs., 19 tabs.

  11. Cofiring of biofuels in coal fired boilers: Results of case study analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, D.A. [Ebasco Environmental, Sacramento, CA (United States); Hughes, E. [Electric Power Research Institute, Palo Alto, CA (United States); Gold, B.A. [TVA, Chattanooga, TN (United States)

    1993-12-31

    Ebasco Environmental and Reaction Engineering, under contract to EPRI, performed a case study analysis of cofiring biomass in coal-fired boilers of the Tennessee Valley Authority (TVA). The study was also sponsored by DOE. This analysis included evaluating wood fuel receiving, preparation, and combustion in pulverized coal (PC) boilers and cyclone furnaces and an assessment of converting wood into pyrolysis oil or low Btu gas for use in a new combined cycle combustion turbine (CCCT) installation. Cofiring wood in existing coal-fired boilers has the most immediate potential for increasing the utilization of biofuels in electricity generation. Cofiring biofuels with coal can potentially generate significant benefits for utilities including: (1) reducing emissions of SO{sub 2} and NO{sub x}; (2) reducing the net emissions of CO{sub 2}; (3) potentially reducing the fuel cost to the utility depending upon local conditions and considering biomass is potentially exempt from the proposed Btu tax and may get a 1.5 cent/kWh credit for energy generated by wood combustion; (4) supporting local industrial forest industry; and (5) providing a long term market for the development of a biofuel supply and delivery industry. Potential benefits are reviewed in the context of cofiring biofuel at a rate of 15% heat input to the boiler, and compares this cofiring strategy and others previously tested or developed by other utilities. Other issues discussed include: (1) wood fuel specifications as a function of firing method; (2) wood fuel receiving and preparation system requirements; (3) combustion system requirements for cofiring biofuels with coal; (4) combustion impacts of firing biofuels with coal; (5) system engineering issues; (6) the economics of cofiring biofuel with coal. The Allen, TN 330 MW(e) cyclone boiler and Kingston, TN 135 MW(e) Boiler {number_sign}1, a tangentially fired PC unit, case studies are then summarized in the paper, highlighting the cofiring opportunities.

  12. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2011-05-13

    ... but by the coal lessee. The surface estate of the tract is owned by Alpha Coal West, Inc. The tract... main seam mentioned above but does not include any tonnage from localized seams or splits containing...

  13. Final Report of the Advanced Coal Technology Work Group

    Science.gov (United States)

    The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.

  14. Is There Any Future For Coal Power Plants In Europe?

    Directory of Open Access Journals (Sweden)

    A. V. Zimakov

    2017-01-01

    Full Text Available The article deals with the policies of EU countries towards coal power plants as well as practical steps taken by their governments. Coal power plants are widely considered to be environmentally harmful which confronts with environmental policies of the EU suggesting Europe-wide cuts of greenhouse gas emissions. Based on that assumption a number of EU countries such asBelgium,Austria,Portugal,Dania,Finland,SwedenandUKare striving to phase out coal power plants and achieved significant progress on this path replacing coal with other generation sources. On the other hand, other EU members are lagging behind as coal phase-out is not an urgent item of their political agenda. This situation is typical forIreland,Netherlands,Italy,Croatia,SloveniaandSlovakia. Domestic coal extracting industry can pose a significant hindering factor for a coal power plants phase-out and can effectively block the process. This is the case inBulgaria,Romania,Hungary,CzechRepublic,GreeceandPoland. ButGermany, which also has a well-developed coal industry, transforms its energy sector towards a green one cutting the share of coal in the generation mix. If this effort of the German government proves successful it will deliver a positive transformation model for other EU countries with a large share of coal in generation-mix due to domestic coal extraction industry. The analysis of the political and economic (both macro and micro processes leads to conclusion that there is no unity among EU member states in their approach towards coal fired power plants phase-out. This will allow for coal power plants to retain their market share in a short to medium term. But in the longer run one can expect a significant decrease of coal fired generation inEurope, even in the countries traditionally dependent on coal.

  15. FY 1998 survey report. Survey to prepare a data book related to new energy technology development (Trends on the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction/coal gasification and new energy); 1998 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy, jidosha, sekitan ekika gas ka oyobi shin energy kanren doko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Together with the progress of technology development, policies for the introduction/promotion of new energy technology are being developed such as promotion of the commercialization development, revision of the law system, and expansion of the subsidy system for promotion. To push the introduction/promotion forward more effectively, it is necessary to arrange various kinds of data comprehensively/systematically and to make them the basic data for contribution to the spread/education. As to the six fields of the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction, and coal gasification of the technology fields of new energy, this report collected/arranged the data made public recently in terms mainly of the following: trends of the introduction in Japan and abroad, policy/law/subsidy system in Japan and abroad, cost, system outline, basic terms, a list of the main affiliated companies and groups, and the nation's outlook for energy introduction and policies of each new energy technology in Japan and abroad, and the trends. Moreover, characteristics by field were described of the state of the commercialization/introduction of new energy technology. (NEDO)

  16. Computer application in coal preparation industry in China

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.; Wu, L.; Ni, Q. (China Univ. of Mining and Technology, Xuzhou (China))

    1990-01-01

    This paper describes several packages of microcomputer programs developed for designing and managing the coal preparation plants. Three parts are included: Coal Cleaning Package (CCP), Coal Preparation Optimization Program (CPO) and Coal Preparation Computer Aided Design System (CPCAD). The function of CCP is: evaluating and predicting coal cleaning result. Coal presentation process modelling and optimization; coal preparation flowsheet design and optimization. The CPO is a nonlinear optimization program. It can simulate and optimize the profit for different flowsheet to get the best combination of the final products. The CPCAD was developed based upon AutoCAD and makes full use of AutoLISP, digitizer menus and AutoCAD commands, combining the functions provided by AutoCAD and the principle used in conventional coal preparation plant design, forming a designer-oriented CPCAD system. These packages have proved to be reliable, flexible and easy to learn and use. They are a powerful tool for coal preparation plant design and management. (orig.).

  17. Coal distribution, January--June 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, ''Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs

  18. COAL CONSUMPTION AND ECONOMIC GROWTH IN TURKEY

    Directory of Open Access Journals (Sweden)

    Alper Aslan

    2013-01-01

    Full Text Available This aim of this paper is to use asymmetric causality tests to examine the coal consumption and Gross Domestic Product (GDP relationship in Turkey based on data from 1980 to 2006. To investigate this relationship, a multivariate system is employed by including fixed capital formation and labor force variables into the model. The empirical results obtained from asymmetric causality tests show no causality for coal consumption and GDP relationship in Turkey. The results indicate that coal consumption does not affect growth; hence, energy conservation policies may be pursued without adversely affecting growth in Turkey. Thus, neutrality hypothesis is confirmed for Turkey. This means that a decrease in coal consumption does not affect economic growth and vice versa. In this case, policymakers should explore the feasibility of either decreasing the coal consumption or increasing the efficiency of coal consumption.

  19. GC/MS analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  20. gc/ms analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  1. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Diagenetic mineralization in Pennsylvanian coals from Indiana, USA: 13C/12C and 18O/16O implications for cleat origin and coalbed methane generation

    Science.gov (United States)

    Solano-Acosta, W.; Schimmelmann, A.; Mastalerz, Maria; Arango, I.

    2008-01-01

    Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of ??18O of coalbed paleowaters that had been present at the time of mineralization. ??18Omineral and ??18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272??Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between ??? 500 to ??? 1300??m at a lower temperature of 43 ?? 6????C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a ??18Owater ??? - 1.25??? versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats. ?? 2007 Elsevier B.V. All rights reserved.

  3. Method for detection of trace metal and metalloid contami