WorldWideScience

Sample records for include cell proliferation

  1. A multiscale model for glioma spread including cell-tissue interactions and proliferation.

    Science.gov (United States)

    Engwer, Christian; Knappitsch, Markus; Surulescu, Christina

    2016-04-01

    Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms. They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult. The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment. In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissue network, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomoty is an extension of the setting in [16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individual structure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide such information, thus opening the way for patient specific modeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale) cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on the macroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess the performance of our modeling approach.

  2. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma

    OpenAIRE

    Terada, Satoshi; Nishimura, Taeko; Sasaki, Masahiro; Yamada, Hideyuki; Miki, Masao

    2002-01-01

    Sericin, a constituent of the silkworm cocoon, was added to the culture of four mammalian cell lines: murine hybridoma 2E3-O,human hepatoblastoma HepG2, human epithelial HeLa and human embryonal kidney 293 cells. The proliferation of all cell lineswas accelerated in the presence of sericin. The hybridoma cellline was further studied. The 2E3-O cell line was so well adapted to serum-free medium that both the proliferation rate and maximum cell density in serum-free ASF103 medium were higher th...

  3. Cell Proliferation in Neuroblastoma

    Science.gov (United States)

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  4. Cell proliferation in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.M.; Ellwein, L.B. (Univ. of Nebraska Medical Center, Omaha (USA))

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  5. Aldehyde dehydrogenases and cell proliferation.

    Science.gov (United States)

    Muzio, G; Maggiora, M; Paiuzzi, E; Oraldi, M; Canuto, R A

    2012-02-15

    Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of

  6. Calcium signaling and cell proliferation.

    Science.gov (United States)

    Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R

    2015-11-01

    Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Negative regulators of cell proliferation

    Science.gov (United States)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  8. Nanoparticles for cells proliferation enhancement

    International Nuclear Information System (INIS)

    Popa, V.; Braniste, F.; Tiginyanu, I.M.; Lisii, C.; Nacu, V.

    2013-01-01

    The potential of semiconductor nanoparticles as stimulator for avian mesenchyme stem cells proliferation enhancement is demonstrated. The effect is related to nanoparticles polarization due to external ultrasound field resulting in local electrical stimulation. Our preliminary results demonstrates that the number of cells have been increased by 23 % ±2%) in cell cultures under the action of external ultrasound stimulation. Morphological analysis and viability shows no differences between the control group and the group studied. These results suggest the possibility for tissue regeneration enhancement by remote stimulation of implanted semiconductor nanoparticles. (authors)

  9. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute...

  10. Cell Proliferation on Planar and Curved Substrates

    Science.gov (United States)

    Gaines, Michelle; Chang, Ya Wen; Cruz, Ricardo; Fragkopoulos, Alexandros; Garcia, Andres; Fernandez-Nieves, Alberto

    Aberrant epithelial collective cell growth is one of the major challenges to be addressed in order to treat diseases such as cancer and organ fibrosis. The conditions of the extracellular microenvironment, properties of the cells' cytoskeleton, and interfacial properties of the substratum (the surface in contact with epithelial cells) have a significant influence on the migratory behavior of epithelial cells, cell proliferation and migration. This work focuses on understanding the impact the substratum curvature has on cell behavior. We focus on cell proliferation first and study MDCK cells on both planar and curved hydrogel substrates. The curved hydrogels are based on polyacrylamide and have toroidal shape, with tube radius 200 um and an aspect ratio in the rage between 2 and 9. Proliferation is measured using the Click-it EDU assay (Invitrogen), which measures cells that are synthesizing DNA. Funding Source is Childrens Healthcare of Atlanta.

  11. Inhibition of cell proliferation by glycerol

    International Nuclear Information System (INIS)

    Wiebe, J.P.; Dinsdale, C.J.

    1991-01-01

    The effect of glycerol on proliferation of BHK, CHO, HBL, MCF-7, and human glioma cells was studied. Cell proliferation was significantly decreased in all the cell lines at glycerol concentrations of 2-4% in the culture medium. The inhibition was dose-dependent, complete suppression of proliferation occurring at a glycerol concentration of 4% for the MCF-7 cell line and 6-8% for the BHK, CHO and human glioma cells. Studies on [ 3 H]thymidine incorporation correlate with the effect on cell proliferation. The viability of the cells was not significantly affected until higher concentrations of glycerol were present. Recovery studies with BHK cells indicated that replacement of the glycerol medium with glycerol-free medium resulted in full recovery following exposure to 4% glycerol and only partial recovery of proliferation rate following exposure to 10-12% glycerol. It is concluded that glycerol, a substance that is normally present in tissues, can serve as a potent inhibitor of cell proliferation

  12. Cell proliferation and differentiation in chemical leukemogenesis

    Science.gov (United States)

    Irons, R. D.; Stillman, W. S.; Clarkson, T. W. (Principal Investigator)

    1993-01-01

    In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.

  13. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  14. Insulin and glucagon regulate pancreatic α-cell proliferation.

    Directory of Open Access Journals (Sweden)

    Zhuo Liu

    2011-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM results from insulin resistance and β-cell dysfunction, in the setting of hyperglucagonemia. Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic α cells: excessively high circulating levels of glucagon lead to excessive hepatic glucose output. We investigated if α-cell numbers increase in T2DM and what factor (s regulate α-cell turnover. Lepr(db/Lepr(db (db/db mice were used as a T2DM model and αTC1 cells were used to study potential α-cell trophic factors. Here, we demonstrate that in db/db mice α-cell number and plasma glucagon levels increased as diabetes progressed. Insulin treatment (EC50 = 2 nM of α cells significantly increased α-cell proliferation in a concentration-dependent manner compared to non-insulin-treated α cells. Insulin up-regulated α-cell proliferation through the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in αTC1 cells. In addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened α-cell proliferation, and increased intra-islet insulin content in β cells in db/db mice. These studies illustrate that pancreatic α-cell proliferation increases as diabetes develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to α-cells. Our current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting α cells and glucagon.

  15. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...... in beta cell differentiation and proliferation may lead to new ways of forming beta cells for treatment of diabetes in man....

  16. Proliferation conditions for human satellite cells

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2001-01-01

    Primary satellite cell cultures have become an important tool as a model system for skeletal muscles. A common problem in human satellite cell culturing is fibroblast overgrowth. We combined N-CAM (Leu19) immunocytochemical staining of satellite cells (Sc) with stereological methods to estimate...... the fraction of Sc in culture. Evaluation of different culture conditions allowed us to find proliferation conditions preferentially for Sc: a) Sc should be cultured on surfaces coated with ECM-gel. b) Primary cell culture should be inoculated in DMEM supplemented with 10% fetal calf serum to increase cell...

  17. Human renal tubular epithelial cells suppress alloreactive T cell proliferation.

    Science.gov (United States)

    Demmers, M W H J; Korevaar, S S; Roemeling-van Rhijn, M; van den Bosch, T P P; Hoogduijn, M J; Betjes, M G H; Weimar, W; Baan, C C; Rowshani, A T

    2015-03-01

    Renal tubular epithelial cells (TECs) are one of the main targets of alloreactive T cells during acute rejection. We hypothesize that TECs modulate the outcome of alloimmunity by executing immunosuppressive effects in order to dampen the local inflammation. We studied whether TECs possess immunosuppressive capacities and if indoleamine 2,3-dioxygenase (IDO) might play a role in suppressing T cell alloreactivity. Next, we studied the role of programmed death ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1 with regard to TEC-related immunomodulatory effects. CD3/CD28 and alloactivated peripheral blood mononuclear cells were co-cultured with activated TECs. We analysed CD4(+) and CD8(+) T cell proliferation and apoptosis in the absence or presence of IDO inhibitor 1-methyl-L-tryptophan (1-L-MT), anti-PD-L1 and anti-ICAM-1. Further, we examined whether inhibition of T cell proliferation was cell-cell contact-dependent. We found that TECs dose-dependently inhibited CD4(+) and CD8(+) T cell proliferation (Pcell proliferation was only partially restored or failed to restore using 1-L-MT. Activated TECs increased early and late apoptosis of proliferating CD4(+) and CD8(+) T cells; only CD4(+) T cell apoptosis was statistically affected by 1-L-MT. Transwell experiments revealed that TEC-mediated immunosuppression is cell-cell contact-dependent. We found that anti-ICAM-1 affected only CD4(+) T cell apoptosis and not T cell proliferation. Our data show that TECs suppress both CD4(+) and CD8(+) T cell proliferation contact dependently. Interestingly, inhibition of proliferation and enhancement of apoptosis of T cell subsets is differentially regulated by indoleamine 2,3-dioxygenase and ICAM-1, with no evidence for the involvement of PD-L1 in our system. © 2014 British Society for Immunology.

  18. Progesterone stimulates pancreatic cell proliferation in vivo

    NARCIS (Netherlands)

    Nieuwenhuizen, AG; Schuiling, GA; Liem, SMS; Moes, H; Koiter, TR; Uilenbroek, JTJ

    Treatment of cyclic and pregnant rats with progesterone stimulates cell proliferation within the islets of Langerhans. It was investigated whether this effect of progesterone depends on sex and/or the presence of the gonads or the presence of oestradiol, For this purpose, Silastic tubes containing

  19. Satellite cell proliferation in adult skeletal muscle

    Science.gov (United States)

    Booth, Frank W. (Inventor); Thomason, Donald B. (Inventor); Morrison, Paul R. (Inventor); Stancel, George M. (Inventor)

    1995-01-01

    Novel methods of retroviral-mediated gene transfer for the in vivo corporation and stable expression of eukaryotic or prokaryotic foreign genes in tissues of living animals is described. More specifically, methods of incorporating foreign genes into mitotically active cells are disclosed. The constitutive and stable expression of E. coli .beta.-galactosidase gene under the promoter control of the Moloney murine leukemia virus long terminal repeat is employed as a particularly preferred embodiment, by way of example, establishes the model upon which the incorporation of a foreign gene into a mitotically-active living eukaryotic tissue is based. Use of the described methods in therapeutic treatments for genetic diseases, such as those muscular degenerative diseases, is also presented. In muscle tissue, the described processes result in genetically-altered satellite cells which proliferate daughter myoblasts which preferentially fuse to form a single undamaged muscle fiber replacing damaged muscle tissue in a treated animal. The retroviral vector, by way of example, includes a dystrophin gene construct for use in treating muscular dystrophy. The present invention also comprises an experimental model utilizable in the study of the physiological regulation of skeletal muscle gene expression in intact animals.

  20. Cell proliferation and ageing in mouse colon

    International Nuclear Information System (INIS)

    Hamilton, E.; Franks, L.M.

    1980-01-01

    Cell kinetic parameters in the descending colon of unirradiated mice, 3-30-months-old were compared with those in mice irradiated repeatedly from the age of 6 or 24 months. The latter animals were given 1250 rad local X-irradiation to the colon every 6 weeks. Dose-survival curves showed the colon crypts of 6 and 24-months-old mice were similarly radiosensitive. In unirradiated mice the number of crypts per colon section decreased significantly at 30 months, but no significant age-related changes were seen in crypt size or labelling index (LI). Cell proliferation returned to control levels within 6 weeks of each X-ray dose and remained at this level for 20 weeks after the final dose. Later, cell proliferation in the irradiated colon fell significantly below control. A total of 6 or 7 doses each of 1250 rad produced only 1 colon carcinoma amongst 50 mice kept until they died. (author)

  1. Metabolic requirements for cancer cell proliferation.

    Science.gov (United States)

    Keibler, Mark A; Wasylenko, Thomas M; Kelleher, Joanne K; Iliopoulos, Othon; Vander Heiden, Matthew G; Stephanopoulos, Gregory

    2016-01-01

    The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell proliferation in a rigorous manner in the context of cancer metabolism. Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic requirement for ATP, NADPH, NAD(+), acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux. Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived nitrogen, and cofactors such as ATP, NADPH, and NAD(+), while also providing justification for various extracellular nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical dynamics that underlie responses to metabolic perturbations.

  2. Cell proliferation inhibition in reduced gravity

    Science.gov (United States)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  3. Induction of proliferation in vitro of resting human natural killer cells

    International Nuclear Information System (INIS)

    London, L.

    1986-01-01

    Experiments examined the cellular and humoral factors necessary to induce proliferation of purified NK cells in vitro and analyzed the phenotypic characteristics of these proliferating cells. The authors experiments demonstrated that NK cells do not proliferate in response to typical T cell mitogens or to allogeneic stimulation. However, NK cells are readily induced to proliferate in response to either natural or recombinant IL-2. The proliferative response of NK cells to IL-2 is enhanced in the presence of irradiated B lymphoblastoid ell lines. Proliferating NK cells maintain the expression of surface markers characteristic of freshly isolated NK cells which newly expressing surface activation antigens including the IL-2 and transferric receptors and the HLA-DR antigen. The majority of NK cells initiate proliferation in response to IL-2. Greater than 50 U/ml of IL-2 is necessary to induce maximal tritiated thymidine ( 3 H-TdR) incorporation by NK cells, and the interaction of IL-2 with the Tac IL-2 receptor is required for the maintenance of NK cell proliferation. NK cells do not proliferate in response to irradiated Daudi cells alone, which, in the presence of IL-2, may act by maintaining continuous proliferation of the cells originally responsive to IL-2. Unlike NK cells, the authors have shown that only a minor subset of T cells proliferate in response to IL-2 alone

  4. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    2010-05-01

    Full Text Available Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination.Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia.These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  5. Review of nuclear fuel cycle alternatives including certain features pertaining to weapon proliferation

    International Nuclear Information System (INIS)

    Williams, D.C.; Rosenstroch, B.

    1978-01-01

    Largely as a result of concerns over nuclear weapon proliferation, the U.S. program to develop and commercialize the plutonium-fueled breeder reactor has been slowed down; interest in alternative fuel cycles has increased. The report offers an informal review of the various nuclear fuel cycle options including some aspects relevant to weapon proliferation, although no complete review of the latter subject is attempted. Basic principles governing breeding, reactor safety, and efficient utilization of fission energy resources (thorium and uranium) are discussed. The controversial problems of weapon proliferation and its relation to fuel reprocessing (which is essential for efficient fuel cycles) are reviewed and a number of proposed approaches to reducing proliferation risks are noted. Some representative specific reactor concepts are described, with emphasis on their development status, their potentials for resource utilization, and their implications for proliferation

  6. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  7. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2012-12-01

    Full Text Available Abstract Background The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. Results In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. Conclusions The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and

  8. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  9. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  10. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  11. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    International Nuclear Information System (INIS)

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-01-01

    Highlights: ► Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). ► Presence of SCs dramatically increased proliferation and migration of UCMSCs. ► Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of “nurse” cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  12. Polyamines and post-irradiation cell proliferation

    International Nuclear Information System (INIS)

    Rosiek, O.; Wronowski, T.; Lerozak, K.; Kopec, M.

    1978-01-01

    The results of three sets of experiments will be presented. Firstly polyamines and DNA content was determined in bone marrow, mesenteric lymph nodes, spleen, liver and kidney of rabbits at the 1, 5, 10 and 20th day after exposure to 600 R of X-irradiation. Polyamine concentration in bone marrow, spleen and lymph nodes was found to be markedly increased during the period of postirradiation recovery. Secondly, effect of 10 -5 M methyl glyoxalbis, guanylhydrazone (MGBG), an inhibitor of spermidine and spermine synthesis, on multiplication of X-irradiated cultures of murine lymphoblaste L5178Y-S was assessed. MGBG-induced inhibition of cell proliferation could be prevented by concurrent administration of 10 -4 M spermidine. Thirdly the influence of putrescine on bone marrow cellularity and 3 H-thymidine incorporation into bone marrow cells was investigated in X-irradiated mice. The results obtained indicate close relation of polyamines to cell proliferation processes after irradiation. (orig./AJ) [de

  13. Cell Proliferation Tracking Using Graphene Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Ronan Daly

    2012-01-01

    Full Text Available The development of a novel label-free graphene sensor array is presented. Detection is based on modification of graphene FET devices and specifically monitoring the change in composition of the nutritive components in culturing medium. Micro-dispensing of Escherichia coli in medium shows feasibility of accurate positioning over each sensor while still allowing cell proliferation. Graphene FET device fabrication, sample dosing, and initial electrical characterisation have been completed and show a promising approach to reducing the sample size and lead time for diagnostic and drug development protocols through a label-free and reusable sensor array fabricated with standard and scalable microfabrication technologies.

  14. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  15. Identification of Predictive Gene Markers for Multipotent Stromal Cell Proliferation.

    Science.gov (United States)

    Bellayr, Ian H; Marklein, Ross A; Lo Surdo, Jessica L; Bauer, Steven R; Puri, Raj K

    2016-06-01

    Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression. Cellular expansion is necessary to obtain sufficient numbers for use; however, MSCs exhibit a reduced capacity for proliferation and differentiation after several rounds of passaging. In this study, gene markers of MSC proliferation were identified and evaluated for their ability to predict proliferative quality. Microarray data of human bone marrow-derived MSCs were correlated with two proliferation assays. A collection of 24 genes were observed to significantly correlate with both proliferation assays (|r| >0.70) for eight MSC lines at multiple passages. These 24 identified genes were then confirmed using an additional set of MSCs from eight new donors using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The proliferative potential of the second set of MSCs was measured for each donor/passage for confluency fraction, fraction of EdU+ cells, and population doubling time. The second set of MSCs exhibited a greater proliferative potential at passage 4 in comparison to passage 8, which was distinguishable by 15 genes; however, only seven of the genes (BIRC5, CCNA2, CDC20, CDK1, PBK, PLK1, and SPC25) demonstrated significant correlation with MSC proliferation regardless of passage. Our analyses revealed that correlation between gene expression and proliferation was consistently reduced with the inclusion of non-MSC cell lines; therefore, this set of seven genes may be more strongly associated with MSC proliferative quality. Our results pave the way to determine the quality of an MSC population for a

  16. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells.

    Science.gov (United States)

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-06-23

    BACKGROUND It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. MATERIAL AND METHODS MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. RESULTS ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. CONCLUSIONS This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo.

  17. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); M.R.M. Baert (Miranda); C.M. van den Burg (Caroline); M. van Noort (Mascha); E.F. de Haas (Edwin); J.J.M. van Dongen (Jacques)

    2004-01-01

    textabstractThe thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals

  18. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  19. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  20. A secreted factor represses cell proliferation in Dictyostelium

    OpenAIRE

    Brock, Debra A.; Gomer, Richard H.

    2005-01-01

    Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that i...

  1. AIL and HDG proteins act antagonistically to control cell proliferation.

    Science.gov (United States)

    Horstman, Anneke; Fukuoka, Hiroyuki; Muino, Jose M; Nitsch, Lisette; Guo, Changhua; Passarinho, Paul; Sanchez-Perez, Gabino; Immink, Richard; Angenent, Gerco; Boutilier, Kim

    2015-02-01

    Aintegumenta-like (AIL) transcription factors are key regulators of cell proliferation and meristem identity. Although AIL functions have been well described, the direct signalling components of this pathway are largely unknown. We show that baby boom (BBM) and other AIL proteins physically interact with multiple members of the L1-expressed homeodomain glabrous (HDG) transcription factor family, including HDG1, HDG11 and HDG12. Overexpression of HDG1, HDG11 and HDG12 restricts growth due to root and shoot meristem arrest, which is associated with reduced expression of genes involved in meristem development and cell proliferation pathways, whereas downregulation of multiple HDG genes promotes cell overproliferation. These results suggest a role for HDG proteins in promoting cell differentiation. We also reveal a transcriptional network in which BBM and HDG1 regulate several common target genes, and where BBM/AIL and HDG regulate the expression of each other. Taken together, these results suggest opposite roles for AIL and HDG proteins, with AILs promoting cell proliferation and HDGs stimulating cell differentiation, and that these functions are mediated at both the protein-protein interaction and transcriptional level. © 2015. Published by The Company of Biologists Ltd.

  2. Equine Hoof Canker: Cell Proliferation and Morphology.

    Science.gov (United States)

    Apprich, V; Licka, T; Zipfl, N; Tichy, A; Gabriel, C

    2017-07-01

    Hoof canker is described as progressive pododermatitis of the equine hoof with absent epidermal cornification and extensive proliferation of the dermal papillary body; however, in-depth research on the type of proliferative activity has not yet been reported. The aim of the present study was to determine cell-specific proliferation patterns together with morphological analysis of hoof canker tissue. Tissues removed during surgery from 19 horses presented for treatment of canker were compared with similar postmortem tissues of healthy hooves of 10 horses. Morphological alterations visible in light microscopy were assessed semiquantitatively and graded for severity. Proliferative activity was evaluated by means of anti-PCNA (proliferative cell nuclear antigen) and anti-Ki67 immunohistochemistry. Histologically, canker tissue showed 5 major morphological alterations-the presence of lacunae, vacuoles, giant cells, hemorrhage, and inflammation-not seen in control tissue. Also, there was a notable koilocytotic appearance of keratinocytes in canker tissue. Immunohistochemistry revealed increased levels of PCNA protein expression in keratinocytes and fibroblasts of canker tissue compared with control tissue. In control tissue, keratinocytes showed higher levels of Ki67 compared with canker tissue, while the dermal fibroblasts of both groups showed similar levels of Ki67, indicating similar proliferative activity of less than 3% of total dermal fibroblasts. These results demonstrate that, in contrast to previous reports, there is no evidence for increased proliferative activity of the dermal papillary body associated with hoof canker. Increased levels of PCNA protein expression and morphological alterations indicate that dysregulation of keratinocyte differentiation constitutes a key event in equine hoof canker development.

  3. Human β-Cell Proliferation and Intracellular Signaling: Part 3

    Science.gov (United States)

    Hussain, Mehboob A.; García-Ocaña, Adolfo; Vasavada, Rupangi C.; Bhushan, Anil; Bernal-Mizrachi, Ernesto

    2015-01-01

    This is the third in a series of Perspectives on intracellular signaling pathways coupled to proliferation in pancreatic β-cells. We contrast the large knowledge base in rodent β-cells with the more limited human database. With the increasing incidence of type 1 diabetes and the recognition that type 2 diabetes is also due in part to a deficiency of functioning β-cells, there is great urgency to identify therapeutic approaches to expand human β-cell numbers. Therapeutic approaches might include stem cell differentiation, transdifferentiation, or expansion of cadaver islets or residual endogenous β-cells. In these Perspectives, we focus on β-cell proliferation. Past Perspectives reviewed fundamental cell cycle regulation and its upstream regulation by insulin/IGF signaling via phosphatidylinositol-3 kinase/mammalian target of rapamycin signaling, glucose, glycogen synthase kinase-3 and liver kinase B1, protein kinase Cζ, calcium-calcineurin–nuclear factor of activated T cells, epidermal growth factor/platelet-derived growth factor family members, Wnt/β-catenin, leptin, and estrogen and progesterone. Here, we emphasize Janus kinase/signal transducers and activators of transcription, Ras/Raf/extracellular signal–related kinase, cadherins and integrins, G-protein–coupled receptors, and transforming growth factor β signaling. We hope these three Perspectives will serve to introduce these pathways to new researchers and will encourage additional investigators to focus on understanding how to harness key intracellular signaling pathways for therapeutic human β-cell regeneration for diabetes. PMID:25999530

  4. Connective Tissue Growth Factor Modulates Adult β-Cell Maturity and Proliferation to Promote β-Cell Regeneration in Mice

    Science.gov (United States)

    Riley, Kimberly G.; Pasek, Raymond C.; Maulis, Matthew F.; Peek, Jennifer; Thorel, Fabrizio; Brigstock, David R.; Herrera, Pedro L.

    2015-01-01

    Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA−) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment. PMID:25392241

  5. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    Science.gov (United States)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingling [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Zhao, Yingmin [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin [Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Gu, Jian [Department of Hematology, Yangzhou University School of Clinical Medicine, Yangzhou 225001 (China); Yu, Duonan, E-mail: duonan@yahoo.com [Department of Pediatrics, Jingjiang People' s Hospital, Yangzhou University, Jingjiang 214500 (China); Noncoding RNA Center, Yangzhou University, Yangzhou 225001 (China); Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Disease, Yangzhou 225001 (China); Institute of Comparative Medicine, Yangzhou University, Yangzhou 225001 (China); Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou 225001 (China)

    2016-06-10

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  7. Dual effect of LPS on murine myeloid leukemia cells: Pro-proliferation and anti-proliferation

    International Nuclear Information System (INIS)

    Yu, Lingling; Zhao, Yingmin; Gu, Xin; Wang, Jijun; Pang, Lei; Zhang, Yanqing; Li, Yaoyao; Jia, Xiaoqin; Wang, Xin; Gu, Jian; Yu, Duonan

    2016-01-01

    Modification of the bone marrow microenvironment is considered as a promising strategy to control leukemic cell proliferation, diseases progression and relapse after treatment. However, due to the diversity and complexity of the cellular and molecular compartments in the leukemic microenvironment, it is extremely difficult to dissect the role of each individual molecule or cell type in vivo. Here we established an in vitro system to dissect the role of lipopolysaccharide (LPS), stromal cells and endothelial cells in the growth of mouse myeloid tumor cells and B-lymphoma cells. We found that either LPS or bone marrow stromal cells as a feeder layer in culture is required for the proliferation of myeloid tumor cells. Surprisingly, the growth of myeloid leukemic cells on stromal cells is strongly inhibited when coupled with LPS in culture. This opposing effect of LPS, a complete switch from pro-proliferation to antitumor growth is due, at least in part, to the rapidly increased production of interleukin 12, Fas ligand and tissue inhibitor of metalloproteinases-2 from stromal cells stimulated by LPS. These results demonstrate that LPS can either facilitate or attenuate tumor cell proliferation, thus changing the disease course of myeloid leukemias through its direct effect or modulation of the tumor microenvironment. - Highlights: • LPS alone in culture is required for the proliferation of murine myeloid tumor cells. • Bone marrow stromal cells as a feeder layer is also required for the proliferation of myeloid tumor cells. • However, the growth of myeloid tumor cells is inhibited when LPS and stromal cells are both available in culture. • Thus LPS can either facilitate or attenuate tumor growth through its direct effect or modulation of tumor microenvironment.

  8. CXCL5 secreted from adipose tissue-derived stem cells promotes cancer cell proliferation.

    Science.gov (United States)

    Zhao, Yuying; Zhang, Xiaosan; Zhao, Hong; Wang, Jingxuan; Zhang, Qingyuan

    2018-02-01

    Accumulating data suggest that adipose tissue facilitates breast tumor initiation and progression through paracrine and endocrine pathways, and that adipose tissue-derived stem cell (ASC) is likely the major cell type responsible for tumorigenesis and tumor development. However, it remains unknown how ASCs exert their effects. In the present study, in cultured breast cancer cell lines, including estrogen receptor (ER)-positive MCF-7 cells and ER-negative MDA-MB-231 cells, the effects on tumor proliferation of isolated ASCs from human breasts were examined. The expression of 174 cytokines was additionally identified in this medium. With an anti-human C-X-C motif ligand 5 (CXCL5) monoclonal antibody, the effects of neutralization of CXCL5 on the actions of ASCs in a co-culture medium of ASCs and tumor cells were studied The results demonstrated that ASCs significantly increased the number of breast cancer cells compared with controls. Similarly, the co-culture medium of ASCs with breast cancer cells exhibited potent effects on tumor cell proliferation. In the co-culture medium of ASCs with breast cancer cells, CXCL5 levels were significantly increased. In addition, depletion of CXCL5 with its specific antibody in ASC-conditioned medium blocked the stimulatory effect of ASCs on the proliferation of breast cancer cells. To the best of our knowledge, these results indicate for the first time that ASC-secreted CXCL5 is a key factor promoting breast tumor cell proliferation.

  9. Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation.

    Science.gov (United States)

    Hogan, Niamh M; Joyce, Myles R; Murphy, J Mary; Barry, Frank P; O'Brien, Timothy; Kerin, Michael J; Dwyer, Roisin M

    2013-06-14

    Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs+antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1 and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67-88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. CD18 is required for optimal lymphopenia-induced proliferation of mouse T cells

    Science.gov (United States)

    Sarin, Ritu

    2012-01-01

    Lymphocyte numbers are tightly regulated; with acute lymphopenia, T cell numbers are reestablished through lymphopenia-induced proliferation. In contrast to the costimulation requirements of antigen-driven proliferation, a number of costimulatory molecules are not required for lymphopenia-induced proliferation. However, the requirement for major histocompatibility complex (MHC)-T cell receptor (TCR) interactions and the enhanced lymphopenia-induced proliferation in T cells with higher TCR affinity argue for a role for surface molecules that contribute to efficient MHC-TCR interactions, in particular adhesion molecules. CD18 is an integrin that contributes to the activation of peripheral and intestinal T cells through adhesive and costimulatory mechanisms. We found that CD18 is required for optimal polyclonal and monoclonal CD4+ T cell lymphopenia-induced proliferation in recombination-activating gene 1-deficient (RAG-1−/−) mice; this requirement persisted over time. Uniquely, the dependency on CD18 in CD4+ T cells is in the rapid proliferation in RAG-1−/− recipients and in the slow homeostatic proliferation in irradiated Balb/c recipients. Consistent with the proposed role for intestinal microbiota in lymphopenia-induced rapid proliferation in RAG−/− mice, we observed a significant reduction in rapid proliferation upon treatment of mice with antibiotics; however, the dependency on CD18 for optimal lymphopenia-induced proliferation persisted. Moreover, the dependency for CD18 is maintained over a wide range of numbers of initially transferred T cells, including a low number of initially transferred T cells, when the drive for proliferation is very strong and proliferation is more rapid. Overall, these data argue for an essential and broad role for CD18 in lymphopenia-induced proliferation. PMID:22821945

  11. Androgen receptor differentially regulates the proliferation of prostatic epithelial cells in vitro and in vivo

    Science.gov (United States)

    Grabowska, Magdalena M.; Li, Jiahe; Connelly, Zachary M.; Zhang, Jianghong; Hayward, Simon W.; Cates, Justin M.; Han, Guichun; Yu, Xiuping

    2016-01-01

    Androgens regulate the proliferation and differentiation of prostatic epithelial cells, including prostate cancer (PCa) cells in a context-dependent manner. Androgens and androgen receptor (AR) do not invariably promote cell proliferation; in the normal adult, endogenous stromal and epithelial AR activation maintains differentiation and inhibits organ growth. In the current study, we report that activation of AR differentially regulates the proliferation of human prostate epithelial progenitor cells, NHPrE1, in vitro and in vivo. Inducing AR signaling in NHPrE1 cells suppressed cell proliferation in vitro, concomitant with a reduction in MYC expression. However, ectopic expression of AR in vivo stimulated cell proliferation and induced development of invasive PCa in tissue recombinants consisting of NHPrE1/AR cells and rat urogenital mesenchymal (UGM) cells, engrafted under renal capsule of adult male athymic mice. Expression of MYC increased in the NHPrE1/AR recombinant tissues, in contrast to the reduction seen in vitro. The inhibitory effect of AR signaling on cell proliferation in vitro were reduced by co-culturing NHPrE1/AR epithelial cells with prostatic stromal cells. In conclusion, these studies revealed that AR signaling differentially regulates proliferation of human prostatic epithelia cells in vitro and in vivo through mechanisms involving stromal/epithelial interactions. PMID:27611945

  12. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  13. Cell-surface galactosyltransferase acts as a modulator of rat and human acinar cell proliferation.

    Science.gov (United States)

    Humphreys-Beher, M G; Zelles, T; Maeda, N; Purushotham, K R; Cassisi, N; Schneyer, C A

    1990-06-01

    Several physiological parameters were examined for inducing acinar cell proliferation and corresponding increased expression of beta 1-4 galactosyltransferase. In this study, dietary changes causing acinar cell proliferation included the following: the introduction of animals to a liquid diet (causing gland atrophy) followed by re-introduction of solid chow, gustatory stimulation provided by the introduction of 0.5% citric acid to animal drinking water, and removal of the submandibular gland with subsequent reliance on the parotid gland for saliva protein and fluid. Alterations in growth factor levels were produced by injecting animals with a chronic (three-day) regimen of either nerve growth factor (NGF) or epidermal growth factor (EGF). In all cases of acinar cell proliferation in vivo, generated by the above treatments, cell-surface galactosyltransferase was detected along with the unique expression of a 4.5-kb proliferation-associated mRNA. Parotid gland proliferation could be blocked in all cases by the injection of the galactosyltransferase specific modifier protein, alpha-lactalbumin. Propranolol, a beta-adrenergic receptor antagonist, blocked proliferation in all cases except EGF treatment. EGF-induced proliferation could, however, be prevented if the animals were treated with monoclonal antibody to EGF receptor or with the galactosyltransferase modifier alpha-lactalbumin. As a comparison, human parotid tissue samples obtained from neoplastic pleomorphic adenomas, muco-epidermoid carcinoma, adenoid cystic carcinoma, and a bulimia patient were analyzed for galactosyltransferase expression by Northern blot of mRNA and plasma membrane isolation. Elevated levels of galactosyltransferase were found in all neoplastic tissue preparations as well as in the bulimia sample. Amylase synthesis was reduced in samples compared with surrounding normal tissue from the same patient. In vitro cell culturing of pleomorphic adenoma cells in the presence of

  14. A secreted factor represses cell proliferation in Dictyostelium.

    Science.gov (United States)

    Brock, Debra A; Gomer, Richard H

    2005-10-01

    Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that inhibits the proliferation of wild-type and aprA- cells; this activity is not secreted by aprA- cells. AprA purified by immunoprecipitation also slows the proliferation of wild-type and aprA- cells. Compared with wild type, there is a higher percentage of multinucleate cells in the aprA- population, and when starved, aprA- cells form abnormal structures that contain fewer spores. AprA may thus decrease the number of multinucleate cells and increase spore production. Together, the data suggest that AprA functions as part of a Dictyostelium chalone.

  15. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  16. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  17. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21.

    Science.gov (United States)

    Gongpan, Pianchou; Lu, Yanting; Wang, Fang; Xu, Yuhui; Xiong, Wenyong

    2016-07-02

    AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.

  18. Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Young-Kug Choo

    2012-12-01

    Full Text Available Gangliosides play important roles in the control of severalbiological processes, including proliferation and transmembranesignaling. In this study, we demonstrate the effect ofganglioside GM1 on the proliferation of mouse inducedpluripotent stem cells (miPSCs. The proliferation rate ofmiPSCs was lower than in mouse embryonic stem cells(mESCs. Fluorescence activated cell sorting analysis showedthat the percentage of cells in the G2/M phase in miPSCs waslower than that in mESCs. GM1 was expressed in mESCs, butnot miPSCs. To confirm the role of GM1 in miPSC proliferation,miPSCs were treated with GM1. GM1-treated miPSCsexhibited increased cell proliferation and a larger number ofcells in the G2/M phase. Furthermore, phosphorylation ofmitogen-activated protein kinases was increased in GM1-treated miPSCs.

  19. Vagal control of pancreatic ß-cell proliferation.

    Science.gov (United States)

    Lausier, James; Diaz, William C; Roskens, Violet; LaRock, Kyla; Herzer, Kristi; Fong, Christopher G; Latour, Martin G; Peshavaria, Mina; Jetton, Thomas L

    2010-11-01

    The physiological mechanisms that preserve pancreatic β-cell mass (BCM) are not fully understood. Although the regulation of islet function by the autonomic nervous system (ANS) is well established, its potential roles in BCM homeostasis and compensatory growth have not been adequately explored. The parasympathetic vagal branch of the ANS serves to facilitate gastrointestinal function, metabolism, and pancreatic islet regulation of glucose homeostasis, including insulin secretion. Given the functional importance of the vagus nerve and its branches to the liver, gut, and pancreas in control of digestion, motility, feeding behavior, and glucose metabolism, it may also play a role in BCM regulation. We have begun to examine the potential roles of the parasympathetic nervous system in short-term BCM maintenance by performing a selective bilateral celiac branch-vagus nerve transection (CVX) in normal Sprague-Dawley rats. CVX resulted in no detectable effects on basic metabolic parameters or food intake through 1 wk postsurgery. Although there were no differences in BCM or apoptosis in this 1-wk time frame, β-cell proliferation was reduced 50% in the CVX rats, correlating with a marked reduction in activated protein kinase B/Akt. Unexpectedly, acinar proliferation was increased 50% in these rats. These data suggest that the ANS, via the vagus nerve, contributes to the regulation of BCM maintenance at the level of cell proliferation and may also mediate the drive for enhanced growth under physiological conditions when insulin requirements have increased. Furthermore, the disparate effects of CVX on β-cell and acinar cells suggest that the endocrine and exocrine pancreas respond to different neural signals in regard to mass homeostasis.

  20. Vagal control of pancreatic β-cell proliferation

    Science.gov (United States)

    Lausier, James; Diaz, William C.; Roskens, Violet; LaRock, Kyla; Herzer, Kristi; Fong, Christopher G.; Latour, Martin G.; Peshavaria, Mina

    2010-01-01

    The physiological mechanisms that preserve pancreatic β-cell mass (BCM) are not fully understood. Although the regulation of islet function by the autonomic nervous system (ANS) is well established, its potential roles in BCM homeostasis and compensatory growth have not been adequately explored. The parasympathetic vagal branch of the ANS serves to facilitate gastrointestinal function, metabolism, and pancreatic islet regulation of glucose homeostasis, including insulin secretion. Given the functional importance of the vagus nerve and its branches to the liver, gut, and pancreas in control of digestion, motility, feeding behavior, and glucose metabolism, it may also play a role in BCM regulation. We have begun to examine the potential roles of the parasympathetic nervous system in short-term BCM maintenance by performing a selective bilateral celiac branch-vagus nerve transection (CVX) in normal Sprague-Dawley rats. CVX resulted in no detectable effects on basic metabolic parameters or food intake through 1 wk postsurgery. Although there were no differences in BCM or apoptosis in this 1-wk time frame, β-cell proliferation was reduced 50% in the CVX rats, correlating with a marked reduction in activated protein kinase B/Akt. Unexpectedly, acinar proliferation was increased 50% in these rats. These data suggest that the ANS, via the vagus nerve, contributes to the regulation of BCM maintenance at the level of cell proliferation and may also mediate the drive for enhanced growth under physiological conditions when insulin requirements have increased. Furthermore, the disparate effects of CVX on β-cell and acinar cells suggest that the endocrine and exocrine pancreas respond to different neural signals in regard to mass homeostasis. PMID:20716695

  1. Therapeutic touch stimulates the proliferation of human cells in culture.

    Science.gov (United States)

    Gronowicz, Gloria A; Jhaveri, Ankur; Clarke, Libbe W; Aronow, Michael S; Smith, Theresa H

    2008-04-01

    Our objective was to assess the effect of Therapeutic Touch (TT) on the proliferation of normal human cells in culture compared to sham and no treatment. Several proliferation techniques were used to confirm the results, and the effect of multiple 10-minute TT treatments was studied. Fibroblasts, tendon cells (tenocytes), and bone cells (osteoblasts) were treated with TT, sham, or untreated for 2 weeks, and then assessed for [(3)H]-thymidine incorporation into the DNA, and immunocytochemical staining for proliferating cell nuclear antigen (PCNA). The number of PCNA-stained cells was also quantified. For 1 and 2 weeks, varying numbers of 10-minute TT treatments were administered to each cell type to determine whether there was a dose-dependent effect. TT administered twice a week for 2 weeks significantly stimulated proliferation of fibroblasts, tenocytes, and osteoblasts in culture (p = 0.04, 0.01, and 0.01, respectively) compared to untreated control. These data were confirmed by PCNA immunocytochemistry. In the same experiments, sham healer treatment was not significantly different from the untreated cultures in any group, and was significantly less than TT treatment in fibroblast and tenocyte cultures. In 1-week studies involving the administration of multiple 10-minute TT treatments, four and five applications significantly increased [(3)H]-thymidine incorporation in fibroblasts and tenocytes, respectively, but not in osteoblasts. With different doses of TT for 2 weeks, two 10-minute TT treatments per week significantly stimulated proliferation in all cell types. Osteoblasts also responded to four treatments per week with a significant increase in proliferation. Additional TT treatments (five per week for 2 weeks) were not effective in eliciting increased proliferation compared to control in any cell type. A specific pattern of TT treatment produced a significant increase in proliferation of fibro-blasts, osteoblasts, and tenocytes in culture. Therefore, TT may

  2. Overexpression or absence of calretinin in mouse primary mesothelial cells inversely affects proliferation and cell migration.

    Science.gov (United States)

    Blum, Walter; Pecze, László; Felley-Bosco, Emanuela; Schwaller, Beat

    2015-12-22

    The Ca(2+)-binding protein calretinin is currently used as a positive marker for identifying epithelioid malignant mesothelioma (MM) and reactive mesothelium, but calretinin's likely role in mesotheliomagenesis remains unclear. Calretinin protects immortalized mesothelial cells in vitro from asbestos-induced cytotoxicity and thus might be implicated in mesothelioma formation. To further investigate calretinin's putative role in the early steps of MM generation, primary mesothelial cells from calretinin knockout (CR-/-) and wildtype (WT) mice were compared. Primary mouse mesothelial cells from WT and CR-/- mice were investigated with respect to morphology, marker proteins, proliferation, cell cycle parameters and mobility in vitro. Overexpression of calretinin or a nuclear-targeted variant was achieved by a lentiviral expression system. CR-/- mice have a normal mesothelium and no striking morphological abnormalities compared to WT animals were noted. Primary mouse mesothelial cells from both genotypes show a typical "cobblestone-like" morphology and express mesothelial markers including mesothelin. In cells from CR-/- mice in vitro, we observed more giant cells and a significantly decreased proliferation rate. Up-regulation of calretinin in mesothelial cells of both genotypes increases the proliferation rate and induces a cobblestone-like epithelial morphology. The length of the S/G2/M phase is unchanged, however the G1 phase is clearly prolonged in CR-/- cells. They are also much slower to close a scratch in a confluent cell layer (2D-wound assay). In addition to a change in cell morphology, an increase in proliferation and mobility is observed, if calretinin overexpression is targeted to the nucleus. Thus, both calretinin and nuclear-targeted calretinin increase mesothelial cell proliferation and consequently, speed up the scratch-closure time. The increased rate of scratch closure in WT cells is the result of two processes: an increased proliferation rate and

  3. Oxidized Lipoprotein as a Major Vessel Cell Proliferator in Oxidized Human Serum.

    Directory of Open Access Journals (Sweden)

    Yoshiro Saito

    Full Text Available Oxidative stress is correlated with the incidence of several diseases such as atherosclerosis and cancer, and oxidized biomolecules have been determined as biomarkers of oxidative stress; however, the detailed molecular relationship between generated oxidation products and the promotion of diseases has not been fully elucidated. In the present study, to clarify the role of serum oxidation products in vessel cell proliferation, which is related to the incidence of atherosclerosis and cancer, the major vessel cell proliferator in oxidized human serum was investigated. Oxidized human serum was prepared by free radical exposure, separated using gel chromatography, and then each fraction was added to several kinds of vessel cells including endothelial cells and smooth muscle cells. It was found that a high molecular weight fraction in oxidized human serum specifically induced vessel cell proliferation. Oxidized lipids were contained in this high molecular weight fraction, while cell proliferation activity was not observed in oxidized lipoprotein-deficient serum. Oxidized low-density lipoproteins induced vessel cell proliferation in a concentration-dependent manner. Taken together, these results indicate that oxidized lipoproteins containing lipid oxidation products function as a major vessel cell proliferator in oxidized human serum. These findings strongly indicate the relevance of determination of oxidized lipoproteins and lipid oxidation products in the diagnosis of vessel cell proliferation-related diseases such as atherosclerosis and cancer.

  4. Construction of a computable cell proliferation network focused on non-diseased lung cells

    Directory of Open Access Journals (Sweden)

    Veljkovic Emilija

    2011-07-01

    Full Text Available Abstract Background Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.. Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD, and fibrosis. Unfortunately, no such network has been available prior to this work. Results To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics, and contains a total of 848 nodes (biological entities and 1597 edges (relationships between biological entities. The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data. Conclusions To the best of our knowledge, this lung-focused Cell Proliferation Network

  5. Sox2 activates cell proliferation and differentiation in the respiratory epithelium.

    Science.gov (United States)

    Tompkins, David H; Besnard, Valérie; Lange, Alexander W; Keiser, Angela R; Wert, Susan E; Bruno, Michael D; Whitsett, Jeffrey A

    2011-07-01

    Sox2, a transcription factor critical for the maintenance of embryonic stem cells and induction of pluripotent stem cells, is expressed exclusively in the conducting airway epithelium of the lung, where it is required for differentiation of nonciliated, goblet, and ciliated cells. To determine the role of Sox2 in respiratory epithelial cells, Sox2 was selectively and conditionally expressed in nonciliated airway epithelial cells and in alveolar type II cells in the adult mouse. Sox2 induced epithelial cell proliferation within 3 days of expression. Epithelial cell proliferation was associated with increased Ki-67 and cyclin D1 staining. Expression of cell cycle genes, including FoxM1, Ccna2 (Cyclin A2), Ccnb2 (Cyclin B2), and Ccnd1 (Cyclin D1), was increased. Consistent with a role in cell proliferation, Sox2 activated the transcription of FoxM1 in vitro. In alveoli, Sox2 caused hyperplasia and ectopic differentiation of epithelial cells to those with morphologic and molecular characteristics of conducting airway epithelium. Sox2 induced the expression of conducting airway epithelial specific genes, including Scgb1a1, Foxj1, Tubb3, and Cyp2f2. Although prolonged expression of Sox2 caused cell proliferation and epithelial hyperplasia, Sox2 did not induce pulmonary tumors. Sox2 induces proliferation of respiratory epithelial cells and, subsequently, partially reprograms alveolar epithelial cells into cells with characteristics of the conducting airways.

  6. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  7. Ketamine suppresses the proliferation of rat C6 glioma cells.

    Science.gov (United States)

    Niwa, Hidetomo; Furukawa, Ken-Ichi; Seya, Kazuhiko; Hirota, Kazuyoshi

    2017-10-01

    The present study investigated the effects of N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, on the growth of gliomas. To analyze the effects of ketamine treatment, rat C6 glioma cells arising from astrocytes, and RNB cells representing non-malignant astrocytes, were examined. In ketamine-treated C6 cells, the gene expression changes associated with cell proliferation following ketamine treatment were evaluated using a cDNA microarray. A cell proliferation assay was performed to analyze the dose-dependent proliferation of C6 glioma and RNB cells following culture (72 h) with ketamine treatment (0-100 µM). Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed following cell incubation with/without ketamine, to confirm if the ketamine-induced cell death of C6 glioma and RNB cells were due to apoptosis. In addition, cell proliferation and TUNEL assays were performed following cell incubations with a selective NMDAR antagonist, D-2-amino-5-phosphonovaleric acid (D-AP5). Analysis of the cDNA microarray indicated that the growth of C6 glioma cells were suppressed by the effects of ketamine. Furthermore, results of the proliferation assay confirmed that ketamine treatment inhibited C6 cell proliferation, most notably at a dose of 30 µM (n=7, 66.4%; Pcells, with a significant effect on the rate of death observed at all tested concentrations (3, 10, 30 and 100 µM). Results of the aforementioned proliferation and TUNEL assay experiments were reproduced when ketamine was replaced with a selective NMDAR antagonist, D-AP5. However, the NMDARantagonist-induced effects were not observed in RNB cell cultures. Although it would be premature to apply the results from the present study to human cases, these results indicated that ketamine is an anesthetic candidate providing potential benefit for glioma resection.

  8. Evaluation of the Cell Proliferation Process of Ovarian Follicles in Hypothyroid Rats by Proliferation Cell Nuclear Antigen Immunohistochemical Technique

    Directory of Open Access Journals (Sweden)

    M. Moghaddam Dorafshani

    2012-10-01

    Full Text Available Introduction & Objective: The normal females reproductive function , needs hypothalamus-hypophysis-ovarian extensive hormonal messages. Primary hypothyroidism is characterized by reduced production and secretion of thyroid hormones. During follicular growth PCNA (Proliferating Cell Nuclear Antigen and cycklin D complex play an important role in regulating cell proliferation .This study aimed to determine the cell proliferation index and how this process changes induced by thyroid hormone decreased in rat ovarian follicles.Materials & Methods: In this experimental study, 20 Wistar female rats were divided into experimental and control groups. Experimental group was chemically thyroidectomized by administering propylthiouracil (PTU (500 mg per liter of drinking water. The control group received normal drinking water. After three weeks rats were killed and their ovaries dissected and fixed for the histological preparation. Cell proliferation was determined by PCNA and stereological methods were used for counting cells.Results: Cell proliferation index showed a significant decrease in the frequency of follicular growth from prenatal to graafian follicles in hypothyroidism groups(P0.05 . PCNA expression determined that Primary follicle growth begins earlier. Positive PCNA cells were not observed in primordial follicles of the groups.Conclusion: According to the results of our study, this hypothesis is raised that granulosa cells in growing follicles may be increased by follicle adjacent cells in ovarian stroma . Hormonal changes following the reduction of thyroid hormones may greatly affect the cell proliferation index and lead to faster follicle degeneration.(Sci J Hamadan Univ Med Sci 2012; 19 (3:5-15

  9. Chemical Methods to Induce Beta-Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Amedeo Vetere

    2012-01-01

    Full Text Available Pancreatic beta-cell regeneration, for example, by inducing proliferation, remains an important goal in developing effective treatments for diabetes. However, beta cells have mainly been considered quiescent. This “static” view has recently been challenged by observations of relevant physiological conditions in which metabolic stress is compensated by an increase in beta-cell mass. Understanding the molecular mechanisms underlining these process could open the possibility of developing novel small molecules to increase beta-cell mass. Several cellular cell-cycle and signaling proteins provide attractive targets for high throughput screening, and recent advances in cell culture have enabled phenotypic screening for small molecule-induced beta-cell proliferation. We present here an overview of the current trends involving small-molecule approaches to induce beta-cell regeneration by proliferation.

  10. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  11. Estradiol and corticosterone stimulate the proliferation of a GH cell line, MtT/S: Proliferation of growth hormone cells.

    Science.gov (United States)

    Nogami, Haruo; Hiraoka, Yoshiki; Aiso, Sadakazu

    2016-08-01

    Estrogens are known as a potent growth-stimulator of the anterior pituitary cells such as prolactin cells and somatomammotroph cell lines, while glucocorticoids often inhibit cellular proliferation in the pituitary gland as well as in the extra-pituitary tissues. In this study, the involvement of these steroid hormones in the regulation of proliferation was examined in the MtT/S cells, secreting growth hormone (GH). Effects of estrogens and glucocorticoids were examined in MtT/S cells grown in the medium containing dextran-coated charcoal treated serum. The relative cell density after culture was estimated by the Cell Titer-Glo Luminescent Cell Viability Assay System, and the proliferation rate was determined by the BrdU incorporation method. The mRNA levels were determined by real-time PCR. Estradiol and the specific agonist for both estrogen receptor (ER) α and ERβ stimulated MtT/S growth at a dose dependent manner. The membrane impermeable estrogen, 17β-estradiol-bovine serum albumin conjugate also stimulated the MtT/S proliferation. The effects of all estrogens were inhibited by an estrogen receptor antagonist, ICI182780. Corticosterone stimulated the proliferation of MtT/S cells at doses lower than 10nM without stimulating GH gene transcription, whereas it did not change the proliferation rate at 1μM. The effects of corticosterone were inhibited by glucocorticoid receptor inhibitor, RU486, but not by the mineralocorticoid receptor antagonist, spironolactone. Both estrogens and glucocorticoids were found to stimulate the proliferation of MtT/S, increasing the mRNA expression of cyclins D1, D3, and E. The results suggest that estrogens and glucocorticoids may be involved in the mechanisms responsible for the proliferation of GH cells in the course of pituitary development, to maintain the population of GH cells in the adult pituitary gland, and also in the promotion of GH cell tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Induction of malignant plasma cell proliferation by eosinophils.

    Directory of Open Access Journals (Sweden)

    Tina W Wong

    Full Text Available The biology of the malignant plasma cells (PCs in multiple myeloma (MM is highly influenced by the bone marrow (BM microenvironment in which they reside. More specifically, BM stromal cells (SCs are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s. Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL, respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial.

  13. Cell proliferation of Paramecium tetraurelia on a slow rotating clinostat

    Science.gov (United States)

    Sawai, Satoe; Mogami, Yoshihiro; Baba, Shoji A.

    Paramecium is known to proliferate faster under microgravity conditions, and slower under hypergravity. Experiments using axenic culture medium have demonstrated that hypergravity affected directly on the proliferation of Paramecium itself. In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation, Paramecium tetraurelia was grown under clinorotation (2.5 rpm) and the time course of the proliferation was investigated in detail on the basis of the logistic analysis. On the basis of the mechanical properties of Paramecium, this slow rate of the rotation appears to be enough to simulate microgravity in terms of the randomization of the cell orientation with respect to gravity. P. tetraurelia was cultivated in a closed chamber in which cells were confined without air bubbles, reducing the shear forces and turbulences under clinorotation. The chamber is made of quartz and silicone rubber film; the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method, and the latter for gas exchange. Because of the small dimension for culture space, Paramecium does not accumulate at the top of the chamber in spite of its known negative gravitactic behavior. We measured the cell density at regular time intervals without breaking the configuration of the chamber, and analyzed the proliferation parameters by fitting the data to a logistic equation. As a result, P. tetraurelia showed reduced proliferation under slow clinorotation. The saturation of the cell density as well as the maximum proliferation rate decreased, although we found no significant changes on the half maximal time for proliferation. We also found that the mean swimming velocity decreased under slow clinorotation. These results were not consistent with those under microgravity and fast rotating clinostat. This may suggest that randomization of the cell orientation performed by slow rotating clinostat has

  14. Bone marrow mesenchymal stem cells stimulate proliferation and neuronal differentiation of retinal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available During retina development, retinal progenitor cell (RPC proliferation and differentiation are regulated by complex inter- and intracellular interactions. Bone marrow mesenchymal stem cells (BMSCs are reported to express a variety of cytokines and neurotrophic factors, which have powerful trophic and protective functions for neural tissue-derived cells. Here, we show that the expanded RPC cultures treated with BMSC-derived conditioned medium (CM which was substantially enriched for bFGF and CNTF, expressed clearly increased levels of nuclear receptor TLX, an essential regulator of neural stem cell (NSC self-renewal, as well as betacellulin (BTC, an EGF-like protein described as supporting NSC expansion. The BMSC CM- or bFGF-treated RPCs also displayed an obviously enhanced proliferation capability, while BMSC CM-derived bFGF knocked down by anti-bFGF, the effect of BMSC CM on enhancing RPC proliferation was partly reversed. Under differentiation conditions, treatment with BMSC CM or CNTF markedly favoured RPC differentiation towards retinal neurons, including Brn3a-positive retinal ganglion cells (RGCs and rhodopsin-positive photoreceptors, and clearly diminished retinal glial cell differentiation. These findings demonstrate that BMSCs supported RPC proliferation and neuronal differentiation which may be partly mediated by BMSC CM-derived bFGF and CNTF, reveal potential limitations of RPC culture systems, and suggest a means for optimizing RPC cell fate determination in vitro.

  15. Cell proliferation of Paramecium tetraurelia under simulated microgravity

    Science.gov (United States)

    Sawai, S.; Mogami, Y.; Baba, S. A.

    Paramecium is known to proliferate faster under microgravity in space and slower under hypergravity Experiments using axenic culture medium have demonstrated that the hypergravity affected directly on the proliferation of Paramecium itself Kato et al 2003 In order to assess the mechanisms underlying the physiological effects of gravity on cell proliferation Paramecium tetraurelia was grown under simulated microgravity performed by clinorotation and the time course of the proliferation was investigated in detail on the basis of the logistic analysis P tetraurelia was cultivated in a closed chamber in which cells were confined without air babbles reducing the shear stresses and turbulence under the rotation The chamber is made of quartz and silicone rubber film the former is for the optically-flat walls for the measurement of cell density by means of a non-invasive laser optical-slice method and the latter for gas exchange Because the closed chamber has an inner dimension of 3 times 3 times 60 mm Paramecium does not accumulate at the top of the chamber despite its negative gravitactic behavior We measured the cell density at regular time intervals without breaking the configuration of the chamber and analyzed the proliferation parameters by fitting the data to a logistic equation Clinorotation had the effects of reducing the proliferation of P tetraurelia It reduced both the saturation cell density and the maximum proliferation rate although it had little effect on the

  16. Cell proliferation and hair cell addition in the ear of the goldfish, Carassius auratus

    Science.gov (United States)

    Lanford, P. J.; Presson, J. C.; Popper, A. N.

    1996-01-01

    Cell proliferation and hair cell addition have not been studied in the ears of otophysan fish, a group of species who have specialized hearing capabilities. In this study we used the mitotic S-phase marker bromodeoxyuridine (BrdU) to identify proliferating cells in the ear of one otophysan species, Carassius auratus (the goldfish). Animals were sacrificed at 3 h or 5 days postinjection with BrdU and processed for immunocytochemistry. The results of the study show that cell proliferation occurs in all of the otic endorgans and results in the addition of new hair cells. BrdU-labeled cells were distributed throughout all epithelia, including the primary auditory endorgan (saccule), where hair cell phenotypes vary considerably along the rostrocaudal axis. This study lays the groundwork for our transmission electron microscopy study of proliferative cells in the goldfish ear (Presson et al., Hearing Research 100 (1996) 10-20) as well as future studies of hair cell development in this species. The ability to predict, based on epithelial location, the future phenotype of developing hair cells in the saccule of the goldfish make that endorgan a particularly powerful model system for the investigation of early hair cell differentiation.

  17. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  18. Sphingosine 1-phosphate regulates proliferation, cell cycle and apoptosis of hepatocellular carcinoma cells via syndecan-1.

    Science.gov (United States)

    Zeng, Ye; Liu, Xiaoheng; Yan, Zhiping; Xie, Linshen

    2017-11-24

    Sphingosine 1-phosphate (S1P) plays an important role in hepatocarcinogenesis. We previously demonstrated that S1P induced epithelial-mesenchymal transition of hepatocellular carcinoma (HCC) cells via an MMP-7/Syndecan-1/TGF-β autocrine loop. In the present study, we investigated the regulative role of S1P in cell survival and progression of HCC cells, and tested whether syndecan-1 is required in the S1P action. After transfected with syndecan-1 shRNA, HepG2 and SMMC7721 cells were treated with S1P for 72 h, and then cell proliferation was detected by CCK8 assay, and cell cycle progression and cell apoptosis were detected by flow cytometry. The levels of apoptosis markers including cleaved-Caspase-3 and cleaved-PARP in SMMC7721 cells were examined by western blotting. Results showed that S1P significantly enhanced cell proliferation in HCC cells, which was significantly inhibited by syndecan-1 shRNA. S1P induced the cell proportion in S phase in HCC cells, whereas S1P decreased the proportion of cells in both early and late apoptosis. Syndecan-1 shRNA induced the G2/M arrest in the presence of S1P. In the syndecan-1 shRNA transfected HCC cells, the proportions of late and early apoptotic cells, and levels of cleaved-Caspase-3 and cleaved-PARP were significantly increased in cells with or without S1P treatment. Thus, S1P augments the proportion of cells in S phase of the cell cycle that might translate to enhance HCC cell proliferation and inhibit the cell apoptosis via syndecan-1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Differential migration and proliferation of geometrical ensembles of cell clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi, E-mail: hocc@email.uc.edu

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  20. Differential migration and proliferation of geometrical ensembles of cell clusters

    International Nuclear Information System (INIS)

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-01-01

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  1. Relationship between cancer cell proliferation and thallium-201 uptake in lung cancer

    International Nuclear Information System (INIS)

    Ishibashi, Masatoshi; Fujii, Teruhiko; Yamana, Hideaki; Fujimoto, Kiminori; Rikimaru, Toru; Hayashi, Akihiro; Kurata, Seiji; Hayabuchi, Naofumi

    2000-01-01

    Although thallium-201 ( 201 Tl) uptake is related to perfusion in many normal tissues, the biologic rationale for 201 Tl uptake in tumors is uncertain. To determine if tumor uptake is related to cell proliferation, we correlated the relative retention of 201 Tl in lung tumors with expression of Ki-67, an indicator of cell proliferation. Sixty patients with lung tumors, included small cell carcinoma (n=8) and non-small cell carcinoma (n=52), underwent 201 Tl single photon emission computed tomography (SPECT) imaging. The 201 Tl lesion uptake was determined on early and delayed images and the radiotracer retention index (RI) was calculated. Tumor specimens were obtained at surgery or bronchoscopy. The cell proliferation ratio was estimated with MIB-1, a monoclonal antibody that recognized the nuclear antigen Ki-67. The average 201 Tl index was 2.13±0.61 (early) and 2.46±0.83 (delayed). The average RI was 17.44±35.01. Overall, the 201 Tl index (delayed) and the cancer cell proliferation were correlated (r=0.70, p 201 Tl index on delayed images and the cell proliferation ratio in patients with small cell but not non-small cell lung carcinoma. The 201 Tl index (delayed) was significantly higher (p 201 Tl imaging appears to be useful for evaluating patients with small cell lung carcinoma but not non-small lung carcinoma, and is correlated with the monoclonal antibody MIB-1, marker of cell proliferation. (author)

  2. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  3. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  4. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  5. Role of Calmodulin in Cell Proliferation

    Science.gov (United States)

    Chafouleas, J.

    1983-01-01

    Calmodulin levels were found to increase as cells enter plateau. The data suggest that the cells are exiting the cell cycle late in the G sub 1 phase, or that the calmodulin levels in plateau cells are uncoupled to progression into S phase in plateau cells. Upon release, calmodulin levels rapidly decrease. Following this decrease, there is a increase prior to S phase.

  6. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  7. Doxycycline alters metabolism and proliferation of human cell lines.

    Directory of Open Access Journals (Sweden)

    Ethan Ahler

    Full Text Available The tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells-including inhibition of the mitochondrial ribosome-there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.

  8. Control mechanisms of cell proliferation in intestinal epithelium

    NARCIS (Netherlands)

    R.P.C. Rijke (Rudy)

    1977-01-01

    textabstractIn the adult organism some organs and tissues still contain proliferating and differentiating cells, whereas other organs only consist of non-dividing specialized cells. On the basis of their proliferative activity cell populations may be classified into three categories (135, 138,208).

  9. Neonatal pancreatic pericytes support β-cell proliferation

    Directory of Open Access Journals (Sweden)

    Alona Epshtein

    2017-10-01

    Conclusions: This study introduces pancreatic pericytes as regulators of neonatal β-cell proliferation. In addition to advancing current understanding of the physiological β-cell replication process, these findings could facilitate the development of protocols aimed at expending these cells as a potential cure for diabetes.

  10. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  11. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  12. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation.

    Science.gov (United States)

    Song, Jing; Ma, Dongshen; Xing, Yun; Tang, Shanshan; Alahdal, Murad; Guo, Jiamin; Pan, Yi; Zhang, Yanfeng; Shen, Yumeng; Wu, Qiong; Lu, Zhou; Jin, Liang

    2018-03-22

    A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG), a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133⁺ and CD133 - cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133⁺ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet). αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  13. α-Ketoglutarate Promotes Pancreatic Progenitor-Like Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Jing Song

    2018-03-01

    Full Text Available A major source of β cell generation is pancreatic progenitor-like cell differentiation. Multiple studies have confirmed that stem cell metabolism plays important roles in self-renewal and proliferation. In the absence of glucose, glutamine provides the energy for cell division and growth. Furthermore, α-ketoglutarate (αKG, a precursor for glutamine synthesis, is sufficient for enabling glutamine-independent cell proliferation. We have demonstrated that αKG contributes to the large-scale proliferation of pancreatic progenitor-like cells that can provide an ample amount of clinically relevant β cells. We compared the mRNA expression of a subset of genes, the abundance of ATP, reactive oxide species, mitochondrial number, and the colony-forming frequency between mouse pancreatic CD133+ and CD133− cells. We employed Real-Time PCR, immunostaining and passage assays to investigate self-renewal and proliferation of pancreatic progenitor-like cells in a 3D culture system in the presence and absence of αKG. The energy metabolism of CD133+ cells was more prone to oxidative phosphorylation. However, in the 3D culture system, when αKG was supplemented to the culture medium, the proliferation of the pancreatic progenitor-like cells was significantly elevated. We confirmed that the presence of αKG correlated with the up-regulation of Ten-Eleven Translocation (Tet. αKG can promote the proliferation of pancreatic progenitor-like cells via the up-regulation of Tet.

  14. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  15. 7-Piperazinethylchrysin inhibits melanoma cell proliferation by ...

    African Journals Online (AJOL)

    PEC) on melanoma cell lines. Methods: Cell viability was analyzed by trypan blue exclusion assays and the cell cycle by flow cytometry using ModFit LT software. Specifically, cells were stained with propidium iodide (0.5 mg/mL) supplemented ...

  16. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  17. bantam Is Required for Optic Lobe Development and Glial Cell Proliferation

    Science.gov (United States)

    Li, Ying; Padgett, Richard W.

    2012-01-01

    microRNAs (miRNAs) are small, conserved, non-coding RNAs that contribute to the control of many different cellular processes, including cell fate specification and growth control. Drosophila bantam, a conserved miRNA, is involved in several functions, such as stimulating proliferation and inhibiting apoptosis in the wing disc. Here, we reported the detailed expression pattern of bantam in the developing optic lobe, and demonstrated a new, essential role in promoting proliferation of mitotic cells in the optic lobe, including stem cells and differentiated glial cells. Changes in bantam levels autonomously affected glial cell number and distribution, and non-autonomously affected photoreceptor neuron axon projection patterns. Furthermore, we showed that bantam promotes the proliferation of mitotically active glial cells and affects their distribution, largely through down regulation of the T-box transcription factor, optomotor-blind (omb, Flybase, bifid). Expression of omb can rescue the bantam phenotype, and restore the normal glial cell number and proper glial cell positioning in most Drosophila brains. These results suggest that bantam is critical for maintaining the stem cell pools in the outer proliferation center and glial precursor cell regions of the optic lobe, and that its expression in glial cells is crucial for their proliferation and distribution. PMID:22412948

  18. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  19. EZH2 depletion blocks the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Bettina Fussbroich

    Full Text Available The Enhancer of Zeste 2 (EZH2 protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer.

  20. Cholesterol induces proliferation of chicken primordial germ cells.

    Science.gov (United States)

    Chen, Dongyang; Chen, Meijuan; Lu, Zhenping; Yang, Mengmeng; Xie, Long; Zhang, Wenxin; Xu, Huiyan; Lu, Kehuan; Lu, Yangqing

    2016-08-01

    Primordial germ cells (PGCs) are the precursors of sperm and eggs and may serve as suitable cells for use in research in developmental biology and transgenic animals. However, the long-term propagation of PGCs in vitro has so far been plagued by the loss of their germ cell characteristics. This is largely because of the scarcity of knowledge concerning cell division and proliferation in these cells and the poor optimization of the culture medium. The sonic hedgehog (SHH) signaling pathway is involved in proliferation of many types of cells, but little is known about its role in chicken PGCs. The results of the current study indicate that the proliferation of chicken PGCs increases significantly when cholesterol, a molecule that facilitates the trafficking of HH ligands, is supplemented in the culture medium. This effect was attenuated when an SHH antagonist, cyclopamine was added, suggesting the involvement of SHH signaling in this process. The characterization of PGCs treated with cholesterol has shown that these cells express germ-cell-related markers and retain their capability to colonize the embryonic gonad after re-introduction to vasculature of stage-15 HH embryos, indicating that proliferation of PGCs induced by cholesterol does not alter the germ cell characteristics of these cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cell-Cell Connection Enhances Proliferation and Neuronal Differentiation of Rat Embryonic Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Qian Jiao

    2017-07-01

    Full Text Available Cell-cell interaction as one of the niche signals plays an important role in the balance of stem cell quiescence and proliferation or differentiation. In order to address the effect and the possible mechanisms of cell-cell connection on neural stem/progenitor cells (NSCs/NPCs proliferation and differentiation, upon passaging, NSCs/NPCs were either dissociated into single cell as usual (named Group I or mechanically triturated into a mixture of single cell and small cell clusters containing direct cell-cell connections (named Group II. Then the biological behaviors including proliferation and differentiation of NSCs/NPCs were observed. Moreover, the expression of gap junction channel, neurotrophic factors and the phosphorylation status of MAPK signals were compared to investigate the possible mechanisms. Our results showed that, in comparison to the counterparts in Group I, NSCs/NPCs in Group II survived well with preferable neuronal differentiation. In coincidence with this, the expression of connexin 45 (Cx45, as well as brain derived neurotrophic factor (BDNF and neurotrophin 3 (NT-3 in Group II were significantly higher than those in Group I. Phosphorylation of ERK1/2 and JNK2 were significantly upregulated in Group II too, while no change was found about p38. Furthermore, the differences of NSCs/NPCs biological behaviors between Group I and II completely disappeared when ERK and JNK phosphorylation were inhibited. These results indicated that cell-cell connection in Group II enhanced NSCs/NPCs survival, proliferation and neuronal differentiation through upregulating the expression of gap junction and neurotrophic factors. MAPK signals- ERK and JNK might contribute to the enhancement. Efforts for maintaining the direct cell-cell connection are worth making to provide more favorable niches for NSCs/NPCs survival, proliferation and neuronal differentiation.

  2. Stretched cell cycle model for proliferating lymphocytes

    Science.gov (United States)

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  3. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Science.gov (United States)

    Bachstetter, Adam D; Jernberg, Jennifer; Schlunk, Andrea; Vila, Jennifer L; Hudson, Charles; Cole, Michael J; Shytle, R Douglas; Tan, Jun; Sanberg, Paul R; Sanberg, Cyndy D; Borlongan, Cesario; Kaneko, Yuji; Tajiri, Naoki; Gemma, Carmelina; Bickford, Paula C

    2010-05-05

    Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the

  4. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation.

    Directory of Open Access Journals (Sweden)

    Adam D Bachstetter

    Full Text Available Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS. To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg. The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p. and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020 of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected

  5. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  6. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation

    OpenAIRE

    Choe, Jonathan M; Bakthavatsalam, Deenadayalan; Phillips, Jonathan E; Gomer, Richard H

    2009-01-01

    Abstract Background Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the...

  7. Cell proliferation and radiosensitivity of cow lymphocytes in culture

    International Nuclear Information System (INIS)

    Modave, C.; Fabry, L.; Leonard, A.

    1982-01-01

    The harlequin-staining technique has been used to study, after PHA-stimulation, the cell proliferation of cow lymphocytes in culture and to assess the radiosensitivity in first mitosis cells. At the 48 h fixation time, only 34% of the cells are in first mitosis whereas 55% are already in second and 11% in third mitosis. The exposure of cow lymphocytes to 200 rad X-rays result in the production of 16% dicentric chromosomes in first mitosis cells [fr

  8. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Aube, Michel; Larochelle, Christian; Ayotte, Pierre

    2011-01-01

    cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: → We studied effects of a complex organochlorine mixture on breast cancer cell growth. → Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. → Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. → High concentrations of the mixture decreased the proliferation of all cell lines.

  9. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Aube, Michel, E-mail: 4aubem@videotron.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca [Axe de recherche en sante des populations et environnementale, Centre de recherche du Centre hospitalier universitaire de Quebec and Universite Laval, 2875 Boulevard Laurier, Edifice Delta 2, bureau 600, Quebec, QC, Canada G1V 2M2 (Canada); Laboratoire de Toxicologie, Institut national de sante publique du Quebec, 945 avenue Wolfe, Quebec, QC, Canada G1V 5B3 (Canada)

    2011-04-15

    proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: {yields} We studied effects of a complex organochlorine mixture on breast cancer cell growth. {yields} Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. {yields} Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. {yields} High concentrations of the mixture decreased the proliferation of all cell lines.

  10. Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis.

    Science.gov (United States)

    Poussier, Bertrand; Cordova, Alfredo C; Becquemin, Jean-Pierre; Sumpio, Bauer E

    2005-12-01

    In France, despite a high intake of dietary cholesterol and saturated fat, the cardiovascular death rate is one of the lowest among developed countries. This "French paradox" has been postulated to be related to the high red wine intake in France. The aim of this study was to determine the effects of resveratrol, a major polyphenol component of red wine, on vascular smooth muscle cell (SMC) proliferation in vitro. SMCs were exposed to 10(-6) to 10(-4) M resveratrol and cell proliferation was assessed by cell counting. Cell cycle analysis was done by treating cells with propidium iodide followed by flow-activated cell sorting. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. We demonstrate that resveratrol inhibited bovine aortic SMC proliferation in a dose-dependent manner. The lowest concentration of resveratrol resulting in a significant decrease in SMC proliferation compared with control was 10(-5) M. By flow cytometry, we observed a block in the G1-S phase of the SMC cycle. Resveratrol treatment also resulted in a dose-dependent apoptosis of SMCs but had no effects on SMC morphology. The results indicated that vascular SMC proliferation could be inhibited by resveratrol through a block on G1-S phase and by an increase in apoptosis. It supports the conjecture that red wine consumption may have a beneficial effect on cardiovascular mortality. Our results suggest that resveratrol inhibits, in a dose-dependent manner, smooth muscle cell proliferation, which may help to partially explain a beneficial effect of wine drinking. This inhibition is related to an early block in the cell cycle and also to a dose-dependent apoptotic effect. The present study demonstrates that resveratrol not only is an indirect marker of a healthy life style and alimentation but may also be directly responsible for the French paradox.

  11. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling.

    Science.gov (United States)

    Ota, Mitsunori; Sasaki, Hiroshi

    2008-12-01

    Regulation of organ size is important for development and tissue homeostasis. In Drosophila, Hippo signaling controls organ size by regulating the activity of a TEAD transcription factor, Scalloped, through modulation of its co-activator protein Yki. Here, we show that mouse Tead proteins regulate cell proliferation by mediating Hippo signaling. In NIH3T3 cells, cell density and Hippo signaling regulated the activity of endogenous Tead proteins by modulating nuclear localization of a Yki homolog, Yap1, and the resulting change in Tead activity altered cell proliferation. Tead2-VP16 mimicked Yap1 overexpression, including increased cell proliferation, reduced cell death, promotion of EMT, lack of cell contact inhibition and promotion of tumor formation. Growth-promoting activities of various Yap1 mutants correlated with their Tead-co-activator activities. Tead2-VP16 and Yap1 regulated largely overlapping sets of genes. However, only a few of the Tead/Yap1-regulated genes in NIH3T3 cells were affected in Tead1(-/-);Tead2(-/-) or Yap1(-/-) embryos. Most of the previously identified Yap1-regulated genes were not affected in NIH3T3 cells or mutant mice. In embryos, levels of nuclear Yap1 and Tead1 varied depending on cell type. Strong nuclear accumulation of Yap1 and Tead1 were seen in myocardium, correlating with requirements of Tead1 for proliferation. However, their distribution did not always correlate with proliferation. Taken together, mammalian Tead proteins regulate cell proliferation and contact inhibition as a transcriptional mediator of Hippo signaling, but the mechanisms by which Tead/Yap1 regulate cell proliferation differ depending on the cell type, and Tead, Yap1 and Hippo signaling may play multiple roles in mouse embryos.

  12. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved......Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...

  13. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis.

    Science.gov (United States)

    Pagotto, Romina Maria; Pereyra, Elba Nora; Monzón, Casandra; Mondillo, Carolina; Pignataro, Omar Pedro

    2014-04-01

    Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

  14. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  15. Emodin downregulates cell proliferation markers during DMBA ...

    African Journals Online (AJOL)

    Background: Cell-cycle disruption is the major characteristic features of neoplastic transformation and the status of cell-cycle regulators can thus be utilized to assess the prognostic significance in patients with cancer. The PCNA, cyclin D1, CDK4, CDK6 and survivin expression in the buccal mucosa was utilized to evaluate ...

  16. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  17. Software for precise tracking of cell proliferation

    International Nuclear Information System (INIS)

    Kurokawa, Hiroshi; Noda, Hisayori; Sugiyama, Mayu; Sakaue-Sawano, Asako; Fukami, Kiyoko; Miyawaki, Atsushi

    2012-01-01

    Highlights: ► We developed software for analyzing cultured cells that divide as well as migrate. ► The active contour model (Snakes) was used as the core algorithm. ► The time backward analysis was also used for efficient detection of cell division. ► With user-interactive correction functions, the software enables precise tracking. ► The software was successfully applied to cells with fluorescently-labeled nuclei. -- Abstract: We have developed a multi-target cell tracking program TADOR, which we applied to a series of fluorescence images. TADOR is based on an active contour model that is modified in order to be free of the problem of locally optimal solutions, and thus is resistant to signal fluctuation and morphological changes. Due to adoption of backward tracing and addition of user-interactive correction functions, TADOR is used in an off-line and semi-automated mode, but enables precise tracking of cell division. By applying TADOR to the analysis of cultured cells whose nuclei had been fluorescently labeled, we tracked cell division and cell-cycle progression on coverslips over an extended period of time.

  18. Ghrelin inhibits ovarian epithelial carcinoma cell proliferation in vitro.

    Science.gov (United States)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-11-01

    The only orexigenic peptide, ghrelin, which is primarily produced by the gastrointestinal tract, has been implicated in malignant cell proliferation and invasion. Ghrelin is a natural ligand of the growth hormone secretagogue receptor 1a (GHSR1a). However, the role of ghrelin in ovarian epithelial carcinoma remains unknown since the expression of GHSR1a in ovary is not confirmed. The aim of the present study was to assess expression of ghrelin and its receptor in human ovarian epithelial carcinoma and to examine the effect of ghrelin on carcinoma cell proliferation. Frozen sections of ovarian samples and the human ovarian epithelial carcinoma cell line, HO-8910, were used to characterize the expression of ghrelin/GHSR1a axis and the effect of ghrelin on proliferation. We found that ghrelin and GHSR1a are expressed in ovarian epithelial carcinoma in vivo and in vitro. Ghrelin inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, and this inhibition may be abolished by the ghrelin receptor antagonist D-Lys-3-GH-releasing peptide-6 and ghrelin neutralizing antibody. Ghrelin enhances HO-8910 cell apoptosis and autophagy. The activation of mammalian target of rapamycin (mTOR) signaling pathway blocks the effects of ghrelin-induced autophagy and apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation induced by ghrelin. In conclusion, the present study demonstrates that ghrelin inhibits the proliferation of human HO-8910 ovarian epithelial carcinoma cells by inducing apoptosis and autophagy via the mTOR signaling pathway. This study provides a novel regulatory signaling pathway of ghrelin-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy.

  19. Reciprocal control of cell proliferation and migration

    Directory of Open Access Journals (Sweden)

    De Donatis Alina

    2010-09-01

    Full Text Available Abstract In adult tissue the quiescent state of a single cell is maintained by the steady state conditions of its own microenvironment for what concern both cell-cell as well as cell-ECM interaction and soluble factors concentration. Physiological or pathological conditions can alter this quiescent state through an imbalance of both soluble and insoluble factors that can trigger a cellular phenotypic response. The kind of cellular response depends by many factors but one of the most important is the concentration of soluble cytokines sensed by the target cell. In addition, due to the intrinsic plasticity of many cellular types, every single cell is able, in response to the same stimulus, to rapidly switch phenotype supporting minimal changes of microenviromental cytokines concentration. Wound healing is a typical condition in which epithelial, endothelial as well as mesenchymal cells are firstly subjected to activation of their motility in order to repopulate the damaged region and then they show a strong proliferative response in order to successfully complete the wound repair process. This schema constitute the leitmotif of many other physiological or pathological conditions such as development vasculogenesis/angiogenesis as well as cancer outgrowth and metastasis. Our review focuses on the molecular mechanisms that control the starting and, eventually, the switching of cellular phenotypic outcome in response to changes in the symmetry of the extracellular environment.

  20. Electrospun fiber membranes enable proliferation of genetically modified cells

    Science.gov (United States)

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  1. Signaling related with biphasic effects of bisphenol A (BPA) on Sertoli cell proliferation: a comparative proteomic analysis.

    Science.gov (United States)

    Ge, Li-Chen; Chen, Zhuo-Jia; Liu, Hao; Zhang, Kun-Shui; Su, Qiao; Ma, Xiang-Yu; Huang, Hong-Bin; Zhao, Zhen-Dong; Wang, Yu-Ye; Giesy, John P; Du, Jun; Wang, Hong-Sheng

    2014-09-01

    Biphasic effects on cell proliferation of bisphenol A (BPA) can occur at lesser or greater exposures. Sertoli cells play a pivotal role in supporting proliferation and differentiation of germ cells. The mechanisms responsible for inverse effects of great and low concentrations of BPA on Sertoli cell proliferation need further study. We utilized proteomic study to identify the protein expression changes of Sertoli TM4 cells treated with 10(-8)M and 10(-5)M BPA. The further mechanisms related to mitochondria, energy metabolism and oxidative stress were investigated by qRT-PCR and Western-blotting analysis. Proteomic studies identified 36 proteins and two major clusters of proteins including energy metabolism and oxidative stress expressed with opposite changes in Sertoli cells treated with 10(-8)M and 10(-5)M BPA, respectively, for 24h. Exposure to 10(-5)M BPA resulted in greater oxidative stress and then inhibited cell proliferation, while ROS scavenger NAC effectively blocked these effects. Exposure to 10(-8)M BPA caused higher intercellular ATP, greater activities of mitochondria, and resulted in significant proliferation of TM4 cells, while oligomycin A, an inhibitor of ATP synthase, abolished these growth advantages. Our study demonstrated that micromolar BPA inhibits proliferation of Sertoli cells by elevating oxidative stress while nanomolar BPA stimulates proliferation by promoting energy metabolism. Micromolar BPA inhibits cell proliferation by elevating oxidative stress while nanomolar BPA stimulates cell proliferation by promoting energy metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Actual proliferating index in oral squamous cell carcinoma and leukoplakia.

    Science.gov (United States)

    Chandak, Abhay R; Gadbail, Amol Ramchandra; Chaudhary, Minal S; Chandak, Shweta A; Wadhwani, Ritesh

    2011-08-01

      To examine the possible association between epithelial proliferation and disease progression in the oral mucosa using the actual proliferation index.   The actual proliferation index was measured by the Ki-67 labeling index and argyrophilic nucleolar organizer region count per nucleus. Immunohistochemistry was carried out for Ki-67 by using the molecular immunology borstel-1 clone in 20 leukoplakias, 20 oral squamous cell carcinomas, and 10 normal oral mucosae.   The argyrophilic nucleolar organizer region count per nucleus, Ki-67 labeling index, and actual proliferation index were significantly higher in oral squamous cell carcinoma, followed by leukoplakia and normal oral mucosa. Leukoplakia with dysplasia showed a significantly higher Ki-67 labeling index and actual proliferation index, compared to leukoplakia without dysphasia. There was a significant correlation of Bryne's histological malignancy grading with the argyrophilic nucleolar organizer region count and the Ki-67 labeling index. There was a significant positive correlation between the argyrophilic nucleolar organizer region count and the Ki-67 labeling index among all groups.   Leukoplakia or suspected epithelial dysplasia should be stained for argyrophilic nucleolar organizer regions and Ki-67. The actual proliferation index is not only useful as a prognostic factor, but could also be a promising treatment determining modality for patients with premalignant and malignant lesions. © 2011 Blackwell Publishing Asia Pty Ltd.

  3. Fluidic control over cell proliferation and chemotaxis

    Science.gov (United States)

    Groisman, Alex

    2006-03-01

    Microscopic flows are almost always stable and laminar that allows precise control of chemical environment in micro-channels. We describe design and operation of several microfluidic devices, in which various types of environments are created for different experimental assays with live cells. In a microfluidic chemostat, colonies of non-adherent bacterial and yeast cells are trapped in micro-chambers with walls permeable for chemicals. Fast chemical exchange between the chambers and nearby flow-through channels creates essentially chemostatic medium conditions in the chambers and leads to exponential growth of the colonies up to very high cell densities. Another microfluidic device allows creation of linear concentration profiles of a pheromone (α-factor) across channels with non-adherent yeast cells, without exposure of the cells to flow or other mechanical perturbation. The concentration profile remains stable for hours enabling studies of chemotropic response of the cells to the pheromone gradient. A third type of the microfluidic devices is used to study chemotaxis of human neutrophils exposed to gradients of a chemoattractant (fMLP). The devices generate concentration profiles of various shapes, with adjustable steepness and mean concentration. The ``gradient'' of the chemoattractant can be imposed and reversed within less than a second, allowing repeated quantitative experiments.

  4. Automated measurement of cell motility and proliferation

    Directory of Open Access Journals (Sweden)

    Goff Julie

    2005-04-01

    Full Text Available Abstract Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell

  5. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  6. Cancer cell proliferation controlled by surface chemistry in its microenvironment

    Science.gov (United States)

    Yu, Xiao-Long; Zhang, Bin; Wang, Xiu-Mei; Wang, Ying; Qiao, Lin; He, Jin; Wang, Juan; Chen, Shuang-Feng; Lee, In-Seop; Cui, Fu-Zhai

    2011-12-01

    Hepatoma cells (Hepg2s) as typical cancer cells cultured on hydroxyl (-OH) and methyl (-CH3) group surfaces were shown to exhibit different proliferation and morphological changes. Hepg2s cells on -OH surfaces grew much more rapidly than those on -CH3 surfaces. Hepg2s cells on -OH surfaces had the larger contact area and the more flattened morphology, while those on -CH3 surfaces exhibited the smaller contact area and the more rounded morphology. After 7 days of culture, the migration of Hepg2s cells into clusters on the -CH3 surfaces behaved significantly slower than that on the -OH surfaces. These chemically modified surfaces exhibited regulation of Hepg2s cells on proliferation, adhesion, and migration, providing a potential treatment of liver cancer.

  7. Effect and clinical implications of the low-energy diode laser on bone cell proliferation.

    Science.gov (United States)

    Huertas, Rosa Medina; Luna-Bertos, Elvira De; Ramos-Torrecillas, Javier; Leyva, Francisco Medina; Ruiz, Concepción; García-Martínez, Olga

    2014-04-01

    Laser is a simple, noninvasive technique that has proven useful for treating damaged tissue. However, its effects on bone regeneration and the mechanisms involved are poorly understood. The objective of this study was to evaluate the effects on MG-63 cell proliferation of application of a pulsed diode laser (Ezlase) of 940 nm at low energy levels. After 24 hr of culture, osteoblasts underwent pulsed laser radiation at 0.5, 1, 1.5, and 2 W and fluences of 1-5 J. A control group was not irradiated. After the treatment, cells were incubated for 24 hr, and cell proliferation was analyzed using a spectrophotometric measure of cell respiration (MTT assay). Results were expressed as percentage proliferation versus controls. At 24-hr culture, cell proliferation was increased in laser-treated cells at intensities of 0.5, 1, and 1.5 W/cm(2) versus controls; the energy density was positively correlated with cell growth, which reached a peak at 3 J and decreased at higher fluences. The use of pulsed low-level laser with low-energy density range thus appears to exert a biostimulatory effect on bone tissue. Although the data on cell proliferation are robust, in-depth investigation is required into the effect of these irradiation doses on other cell parameters. The present findings demonstrate that laser therapy could be highly useful in tissue regeneration in different clinical settings, including nursing, physical therapy, dentistry, and traumatology.

  8. Transient processes in cell proliferation kinetics

    CERN Document Server

    Yakovlev, Andrej Yu

    1989-01-01

    A mathematician who has taken the romantic decision to devote himself to biology will doubtlessly look upon cell kinetics as the most simple and natural field of application for his knowledge and skills. Indeed, the thesaurus he is to master is not so complicated as, say, in molecular biology, the structural elements of the system, i. e. ceils, have been segregated by Nature itself, simple considerations of balance may be used for deducing basic equations, and numerous analogies in other areas of science also superficial add to one"s confidence. Generally speaking, this number of impression is correct, as evidenced by the very great theoretical studies on population kinetics, unmatched in other branches of mathematical biology. This, however, does not mean that mathematical theory of cell systems has traversed in its development a pathway free of difficulties or errors. The seeming ease of formalizing the phenomena of cell kinetics not infrequently led to the appearance of mathematical models lacking in adequ...

  9. A micromanipulation cell including a tool changer

    Science.gov (United States)

    Clévy, Cédric; Hubert, Arnaud; Agnus, Joël; Chaillet, Nicolas

    2005-10-01

    This paper deals with the design, fabrication and characterization of a tool changer for micromanipulation cells. This tool changer is part of a manipulation cell including a three linear axes robot and a piezoelectric microgripper. All these parts are designed to perform micromanipulation tasks in confined spaces such as a microfactory or in the chamber of a scanning electron microscope (SEM). The tool changer principle is to fix a pair of tools (i.e. the gripper tips) either on the tips of the microgripper actuator (piezoceramic bulk) or on a tool magazine. The temperature control of a thermal glue enables one to fix or release this pair of tools. Liquefaction and solidification are generated by surface mounted device (SMD) resistances fixed on the surface of the actuator or magazine. Based on this principle, the tool changer can be adapted to other kinds of micromanipulation cells. Hundreds of automatic tool exchanges were performed with a maximum positioning error between two consecutive tool exchanges of 3.2 µm, 2.3 µm and 2.8 µm on the X, Y and Z axes respectively (Z refers to the vertical axis). Finally, temperature measurements achieved under atmospheric pressure and in a vacuum environment and pressure measurements confirm the possibility of using this device in the air as well as in a SEM.

  10. Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation

    OpenAIRE

    Vander Heiden, Matthew G.; Lunt, Sophia Yunkyungkwon

    2011-01-01

    Warburg's observation that cancer cells exhibit a high rate of glycolysis even in the presence of oxygen (aerobic glycolysis) sparked debate over the role of glycolysis in normal and cancer cells. Although it has been established that defects in mitochondrial respiration are not the cause of cancer or aerobic glycolysis, the advantages of enhanced glycolysis in cancer remain controversial. Many cells ranging from microbes to lymphocytes use aerobic glycolysis during rapid proliferation, which...

  11. Glutathione, cell proliferation and differentiation | Ashtiani | African ...

    African Journals Online (AJOL)

    All organisms require an equivalent source for living. Reduced glutathione is the most abundant thiol containing protein in mammalian cells and organs. Glutathione was discovered by Hopkins in 1924 who published his findings in JBC. It is a three peptide containing glutamic acid, cystein and glycin and is found in reduced ...

  12. Control of cell proliferation in human glioma by glucocorticoids.

    Science.gov (United States)

    Freshney, R I; Sherry, A; Hassanzadah, M; Freshney, M; Crilly, P; Morgan, D

    1980-06-01

    Survival and proliferation of cell cultures from human anaplastic astrocytomas were shown to be enhanced by glucocorticoids with an optimal concentration of approximately 2.5 x 10(-5)M (10 micrograms/ml). The stimulation of proliferation was only observed in a clonal growth assay and was reversed as the size of individual colonies reached approximately 50 cells. Above this size, and in regular monolayer cultures, glucocorticoids were found to inhibit cell proliferation as measured by direct cell counting and incorporation of [3H] thymidine. Cultures grown to maximum cell densities in non-limiting medium conditions reached a lower terminal cell density, and had a reduced labelling index with [3H] thymidine in the presence of glucocorticoids. Although there was little difference between the actions of beta-methasone, dexamethasone and ethyl prednisolone, methyl prednisolone was found to be more effective, both in terms of stimulation of clonal growth and inhibition of growth at high cell densities. There was no evidence of cytotoxicity with glucocorticoids up to 5 x 10(-5)M (20 micrograms/ml) and it is suggested that glucocorticoids act via a normal regulatory process, perhaps enhancing cell-cell recognition.

  13. c-Myc regulates cell proliferation during lens development.

    Directory of Open Access Journals (Sweden)

    Gabriel R Cavalheiro

    Full Text Available Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27(Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.

  14. VUV modification promotes endothelial cell proliferation on PTFE vascular grafts

    Science.gov (United States)

    Cezeaux, J. L.; Romoser, C. E.; Benson, R. S.; Buck, C. K.; Sackman, J. E.

    1998-05-01

    Small diameter (⩽6 mm ID ) synthetic vascular grafts, used as lower-limb vessel replacements in patients without suitable autologous saphenous veins, have a failure rate of 53% after 4 yr. Graft failure is due to thrombosis and intimal hyperplasia, an increase in smooth muscle cells in the lumen of the vessel which leads to progressive closing and ultimate occlusion of the vessel. In an effort to increase patency rates of synthetic grafts, investigators have seeded vascular grafts with endothelial cells prior to implantation in an attempt to control both thrombosis and smooth muscle proliferation. This technique has been successful for the development of an endothelial monolayer in animal trials, but has met with limited success in humans. The hydrophobicity, low surface energy, and weak electrical charge of expanded polytetrafluoroethylene (ePTFE) provides conditions which are not optimal for endothelial cell attachment. The purpose of this study is to evaluate the effect of vacuum ultraviolet (VUV) modification of ePTFE on endothelial cell adhesion and proliferation. Pieces of ePTFE graft material were exposed to 10, 20 or 40 W VUV radiation for 10, 20 or 40 min using a UV excimer lamp. Prior to cell adhesion and proliferation experiments, the grafts pieces were autoclaved and cut into pledgets. Half of the pledgets were precoated with fibronectin ( 20 μg/ml). Cell adhesion was measured by seeding 3H-thymidine labeled human umbilical vein endothelial cells (HUVEC) onto the pledgets for 60 min. The pledgets were then washed and the remaining radioactivity assayed using scintillation counting. For the cell proliferation experiments, pledgets were seeded with unlabeled HUVEC which were allowed to adhere to the graft material for 18 h. The cells were then exposed to 3H-thymidine ( 1 μCi/ml) for approximately 48 h and then washed to remove any unincorporated 3H-thymidine. Incorporation of 3H-thymidine was measured using scintillation counting. Four replicate

  15. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    International Nuclear Information System (INIS)

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-01

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation

  16. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  17. Roles of K+ channels in regulating tumour cell proliferation and apoptosis.

    Science.gov (United States)

    Wang, Zhiguo

    2004-06-01

    K+ channels are a most diverse class of ion channels in the cytoplasmic membrane and are distributed widely in a variety of cells including cancer cells. Cell proliferation and apoptosis (programmed cell death or cell suicide) are two counterparts that share the responsibility for maintaining normal tissue homeostasis. Evidence has been accumulating from fundamental studies indicating that tumour cells possess various types of K+ channels, and that these K+ channels play important roles in regulating tumour cell proliferation and apoptosis, i.e. facilitating unlimited growth and promoting apoptotic death of tumour cells. The potential implications of K+ channels as a pharmacological target for cancer therapy and a biomarker for diagnosis of carcinogenesis are attracting increasing interest. This review aims to provide a comprehensive overview of current status of research on K+ channels/currents in tumour cells. Focus is placed on the roles of K+ channels/currents in regulating tumour cell proliferation and apoptosis. The possible mechanisms by which K+ channels affect tumour cell growth and death are discussed. Speculations are also made on the potential implications of regulation of tumour cell proliferation and apoptosis by K+ channels. Copyright 2004 Springer-Verlag

  18. The Na+/H+ exchanger NHE1 in stress-induced signal transduction: implications for cell proliferation and cell death

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig

    2006-01-01

    and acidification, include hypoxia and mechanical stimuli, such as cell stretch. It has recently become apparent that NHE1-mediated modulation of, e.g., cell migration, morphology, proliferation, and death results not only from NHE1-mediated changes in pHi, cell volume, and/or [Na+]i, but also from direct protein...... signaling event activated by stress conditions and modulating cell proliferation and death. The pathophysiological importance of NHE1 in modulating the balance between cell proliferation and cell death in cancer and in ischemia/severe hypoxia will also be briefly addressed.......The ubiquitous plasma membrane Na+/H+ exchanger NHE1 is highly conserved across vertebrate species and is extensively characterized as a major membrane transport mechanism in the regulation of cellular pH and volume. In recent years, the understanding of the role of NHE1 in regulating cell function...

  19. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kai, E-mail: gk161@163.com [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Department of Respiration, 161th Hospital, PLA, Wuhan 430015 (China); Jin, Faguang, E-mail: jinfag@fmmu.edu.cn [Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  20. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    International Nuclear Information System (INIS)

    Guo, Kai; Jin, Faguang

    2015-01-01

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells

  1. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    Science.gov (United States)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  2. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    Science.gov (United States)

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  3. Low Levels of GSTA1 Expression Are Required for Caco-2 Cell Proliferation

    Science.gov (United States)

    Adnan, Humaira; Quach, Holly; MacIntosh, Kimberley; Antenos, Monica; Kirby, Gordon M.

    2012-01-01

    The colonic epithelium continuously regenerates with transitions through various cellular phases including proliferation, differentiation and cell death via apoptosis. Human colonic adenocarcinoma (Caco-2) cells in culture undergo spontaneous differentiation into mature enterocytes in association with progressive increases in expression of glutathione S-transferase alpha-1 (GSTA1). We hypothesize that GSTA1 plays a functional role in controlling proliferation, differentiation and apoptosis in Caco-2 cells. We demonstrate increased GSTA1 levels associated with decreased proliferation and increased expression of differentiation markers alkaline phosphatase, villin, dipeptidyl peptidase-4 and E-cadherin in postconfluent Caco-2 cells. Results of MTS assays, BrdU incorporation and flow cytometry indicate that forced expression of GSTA1 significantly reduces cellular proliferation and siRNA-mediated down-regulation of GSTA1 significantly increases cells in S-phase and associated cell proliferation. Sodium butyrate (NaB) at a concentration of 1 mM reduces Caco-2 cell proliferation, increases differentiation and increases GSTA1 activity 4-fold by 72 hours. In contrast, 10 mM NaB causes significant toxicity in preconfluent cells via apoptosis through caspase-3 activation with reduced GSTA1 activity. However, GSTA1 down-regulation by siRNA does not alter NaB-induced differentiation or apoptosis in Caco-2 cells. While 10 mM NaB causes GSTA1-JNK complex dissociation, phosphorylation of JNK is not altered. These findings suggest that GSTA1 levels may play a role in modulating enterocyte proliferation but do not influence differentiation or apoptosis. PMID:23251616

  4. Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2018-02-01

    Full Text Available Summary: Overactive p53 has been proposed as an important pathophysiological factor for bone marrow failure syndromes, including Fanconi anemia (FA. Here, we report a p53-dependent effect on hematopoietic stem and progenitor cell (HSPC proliferation in mice deficient for the FA gene Fanca. Deletion of p53 in Fanca−/− mice leads to replicative exhaustion of the hematopoietic stem cell (HSC in transplant recipients. Using Fanca−/− HSCs expressing the separation-of-function mutant p53515C transgene, which selectively impairs the p53 function in apoptosis but keeps its cell-cycle checkpoint activities intact, we show that the p53 cell-cycle function is specifically required for the regulation of Fanca−/− HSC proliferation. Our results demonstrate that p53 plays a compensatory role in preventing FA HSCs from replicative exhaustion and suggest a cautious approach to manipulating p53 signaling as a therapeutic utility in FA. : In this article, Pang and colleagues demonstrate a p53-dependent HSPC proliferation regulation in mice deficient for the Fanca gene in the Fanconi anemia (FA pathway. They show that the p53 cell-cycle function is specifically required for the regulation of FA HSC proliferation. These results suggest that overactive p53 may represent a compensatory checkpoint mechanism for FA HSC proliferation. Keywords: p53, bone marrow failure, Fanconi anemia, hematopoietic stem and progenitor cells, apoptosis, cell cycle, proliferation

  5. MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... [Bao H, Li X, Li H, Xing H, Xu B, Zhang X and Liu Z 2017 MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation, invasion and migration by targeting ZFX. J. Biosci. 42 103–111]. 1. Introduction. Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide (Tang et al. 2013).

  6. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  7. AIL and HDG proteins act antagonistically to control cell proliferation

    NARCIS (Netherlands)

    Horstman, A.; Fukuoka, H.; Muino Acuna, J.M.; Nitsch, L.M.C.; Guo, Changhao; Passarinho, P.A.; Sanchez Perez, G.F.; Immink, R.G.H.; Angenent, G.C.; Boutilier, K.A.

    2015-01-01

    AINTEGUMENTA-LIKE (AIL) transcription factors are key regulators of cell proliferation and meristem identity. Although AIL functions have been well described, the direct signalling components of this pathway are largely unknown.We show that BABY BOOM(BBM) and other AIL proteins physically interact

  8. Suppression of vascular smooth muscle cells' proliferation and ...

    African Journals Online (AJOL)

    This study aimed to determine the effects of valsartan on the proliferation and migration of isolated rat vascular smooth muscle cells (VSMCs) and the expression of phospho-p42/44 mitogen-activated protein kinase (MAPK) promoted by angiotensin II (Ang II). VSMCs from the rat thoracic aorta were cultured by ...

  9. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    was normalized. Rat PTH 1-84 stimulated in vitro the PHA-induced proliferation of T cells in a dose dependent manner. This effect was significant in CRF rat lymphocytes, but not in lymphocytes obtained from normal rats. Based upon the present results it is suggested that the secondary hyperparathyroidism...

  10. Long Noncoding RNA PANDA Positively Regulates Proliferation of Osteosarcoma Cells.

    Science.gov (United States)

    Kotake, Yojiro; Goto, Taiki; Naemura, Madoka; Inoue, Yasutoshi; Okamoto, Haruna; Tahara, Keiichiro

    2017-01-01

    A long noncoding RNA, p21-associated ncRNA DNA damage-activated (PANDA), associates with nuclear transcription factor Y subunit alpha (NF-YA) and inhibits its binding to promoters of apoptosis-related genes, thereby repressing apoptosis in normal human fibroblasts. Here, we show that PANDA is involved in regulating proliferation in the U2OS human osteosarcoma cell line. U2OS cells were transfected with siRNAs against PANDA 72 h later and they were subjected to reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR and cell-cycle analysis. PANDA was highly expressed in U2OS cells, and its expression was induced by DNA damage. Silencing PANDA caused arrest at the G 1 phase of the cell cycle, leading to inhibition of cell proliferation. Quantitative RT-PCR showed that silencing PANDA increased mRNA levels of the cyclin-dependent kinase inhibitor p18, which caused G 1 phase arrest. These results suggest that PANDA promotes G 1 -S transition by repressing p18 transcription, and thus promotes U2OS cell proliferation. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  12. Extracts of proliferating and non-proliferating human cells display different base excision pathways and repair fidelity

    DEFF Research Database (Denmark)

    Akbari, Mansour; Pena Diaz, Javier; Andersen, Sonja

    2009-01-01

    Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non-proliferati......Base excision repair (BER) of damaged or inappropriate bases in DNA has been reported to take place by single nucleotide insertion or through incorporation of several nucleotides, termed short-patch and long-patch repair, respectively. We found that extracts from proliferating and non......-proliferating cells both had capacity for single- and two-nucleotide insertion BER activity. However, patch size longer than two nucleotides was only detected in extracts from proliferating cells. Relative to extracts from proliferating cells, extracts from non-proliferating cells had approximately two-fold higher...... concentration of POLbeta, which contributed to most of two-nucleotide insertion BER. In contrast, two-nucleotide insertion in extracts from proliferating cells was not dependent on POLbeta. BER fidelity was two- to three-fold lower in extracts from the non-proliferating compared with extracts of proliferating...

  13. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    International Nuclear Information System (INIS)

    Fan, Ping; He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan

    2011-01-01

    Research highlights: → The proliferation of dramatic increased by co-cultured with Sertoli cells. → VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. → The MHC expression of ECs induced by INF-γ and IL-6, IL-8 and sICAM induced by TNF-α decreased respectively after co-cultured with Sertoli cells. → ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10 3 , 1 x 10 4 or 1 x 10 5 cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-γ and TNF-α were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10 4 cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P 4 cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli cells can effectively suppress INF-γ-induced MHC II antigen expression in co-cultured ECs compared with single

  14. Testicular Sertoli cells influence the proliferation and immunogenicity of co-cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ping, E-mail: fanpinggoodluck@163.com [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China); He, Lan; Pu, Dan; Lv, Xiaohong; Zhou, Wenxu; Sun, Yining; Hu, Nan [Department of Rheumatism and Immunity, The First Affiliated Hospital Xi' an Jiaotong University School of Medicine, Xi' an, Shaanxi 710061 (China)

    2011-01-21

    Research highlights: {yields} The proliferation of dramatic increased by co-cultured with Sertoli cells. {yields} VEGF receptor-2 expression of ECs was up-regulated by co-cultured with Sertoli cells. {yields} The MHC expression of ECs induced by INF-{gamma} and IL-6, IL-8 and sICAM induced by TNF-{alpha} decreased respectively after co-cultured with Sertoli cells. {yields} ECs co-cultured with Sertoli cells also didn't increase the stimulation index of spleen lymphocytes. -- Abstract: The major problem of the application of endothelial cells (ECs) in transplantation is the lack of proliferation and their immunogenicity. In this study, we co-cultured ECs with Sertoli cells to monitor whether Sertoli cells can influence the proliferation and immunogenicity of co-cultured ECs. Sertoli cells were isolated from adult testicular tissue. ECs were divided into the control group and the experimental group, which included three sub-groups co-cultured with 1 x 10{sup 3}, 1 x 10{sup 4} or 1 x 10{sup 5} cell/ml of Sertoli cells. The growth and proliferation of ECs were observed microscopically, and the expression of vascular endothelial growth factor (VEGF) receptor-2 (KDR) was examined by Western blotting. In another experiment, ECs were divided into the control group, the single culture group and the co-culture group with the optimal concentration of Sertoli cells. After INF-{gamma} and TNF-{alpha} were added to the culture medium, MHC II antigen expression was detected by immunofluorescence staining and western blotting; interleukin (IL)-6, IL-8 and soluble intercellular adhesion molecule (sICAM) were measured in the culture medium by ELISA. We demonstrated that 1 x 10{sup 4} cell/ml Sertoli cells promoted the proliferation of co-cultured ECs more dramatically than that in other groups (P < 0.05). Western blotting showed that 1 x 10{sup 4} cell/ml of the Sertoli cells was most effective in the up-regulation of KDR expression in the co-cultured ECs (P < 0.05). Sertoli

  15. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  16. The kinetics of cell proliferation in Wilms' tumours

    International Nuclear Information System (INIS)

    Willnow, U.

    1979-01-01

    The proliferation kinetics of 11 Wilms' tumours (9 primary tumours, 2 lung metastases) were studies by an autoradiographic in vitro method using simple labelling with 3H-thymidine and double labelling with 3H- and 14C-thymidine. The results were in accordance with clinical experience of rapid tumour growth. The 3H-thymidine labelling index ranges between 22.4 and 46.3%, the mean cell cycle time between 11.2 and 22.1 hr, the DNA synthesis time between 8.5 and 13.8 hr, and the mitosis time between 0.3 and 1.5 hr. The growth fraction, which can be determined only approximately with in vitro methods, showed an average value of 0.5. The growth of 2 lung metastases did not differ from the pattern of proliferation of the primary Wilms' tumours. The proliferative activity of Wilms' tumours reaches the magnitude of rapidly proliferating experimental animal tumours. Since X-rays and most cytostatics show specific activity dependent upon the phase of the cell cycle or the proliferative behaviour, cytokinetic data of individual tumours allow the formulation of an index, which represents a general measure of the sensitivity of tumour cells to chemotherapy and radiation. For Wilms' tumours this Cytokinetic Therapy Index ranges between 0.62 and about 1. This is in a region of high sensitivity. The fundamental importance of proliferation kinetics for the treatment of malignant individual solid tumours in children is discussed. (author)

  17. TGF-betas synthesized by RPE cells have autocrine activity on mesenchymal transformation and cell proliferation.

    Science.gov (United States)

    Lee, S C; Kim, S H; Koh, H J; Kwon, O W

    2001-06-01

    The present study investigated the effects of transforming growth factor (TGF)-beta on retinal pigment epithelial (RPE) transformation in a simplified model and also whether or not TGF-beta exhibits similar proliferation effects on transformed RPE cells that it has on primary RPE cells. Furthermore, we examined the cell proliferation effects of RPE-conditioned medium (CM). A vertical wound measuring 2 mm in diameter was made on primary RPE monolayers. The expression of alpha-smooth muscle actin (SMA) by the cells located at the wound edges was observed using a confocal microscope under immunofluorescent staining. Cell proliferation was measured by incorporating 3H-thymidine into DNA. The presence of alpha-SMA was observed in the cells within the wound after treatment with TGF-beta2, while negative expression was observed in control cells. TGF-betas inhibited the proliferation of the primary cultures of RPE cells in a dose-dependent manner, but the spindle-shaped late-passaged RPE cells were not inhibited by these growth factors. The medium conditioned by RPE cells stimulated the proliferation of subconjunctival fibroblasts and inhibited the proliferation of primary RPE cells, in a manner similar to TGF-beta. These findings demonstrate that TGF-beta-stimulated RPE cells may evoke proliferative vitreoretinopathy through mesenchymal transformation and cell proliferation.

  18. The Retinoblastoma pathway regulates stem cell proliferation in freshwater planarians.

    Science.gov (United States)

    Zhu, Shu Jun; Pearson, Bret J

    2013-01-15

    Freshwater planarians are flatworms of the Lophotrochozoan superphylum and are well known for their regenerative abilities, which rely on a large population of pluripotent adult stem cells. However, the mechanisms by which planarians maintain a precise population of adult stem cells while balancing proliferation and cell death, remain to be elucidated. Here we have identified, characterized, and functionally tested the core Retinoblastoma (Rb) pathway components in planarian adult stem cell biology. The Rb pathway is an ancient and conserved mechanism of proliferation control from plants to animals and is composed of three core components: an Rb protein, and a transcription factor heterodimer of E2F and DP proteins. Although the planarian genome contains all components of the Rb pathway, we found that they have undergone gene loss from the ancestral state, similar to other species in their phylum. The single Rb homolog (Smed-Rb) was highly expressed in planarian stem cells and was required for stem cell maintenance, similar to the Rb-homologs p107 and p130 in vertebrates. We show that planarians and their phylum have undergone the most severe reduction in E2F genes observed thus far, and the single remaining E2F was predicted to be a repressive-type E2F (Smed-E2F4-1). Knockdown of either Smed-E2F4-1 or its dimerization partner Dp (Smed-Dp) by RNAi resulted in temporary hyper-proliferation. Finally, we showed that known Rb-interacting genes in other systems, histone deacetylase 1 and cyclinD (Smed-HDAC1; Smed-cycD), were similar to Rb in expression and phenotypes when knocked down by RNAi, suggesting that these established interactions with Rb may also be conserved in planarians. Together, these results showed that planarians use the conserved components of the Rb tumor suppressor pathway to control proliferation and cell survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing, E-mail: caijingmmm@hotmail.com; Wang, Zehua, E-mail: zehuawang@163.net

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  20. Mefloquine inhibits chondrocytic proliferation by arresting cell cycle in G2/M phase.

    Science.gov (United States)

    Li, Qiong; Chen, Zeng-Gan; Xia, Qing; Lin, Jian-Ping; Yan, Zuo-Qin; Yao, Zheng-Jun; Dong, Jian

    2015-01-01

    Mefloquine (MQ), an analog of chloroquine, exhibits a promising cytotoxic activity against carcinoma cell lines and for the treatment of glioblastoma patients. The present study demonstrates the effect of mefloquine on proliferation and cell cycle in chondrocytes. MTT assay and propidium iodide staining were used for the analysis of proliferation and cell cycle distribution, respectively. Western blot analysis was used to examine the expression levels of cyclin B1/cdc2, cdc25c, p21WAF1/CIP1 and p53. The results revealed that mefloquine inhibited the proliferation of chondrocytes and caused cell cycle arrests in the G2/M phase. The proliferation of chondrocytes was reduced to 27% at 40 μM concentration of mefloquine after 48 h. The population of chondrocytes in G2/M phase was found to be 15.7 and 48.4%, respectively at 10 and 40 μM concentration of mefloquine at 48 h following treatment. The expression of the cell cycle regulatory proteins including, cyclin B1/cdc2 and cdc25c was inhibited. On the other hand, mefloquine treatment promoted the expression of p21WAF1/CIP1 and p53 at 40 μM concentration after 48 h. Therefore, mefloquine inhibits proliferation and induces cell cycle arrest in chondrocytes.

  1. Effects of Angelica Extract on Schwann Cell Proliferation and Expressions of Related Proteins

    Directory of Open Access Journals (Sweden)

    Xiaowen Jiang

    2017-01-01

    Full Text Available The present study investigated the effects of Angelica extract (AE on Schwann cell proliferation and expressions of related proteins, including brain derived neurotrophic factor (BDNF, neural cell adhesion molecule (NCAM, and proliferating cell nuclear antigen (PCNA. Proliferation activity and cell cycles of SCs were evaluated by MTT assay and flow cytometry methods, respectively, after 12 h treatment of AE at different concentrations (62.5, 125, 250, 1000, 2000, 4000, and 8000 mg/L. SCs were treated by 500, 1000, and 2000 mg/L AE for 24 h or 48 h; the related genes mRNA and proteins expressions in SCs were detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA kit. At the concentration range of 125–2000 mg/L, the SC proliferation was induced by AE in a dose-dependent manner, especially 1000 and 2000 mg/L; cells in drug-treated groups showed the most increase. Cells counts were ascended significantly in (G2/M + S phase compared to control group. BDNF, NCAM, and PCNA protein expressions significantly increased at drug-treated groups. Relative genes mRNA expressions levels were also significantly higher compared to control group. The results indicated that AE facilitated SC proliferation and related genes and proteins expressions, which provided a basic guideline for nerve injury repair in clinic.

  2. Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas.

    Science.gov (United States)

    Cuadros, Marta; Dave, Sandeep S; Jaffe, Elaine S; Honrado, Emiliano; Milne, Roger; Alves, Javier; Rodríguez, Jose; Zajac, Magdalena; Benitez, Javier; Staudt, Louis M; Martinez-Delgado, Beatriz

    2007-08-01

    Nodal peripheral T-cell lymphomas (PTCLs) constitute a heterogeneous group of neoplasms, suggesting the existence of molecular differences contributing to their histologic and clinical variability. Initial expression profiling studies of T-cell lymphomas have been inconclusive in yielding clinically relevant insights. We applied DNA microarrays to gain insight into the molecular signatures associated with prognosis. We analyzed the expression profiles of 35 nodal PTCLs (23 PTCLs unspecified and 12 angioimmunoblastic) using two different microarray platforms, the cDNA microarray developed at the Spanish National Cancer Centre and an oligonucleotide microarray. We identified five clusters of genes, the expression of which varied significantly among the samples. Genes in these clusters seemed to be functionally related to different cellular processes such as proliferation, inflammatory response, and T-cell or B-cell lineages. Regardless of the microarray platform used, overexpression of genes in the proliferation signature was associated significantly with shorter survival of patients. This proliferation signature included genes commonly associated with the cell cycle, such as CCNA, CCNB, TOP2A, and PCNA. Moreover the PTCL proliferation signature showed a statistically significant inverse correlation with clusters of the inflammatory response (P < .0001), as well as with the percentage of CD68(+) cells. Our findings indicate that proliferation could be an important factor in evaluating nodal PTCL outcome and may help to define a more aggressive phenotype.

  3. Monovalent ions control proliferation of Ehrlich Lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Preisler, Sarah; Pedersen, Stine Helene Falsig

    2010-01-01

    of Ehrlich Lettre ascites (ELA) cells. We measured the intracellular concentration of each ion in G(0), G(1), and S phases of the cell cycle following synchronization by serum starvation and release. We show that intracellular concentrations and content of Na+ and Cl(-) were reduced in the G(0)-G(1) phase...... transition, followed by an increased content of both ions in S phase concomitant with water uptake. The effect of substituting extracellular monovalent ions was investigated by bromodeoxyuridine incorporation and showed marked reduction after Na+ and Cl(-) substitution. In spectrofluorometric measurements...... effect. Western blots showed reduced chloride intracellular channel CLIC1 and chloride channel ClC-2 expression in the plasma membrane in S compared with G(1). Our results suggest that Na+ regulates ELA cell proliferation by regulating intracellular pH while Cl(-) may regulate proliferation by fine...

  4. GLUT1 regulates cell glycolysis and proliferation in prostate cancer.

    Science.gov (United States)

    Xiao, Hengjun; Wang, Jun; Yan, Weixin; Cui, Yubin; Chen, Zheng; Gao, Xin; Wen, Xingqiao; Chen, Jun

    2018-02-01

    Glucose transporter 1 (GLUT1) plays a critical role in tumorigenesis and tumor progression in multiple cancer types. However, the specific function and clinical significance of GLUT1 in prostate cancer (PCa) are still unclear. Therefore, in this study, we investigated the role of GLUT1 in PCa. GLUT1 protein levels in prostate cancer tissue and tumor-adjacent normal tissues were measured and compared. Furthermore, real-time PCR and Western blot analysis were both used to detect GLUT1 expression levels in different PCa cell lines. Flow cytometry and cell-based assays, such as a glucose uptake and lactate secretion assay, CCK-8 assay, and transwell migration and wound healing assay, were used to monitor cancer cell cycle distribution, glycolysis, proliferation, and motility, respectively. Moreover, a mouse tumor xenograft model was used to investigate the role of GLUT1 in tumor progression in vivo. GLUT1 expression levels are higher in PCa tissues than in tumor-adjacent normal tissues. The results from real-time PCR and Western blot analysis revealed a similar increase in the GLUT1 expression levels in PCa cell lines. Moreover, knockdown of GLUT1 inhibits cell glycolysis and proliferation and leads to cell cycle arrest at G2/M phase in the 22RV1 cell line but not in the PC3 cell line. In vivo experiments further confirmed that GLUT1 knockdown inhibits the growth of tumors derived from the 22RV1 cell line. In addition, we also showed that GLUT1 knockdown has no effect on cell migration in vitro. GLUT1 may play an important role in PCa progression via mediating glycolysis and proliferation. Our study also indicated a potential crosstalk between GLUT1-mediated glycolysis and androgen sensitivity in PCa. © 2017 Wiley Periodicals, Inc.

  5. Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    2016-08-01

    Full Text Available The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.

  6. Microenvironmental Stiffness Enhances Glioma Cell Proliferation by Stimulating Epidermal Growth Factor Receptor Signaling

    Science.gov (United States)

    Umesh, Vaibhavi; Rape, Andrew D.; Ulrich, Theresa A.; Kumar, Sanjay

    2014-01-01

    The aggressive and rapidly lethal brain tumor glioblastoma (GBM) is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR) pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling. PMID:25000176

  7. Microenvironmental stiffness enhances glioma cell proliferation by stimulating epidermal growth factor receptor signaling.

    Directory of Open Access Journals (Sweden)

    Vaibhavi Umesh

    Full Text Available The aggressive and rapidly lethal brain tumor glioblastoma (GBM is associated with profound tissue stiffening and genomic lesions in key members of the epidermal growth factor receptor (EGFR pathway. Previous studies from our laboratory have shown that increasing microenvironmental stiffness in culture can strongly enhance glioma cell behaviors relevant to tumor progression, including proliferation, yet it has remained unclear whether stiffness and EGFR regulate proliferation through common or independent signaling mechanisms. Here we test the hypothesis that microenvironmental stiffness regulates cell cycle progression and proliferation in GBM tumor cells by altering EGFR-dependent signaling. We began by performing an unbiased reverse phase protein array screen, which revealed that stiffness modulates expression and phosphorylation of a broad range of signals relevant to proliferation, including members of the EGFR pathway. We subsequently found that culturing human GBM tumor cells on progressively stiffer culture substrates both dramatically increases proliferation and facilitates passage through the G1/S checkpoint of the cell cycle, consistent with an EGFR-dependent process. Western Blots showed that increasing microenvironmental stiffness enhances the expression and phosphorylation of EGFR and its downstream effector Akt. Pharmacological loss-of-function studies revealed that the stiffness-sensitivity of proliferation is strongly blunted by inhibition of EGFR, Akt, or PI3 kinase. Finally, we observed that stiffness strongly regulates EGFR clustering, with phosphorylated EGFR condensing into vinculin-positive focal adhesions on stiff substrates and dispersing as microenvironmental stiffness falls to physiological levels. Our findings collectively support a model in which tissue stiffening promotes GBM proliferation by spatially and biochemically amplifying EGFR signaling.

  8. Stimulation and support of haemopoietic stem cell proliferation by irradiated stroma cell colonies in bone marrow cell culture in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.; Izumi, Hiroko; Seto, Akira

    1981-01-01

    A culture system was established in which haemopoietic stem cells can undergo a recovery proliferation after a depletion of the stem cells, completely in vitro. To elucidate the source of the stimulatory factors, normal bone marrow cells were overlayed on top of the irradiated adherent 'stromal' cell colonies in the bone marrow cell culture. This stimulated the proliferation of haemopoietic stem cells in the cultured cells in suspension. The present results indicate that the stromal cells produce factors which stimulate stem cell proliferation. Whether the stimulation is evoked by direct cell-cell interactions or by humoral factors is as yet to be studied. (author)

  9. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  10. Anesthetic pentobarbital inhibits proliferation and migration of malignant glioma cells.

    Science.gov (United States)

    Xie, Jun; Li, Yan; Huang, Yijun; Qiu, Pengxin; Shu, Minfeng; Zhu, Wenbo; Ou, Yanqiu; Yan, Guangmei

    2009-09-08

    Malignant gliomas are common and aggressive brain tumors in adults. The rapid proliferation and diffuse brain migration are main obstacles to successful treatment. Here we show that pentobarbital, a central depressant introduced clinically a century ago, is capable of suppressing proliferation and migration of C6 malignant glioma cells in a concentration-dependent manner. Pentobarbital also leads to a G1 phase cell cycle arrest accompanied by suppressed G1 cell cycle regulatory proteins Cyclin D1, Cyclin D3, CDK2 and phosphorylated Rb. In addition, noticeable morphological changes and interrupted alpha-tubulin microtubule assembly are induced by pentobarbital exposure. Intracellular signal pathways involved in the effect of pentobarbital is concerned with inactivation of ERK, c-Jun and Akt. Together, these findings suggest anti-proliferation and anti-migration effects of pentobarbital on malignant gliomas, most likely by arresting cell cycle and interfering microtubule. ERK, c-Jun MAPK and PI3K/Akt are possible signaling pathways involved.

  11. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Erika Costa de Alvarenga

    Full Text Available The angiotensin-I converting enzyme (ACE plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II. More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet.Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration.We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC, and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5 showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein.ACE activation regulates melanoma cell proliferation and migration.

  12. XIAP Antagonist Embelin Inhibited Proliferation of Cholangiocarcinoma Cells

    Science.gov (United States)

    Wehrkamp, Cody J.; Gutwein, Ashley R.; Natarajan, Sathish Kumar; Phillippi, Mary Anne; Mott, Justin L.

    2014-01-01

    Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP) impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL). However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis. PMID:24603802

  13. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  14. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  15. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells.

    Science.gov (United States)

    Györy, Ildiko; Boller, Sören; Nechanitzky, Robert; Mandel, Elizabeth; Pott, Sebastian; Liu, Edison; Grosschedl, Rudolf

    2012-04-01

    The transcription factor Ebf1 is an important determinant of early B lymphopoiesis. To gain insight into the functions of Ebf1 at distinct stages of differentiation, we conditionally inactivated Ebf1. We found that Ebf1 is required for the proliferation, survival, and signaling of pro-B cells and peripheral B-cell subsets, including B1 cells and marginal zone B cells. The proliferation defect of Ebf1-deficient pro-B cells and the impaired expression of multiple cell cycle regulators are overcome by transformation with v-Abl. The survival defect of transformed Ebf1(fl/fl) pro-B cells can be rescued by the forced expression of the Ebf1 targets c-Myb or Bcl-x(L). In mature B cells, Ebf1 deficiency interferes with signaling via the B-cell-activating factor receptor (BAFF-R)- and B-cell receptor (BCR)-dependent Akt pathways. Moreover, Ebf1 is required for germinal center formation and class switch recombination. Genome-wide analyses of Ebf1-mediated gene expression and chromatin binding indicate that Ebf1 regulates both common and distinct sets of genes in early and late stage B cells. By regulating important components of transcription factor and signaling networks, Ebf1 appears to be involved in the coordination of cell proliferation, survival, and differentiation at multiple stages of B lymphopoiesis.

  16. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    Science.gov (United States)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  17. Umbilical cord-derived mesenchymal stromal cells: predictive obstetric factors for cell proliferation and chondrogenic differentiation.

    Science.gov (United States)

    Avercenc-Léger, Léonore; Guerci, Philippe; Virion, Jean-Marc; Cauchois, Ghislaine; Hupont, Sébastien; Rahouadj, Rachid; Magdalou, Jacques; Stoltz, Jean-François; Bensoussan, Danièle; Huselstein, Céline; Reppel, Loïc

    2017-07-05

    The umbilical cord is becoming a notable alternative to bone marrow (BM) as a source of mesenchymal stromal cells (MSC). Although age-dependent variations in BM-MSC are well described, less data are available for MSC isolated from Wharton's jelly (WJ-MSC). We initiated a study to identify whether obstetric factors influenced MSC properties. We aimed to evaluate the correlation between a large number of obstetric factors collected during pregnancy and until peripartum (related to the mother, the labor and delivery, and the newborn) with WJ-MSC proliferation and chondrogenic differentiation parameters. Correlations were made between 27 obstetric factors and 8 biological indicators including doubling time at passage (P)1 and P2, the percentage of proteoglycans and collagens, and the relative transcriptional expression of Sox-9, aggrecans, and total type 2 collagen (Coll2T). Amongst the obstetric factors considered, birth weight, the number of amenorrhea weeks, placental weight, normal pregnancy, and the absence of preeclampsia were identified as relevant factors for cell expansion, using multivariate linear regression analysis. Since all the above parameters are related to term, we concluded that WJ-MSC from healthy, full-term infants exhibit greater proliferation capacity. As for chondrogenesis, we also observed that obstetric factors influencing proliferation seemed beneficial, with no negative impact on MSC differentiation. Awareness of obstetric factors influencing the proliferation and/or differentiation of WJ-MSC will make it possible to define criteria for collecting optimal umbilical cords with the aim of decreasing the variability of WJ-MSC batches produced for clinical use in cell and tissue engineering.

  18. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  19. Evaluation of cell proliferation rate in non-dysplastic leukoplakias

    OpenAIRE

    Hildebrand, Laura de Campos; Carrard, Vinicius C.; Lauxen, Isabel da Silva; Quadros, Onofre Francisco de; Chaves, Anna Cecília Moraes; Sant'ana Filho, Manoel

    2010-01-01

    Objective: Analyze whether the most frequent cases of non-dysplastic leukoplakias, hyperkeratosis (H), acanthosis (A), and hyperkeratosis with acanthosis (HA) have similar cell proliferation rates and to compare them with epithelial dysplastic (ED) leukoplakias and normal oral epithelium (NOE).Study design: The sample comprised 10 cases of normal oral epithelium, 10 cases of hyperkeratosis, 10 cases of acanthosis, 10 cases of hyperkeratosis with acanthosis and 10 cases of epithelial dyspl...

  20. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kasálková-Slepičková, N.; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, Lucie; Rimpelová, S.; Švorčík, V.

    2012-01-01

    Roč. 272, FEB 1 (2012), s. 391-395 ISSN 0168-583X. [International Conference on Ion Beam Modification of Materials /17./. Montreal, 22.08.2010-27.08.2010] R&D Projects: GA ČR(CZ) GAP108/10/1106; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z50110509 Keywords : polyenthyne * gold nanoparticles * grafting * cell proliferation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.266, year: 2012

  1. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xinyue Liang

    2016-01-01

    Full Text Available Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR. In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK/extracellular signal-regulated kinase (ERK and phosphatidylinositol 3′ -kinase(PI3K-Akt (PI3K/AKT phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy. In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  2. Uncaria tomentosa stimulates the proliferation of myeloid progenitor cells.

    Science.gov (United States)

    Farias, Iria; do Carmo Araújo, Maria; Zimmermann, Estevan Sonego; Dalmora, Sergio Luiz; Benedetti, Aloisio Luiz; Alvarez-Silva, Marcio; Asbahr, Ana Carolina Cavazzin; Bertol, Gustavo; Farias, Júlia; Schetinger, Maria Rosa Chitolina

    2011-09-01

    The Asháninkas, indigenous people of Peru, use cat's claw (Uncaria tomentosa) to restore health. Uncaria tomentosa has antioxidant activity and works as an agent to repair DNA damage. It causes different effects on cell proliferation depending on the cell type involved; specifically, it can stimulate the proliferation of myeloid progenitors and cause apoptosis of neoplastic cells. Neutropenia is the most common collateral effect of chemotherapy. For patients undergoing cancer treatment, the administration of a drug that stimulates the proliferation of healthy hematopoietic tissue cells is very desirable. It is important to assess the acute effects of Uncaria tomentosa on granulocyte-macrophage colony-forming cells (CFU-GM) and in the recovery of neutrophils after chemotherapy-induced neutropenia, by establishing the correlation with filgrastim (rhG-CSF) treatment to evaluate its possible use in clinical oncology. The in vivo assay was performed in ifosfamide-treated mice receiving oral doses of 5 and 15 mg of Uncaria tomentosa and intraperitoneal doses of 3 and 9 μg of filgrastim, respectively, for four days. Colony-forming cell (CFC) assays were performed with human hematopoietic stem/precursor cells (hHSPCs) obtained from umbilical cord blood (UCB). Bioassays showed that treatment with Uncaria tomentosa significantly increased the neutrophil count, and a potency of 85.2% was calculated in relation to filgrastim at the corresponding doses tested. An in vitro CFC assay showed an increase in CFU-GM size and mixed colonies (CFU-GEMM) size at the final concentrations of 100 and 200 μg extract/mL. At the tested doses, Uncaria tomentosa had a positive effect on myeloid progenitor number and is promising for use with chemotherapy to minimize the adverse effects of this treatment. These results support the belief of the Asháninkas, who have classified Uncaria tomentosa as a 'powerful plant'. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  4. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ya C Wu

    Full Text Available Hydrogen sulfide (H(2S is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC and a panel of colon cancer cell lines (HT-29, SW1116, HCT116 were exposed to H(2S at concentrations similar to those found in the human colon. H(2S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2S was accompanied by G(1-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip. Moreover, exposure to H(2S led to features characteristic of autophagy, including increased formation of LC3B(+ autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2S. Further mechanistic investigation revealed that H(2S stimulated the phosphorylation of AMP-activated protein kinase (AMPK and inhibited the phosphorylation of mammalian target of rapamycin (mTOR and S6 kinase. Inhibition of AMPK significantly reversed H(2S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  5. Cell proliferation in vitro modulates fibroblast collagenase activity

    International Nuclear Information System (INIS)

    Lindblad, W.J.; Flood, L.

    1986-01-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a 14 C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/μg DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of 3 H-thymidine and 3 H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion

  6. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  7. In Vitro Proliferation of Porcine Pancreatic Islet Cells for β-Cell Therapy Applications

    Directory of Open Access Journals (Sweden)

    Guoguang Niu

    2016-01-01

    Full Text Available β-Cell replacement through transplantation is the only curative treatment to establish a long-term stable euglycemia in diabetic patients. Owing to the shortage of donor tissue, attempts are being made to develop alternative sources of insulin-secreting cells. Stem cells differentiation and reprograming as well as isolating pancreatic progenitors from different sources are some examples; however, no approach has yet yielded a clinically relevant solution. Dissociated islet cells that are cultured in cell numbers by in vitro proliferation provide a promising platform for redifferentiation towards β-cells phenotype. In this study, we cultured islet-derived cells in vitro and examined the expression of β-cell genes during the proliferation. Islets were isolated from porcine pancreases and enzymatically digested to dissociate the component cells. The cells proliferated well in tissue culture plates and were subcultured for no more than 5 passages. Only 10% of insulin expression, as measured by PCR, was preserved in each passage. High glucose media enhanced insulin expression by about 4–18 fold, suggesting a glucose-dependent effect in the proliferated islet-derived cells. The islet-derived cells also expressed other pancreatic genes such as Pdx1, NeuroD, glucagon, and somatostatin. Taken together, these results indicate that pancreatic islet-derived cells, proliferated in vitro, retained the expression capacity for key pancreatic genes, thus suggesting that the cells may be redifferentiated into insulin-secreting β-like cells.

  8. Mast cells and histamine enhance the proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Stoyanov, Evgeniy; Uddin, Mohib; Mankuta, David; Dubinett, Steven M; Levi-Schaffer, Francesca

    2012-01-01

    Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with an extremely low survival rate. It is characterized by a chronic inflammatory process with intense mast cell infiltrate that is associated with reduced survival. The aim of this study was to test the hypothesis that mast cells have an enhancing effect on NSCLC proliferation. To assess the tumor-promoting potential of mast cells, we used the human alveolar basal adenocarcinoma (A549) and the mouse Lewis lung carcinoma (LLC) cell lines, umbilical cord blood-derived mast cells (CBMC) and the mast cell-deficient mouse Sash model. The proliferation rate of A549/LLC cells was markedly increased by mast cells and histamine. Histamine proliferating activity was mediated via H(1), H(2) and H(4) receptors and caused ERK phosphorylation. LLC induced in Sash mice or in wild-type mice treated with the mast cell stabilizer nedocromil sodium displayed an accelerated growth (number of metastic colonies in the lungs, total lung area and lung/total mice weight ratio). In summary, we have shown a significant effect of mast cells and histamine in enhancing NSCLC/LLCX growth in vitro, while in a mouse LLC model in vivo we have found that mast cells are important negative regulators of cancer development. Therefore our results would indicate a pro-tumorogenic effect of the mast cells in vitro on established lung tumor cell lines, and anti-tumorogenic effect in mice at lung cancer induction. In conclusion, mast cell/anti-histamine targeted therapies should carefully consider this dual effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Review of Differentiation and Proliferation of Primordial Germ Cells in Culture

    Directory of Open Access Journals (Sweden)

    Zohreh Makoolati

    2011-12-01

    Full Text Available Primordial germ cells (PGCs are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are required for continuation and development of the species. Thus, differentiation and purification of these cells from different cell sources is valuable for research, genetical analysis of germ cell development, epigenetic eveluation and infertility treatment. The most important part in the germ cell differentiation includes; optimum media selection, distinguishing and purification of differentiated cell. Several studies about in vitro PGC differentiation have been reported. In order to distinguish PGCs in vitro, specific markers which are expressed in these cells are used. Furthermore, functional ability of these cells for production of offspring can be employed for this purpose.

  11. Identification of a subset of patients with acute myeloid leukemia characterized by long-term in vitro proliferation and altered cell cycle regulation of the leukemic cells.

    Science.gov (United States)

    Hatfield, Kimberley Joanne; Reikvam, Håkon; Bruserud, Øystein

    2014-11-01

    The malignant cell population of acute myeloid leukemia (AML) includes a small population of stem/progenitor cells with long-term in vitro proliferation. We wanted to compare long-term AML cell proliferation for unselected patients, investigate the influence of endothelial cells on AML cell proliferation and identify biological characteristics associated with clonogenic capacity. Cells were cultured in medium supplemented with recombinant growth factors FMS-like tyrosine kinase-3 ligand, stem cell factor, IL-3, G-CSF and thrombopoietin. The colony-forming unit assay was used to estimate the number of progenitors in AML cell populations after 35 days of culture, and microarray was used to study global gene expression profiles between AML patients. Long-term cell proliferation was observed in 7 of 31 patients, whereas 3 additional patients showed long-term proliferation after endothelial cell coculture. Patient-specific differences in constitutive cytokine release were maintained during cell culture. Patients with long-term proliferation showed altered expression in six cell cycle-related genes (HMMR, BUB1, NUSAP1, AURKB, CCNF, DLGAP5), two genes involved in DNA replication (TOP2A, RFC3) and one gene with unknown function (LHFPL2). We identified a subset of AML patients characterized by long-term in vitro cell proliferation and altered expression of cell cycle regulators that may be potential candidates for treatment of AML.

  12. Modification of porous polyethylene scaffolds for cell attachment and proliferation.

    Science.gov (United States)

    Sengupta, Poulomi; Surwase, Sachin S; Prasad, Bhagavatula Lv

    2018-01-01

    Synthetic polymers are widely researched for their use in tissue engineering. Control in size, surface area, pore size, and elasticity are the biggest advantages of using a man-made polymer. However, often the polymers are hydrophobic (do not encourage cell attachment); hence, it is hugely challenging to integrate them with the normal tissues. Herein, we have tried to overcome this disadvantage of polymers by coating them with citrate-stabilized gold nanoparticles and arginine. High-density polyethylene, upon multiple treatments, shows low water contact angle, which encourages cell attachment and proliferation in comparison to the untreated polymers.

  13. Inosine Released from Dying or Dead Cells Stimulates Cell Proliferation via Adenosine Receptors.

    Science.gov (United States)

    Chen, Jin; Chaurio, Ricardo A; Maueröder, Christian; Derer, Anja; Rauh, Manfred; Kost, Andriy; Liu, Yi; Mo, Xianming; Hueber, Axel; Bilyy, Rostyslav; Herrmann, Martin; Zhao, Yi; Muñoz, Luis E

    2017-01-01

    Many antitumor therapies induce apoptotic cell death in order to cause tumor regression. Paradoxically, apoptotic cells are also known to promote wound healing, cell proliferation, and tumor cell repopulation in multicellular organisms. We aimed to characterize the nature of the regenerative signals concentrated in the micromilieu of dead and dying cells. Cultures of viable melanoma B16F10 cells, mouse fibroblasts, and primary human fibroblast-like synoviocytes (FLS) in the presence of dead and dying cells, their supernatants (SNs), or purified agonists and antagonists were used to evaluate the stimulation of proliferation. Viable cell quantification was performed by either flow cytometry of harvested cells or by crystal violet staining of adherent cells. High-performance liquid chromatography and liquid chromatography coupled with mass spectrometry of cell SNs were deployed to identify the nature of growth-promoting factors. Coimplantation of living cells in the presence of SNs collected from dead and dying cells and specific agonists was used to evaluate tumor growth in vivo . The stimulation of proliferation of few surviving cells by bystander dead cells was confirmed for melanoma cells, mouse fibroblasts, and primary FLS. We found that small soluble molecules present in the protein-free fraction of SNs of dead and dying cells were responsible for the promotion of proliferation. The nucleoside inosine released by dead and dying cells acting via adenosine receptors was identified as putative inducer of proliferation of surviving tumor cells after irradiation and heat treatment. Inosine released by dead and dying cells mediates tumor cell proliferation via purinergic receptors. Therapeutic strategies surmounting this pathway may help to reduce the rate of recurrence after radio- and chemotherapy.

  14. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background

    Science.gov (United States)

    2017-01-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific “signature” that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures. PMID:28288157

  15. Stromal cells expressing hedgehog-interacting protein regulate the proliferation of myeloid neoplasms

    International Nuclear Information System (INIS)

    Kobune, M; Iyama, S; Kikuchi, S; Horiguchi, H; Sato, T; Murase, K; Kawano, Y; Takada, K; Ono, K; Kamihara, Y; Hayashi, T; Miyanishi, K; Sato, Y; Takimoto, R; Kato, J

    2012-01-01

    Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers including cancer stem cells. However, involvement of the Hh-signaling system in the bone marrow (BM) microenvironment during the development of myeloid neoplasms is unknown. In this study, we assessed the expression of Hh-related genes in primary human CD34 + cells, CD34 + blastic cells and BM stromal cells. Both Indian Hh (Ihh) and its signal transducer, smoothened (SMO), were expressed in CD34 + acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)-derived cells. However, Ihh expression was relatively low in BM stromal cells. Remarkably, expression of the intrinsic Hh-signaling inhibitor, human Hh-interacting protein (HHIP) in AML/MDS-derived stromal cells was markedly lower than in healthy donor-derived stromal cells. Moreover, HHIP expression levels in BM stromal cells highly correlated with their supporting activity for SMO + leukemic cells. Knockdown of HHIP gene in stromal cells increased their supporting activity although control cells marginally supported SMO + leukemic cell proliferation. The demethylating agent, 5-aza-2′-deoxycytidine rescued HHIP expression via demethylation of HHIP gene and reduced the leukemic cell-supporting activity of AML/MDS-derived stromal cells. This indicates that suppression of stromal HHIP could be associated with the proliferation of AML/MDS cells

  16. Infection and Proliferation of Giant Viruses in Amoeba Cells.

    Science.gov (United States)

    Takemura, Masaharu

    2016-01-01

    Acanthamoeba polyphaga mimivirus, the first discovered giant virus with genome size and particle size much larger than previously discovered viruses, possesses several genes for translation and CRISPER Cas system-like defense mechanism against virophages, which co-infect amoeba cells with the giant virus and which inhibit giant virus proliferation. Mimiviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their stargate structure. After infection, giant virion factories (VFs) form in amoeba cytoplasm, followed by DNA replication and particle formation at peripheral regions of VF. Marseilleviruses, the smallest giant viruses, infect amoeba cells by phagocytosis or endocytosis, form larger VF than Mimivirus's VF in amoeba cytoplasm, and replicate their particles. Pandoraviruses found in 2013 have the largest genome size and particle size among all viruses ever found. Pandoraviruses infect amoeba cells by phagocytosis and release their DNA into amoeba cytoplasm through their mouth-like apical pores. The proliferation of Pandoraviruses occurs along with nucleus disruption. New virions form at the periphery of the region formerly occupied by the amoeba cell nucleus.

  17. Biodiesel from Soybean Promotes Cell Proliferation in Vitro

    Science.gov (United States)

    Gioda, Adriana; Rodríguez-Cotto, Rosa I.; Amaral, Beatriz Silva; Encarnación-Medina, Jarline; Ortiz-Martínez, Mario G.; Jiménez-Vélez, Braulio D.

    2016-01-01

    Toxicological responses of exhaust emissions of biodiesel are different due to variation in methods of generation and the tested biological models. A chemical profile was generated using ICP-MS and GC-MS for the biodiesel samples obtained in Brazil. A cytotoxicity assay and cytokine secretion experiments were evaluated in human bronchial epithelial cells (BEAS-2B). Cells were exposed to polar (acetone) and nonpolar (hexane) extracts from particles obtained from fuel exhaust: fossil diesel (B5), pure soybean biodiesel (B100), soybean biodiesel with additive (B100A) and ethanol additive (EtOH). Biodiesel and its additives exhibited higher organic and inorganic constituents on particles when compared to B5. The biodiesel extracts did not exert any toxic effect at concentrations 10, 25, 50, 75, and 100 μg mL -1. In fact quite the opposite, a cell proliferation effect induced by the B100 and B100A extracts is reported. A small increase in concentrations of inflammatory mediators (Interleukin-6, IL-6; and Interleukin-8, IL-8) in the medium of biodiesel-treated cells was observed, however, no statistical difference was found. An interesting finding indicates that the presence of metals in the nonpolar (hexane) fraction of biodiesel fuel (B100) represses cytokine release in lung cells. This was revealed by the use of the metal chelator. Results suggest that metals associated with biodiesel’s organic constituents might play a significant role in molecular mechanisms associated to cellular proliferation and immune responses. PMID:27179667

  18. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun [Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081 (China); Tan, Wenhua, E-mail: tanwenhua1962@163.com [Department of Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086 (China)

    2015-10-23

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  19. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun; Tan, Wenhua

    2015-01-01

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  20. Rac1 Regulates the Proliferation, Adhesion, Migration, and Differentiation of MDPC-23 Cells.

    Science.gov (United States)

    Ren, Jing; Liang, Guobin; Gong, Li; Guo, Bing; Jiang, Hongwei

    2017-04-01

    Stem cells are responsible for replacing damaged pulp tissue; therefore, promoting their survival and inducing their adhesion to dentin are vital. As a member of the Rho family of guanosine triphosphatases, Rac1 is an important regulator of osteoblast functions. However, little is known about its role in regenerative endodontic procedures. The current study examined the role of Rac1 in the proliferation, migration, and odontoblastic differentiation of MDPC-23 cells. MDPC-23 cells were transfected with small interfering RNA to knock down Rac1 expression, and then their proliferation, migration, adhesion, and odontoblastic differentiation were examined in vitro. MDPC-23 cells transfected with si-Rac1 exhibited the increased expression of several key odontogenic protein markers, including Dmp1, Dspp, Runx2, and alkaline phosphatase, as well as decreased proliferation and migration in vitro. The results suggest that Rac1 might regulate nuclear factor kappa B signaling in MDPC-23 cells. Rac1 may have vital roles in the proliferation, migration, adhesion, and odontoblastic differentiation of MDPC-23 cells. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. TORC1 is required to balance cell proliferation and cell death in planarians.

    Science.gov (United States)

    Tu, Kimberly C; Pearson, Bret J; Sánchez Alvarado, Alejandro

    2012-05-15

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Andrej Udelnow

    Full Text Available BACKGROUND: Omeprazole has recently been described as a modulator of tumour chemoresistance, although its underlying molecular mechanisms remain controversial. Since pancreatic tumours are highly chemoresistant, a logical step would be to investigate the pharmacodynamic, morphological and biochemical effects of omeprazole on pancreatic cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: Dose-effect curves of omeprazole, pantoprazole, gemcitabine, 5-fluorouracil and the combinations of omeprazole and 5-fluorouracil or gemcitabine were generated for the pancreatic cancer cell lines MiaPaCa-2, ASPC-1, Colo357, PancTu-1, Panc1 and Panc89. They revealed that omeprazole inhibited proliferation at probably non-toxic concentrations and reversed the hormesis phenomena of 5-fluorouracil. Electron microscopy showed that omeprazole led to accumulation of phagophores and early autophagosomes in ASPC-1 and MiaPaCa-2 cells. Signal changes indicating inhibited proliferation and programmed cell death were found by proton NMR spectroscopy of both cell lines when treated with omeprazole which was identified intracellularly. Omeprazole modulates the lysosomal transport pathway as shown by Western blot analysis of the expression of LAMP-1, Cathepsin-D and β-COP in lysosome- and Golgi complex containing cell fractions. Acridine orange staining revealed that the pump function of the vATPase was not specifically inhibited by omeprazole. Gene expression of the autophagy-related LC3 gene as well as of Bad, Mdr-1, Atg12 and the vATPase was analysed after treatment of cells with 5-fluorouracil and omeprazole and confirmed the above mentioned results. CONCLUSIONS: We hypothesise that omeprazole interacts with the regulatory functions of the vATPase without inhibiting its pump function. A modulation of the lysosomal transport pathway and autophagy is caused in pancreatic cancer cells leading to programmed cell death. This may circumvent common resistance mechanisms of

  3. Lactobacillus helveticus SBT2171, a cheese starter, regulates proliferation and cytokine production of immune cells.

    Science.gov (United States)

    Yamashita, M; Ukibe, K; Uenishi, H; Hosoya, T; Sakai, F; Kadooka, Y

    2014-01-01

    Consumption of a Lactobacillus helveticus SBT2171 (LH2171)-containing cheese has been reported to exhibit immunoregulatory actions, including an increase in regulatory T cell population and reduction in proinflammatory cytokine production in mice. We examined the in vitro effects of LH2171 cells per se on immune cell function, specifically proliferation and cytokine production, which are primary reactions of the immune response. Immune cell fractions were prepared by mechanical disruption of mesenteric lymph nodes (MLN), Peyer's patches (PP), and spleens (SP) of mice. The cell fractions were dispensed into a culture plate and stimulated with anti-CD3/CD28 antibody beads in place of antigen-presenting cells or lipopolysaccharide (LPS) in the presence or absence of heat-treated LH2171 cells and other bacterial strains for comparison. After incubation, proliferation, cytokine production, and cell viability of the immune cells were determined. The LH2171 significantly inhibited the proliferation of MLN immune cells stimulated with anti-CD3/CD28 compared with other bacterial strains. The antiproliferative potency of LH2171 was effective not only on MLN but also on PP and SP stimulated with anti-CD3/CD28 or LPS. The LH2171 also decreased LPS-stimulated IL-6 production from MLN, PP, and SP, and IL-1β production from SP, but LH2171 did not affect the viability of immune cells. The LH2171 inhibited immune cell proliferation and proinflammatory cytokine (IL-6 and IL-1β) production. The inhibitory actions were not due to cytotoxicity to immune cells, suggesting that LH2171 is a dairy Lactobacillus strain with beneficial immunoregulatory properties. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Thymoquinone causes multiple effects, including cell death, on dividing plant cells.

    Science.gov (United States)

    Hassanien, Sameh E; Ramadan, Ahmed M; Azeiz, Ahmed Z Abdel; Mohammed, Rasha A; Hassan, Sabah M; Shokry, Ahmed M; Atef, Ahmed; Kamal, Khalid B H; Rabah, Samar; Sabir, Jamal S M; Abuzinadah, Osama A; El-Domyati, Fotouh M; Martin, Gregory B; Bahieldin, Ahmed

    2013-01-01

    Thymoquinone (TQ) is a major constituent of Nigella sativa oil with reported anti-oxidative activity and anti-inflammatory activity in animal cells. It also inhibits proliferation and induces programmed cell death (apoptosis) in human skin cancer cells. The present study sought to detect the influence of TQ on dividing cells of three plant systems and on expression of Bcl2-associated athanogene-like (BAG-like) genes that might be involved during the process of cell death. BAG genes are known for the regulation of diverse physiological processes in animals, including apoptosis, tumorigenesis, stress responses, and cell division. Synthetic TQ at 0.1mg/mL greatly reduced wheat seed germination rate, whereas 0.2mg/mL completely inhibited germination. An Evans blue assay revealed moderate cell death in the meristematic zone of Glycine max roots after 1h of TQ treatment (0.2mg/mL), with severe cell death occurring in this zone after 2h of treatment. Light microscopy of TQ-treated (0.2mg/mL) onion hairy root tips for 1h revealed anti-mitotic activity and also cell death-associated changes, including nuclear membrane disruption and nuclear fragmentation. Transmission electron microscopy of TQ-treated cells (0.2mg/mL) for 1h revealed shrinkage of the plasma membrane, leakage of cell lysate, degradation of cell walls, enlargement of vacuoles and condensation of nuclei. Expression of one BAG-like gene, previously associated with cell death, was induced 20 min after TQ treatment in Glycine max root tip cells. Thus, TQ has multiple effects, including cell death, on dividing plant cells and plants may serve as a useful system to further investigate the mechanisms underlying the response of eukaryotic cells to TQ. © 2013. Published by Elsevier SAS.

  5. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout.

    NARCIS (Netherlands)

    Candal, E.; Anadon, R.; Grip, W.J. de; Rodriguez-Moldes, I.

    2005-01-01

    We have analyzed the patterns of cell proliferation and cell death in the retina and optic tectum of the brown trout (Salmo trutta fario) throughout embryonic and postembryonic stages. Cell proliferation was detected by immunohistochemistry with an antibody against the proliferating cell nuclear

  6. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  7. Hyaluronic acid influence on platelet-induced airway smooth muscle cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Svensson Holm, Ann-Charlotte B., E-mail: ann-charlotte.svensson@liu.se [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden); Experimental Pathology, Department of Clinical and Experimental Medicine, Linkoeping University, SE-581 85 Linkoeping (Sweden); Bengtsson, Torbjoern [Department of Biomedicine, School of Health and Medical Sciences, Oerebro University, SE-70182 Oerebro (Sweden); Grenegard, Magnus; Lindstroem, Eva G. [Division of Drug Research/Pharmacology, Department of Medical and Health Sciences, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden)

    2012-03-10

    Hyaluronic acid (HA) is one of the main components of the extracellular matrix (ECM) and is expressed throughout the body including the lung and mostly in areas surrounding proliferating and migrating cells. Furthermore, platelets have been implicated as important players in the airway remodelling process, e.g. due to their ability to induce airway smooth muscle cell (ASMC) proliferation. The aim of the present study was to investigate the role of HA, the HA-binding surface receptor CD44 and focal adhesion kinase (FAK) in platelet-induced ASMC proliferation. Proliferation of ASMC was measured using the MTS-assay, and we found that the CD44 blocking antibody and the HA synthase inhibitor 4-Methylumbelliferone (4-MU) significantly inhibited platelet-induced ASMC proliferation. The interaction between ASMC and platelets was studied by fluorescent staining of F-actin. In addition, the ability of ASMC to synthesise HA was investigated by fluorescent staining using biotinylated HA-binding protein and a streptavidin conjugate. We observed that ASMC produced HA and that a CD44 blocking antibody and 4-MU significantly inhibited platelet binding to the area surrounding the ASMC. Furthermore, the FAK-inhibitor PF 573228 inhibited platelet-induced ASMC proliferation. Co-culture of ASMC and platelets also resulted in increased phosphorylation of FAK as detected by Western blot analysis. In addition, 4-MU significantly inhibited the increased FAK-phosphorylation. In conclusion, our findings demonstrate that ECM has the ability to influence platelet-induced ASMC proliferation. Specifically, we propose that HA produced by ASMC is recognised by platelet CD44. The platelet/HA interaction is followed by FAK activation and increased proliferation of co-cultured ASMC. We also suggest that the mitogenic effect of platelets represents a potential important and novel mechanism that may contribute to airway remodelling.

  8. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  9. CD4 + T cells promote renal cell carcinoma proliferation via modulating YBX1.

    Science.gov (United States)

    Wang, Yong; Wang, Yiting; Xu, Liang; Lu, Xianqi; Fu, Donghe; Su, Jing; Geng, Hua; Qin, Guoxuan; Chen, Ruibing; Quan, Changyi; Niu, Yuanjie; Yue, Dan

    2018-02-01

    Renal cell carcinoma (RCC) is a common urologic tumor and the third leading cause of death among urological tumors. Recent studies demonstrate that RCC tumors are more heavily infiltrated by lymphocytes than other cancers. However, the exact roles played by CD4 + T cells in RCC proliferation remain unknown. In this study, we cocultured RCC cells with CD4 + T cells. Stable knockdown of YBX1 in RCC cells was constructed. The effects of CD4 + T cells, TGFβ1 and YBX1 on RCC cells were investigated using cell viability assays. In situ RCC nude mouse model was used to observe the tumor growth. The potential mechanisms of CD4 + T cells and YBX1 in RCC cells proliferation were explored by qRT-PCR and western blot. Expression of CD4, Foxp3 and TGFβ1 in RCC were quantified by immunohistochemical staining. The results indicated that CD4, Foxp3 and TGFβ1 were significantly up-regulated in RCC tissues. Human clinical sample and in vitro cell lines studies showed that RCC cells had better capacity than its surrounding normal kidney epithelial cells to recruit the CD4 + T cells. In vivo mouse model studies were consistent with the results by in vitro cell lines studies showing infiltrating T cells enhanced RCC cell proliferation. qRT-PCR and western blot exhibited that CD4 + T cells could enhance RCC cell proliferation via activating YBX1/HIF2α signaling pathway. Furthermore, CD4 + T cells functioned through inducing TGFβ1 expression. In a word, infiltrating CD4 + T cells promoted TGFβ1 expression in both RCC and T cells and regulated RCC cells proliferation via modulating TGFβ1/YBX1/ HIF2α signals. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  11. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  12. Nanoscale crystallinity modulates cell proliferation on plasma sprayed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Alan M. [School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH (United Kingdom); Paxton, Jennifer Z.; Hung, Yi-Pei; Hadley, Martin J.; Bowen, James; Williams, Richard L. [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom); Grover, Liam M., E-mail: l.m.grover@bham.ac.uk [School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT (United Kingdom)

    2015-03-01

    Calcium phosphate coatings have been applied to the surface of metallic prostheses to mediate hard and soft tissue attachment for more than 40 years. Most coatings are formed of high purity hydroxyapatite, and coating methods are often designed to produce highly crystalline surfaces. It is likely however, that coatings of lower crystallinity can facilitate more rapid tissue attachment since the surface will exhibit a higher specific surface area and will be considerably more reactive than a comparable highly crystalline surface. Here we test this hypothesis by growing a population of MC3T3 osteoblast-like cells on the surface of two types of hip prosthesis with similar composition, but with differing crystallinity. The surfaces with lower crystallinity facilitated more rapid cell attachment and increased proliferation rate, despite having a less heterogeneous surface topography. This work highlights that the influence of the crystallinity of HA at the nano-scale is dominant over macro-scale topography for cell adhesion and growth. Furthermore, crystallinity could be easily adjusted by without compromising coating purity. These findings could facilitate designing novel coated calcium phosphate surfaces that more rapidly bond tissue following implantation. - Highlights: • Crystallinity of HA at the nano-scale was dominant over macro-scale topography. • Lower crystallinity caused rapid cell attachment and proliferation rate. • Crystallinity could be easily adjusted by without compromising coating purity.

  13. NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia.

    Science.gov (United States)

    D'Amico, Agata Grazia; Scuderi, Soraya; Maugeri, Grazia; Cavallaro, Sebastiano; Drago, Filippo; D'Agata, Velia

    2014-11-01

    Hyperglycemia has been identified as a risk factor responsible for micro- and macrovascular complications in diabetes. NAP (Davunetide) is a peptide whose neuroprotective actions are widely demonstrated, although its biological role on endothelial dysfunctions induced by hyperglycemia remains uninvestigated. In the present study we hypothesized that NAP could play a protective role on hyperglycemia-induced endothelial cell proliferation. To this end we investigated the effects of NAP on an in vitro model of murine microvascular endothelial cells grown in high glucose for 7 days. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and cyclin D1 protein expression analysis revealed that NAP treatment significantly reduces viability and proliferation of the cells. Hyperglycemia induced the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphatidylinositol-3 kinase/Akt pathways in a time-dependent manner. NAP treatment reduced the phosphorylation levels of ERK and AKT in cells grown in high glucose. These evidences suggest that NAP might be effective in the regulation of endothelial dysfunction induced by hyperglycemia.

  14. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  15. Androgen receptor signaling is required for androgen-sensitive human prostate cancer cell proliferation and survival

    Directory of Open Access Journals (Sweden)

    Day Wanda V

    2005-04-01

    Full Text Available Abstract Background Androgens and androgen receptors (AR regulate normal prostate development and growth. They also are involved in pathological development of prostatic diseases, including benign prostatic hyperplasia (BPH and prostate cancer (PCa. Antiandrogen therapy for PCa, in conjunction with chemical or surgical castration, offers initial positive responses and leads to massive prostate cell death. However, cancer cells later appear as androgen-independent PCa. To investigate the role of AR in prostate cell proliferation and survival, we introduced a vector-based small interfering RNA (siRNA. This siRNA targeted 5'-untranslated region of AR mRNA for extended suppression of AR expression in androgen-sensitive human prostate LNCaP cells. Results The siRNA design successfully suppressed endogenous AR expression, as revealed by western blotting and immunofluorescence staining in LNCaP cells. LNCaP cells did not proliferate in the absence of AR and underwent apoptosis, based on elevated phospho-Histone H2B expression and higher number of apoptotic body as compared to control cells. Conclusion We demonstrated that AR is vital for prostate cell proliferation and survival in this androgen-sensitive prostate cell line. These results further strengthen the hypothesis that AR can be a therapeutic target for treating androgen-sensitive stages of PCa. Unlike antiandorgens, however, siRNA targeting AR provides a direct inactivation of AR function through the suppression of AR protein expression.

  16. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  17. The effect of stem cell factor on proliferation of human endometrial CD146+ cells

    Directory of Open Access Journals (Sweden)

    Mehri Fayazi

    2016-07-01

    Full Text Available Background: Stem cell factor (SCF is a transcriptional factor which plays crucial roles in normal proliferation, differentiation and survival in a range of stem cells. Objective: The aim of the present study was to examine the proliferation effect of different concentrations of SCF on expansion of human endometrial CD146+ cells. Materials and Methods: In this experimental study, total populations of isolated human endometrial suspensions after fourth passage were isolated by magnetic activated cell sorting (MACS into CD146+ cells. Human endometrial CD146+ cells were karyotyped and tested for the effect of SCF on proliferation of CD146+ cells, then different concentrations of 0, 12.5, 25, 50 and 100 ng/ml was carried out and mitogens-stimulated endometrial CD146+ cells proliferation was assessed by MTT assay. Results: Chromosomal analysis showed a normal metaphase spread and 46XX karyotype. The proliferation rate of endometrial CD146P + P cells in the presence of 0, 12.5, 25, 50 and 100 ng/ml SCF were 0.945±0.094, 0.962±0.151, 0.988±0.028, 1.679±0.012 and 1.129±0.145 respectively. There was a significant increase in stem/ stromal cell proliferation following in vitro treatment by 50 ng/ml than other concentrations of SCF (p=0.01. Conclusion: The present study suggests that SCF could have effect on the proliferation and cell survival of human endometrial CD146P+P cells and it has important implications for medical sciences and cell therapies

  18. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  19. Soluble Factors Secreted by T Cells Promote β-Cell Proliferation

    Science.gov (United States)

    Dirice, Ercument; Kahraman, Sevim; Jiang, Wenyu; El Ouaamari, Abdelfattah; De Jesus, Dario F.; Teo, Adrian K.K.; Hu, Jiang; Kawamori, Dan; Gaglia, Jason L.; Mathis, Diane; Kulkarni, Rohit N.

    2014-01-01

    Type 1 diabetes is characterized by infiltration of pancreatic islets with immune cells, leading to insulin deficiency. Although infiltrating immune cells are traditionally considered to negatively impact β-cells by promoting their death, their contribution to proliferation is not fully understood. Here we report that islets exhibiting insulitis also manifested proliferation of β-cells that positively correlated with the extent of lymphocyte infiltration. Adoptive transfer of diabetogenic CD4+ and CD8+ T cells, but not B cells, selectively promoted β-cell proliferation in vivo independent from the effects of blood glucose or circulating insulin or by modulating apoptosis. Complementary to our in vivo approach, coculture of diabetogenic CD4+ and CD8+ T cells with NOD.RAG1−/− islets in an in vitro transwell system led to a dose-dependent secretion of candidate cytokines/chemokines (interleukin-2 [IL-2], IL-6, IL-10, MIP-1α, and RANTES) that together enhanced β-cell proliferation. These data suggest that soluble factors secreted from T cells are potential therapeutic candidates to enhance β-cell proliferation in efforts to prevent and/or delay the onset of type 1 diabetes. PMID:24089508

  20. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  1. Effects of real or simulated microgravity on plant cell growth and proliferation

    Science.gov (United States)

    Medina, Francisco Javier; Manzano, Ana Isabel; Herranz, Raul; Dijkstra, Camelia; Larkin, Oliver; Hill, Richard; Carnero-Díaz, Eugénie; van Loon, Jack J. W. A.; Anthony, Paul; Davey, Michael R.; Eaves, Laurence

    Experiments on seed germination and seedling growth performed in real microgravity on the International Space Station and in different facilities for simulating microgravity in Earth-based laboratories (Random Positioning Machine and Magnetic Levitation), have provided evidence that the absence of gravity (or the artificial compensation of the gravity vector) results in the uncoupling of cell growth and proliferation in root meristematic cells. These are two essential cellular functions that support plant growth and development, which are strictly coordinated under normal ground gravity conditions. Under conditions of altered gravity, we observe that cell proliferation is enhanced, whereas cell growth is reduced, according to different morphometric, cytological and immunocytochemical parameters. Since coordination of cell growth and proliferation are major features of meristematic cells, this observed uncoupling represents a major stress condition for these cells, inducing major alterations in the pattern of plant development. Moreover, the expression of the cyclin B1 gene, a regulator of the entry into mitosis and normally used as an indicator of cell proliferation, appears reduced in the smaller and more actively proliferating cells of samples grown under the conditions of our experiments. These results are compatible with an alteration of the regulation of the cell cycle, producing a shorter G2 period. Interestingly, while cyclin B1 expression is depleted in these conditions in root meristematic cells, it is enhanced in cotyledons of the same seedlings, as shown by qPCR and by the expression of the gus reporter gene. It is known that regulation of root growth (including regulation of root meristematic activity) is driven mainly by auxin, whereas cytokinin is the key hormone regulating cotyledon growth. Therefore, our results indicate a major role of auxin in the sensitivity to altered gravity of root meristematic cells. Auxin is crucial in maintaining the

  2. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of); Kwon, Ki-Sun, E-mail: kwonks@kribb.re.kr [Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahangno, Yusong, Daejeon 305-806 (Korea, Republic of)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  3. Progesterone increases csk homologous kinase in HMC-1560 human mast cells and reduces cell proliferation.

    Science.gov (United States)

    Belot, Marie-Pierre; Abdennebi-Najar, Latifa; Gaudin, Françoise; Emilie, Dominique; Machelon, Véronique

    2007-12-01

    Mast cells proliferate in vivo in areas of active fibrosis, during parasite infestations, in response to repeated immediate hypersensitivity reactions and in patients with mastocytosis. We investigated how progesterone reduces the proliferation of HMC-1(560) mast cells that proliferate spontaneously in culture. Cells were incubated with 1 microM to 1 nM progesterone for 24-48 h. Progesterone (1 microM) reduced the spontaneous proliferation of HMC-1(560) mast cells to half that of cells cultured without hormone. [(3)H] thymidine incorporation was only 50% of control; there were fewer cells in G2/M and more cells in G0/G1. The amounts of phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK proteins were also reduced. In contrast progesterone had no effect on MAP kinase-phosphatase-1. The Raf/MAPK pathway, which depends on Src kinase activity, is implicated in the control of cell proliferation. HMC-1(560) cells incubated with the tyrosine kinase inhibitor PP1 proliferated more slowly than controls and had less phospho-Raf-1 (Tyr 340-341) and phospho-p42/p44 MAPK. The Csk homologous kinase (CHK), an endogenous inhibitor of Src protein tyrosine kinases, was also enhanced in progesterone-treated cells. In contrast, progesterone had no effect on the growth of cells transfected with siRNA CHK. We conclude that progesterone increases the amount of csk homologous kinase, which in turn reduces HMC-1(560) mast cell proliferation. This effect parallels decreases in the phosphorylated forms of Raf-1 and p42/44 MAPK, as their production depends on Src kinase activity. (c) 2007 Wiley-Liss, Inc.

  4. Glucocorticoid inhibition of cellular proliferation in rat hepatoma cell lines

    International Nuclear Information System (INIS)

    Cook, P.W.

    1987-01-01

    Glucocorticoids were shown to inhibit the growth rate of Fu5 rat hepatoma cells cultured in the presence or absence of serum and thus, induced a more stringent dependence on serum for growth in this cell line. Fu5 cells, made quiescent at low cell density by continuous exposure to glucocorticoid in the absence of serum, were induced with serum and insulin, which subsequently caused a rapid reinitiation of cellular proliferation. Analysis of total RNA isolated from hormone treated Fu5 cells undergoing serum/insulin induction of DNA synthesis revealed a sequential expression of cellular proto-oncogene products in the absence of any immediate changes in intracellular Ca ++ levels. Introduction of functional glucocorticoid receptor genes into both classes of dexamethasone resistant variants restored glucocorticoid responsiveness and suppression of cell growth. The BDS1 rat hepatoma cell line, an Fu5 derived subclone hypersensitive to the antiprofliferation effects of glucocorticoid, was observed to externalize a glucocorticoid suppressible mitogen (GSM) activity capable of mimicking EGF and insulin induced stimulation of [ 3 H]thymidine incorporation into serum starved, competant Balb/c 3T3 cells

  5. Evaluation of cell proliferation rate in non-dysplastic leukoplakias.

    Science.gov (United States)

    Hildebrand, Laura-de Campos; Carrard, Vinicius-Coelho; Lauxen, Isabel-da Silva; de Quadros, Onofre-Francisco; Chaves, Anna-Cecília-Moraes; Sant' Ana-Filho, Manoel

    2010-03-01

    Analyze whether the most frequent cases of non-dysplastic leukoplakias, hyperkeratosis (H), acanthosis (A), and hyperkeratosis with acanthosis (HA) have similar cell proliferation rates and to compare them with epithelial dysplastic (ED) leukoplakias and normal oral epithelium (NOE). The sample comprised 10 cases of normal oral epithelium, 10 cases of hyperkeratosis, 10 cases of acanthosis, 10 cases of hyperkeratosis with acanthosis and 10 cases of epithelial dysplasia. The mean number of AgNORs per nucleus (mAgNOR) and the mean percentage of cells with 1, 2, 3 and 4 or more AgNORs per nucleus (pAgNOR) were recorded. The results of mAgNOR showed differences between disorders in the evaluation of the basal layer, of the parabasal layer, and in the overall evaluation. mAgNOR and pAgNOR=2 increased progressively from normal oral epithelium to hyperkeratosis with acanthosis, hyperkeratosis, acanthosis and epithelial dysplasia (pdysplastic leukoplakias and this group presented a higher proliferative behavior when compared to normal oral epithelium. It may be suggested that non-dysplastic leukoplakias had different characteristics regarding cell proliferation rates and sometimes showed a proliferative behavior similar to that found in epithelial dysplasia. More studies should be conduced to increase knowledge about the biological profile of non-dysplastic leukoplakias, especially as it pertains to acanthosis.

  6. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    International Nuclear Information System (INIS)

    Zhao, Ningbo; Wang, Xin; Qin, Lei; Guo, Zhengze; Li, Dehua

    2015-01-01

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased by increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect

  7. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  8. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    Science.gov (United States)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-05-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.

  9. Enhanced proliferation, attachment and osteopontin expression by porcine periodontal cells exposed to Emdogain.

    Science.gov (United States)

    Rincon, J C; Xiao, Y; Young, W G; Bartold, P M

    2005-12-01

    Emdogain (EMD) is an enamel matrix derivative extracted from developing porcine teeth with demonstrated periodontal regenerative potential. EMD has been shown to influence a number of properties of periodontal ligament cells including proliferation, cell attachment and matrix synthesis. To date, the effect of EMD on the epithelial cell rests of Malassez (ERM) is unknown. In this study, periodontal ligament fibroblasts, ERM, alveolar bone cells and gingival fibroblasts were obtained from porcine periodontal ligament, alveolar bone and gingiva. This study investigated, in vitro, the effect of EMD at three concentrations on proliferation, cell attachment and expression of mRNA for two mineralised tissue-related proteins (osteopontin and bone sialoprotein). As for other periodontal cells, the ERM proliferative response was enhanced by EMD. Attachment assays revealed a highly significant increase for ERM and gingival fibroblasts after EMD treatment at all concentrations. This study has also shown that EMD stimulated expression of osteopontin mRNA by ERM and alveolar bone cells. The results from this study provide evidence that EMD enhanced cellular events related with proliferation, attachment and osteopontin mRNA expression by porcine periodontal cells, in a manner consistent with its role in periodontal regenerative therapy.

  10. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  11. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Chae-Ok [Department of Bioengineering, College of Engineering, Hanyang University, Seoul (Korea, Republic of); Han, Deok-Jong [Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Eun Young, E-mail: choieun@ulsan.ac.kr [Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2015-12-04

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  12. Del-1 overexpression potentiates lung cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Lee, Seung-Hwan; Kim, Dong-Young; Jing, Feifeng; Kim, Hyesoon; Yun, Chae-Ok; Han, Deok-Jong; Choi, Eun Young

    2015-01-01

    Developmental endothelial locus-1 (Del-1) is an endogenous anti-inflammatory molecule that is highly expressed in the lung and the brain and limits leukocyte migration to these tissues. We previously reported that the expression of Del-1 is positively regulated by p53 in lung endothelial cells. Although several reports have implicated the altered expression of Del-1 gene in cancer patients, little is known about its role in tumor cells. We here investigated the effect of Del-1 on the features of human lung carcinoma cells. Del-1 mRNA was found to be significantly decreased in the human lung adenocarcinoma cell lines A549 (containing wild type of p53), H1299 (null for p53) and EKVX (mutant p53), compared to in human normal lung epithelial BEAS-2B cells and MRC-5 fibroblasts. The decrease of Del-1 expression was dependent on the p53 activity in the cell lines, but not on the expression of p53. Neither treatment with recombinant human Del-1 protein nor the introduction of adenovirus expressing Del-1 altered the expression of the apoptosis regulators BAX, PUMA and Bcl-2. Unexpectedly, the adenovirus-mediated overexpression of Del-1 gene into the lung carcinoma cell lines promoted proliferation and invasion of the lung carcinoma cells, as revealed by BrdU incorporation and transwell invasion assays, respectively. In addition, overexpression of the Del-1 gene enhanced features of epithelial–mesenchymal transition (EMT), such as increasing vimentin while decreasing E-cadherin in A549 cells, and increases in the level of Slug, an EMT-associated transcription regulator. Our findings demonstrated for the first time that there are deleterious effects of high levels of Del-1 in lung carcinoma cells, and suggest that Del-1 may be used as a diagnostic or prognostic marker for cancer progression, and as a novel therapeutic target for lung carcinoma. - Highlights: • Developmental Endothelial Locus-1 (Del-1) expression is downregulated in human lung cancer cells.

  13. MEIS1 inhibits clear cell renal cell carcinoma cells proliferation and in vitro invasion or migration.

    Science.gov (United States)

    Zhu, Jie; Cui, Liang; Xu, Axiang; Yin, Xiaotao; Li, Fanglong; Gao, Jiangping

    2017-03-07

    Myeloid ecotropic viral integration site 1 (MEIS1) protein plays a synergistic causative role in acute myeloid leukemia (AML). However, MEIS1 has also shown to be a potential tumor suppressor in some other cancers, such as non-small-cell lung cancer (NSCLC) and prostate cancer. Although multiple roles of MEIS1 in cancer development and progression have been identified, there is an urgent demand to discover more functions of this molecule for further therapeutic design. MEIS1 was overexpressed via adenovirus vector in clear cell renal cell carcinoma (ccRCC) cells. Western blot and real-time qPCR (quantitative Polymerase Chain Reaction) was performed to examine the protein and mRNA levels of MEIS1. Cell proliferation, survival, in vitro migration and invasion were tested by MTT, colony formation, soft-agar, transwell (in vitro invasion/migration) assays, and tumor in vivo growthwas measured on nude mice model. In addition, flow-cytometry analysis was used to detect cell cycle arrest or non-apoptotic cell death of ccRCC cells induced by MEIS1. MEIS1 exhibits a decreased expression in ccRCC cell lines than that in non-tumor cell lines. MEIS1 overexpression inhibits ccRCC cells proliferation and induces G1/S arrest concomitant with marked reduction of G1/S transition regulators, Cyclin D1 and Cyclin A. Moreover, MEIS1-1 overexpression also induces non-apoptotic cell death of ccRCC cells via decreasing the levels of pro-survival regulators Survivin and BCL-2. Transwell migration assay (TMA) shows that MEIS1 attenuates in vitro invasion and migration of ccRCC cells with down-regulated epithelial-mesenchymal transition (EMT) process. Further, in nude mice model, MEIS1 inhibits the in vivo growth of Caki-1 cells. By investigating the role of MEIS1 in ccRCC cells' survival, proliferation, anchorage-independent growth, cell cycle progress, apoptosis and metastasis, in the present work, we propose that MEIS1 may play an important role in clear cell renal cell carcinoma (cc

  14. Macrophages are essential for CTGF-mediated adult β-cell proliferation after injury

    Directory of Open Access Journals (Sweden)

    Kimberly G. Riley

    2015-08-01

    Conclusions: Our data show that macrophages are critical for CTGF-mediated adult β-cell proliferation in the setting of partial β-cell ablation. This is the first study to link a specific β-cell proliferative factor with immune-mediated β-cell proliferation in a β-cell injury model.

  15. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  16. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  17. Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation.

    Science.gov (United States)

    Kamal, Tania; Green, Taryn N; Morel-Kopp, Marie-Christine; Ward, Christopher M; McGregor, Ailsa L; McGlashan, Susan R; Bohlander, Stefan K; Browett, Peter J; Teague, Lochie; During, Matthew J; Skerry, Timothy M; Josefsson, Emma C; Kalev-Zylinska, Maggie L

    2015-09-01

    Human megakaryocytes release glutamate and express glutamate-gated Ca(2+)-permeable N-methyl-D-aspartate receptors (NMDARs) that support megakaryocytic maturation. While deregulated glutamate pathways impact oncogenicity in some cancers, the role of glutamate and NMDARs in megakaryocytic malignancies remains unknown. The aim of this study was to determine if NMDARs participate in Ca(2+) responses in leukemic megakaryoblasts and if so, whether modulating NMDAR activity could influence cell growth. Three human cell lines, Meg-01, Set-2 and K-562 were used as models of leukemic megakaryoblasts. NMDAR components were examined in leukemic cells and human bone marrow, including in megakaryocytic disease. Well-established NMDAR modulators (agonists and antagonists) were employed to determine NMDAR effects on Ca(2+) flux, cell viability, proliferation and differentiation. Leukemic megakaryoblasts contained combinations of NMDAR subunits that differed from normal bone marrow and the brain. NMDAR agonists facilitated Ca(2+) entry into Meg-01 cells, amplified Ca(2+) responses to adenosine diphosphate (ADP) and promoted growth of Meg-01, Set-2 and K-562 cells. Low concentrations of NMDAR inhibitors (riluzole, memantine, MK-801 and AP5; 5-100μM) were weakly cytotoxic but mainly reduced cell numbers by suppressing proliferation. The use-dependent NMDAR inhibitor, memantine (100μM), reduced numbers and proliferation of Meg-01 cells to less than 20% of controls (IC50 20μM and 36μM, respectively). In the presence of NMDAR inhibitors cells acquired morphologic and immunophenotypic features of megakaryocytic differentiation. In conclusion, NMDARs provide a novel pathway for Ca(2+) entry into leukemic megakaryoblasts that supports cell proliferation but not differentiation. NMDAR inhibitors counteract these effects, suggesting a novel opportunity to modulate growth of leukemic megakaryoblasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells.

    Science.gov (United States)

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Ji, Yan-Xin; Zhi, Hua

    2017-09-01

    The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells.

    Science.gov (United States)

    Yang, Shaoxing; Cui, Jian; Yang, Yingshun; Liu, Zhaoping; Yan, Haiying; Tang, Chuanhao; Wang, Hong; Qin, Haifeng; Li, Xiaoyan; Li, Jianjie; Wang, Weixia; Huang, Yuqing; Gao, Hongjun

    2016-01-15

    Ribosomal protein L34 (RPL34) was reported to be involved in the regulation of cell proliferation of prokaryotes, plant and animal cells. In the present study, we analyze the expression and function of RPL34 in NSCLC. Immunohistochemical analysis, qPCR and Western blot were used to detect the expression of RPL34 in NSCLC tissues and cells lines. Flow cytometry was used to detect cell activity of NSCLC cell line H1299 under lentivirus-mediated RNAi on RPL34. Cell proliferation and colony formation assays were used to analyze the role of RPL34 in NSCLC cell proliferation. We found that expression of ribosomal protein RPL34 was significantly up-regulated in NSCLC tissues compared to adjacent normal tissues. Lentivirus-mediated shRNA knockdown of RPL34 in NSCLC cell line H1299 resulted in a strong decrease of proliferation, and a moderate but significant increase of apoptosis and S-phase arrest. These data indicate that over-expressed RPL34 may promote malignant proliferation of NSCLC cells, thus playing an important role in development and progress of NSCLC. Copyright © 2015. Published by Elsevier B.V.

  20. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells.

    Science.gov (United States)

    Kang, Seongeun; Kim, Byungtak; Kang, Han-Sung; Jeong, Gookjoo; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Kim, Sun Jung

    2015-11-01

    Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (pcells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.

  1. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  3. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  4. CD117 immunoexpression in canine mast cell tumours: correlations with pathological variables and proliferation markers

    Directory of Open Access Journals (Sweden)

    Pires Maria A

    2007-08-01

    Full Text Available Abstract Background Cutaneous mast cell tumours are one of the most common neoplasms in dogs and show a highly variable biologic behaviour. Several prognosis tools have been proposed for canine mast cell tumours, including histological grading and cell proliferation markers. CD117 is a receptor tyrosine kinase thought to play a key role in human and canine mast cell neoplasms. Normal (membrane-associated and aberrant (cytoplasmic, focal or diffuse CD117 immunoexpression patterns have been identified in canine mast cell tumours. Cytoplasmic CD117 expression has been found to correlate with higher histological grade and with a worsened post-surgical prognosis. This study addresses the role of CD117 in canine mast cell tumours by studying the correlations between CD117 immunoexpression patterns, two proliferation markers (Ki67 and AgNORs histological grade, and several other pathological variables. Results Highly significant (p Conclusion These findings highlight the key role of CD117 in the biopathology of canine MCTs and confirm the relationship between aberrant CD117 expression and increased cell proliferation and higher histological grade. Further studies are needed to unravel the cellular mechanisms underlying focal and diffuse cytoplasmic CD117 staining patterns, and their respective biopathologic relevance.

  5. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  6. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Ji, S.Q.; Cao, J.; Zhang, Q.Y.; Li, Y.Y.; Yan, Y.Q.; Yu, F.X.

    2013-01-01

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis

  7. Adipose tissue-derived stem cells promote pancreatic cancer cell proliferation and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Ji, S.Q.; Cao, J. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Zhang, Q.Y.; Li, Y.Y. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China); Yan, Y.Q. [Department of Liver Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai (China); Yu, F.X. [Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou (China)

    2013-09-27

    To explore the effects of adipose tissue-derived stem cells (ADSCs) on the proliferation and invasion of pancreatic cancer cells in vitro and the possible mechanism involved, ADSCs were cocultured with pancreatic cancer cells, and a cell counting kit (CCK-8) was used to detect the proliferation of pancreatic cancer cells. ELISA was used to determine the concentration of stromal cell-derived factor-1 (SDF-1) in the supernatants. RT-PCR was performed to detect the expression of the chemokine receptor CXCR4 in pancreatic cancer cells and ADSCs. An in vitro invasion assay was used to measure invasion of pancreatic cancer cells. SDF-1 was detected in the supernatants of ADSCs, but not in pancreatic cancer cells. Higher CXCR4 mRNA levels were detected in the pancreatic cancer cell lines compared with ADSCs (109.3±10.7 and 97.6±7.6 vs 18.3±1.7, respectively; P<0.01). In addition, conditioned medium from ADSCs promoted the proliferation and invasion of pancreatic cancer cells, and AMD3100, a CXCR4 antagonist, significantly downregulated these growth-promoting effects. We conclude that ADSCs can promote the proliferation and invasion of pancreatic cancer cells, which may involve the SDF-1/CXCR4 axis.

  8. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells.

    NARCIS (Netherlands)

    Dijkman, H.B.P.M.; Weening, J.J.; Smeets, B.; Verrijp, K.; Kuppevelt, A.H.M.S.M. van; Assmann, K.K.; Steenbergen, E.; Wetzels, J.F.M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  9. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells

    NARCIS (Netherlands)

    Dijkman, H. B. P. M.; Weening, J. J.; Smeets, B.; Verrijp, K. C. N.; van Kuppevelt, T. H.; Assmann, K. K. J. M.; Steenbergen, E. J.; Wetzels, J. F. M.

    2006-01-01

    Collapsing focal segmental glomerulosclerosis (cFSGS) is characterized by hyperplasia of glomerular epithelial cells. In a mouse model of FSGS and in a patient with recurrent idiopathic FSGS, we identified the proliferating cells as parietal epithelial cells (PECs). In the present study, we have

  10. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  11. Cell adhesion and proliferation on polyethylene grafted with Au nanoparticles

    Science.gov (United States)

    Kasálková, N. Slepičková; Slepička, P.; Kolská, Z.; Sajdl, P.; Bačáková, L.; Rimpelová, S.; Švorčík, V.

    2012-02-01

    Plasma treatment and subsequent Au nano-particles grafting of polyethylene (PE) lead to changes in surface morphology, roughness and wettability, significantly increasing the attractiveness of the material for cells. The PE samples were exposed to argon plasma. Plasma modified PE was chemically grafted by immersion to biphenyldithiol and consequently into solution of Au nano-particles. Changes in chemical structure of the modified PE were studied using X-ray Photoelectron Spectroscopy (XPS) and electrokinetic analysis ( ζ-potential). The surface wettability of the modified PE samples was examined by measurement of the contact angle by standard goniometry. The surface morphology of the plasma modified PE and that grafted with Au nano-particles was studied by Atomic Force Microscopy (AFM). The modified PE samples were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Chemically bounded biphenyldithiol increases the number of the incorporated gold nano-particles and changes sample surface properties. The presence of the biphenyldithiol and the gold nano-particles on the PE surface influences dramatically adhesion and proliferation of VSMCs.

  12. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  13. Promoting cell proliferation using water dispersible germanium nanowires.

    Directory of Open Access Journals (Sweden)

    Michael Bezuidenhout

    Full Text Available Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM, High resolution-TEM, and scanning electron microscope (SEM. Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  14. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  15. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  16. Argentatin B Inhibits Proliferation of Prostate and Colon Cancer Cells by Inducing Cell Senescence

    Directory of Open Access Journals (Sweden)

    Ela Alcántara-Flores

    2015-11-01

    Full Text Available Argentatin B has been shown to inhibit the growth of colon HCT-15, and prostate PC-3 cancer cells. However, the mechanism by which argentatin B inhibits cell proliferation is still unknown. We aimed to investigate the mechanism by which argentatin B inhibits cell proliferation. The cell cycle was studied by flow cytometry. Apoptosis was evaluated by Annexin-V-Fluos, and Hoechst 33342 dye staining. Cell senescence was evaluated by proliferation tests, and staining for SA-β-galactosidase. Senescence-related proteins (PCNA, p21, and p27 were analyzed by Western blotting. Potential toxicity of argentatin B was evaluated in CD-1 mice. Its effect on tumor growth was tested in a HCT-15 and PC-3 xenograft model. Argentatin B induced an increment of cells in sub G1, but did not produce apoptosis. Proliferation of both cell lines was inhibited by argentatin B. Forty-three percent HCT-15, and 66% PC-3 cells showed positive SA-β-galactosidase staining. The expression of PCNA was decreased, p21 expression was increased in both cell lines, but p27 expression increased only in PC-3 cells after treatment. Administration of argentatin B to healthy mice did not produce treatment-associated pathologies. However, it restricted the growth of HCT-15 and PC-3 tumors. These results indicate that treatment with argentatin B induces cell senescence.

  17. Effects of LG268 on Cell Proliferation and Apoptosis of NB4 Cells.

    Science.gov (United States)

    Xu, Ting; Zhong, Liang; Gan, Liu-Gen; Xiao, Chun-Lan; Shan, Zhi-Ling; Yang, Rong; Song, Hao; Li, Liu; Liu, Bei-Zhong

    2016-01-01

    To investigate the effect of LG100268 (LG268) on cell proliferation and apoptosis in NB4 cells. NB4 cells were treated with LG268 for 24 h or 48 h. The effect of LG268 on cell proliferation was assessed by the CCK-8 assay and colony-forming assay. Apoptosis and cell cycle were evaluated by flow cytometry. The protein expression levels of Survivin, PARP, c-Myc, cyclin D1, ERK, p-ERK, p38 MAPK, and p- p38 MAPK were detected by western blot. We found that LG268 inhibited the proliferation of NB4 cells in a dose-dependent manner. Flow cytometry analysis showed that LG268 accelerated apoptosis in NB4 cells in a time- dependent manner and that LG268 treatment led to cell cycle arrest at G0/G1 phase. Moreover, LG268 significantly decreased the protein levels of Survivin, c-Myc, and cyclinD1. Cleaved PARP was observed in the LG268 treatment group but not in the control group. In addition, LG268 increased the phosphorylation level of p38 MAPK and decreased the phosphorylation level of ERK. LG268 inhibited cell proliferation and promoted cell apoptosis in NB4 cells.

  18. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    International Nuclear Information System (INIS)

    Hubbard, Kyle; Catalano, Jennifer; Puri, Raj K; Gnatt, Averell

    2008-01-01

    A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery

  19. [Effects of three Wenyang Jianpi Tang on cell proliferation and apoptosis of nonalcoholic fatty liver cells].

    Science.gov (United States)

    Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong

    2017-04-01

    To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(Pcell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(Pcells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. The pharmacodynamic mechanism may be related to the expressions of key factors in pathways related with proliferation and apoptosis mediated by the three decoctions. Copyright© by the Chinese Pharmaceutical Association.

  20. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    Science.gov (United States)

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  1. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation

    Directory of Open Access Journals (Sweden)

    Phillips Jonathan E

    2009-02-01

    Full Text Available Abstract Background Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. Results We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 μg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA significantly slows proliferation at 0.1 μg/ml and higher concentrations. From 4 to 64 μg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 ± 11,000 cell-surface receptors with a KD of 0.03 ± 0.02 μg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 μg/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. Conclusion Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a Cfa

  2. Dictyostelium cells bind a secreted autocrine factor that represses cell proliferation.

    Science.gov (United States)

    Choe, Jonathan M; Bakthavatsalam, Deenadayalan; Phillips, Jonathan E; Gomer, Richard H

    2009-02-02

    Dictyostelium cells secrete the proteins AprA and CfaD. Cells lacking either AprA or CfaD proliferate faster than wild type, while AprA or CfaD overexpressor cells proliferate slowly, indicating that AprA and CfaD are autocrine factors that repress proliferation. CfaD interacts with AprA and requires the presence of AprA to slow proliferation. To determine if CfaD is necessary for the ability of AprA to slow proliferation, whether AprA binds to cells, and if so whether the binding requires the presence of CfaD, we examined the binding and effect on proliferation of recombinant AprA. We find that the extracellular accumulation of AprA increases with cell density and reaches a concentration of 0.3 microg/ml near a stationary cell density. When added to wild-type or aprA- cells, recombinant AprA (rAprA) significantly slows proliferation at 0.1 microg/ml and higher concentrations. From 4 to 64 microg/ml, the effect of rAprA is at a plateau, slowing but not stopping proliferation. The proliferation-inhibiting activity of rAprA is roughly the same as that of native AprA in conditioned growth medium. Proliferating aprA- cells show saturable binding of rAprA to 92,000 +/- 11,000 cell-surface receptors with a KD of 0.03 +/- 0.02 microg/ml. There appears to be one class of binding site, and no apparent cooperativity. Native AprA inhibits the binding of rAprA to aprA- cells with a Ki of 0.03 mug/ml, suggesting that the binding kinetics of rAprA are similar to those of native AprA. The proliferation of cells lacking CrlA, a cAMP receptor-like protein, or cells lacking CfaD are not affected by rAprA. Surprisingly, both cell types still bind rAprA. Together, the data suggest that AprA functions as an autocrine proliferation-inhibiting factor by binding to cell surface receptors. Although AprA requires CfaD for activity, it does not require CfaD to bind to cells, suggesting the possibility that cells have an AprA receptor and a CfaD receptor, and activation of both receptors is

  3. Silencing of semaphorin 3C suppresses cell proliferation and migration in MCF-7 breast cancer cells.

    Science.gov (United States)

    Zhu, Xiaofang; Zhang, Xiangjian; Ye, Zhiqiang; Chen, Yizuo; Lv, Lin; Zhang, Xiaohua; Hu, Hongye

    2017-11-01

    Previous studies have suggested that semaphorin 3C (SEMA3C) is involved in the tumorigenesis and metastasis of a number of types of cancer. The aim of the present study was to investigate the role of SEMA3C in the proliferation and migration of MCF-7 breast cancer cells. Small interfering (si)RNA sequences targeting SEMA3C were constructed and transfected into MCF-7 cells in order to silence the expression of SEMA3C. Cell proliferation and migration were measured using CCK-8 and Transwell assays, respectively. Transfection with SEMA3C siRNA significantly downregulated the expression of SEMA3C in MCF-7 cells, and significantly suppressed cell proliferation and migration. Therefore, SEMA3C-targeted siRNA may be of potential use for the early diagnosis and treatment of breast cancer.

  4. Cell density, negative proliferation control, and phosphorylation of retinoblastoma protein.

    Science.gov (United States)

    Böhmer, R M

    1993-04-01

    Cell density negative control (CDNC) of normal human fibroblast proliferation occurs after stimulation by mitogens with different signal transduction mechanism. Delayed exposure to agents that interfere with CDNC, such as double-stranded RNA and vanadate, reveals the existence of a biochemical event, involved in CDNC, that occurs 5-8 hr after the beginning of mitogenic stimulation. This is earlier than the point of "mitogenic commitment," defined by the duration of mitogen exposure required for cell cycle entry (8-18 hr). Phosphorylation of the retinoblastoma gene product (pRB) begins 8-10 hr after mitogen stimulation and is nearly complete at 18 hr, just as the first cells enter S-phase. CDNC prevents pRB phosphorylation. Interferon beta delays pRB phosphorylation by up to 20 hr but has little effect on the timing of mitogenic commitment. Thus mitogenic commitment is located in time between CDNC and pRB phosphorylation. When agents that cause a release from CDNC are applied to dense, negatively controlled cultures after 18 hr of EGF stimulation, pRB phosphorylation occurs 6-8 hr after release. This suggests that the negatively controlled cells process the mitogenic signal but accumulate at a restriction point. The relatively early timing of CDNC-related events in the prereplicative phase raises the possibility that pRB phosphorylation is a consequence rather than a prerequisite for release from cell density negative control.

  5. Human growth hormone stimulates proliferation of human retinal microvascular endothelial cells in vitro

    International Nuclear Information System (INIS)

    Rymaszewski, Z.; Cohen, R.M.; Chomczynski, P.

    1991-01-01

    Growth hormone (GH) has been implicated in the pathogenesis of proliferative diabetic retinopathy. The authors sought to determine whether this could be mediated by an effect of GH on proliferation of endothelial cells, and, for this purpose, established long-term cultures of human retinal microvascular endothelial cells (hREC) from normal postmortem human eyes. High-purity hREC preparations were selected for experiments, based on immunogluorescence with acetylated low density lipoprotein (LDL) and anti-factor VIII-related antigen. Growth requirements for these cells were complex, including serum for maintenance at slow growth rates and additional mitogens for more rapid proliferation. Exposure of hREC to physiologic doses of human GH (hGH) resulted in 100% greater cell number vs. control but could be elicited only in the presence of serum. When differing serum conditions were compared, hGH stimulated [ 3 H]thymidine incorporation up to 1.6- to 2.2-fold under each condition and increased DNA content significantly in the presence of human, horse, and fetal calf serum. In summary, hREC respond to physiologic concentrations of hGH in vitro with enhanced proliferation. This specific effect of GH on retinal microvascular endothelial cells supports the hypothesis of role for GH in endothelial cell biology

  6. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... Treatment Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key ...

  7. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  8. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  9. Effect of norcantharidin on the proliferation, apoptosis, and cell cycle of human mesangial cells.

    Science.gov (United States)

    Ye, Kun; Wei, Qiaoyu; Gong, Zhifeng; Huang, Yunfeng; Liu, Hong; Li, Ying; Peng, Xiaomei

    2017-11-01

    Norcantharidin (NCTD) regulates immune system function and reduces proteinuria. We sought to investigate the effect of NCTD on proliferation, apoptosis and cell cycle of cultured human mesangial cells (HMC) in vitro. HMC cells were divided into a normal control group, and various concentrations of NCTD group (2.5, 5, 10, 20, or 40 μg/mL). Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis was detected by Annexin V/propidium iodide (PI) assays, and morphological analysis was performed by Hoechest 33258 staining. Finally, cell cycle was analyzed by flow cytometry. NCTD dose and time dependently inhibits HMC proliferation significantly (p Cell-cycle analysis revealed that the number of cells in the G2 phase increased significantly, whereas the fraction of cells in the S phase decreased, especially 24 h after 5 μg/ml NCTD treatment. NCTD inhibits HMC cell proliferation, induces apoptosis, and affects the cell cycle.

  10. Effects of microRNA-221/222 on cell proliferation and apoptosis in prostate cancer cells.

    Science.gov (United States)

    Wang, Lina; Liu, Chunyan; Li, Chaoyang; Xue, Jing; Zhao, Shihu; Zhan, Panpan; Lin, Yani; Zhang, Pengju; Jiang, Anli; Chen, Weiwen

    2015-11-10

    To investigate the role of miR-221/222 in cell proliferation and apoptosis in human prostate cancer cells, and examine the effects of miR-221/222 on caspase-10 expression. Prostate cancer cells were transfected with miR-221/222 mimics or inhibitors. Cell proliferation was assessed by MTT assay. The expression levels of miR-221/222 were detected with quantitative real-time PCR. Apoptosis was induced with TNF-α/CHX treatment, and evaluated by Hoechst 33342 staining, propidium iodide (PI) flow cytometric analysis, caspase-3 activity measurement, and Western blot analysis. Luciferase activity assay, quantitative real-time PCR, and Western blot were performed to evaluate the effects of miR-221/222 on caspase-10 expression. Our results showed that miR-221/222 could promote the proliferation of prostate cancer cells, including LNCaP and PC3 cells. After transfection and apoptosis induction, Hoechst 33342 staining and PI flow cytometric assay showed that apoptosis was dramatically decreased in prostate cancer cells treated with miR-221/222 mimics. Moreover, caspase-3 activity was dramatically decreased, and the cleaved forms of caspase-3 were reduced, in the miR-221/222 mimic-treated group. On the contrary, miR-221/222 knockdown sensitized the prostate cancer cells to TNF-α/CHX-induced apoptosis. In addition, a negative correlation was observed between the expressions of miR-221/222 and caspase-10 in prostate cancer cells. miR-221/222 could repress the expression of caspase-10, which was confirmed by the luciferase reporter assay. miR-221/222 promote cell proliferation and repress apoptosis, through suppressing caspase-10, in prostate cancer cells. Our results provide promising evidence for the miRNA-based therapeutic strategy of prostate cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Butyl benzyl phthalate suppresses the ATP-induced cell proliferation in human osteosarcoma HOS cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chen, C.-Y.

    2010-01-01

    Butyl benzyl phthalate (BBP), an endocrine disruptor present in the environment, exerts its genomic effects via intracellular steroid receptors and elicits non-genomic effects by interfering with membrane ion-channel receptors. We previously found that BBP blocks the calcium signaling coupled with P2X receptors in PC12 cells (Liu and Chen, 2006). Osteoblast P2X receptors were recently reported to play a role in cell proliferation and bone remodeling. In this present study, the effects of BBP on ATP-induced responses were investigated in human osteosarcoma HOS cells. These receptors mRNA had been detected, named P2X4, P2X7, P2Y2, P2Y4, P2Y5, P2Y9, and P2Y11, in human osteosarcoma HOS cells by RT-PCR. The enhancement of cell proliferation and the decrease of cytoviability had both been shown to be coupled to stimulation via different concentrations of ATP. BBP suppressed the ATP-induced calcium influx (mainly coupled with P2X) and cell proliferation but not the ATP-induced intracellular calcium release (mainly coupled with P2Y) and cytotoxicity in human osteosarcoma HOS cells. Suramin, a common P2 receptor's antagonist, blocked the ATP-induced calcium signaling, cell proliferation, and cytotoxicity. We suggest that P2X is mainly responsible for cell proliferation, and P2Y might be partially responsible for the observed cytotoxicity. BBP suppressed the calcium signaling coupled with P2X, suppressing cell proliferation. Since the importance of P2X receptors during bone metastasis has recently become apparent, the possible toxic risk of environmental BBP during bone remodeling is a public problem of concern.

  12. CREPT and p15RS regulate cell proliferation and cycling in chicken DF-1 cells through the Wnt/β-catenin pathway.

    Science.gov (United States)

    Jin, Kai; Chen, Hao; Zuo, Qisheng; Huang, Chuanli; Zhao, Ruifeng; Yu, Xinjian; Wang, Yinjie; Zhang, Yani; Chang, Zhijie; Li, Bichu

    2018-01-01

    The CREPT (cell cycle-related and expression elevated protein in tumor, also known as RPRD1B) and p15RS (p15 INK4b -related sequence, also known as RPRD1A) have been shown to regulate cell proliferation and alter the cell cycle through Wnt/β-catenin pathway downstream genes in human. Although several studies have revealed the mechanism by which CREPT and p15RS regulate cell proliferation in human and mammals, it is still unclear how these genes function in poultry. In order to determine the function of CREPT and p15RS in chicken, we examined the expression of CREPT and p15RS in a variety of chicken tissues and DF-1 cells. Then, we determined the effect of overexpression or depletion of CREPT or p15RS, by transiently transfecting chicken DF-1 cells with overexpression and short hairpin RNA (shRNA) vectors respectively, on the regulation of cell proliferation. The results showed that CREPT and p15RS had different expression patterns and opposite effects on the cell cycling and proliferation. Knockdown of p15RS expression or overexpression of CREPT facilitated cell proliferation by promoting the cell-cycle transition from G0/G1 to S-phase and G2/M, whereas knockdown of CREPT or overexpression of p15RS inhibited cell proliferation. Mechanistically, CREPT and p15RS control DF-1 cell proliferation by regulating the expression of Wnt/β-catenin pathway downstream regulatory genes, including β-catenin, TCF4, and Cyclin D1. In conclusion, CREPT and p15RS regulate cell proliferation and the cell-cycle transition in chicken DF-1 cells by regulating the transcription of Wnt/β-catenin pathway downstream regulatory genes. © 2017 Wiley Periodicals, Inc.

  13. Pueraria mirifica inhibits 17β-estradiol-induced cell proliferation of human endometrial mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ta-Chin; Wang, Kai-Hung; Kao, An-Pei; Chuang, Kuo-Hsiang; Kuo, Tsung-Cheng

    2017-12-01

    The notion that the human endometrium may contain a population of stem cells has recently been proposed. The mesenchymal stem cells (MSCs) in the endometrium are believed to be responsible for the remarkable regenerative ability of endometrial cells. Estrogens influence the physiological and pathological processes of several hormone-dependent tissues, such as the endometrium. Pueraria mirifica (PM) is a herbal plant that contains several phytoestrogens, including isoflavones, lignans, and coumestans, and is known to exert an estrogenic effect on animal models. The present study investigated the effects of PM on the proliferation of human endometrial MSCs (hEN-MSCs). The hEN-MSCs were isolated from human endometrial tissue. The surface markers of these hEN-MSCs were identified through reverse transcription-polymerase chain reaction analysis. The proliferation potential of hEN-MSCs was measured through a cell proliferation assay. Multilineage differentiation ability was confirmed through Oil red O and von Kossa staining. This study demonstrated that 17β-estradiol-responsive MSCs with Oct-4, CD90, and CD105 gene expression can be derived from the human endometrium and that PM exerts biological effects on hEN-MSCs, specifically, enhanced cell growth rate, through the estrogen receptor. Furthermore, PM at 1500 and 2000 μg/mL significantly increased cell proliferation compared with the vehicle control, and PM concentration at 1000 μg/mL significantly inhibited the enhanced cell growth rate induced by 17β-estradiol in hEN-MSCs. This study provides new insights into the possible biological effects of PM on the proliferation of hEN-MSCs. Copyright © 2017. Published by Elsevier B.V.

  14. GRP78 is required for cell proliferation and protection from apoptosis in chicken embryo fibroblast cells.

    Science.gov (United States)

    Jeon, M; Choi, H; Lee, S I; Kim, J S; Park, M; Kim, K; Lee, S; Byun, S J

    2016-05-01

    Chicken serum has been suggested as a supplement to promote chicken cell proliferation and development. However, the molecular mechanisms by which chicken serum stimulates chicken cell proliferation remain unknown. Here, we evaluated the effects of chicken serum supplementation on chicken embryo fibroblast (CEF) and DF-1 cell proliferation. We also sought to elucidate the molecular pathways involved in mediating the effects of chicken serum on fibroblasts and DF-1 cells by overexpression of chicken 78 kDa glucose-regulated protein (chGRP78), which is important for cell growth and the prevention of apoptosis. Our data demonstrated that the addition of 5% chicken serum significantly enhanced fibroblast proliferation. Moreover, knockdown of chGRP78 using siRNA decreased fibroblast proliferation and increased apoptosis. Based on these results, we suggest that the chGRP78-mediated signaling pathway plays a critical role in chicken serum-stimulated fibroblast survival and anti-apoptosis. Therefore, our findings have important implications for the maintenance of chicken fibroblast cells through the inhibition of apoptosis and may lead to the development of new treatments for avian disease. © 2016 Poultry Science Association Inc.

  15. Bisphenol A Inhibits Cell Proliferation and Reduces the Motile Potential of Murine LM8 Osteosarcoma Cells.

    Science.gov (United States)

    Kidani, Teruki; Yasuda, Rie; Miyawaki, Joji; Oshima, Yusuke; Miura, Hiromasa; Masuno, Hiroshi

    2017-04-01

    The aim of this study was to examine the effect of bisphenol A (BPA) on the proliferation and motility potential of murine LM8 osteosarcoma cells. LM8 cells were treated for 3 days with or without 80 μM BPA. The effect of BPA on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine (BrdU) incorporation study. Ethanol-fixed cells were stained with hematoxylin-eosin (H&E) to visualize cell morphology. Cell motility was assayed using inserts with uncoated membranes in invasion chambers. Expression of cell division cycle 42 (CDC42) was determined by immunofluorescence staining and western blotting. BPA reduced the DNA content of cultures and the number of BrdU-positive cells. BPA induced a change in morphology from cuboidal with multiple filopodia on the cell surface to spindle-shaped with a smooth cell surface. BPA-treated cells expressed less CDC42 and were less motile than untreated cells. BPA inhibited DNA replication and cell proliferation. BPA inhibited filopodia formation and motile potential by inhibiting CDC42 expression in LM8 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Yang Song

    Full Text Available TRPV4, one of the TRP channels, is implicated in diverse physiological and pathological processes including cell proliferation. However, the role of TRPV4 in liver fibrosis is largely unknown. Here, we characterized the role of TRPV4 in regulating HSC-T6 cell proliferation. TRPV4 mRNA and protein were measured by RT-PCR and Western blot in patients and rat model of liver fibrosis in vivo and TGF-β1-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPV4 were dramatically increased in liver fibrotic tissues of both patients and CCl4-treated rats. Stimulation of HSC-T6 cells with TGF-β1 resulted in increase of TRPV4 mRNA and protein. However, TGF-β1-induced HSC-T6 cell proliferation was inhibited by Ruthenium Red (Ru or synthetic siRNA targeting TRPV4, and this was accompanied by downregulation of myofibroblast markers including α-SMA and Col1α1. Moreover, our study revealed that miR-203 was downregulated in liver fibrotic tissues and TGF-β1-treated HSC-T6 cell. Bioinformatics analyses predict that TRPV4 is the potential target of miR-203. In addition, overexpression of miR-203 in TGF-β1-induced HSC significantly reduced TRPV4 expression, indicating TRPV4, which was regulated by miR-203, may function as a novel regulator to modulate TGF-β1-induced HSC-T6 proliferation.

  17. Evaluating the Role of PTH in Promotion of Chondrosarcoma Cell Proliferation and Invasion by Inhibiting Primary Cilia Expression

    Directory of Open Access Journals (Sweden)

    Wei Xiang

    2014-10-01

    Full Text Available Chondrosarcoma is characterized by secretion of a cartilage-like matrix, with high proliferation ability and metastatic potential. Previous studies have shown that parathyroid hormone-related protein (PTHrP has a close relationship with various tumor types. The objectives of this study were to research the function played by PTHrP in human chondrosarcoma, especially targeting cell proliferation and invasion, and to search for the potential interaction between PTHrP and primary cilia in tumorigenesis. Surgical resection tissues and the human chondrosarcoma cell line SW1353 were used in the scientific research. Cells were stimulated with an optimum concentration of recombinant PTH (1-84, and siRNA was used to interfere with internal PTHrP. Cell proliferation and invasion assays were applied, including MTS-8 cell proliferation assay, Western blot, RT-PCR, Transwell invasion assay, and immunohistochemistry and immunofluorescence assays. A high level of PTHrP expression was found in human chondrosarcoma tissues, and recombinant PTH exhibited positive promotion in tumor cell proliferation and invasion. In the meantime, PTHrP could inhibit the assembly of primary cilia and regulate downstream gene expression. These findings indicate that PTHrP can regulate tumor cell proliferation and invasion ability, possibly through suppression of primary cilia assembly. Thus, restricting PTHrP over-expression is a feasible potential therapeutic method for chondrosarcoma.

  18. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  19. The nucleolus: a paradigm for cell proliferation and aging

    Directory of Open Access Journals (Sweden)

    Comai L.

    1999-01-01

    Full Text Available The nucleolus is the cellular site of ribosome biosynthesis. At this site, active ribosomal DNA (rDNA genes are rapidly transcribed by RNA polymerase I (pol I molecules. Recent advances in our understanding of the pol I transcription system have indicated that regulation of ribosomal RNA (rRNA synthesis is a critical factor in cell growth. Importantly, the same signaling networks that control cell growth and proliferation and are deregulated in cancer appear to control pol I transcription. Therefore, the study of the biochemical basis for growth regulation of pol I transcription can provide basic information about the nuclear signaling network. Hopefully, this information may facilitate the search for drugs that can inhibit the growth of tumor cells by blocking pol I activation. In addition to its function in ribosome biogenesis, recent studies have revealed the prominent role of the nucleolus in cell senescence. These findings have stimulated a new wave of research on the functional relationship between the nucleolus and aging. The aim of this review is to provide an overview of some current topics in the area of nucleolus biology, and it has been written for a general readership.

  20. ATF3, an HTLV-1 bZip factor binding protein, promotes proliferation of adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    Ohshima Koichi

    2011-03-01

    Full Text Available Abstract Background Adult T-cell leukemia (ATL is an aggressive malignancy of CD4+ T-cells caused by human T-cell leukemia virus type 1 (HTLV-1. The HTLV-1 bZIP factor (HBZ gene, which is encoded by the minus strand of the viral genome, is expressed as an antisense transcript in all ATL cases. By using yeast two-hybrid screening, we identified activating transcription factor 3 (ATF3 as an HBZ-interacting protein. ATF3 has been reported to be expressed in ATL cells, but its biological significance is not known. Results Immunoprecipitation analysis confirmed that ATF3 interacts with HBZ. Expression of ATF3 was upregulated in ATL cell lines and fresh ATL cases. Reporter assay revealed that ATF3 could interfere with the HTLV-1 Tax's transactivation of the 5' proviral long terminal repeat (LTR, doing so by affecting the ATF/CRE site, as well as HBZ. Suppressing ATF3 expression inhibited proliferation and strongly reduced the viability of ATL cells. As mechanisms of growth-promoting activity of ATF3, comparative expression profiling of ATF3 knockdown cells identified candidate genes that are critical for the cell cycle and cell death, including cell division cycle 2 (CDC2 and cyclin E2. ATF3 also enhanced p53 transcriptional activity, but this activity was suppressed by HBZ. Conclusions Thus, ATF3 expression has positive and negative effects on the proliferation and survival of ATL cells. HBZ impedes its negative effects, leaving ATF3 to promote proliferation of ATL cells via mechanisms including upregulation of CDC2 and cyclin E2. Both HBZ and ATF3 suppress Tax expression, which enables infected cells to escape the host immune system.

  1. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    The purpose of this study was to characterize the effects of human retinal pigment epithelial (RPE) cells on activated T cells. Activated T cells were cocultured with adult and foetal human RPE cells whereafter apoptosis and proliferation were determined by flow cytometry and (3)H......-Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58...

  2. Physiological Hypoxia Enhances Stemness Preservation, Proliferation, and Bidifferentiation of Induced Hepatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhi

    2018-01-01

    Full Text Available Induced hepatic stem cells (iHepSCs have great potential as donors for liver cell therapy due to their self-renewal and bipotential differentiation properties. However, the efficiency of bidifferentiation and repopulation efficiency of iHepSCs is relatively low. Recent evidence shows that physiological hypoxia, a vital factor within stem cell “niche” microenvironment, plays key roles in regulating tissue stem cell biological behaviors including proliferation and differentiation. In this study, we found that physiological hypoxia (10% O2 enhanced the stemness properties and promoted the proliferation ability of iHepSCs by accelerating G1/S transition via p53-p21 signaling pathway. In addition, short-term hypoxia preconditioning improved the efficiency of hepatic differentiation of iHepSCs, and long-term hypoxia promoted cholangiocytic differentiation but inhibited hepatic differentiation of iHepSCs. These results demonstrated the potential effects of hypoxia on stemness preservation, proliferation, and bidifferentiation of iHepSCs and promising perspective to explore appropriate culture conditions for therapeutic stem cells.

  3. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  4. Non-circadian rhythm in proliferation of haematopoietic stem cells

    International Nuclear Information System (INIS)

    Necas, E.; Znojil, V.

    1988-01-01

    The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [ 3 H]-thymidine ([ 3 H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [ 3 H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [ 3 H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [ 3 H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [ 3 H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [ 3 H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. (author)

  5. Icariin promotes cell proliferation and regulates gene expression in human neural stem cells in vitro.

    Science.gov (United States)

    Yang, Pan; Guan, Yun-Qian; Li, Ya-Li; Zhang, Li; Zhang, Lan; Li, Lin

    2016-08-01

    Icariin (ICA), which is an essential bioactive component extracted from the herb Epimedium, possesses neuroprotective properties. The aim of the present study was to investigate the regulatory roles of ICA in cell proliferation and gene expression in human neural stem cells (NSCs) in vitro. Single cells were isolated from the corpus striatum of 16‑20‑week human fetuses obtained following spontaneous abortion. The cells were cultured in Dulbecco's modified Eagle's medium/F12 complete medium and were characterized by immunostaining and cell differentiation assay. NSCs were treated with ICA, and cell proliferation was assessed using the Cell Counting kit‑8 cell proliferation assay kit. In addition, neurosphere formation was comparatively studied between the ICA‑treated and control cells. cDNA microarray analysis was performed to examine the effects of ICA on gene expression. Altered expression of genes important for regulating NSC proliferation was further analyzed by quantitative polymerase chain reaction (qPCR). The results demonstrated that typical neurospheres appeared after 7‑10 days of culturing of individual cells isolated from the corpus striatum. These cells expressed nestin, an important NSC marker, and in the presence of differentiation medium they expressed β‑III‑tubulin, a specific neuronal marker, and glial fibrillary acidic protein, an astrocyte marker. Treatment with ICA enhanced NSC proliferation and the formation of neurospheres. Microarray data and pathway analysis revealed that the genes regulated by ICA were involved in several signaling pathways, including the Wnt and basic fibroblast growth factor (bFGF) pathways, which are important for the regulation of NSC function. Upregulation of frizzled class receptor 7 and dishevelled segment polarity protein 3, which are key players in the Wnt pathway, and fibroblast growth factor receptor 1, which is the receptor for bFGF, and downregulation of glycogen synthase kinase‑3β, which

  6. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    OpenAIRE

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the p...

  7. c-Myc regulates cell size and ploidy but is not essential for postnatal proliferation in liver

    Science.gov (United States)

    Baena, Esther; Gandarillas, Alberto; Vallespinós, Mireia; Zanet, Jennifer; Bachs, Oriol; Redondo, Clara; Fabregat, Isabel; Martinez-A., Carlos; Moreno de Alborán, Ignacio

    2005-05-01

    The c-Myc protein is a transcription factor implicated in the regulation of multiple biological processes, including cell proliferation, cell growth, and apoptosis. In vivo overexpression of c-myc is linked to tumor development in a number of mouse models. Here, we show that perinatal inactivation of c-Myc in liver causes disorganized organ architecture, decreased hepatocyte size, and cell ploidy. Furthermore, c-Myc appears to have distinct roles in proliferation in liver. Thus, postnatal hepatocyte proliferation does not require c-Myc, whereas it is necessary for liver regeneration in adult mice. These results show novel physiological functions of c-myc in liver development and hepatocyte proliferation and growth.

  8. Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells.

    Science.gov (United States)

    de Carvalho, Daniela D; Sadok, Amine; Bourgarel-Rey, Véronique; Gattacceca, Florence; Penel, Claude; Lehmann, Maxime; Kovacic, Hervé

    2008-04-15

    The catalytic subunit of the NADPH oxidase complex, Nox1 (homologue of gp91phox/Nox2), expressed mainly in intestinal epithelial and vascular smooth muscle cells, functions in innate immune defense and cell proliferation. The molecular mechanisms underlying these functions, however, are not completely understood. We measured Nox1-dependent O2- production during cell spreading on Collagen IV (Coll IV) in colon carcinoma cell lines. Knocking down Nox1 by shRNA, we showed that Nox1-dependent O2- production is activated during cell spreading after 4 hr of adhesion on Collagen IV. Nox1 activation during cell spreading relies on Rac1 activation and arachidonic metabolism. Our results showed that manoalide (a secreted phospholipase A2 inhibitor) and cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (a 12-lipoxygenase inhibitor) inhibit O2- production, cell spreading and cell proliferation in these colonic epithelial cells. 12-Lipoxygenase inhibition of ROS production and cell spreading can be reversed by adding 12-HETE, a 12-lipoxygenase product, supporting the specific effect observed with cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. In contrast, Nox1 shRNA and DPI (NADPH oxidase inhibitor) weakly affect cell spreading while inhibiting O2- production and cell proliferation. These results suggest that the 12-lipoxygenase pathway is upstream of Nox1 activation and controls cell spreading and proliferation, while Nox1 specifically affects cell proliferation.

  9. Proliferation of cultured mouse choroid plexus epithelial cells.

    Directory of Open Access Journals (Sweden)

    Basam Z Barkho

    Full Text Available The choroid plexus (ChP epithelium is a multifunctional tissue found in the ventricles of the brain. The major function of the ChP epithelium is to produce cerebrospinal fluid (CSF that bathes and nourishes the central nervous system (CNS. In addition to the CSF, ChP epithelial cells (CPECs produce and secrete numerous neurotrophic factors that support brain homeostasis, such as adult hippocampal neurogenesis. Accordingly, damage and dysfunction to CPECs are thought to accelerate and intensify multiple disease phenotypes, and CPEC regeneration would represent a potential therapeutic approach for these diseases. However, previous reports suggest that CPECs rarely divide, although this has not been extensively studied in response to extrinsic factors. Utilizing a cell-cycle reporter mouse line and live cell imaging, we identified scratch injury and the growth factors insulin-like growth factor 1 (IGF-1 and epidermal growth factor (EGF as extrinsic cues that promote increased CPEC expansion in vitro. Furthermore, we found that IGF-1 and EGF treatment enhances scratch injury-induced proliferation. Finally, we established whole tissue explant cultures and observed that IGF-1 and EGF promote CPEC division within the intact ChP epithelium. We conclude that although CPECs normally have a slow turnover rate, they expand in response to external stimuli such as injury and/or growth factors, which provides a potential avenue for enhancing ChP function after brain injury or neurodegeneration.

  10. The caudal regeneration blastema is an accumulation of rapidly proliferating stem cells in the flatworm Macrostomum lignano.

    Science.gov (United States)

    Egger, Bernhard; Gschwentner, Robert; Hess, Michael W; Nimeth, Katharina T; Adamski, Zbigniew; Willems, Maxime; Rieger, Reinhard; Salvenmoser, Willi

    2009-07-15

    Macrostomum lignano is a small free-living flatworm capable of regenerating all body parts posterior of the pharynx and anterior to the brain. We quantified the cellular composition of the caudal-most body region, the tail plate, and investigated regeneration of the tail plate in vivo and in semithin sections labeled with bromodeoxyuridine, a marker for stem cells (neoblasts) in S-phase. The tail plate accomodates the male genital apparatus and consists of about 3,100 cells, about half of which are epidermal cells. A distinct regeneration blastema, characterized by a local accumulation of rapidly proliferating neoblasts and consisting of about 420 cells (excluding epidermal cells), was formed 24 hours after amputation. Differentiated cells in the blastema were observed two days after amputation (with about 920 blastema cells), while the male genital apparatus required four to five days for full differentiation. At all time points, mitoses were found within the blastema. At the place of organ differentiation, neoblasts did not replicate or divide. After three days, the blastema was made of about 1420 cells and gradually transformed into organ primordia, while the proliferation rate decreased. The cell number of the tail plate, including about 960 epidermal cells, was restored to 75% at this time point. Regeneration after artificial amputation of the tail plate of adult specimens of Macrostomum lignano involves wound healing and the formation of a regeneration blastema. Neoblasts undergo extensive proliferation within the blastema. Proliferation patterns of S-phase neoblasts indicate that neoblasts are either determined to follow a specific cell fate not before, but after going through S-phase, or that they can be redetermined after S-phase. In pulse-chase experiments, dispersed distribution of label suggests that S-phase labeled progenitor cells of the male genital apparatus undergo further proliferation before differentiation, in contrast to progenitor cells of

  11. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  12. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  13. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  14. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation.

    Directory of Open Access Journals (Sweden)

    Xingyue He

    Full Text Available SUMOylation is a post-translational ubiquitin-like protein modification pathway that regulates important cellular processes including chromosome structure, kinetochore function, chromosome segregation, nuclear and sub-nuclear organization, transcription and DNA damage repair. There is increasing evidence that the SUMO pathway is dysregulated in cancer, raising the possibility that modulation of this pathway may have therapeutic potential. To investigate the importance of the SUMO pathway in the context of cancer cell proliferation and tumor growth, we applied lentivirus-based short hairpin RNAs (shRNA to knockdown SUMO pathway genes in human cancer cells. shRNAs for SAE2 and UBC9 reduced SUMO conjugation activity and inhibited proliferation of human cancer cells. To expand upon these observations, we generated doxycycline inducible conditional shRNA cell lines for SAE2 to achieve acute and reversible SAE2 knockdown. Conditional SAE2 knockdown in U2OS and HCT116 cells slowed cell growth in vitro, and SAE2 knockdown induced multiple terminal outcomes including apoptosis, endoreduplication and senescence. Multinucleated cells became senescent and stained positive for the senescence marker, SA-β Gal, and displayed elevated levels of p53 and p21. In an attempt to explain these phenotypes, we confirmed that loss of SUMO pathway activity leads to a loss of SUMOylated Topoisomerase IIα and the appearance of chromatin bridges which can impair proper cytokinesis and lead to multinucleation. Furthermore, knockdown of SAE2 induces disruption of PML nuclear bodies which may further promote apoptosis or senescence. In an in vivo HCT116 xenograft tumor model, conditional SAE2 knockdown strongly impaired tumor growth. These data demonstrate that the SUMO pathway is required for cancer cell proliferation in vitro and tumor growth in vivo, implicating the SUMO pathway as a potential cancer therapeutic target.

  15. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  16. New Roles of Osteocytes in Proliferation, Migration and Invasion of Breast and Prostate Cancer Cells.

    Science.gov (United States)

    Cui, Yu-Xin; Evans, Bronwen A J; Jiang, Wen G

    2016-03-01

    Most cases of prostate and breast cancer metastasis occur to the bone, and are responsible for the majority of cancer-related deaths. Osteocytes constitute over 90% of adult bone cells. They orchestrate bone remodelling through determining osteoclast activity and affecting osteoblasts. The osteocyte lacuno-canalicular network is also intimately associated with the blood vessel network in the bone matrix. However, the roles of osteocytes in cancer cell invasion and metastasis remain unknown. In this study, we investigated the effects of early osteocytes on the behaviour of breast and prostate cancer cells. The proliferation of cultured cells was assessed using the AlamarBlue assay. The electric cell-substrate impedance sensing (ECIS) system was used to measure spreading, attachment and migratory behaviour of cancer cells in response to conditioned medium (CM) from mouse osteocytes. Other cell assays, including in vitro wound healing and transwell migration/invasion assays, were also applied to evaluate the effect of osteocytes on cancer cells. We found that CM from osteocytes from both monolayer and three-dimensional (3D) cultures, stimulated proliferation of DU145 and PC3 prostate cancer cells but not LNCaP cells compared to control medium. Osteocyte CM also stimulated proliferation of MDA-MB-231 and MCF-7 breast cancer cells. However, osteocyte CM promoted the migration and adhesion of PC3 and DU145 in prostate cancer cells but had the reverse effect on PZHPV7, a normal prostate epithelial cell line. In the breast cancer cells studied, osteocyte CM inhibited post-wound migration of MCF-7 and ZR-75.1 cells but not MDA-MB-231 cells. Moreover, osteocyte CM stimulated transwell chemotactic migration of MDA-MB-231 cells but not of MCF-7 and ZR-75.1 cells. Osteocytes play diverse roles in the proliferative and migratory potential of breast and prostate cancer cells that may be associated with cancer-specific bone metastasis and requires further investigation. Copyright

  17. Drosophila Ste-20 Family Protein Kinase, Hippo, Modulates Fat Cell Proliferation

    Science.gov (United States)

    Huang, Hongling; Wu, Wenqing; Zhang, Lei; Liu, Xin-Yuan

    2013-01-01

    Background Evolutionarily conserved Hippo (Hpo) pathway plays a pivotal role in the control of organ size. Although the Hpo pathway regulates proliferation of a variety of epidermal cells, its function in non-ectoderm-derived cells is largely unknown. Methodology/Principal Findings Through methods including fat quantification assays, starvation assays, in vivo labeling assays, we show that overexpression of Hpo in Drosophila melanogaster fat body restricts Drosophila body growth and reduces fat storage through regulation of adipocyte proliferation rather than through influencing the size of fat cells and lipid metabolism, whereas compromising Hpo activity results in weight gain and greater fat storage. Furthermore, we provide evidence that Yorkie (Yki, a transcriptional coactivator that functions in the Hpo pathway) antagonizes Hpo to modulate fat storage in Drosophila. Conclusions/Significance Our findings specify a role of Hpo in controlling mesoderm-derived cell proliferation. The observed anti-obesity effects of Hpo may indicate great potential for its utilization in anti-obesity therapeutics. PMID:23637896

  18. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation.

    Science.gov (United States)

    Cheng, Kunrong; Samimi, Roxana; Xie, Guofeng; Shant, Jasleen; Drachenberg, Cinthia; Wade, Mark; Davis, Richard J; Nomikos, George; Raufman, Jean-Pierre

    2008-09-01

    Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.

  19. Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions.

    Science.gov (United States)

    Tepedelen, Burcu Erbaykent; Soya, Elif; Korkmaz, Mehmet

    2017-12-15

    Benign prostatic hyperplasia (BPH) is the most common urological disease that is characterized by the excessive growth of prostatic epithelial and stromal cells. Pharmacological therapy for BPH has limited use due to the many side effects so there is a need for new agents including natural compounds such as epigallocatechin-3-gallate (EGCG). This study was undertaken to assess the role of EGCG, suppressing the formation of BPH by reducing inflammation and oxidative stress, in cytoskeleton organization and ECM interactions via focal adhesions. We performed MTT assay to investigate cell viability of BPH-1 cells, wound healing assay to examine cell migration, immunofluorescence assay for F-actin organization and paxillin distribution and finally immunoblotting to investigate focal adhesion protein levels in the presence and absence of EGCG. We found that EGCG inhibits cell proliferation at the concentration of 89.12μM, 21.2μM and 2.39μM for 24, 48 and 72h, respectively as well as inhibitory effects of EGCG on BPH-1 cell migration were observed in a wound healing assay. Furthermore, it was determined by immunofluorescence labeling that EGCG disrupts F-actin organization and reduces paxillin distribution. Additionally, EGCG decreases the activation of FAK (Focal Adhesion Kinase) and the levels of paxillin, RhoA (Ras homolog gene family, member A), Cdc42 (cell division cycle 42) and PAK1 (p21 protein-activated kinase 1) in a dose-dependent manner. For the first time, by this study, we found evidence that BPH-1 cell proliferation could be inhibited with EGCG through the disruption of cytoskeleton organization and ECM interactions. Consequently, EGCG might be useful in the prevention and treatment of diseases characterized by excessive cell proliferation such as BPH. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation.

    Science.gov (United States)

    Strzalka, Wojciech; Ziemienowicz, Alicja

    2011-05-01

    PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.

  1. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  2. The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels

    Directory of Open Access Journals (Sweden)

    Quinn Jane C

    2011-03-01

    Full Text Available Abstract Background The transcription factor Foxg1 is an important regulator of telencephalic cell cycles. Its inactivation causes premature lengthening of telencephalic progenitor cell cycles and increased neurogenic divisions, leading to severe hypoplasia of the telencephalon. These proliferation defects could be a secondary consequence of the loss of Foxg1 caused by the abnormal expression of several morphogens (Fibroblast growth factor 8, bone morphogenetic proteins in the telencephalon of Foxg1 null mutants. Here we investigated whether Foxg1 has a cell autonomous role in the regulation of telencephalic progenitor proliferation. We analysed Foxg1+/+↔Foxg1-/- chimeras, in which mutant telencephalic cells have the potential to interact with, and to have any cell non-autonomous defects rescued by, normal wild-type cells. Results Our analysis showed that the Foxg1-/- cells are under-represented in the chimeric telencephalon and the proportion of them in S-phase is significantly smaller than that of their wild-type neighbours, indicating that their under-representation is caused by a cell autonomous reduction in their proliferation. We then analysed the expression of the cell-cycle regulator Pax6 and found that it is cell-autonomously downregulated in Foxg1-/- dorsal telencephalic cells. We went on to show that the introduction into Foxg1-/- embryos of a transgene designed to reverse Pax6 expression defects resulted in a partial rescue of the telencephalic progenitor proliferation defects. Conclusions We conclude that Foxg1 exerts control over telencephalic progenitor proliferation by cell autonomous mechanisms that include the regulation of Pax6, which itself is known to regulate proliferation cell autonomously in a regional manner.

  3. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  4. The Drosophila sterile-20 kinase slik controls cell proliferation and apoptosis during imaginal disc development.

    Directory of Open Access Journals (Sweden)

    David R Hipfner

    2003-11-01

    Full Text Available Cell proliferation and programmed cell death are closely controlled during animal development. Proliferative stimuli generally also induce apoptosis, and anti-apoptotic factors are required to allow net cell proliferation. Genetic studies in Drosophila have led to identification of a number of genes that control both processes, providing new insights into the mechanisms that coordinate cell growth, proliferation, and death during development and that fail to do so in diseases of cell proliferation. We present evidence that the Drosophila Sterile-20 kinase Slik promotes cell proliferation and controls cell survival. At normal levels, Slik provides survival cues that prevent apoptosis. Cells deprived of Slik activity can grow, divide, and differentiate, but have an intrinsic survival defect and undergo apoptosis even under conditions in which they are not competing with normal cells for survival cues. Like some oncogenes, excess Slik activity stimulates cell proliferation, but this is compensated for by increased cell death. Tumor-like tissue overgrowth results when apoptosis is prevented. We present evidence that Slik acts via Raf, but not via the canonical ERK pathway. Activation of Raf can compensate for the lack of Slik and support cell survival, but activation of ERK cannot. We suggest that Slik mediates growth and survival cues to promote cell proliferation and control cell survival during Drosophila development.

  5. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  6. Phosphorylation of CREB, a cyclic AMP responsive element binding protein, contributes partially to lysophosphatidic acid-induced fibroblast cell proliferation

    International Nuclear Information System (INIS)

    Kwon, Yong-Jun; Sun, Yuanjie; Kim, Nam-Ho; Huh, Sung-Oh

    2009-01-01

    Lysophospholipids regulate a wide array of biological processes including cell survival and proliferation. In our previous studies, we found that in addition to SRE, CRE is required for maximal c-fos promoter activation triggered by lysophosphatidic acid (LPA). c-fos is an early indicator of various cells into the cell cycle after mitogenic stimulation. However, role of CREB activation in LPA-stimulated proliferation has not been elucidated yet. Here, we investigate how LPA induces proliferation in Rat-2 fibroblast cell via CREB activation. We found that total cell number and BrdU-positive cells were increased by LPA. Moreover, levels of c-fos mRNA and cyclin D1 protein were increased via LPA-induced CREB phosphorylation. Furthermore, LPA-induced Rat-2 cell proliferation was decreased markedly by ERK inhibitor (U0126) and partially by MSK inhibitor (H89). Taken together, these results suggest that CREB activation could partially up-regulate accumulation of cyclin D1 protein level and proliferation of LPA-stimulated Rat-2 fibroblast cells.

  7. MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation

    Indian Academy of Sciences (India)

    MiR-144 was shown to besignificantly down-regulated in HCC tissues and cell lines. Subsequently, overexpression of miR-144 was transfectedinto HCC cell lines so as to investigate its biological function, including MTT, colony formation, and transwell assays.Gain of function assay revealed miR-144 remarkably inhibited ...

  8. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  9. Cinnamon and its Components Suppress Vascular Smooth Muscle Cell Proliferation by Up-Regulating Cyclin-Dependent Kinase Inhibitors.

    Science.gov (United States)

    Kwon, Hyeeun; Lee, Jung-Jin; Lee, Ji-Hye; Cho, Won-Kyung; Gu, Min Jung; Lee, Kwang Jin; Ma, Jin Yeul

    2015-01-01

    Cinnamomum cassia bark has been used in traditional herbal medicine to treat a variety of cardiovascular diseases. However, the antiproliferative effect of cinnamon extract on vascular smooth muscle cells (VSMCs) and the corresponding restenosis has not been explored. Hence, after examining the effect of cinnamon extract on VSMC proliferation, we investigated the possible involvement of signal transduction pathways associated with early signal and cell cycle analysis, including regulatory proteins. Besides, to identify the active components, we investigated the components of cinnamon extract on VSMC proliferation. Cinnamon extract inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and suppressed the PDGF-stimulated early signal transduction. In addition, cinnamon extract arrested the cell cycle and inhibited positive regulatory proteins. Correspondingly, the protein levels of p21 and p27 not only were increased in the presence of cinnamon extract, also the expression of proliferating cell nuclear antigen (PCNA) was inhibited by cinnamon extract. Besides, among the components of cinnamon extract, cinnamic acid (CA), eugenol (EG) and cinnamyl alcohol significantly inhibited the VSMC proliferation. Overall, the present study demonstrates that cinnamon extract inhibited the PDGF-BB-induced proliferation of VSMCs through a G0/G1 arrest, which down-regulated the expression of cell cycle positive regulatory proteins by up-regulating p21 and p27 expression.

  10. miR-150 suppresses the proliferation and tumorigenicity of leukemia stem cells by targeting the Nanog signaling pathway

    Directory of Open Access Journals (Sweden)

    Dan-dan Xu

    2016-11-01

    Full Text Available Proliferation, a key feature of cancer cells, accounts for the majority of cancer-related diseases resulting in mortality. MicroRNAs (miRNAs plays important post-transcriptional modulation roles by acting on multiple signaling pathways, but the underlying mechanism in proliferation and tumorigenicity is unclear. Here, we identified the role of miR-150 in proliferation and tumorigenicity in leukemia stem cells (LSCs (CD34+CD38- cells. miR-150 expression was significantly down-regulated in LSCs from leukemia cell lines and clinical samples. Functional assays demonstrated that increased miR-150 expression inhibited proliferation and clonal and clonogenic growth, enhanced chemosensitivity, and attenuated tumorigenic activity of LSCs in vitro. Transplantation animal studies revealed that miR-150 overexpression progressively abrogates tumour growth. Immunohistochemistry assays demonstrated that miR-150 overexpression enhanced caspase-3 level and reduced Ki-67 level. Moreover, luciferase reporter assays indicated Nanog is a direct and functional target of miR-150. Nanog silencing using small interfering RNA recapitulated anti-proliferation and tumorigenicity inhibition effects. Furthermore, miR-150 directly down-regulated the expression of other cancer stem cell factors including Notch2 and CTNNB1. These results provide insights into the specific biological behaviour of miR-150 in regulating LSC proliferation and tumorigenicity. Targeting this miR-150/Nanog axis would be a helpful therapeutic strategy to treat acute myeloid leukemia.

  11. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  12. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    International Nuclear Information System (INIS)

    Sávio, André Luiz Ventura; Nicioli da Silva, Glenda; Salvadori, Daisy Maria Fávero

    2015-01-01

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  13. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  14. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  15. Cell proliferation markers in the transplanted canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2011-12-01

    Full Text Available Adult male mongrel dogs were subcutaneously transplanted with the canine transmissible venereal tumor (TVT on the hypogastric region. Twelve specimens of tumors were collected, half during the proliferative phase and the other half during the regressive phase. Fragments of the tumor were fixed in 10% buffered formalin and routinely processed for light microscopy. Sections of 4µm were stained by Schorr or AgNOR or either immunostained for MIB1 (Ki67. Schorr stain, AgNOR and MIB1 showed an increased proliferative activity through mitotic index, nuclear argyrophilic protein stain and cycling tumoral cells in the growing tumors, respectively. All of the three cell proliferation markers were able to distinguish the TVT in both evolution phases. MIB1 monoclonal antibody was the best in the morphologic evaluation of growth and regression of TVT. This resulted in higher values than AgNORs counting and mitotic index. MIB1 immunostaining was the most effective parameter of the proliferative activity of TVT. However, a significant correlation has been detected only between mitosis counting and AgNORs.

  16. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  17. Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines.

    Science.gov (United States)

    Kumari, Seema; Badana, Anil Kumar; Mohan, G Murali; Shailender Naik, G; Malla, RamaRao

    2017-07-01

    Breast cancer is one of the most frequently diagnosed cancer in woman. Triple-negative breast cancer (TNBC) is most aggressive form of breast cancer. There is a growing interest in the use of natural products in combinational chemotherapy to improve the effectiveness in combating proliferation of cancer cells. Here, we hypothesized that coralyne in combination with paclitaxel may exhibit synergistic effect on inhibition of proliferation, migration and induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT and BrdU incorporation assays were performed to study the effect of drugs alone and in combination on cell cytotoxicity and proliferation of the breast cancer cell lines, respectively. Adhesion and wound healing assays were performed to study the cell and extracellular matrix interactions. In addition, expression of proliferation marker ki-67 and apoptotic markers Bax and Bcl-2 was determined to study the effect of coralyne in combination with paclitaxel by reverse transcriptase PCR and confirmed by Western blot. The results indicated the synergism between coralyne and paclitaxel on proliferation and migration of breast cancer cell lines. This study also showed that combinational drug treatment decreased the expression of ki-67 and there was an increase in pro apoptotic factor Bax with decreased in expression of anti-apoptotic factor Bcl-2 in breast cancer cell lines with negligible effect on normal breast cell line. Overall, our data described the promising therapeutic potential of coralyne in combination with paclitaxel in treating breast cancer at lower effective dose. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  19. Salvianolic Acid A Inhibits PDGF-BB Induced Vascular Smooth Muscle Cell Migration and Proliferation While Does Not Constrain Endothelial Cell Proliferation and Nitric Oxide Biosynthesis

    Directory of Open Access Journals (Sweden)

    Chao Huang

    2012-03-01

    Full Text Available Proliferation and migration of vascular smooth muscle cells (VSMCs are critical events in the initiation and development of restenosis upon percutaneous transluminal coronary angioplasty (PTCA. Polyphenols have been suggested to ameliorate post-angioplasty restenosis. Salvianolic A (SalA is one of the most abundant polyphenols extracted from salvia. In this study, we investigated the effect of salvianolic A (SalA on the migration and proliferation of VSMCs. We found a preferential interaction of SalA with cellular systems that rely on the PDGF signal, but not on the EGF and bFGF signal. SalA inhibits PDGF-BB induced VSMC proliferation and migration in the concentration range from 0.01 to 0.1 μM. The inhibition of SalA on VSMC proliferation is associated with cell cycle arrest. We also found that SalA inhibits the PDGFRβ-ERK1/2 signaling cascade activated by PDGF-BB in VSMCs. In addition, SalA does not influence the proliferation of endothelial cells, the synthesis of NO and eNOS protein expression. Our results suggest that SalA inhibits migration and proliferation of VSMCs induced by PDGF-BB via the inhibition of the PDGFRβ-ERK1/2 cascade, but that it does not constrain endothelial cell proliferation and nitric oxide biosynthesis. Thus, the present study suggests a novel adjunct pharmacological strategy to prevent angioplasty-related restenosis.

  20. Vascular Endothelial Growth Factor, Irradiation, and Axitinib Have Diverse Effects on Motility and Proliferation of Glioblastoma Multiforme Cells

    Directory of Open Access Journals (Sweden)

    Reinhardt Krcek

    2017-08-01

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor. It is highly aggressive with an unfavorable prognosis for the patients despite therapies including surgery, irradiation, and chemotherapy. One important characteristic of highly vascularized GBM is the strong expression of vascular endothelial growth factor (VEGF. VEGF has become a new target in the treatment of GBM, and targeted therapies such as the VEGF-receptor blocker axitinib are in clinical trials. Most studies focus on VEGF-induced angiogenesis, but only very few investigations analyze autocrine or paracrine effects of VEGF on the tumor cells. In this study, we examined the impact of VEGF, irradiation, and axitinib on cell proliferation and cell motility in human GBM cell lines U-251 and U-373. VEGF receptor 2 was shown to be expressed within both cell lines by using PCR and immunochemistry. Moreover, we performed 24-h videography to analyze motility, and a viability assay for cell proliferation. We observed increasing effects of VEGF and irradiation on cell motility in both cell lines, as well as strong inhibiting effects on cellular motility by VEGF-receptor blockade using axitinib. Moreover, axitinib diminished irradiation induced accelerating effects. While VEGF stimulation or irradiation did not affect cell proliferation, axitinib significantly decreased cell proliferation in both cell lines. Therefore, the impairment of VEGF signaling might have a crucial role in the treatment of GBM.

  1. Modulation of Intestinal Epithelial Cell Proliferation, Migration, and Differentiation In Vitro by Astragalus Polysaccharides

    Science.gov (United States)

    Zhang, Chun Li; Ren, Hui Jun; Liu, Meng Meng; Li, Xiao Gai; Sun, De Li; Li, Nan; Ming, Liang

    2014-01-01

    Previous studies have shown that Astragalus polysaccharides (APS) can be used to treat general gastrointestinal disturbances including intestinal mucosal injury. However, the mechanism by which APS mediate this effect is unclear. In the present study, the effects of APS on proliferation, migration, and differentiation of intestinal epithelial cells (IEC-6) were assessed using an in vitro wounding model and colorimetric thiazolyl blue (MTT) assays. The effect of APS on IEC-6 cell differentiation was observed using a light microscope and scanning electron microscope, and the expression of differentiation-specific markers of IEC-6 cells, such as cytokeratin 18 (CK18), alkaline phosphatase (ALP), tight junction protein ZO-2, and sucrase-isomaltase (SI), was determined by immunofluorescence assay (IFA) and real-time PCR. In addition, APS-induced signaling pathways in IEC-6 cells were characterized. Our results indicated that APS significantly enhance migration and proliferation of IEC-6 cells in vitro. APS-treated IEC-6 cells have numerous microvilli on their apical surface and also highly express CK18, ALP, ZO-2, and SI. Moreover, APS-treated IEC-6 cells, in which the activity and expression level of ornithine decarboxylase (ODC) were significantly elevated, also exhibited an increase in cellular putrescine, whereas no significant increase in TGF-β levels was observed. These findings suggest that APS may enhance intestinal epithelial cell proliferation, migration, and differentiation in vitro by stimulating ODC gene expression and activity and putrescine production, independent of TGF-β. Exogenous administration of APS may provide a new approach for modulating intestinal epithelial wound restitution in vivo. PMID:25157577

  2. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  3. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  4. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  5. CacyBP/SIP promotes the proliferation of colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Huihong Zhai

    Full Text Available CacyBP/SIP is a component of the ubiquitin pathway and is overexpressed in several transformed tumor tissues, including colon cancer, which is one of the most common cancers worldwide. It is unknown whether CacyBP/SIP promotes the proliferation of colon cancer cells. This study examined the expression level, subcellular localization, and binding activity of CacyBP/SIP in human colon cancer cells in the presence and absence of the hormone gastrin. We found that CacyBP/SIP was expressed in a high percentage of colon cancer cells, but not in normal colonic surface epithelium. CacyBP/SIP promoted the cell proliferation of colon cancer cells under both basal and gastrin stimulated conditions as shown by knockdown studies. Gastrin stimulation triggered the translocation of CacyBP/SIP to the nucleus, and enhanced interaction between CacyBP/SIP and SKP1, a key component of ubiquitination pathway which further mediated the proteasome-dependent degradation of p27kip1 protein. The gastrin induced reduction in p27kip1 was prevented when cells were treated with the proteasome inhibitor MG132. These results suggest that CacyBP/SIP may be promoting growth of colon cancer cells by enhancing ubiquitin-mediated degradation of p27kip1.

  6. Role of platelet-derived growth factor-BB (PDGF-BB) in human pulmonary artery smooth muscle cell proliferation.

    Science.gov (United States)

    Zhao, Yan; Lv, Wentao; Piao, Hongying; Chu, Xiaojie; Wang, Hao

    2014-08-01

    Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) and suppressed apoptosis. Platelet-derived growth factor (PDGF) is a potent mitogen involved in cell proliferation and migration. PDGF-BB induces the proliferation and migration of PASMCs and has been proposed to be a key mediator in the progression of PAH. Previous studies have shown that PDGF and its receptor are substantially elevated in lung tissues and PASMCs isolated from patients and animals with PAH, but the underlying mechanisms are still poorly manifested. MAP kinases, including extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun NH2-terminal kinase1/2 (JNK1/2), and p38 are the key intracellular signals for stimuli-induced cell proliferation, survival, and apoptosis. Therefore, the purpose of this study is to determine whether PDGF-BB on cell proliferation process is mediated through the MAP kinases pathway in human PASMCs (HPASMCs). Our results showed PDGF-BB-induced proliferating cell nuclear antigen (PCNA), Cyclin A and Cyclin E expression in a concentration-dependent manner. The expression levels of phosphorylated JNK (p-JNK) was upregulated with 20 ng/ml PDGF-BB treatment, while PDGF-BB could not increase phosphorylated ERK1/2 (p-ERK1/2) and p-38 (p-p38) expression. The effects of PDGF-BB on cell proliferation and survival were weakened after the administration of antagonist of the JNK pathway or si-JNK. In addition, PDGF-BB protected against the loss of mitochondrial membrane potentials evoked by serum deprivation (SD) in a JNK-dependent manner. These results suggest that PDGF-BB promotes HPASMCs proliferation and survival, which is likely to be mediated via the JNK pathway.

  7. Placenta-specific protein 1 promotes cell proliferation and invasion in non-small cell lung cancer

    Science.gov (United States)

    Yang, Li; Zha, Tian-Qi; He, Xiang; Chen, Liang; Zhu, Quan; Wu, Wei-Bing; Nie, Feng-Qi; Wang, Qian; Zang, Chong-Shuang; Zhang, Mei-Ling; He, Jing; Li, Wei; Jiang, Wen; Lu, Kai-Hua

    2018-01-01

    Pulmonary carcinoma-associated proteins have emerged as crucial players in governing fundamental biological processes such as cell proliferation, apoptosis and metastasis in human cancers. Placenta-specific protein 1 (PLAC1) is a cancer-related protein, which is activated and upregulated in a variety of malignant tissues, including prostate cancer, gastric adenocarcinoma, colorectal, epithelial ovarian and breast cancer. However, its biological role and clinical significance in non-small cell lung cancer (NSCLC) development and progression are still unknown. In the present study, we found that PLAC1 was significantly upregulated in NSCLC tissues, and its expression level was associated with advanced pathological stage and it was also correlated with shorter progression-free survival of lung cancer patients. Furthermore, knockdown of PLAC1 expression by siRNA inhibited cell proliferation, induced apoptosis and impaired invasive ability in NSCLC cells partly via regulation of epithelial-mesenchymal transition (EMT)-related protein expression. Our findings present that increased PLAC1 could be identified as a negative prognostic biomarker in NSCLC and regulate cell proliferation and invasion. Thus, we conclusively demonstrated that PLAC1 plays a key role in NSCLC development and progression, which may provide novel insights on the function of tumor-related gene-driven tumorigenesis. PMID:29138842

  8. Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology.

    Directory of Open Access Journals (Sweden)

    Alexei Vazquez

    2011-04-01

    Full Text Available Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions.

  9. Aspects of cell proliferation in oral epithelial dysplastic lesions.

    Science.gov (United States)

    Oliver, R J; MacDonald, D G; Felix, D H

    2000-02-01

    There is a need for objective methods of assessment of oral epithelial precancerous lesions and reliable markers for the prediction of malignant change in these lesions. Cell proliferation was examined in 20 dysplastic lesions from the tongue and floor of mouth using bromodeoxyuridine (BrdU) and Ki-67, and a histological compartment analysis was performed. Half of a fresh biopsy from each case was incubated in BrdU for 15 min, the other half was routinely processed and used for Ki-67 analysis. Sections from each block were immunohisto chemically stained with antibodies against BrdU and Ki-67. Dysplasia was graded according to the method of Smith & Pindborg. The BrdU labelling index (LI) and the growth fraction (GF), assessed by the use of Ki-67, was quantified and expressed as units per millimetre basement membrane length (BL) and per 100 total nucleated cells (TNC). The mean LI/TNC was 10.87 (SD 3.65) and the mean LI/BL was 51.55 (SD 20.75). The mean GF/TNC was 26.66 (SD 17.78) and GF/BL was 157.07 (SD 125.84). The mean epithelial thickness was 229.09 microm (SD 104.73). The LI/BL correlated with the atypia score and with the GF/BL. The progenitor compartment sizes also correlated with the atypia scores. The BrdU labelling index provides a further objective measurement of oral epithelial dysplasia and the progenitor compartments were large, implying that basal cell hyperplasia is a significant component of the dysplasia.

  10. Effects of cyclin D1 gene silencing on cell proliferation, cell cycle, and apoptosis of hepatocellular carcinoma cells.

    Science.gov (United States)

    Chen, Jin; Li, Xue; Cheng, Qi; Ning, Deng; Ma, Jie; Zhang, Zhi-Ping; Chen, Xiao-Ping; Jiang, Li

    2018-02-01

    This study aims to investigate the effects of Cyclin D1 silencing on cell cycle, cell proliferation, and apoptosis of hepatocellular carcinoma cells (HCC). Cells were divided into the blank group, negative control group (HCC cells transfected with control shRNA), Cyclin D1 shRNA group (HCC cells transfected with Cyclin D1 shRNA), and the normal group (human normal liver L-02 cells). Expressions of Cyclin D1, Caspase-3, Bcl-2, and C-myc were detected by RT-qPCR and Western blotting. Cell proliferation was detected by Cell Counting Kit-8. Cell cycle and apoptosis were detected by flow cytometry. Tumor xenograft in nude mice was performed to detect in vivo tumorigenesis. HCC tissues and HCC cells exhibited elevated expression levels of Cyclin D1. Cyclin D1 expression levels was found to be correlated with tumor size and tumor staging. Compared with the normal group, the blank group showed enhanced cell proliferation, a reduction in the amount of cells in G0/G1 phase, increased number cells in S and G2/M phase, reduced apoptosis, elevated expressions of Cyclin D1, Bcl-2, and C-myc, decreased Caspase-3 activity and significant tumorigenicity. In comparison with the blank group, the Cyclin D1 shRNA group revealed weakened cell proliferation, reduced cells in S and G2/M phase, increased cells in G0/G1 phase, increased Annexin V positive cell ratio, decreased expression of Cyclin D1, Bcl-2, and C-myc, elevated Caspase-3 activity and inhibited tumorigenicity. In conclusion, Cyclin D1 gene silencing suppresses cell proliferation and inhibits cell apoptosis, which may be a new target approach in the treatment and management for HCC. © 2017 Wiley Periodicals, Inc.

  11. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    International Nuclear Information System (INIS)

    Poulsen, Raewyn C.; Carr, Andrew J.; Hulley, Philippa A.

    2015-01-01

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  12. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Raewyn C., E-mail: raewyn.poulsen@gmail.com; Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  13. Effects of Alcohol Abuse on Proliferating Cells, Stem/Progenitor Cells, and Immature Neurons in the Adult Human Hippocampus.

    Science.gov (United States)

    Le Maître, Tara Wardi; Dhanabalan, Gopalakrishnan; Bogdanovic, Nenad; Alkass, Kanar; Druid, Henrik

    2018-03-01

    In animal studies, impaired adult hippocampal neurogenesis is associated with behavioral pathologies including addiction to alcohol. We hypothesize that alcohol abuse may have a detrimental effect on the neurogenic pool of the dentate gyrus in the human hippocampus. In this study we investigate whether alcohol abuse affects the number of proliferating cells, stem/progenitor cells, and immature neurons in samples from postmortem human hippocampus. The specimens were isolated from deceased donors with an on-going alcohol abuse, and from controls with no alcohol overconsumption. Mid-hippocampal sections were immunostained for Ki67, a marker for cell proliferation, Sox2, a stem/progenitor cell marker, and DCX, a marker for immature neurons. Immunoreactivity was counted in alcoholic subjects and compared with controls. Counting was performed in the three layers of dentate gyrus: the subgranular zone, the granular cell layer, and the molecular layer. Our data showed reduced numbers of all three markers in the dentate gyrus in subjects with an on-going alcohol abuse. This reduction was most prominent in the subgranular zone, and uniformly distributed across the distances from the granular cell layer. Furthermore, alcohol abusers showed a more pronounced reduction of Sox2-IR cells than DCX-IR cells, suggesting that alcohol primarily causes a depletion of the stem/progenitor cell pool and that immature neurons are secondarily affected. These results are in agreement with observations of impaired adult hippocampal neurogenesis in animal studies and lend further support for the association between hippocampal dysfunction and alcohol abuse.

  14. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression.

    Science.gov (United States)

    Chen, Zhiao; Lu, Xinyuan; Jia, Deshui; Jing, Ying; Chen, Di; Wang, Qifeng; Zhao, Fangyu; Li, Jinjun; Yao, Ming; Cong, Wenming; He, Xianghuo

    2018-01-19

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer and is typically diagnosed at advanced stages. Identification and characterisation of genes within amplified and deleted chromosomal loci can provide new insights into the pathogenesis of cancer and lead to new approaches for diagnosis and therapy. In our previous study, we found a recurrent region of copy number amplification at 19p13.2 in hepatocellular carcinoma (HCC). In the present study, we performed integrated copy number analysis and expression profiling at this locus and a putative cancer gene, SMARCA4/BRG1, was uncovered in this region. BRG1 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF. The function of BRG1 in various cancers is unclear, including its role in HCC tumorigenesis. Here, we found that BRG1 is upregulated in HCC and that its level significantly correlates with cancer progression in HCC patients. Importantly, we also found that nuclear expression of BRG1 predicts early recurrence for HCC patients. Furthermore, we demonstrated that BRG1 promotes HCC cell proliferation in vitro and in vivo. BRG1 was observed not only to facilitate S-phase entry but also to attenuate cell apoptosis. Finally, we discovered that one of the mechanisms by which BRG1 promotes cell proliferation is the upregulation of SMAD6. These findings highlight the important role of BRG1 in the regulation of HCC proliferation and provide valuable information for cancer prognosis and treatment.

  15. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability.

    Science.gov (United States)

    Leiva, Magdalena; Quintana, Juan A; Ligos, José M; Hidalgo, Andrés

    2016-01-08

    The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGFβ by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment.

  16. The Hippo pathway controls a switch between retinal progenitor cell proliferation and photoreceptor cell differentiation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Yoichi Asaoka

    Full Text Available The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells. When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively active form of yap [(yap (5SA]. Loss of Yap's TEAD-binding domain, two WW domains, or transcription activation domain attenuated the retinal abnormalities induced by yap (5SA, indicating that all of these domains contribute to normal retinal development. Remarkably, yap (5SA-expressing zebrafish embryos displayed decreased expression of transcription factors such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of photoreceptor cells from retinal progenitor cells by

  17. Fatty acids affect proliferation of peripheral blood mononuclear cells in dairy cows

    Directory of Open Access Journals (Sweden)

    L. Basiricò

    2010-04-01

    Full Text Available In vitro studies were performed to assess the effects of bovine plasma fatty acids on proliferation of peripheral blood mononuclear cells (PBMC. PBMC from 6 Holstein heifers were cultured in media containing oleic (OA, palmitic (PA, stearic (SA, linoleic (LA, palmitoleic (POA, or linolenic (LNA acid at concentrations mimicking different degree of lipomobilisation. Proliferation of PBMC was stimulated by concanavalin A or pokeweed mitogen. Concentrations of OA, PA, SA and LA mimicking moderate-intense lipomobilisation impaired PBMC proliferation. Concentrations of OA or LA mimicking low degree of lipomobilisation enhanced PBMC proliferation. None of the POA, and LNA concentrations affected proliferation of PBMC.

  18. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alberto Bosque

    2011-10-01

    Full Text Available Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death.

  19. Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation.

    Directory of Open Access Journals (Sweden)

    Yinzi Liu

    2017-02-01

    Full Text Available Cell proliferation has generally been considered dispensable for anteroposterior extension of embryonic axis during vertebrate gastrulation. Signal transducer and activator of transcription 3 (Stat3, a conserved controller of cell proliferation, survival and regeneration, is associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was proposed to govern convergence and extension gastrulation movements in part by promoting Wnt/Planar Cell Polarity (PCP signaling, a conserved regulator of mediolaterally polarized cell behaviors. Here, using zebrafish stat3 null mutants and pharmacological tools, we demonstrate that cell proliferation contributes to anteroposterior embryonic axis extension. Zebrafish embryos lacking maternal and zygotic Stat3 expression exhibit normal convergence movements and planar cell polarity signaling, but transient axis elongation defect due to insufficient number of cells resulting largely from reduced cell proliferation and increased apoptosis. Pharmacologic inhibition of cell proliferation during gastrulation phenocopied axis elongation defects. Stat3 regulates cell proliferation and axis extension in part via upregulation of Cdc25a expression during oogenesis. Accordingly, restoring Cdc25a expression in stat3 mutants partially suppressed cell proliferation and gastrulation defects. During later development, stat3 mutant zebrafish exhibit stunted growth, scoliosis, excessive inflammation, and fail to thrive, affording a genetic tool to study Stat3 function in vertebrate development, regeneration, and disease.

  20. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  1. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-01-01

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  2. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  3. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  4. Optimization of the T-cell proliferation assay in fascioliasis using a ...

    African Journals Online (AJOL)

    T-cell proliferation studies are traditionally carried out with radioactive reagents or fluorescent reagents that require measurement with advanced technology instrumentation. We attempted to calibrate the optimal conditions suitable for the use of a non-radioactive assay for the measurement of a T-cell proliferation assay in ...

  5. Expression of Nanog gene promotes NIH3T3 cell proliferation

    International Nuclear Information System (INIS)

    Zhang Jingyu; Wang Xia; Chen Bing; Suo Guangli; Zhao Yanhong; Duan Ziyuan; Dai Jianwu

    2005-01-01

    Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion

  6. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  7. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation

    Science.gov (United States)

    Brahmbhatt, Meera; Gundala, Sushma R.; Asif, Ghazia; Shamsi, Shahab A; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals offer non-toxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable due to individual phytochemicals rather may be ascribed to but to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination-index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03-0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE’s antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management. PMID:23441614

  8. MicroRNA-222 Promotes the Proliferation of Pulmonary Arterial Smooth Muscle Cells by Targeting P27 and TIMP3

    Directory of Open Access Journals (Sweden)

    Ying Xu

    2017-08-01

    Full Text Available Background/Aims: Aberrant vascular smooth muscle cell (VSMC proliferation plays an important role in the development of pulmonary artery hypertension (PAH. Dysregulated microRNAs (miRNAs, miRs have been implicated in the progression of PAH. miR-222 has a pro-proliferation effect on VSMCs while it has an anti-proliferation effect on vascular endothelial cells (ECs. As the biological function of a single miRNA could be cell-type specific, the role of miR-222 in pulmonary artery smooth muscle cell (PASMC proliferation is not clear and deserves to be explored. Methods: PASMCs were transfected with miR-222 mimic or inhibitor and PASMC proliferation was determined by Western blot for PCNA, Ki-67 and EdU staining, and cell number counting. The target genes of miR-222 including P27 and TIMP3 were determined by luciferase assay and Western blot. In addition, the functional rescue experiments were performed based on miR-222 inhibitor and siRNAs to target genes. Results: miR-222 mimic promoted PASMC proliferation while miR-222 inhibitor decreased that. TIMP3 was identified to be a direct target gene of miR-222 based on luciferase assay. Meanwhile, P27 and TIMP3 were up-regulated by miR-222 inhibitor and down-regulated by miR-222 mimic. Moreover, P27 siRNA and TIMP3 siRNA could both attenuate the anti-proliferation effect of miR-222 inhibitor in PASMCs, supporting that P27 and TIMP3 are at least partially responsible for the regulatory effect of miR-222 in PASMCs. Conclusion: miR-222 promotes PASMC proliferation at least partially through targeting P27 and TIMP3.

  9. NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation.

    Science.gov (United States)

    Tan, Lei; Zhang, Yuqiang; Qiao, Changtao; Yuan, Yanmei; Sun, Yingjie; Qiu, Xusheng; Meng, Chunchun; Song, Cuiping; Liao, Ying; Munir, Muhammad; Nair, Venugopal; Ding, Zhuang; Liu, Xiufan; Ding, Chan

    2018-02-23

    Newcastle disease virus (NDV) causes major economic losses in the poultry industry. Previous studies have shown that NDV utilizes different pathways to infect various cells, including dendritic cells (DCs). Here, we demonstrate that NDV gains entry into DCs mainly via macropinocytosis and clathrin-mediated endocytosis. The detection of cytokines interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-12 (IL-12), interleukin-4 (IL-4) and interleukin-10 (IL-10) indicates that NDV significantly induces Th1 responses and lowers Th2 responses. Furthermore, NDV entry into DCs resulted in the upregulation of TNF-related apoptosis-inducing ligand (TRAIL) and cleaved caspase-3 proteins, which in turn activated the extrinsic apoptosis pathway and induced DCs apoptosis. Transwell® co-culture demonstrated that direct contact between live NDV-stimulated DCs and T cells, rather than heated-inactivated NDV, inhibited CD4 + T cell proliferation. Taken together, these findings provide new insights into the mechanism underlying NDV infections, particularly in relation to antigen presentation cells and suppression of T cell proliferation. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  11. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    International Nuclear Information System (INIS)

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi; Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-01-01

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  12. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da; Fang, Xiaolin; Zhang, Zhihong; Wang, Ting; Lin, Maorui; Huang, Jiwei; Yang, Huawen; Zhou, Xuan; Zhong, Limei

    2015-01-30

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partially blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.

  13. Induction of postmitotic neuroretina cell proliferation by distinct Ras downstream signaling pathways.

    Science.gov (United States)

    Peyssonnaux, C; Provot, S; Felder-Schmittbuhl, M P; Calothy, G; Eychène, A

    2000-10-01

    Ras-induced cell transformation is mediated through distinct downstream signaling pathways, including Raf, Ral-GEFs-, and phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. In some cell types, strong activation of the Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) cascade leads to cell cycle arrest rather than cell division. We previously reported that constitutive activation of this pathway induces sustained proliferation of primary cultures of postmitotic chicken neuroretina (NR) cells. We used this model system to investigate the respective contributions of Ras downstream signaling pathways in Ras-induced cell proliferation. Three RasV12 mutants (S35, G37, and C40) which differ by their ability to bind to Ras effectors (Raf, Ral-GEFs, and the p110 subunit of PI 3-kinase, respectively) were able to induce sustained NR cell proliferation, although none of these mutants was reported to transform NIH 3T3 cells. Furthermore, they all repressed the promoter of QR1, a neuroretina growth arrest-specific gene. Overexpression of B-Raf or activated versions of Ras effectors Rlf-CAAX and p110-CAAX also induced NR cell division. The mitogenic effect of the RasC40-PI 3-kinase pathway appears to involve Rac and RhoA GTPases but not the antiapoptotic Akt (protein kinase B) signaling. Division induced by RasG37-Rlf appears to be independent of Ral GTPase activation and presumably requires an unidentified mechanism. Activation of either Ras downstream pathway resulted in ERK activation, and coexpression of a dominant negative MEK mutant or mKsr-1 kinase domain strongly inhibited proliferation induced by the three Ras mutants or by their effectors. Similar effects were observed with dominant negative mutants of Rac and Rho. Thus, both the Raf-MEK-ERK and Rac-Rho pathways are absolutely required for Ras-induced NR cell division. Activation of these two pathways by the three distinct Ras downstream effectors possibly relies on an autocrine or paracrine loop

  14. Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells.

    Science.gov (United States)

    Bachem, Max G; Schünemann, Marion; Ramadani, Marco; Siech, Marco; Beger, Hans; Buck, Andreas; Zhou, Shaoxia; Schmid-Kotsas, Alexandra; Adler, Guido

    2005-04-01

    Tumor desmoplasia is one of the representative histopathologic findings in ductal pancreatic adenocarcinoma. The aims of this study were to examine the cellular and molecular mechanisms of fibrogenesis associated with pancreatic adenocarcinomas. Immunostainings were performed with human pancreatic adenocarcinomas (n = 27) and tumors induced in nude mice (n = 36) by subcutaneously injecting MiaPaCa2, Panc1, and SW850 with and without pancreatic stellate cells. Matrix-producing cells were isolated from pancreatic adenocarcinomas and compared with pancreatic stellate cells isolated from tissue of chronic pancreatitis. Paracrine stimulation of pancreatic stellate cells by carcinoma cells was studied regarding matrix synthesis (collagen and c-fibronectin on protein and messenger RNA level) and cell proliferation (bromodeoxyuridine incorporation). High numbers of desmin and alpha-smooth muscle actin-positive cells were detected in 26 of 27 pancreatic adenocarcinomas. Intense fibronectin and collagen stainings were associated with these cells. By using cytofilament stainings, gene expression profiling, and morphological examinations, the matrix-producing cells obtained by the outgrowth method from pancreatic adenocarcinomas were identified as pancreatic stellate cells. Supernatants of MiaPaCa2, Panc1, and SW850 cells stimulated proliferation and collagen type I and c-fibronectin synthesis of cultured pancreatic stellate cells. Preincubation of the carcinoma cell supernatants with neutralizing antibodies against fibroblast growth factor 2, transforming growth factor beta 1, and platelet-derived growth factor significantly reduced the stimulatory effects. Subcutaneous injection of carcinoma cells and pancreatic stellate cells induced fast-growing subcutaneous fibrotic tumors in nude mice. Morphometric analysis of carcinoma cells (cytokeratin stainings) showed a high density of carcinoma cells in these tumors. Pancreatic stellate cells strongly support tumor growth in the

  15. Effect of hydroxyurea and vinblastine on the proliferation of the pluripotential stem cells

    International Nuclear Information System (INIS)

    Necas, E.; Neuwirt, J.

    1977-01-01

    The population of the pluripotential hemopoietic stem cells in mice, i.e., cells forming colonies in the spleens of lethally irradiated mice (colony forming cells CFc) proliferates relatively slowly. After partial damage the population regenerates which is achieved by an increased proliferation rate. The effect of damage caused by different doses of hydroxyurea or vinblastine to the proliferation of the CFc was investigated. CFc population was measured in femur bone marrow after the grafting of a bone marrow sample into lethally irradiated mice recipients (spleen colony method). The proliferation rate was estimated either according to the magnitude of the fraction of cells synthesizing DNA in the S phase of the cell cycle, or according to the sensitivity of the population to repeated injections of vinblastine. Data showed that even after very minute damage by hydroxyurea the stem cells started to proliferate intensively. The effect was dose dependent. The comparable damage caused by vinblastine had a significantly weaker effect on the proliferation of the stem cells. It is concluded from the results that the proliferation response of the pluripotential stem cells depends on two factors: the extent of the damage caused to the hemopoietic tissue and the position of the killed cells in the cell cycle. (author)

  16. Glutamate production from ammonia via glutamate dehydrogenase 2 activity supports cancer cell proliferation under glutamine depletion.

    Science.gov (United States)

    Takeuchi, Yukiko; Nakayama, Yasumune; Fukusaki, Eiichiro; Irino, Yasuhiro

    2018-01-01

    Cancer cells rapidly consume glutamine as a carbon and nitrogen source to support proliferation, but the cell number continues to increase exponentially after glutamine is nearly depleted from the medium. In contrast, cell proliferation rates are strongly depressed when cells are cultured in glutamine-free medium. How cancer cells survive in response to nutrient limitation and cellular stress remains poorly understood. In addition, rapid glutamine catabolism yields ammonia, which is a potentially toxic metabolite that is secreted into the extracellular space. Here, we show that ammonia can be utilized for glutamate production, leading to cell proliferation under glutamine-depleted conditions. This proliferation requires glutamate dehydrogenase 2, which synthesizes glutamate from ammonia and α-ketoglutarate and is expressed in MCF7 and T47D cells. Our findings provide insight into how cancer cells survive under glutamine deprivation conditions and thus contribute to elucidating the mechanisms of tumor growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells.

    Directory of Open Access Journals (Sweden)

    Shen Gao

    Full Text Available The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77 as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44's location in the cell.

  18. MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells.

    Science.gov (United States)

    Zhang, H; Wang, X; Chen, Z; Wang, W

    2015-11-30

    Endometrial carcinoma (EC) is the most common gynecologic malignancy with increasing morbidity in recent years. MicroRNAs (miRNAs), a type of non-coding RNA, have been proven to be critical in the process of tumorigenesis. miR-424 has been reported to play a protective role in various type of cancer including endometrial carcinoma. It has been reported that high levels of estrogen increase morbidity of EC by promoting cell growth ability. The current research was designed to delineate the mechanism of miR-424 in regulating E2 (17β-estradiol)-induced cell proliferation in endometrial cancer. In this study, we confirmed that cell proliferation is increased significantly in E2-treated endometrial cancer cell lines. Moreover, miR-424 overexpression dramatically decreased E2-induced cell proliferation, indicating a pivotal role in endometrial cancer cell growth. In addition, the results suggest that miR-424 up-regulation inactivated the PI3K/AKT signaling, which was mediated by G-protein-coupled estrogen receptor-1 (GPER) in endometrial cancer. Furthermore, the luciferase report confirmed the targeting reaction between miR-424 and GPER. After transfection with the GPER overexpression vector into E2-induced endometrial cancer cells, we found that GPER significantly attenuated the inhibition effect of miR-424 in E2-induced cell growth in EC. Taken together, our study suggests that increased miR-424 suppresses E2-induced cell growth, and providing a potential therapeutic target for estrogen-associated endometrial carcinoma.

  19. The Effect of Valproic Acid on Mesenchymal Pluripotent Cell Proliferation and Differentiation in Extracellular Matrices

    Directory of Open Access Journals (Sweden)

    Yuji Hatakeyama

    2011-01-01

    Full Text Available Valproic acid (2- n -propylpentanoic acid, VPA is a widely used antiepileptic and anticonvulsant drug. Previous studies have reported that VPA effects osteogenesis in vivo and in vitro, yet it remains unclear whether VPA promotes cell differentiation of osteoblasts derived from mesenchymal cells. The purpose of this study was to clarify the effect of VPA on undifferentiated pluripotent mesenchymal cell proliferation and differentiation into osteoblasts while analyzing the impact of the absence or presence of extracellular matrices (ECMs. Mouse mesenchymal cells were cultured on non-coated plastic, type I collagen-coated, and fibronectin-coated plates in the absence or presence of VPA. A cell proliferation assay was performed in which modified formazan dye content was analyzed and proliferation nuclear antigen (PCNA-positive cells were counted at various concentrations of VPA. A high concentration of VPA did not clearly alter cell morphology, but large numbers of stress fibers were observed in these cells and the cell proliferation ratio was decreased with positive PCNA counts. In the presence of matrices, the cell proliferation ratio decreased at low VPA concentrations compared with the ratio obtained in the absence of these ECMs. On the other hand, VPA promoted osteoblastic differentiation in the presence of type I collagen. These findings indicate that for undifferentiated mesenchymal cells, VPA promotes a decrease in the cell proliferation rate in the presence of ECMs and promotes osteoblastic differentiation, both of which could provide insight into additional mechanisms of osteoblastic cell differentiation caused by VPA.

  20. NICD inhibits cell proliferation and promotes apoptosis and autophagy in PC12 cells.

    Science.gov (United States)

    Li, Bo; Duan, Ping; Han, Xuefei; Yan, Wenhai; Xing, Ying

    2017-09-01

    Pheochromocytoma is a tumor of the adrenal medulla for which surgical resection is the only therapy. Though the Notch1 signaling pathway has been suggested as a target for pheochromocytoma treatment, the effect of Notch1 intracellular domain (NICD) on pheochromocytoma cell growth remains unknown. In the present study, the effect of NICD on pheochromocytoma cell growth was examined, by use of a tetracycline‑inducible system for NICD overexpression in the PC12 pheochromocytoma cell line. Flow cytometry was used to determine the effect of NICD on cell cycle phase distribution and apoptosis in PC12 cells. Protein expression levels of microtubule associated protein 1 light chain 3 B (LC3B), Beclin 1, autophagy‑related (ATG) 5 and ATG7 were examined using western blot analysis. Untreated PC12 cells lack NICD expression, while treatment with doxycycline resulted in a significant NICD overexpression. NICD overexpression promoted cell apoptosis and suppressed cell proliferation via regulating S‑phase arrest. In addition, NICD overexpression stimulated the expression of autophagy‑related proteins LC3B, Beclin 1, ATG5 and ATG7. In conclusion, NICD promoted cell apoptosis, suppressed cell proliferation, and stimulated autophagy‑related protein expression in PC12 cells. The present data indicate that overexpression of NICD may be a promising potential therapy for pheochromocytoma.

  1. BAFF promotes proliferation of human mesangial cells through interaction with BAFF-R

    OpenAIRE

    Zheng, Nuoyan; Wang, Donxian; Ming, Hongyan; Zhang, Haiqing; Yu, Xueqing

    2015-01-01

    Background B cell activating factor belonging to the TNF family (BAFF) is vital for B cell survival, proliferation and activation. Evidence indicates that BAFF is systemically or locally increased in glomerulonephritis (e.g. lupus nephritis, IgA nephropathy). However, the effect of BAFF on human mesangial cells is not known. Methods The impact of BAFF on the proliferation of a human mesangial cell line in vitro was investigated. The expression of BAFF receptor (BAFF-R) and downstream signal t...

  2. HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells.

    Science.gov (United States)

    Jin, Hexiu; Park, Joo-Young; Choi, Hwajung; Choung, Pill-Hoon

    2013-03-01

    Trichostatin A (TSA) is a potent histone deacetylase (HDAC) inhibitor with a broad spectrum of epigenetic activities known to regulate diverse cellular mechanisms, including differentiation of mesenchymal stem cells. In this study, we demonstrate that TSA promotes proliferation and odontoblast differentiation of human dental pulp stem cells (hDPSCs) in vitro and has the ability to enhance dentin formation and odontoblast differentiation in vivo during tooth development. We observed that TSA increased the expression of proliferating cell nuclear antigen and cyclin D1 in hDPSCs at a certain concentration and the activation of JNK/c-Jun pathway was essential for TSA-dependent hDPSC proliferation. Further, TSA accelerated mineral nodule formation in vitro and increased gene expression of dentin sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and osteocalcin. In addition, TSA significantly upregulated the levels of phospho-Smad2/3, Smad4, and nuclear factor I-C, while the specific inhibitor of Smad3 inhibits TSA enhancing mineralization differentiation of hDPSCs. HDAC3 is downregulated by TSA treatment, suggesting a possible mediator of TSA-dependent pathways among the members of HDAC family. Moreover, TSA-injected embryos exhibited increased dentin thickness, larger dentin areas, and higher odontoblast numbers in their postnatal molars with stronger dentin sialoprotein expression in immunohistochemical staining. These findings indicate that TSA may serve a key role in proliferation and odontoblast differentiation of hDPSCs in dental developmental stages and can be used as an accelerator in dental hard tissue engineering.

  3. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells

    International Nuclear Information System (INIS)

    Liang Xinyue; So Youho; Cui Jiuwei; Ma Kewei; Xu Xiaoyi; Zhao Yuguang; Cai Lu; Li Wei

    2011-01-01

    Hormesis induced by low-dose ionizing radiation (LDIR) is often mirrored by its stimulation of cell proliferation. The mitogen-activated protein kinases (MAPK)/extracellular-signal- regulated kinases (ERK) pathway is known to play important roles in cell growth. Therefore, this study was to examine the effects of LDIR on rat mesenchymal stem cell (MSC) proliferation and MAPK/ERK signaling pathway. Rat MSCs were isolated from the bone marrow from 6 to 8-week-old male Wistar rats and cultured in vitro. Exponentially growing cells within 4-5 passages were irradiated with low doses of X-rays at 20, 50, 75 and 100 mGy with a dose rate of 100 mGy/min. Cell proliferation was evaluated by counting total viable cell number with trypan-blue staining and MTT assay. Cell cycle changes were also evaluated by flow cytometry and the activation of MAPK/ERK signaling pathway was assayed by Western blotting. Results showed that LDIR at 50 and 75 mGy significantly stimulated the proliferation of rat MSCs with the most stimulating effect at 75 mGy. There was a significant increase in the proportion of S phase cells in MSCs in response to 75 mGy X-rays. Activation of several members in the MAPK/ERK signaling pathway, including c-Raf, MEK and ERK were observed in the cells exposed to 75 mGy X-rays. To define the role of ERK activation in LDIR-stimulated cell proliferation, LDIR-treated MSCs were pre-incubated with MEK specific inhibitor U0126, which completely abolished LDIR-increased phosphorylation of ERK and cell proliferation. These results suggest that LDIR stimulates MSC proliferations in the in vitro condition via the activation of MAPK/ERK pathway. (author)

  4. Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation

    Science.gov (United States)

    Lunt, Sophia Y.; Muralidhar, Vinayak; Hosios, Aaron M.; Israelsen, William J.; Gui, Dan Y.; Newhouse, Lauren; Ogrodzinski, Martin; Hecht, Vivian; Xu, Kali; Acevedo, Paula N. Marín; Hollern, Daniel P.; Bellinger, Gary; Dayton, Talya L.; Christen, Stefan; Elia, Ilaria; Dinh, Anh T.; Stephanopoulos, Gregory; Manalis, Scott R.; Yaffe, Michael B.; Andrechek, Eran R.; Fendt, Sarah-Maria; Heiden, Matthew G. Vander

    2014-01-01

    SUMMARY Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2-deletion affects proliferation and metabolism in non-transformed, non-immortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis. PMID:25482511

  5. 17β-Estradiol treatment inhibits breast cell proliferation, migration and invasion by decreasing MALAT-1 RNA level

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ziyi [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Chen, Changjin [Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041 (China); Liu, Yu [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China); Wu, Chuanfang, E-mail: 879413966@qq.com [Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610041 (China)

    2014-03-07

    Highlights: • E2 affects not only estrogen-receptor α positive breast cells but also negative ones. • 100 nM E2 treatment affects breast cells proliferation, migration. • 100 nM E2 treatment functions in an estrogen-receptor α-independent way. • E2 treatment decreases MALAT-1 RNA level by post-transcriptional regulation. - Abstract: Breast cancer cells, which express estrogen receptor α (ERα), respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. But breast cancer cells without ERα show no effect on low concentration of estrogen treatment. Proliferation, migration and invasion of MCF10a, MCF7 and MB231 cells treated with low (1 nM) or high (100 nM) dose of 17β-Estradiol (E2) was performed. We identified the effects of E2 on these breast cell lines, and looked for the difference in the presence and absence of ERα. Specifically, we looked for the changes of long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1), which is found extensively and highly expressed in several kinds of tumor cells, including breast carcinoma. It was observed that proliferation, migration and invasion of breast cells were greatly affected by high concentration E2 treatment and were not affected by low concentration E2 treatment in an ERα independent way. We found that the high concentration E2 treatment largely decreased MALAT-1 RNA level. Interestingly, MALAT-1 decreasing by knocking down showed similar effects on proliferation, migration and invasion. E2 treatment affects breast tumor or non-tumor cells proliferation, migration and invasion in an ERα -independent, but a dose-dependent way by decreasing the MALAT-1 RNA level.

  6. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2008-05-01

    Full Text Available Abstract Background A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. Methods RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Results Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Conclusion Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the

  7. [Inhibitory effect of 17-AAG combined with paclitaxel on proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro].

    Science.gov (United States)

    Chen, Size; Chen, Xuemei; Li, Yuqi; Yang, Shu; Mo, Xianyi; Zhang, Fan; Mo, Kailan; Ding, Ying

    2015-06-01

    To investigate the effect of 17-AAG combined with paclitaxel (PTX) on the proliferation and apoptosis of esophageal squamous cell carcinoma cell line Eca-109 in vitro. Eca-109 cells were treated with 17-AAG and PTX either alone or in combination. The proliferation of Eca-109 cells was detected by MTT assay, and the cell cycle changes and cell apoptosis were determined by flow cytometry. Compared with the control group, both 17-AAG and PTX significantly inhibited the proliferation of Eca-109 cells. A combined treatment of the cells with 0.5 µmol/L PTX and 0.625 µmol/L 17-AAG produced an obviously stronger inhibitory effect on the cell proliferation than either of the agents used alone (PAAG and PTX used alone caused Eca-109 cell cycle arrest in G2/M phase and S phase, respectively, and their combined use caused cell cycle arrest in both G2/M and S phases. The cell apoptosis rates of Eca-109 cells treated with 17-AAG, PTX and their combination were 4.52%, 10.91%, and 29.88%, respectively, all significantly higher than that in the control group (1.32%); the combined treatment resulted in a distinct apoptotic peak that was significantly higher than that caused by either of the agents alone. 17-AAG and PTX can inhibit cell proliferation and promote apoptosis of Eca-109 cells, and their combination produces stronger effects in inhibiting cell proliferation and increasing cell apoptosis.

  8. Inhibition of proliferation and induction of differentiation of glioma cells with Datura stramonium agglutinin.

    Science.gov (United States)

    Sasaki, T; Yamazaki, K; Yamori, T; Endo, T

    2002-10-07

    We found that a lectin, Datura stramonium agglutinin, induced irreversible differentiation in C6 glioma cells. The differentiated cells had long processes, a low rate of proliferation and a high content of glial fibrillary acidic protein. When the medium was replaced with Datura stramonium agglutinin-free medium after 1 h, cell proliferation continued to be inhibited. Experiments with several other lectins indicated that both recognition of linear N-acetyllactosamine repeats and recognition of multiantennary units of cell-surface glycans were required for the inhibition of C6 proliferation. Proliferation of four human glial tumour cells was also inhibited by Datura stramonium agglutinin. Further, these differentiated human glial tumour cells had long processes and a high content of glial fibrillary acidic protein similar to differentiated C6 glioma cells. Taken together, these observations suggest that Datura stramonium agglutinin may be useful as a new therapy for treating glioma without side effects. Copyright 2002 Cancer Research UK

  9. Interaction of osteoblast-like cells with serum and fibronectin: effects on cell motility and proliferation in vitro

    International Nuclear Information System (INIS)

    Zuk, A.

    1986-01-01

    Osteoblast migration and proliferation are believed to occur during bone remodelling, in particular after osteoclastic bone resorption and prior to osteoblastic bone formation. In order to study migration and proliferation in vitro, the model of Alessandri et al. (1983) was modified. The model entailed seeding osteoblast-like cells into wells cut in agar and quantifying migration and proliferation peripheral to the well. Cell morphology also was described. The data indicated that on growth surfaces enriched with varying concentrations of fetal calf serum (FSC), the quantification of migration and proliferation was related both to percent cell attachment and to FCS-concentration. Because few osteoblast-like cells incorporated ( 3 H-TdR), it was concluded that the appearance of cells peripheral to the well was due to migration, and not to proliferation. Cell morphology and myosin distribution and organization indicated that osteoblast-like cells at the periphery of the cell culture (i.e. leading edge) may have been directionally migrating whereas cells behind the leading edge may have been engaged in non-directional migration. The migration, proliferation, and morphology of osteoblast-like cells cultured on fibronectin (FN) enriched growth surfaces also was examined. The quantification of migration and proliferation was related to the FN-concentration applied to the growth surface. Because few osteoblast-like cells incorporated 3 H-TdR and cell morphology indicated migration, it was concluded that osteoblast-like cells on FN-enriched growth surfaces are specialized, in part, for migration

  10. Interleukin-21 Drives Proliferation and Differentiation of Porcine Memory B Cells into Antibody Secreting Cells.

    Directory of Open Access Journals (Sweden)

    Michael C Rahe

    Full Text Available Immunological prevention of infectious disease, especially viral, is based on antigen-specific long-lived memory B cells. To test for cellular proliferation and differentiation factors in swine, an outbred model for humans, CD21+ B cells were activated in vitro with CD40L and stimulated with purported stimulatory cytokines to characterize functional responses. IL-21 induced a 3-fold expansion in total cell numbers with roughly 15% of all B cells differentiating to IgM or IgG antibody secreting cells (ASCs. However, even with robust proliferation, cellular viability rapidly deteriorated. Therefore, a proliferation inducing ligand (APRIL and B cell activating factor (BAFF were evaluated as survival and maintenance factors. BAFF was effective at enhancing the viability of mature B cells as well as ASCs, while APRIL was only effective for ASCs. Both cytokines increased approximately two-fold the amount of IgM and IgG which was secreted by IL-21 differentiated ASCs. Mature B cells from porcine reproductive and respiratory virus (PRRSV immune and naïve age-matched pigs were activated and treated with IL-21 and then tested for memory cell differentiation using a PRRSV non-structural protein 7 ELISPOT and ELISA. PRRSV immune pigs were positive on both ELISPOT and ELISA while naïve animals were negative on both assays. These results highlight the IL-21-driven expansion and differentiation of memory B cells in vitro without stimulation of the surface immunoglobulin receptor complex, as well as the establishment of a defined memory B cell culture system for characterization of vaccine responses in outbred animals.

  11. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    Science.gov (United States)

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis.

  12. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    Energy Technology Data Exchange (ETDEWEB)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-03-05

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by /sup 3/H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects.

  13. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    International Nuclear Information System (INIS)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-01-01

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by 3 H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects

  14. Decreased tumor cell proliferation as an indicator of the effect of preoperative radiotherapy of rectal cancer

    International Nuclear Information System (INIS)

    Adell, Gunnar; Zhang Hong; Jansson, Agneta; Sun Xiaofeng; Staal, Olle; Nordenskjoeld, Bo

    2001-01-01

    Background: Rectal cancer is a common malignancy, with significant local recurrence and death rates. Preoperative radiotherapy and refined surgical technique can improve local control rates and disease-free survival. Purpose: To investigate the relationship between the tumor growth fraction in rectal cancer measured with Ki-67 and the outcome, with and without short-term preoperative radiotherapy. Method: Ki-67 (MIB-1) immunohistochemistry was used to measure tumor cell proliferation in the preoperative biopsy and the surgical specimen. Materials: Specimens from 152 patients from the Southeast Swedish Health Care region were included in the Swedish rectal cancer trial 1987-1990. Results: Tumors with low proliferation treated with preoperative radiotherapy had a significantly reduced recurrence rate. The influence on death from rectal cancer was shown only in the univariate analysis. Preoperative radiotherapy of tumors with high proliferation did not significantly improve local control and disease-free survival. The interaction between Ki-67 status and the benefit of radiotherapy was significant for the reduced recurrence rate (p=0.03), with a trend toward improved disease-free survival (p=0.08). In the surgery-alone group, Ki-67 staining did not significantly correlate with local recurrence or survival rates. Conclusion: Many Ki-67 stained tumor cells in the preoperative biopsy predicts an increased treatment failure rate after preoperative radiotherapy of rectal cancer

  15. Live-imaging analysis of germ cell proliferation in the C. elegans adult supports a stochastic model for stem cell proliferation.

    Science.gov (United States)

    Rosu, Simona; Cohen-Fix, Orna

    2017-03-15

    The C. elegans adult hermaphrodite contains a renewable pool of mitotically dividing germ cells that are contained within the progenitor zone (PZ), at the distal region of the germline. From the PZ, cells enter meiosis and differentiate, ensuring the continued production of oocytes. In this study, we investigated the proliferation strategy used to maintain the PZ pool by using a photoconvertible marker to follow the fate of selected germ cells and their descendants in live worms. We found that the most distal pool of 6-8 rows of cells in the PZ (the distal third) behave similarly, with a fold expansion corresponding to one cell division every 6h on average. Proximal to this region, proliferation decreases, and by the proximal third of the PZ, most cells have stopped dividing. In addition, we show that all the descendants of cells in rows 3 and above move proximally and leave the PZ over time. Combining our data with previous studies, we propose a stochastic model for the C. elegans PZ proliferation, where a pool of proliferating stem cells divide symmetrically within the distal most 6-8 rows of the germline and exit from this stem cell niche occurs by displacement due to competition for limited space. Published by Elsevier Inc.

  16. Overexpression of MIP2, a novel WD-repeat protein, promotes proliferation of H9c2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing, E-mail: weixing22@163.com [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China); Institute of Cardiovascular Disease, Department of Pathophysiology, School of Medicine, University of South China, 28 Changsheng Xi Road, Hengyang, Hunan 421001 (China); Song, Lan; Jiang, Lei; Wang, Guiliang; Luo, Xinjing; Zhang, Bin [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China); Xiao, Xianzhong, E-mail: xianzhongxiao@hotmail.com [Department of Pathophysiology, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078 (China)

    2010-03-19

    WD40 repeat proteins have a wide range of diverse biological functions including signal transduction, cell cycle regulation, RNA splicing, and transcription. Myocardial ischemic preconditioning up-regulated protein 2 (MIP2) is a novel member of the WD40 repeat proteins superfamily that contains five WD40 repeats. Little is known about its biological role, and the purpose of this study was to determine the role of MIP2 in regulating cellular proliferation. Transfection and constitutive expression of MIP2 in the rat cardiomyoblast cell line H9c2 results in enhanced growth of those cells as measured by cell number and is proportional to the amount of MIP2 expressed. Overexpression of MIP2 results in a shorter cell cycle, as measured by flow cytometry. Collectively, these data suggest that MIP2 may participate in the progression of cell proliferation in H9c2 cells.

  17. Effects of nanostructurized silicon on proliferation of stem and cancer cell.

    Science.gov (United States)

    Osminkina, L A; Luckyanova, E N; Gongalsky, M B; Kudryavtsev, A A; Gaydarova, A Kh; Poltavtseva, R A; Kashkarov, P K; Timoshenko, V Yu; Sukhikh, G T

    2011-05-01

    In vitro experiments showed that stem and cancer cells retained their viability on the surface of porous silicon with 10-100 nm nanostructures, but their proliferation was inhibited. Silicon nanoparticles of 100 nm in size obtained by mechanical grinding of porous silicon films or crystal silicon plates in a concentration below 1 mg/ml in solution did not modify viability and proliferation of mouse fibroblast and human laryngeal cancer cells. Additional ultrasonic exposure of cancer cells in the presence of 1 mg/ml silicon nanoparticles added to nutrient medium led to complete destruction of cells or to the appearance of membrane defects blocking their proliferation and initiating their apoptotic death.

  18. Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels

    OpenAIRE

    Schuhmacher, Marino; Eick, Dirk

    2013-01-01

    The proto-oncogene c-myc encodes a basic helix-loop-helix leucine zipper transcription factor (c-Myc). c-Myc plays a crucial role in cell growth and proliferation. Here, we examined how expression of c-Myc target genes and cell proliferation depend on variation of c-Myc protein levels. We show that proliferation rates, the number of cells in S-phase, and cell size increased in a dose-dependent manner in response to increasing c-Myc levels. Likewise, the mRNA levels of c-Myc responsive genes s...

  19. Selective control of human glioma cell proliferation by specific cell interaction.

    Science.gov (United States)

    MacDonald, C M; Freshney, R I; Hart, E; Graham, D I

    1985-01-01

    Cells cultured from anaplastic astrocytoma (Kernohan and Sayre, grades III and IV) will proliferate on confluent monolayers of normal glia, while cells cultured from normal brain will not. The growth of a cell line containing a high proportion of well-differentiated glioma cells (G-CCM) was partially inhibited, though not as much as normal glia, while the growth of a cell line made up of less differentiated cells (G-UVW) was enhanced by the normal glia. Although non-glial confluent monolayers also inhibited the growth of normal glia, this was less specific, as one normal glial line (N-DUT) grew on fibroblasts and intestinal epithelium, although it was unable to do so on normal glia. It is suggested that this may be a useful method for examining reduced density limitation of growth, discriminating between normal and malignant glia, and for separating glioma cells from contaminating normal cells.

  20. Differentially expressed circRNAs in melanocytes and melanoma cells and their effect on cell proliferation and invasion.

    Science.gov (United States)

    Wang, Qi; Chen, Jia; Wang, Aijun; Sun, Lichun; Qian, Li; Zhou, Xiao; Liu, Yu; Tang, Shijie; Chen, Xiang; Cheng, Yan; Cao, Ke; Zhou, Jianda

    2018-04-01

    Circular RNAs (circRNAs) play critical roles in the occurrence of human diseases, including cancer. However, the detailed functions of circRNAs in melanoma have not been fully elucidated. In the present study, a circRNA microarray was performed to analyze the variability of circRNAs in the low-metastatic melanoma WM35 cell line and in the high-metastatic melanoma WM451 cell line in comparison to control human melanocytes. The results revealed that five circRNAs were upregulated and four circRNAs were downregulated in both the WM35 and WM451 cells. qRT-PCR revealed an upregulated expression of circ0000082 and circ0016418 and a downregulation of circ0023988, circ0008157 and circ0030388 in the cells which was consistent with the results of the microarray assay. Functional tests revealed that knockdown of circ0023988, circ0008157 or circ0030388 significantly promoted the proliferation and invasion of the WM35 cells. Following the silencing of circ0000082 or circ0016418 in WM451 cells, the proliferation and invasion of the WM451 cells were inhibited. Bioinformatic analysis predicted that the circ0000082-, circ0023988- and circ0008157-circRNA-miRNA-mRNA network may participate in the occurrence, development, invasion and metastasis of malignant tumors. The present study revealed several differentially expressed circRNAs, indicating that the newly identified circRNAs may provide new therapeutic targets for melanoma.

  1. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner

    OpenAIRE

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Background Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. Th...

  2. NOTCH1 and NOTCH2 regulate epithelial cell proliferation in mouse and human gastric corpus.

    Science.gov (United States)

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Horita, Nobukatsu; Todisco, Andrea; Turgeon, D Kim; Siebel, Christian W; Samuelson, Linda C

    2017-02-01

    The Notch signaling pathway is known to regulate stem cells and epithelial cell homeostasis in gastrointestinal tissues; however, Notch function in the corpus region of the stomach is poorly understood. In this study we examined the consequences of Notch inhibition and activation on cellular proliferation and differentiation and defined the specific Notch receptors functioning in the mouse and human corpus. Notch pathway activity was observed in the mouse corpus epithelium, and gene expression analysis revealed NOTCH1 and NOTCH2 to be the predominant Notch receptors in both mouse and human. Global Notch inhibition for 5 days reduced progenitor cell proliferation in the mouse corpus, as well as in organoids derived from mouse and human corpus tissue. Proliferation effects were mediated through both NOTCH1 and NOTCH2 receptors, as demonstrated by targeting each receptor alone or in combination with Notch receptor inhibitory antibodies. Analysis of differentiation by marker expression showed no change to the major cell lineages; however, there was a modest increase in the number of transitional cells coexpressing markers of mucous neck and chief cells. In contrast to reduced proliferation after pathway inhibition, Notch activation in the adult stomach resulted in increased proliferation coupled with reduced differentiation. These findings suggest that NOTCH1 and NOTCH2 signaling promotes progenitor cell proliferation in the mouse and human gastric corpus, which is consistent with previously defined roles for Notch in promoting stem and progenitor cell proliferation in the intestine and antral stomach. Here we demonstrate that the Notch signaling pathway is essential for proliferation of stem cells in the mouse and human gastric corpus. We identify NOTCH1 and NOTCH2 as the predominant Notch receptors expressed in both mouse and human corpus and show that both receptors are required for corpus stem cell proliferation. We show that chronic Notch activation in corpus stem

  3. Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner.

    Science.gov (United States)

    Mukherjee, Madhumati; Chaudhari, Snehal N; Balachandran, Riju S; Vagasi, Alexandra S; Kipreos, Edward T

    2017-12-15

    Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cell density overrides the effect of substrate stiffness on human mesenchymal stem cells' morphology and proliferation.

    Science.gov (United States)

    Venugopal, Balu; Mogha, Pankaj; Dhawan, Jyotsna; Majumder, Abhijit

    2018-03-12

    The effect of substrate stiffness on the cellular morphology, proliferation, and differentiation of human mesenchymal stem cells (hMSCs) has been extensively researched and well established. However, the majority of these studies are done with a low seeding density where cell to cell interactions do not play a significant role. While these conditions permit an analysis of cell-substratum interactions at the single cell level, such a model system fails to capture a critical aspect of the cellular micro-environment in vivo, i.e. the cell-cell interaction via matrix deformation (i.e., strain). To address this question, we seeded hMSCs on soft poly-acrylamide (PAA) gels, at a seeding density that permits cells to be mechanically interacting via the underlying substrate. We found that as the intercellular distance decreases with the increasing seeding density, cellular sensitivity towards the substrate rigidity becomes significantly diminished. With the increasing seeding density, the cell spread area increased on a soft substrate (500 Pa) but reduced on an even slightly stiffer substrate (2 kPa) as well as on glass making them indistinguishable at a high seeding density. Not only in terms of cell spread area but also at a high seeding density, cells formed mature focal adhesions and prominent stress fibres on a soft substrate similar to that of the cells being cultured on a stiff substrate. The decreased intercellular distance also influenced the proliferation rate of the cells: higher seeding density on the soft substrate showed cell cycle progression similar to that of the cells on glass substrates. In summary, this paper demonstrates how the effect of substrate rigidity on the cell morphology and fate is a function of inter-cellular distance when seeded on a soft substrate. Our AFM data suggest that such changes happen due to local strain stiffening of the soft PAA gel, an effect that has been rarely reported in the literature so far.

  5. Comparative Analysis of Proliferation and Differentiation Potentials of Stem Cells from Inflamed Pulp of Deciduous Teeth and Stem Cells from Exfoliated Deciduous Teeth

    Directory of Open Access Journals (Sweden)

    Shi Yu

    2014-01-01

    Full Text Available Stem cells isolated from exfoliated deciduous teeth (SHEDs are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC- mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-α protein. In conclusion, our in vitro results showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.

  6. Cell proliferation and cell death are disturbed during prenatal and postnatal brain development after uranium exposure.

    Science.gov (United States)

    Legrand, M; Elie, C; Stefani, J; N Florès; Culeux, C; Delissen, O; Ibanez, C; Lestaevel, P; Eriksson, P; Dinocourt, C

    2016-01-01

    The developing brain is more susceptible to neurotoxic compounds than adult brain. It is also well known that disturbances during brain development cause neurological disorders in adulthood. The brain is known to be a target organ of uranium (U) exposure and previous studies have noted that internal U contamination of adult rats induces behavioral disorders as well as affects neurochemistry and neurophysiological properties. In this study, we investigated whether depleted uranium (DU) exposure affects neurogenesis during prenatal and postnatal brain development. We examined the structural morphology of the brain, cell death and finally cell proliferation in animals exposed to DU during gestation and lactation compared to control animals. Our results showed that DU decreases cell death in the cortical neuroepithelium of gestational day (GD) 13 embryos exposed at 40mg/L and 120mg/L and of GD18 fetuses exposed at 120mg/L without modification of the number of apoptotic cells. Cell proliferation analysis showed an increase of BrdU labeling in the dentate neuroepithelium of fetuses from GD18 at 120mg/L. Postnatally, cell death is increased in the dentate gyrus of postnatal day (PND) 0 and PND5 exposed pups at 120mg/L and is associated with an increase of apoptotic cell number only at PND5. Finally, a decrease in dividing cells is observed in the dentate gyrus of PND21 rats developmentally exposed to 120mg/L DU, but not at PND0 and PND5. These results show that DU exposure during brain development causes opposite effects on cell proliferation and cell death processes between prenatal and postnatal development mainly at the highest dose. Although these modifications do not have a major impact in brain morphology, they could affect the next steps of neurogenesis and thus might disrupt the fine organization of the neuronal network. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    International Nuclear Information System (INIS)

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2012-01-01

    Highlights: ► Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. ► DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. ► We produced in vitro and in vivo model to better understand the role of DDR2. ► DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2’s molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates. Taken together, our data demonstrated that DDR2 might play a local and essential role in the

  8. Mxi1 regulates cell proliferation through insulin-like growth factor binding protein-3

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Je Yeong; Yoo, Kyung Hyun [Department of Biological Science, Sookmyung Women' s University, Seoul (Korea, Republic of); Lee, Han-Woong [Department of Biochemistry, Yonsei University, Seoul (Korea, Republic of); Park, Jong Hoon, E-mail: parkjh@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Mxi1 regulates cell proliferation. Black-Right-Pointing-Pointer Expression of IGFBP-3 is regulated by Mxi1. Black-Right-Pointing-Pointer Inactivation of Mxi1 reduces IGFBP-3 expression in vitro and in vivo. -- Abstract: Mxi1, a member of the Myc-Max-Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1-/- mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1-/- MEFs and Mxi1-/- mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1-/- mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1-/- mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1-/- mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.

  9. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-02-01

    Full Text Available Xiaowen Zhang,1 Nan Wu2 1Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; 2The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells were observed. The influences on apoptotic protease activity factor-1 (APAF-1-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9 were measured by Western blotting and gelatin zymography assay. Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53–4.66×103 µM. Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma

  10. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  11. Stem cell proliferation and differentiation a multitype branching process model

    CERN Document Server

    Macken, Catherine A

    1988-01-01

    The body contains many cellular systems that require the continuous production of new, fully functional, differentiated cells to replace cells lacking or having limited self-renewal capabilities that die or are damaged during the lifetime of an individual. Such systems include the epidermis, the epithelial lining of the gut, and the blood. For example, erythrocytes (red blood cells) lack nuclei and thus are incapable of self-replication. They have a life span in the circulation of about 120 days. Mature granulocytes, which also lack proliferative capacity, have a much shorter life span - typically 12 hours, though this may be reduced to only two or three hours in times of serious tissue infection. Perhaps a more familiar example is the outermost layer of the skin. This layer is composed of fully mature, dead epidermal cells that must be replaced by the descendants of stem cells lodged in lower layers of the epidermis (cf. Alberts et al. , 1983). In total, to supply the normal steady-state demands of cells, an...

  12. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  13. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruina; Zhang, Hongxia [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029 (China); Cui, Qianqian; Wang, Jianshe [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2015-12-15

    Highlights: • PFOS stimulates cell proliferation of human liver cell line (HL-7702). • Differential expressed proteins are identified by iTRAQ. • Most of differential proteins caused by PFOS are related to cell proliferation. • Up-regulation of cyclin/cdk by PFOS plays a role in driving cells into cell cycle. - Abstract: Perfluorooctane sulfonate (PFOS) is a commonly used and widely distributed perfluorinated compound proven to cause adverse health outcomes. However, how PFOS affects liver cell proliferation is not well understood. In this experiment, we exposed a human liver cell line (HL-7702) to 50 μM PFOS for 48 h and 96 h. We identified 52 differentially expressed proteins using a quantitative proteomic approach. Among them, 27 were associated with cell proliferation, including hepatoma-derived growth factor (Hdgf) and proliferation biomarkers Mk167 (Ki67) and Top2α. Results from MTT, cell counting, and cell cycle analysis showed low-dose PFOS (<200 μM) stimulated HL-7702 cell viability at 48 h and 96 h, reduced the G0/G1 percentage, and increased the S + G2/M percentage. Moreover, levels of Cyclin D1, Cyclin E2, Cyclin A2, Cyclin B1 and their partner Cdks were elevated, and the expression of regulating proteins like c-Myc, p53, p21 waf/cip1 and Myt1, as well as the phosphorylation levels of p-Wee1(S642), p-Chk1(S345) and p-Chk2(T68), were disturbed. We hypothesized that low-dose PFOS stimulated HL-7702 proliferation by driving cells into G1 through elevating cyclins/cdks expression, and by promoting cell cycle progression through altering other regulating proteins. This research will shed light on the mechanisms behind PFOS-mediated human hepatotoxicity.

  14. Proteomic analysis of cell proliferation in a human hepatic cell line (HL-7702) induced by perfluorooctane sulfonate using iTRAQ

    International Nuclear Information System (INIS)

    Cui, Ruina; Zhang, Hongxia; Guo, Xuejiang; Cui, Qianqian; Wang, Jianshe; Dai, Jiayin

    2015-01-01

    Highlights: • PFOS stimulates cell proliferation of human liver cell line (HL-7702). • Differential expressed proteins are identified by iTRAQ. • Most of differential proteins caused by PFOS are related to cell proliferation. • Up-regulation of cyclin/cdk by PFOS plays a role in driving cells into cell cycle. - Abstract: Perfluorooctane sulfonate (PFOS) is a commonly used and widely distributed perfluorinated compound proven to cause adverse health outcomes. However, how PFOS affects liver cell proliferation is not well understood. In this experiment, we exposed a human liver cell line (HL-7702) to 50 μM PFOS for 48 h and 96 h. We identified 52 differentially expressed proteins using a quantitative proteomic approach. Among them, 27 were associated with cell proliferation, including hepatoma-derived growth factor (Hdgf) and proliferation biomarkers Mk167 (Ki67) and Top2α. Results from MTT, cell counting, and cell cycle analysis showed low-dose PFOS (<200 μM) stimulated HL-7702 cell viability at 48 h and 96 h, reduced the G0/G1 percentage, and increased the S + G2/M percentage. Moreover, levels of Cyclin D1, Cyclin E2, Cyclin A2, Cyclin B1 and their partner Cdks were elevated, and the expression of regulating proteins like c-Myc, p53, p21 waf/cip1 and Myt1, as well as the phosphorylation levels of p-Wee1(S642), p-Chk1(S345) and p-Chk2(T68), were disturbed. We hypothesized that low-dose PFOS stimulated HL-7702 proliferation by driving cells into G1 through elevating cyclins/cdks expression, and by promoting cell cycle progression through altering other regulating proteins. This research will shed light on the mechanisms behind PFOS-mediated human hepatotoxicity.

  15. Preferential expression of NuMA in the nuclei of proliferating cells.

    Science.gov (United States)

    Taimen, P; Viljamaa, M; Kallajoki, M

    2000-04-10

    Nuclear mitotic apparatus protein (NuMA) has an indispensable function in normal mitosis as an organizer of the mitotic spindle. NuMA is a prominent component of interphase cell nuclear matrix but its role during interphase is largely unknown. We examined the presence of NuMA in several human tissues. The majority of cells were positive for NuMA but a few negative cell types were found, including spermatozoa, superficial keratinocytes, neutrophil granulocytes, syncytiotrophoblasts, and some neurons, fibroblasts, and smooth and skeletal muscle cells. We further investigated the presence of NuMA in a cultured estrogen-dependent human breast cancer cell line and observed the disappearance of nuclear NuMA in the quiescent cells. The percentage of NuMA-positive cells diminished from an initial approximately 100 to 60% during 6 days of culture. The presence of NuMA correlated positively with the presence of proliferation marker Ki-67 antigen and negatively with the culture time, confluence, and size of the cell islets. These results show that some nonproliferating, highly differentiated cell types lack NuMA and that cells may lose their NuMA without dramatic effects on the nuclear shape. This suggests that NuMA may be a nonessential component of the interphase nucleus. Copyright 2000 Academic Press.

  16. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Beard, Peter

    2012-01-01

    Highlights: ► Unknown cellular mutations complement papillomavirus-induced carcinogenesis. ► Hedgehog pathway components are expressed by cervical cancer cells. ► Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. ► Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  17. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development

    DEFF Research Database (Denmark)

    Xue, Jingshi; Luo, Dexian; Xu, Deyang

    2015-01-01

    development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation...... exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (Fe......A), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the Fe...

  18. Direct infection of dendritic cells during chronic viral infection suppresses antiviral T cell proliferation and induces IL-10 expression in CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Carmen Baca Jones

    Full Text Available Elevated levels of systemic IL-10 have been associated with several chronic viral infections, including HCV, EBV, HCMV and LCMV. In the chronic LCMV infection model, both elevated IL-10 and enhanced infection of dendritic cells (DCs are important for viral persistence. This report highlights the relationship between enhanced viral tropism for DCs and the induction of IL-10 in CD4 T cells, which we identify as the most frequent IL-10-expressing cell type in chronic LCMV infection. Here we report that infected CD8αneg DCs express elevated IL-10, induce IL-10 expression in LCMV specific CD4 T cells, and suppress LCMV-specific T cell proliferation. DCs exposed in vivo to persistent LCMV retain the capacity to stimulate CD4 T cell proliferation but induce IL-10 production by both polyclonal and LCMV-specific CD4 T cells. Our study delineates the unique effects of direct infection versus viral exposure on DCs. Collectively these data point to enhanced infection of DCs as a key trigger of the IL-10 induction cascade resulting in maintenance of elevated IL-10 expression in CD4 T cells and inhibition of LCMV-specific CD4 and CD8 T cell proliferation.

  19. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells.

    Science.gov (United States)

    Xu, Xiaosheng; Shen, Jian

    2016-01-01

    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM.

  20. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  1. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner.

    Science.gov (United States)

    David, Diana; Jagadeeshan, Sankar; Hariharan, Ramkumar; Nair, Asha Sivakumari; Pillai, Radhakrishna Madhavan

    2014-01-01

    Smurf2 is a member of the HECT family of E3 ubiquitin ligases that play important roles in determining the competence of cells to respond to TGF- β/BMP signaling pathway. However, besides TGF-β/BMP pathway, Smurf2 regulates a repertoire of other signaling pathways ranging from planar cell polarity during embryonic development to cell proliferation, migration, differentiation and senescence. Expression of Smurf2 is found to be dysregulated in many cancers including breast cancer. The purpose of the present study is to examine the effect of Smurf2 knockdown on the tumorigenic potential of human breast cancer cells emphasizing more on proliferative signaling pathway. siRNAs targeting different regions of the Smurf2 mRNA were employed to knockdown the expression of Smurf2. The biological effects of synthetic siRNAs on human breast cancer cells were investigated by examining the cell proliferation, migration, invasion, focus formation, anchorage-independent growth, cell cycle arrest, and cell cycle and cell proliferation related protein expressions upon Smurf2 silencing. Smurf2 silencing in human breast cancer cells resulted in a decreased focus formation potential and clonogenicity as well as in vitro cell migration/invasion capabilities. Moreover, knockdown of Smurf2 suppressed cell proliferation. Cell cycle analysis showed that the anti-proliferative effect of Smurf2 siRNA was mediated by arresting cells in the G0/G1 phase, which was caused by decreased expression of cyclin D1and cdk4, followed by upregulation p21 and p27. Furthermore, we demonstrated that silencing of Smurf2 downregulated the proliferation of breast cancer cells by modulating the PI3K- PTEN-AKT-FoxO3a pathway via the scaffold protein CNKSR2 which is involved in RAS-dependent signaling pathways. The present study provides the first evidence that silencing Smurf2 using synthetic siRNAs can regulate the tumorigenic properties of human breast cancer cells in a CNKSR2 dependent manner. Our results

  3. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation.

    Science.gov (United States)

    García-Martínez, Olga; De Luna-Bertos, Elvira; Ramos-Torrecillas, Javier; Ruiz, Concepción; Milia, Egle; Lorenzo, María Luisa; Jimenez, Brigida; Sánchez-Ortiz, Araceli; Rivas, Ana

    2016-01-01

    In this study, we aimed to clarify the effects of phenolic compounds and extracts from different extra virgin olive oil (EVOO) varieties obtained from fruits of different ripening stages on osteoblast cells (MG-63) proliferation. Cell proliferation was increased by hydroxytyrosol, luteolin, apigenin, p-coumaric, caffeic, and ferulic acids by approximately 11-16%, as compared with controls that were treated with one vehicle alone, while (+)-pinoresinol, oleuropein, sinapic, vanillic acid and derivative (vanillin) did not affect cell proliferation. All phenolic extracts stimulated MG-63 cell growth, and they induced higher cell proliferation rates than individual compounds. The most effective EVOO phenolic extracts were those obtained from the Picual variety, as they significantly increased cell proliferation by 18-22%. Conversely, Arbequina phenolic extracts increased cell proliferation by 9-13%. A decline in osteoblast proliferation was observed in oils obtained from olive fruits collected at the end of the harvest period, as their total phenolic content decreases at this late stage. Further research on the signaling pathways of olive oil phenolic compounds involved in the processes and their metabolism should be carried out to develop new interventions and adjuvant therapies using EVOO for bone health (i.e.osteoporosis) in adulthood and the elderly.