WorldWideScience

Sample records for include building insulation

  1. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  2. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  3. Correlations in hydrothermal properties of building insulation

    International Nuclear Information System (INIS)

    Antonyová, A

    2013-01-01

    The contribution comprises analysis that is based on scientific work as a part of participation on the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled 'Detection and Management of Risk Processes in Building Insulation' and numbered SRDA SK-AT-0008-10. Statistical approach with correlations among humidity, time and temperature values in the space between the wall and building insulation uses the set of data obtained during the measurement series as testing using a new technology with equipment that does not influence the environment properties in the space. Therefore such real mapping can bring a real picture of possible condensation as a risk process in the building envelope.

  4. Interior thermal insulation systems for historical building envelopes

    Science.gov (United States)

    Jerman, Miloš; Solař, Miloš; Černý, Robert

    2017-11-01

    The design specifics of interior thermal insulation systems applied for historical building envelopes are described. The vapor-tight systems and systems based on capillary thermal insulation materials are taken into account as two basic options differing in building-physical considerations. The possibilities of hygrothermal analysis of renovated historical envelopes including laboratory methods, computer simulation techniques, and in-situ tests are discussed. It is concluded that the application of computational models for hygrothermal assessment of interior thermal insulation systems should always be performed with a particular care. On one hand, they present a very effective tool for both service life assessment and possible planning of subsequent reconstructions. On the other, the hygrothermal analysis of any historical building can involve quite a few potential uncertainties which may affect negatively the accuracy of obtained results.

  5. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  6. Building America Top Innovations 2012: Basement Insulation Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-01-01

    This Building America Top Innovations profile describes research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

  7. Building energy efficiency and its effect on the frost insulation

    Energy Technology Data Exchange (ETDEWEB)

    Airaksinen, M., Email: miimu.airaksinen@vtt.fi

    2012-06-15

    The energy efficiency of new buildings has improved significantly and is still improving. As the thermal insulation of the building envelope increases other properties and 'thumb' values might also change. Especially when the thermal transmittance (U-value) of the slab on the ground decreases, the frost insulation should also be reconsidered. The aim of this study is to find out how the frost insulation changes when the base floor and foundation insulation change. (orig.)

  8. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  9. Building America Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits, Madison, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 percent for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  10. Improvement of methods for calculation of sound insulation in buildings

    OpenAIRE

    Mašović, Draško B.

    2015-01-01

    The main object of this work are the methods for calculation of sound insulation based on the classical model of sound propagation in buildings and single-number rating of sound insulation. The aim of the work is inspection of the possibilities for improvement of standard methods for quantification and calculation of sound insulation, in order to achieve higher accuracy of the obtained numerical values and their correlation with subjective impression of the acoustic comfort in buildings. Proc...

  11. Testing reflective insulation for improvement of buildings energy efficiency

    Science.gov (United States)

    Vrachopoulos, Michalis Gr.; Koukou, Maria K.; Stavlas, Dimitris G.; Stamatopoulos, Vasilis N.; Gonidis, Achilleas F.; Kravvaritis, Eleftherios D.

    2012-03-01

    Reflective insulation stands as an alternative to common building materials used to reduce a building's heating and cooling loads. In this work, an experimental prototype chamber facility has been designed and constructed at the campus of the Technological Educational Institution of Halkida, located in an area of climatic zone B in Greece, aiming to the evaluation of reflective insulation's performance. Reflective insulation is a part of the test room wall construction, specifically, heat insulation material of the vertical wall construction all directions (North, South, East, West), and temperature and water proofing element of the roof. Measurements were obtained for both winter and summer periods. Results indicate that the existence of reflective insulation during summer period averts the overheating at the interior of the experimental chamber, while during winter the heat is retained in the chamber.

  12. A protocol for lifetime energy and environmental impact assessment of building insulation materials

    International Nuclear Information System (INIS)

    Shrestha, Som S.; Biswas, Kaushik; Desjarlais, Andre O.

    2014-01-01

    This article describes a proposed protocol that is intended to provide a comprehensive list of factors to be considered in evaluating the direct and indirect environmental impacts of building insulation materials, as well as detailed descriptions of standardized calculation methodologies to determine those impacts. The energy and environmental impacts of insulation materials can generally be divided into two categories: (1) direct impact due to the embodied energy of the insulation materials and other factors and (2) indirect or environmental impacts avoided as a result of reduced building energy use due to addition of insulation. Standards and product category rules exist, which provide guidelines about the life cycle assessment (LCA) of materials, including building insulation products. However, critical reviews have suggested that these standards fail to provide complete guidance to LCA studies and suffer from ambiguities regarding the determination of the environmental impacts of building insulation and other products. The focus of the assessment protocol described here is to identify all factors that contribute to the total energy and environmental impacts of different building insulation products and, more importantly, provide standardized determination methods that will allow comparison of different insulation material types. Further, the intent is not to replace current LCA standards but to provide a well-defined, easy-to-use comparison method for insulation materials using existing LCA guidelines. - Highlights: • We proposed a protocol to evaluate the environmental impacts of insulation materials. • The protocol considers all life cycle stages of an insulation material. • Both the direct environmental impacts and the indirect impacts are defined. • Standardized calculation methods for the ‘avoided operational energy’ is defined. • Standardized calculation methods for the ‘avoided environmental impact’ is defined

  13. Vacuum Insulation Panels Applied in Building Constructions

    NARCIS (Netherlands)

    Tenpierik, M.J.

    2010-01-01

    Due to sustainability and due to international treaties, it is desired and required to reduce greenhouse gas emissions drastically. One contributor to these emissions is the burning of fossil fuels for generating power and electricity to be used in and for buildings. Buildings and building-related

  14. Study on application of concrete sandwich insulation material in library building insulation

    Science.gov (United States)

    Yang, Zengzhang

    2017-06-01

    Energy shortage is the short slab that restricts the development of social economy, and the rational and effective use of energy is the principle of sustainable development. Building energy consumption accounts for about 30% of total social energy consumption, and this ratio has continued to rise, so the energy saving potential is great in the construction sector. In view of the building energy consumption problem, we produce green insulation building materials with the crop straw, and improve the construction of hot and humid environment. In this paper, we take concrete sandwich straw blocks in library building as the research object, through the experiment to test its winter heat consumption and summer power consumption indicators, carry out experimental study on thermal insulation performance, and explore the overall thermal and energy saving performance of concrete sandwich straw blocks in library building.

  15. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  16. Vacuum insulation panels for building applications: A review and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Baetens, Ruben [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Laboratory of Building Physics, Department of Civil Engineering, Catholic University of Leuven (KUL), BE-3001 Heverlee (Belgium); Jelle, Bjoern Petter [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Thue, Jan Vincent [Department of Civil and Transport Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Tenpierik, Martin J. [Faculty of Architecture, Urbanism and Building Sciences, Delft University of Technology, Julianalaan 134, 2628 BL Delft (Netherlands); Grynning, Steinar; Uvsloekk, Sivert [Department of Building Materials and Structures, SINTEF Building and Infrastructure, NO-7465 Trondheim (Norway); Gustavsen, Arild [Department of Architectural Design, History and Technology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway)

    2010-02-15

    Vacuum insulation panels (VIPs) are regarded as one of the most promising high performance thermal insulation solutions on the market today. Thermal performances three to six times better than still-air are achieved by applying a vacuum to an encapsulated micro-porous material, resulting in a great potential for combining the reduction of energy consumption in buildings with slim constructions. However, thermal bridging due to the panel envelope and degradation of thermal performance through time occurs with current technology. Furthermore, VIPs cannot be cut on site and the panels are fragile towards damaging. These effects have to be taken into account for building applications as they may diminish the overall usability and thermal performance. This paper is as far as the authors know the first comprehensive review on VIPs. Properties, requirements and possibilities of foil encapsulated VIPs for building applications are studied based on available literature, emphasizing thermal bridging and degradation through time. An extension is made towards gas-filled panels and aerogels, showing that other high performance thermal insulation solutions do exist. Combining the technology of these solutions and others may lead to a new leap forward. Feasible paths beyond VIPs are investigated and possibilities such as vacuum insulation materials (VIMs) and nano insulation materials (NIMs) are proposed. (author)

  17. Growing and testing mycelium bricks as building insulation materials

    Science.gov (United States)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  18. Bio-susceptibility of materials and thermal insulation systems used for historical buildings

    Science.gov (United States)

    Sterflinger, Katja; Ettenauer, Joerg; Pinar, Guadalupe

    2013-04-01

    In historical buildings of Northern countries high levels of energy are necessary to reach comfortable temperatures especially during the cold season. For this reason historical buildings are now also included in country specific regulations and ordinances to enhance the "energy - efficiency". Since an exterior insulation - as it is commonly used for modern architecture - is incompatible with monument protection, several indoor insulation systems based on historical and ecological materials, are on the market that should improve the thermic performance of a historical building. However, using organic materials as cellulose, loam, weed or wood, bears the risk of fungal growth and thus may lead to health problems in indoor environments. For this reason 5 different ecological indoor insulations systems were tested for their bio-susceptibility against various fungi both under natural conditions - after 2 years of installation in an historical building - and under laboratory conditions with high levels of relative humidity. Fungal growth was evaluated by classical isolation and cultivation as well as by molecular methods. The materials turned out to have a quite different susceptibility towards fungal contamination. Whereas insulations made of bloated Perlite (plaster and board) did not show any fungal growth after 2 years of exposition, the historical insulation made of loam and weed had high cell counts of various fungi. In laboratory experiments wooden softboard represented the best environment for fungal growth. As a result from this study, plaster and board made of bloated Perlite are presented as being the most appropriate materials for thermal insulation at least from the microbiological and hygienic point of view. For future investigations and for the monitoring of fungi in insulation and other building materials we suggest a molecular biology approach with a common protocol for quantitative DNA-extraction and amplification.

  19. DESIGN SOLUTIONS FOR THERMAL INSULATION OF EXTERIOR WALLS OF CAST-IN-PLACE CONCRETE HIGH-RISE RESIDENTIAL BUILDINGS IN CENTRAL REGIONS OF СHINA

    Directory of Open Access Journals (Sweden)

    Bantserova Ol'ga Leonidovna

    2012-12-01

    Full Text Available A significant portion of the overall heat loss is due to the heat loss through the building envelope. According to the opinions of experts, the surface area of exterior walls has the insulation of about 65 % of the total envelope of apartment buildings; therefore, thermal protection of external walls of buildings is a key issue in ensuring the thermal performance of envelopes of apartment buildings. The author has developed design solutions that assure the thermal protection of exterior walls and that are aimed at identifying the optimal solution in terms of the location of insulation materials, their thermal performance and insulation of exterior walls of apartment buildings in central regions of China. The author presents a comparative analysis of the main methodologies of thermal insulation designated for the exterior walls of multi-storey residential buildings: internal and external insulation, as well as the insulation in-between the wall layers. The analyses of wall designs are based on the insulation performance, thermal insulation performance, methods of mounting different systems of insulation, and cost of work. As a result, practical recommendations originate from the statement that the most optimal designs of exterior walls of monolithic high-rise apartment buildings of central regions of China are those that have insulation on the outside of the building. They include layers of insulation made of extruded polystyrene, which is currently planned for use in the construction of high-rise monolithic residential buildings in central China.

  20. Straw insulated buildings. Nature building materials; Strohgedaemmte Gebaeude. Naturbaustoffe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Straw is one of the major agricultural by-products and is mainly used as litter in animal husbandry and to compensate the balance of humus. A relatively recent development is the use of straw bales for the construction of buildings. The brochure under consideration documents the technical development of straw construction in Germany. Possibilities of the use of straw in single family homes up to commercial buildings are described.

  1. Influence of PCMs in thermal insulation on thermal behaviour of building envelopes

    Science.gov (United States)

    Dydek, K.; Furmański, P.; Łapka, P.

    2016-09-01

    A model of heat transfer through a wall consisting of a layer of concrete and PCM enhanced thermal insulation is considered. The model accounts for heat conduction in both layers, thermal radiation and heat absorption/release due to phase change in the insulation as well as time variation in the ambient temperature and insolation. Local thermal equilibrium between encapsulated PCM and light-weight thermal insulation was assumed. Radiation emission, absorption and scattering were also accounted for in the model. Comparison of different cases of heat flow through the building envelope was carried out. These cases included presence or absence of PCM and thermal radiation in the insulation, effect of emissivity of the PCM microcapsules as well as an effect of solar radiation or its lack on the ambient side of the envelope. Two ways of the PCM distribution in thermal insulation were also considered. The results of simulations were presented for conditions corresponding to the mean summer and winter seasons in Warsaw. It was found that thermal radiation plays an important role in heat transfer through thermal insulation layer of the wall while the presence of the PCM in it significantly contributes to damping of temperature fluctuations and a decrease in heat fluxes flowing into or lost by the interior of the building. The similar effect was observed for a decrease in emissivity of the microcapsules containing PCM.

  2. IMPACT ON THE APPLICATION OF INSULATION IN BUILDINGS TO ACHIEVE THERMAL COMFORT (A CASE STUDY: LAUSER OFFICE BUILDING IN BANDA ACEH

    Directory of Open Access Journals (Sweden)

    Nova Purnama Lisa

    2014-12-01

    Full Text Available From the results of research studies on the impact of the use of insulation in buildings, reducing solar radiation on buildings to improve indoor comfort by applying the Principles of radiation reduction in buildings naturally using insulation application that serves as an insulator against the building materials, use of thermal insulation in particular mounted on the roof of the building and the walls are located on second floor and the third floor Lauser office building, Calculate the cooling load for each room that was on second floor and the third floor based on the geographical location or position of the building, climate data, building material data , and the intensity of the spatial characteristics which include lighting, solar radiation, user activity and electrical appliances being used. The calculation is done with the help of Ecotech v.5, 2011. The location and position on the third floor of a building with a flat roof cast concrete, so that the heat absorbed by the platform, and two times greater than the amount of heat radiation is absorbed by the material in the direction of the light falling the sun is at an angle <30°C. The simulation results on the building with the addition of thermal insulation on all walls and the roof of the inside of the foam material ultrafolmadehid, without changing the model building and similar activities in accordance with the existing condition and the condition of the room using the air conditioner at a temperature of 18-26°C, indicating a decrease in cooling load signifinikan in any space reaches 40% of the total cooling load required on the lauser office building. Comparing the simulation results Ecotech temperature v.5 2011 with field measurements as a validation of the simulation results in order to achieve thermal comfort in buildings and can menggurangi use energy consumption in buildings and can be used as a reference in planning space-based conditioning systems energy efficient.

  3. Towards low energy building using vacuum insulation panels. Advantages and disadvantages

    Directory of Open Access Journals (Sweden)

    Adrian-Alexandru CIOBANU

    2013-12-01

    Full Text Available The increasing interest in building developments with very low energy consumption, energy-positive or passive houses has directed the attention of those involved in this area to high thermal performance insulation materials, like vacuum insulation panels (VIP. Vacuum insulation panels are part of high thermal performance insulations, which attempts to be introduced and used in the construction field. The main interest for these materials is due to their thermal properties, namely to their very low thermal conductivity (of 5 to 8 times compared with traditional thermal insulation materials (mineral wool, extruded/expanded polystyrene. The thermal conductivity of thermal insulation widely used, hence traditional or classical insulation names, as expanded polystyrene (EPS, extruded polystyrene (XPS, mineral wool or polyurethane foam (PUR has typical values between 0.03 and 0.05 W/(mK. Using these types of insulations to fulfill performance envelope elements in terms of energy, leads to the adoption of an increased insulation thickness. Vacuum insulation panels may offer new solution for high performance insulation with a thickness in order of a few centimeters compared to the conventional insulation. Vacuum insulation panels can be used as independently insulation, replacing entirely the conventional ones or as additional insulation.

  4. Thermal mass vs. insulation building envelope design in six climatic regions of South Africa

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-02-01

    Full Text Available This chapter aims to evaluate the impact of thermal mass and high insulation (Rvalue) building envelope on energy consumption (space heating and space cooling) in six South African major cities using a building thermal simulation programme (Ecotect...

  5. Building America Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings, Albany, New York

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This project evaluated the effectiveness and affordability of integrating retrofit insulated panels into a re-siding project. The Partnership for Home Innovation (PHI) teamed with New York State Energy Research and Development Authority (NYSERDA), the Albany Housing Authority (AHA), and the New York State Weatherization Assistance Program (WAP) administered by Albany Community Action Partnership to demonstrate an energy retrofit and siding upgrade on a two-story, seven unit, multifamily building in Albany New York (CZ 5). The project focused on accomplishing three goals - doubling the existing wall thermal resistance (from approximately R-13 to a weighted average of R-27), reduction of building air leakage, and completion of the retrofit within a budget where the additional cost for upgrading wall's thermal resistance is equal to the cost of the standard re-siding effort (i.e., the total cost of the energy efficient re-siding scope of work is not more than double the cost of the standard re-siding effort). Lessons learned from the project strongly indicate that the retrofit panel technology can be installed using common installation practices and with minimal training. Other lessons learned include limitation on the use of standard air sealing materials during cold weather installations and the need to develop better installation guidance for trades working with the level of tolerances that may be present in the existing structure. This technology demonstration showed that exterior retrofit panels provide a viable and reasonable option for the siding trades to increase market opportunities and achieve synergistic benefits for aesthetic upgrades to a building's exterior.

  6. State of the art on historic building insulation materials and retrofit strategies

    DEFF Research Database (Denmark)

    Blumberga, Andra; Kass, Kristaps; Kamendere, Edite

    2016-01-01

    This report provides an analysis and evaluation of a state-of-the-art of internal insulation materials and methods for application in historic buildings, and review on methods, tools and guidelines used as decision making tools for implementation of internal insulation in historic buildings...

  7. Concerning the sound insulation of building elements made up of light concretes. [acoustic absorption efficiency calculations

    Science.gov (United States)

    Giurgiu, I. I.

    1974-01-01

    The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.

  8. The Problem of Biological Destruction of Façades of Insulated Buildings - Causes and Effects

    Science.gov (United States)

    Stanaszek-Tomal, Elżbieta

    2017-10-01

    The Regulation of the Minister of Infrastructure concerning the technical conditions of buildings and their location required new designed buildings to have reduced amount of heat that is transmitted through the barrier. This involves the use of thermal insulation, of adequate thickness to meet the relevant requirements. As the environment conditions are favourable, the façades may deteriorate. Major aggressors include algae fungi or lichens, i.e. the formation of symbiotic growth of algae and fungi. Their construction, metabolic processes are the basis of knowledge about action to prevent corrosion.

  9. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    Science.gov (United States)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the

  10. Impact of Moistened Bio-insulation on Whole Building Energy Use

    Directory of Open Access Journals (Sweden)

    Latif Eshrar

    2017-01-01

    Full Text Available One of the key properties of hemp insulation is its moisture adsorption capacity. Adsorption of moisture can increase both thermal conductivity and heat capacity of the insulation. The current study focuses on the effect of moisture induced thermal mass of installed hemp insulation on the whole building energy use. Hygrothermal and thermal simulations were performed using the CIBSE TRY weather data of Edinburgh and Birmingham with the aid of following simulation tools: WUFI and IES. Following simplified building types were considered: building-1 with dry hemp wall and loft insulations, building-2 with moistened hemp wall and loft insulation and building-3 with stone wool insulation. It was observed that the overall conditioning load of building-1 was 1.2 to 2.3% higher than building-2 and 3. However, during the summer season, the cooling load of building-2 was 3-7.5% lower than the other buildings. It implies that, moistened insulation can potentially mitigate the effect of increasing cooling degree days induced by global warming.

  11. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  12. Post-Insulation of Existing Buildings Constructed Between 1850 and 1920

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    Tightened requirements for thermal insulation of new buildings and the demand for a reduction of energy consumption for heating and comfort in order to reduce carbon dioxide (CO2) emissions mean that existing and especially older buildings have a very low thermal standard compared with today......’s requirements. Therefore, there is an increased interest in improving the insulation standard of many existing and older buildings. However, special attention should be paid to prevent degradation of the existing construction when the energy demand for heating and thermal comfort of a building decreases...... as a result of post-insulation measures. Besides lower heating costs and reduced CO2 emissions, improvement of the insulation standard could contribute to the elimination of other aspects of discomfort, such as draught originating from cold surfaces inside. This paper considers post-insulation of a simulated...

  13. Post-insulation of Existing Buildings Constructed Between 1850 and 1920

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2010-01-01

    Tightened requirements for thermal insulation of new buildings and the demand for a reduction of energy consumption for heating and comfort in order to reduce carbon dioxide (CO2) emissions mean that existing and especially older buildings have a very low thermal standard compared with today......’s requirements. Therefore, there is an increased interest in improving the insulation standard of many existing and older buildings. However, special attention should be paid to prevent degradation of the existing construction when the energy demand for heating and thermal comfort of a building decreases...... as a result of post-insulation measures. Besides lower heating costs and reduced CO2 emissions, improvement of the insulation standard could contribute to the elimination of other aspects of discomfort, such as draught originating from cold surfaces inside. This paper considers post-insulation of a simulated...

  14. The advantage of selection of mineral thermal insulation materials with the structural properties for thermal insulation in buildings

    Directory of Open Access Journals (Sweden)

    Janžekovič Ines M.

    2014-01-01

    Full Text Available The paper deals with the problem of energy efficiency in Serbia. It gives a general overview of the energy losses and focuses on energy losses in buildings, which is recognized as one of the most problematic sectors as the energy losses concerns. By the very fact there is a need for more efficient implementation of measures to reduce energy losses through education and increased awareness of citizens about the proper ways of performing thermal protection of buildings. The paper points out the problems that arise when selecting the inadequate solutions of performing thermal insulation of buildings and suggests some solutions for the proper selection of materials for thermal insulation and in setting the appropriate requirements for thermal envelope for buildings.

  15. Effectiveness of duct sealing and duct insulation in multi-family buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karins, N.H.; Tuluca, A.; Modera, M.

    1997-07-01

    This research investigated the cost-effectiveness of sealing and insulating the accessible portions of duct systems exposed to unconditioned areas in multifamily housing. Airflow and temperature measurements were performed in 25 apartments served by 10 systems a 9 multi-family properties. The measurements were performed before and after each retrofit, and included apartment airflow (supply and return), duct system temperatures, system fan flow and duct leakage area. The costs for each retrofit were recorded. The data were analyzed and used to develop a prototypical multifamily house. This prototype was used in energy simulations (DOE-2.1E) and air infiltration simulations (COMIS 2.1). The simulations were performed for two climates: New York City and Albany. In each climate, one simulation was performed assuming the basement was tight, and another assuming the basement was leaky. Simulation results and average retrofit costs were used to calculate cost-effectiveness. The results of the analysis indicate that sealing leaks of the accessible ductwork is cost-effective under all conditions simulated (simple payback was between 3 and 4 years). Insulating the accessible ductwork, however, is only cost-effective for buildings with leaky basement, in both climates (simple paybacks were less than 5 years). The simple payback period for insulating the ducts in buildings with tight basements was greater than 10 years, the threshold of cost-effectiveness for this research. 13 refs., 5 figs., 27 tabs.

  16. Performance-based methodology for the fire safe design of insulation materials in energy efficient buildings

    OpenAIRE

    Hidalgo-Medina, Juan Patricio

    2015-01-01

    This thesis presents a methodology to determine failure criteria of building insulation materials in the event of a fire that is specific to each typology of insulation material used. This methodology is based on material characterisation and assessment of fire performance of the most common insulation materials used in construction. Current methodologies give a single failure criterion independent of the nature of the material – this can lead to uneven requirements when addres...

  17. Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

    CERN Document Server

    British Standards Institution. London

    1998-01-01

    Acoustics. Measurement of sound insulation in buildings and of building elements. Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor

  18. Dynamic Heat Production Modeling for Life Cycle Assessment of Insulation in Danish Residential Buildings

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    insulation in a Danish single-family detached home. This single family house, is based on averages of current Danish construction practices with building heat losses estimated using Be10. To simulate a changing district heating grid mix, heat supply fuel sources are modeled according to Danish energy mix...... reports of fuel mix since 1972. Both the dynamic impact potentials saved by using insulation and the impacts induced from insulations production are utilized to create an overall dynamic energy inventory for the life cycle assessment. Our study shows that the use of such a dynamic energy inventory......Residential building insulation is regarded as an easy solution for environmentally friendly building design. This assumption is based on the perception that the amount of thermal energy used to create insulation in most cases is much smaller than the amount of thermal energy that is needed...

  19. THERMAL INSULATION EFFECTS ON ENERGY EFFICIENCY OF BUILDING STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. Cvetkovska

    2012-05-01

    Full Text Available This paper presents the use of Finite Element Method for heat transfer analysis. Connections wall-beam-floor structures with different positions of the thermal insulation have been analyzed and conclusions about energy efficiency and energy loss are made. Keywords: heat transfer, numerical analysis, finite elements, thermal insulation, energy efficiency.

  20. Electric cable insulation pyrolysis and ignition resulting from potential hydrogen burn scenarios for nuclear containment buildings

    International Nuclear Information System (INIS)

    Berlad, A.L.; Jaung, R.; Pratt, W.T.

    1982-01-01

    Electric cable insulation in nuclear containment buildings may participate in pyrolysis and combustion processes engendered by hydrogen burn phenomena. This paper examines these pyrolysis/ignition processes of those polymeric materials present in the electric cable insulation and their possible relation to hydrogen burn scenarios

  1. Determination of the Thermal Insulation for the Model Building Approach and the Global Effects in Turkey

    Directory of Open Access Journals (Sweden)

    Cenk Onan

    2014-08-01

    Full Text Available One of the most important considerations to be considered in the design of energy efficient buildings is the thickness of the insulation to be applied to the building. In this study the existing building stock in Turkey has been investigated depending on parameters such as the height and the area. A model building has been created covering all of these buildings. Fuel emission reduction of combustion system was calculated in the case of insulation applied to this model building. Heat loss of the existing building stock and exhaust emissions and the contribution to the country's economy with the model building methodology are also determined. The results show that the optimum insulation thicknesses vary between 3.21 and 7.12 cm, the energy savings vary between 9.23 US$/m2 and43.95 US$/m2, and the payback periods vary between 1 and 8.8 years depending on the regions. As a result of the study when the optimum insulation thickness is applied in the model building, the total energy savings for the country are calculated to be 41.7 billion US$. And also total CO2 emissions for the country are calculated to be 57.2 billion kg CO2 per year after insulation.

  2. Thermal insulation. Non-utilized energy need not be generated. Four rules for a successful thermal insulation by means of building insulation; Waermedaemmung. Energie, die nicht gebraucht wird, muss man nicht erzeugen. Vier Regeln fuer erfolgreichen Waermeschutz durch Gebaeudedaemmung

    Energy Technology Data Exchange (ETDEWEB)

    Patschke, Markus [3E-Consult, Nordkirchen (Germany); Drewer, Arnold [IpeG-Institut, Paderborn (Germany)

    2011-07-15

    The heat supply of buildings causes nearly one third of the energy consumption of an industrialized country. In 2006, the climate-adjusted heat consumption of private households in Germany amounted nearly 600 billion kWh. This consumption caused more than 167 million tons of CO{sub 2}. Heat insulation measures in buildings are required for all heat-transferring enveloping surface. Under this aspect, the contribution under consideration reports on four fundamental rules for a cost-efficient building insulation: (a) Only heated rooms should be insulated thermally; (b) Location and thermal insulation of cavities; (c) Selection of a suitable insulating material; (d) Consideration of an economic sustainability.

  3. Life-cycle based dynamic assessment of mineral wool insulation in a Danish residential building application

    DEFF Research Database (Denmark)

    Sohn, Joshua L.; Kalbar, Pradip; Banta, Gary T.

    2017-01-01

    There has been significant change in the way buildings are constructed and the way building energy performance is evaluated. Focus on solely the use phase of a building is beginning to be replaced by a life-cycle based performance assessment. This study assesses the environmental impact trade...... regarding change in Danish energy supply was used in the analysis. This novel approach of generating inventory for Life Cycle Assessment (LCA) helped to refine an understanding of optimal insulation levels. The findings of this study discourage the over-insulation of houses connected to the district heating...... grid, which is potentially promoted at present in Danish regulation. It is further concluded that improvement of the mineral wool insulation production process could allow for greater levels of environmentally beneficial insulation and would also help in reducing the overall environmental burden from...

  4. Internal insulation applied in heritage multi-storey buildings with wooden beams embedded in solid masonry brick facades

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2016-01-01

    The use of internal insulation is investigated in a heritage building block with wooden beam construction and masonry brick walls as part of an energy renovation. Measurements were carried out and compared to results from a hygrothermal simulation model. The risk of mould growth in the wooden beams...... and in the interface between the insulation and the brick wall was evaluated. Three different insulation strategies for applying internal insulation were investigated: 1) insulation applied on the entire interior facade; 2) 200 mm gap in the insulation above the floor; and 3) 200 mm gap in the insulation both above...

  5. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)

    2005-07-01

    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  6. Structure, Mechanism, and Application of Vacuum Insulation Panels in Chinese Buildings

    Directory of Open Access Journals (Sweden)

    Changhai Peng

    2016-01-01

    Full Text Available Thermal insulation is one of the most used approaches to reduce energy consumption in buildings. Vacuum insulation panels (VIPs are new thermal insulation materials that have been used in the domestic and overseas market in the last 20 years. Due to the vacuum thermal insulation technology of these new materials, their thermal conductivity can be as low as 0.004 W/(m·K at the center of panels. In addition, VIPs that are composites with inorganic core and an envelope out of commonly three metallized PET layers and a PE sealing layer can provide B class fire resistance (their core materials are not flammable and are classified as A1. Compared with other conventional thermal insulation materials, the thermal insulation and fire resistance performances form the foundation of VIP’s applications in the construction industry. The structure and thermal insulation mechanism of VIP and their application potential and problems in Chinese buildings are described in detail.

  7. Characterization of the environmental performance of the insulating materials in the enveloping of the building.

    OpenAIRE

    Carabaño Rodriguez, Rocio; Bedoya Frutos, Cesar

    2012-01-01

    Insulating materials in buildings are one of the main factors that should be taken into account when talking about sustainability since with a correct application it could imply important savings for the citizens. In the course of its life, a building requires a series of supplies to perform the duties it has been built for, generating an impact on the environment. The selection of one material or another will establish partly the global environmental impact of the building. Choosing the righ...

  8. BUILDING MATERIALS WITH INSULATING PROPERTIES BASED ON RICE HUSK)

    OpenAIRE

    Salas, J., Veras, J.

    2014-01-01

    [EN]This work within the research projeci "Material, Technologies and Low Cosí Housing Prototypes" has the purpose lo obiain a bu i Id i ng material based on cemení and treated rice husk, for iis use as ihermal insulator The performance of different dosages was analyzed and according to the results two dosages were choosen to make standard panels ofóO X 90 X 6cm which were testedfor bending, and the thermal conductiviiy valúes were determined, valué of\\ which fluciuaie...

  9. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses

    Directory of Open Access Journals (Sweden)

    Okan Kon

    2017-07-01

    Full Text Available In this study, five different cities were selected from the five climatic zones according to Turkish standard TS 825, and insulation thicknesses of exterior walls of sample buildings were calculated by using optimization. Vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 were chosen within the study content. Glass wool, expanded polystyrene (XPS, extruded polystyrene (EPS were considered as insulation materials. Additionally, natural gas, coal, fuel oil and LPG were utilized as fuel for heating process while electricity was used for cooling.  Life cycle cost (LCC analysis and degree-day method were the approaches for optimum insulation thickness calculations. As a result, in case of usage vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm in the optimum insulation thickness calculations under different insulation materials.  Minimum optimum insulation thickness was calculated in case XPS was preferred as insulation material, and the maximum one was calculated in case of using glass wool.

  10. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  11. Highly insulating glazing in new multi-storey buildings; Hoejisolerende glaspartier i nye etageboliger

    Energy Technology Data Exchange (ETDEWEB)

    Engelund Thomsen, K.; Schmidt, H.; Aggerholm, S.

    2001-07-01

    The purpose of this report is to illustrate how highly insulating types of glazing can be used in multi-storey buildings for housing in new ways. These are energy efficient and provide good indoor climate and also satisfy requirements to high architectural quality. The project has resulted in a number of design proposal demonstrating how new types of glazing can be fitted into multi-storey buildings and how new facade expressions, space and lighting effects can be obtained by using highly insulating glass areas. The project is collaboration between the architects Boje Lundgaard and Lene Tranberg's Tegnestue, KAB Bygge og Boligadministration and Danish Building and Urban Research. Calculations of heat demand suggest that it is possible to meet the targets outlined in the Danish Government's action plan for energy. Energy 21 by using new types of highly insulating glazing in new buildings. Another 33% reduction of the heating demand is targeted in relation to existing requirements in the Danish Building Regulations 1995 (BR 95) and the Danish Building Regulations for Small Dwellings 1998 (BR-S 98). The project builds on experience gained from 'High-insulated Glass House' (Wittchen and Aggerholm, 1999) built on the housing estage Egebjerggaard in Ballerup, a suburb of Copenhagen. Examples of existing multi-storey buildings with glass facades show extensive use of glazing as early as 1830 in Spain. Walls preceding the curtain wall were built from wood and glass and rested on stone corbels at about 1 m from the load-bearing facade. The first multi-storey buildings with facades entirely made from glass date from the 1920s. The architect Le Corbusier was the first to create a building system that facilitated the construction of non-loadbearing facades. Various conditions must be especially considered at the design of facades with highly insulating glass areas, i.a. type of glass and glazing, solar shadings, frame constructions and airtightness

  12. Assessment of thermal insulation materials and systems for building applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The primary goal of the study was to provide a proper foundation for decision making by the federal government, industry, and consumer. The report may be used to identify areas where new test methods and standards are needed to establish new programs for improving thermal performance of buildings, and as a basis for setting new or improved standards after the recommended test programs have been completed.

  13. Sound insulation between dwellings - Descriptors applied in building regulations in Europe

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2010-01-01

    Regulatory sound insulation requirements for dwellings have existed since the 1950s in some countries and descriptors for evaluation of sound insulation have existed for nearly as long. However, the descriptors have changed considerably over time, from simple arithmetic averaging of frequency bands...... was carried out of legal sound insulation requirements in 24 countries in Europe. The comparison of requirements for sound insulation between dwellings revealed significant differences in descriptors as well as levels. This paper focuses on descriptors and summarizes the history of descriptors, the problems...... and of course correlate well with subjective evaluation. More noise sources - including neighbours' activities - and an increased demand for high quality and comfort, together with a trend towards light-weight constructions, are contradictory and challenging. This calls for exchange of data and experience...

  14. Building America Top Innovations 2014 Profile: Cost-Optimized Attic Insulation Solution for Factory-Built Homes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    This 2014 Top Innovation profile describes a low-cost, low-tech attic insulation technique developed by the ARIES Building America team with help from Southern Energy Homes and Johns Manville. Increasing attic insulation in manufactured housing has been a significant challenge due to cost, production and transportation constraints. The simplicity of this dense-pack solution to increasing attic insulation R-value promises real hope for widespread industry adoption.

  15. Detection and localization of building insulation faults using optical-fiber DTS system

    Science.gov (United States)

    Papes, Martin; Liner, Andrej; Koudelka, Petr; Siska, Petr; Cubik, Jakub; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2013-05-01

    Nowadays the trends in the construction industry are changing at an incredible speed. The new technologies are still emerging on the market. Sphere of building insulation is not an exception as well. One of the major problems in building insulation is usually its failure, whether caused by unwanted mechanical intervention or improper installation. The localization of these faults is quite difficult, often impossible without large intervention into the construction. As a proper solution for this problem might be utilization of Optical-Fiber DTS system based on stimulated Raman scattering. Used DTS system is primary designed for continuous measurement of the temperature along the optical fiber. This system is using standard optical fiber as a sensor, which brings several advantages in its application. First, the optical fiber is relatively inexpensive, which allows to cover a quite large area for a small cost. The other main advantages of the optical fiber are electromagnetic resistance, small size, safety operation in inflammable or explosive area, easy installation, etc. This article is dealing with the detection and localization of building insulation faults using mentioned system.

  16. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings.

    Science.gov (United States)

    McCafferty, Dominic; Pandraud, Guillaume; Gilles, Jérôme; Fabra-Puchol, Maria; Henry, Pierre-Yves

    2017-11-13

    Birds and mammals have evolved many thermal adaptations that are relevant for bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. Here, we review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent for building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions produce fine-tuned spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperature to hourly, daily or annual demands for energy. They provide examples of how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types. © 2017 IOP Publishing Ltd.

  17. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  18. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Domszy, Roman [Industrial Science & Technology Network, Inc., Lancaster, PA (United States); Yang, Jeff [Industrial Science & Technology Network, Inc., Lancaster, PA (United States)

    2016-03-30

    Advanced thermal insulation is among the most effective technologies in transforming our nation’s energy system and contributing to DOE’s stated goal of 50% less building energy consumption by 2030. The installation of an advanced thermal insulation would prevent energy waste without the need for any maintenance, and ISTN conservatively estimates that the commercialization of such a new technology would contribute to annual U.S. energy savings of 0.361 Quads and $8 billion in annual economic savings. The key challenge to improving building insulation is to maintain and surpass the industry standard of R-5 per inch insulation value in a cost-competitive manner. Improvements in R-value without cost-efficiency are not likely to impact the market given the cost-sensitive nature of the construction industry (insulation is already the lowest-cost component of the building envelope). However, significantly higher insulating value at competitive costs is extremely appealing to the market given the greater potential to save on energy consumption and costs over the long-term. Thus, our goal is to develop a super-thermal insulation with 50% greater insulation value (R-9 to R-10 per inch) and manufacturing costs that are equal on a per-R-value basis (< $0.70/ft2).

  19. [Preventive effects of sound insulation windows on the indoor noise levels in a street residential building in Beijing].

    Science.gov (United States)

    Guo, Bin; Huang, Jing; Guo, Xin-biao

    2015-06-18

    To evaluate the preventive effects of sound insulation windows on traffic noise. Indoor noise levels of the residential rooms (on both the North 4th ring road side and the campus side) with closed sound insulation windows were measured using the sound level meter, and comparisons with the simultaneously measured outdoor noise levels were made. In addition, differences of indoor noise levels between rooms with closed sound insulation windows and open sound insulation windows were also compared. The average outdoor noise levels of the North 4th ring road was higher than 70 dB(A), which exceeded the limitation stated in the "Environmental Quality Standard for Noise" (GB 3096-2008) in our country. However, with the sound insulation windows closed, the indoor noise levels reduced significantly to the level under 35 dB(A) (Pwindows had significant influence on the indoor noise levels (Pwindow, when the sound insulation windows were closed, the indoor noise levels reduced 18.8 dB(A) and 8.3 dB(A) in residential rooms facing North 4th ring road side and campus side, respectively. The results indicated that installation of insulation windows had significant noise reduction effects on street residential buildings especially on the rooms facing major traffic roads. Installation of the sound insulation windows has significant preventive effects on indoor noise in the street residential building.

  20. A sustainable building product: advanced insulation panels obtained by recycling regional sheep’s wool

    Directory of Open Access Journals (Sweden)

    Daniela Bosia

    2011-04-01

    Full Text Available The article deal with an ongoing research aimed at developing an advanced self-bearing panel, fitted for thermal and acoustic insulation of buildings, derived from the reuse and recycling of local sheep wool. The development of a supply chain of environmentally friendly products (a self bearing panel made of 100% wool encourages, on the one hand, the use of a material so far classified in Italy as special waste and, on the one other, provides new opportunities for a sheepfarming that it is now going through an economic recession, with positive effects on the mountain and the hill landscape.

  1. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.

  2. Auralization of airborne sound insulation including the influence of source room

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    2006-01-01

    The paper describes a simple and acoustically accurate method for the auralization of airborne sound insulation between two rooms by means of a room acoustic simulation software (ODEON). The method makes use of a frequency independent transparency of the transmitting surface combined with a frequ......The paper describes a simple and acoustically accurate method for the auralization of airborne sound insulation between two rooms by means of a room acoustic simulation software (ODEON). The method makes use of a frequency independent transparency of the transmitting surface combined...

  3. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  4. Environmental assessment of façade-building systems and thermal insulation materials for different climatic conditions

    OpenAIRE

    Sierra-Pérez, Jorge

    2016-01-01

    In the European Union, the building sector accounts for more than 40% of the total energy consumption and environmental impacts, representing the area with the greatest potential for intervention. In addition to the existing policies that promote energy efficiency in buildings, the embodied energy and the environmental impacts contained in the building materials should be considered. In the case of the construction of insulation façade systems, the environmental implications are different dep...

  5. Impact sound insulation descriptors in the Nordic building regulations – Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Hagberg, Klas; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding impact sound...... insulation requirements and is related to an equivalent paper about airborne sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building...

  6. Airborne sound insulation descriptors in the Nordic building regulations - Overview special rules and benefits of changing descriptors

    DEFF Research Database (Denmark)

    Helimäki, Heikki; Rasmussen, Birgit

    2010-01-01

    All Nordic countries have sound insulation requirements specified in the building regulations or in sound classification schemes, Class C, referred to in the regulations and published as national standards, which all originate from a common Nordic INSTA-B proposal from the 90’s, thus having a lot....... These national rules are not easy to find, unless all details of standards and other documents are known and studied carefully, and they cause problems since the building industry is not national anymore. This paper gives an overview of special national rules in the Nordic countries regarding airborne sound...... insulation requirements and is related to an equivalent paper about impact sound insulation requirements. The papers also describe the major benefits of reducing the number of special rules and of changing descriptors to those which best support protection of the residents and development of the building...

  7. Building elements and systems using vacuum insulated panels in external walling; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Steinke, G.

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) takes a look at a research project concerning vacuum-insulated building elements and systems. The advantages of the thin vacuum insulation panels (VIP) are listed and compared with the increasingly thick layers of conventional insulation required for low energy consumption buildings that meet so-called 'passive house' standard. The aims of the research project are discussed which addressed the particular requirements placed on the materials and their protection against external damage. The monitoring of vacuum state using RFID chips is discussed. Various protective elements are examined. Also, facade constructions and the avoidance of thermal short circuits are discussed. Illustrated examples of applications are presented and developments in this fast-moving area are commented on.

  8. Effect of implementation quadruple glazing panel into the walls on the airborne sound insulation of building facades

    Directory of Open Access Journals (Sweden)

    Drabek Pavel

    2017-01-01

    Full Text Available Noise is one of the major national problems for decades. In the case of buildings, this concernment has become an issue when building structures are becoming lighter and lighter in weight. This approach does not only caused difficulties with poor sound insulation but also meant heat accumulation problems. This is due to the fact that commonly used lightweight construction materials are not able to absorb too much heat energy like massive constructions did. Production and implementation companies are trying to avoid these ailments by implementing accumulation materials into the buildings most frequently in the form of panels. A subject of this paper is to study the effect of implementation one type of facade system into the perimeter walls on the airborne sound insulation of building facades. The research is dedicated to the quadruple glazing panel which is a translucent wall element without any mechanical components or electronic devices.

  9. Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model

    International Nuclear Information System (INIS)

    Daouas, Naouel

    2016-01-01

    Highlights: • An efficient tool is proposed for a rigorous energy analysis of building envelope. • The longwave radiation has an important impact on the energy requirements. • Optimum insulation thickness for roofs is rigorously determined in a cost analysis. • The present method is more accurate than the sol–air degree hours method. • The proposed model is applicable to the study of the efficiency of cool roofs. - Abstract: In Tunisia, the building sector is considered as a major issue of energy consumption. A special attention should be drawn to improve the thermal quality of the building envelope with real consideration of the Tunisian climate specificity. One of the most effective measures is the roof insulation. Therefore, the present study is concerned with the determination of the optimum insulation thickness and the resulting energy savings and payback period for two typical roof structures and two types of insulation materials. An efficient analytical dynamic model based on the Complex Finite Fourier Transform (CFFT) is proposed and validated in order to handle the nonlinear longwave radiation (LWR) exchange with the sky. This model provides a short computational time solution of the transient heat transfer through multilayer roofs, which could be a good alternative to some numerical methods. Both heating and cooling annual loads are rigorously estimated and used as inputs to a life-cycle cost analysis. Among the studied cases, the most economical one is the hollow terracotta-based roof insulated with rock wool, where the optimum insulation thickness is estimated to be 7.9 cm, with a payback period of 6.06 years and energy savings up to 58.06% of the cost of energy consumed without insulation. The impact of the LWR exchange component is quantified and the results show its important effect on the annual transmission loads and, consequently, on optimum insulation thickness. A sensitivity analysis shows the efficiency of cool roofs in the Tunisian

  10. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  11. Interior insulation – Experimental investigation of hygrothermal conditions and damage evaluation of solid masonry façades in a listed building

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2018-01-01

    Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might be the o......Exterior walls in historic multi-storey buildings compared to walls in modern buildings have low thermal resistance, resulting in high energy loss and cold surfaces/floors in cold climates. When restrictions regarding alteration of the exterior appearance exist, interior insulation might...... be the only possibility to increase occupant comfort. This paper describes an investigation of the hygrothermal influence when applying 100 mm of diffusion open interior insulation to a historic multi-storey solid masonry spandrel. The dormitory room with the insulated spandrel had a normal indoor climate...... showed no risk of damage from the changed hygrothermal conditions when applying interior insulation to a solid masonry spandrel....

  12. Building America Case Study: Retrofit Measure for Embedded Wood Members in Insulated Mass Masonry Walls, Lawrence, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2015-10-01

    ?There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content and relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100 percent RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15 percent) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  13. Influence of external shading on optimum insulation thickness of building walls in a tropical region

    International Nuclear Information System (INIS)

    Wati, Elvis; Meukam, Pierre; Nematchoua, Modeste K.

    2015-01-01

    This study aims to optimize the thicknesses of insulation layers in external walls of continuously used building in a tropical region according to shade level. The investigation is carried out under steady periodic conditions for various wall orientations using a Simulink model constructed from H-Tools (the library of Simulink models). Walls are assumed to be insulated using expanded polystyrene material. The shade level of the building site is assumed to be varying from 0 to 97% with an increment of 25% or 22%. Yearly cooling load is calculated and used as input to an economic model for the determination of the optimum insulation thickness. It is seen that as shade level increases, optimum insulation thickness decreases at an average rate of 0.035 cm, 0.029 cm and 0.036 cm per percentage of solar radiation blocked for south, north and east/west oriented wall, respectively. Results also show that energy savings vary between 46.89 $ m −2 and 101.29 $ m −2 and payback periods vary between 3.56 years and 4.97 years depending on shade level and wall orientation. - Highlights: • The effect of external shading on optimum insulation thickness is investigated. • The investigation is carried out by using an explicit finite volume method. • Intercepting the direct solar radiation has a great effect on peak cooling load. • The optimum insulation thickness with respect to shade level is determined.

  14. Multi-criteria thermal evaluation of wall enclosures of high-rise buildings insulated products based on modified fibers

    Science.gov (United States)

    Pavlov, Alexey; Pavlova, Larisa; Pavlova, Lyudmila

    2018-03-01

    In article results of research of versions of offered types of heaters on the basis of products from the modified fibers for designing energy efficient building enclosures residential high-rise buildings are presented. Traditional building materials (reinforced concrete, brick, wood) are not able to provide the required value of thermal resistance in areas with a temperate and harsh Russia climate in a single-layered enclosing structure. It can be achieved in a multi-layered enclosing structure, where the decisive role is played by new insulating materials with high thermal properties. In general, modern design solutions for external walls are based on the use of new effective thermal insulation materials with the use of the latest technology. The relevance of the proposed topic is to research thermoinsulation properties of new mineral heaters. Theoretical researches of offered heaters from mineral wool on slime-colloidal binder, bentocolloid and microdispersed binders are carried out. In addition, theoretical studies were carried out with several types of facade systems. Comprehensive studies were conducted on the resistance to heat transfer, resistance to vapor permeation and air permeability. According to the received data, recommendations on the use of insulation types depending on the number of storeys of buildings are proposed.

  15. Properties of Agro-Industrial Aerated Concrete as Potential Thermal Insulation for Building

    Directory of Open Access Journals (Sweden)

    Aminudin Eeydzah

    2016-01-01

    Full Text Available The present paper is aiming to provide an actual state of the development of non autoclaved Agro-Industrial aerated concrete by using multiple ashes as improvement of thermal behavior for building. The feasibility of Agro-Industrial wastes as lightweight concrete by utilizing the Palm Oil Fuel Ash (POFA as binder replacement and bottom ash as fine aggregate was investigated in this paper. Portland cement, bottom ash, aluminum powder and lime (Ca(OH2 were used in this study. The POFA was used to replace Portland cement and Hydrated Lime at 0%, 5%, 10% and 15% by weight and aluminum powder was added at 0.75% dry weight in order to form bubbles. The compressive strength, water absorption, porosity and the thermal conductivity test were carried out after the concrete were water cured for 7 days and later being exposed to the air and water until 28days. The results show that the 20% replacements give the optimum strength of 7.143MPa and 30% give the best thermal conductivity with 0.48W/mK. Hence, this study aim, was to develop an agro-industrial aerated concrete good in insulation but having an optimum strength. Hence, it has been found that the more the percentage of POFA is added the lower the thermal conductivity since the pore structure is increasing and by the optimization done, 30% replacement has been chosen as the best mix design for Agro-Industrial Aerated Concrete.

  16. Sodium alginate adhesives as binders in wood fibers/textile waste fibers biocomposites for building insulation.

    Science.gov (United States)

    Lacoste, Clément; El Hage, Roland; Bergeret, Anne; Corn, Stéphane; Lacroix, Patrick

    2018-03-15

    Alginate derived from seaweed is a natural polysaccharide able to form stable gel through carbohydrate functional groups largely used in the food and pharmaceutical industry. This article deals with the use of sodium alginate as an adhesive binder for wood fibres/textile waste fibres biocomposites. Several aldehyde-based crosslinking agents (glyoxal, glutaraldehyde) were compared for various wood/textile waste ratios (100/0, 50/50, 60/40, 70/30 and 0/100 in weight). The fully biomass derived composites whose properties are herewith described satisfy most of the appropriate requirements for building materials. They are insulating with a thermal conductivity in the range 0.078-0.089 W/m/K for an average density in the range 308-333 kg/m3 according to the biocomposite considered. They are semi-rigid with a maximal mechanical strength of 0.84 MPa under bending and 0.44 MPa under compression for 60/40 w/w wood/textile waste biocomposites with a glutaraldehyde crosslinking agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modeled effects of an improved building insulation scenario in Europe on air pollution, health and societal costs

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Holst, Gitte Juel; Sigsgaard, Torben

    2015-01-01

    with extensions. Mean annual changes in the main air pollutants were derived for each country. World Health Organization (WHO) and European Union (EU) data on populations and on impacts of pollutants were used to derive health effects and costs. Effects on indoor air quality were not assessed. Results: Projected...... scenario in Europe would have substantial benefits on health through improvements in air pollution. Health effects and societal cost savings may significantly counterbalance investment costs and should be taken into account when evaluating strategies for mitigation of global warming.......Background: In Europe a substantial share of the energy supply is used for domestic heating and cooling. The quality of building insulation thus significantly impacts air pollution. Objectives: To model the effects of an improved building insulation scenario in Europe on air pollution levels...

  18. Sound insulation between dwellings - Descriptors applied in building regulations in Europe

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2010-01-01

    Regulatory sound insulation requirements for dwellings have existed since the 1950s in some countries and descriptors for evaluation of sound insulation have existed for nearly as long. However, the descriptors have changed considerably over time, from simple arithmetic averaging of frequency ban...

  19. TOOLS TO INCLUDE BLIND STUDENTS IN SCHOOL BUILDING PERFORMANCE ASSESSMENTS

    Directory of Open Access Journals (Sweden)

    Tania Pietzschke Abate

    2016-05-01

    Full Text Available This article discusses the design of data collection instruments that include the opinions of blind students, in accordance with the principles of Universal Design (UD. The aim of this study is to understand the importance of adapting data collection instruments for the inclusion of disabled persons in field research in Architecture and Design, among other fields. The data collection instruments developed were a play interview with a tactile map and a 3D survey with the use of tactile models. These instruments sought to assess the school environment experienced by blind students. The study involved students from the early years of a school for the blind who had not yet mastered the Braille system. The participation of these students was evaluated. A multidisciplinary team consisting of architects, designers, educators, and psychologists lent support to the study. The results showed that the data collection instruments adapted to blind students were successful in making the group of authors examine questions regarding UD. An analysis of the participatory phase showed that the limitations resulting from blindness determine the specificities in the adaptation and implementation process of the instruments in schools. Practical recommendations for future studies related to instruments in the UD thematic are presented. This approach is in line with the global trend of including disabled persons in society based on these users’ opinions concerning what was designed by architects and designers.

  20. Carbon footprint of a reflective foil and comparison with other solutions for thermal insulation in building envelope

    International Nuclear Information System (INIS)

    Proietti, Stefania; Desideri, Umberto; Sdringola, Paolo; Zepparelli, Francesco

    2013-01-01

    Highlights: ► Environmental and energy assessment of thermal insulating materials in building envelope. ► Carbon footprint of a reflective foil, conceived and produced by an Italian company. ► Study conducted according to principles of LCA – Life Cycle Assessment. ► Identification of main impacting processes and measures for reducing emissions. ► Comparison with traditional insulating materials (EPS and rockwool). - Abstract: The present study aims at assessing environmental and energy compatibility of different solutions of thermal insulation in building envelope. In fact a good insulation results in a reduction of heating/cooling energy consumptions; on the other hand construction materials undergo production, transformation and transport processes, whose energy and resources consumptions may lead to a significant decrease of the environmental benefits. The paper presents a detailed carbon footprint of a product (CFP, defined as the sum of greenhouse gas emissions and removals of a product system, expressed in CO 2 equivalents), which is a reflective foil conceived and produced by an Italian company. CFP can be seen as a Life Cycle Assessment with climate change as the single impact category; it does not assess other potential social, economic and environmental impacts arising from the provision of products. The analysis considers all stages of the life cycle, from the extraction of raw materials to the product’s disposal, i.e. “from cradle to grave”; it was carried out according to UNI EN ISO 14040 and 14044, and LCA modelling was performed using SimaPro software tool. On the basis of obtained results, different measures have been proposed in order to reduce emissions in the life cycle and neutralize residual carbon footprint. The results allowed to make an important comparison concerning the environmental performance of the reflective foil in comparison with other types of insulating materials

  1. Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-09-01

    In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.

  2. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.

    Science.gov (United States)

    Zampori, Luca; Dotelli, Giovanni; Vernelli, Valeria

    2013-07-02

    The aim of this research is to assess the sustainability of a natural fiber, such as hemp (Cannabis sativa), and its use as thermal insulator for building applications. The sustainability of hemp was quantified by life cycle assessment (LCA) and particular attention was given to the amount of CO2eq of the whole process, and the indicator greenhouse gas protocol (GGP) was selected to quantify CO2eq emissions. In this study also CO2 uptake of hemp was considered. Two different allocation procedures (i.e., mass and economic) were adopted. Other indicators, such as Cumulative Energy Demand (CED) and EcoIndicator99 H were calculated. The production of 1 ha yielded 15 ton of hemp, whose global warming potential (GWP100) was equal to about -26.01 ton CO2eq: the amount allocated to the technical fiber (20% of the total amount of hemp biomass) was -5.52 ton CO2eq when mass allocation was used, and -5.54 ton CO2eq when economic allocation was applied. The sustainability for building applications was quantified by considering an insulation panel made by hemp fiber (85%) and polyester fiber (15%) in 1 m(2) of wall having a thermal transmittance (U) equal to 0.2 W/m(2)_K. The environmental performances of the hemp-based panel were compared to those of a rockwool-based one.

  3. Building America Case Study: Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation, Cold Climate Region

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window and door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.

  4. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  5. Building renovation with interior insulation on solid masonry walls in Denmark - A study of the building segment and possible solutions

    DEFF Research Database (Denmark)

    Odgaard, Tommy; Bjarløv, Søren Peter; Rode, Carsten

    2015-01-01

    The segment size of the Danish multi-story building stock from the period 1851-1930 is established through a unique major database managed by the Danish authorities. The outcome illustrates a large segment with 219,202 apartment units distributed over 14,832 unique buildings, all sharing characte...

  6. Transparent thermal insulation for prefabricated school buildings; Einsatz transparenter Waermedaemmung an Schulgebaeuden in praefabrizierter Bauweise

    Energy Technology Data Exchange (ETDEWEB)

    Russ, C. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Gruppe Solares Bauen; Buchmann, R. [Leipzigprojekt GmbH, Leipzig (Germany); Duesterhoeft, A. [Holz- und Leichtmetallbau GmbH, Leipzig (Germany)

    1997-12-31

    The existing schools in the new federal states built from prefabricated elements need to be modernized in order to reduce their energy demand. Fitting some 300 square metres of transparent thermal insulation to the south side of a house front may lead to a cut in its thermal energy demand by 74 per cent. This energy consumption is by 12 kWh per square metre lower than the one obtained with opaque thermal insulation. The results of the first demonstration project are described. (MSK) [Deutsch] Die in den neuen Bundeslaendern vorhandenen Schulen in vorgefertigter Bauweise sind energetisch sanierungsbeduerftig. Werden im Rahmen einer Sanierung ca. 300qm transparente Waermedaemmung an der suedorientierten Fassade eingesetzt, so kann der Heizwaermebedarf um 74% herabgesetzt werden. Das sind 12 kWh/qm weniger als bei dem vergleichsweisen Einsatz einer opaken Waermedaemmung. Im Folgenden werden die Ergebnisse des ersten Demonstrationsprojekts beschrieben.

  7. Condensation in insulated homes

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, R A

    1978-05-28

    A research proposal on condensation in insulated homes is presented. Information is provided on: justification for condensation control; previous work and present outlook (good vapor barrier, condensation and retrofit insulation, vapor barrier decreases condensation, brick-veneer walls, condensation in stress-skin panels, air-conditioned buildings, retrofitting for conservation, study on mobile homes, high indoor relative humidity, report on various homes); and procedure (after funding has been secured). Measures are briefly described on opening walls, testing measures, and retrofitting procedures. An extensive bibliography and additional informative citations are included. (MCW)

  8. On-surface covalent linking of organic building blocks on a bulk insulator.

    Science.gov (United States)

    Kittelmann, Markus; Rahe, Philipp; Nimmrich, Markus; Hauke, Christopher M; Gourdon, André; Kühnle, Angelika

    2011-10-25

    On-surface synthesis in ultrahigh vacuum provides a promising strategy for creating thermally and chemically stable molecular structures at surfaces. The two-dimensional confinement of the educts, the possibility of working at higher (or lower) temperatures in the absence of solvent, and the templating effect of the surface bear the potential of preparing compounds that cannot be obtained in solution. Moreover, covalently linked conjugated molecules allow for efficient electron transport and are, thus, particularly interesting for future molecular electronics applications. When having these applications in mind, electrically insulating substrates are mandatory to provide sufficient decoupling of the molecular structure from the substrate surface. So far, however, on-surface synthesis has been achieved only on metallic substrates. Here we demonstrate the covalent linking of organic molecules on a bulk insulator, namely, calcite. We deliberately employ the strong electrostatic interaction between the carboxylate groups of halide-substituted benzoic acids and the surface calcium cations to prevent molecular desorption and to reach homolytic cleavage temperatures. This allows for the formation of aryl radicals and intermolecular coupling. By varying the number and position of the halide substitution, we rationally design the resulting structures, revealing straight lines, zigzag structures, and dimers, thus providing clear evidence for the covalent linking. Our results constitute an important step toward exploiting on-surface synthesis for molecular electronics and optics applications, which require electrically insulating rather than metallic supporting substrates.

  9. Total heat loss coefficient of flat roof constructions with external insulation in tapered layers including the effects of thermal bridges

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    be quite tedious, and therefore a method to generate and optimize solutions has been developed and implemented in a program that also takes into account the effects of different types of thermal bridges, i.e. roof windows, insulation fasteners, roof/wall joints etc. This paper describes a new method...

  10. 75 FR 52981 - Bluescope Buildings North America, Including Workers Whose Unemployment Insurance (UI) Wages Are...

    Science.gov (United States)

    2010-08-30

    ... Unemployment Insurance (UI) Wages Are Reported Through Butler Manufacturing Company, Laurinburg, NC; Amended...Scope Buildings North America had their wages reported through a separate unemployment insurance (UI... America, including workers whose unemployment insurance (UI) wages are reported through Butler...

  11. Thermal insulation of buildings classified as historical monuments with particular emphasis on moisture protection; Hygrisch motivierter Waermeschutz von Altbauten mit denkmalgeschuetzter Fassade

    Energy Technology Data Exchange (ETDEWEB)

    Haeupl, P.; Martin, R.; Fechner, H.; Neue, J. [Technische Univ. Dresden (Germany). Inst. fuer Bauklimatik

    1997-12-31

    Buildings classified as historical must not be fitted with external thermal insulation elements. This project investigates a `gentle` type of an internal thermal insulation system with capillary activity permitting diffusion. A 120-year-old building with a historical house-front was thermally insulated at the inside using a 30-millimetre-thick calcium silicate plate with embedded fibres having capillary activity. The paper discusses the heat flow densities between the internal thermal insulation and the original part of the structure. Moisture fields in the wall in the case of mineral wool insulation and internal thermal insulation with capillary activity are compared. Moisture distribution in the area of the juncture between masonry and window and in the area of the beam head is shown by means of diagrams. (MSK) [Deutsch] Weil bei denkmalgeschuetzten Fassanden ein aussen angebrachtes Thermoverbundsystem nicht moeglich ist, wird in diesem Projekt eine sanfte kapillaraktive, diffusionsoffene Innendaemmung untersucht. Als Referenzobjekt wurde ein etwa 120 Jahre altes Gruenderzeithaus mit denkmalgeschuetzter Fassade mit einer 30mm dicken faserdotierten kapillaraktiven Calciumsilikatplatte innenseitig gedaemmt. Im Folgenden werden die Waermestromdichten zwischen Innendaemmung und Altkonstruktion erlaeutert. Die Feuchtefelder in der Wand bei Mineralwolleindaemmung und bei kapillaraktiver Innendaemmung werden verglichen. Die Feuchteverteilung im Bereich des Fenteranschlusses und des Balkenkopfes wird in Diagrammen dargestellt.

  12. A guidebook for insulated low-slope roof systems. IEA Annex 19, Low-slope roof systems: International Energy Agency Energy Conservation in Buildings and Community Systems Programme

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    Low-slope roof systems are common on commercial and industrial buildings and, to a lesser extent, on residential buildings. Although insulating materials have nearly always been a component of low-slope roofs, the amount of insulation used has increased in the past two decades because of escalation of heating and cooling costs and increased awareness of the need for energy conservation. As the amount of insulation has increased, the demand has intensified for design, installation, and maintenance information specifically for well-insulated roofs. Existing practices for design, installation, and maintenance of insulated roofs have evolved from experience. Typically, these practices feature compromises due to the different properties of materials making up a given roof system. Therefore, they should be examined from time to time to ensure that they are appropriate as new materials continue to enter the market and as the data base on existing systems expands. A primary purpose of this International Energy Agency (IEA) study is to assess current roofing insulation practices in the context of an accumulating data base on performance.

  13. Recovery Act. Advanced Building Insulation by the CO2 Foaming Process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Arthur [Industrial Science and Technology Network, Inc., Lancaster, PA (United States)

    2013-12-30

    In this project, ISTN proposed to develop a new "3rd" generation of insulation technology. The focus was a cost-effective foaming process that could be used to manufacture XPS and other extruded polymer foams using environmentally clean blowing agents, and ultimately achieve higher R-values than existing products while maintaining the same level of cost-efficiency. In the U.S., state-of-the-art products are primarily manufactured by two companies: Dow and Owens Corning. These products (i.e., STYROFOAM and FOAMULAR) have a starting thermal resistance of R-5.0/inch, which declines over the life of the product as the HFC blowing agents essential to high R-value exchange with air in the environment. In the existing technologies, the substitution of CO2 for HFCs as the primary foaming agent results in a much lower starting R-value, as evidenced in CO2-foamed varieties of XPS in Europe with R-4.2/inch insulation value. The major overarching achievement from this project was ISTN's development of a new process that uses CO2 as a clean blowing agent to achieve up to R-5.2/inch at the manufacturing scale, with a production cost on a per unit basis that is less than the cost of Dow and Owens Corning XPS products.

  14. COMBINED EFFECT OF THE AIRBORNE AND IMPACT NOISE PRODUCED ONTO THE SOUND INSULATION OF INSERTED FLOORS OF RESIDENTIAL BUILDINGS: THEORETICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Saltykov Ivan Petrovich

    2012-10-01

    Full Text Available The indoor environment of residential buildings is a complex system. It consists of diverse though related elements. An optimal correlation of parameters of the indoor space converts into the appropriate equilibrium and harmonious human living free from any stimulating or irritating factors that interfere with any working and/or relaxation processes. The author has selected the following three principal factors of the indoor environment. They include heat, daylight and sound. The research has revealed a strong linkn between these factors. Noise pollution of residential houses is taken into account through the introduction of the airborne insulation index and the impact sound index underneath the inserted floor. The findings of theoretical researches and experiments have proven a strong functional relationship between airborne and impact sound values.

  15. A Study on Variation of Thermal Characteristics of Insulation Materials for Buildings According to Actual Long-Term Annual Aging Variation

    Science.gov (United States)

    Choi, Hyun-Jung; Kang, Jae-Sik; Huh, Jung-Ho

    2018-01-01

    Insulation materials used for buildings are broadly classified as organic insulation materials or inorganic insulation materials. Foam gas is used for producing organic insulation materials. The thermal conductivity of foam gas is generally lower than that of air. As a result, foam gas is discharged over time and replaced by outside air that has relatively less thermal resistance. The gas composition ratio in air bubbles inside the insulation materials changes rapidly, causing the performance degradation of insulation materials. Such performance degradation can be classified into different stages. Stage 1 appears to have a duration of 5 years, and Stage 2 takes a period of over 10 years. In this study, two insulation materials that are most frequently used in South Korea were analyzed, focusing on the changes thermal resistance for the period of over 5000 days. The measurement result indicated that the thermal resistance of expanded polystyrene fell below the KS performance standards after about 80-150 days from its production date. After about 5000 days, its thermal resistance decreased by 25.7 % to 42.7 % in comparison with the initial thermal resistance. In the case of rigid polyurethane, a pattern of rapid performance degradation appeared about 100 days post-production, and the thermal resistance fell below the KS performance standards after about 1000 days. The thermal resistance decreased by 22.5 % to 27.4 % in comparison with the initial thermal resistance after about 5000 days.

  16. Transforming common III-V/II-VI insulating building blocks into topological heterostructure via the intrinsic electric polarization

    Science.gov (United States)

    Zunger, Alex; Zhang, Xiuwen; Abdalla, Leonardo; Liu, Qihang

    Currently known topological insulators (TIs) are limited to narrow gap compounds incorporating heavy elements, thus severely limiting the material pool available for such applications. We show how a heterovalent superlattice made of common semiconductor building blocks can transform its non-TI components into a topological heterostructure. The heterovalent nature of such interfaces sets up, in the absence of interfacial atomic exchange, a natural internal electric field that along with the quantum confinement leads to band inversion, transforming these semiconductors into a topological phase while also forming a giant Rashba spin splitting. We demonstrate this paradigm of designing TIs from ordinary semiconductors via first-principle calculations on III-V/II-VI superlattice InSb/CdTe. We illustrate the relationship between the interfacial stability and the topological transition, finding a ``window of opportunity'' where both conditions can be optimized. This work illustrates the general principles of co-evaluation of TI functionality with thermodynamic stability as a route of identifying realistic combination of common insulators that could produce topological heterostructures. This work was supported by Basic Energy Science, MSE division (Grant DE-FG02-13ER46959).

  17. Translucent Insulation

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1998-01-01

    Two new types of translucent materials are presented. One is translucent fiber insulation and the other type is a new type of hony-comb made of Celulose-acetat. Data for the materials and calculations of energy savings when using the materials in building envelopes are presented....

  18. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    Science.gov (United States)

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  19. Vacuum Insulation Panels - Study on VIP-components and panels for service life prediction of VIP in building applications (Subtask A)

    Energy Technology Data Exchange (ETDEWEB)

    Simmler, H.; Brunner, S. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [Bavarian Centre for Applied Energy Research (ZAE Bayern), Garching (Germany); Kumaran, K.; Mukhopadhyaya, P. [National Research Council, Institute for Research in Construction (NRC-IRC), Ottawa (Canada); Quenard, D.; Sallee, H. [Scientific and Technical Centre for Construction (CSTB), Marne la Vallee (France); Noller, K.; Kuecuekpinar-Niarchos, E.; Stramm, C. [Fraunhofer Institute for Process Engineering and Packaging (IVV), Freising (Germany); Tenpierik, M.; Cauberg, H. [Technical University of Delft, Delft (Netherlands); Erb, M. [Dr. Eicher und Pauli AG (Switzerland)

    2005-09-15

    This comprehensive paper takes a look at the properties of vacuum insulation panels (VIP) and was presented as a contribution to the IEA's ECBCS (Energy Conservation in Buildings and Community Systems) Annex 39. The various institutions in Switzerland, Germany, Canada, France, Sweden and the Netherlands participating in the task and their activities are listed. The paper describes the concept of vacuum insulation for buildings and examines the physics involved and core materials that can be used. The physical, mechanical and thermal properties of the core materials are examined and the requirements placed on the envelope of the panels are looked at. Tests made on materials as well as on the complete vacuum insulation panels are described in detail. The results obtained are presented and reviewed. Service-life and quality assurance aspects are also discussed. A comprehensive appendix completes the report.

  20. Switchable insulation for using solar energy in buildings. Final report; Schaltbare Waermedaemmung (SWD) zur Nutzung der Sonnenenergie in Gebaeuden. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stark, C.; Horn, R.; Hetfleisch, J.; Fricke, J.

    2003-02-25

    Solar energy can be used in buildings via use of transparent insulations. But thereby problems occur, like overheating of building walls in summer and heat losses in the cold season. To solve these problems ZAE Bayern has designed and optimized the switchable insulation SWD, the thermal conductivity of which can be changed from highly insulating to conducting. A computer routine was developed to calculate and to optimize the heat gains. The SWD is switched by desorbing/adsorbing as small amount of hydrogen gas. Desorption is facilitated with an electric heating element. The thermal conductivity of the filling can be varied by about a factor of 40. Several SWD-modules were produced and installed in an outside measuring facility. The heat gains and the durability were investigated for three years. The results of the simulation could be verified and ageing did not occur. For an optimal system the heat gains are in the range of 150 kWh/(m{sup 2}a). The mounting of these panels at south facades is simple, especially for post bolt systems. Contrary to transparent systems the loss of heat in winter is very small and the overheating of the walls behind the SWD in summer can be avoided. (orig.) [German] Zur Nutzung der Sonnenenergie in Gebaeuden werden bisher transparente Waermedaemmsysteme eingebaut, die jedoch oft mit Problemen wie Wandueberhitzung im Sommer und Waermeverlusten in der kalten Jahreszeit behaftet sind. Zur Loesung dieser Probleme wurde am ZAE Bayern eine schaltbare Waermedaemmung entwickelt und optimiert, deren Daemmeigenschaft je nach Sonneneinstrahlung und Waermebedarf variiert werden kann. Es wurde ein Programm entwickelt, mit dem die Waermegewinne berechnet und optimiert werden koennen. Die Schaltbarkeit wird durch einen Getter ermoeglicht, der eine ungefaehrliche Menge Wasserstoffgas reversibel aufnehmen und abgeben kann. Die Wasserstoff-Austreibung erfolgt mittels elektrischer Heizung und veraendert die Waermeleitfaehigkeit der Fuellung um einen

  1. Full-scale test of an old heritage multi-storey building undergoing energy retrofitting with focus on internal insulation and moisture

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, Svend

    2015-01-01

    multi-storey building with heritage value was carried out. Focus was given to energy-saving measures that would preserve the original architectural expression of the building, such as internal insulation. Comprehensive measurements were performed on the energy consumption before and after the renovation......The hypothesis investigated in this article is: it is possible to carry out moisture safe energy renovations in the old existing multi-storey buildings with heritage value and still save 50% of the building's energy consumption by use of existing technologies. A holistic energy renovation on an old...

  2. Nation-building policies in Timor-Leste: disaster risk reduction, including climate change adaptation.

    Science.gov (United States)

    Mercer, Jessica; Kelman, Ilan; do Rosario, Francisco; de Deus de Jesus Lima, Abilio; da Silva, Augusto; Beloff, Anna-Maija; McClean, Alex

    2014-10-01

    Few studies have explored the relationships between nation-building, disaster risk reduction and climate change adaptation. Focusing on small island developing states, this paper examines nation-building in Timor-Leste, a small island developing state that recently achieved independence. Nation-building in Timor-Leste is explored in the context of disaster risk reduction, which necessarily includes climate change adaptation. The study presents a synopsis of Timor-Leste's history and its nation-building efforts as well as an overview of the state of knowledge of disaster risk reduction including climate change adaptation. It also offers an analysis of significant gaps and challenges in terms of vertical and horizontal governance, large donor presence, data availability and the integration of disaster risk reduction and climate change adaptation for nation-building in Timor-Leste. Relevant and applicable lessons are provided from other small island developing states to assist Timor-Leste in identifying its own trajectory out of underdevelopment while it builds on existing strengths. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.

  3. Prediction of sound insulation in buildings: a tool to improve the acoustic quality

    NARCIS (Netherlands)

    Gerretsen, E.

    2003-01-01

    Noise from neighbours is an important item in the acoustic climate in which we live and work. And yet the requirements remain essentially the same as fifty years ago, though the noise situation in and around dwellings has changed. In the past the acoustic performance of a building design could

  4. Thermal damping effect due to a green barrier which includes Arundo donax as bioclimatic element in buildings

    Directory of Open Access Journals (Sweden)

    P. Rodríguez-Salinas

    2017-09-01

    Full Text Available Among the main environmental impacts of the operation of residential buildings are those due to greenhouse gases generation as a result of electric consumption of air conditioning systems. The use of vegetation systems in residential buildings represents an alternative to reduce this energy consumption. Green vegetation systems barriers are often used as protection against winds, but recently they are also being used as acoustic dampers. This work explores their use as thermal insulation systems for buildings. Specifically, we report the behavior of an Arundo donax green barrier as a bioclimatic element. The results are analyzed based on indoor and outdoor temperature measurement in prototype buildings, in function of the green barrier presence. Additionally Arundo donax transpiration under extreme environmental conditions was determined.

  5. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  6. Recycled-PET fibre based panels for building thermal insulation: environmental impact and improvement potential assessment for a greener production.

    Science.gov (United States)

    Ingrao, Carlo; Lo Giudice, Agata; Tricase, Caterina; Rana, Roberto; Mbohwa, Charles; Siracusa, Valentina

    2014-09-15

    A screening of Life Cycle Assessment for the evaluation of the damage arising from the production of 1 kg of recycled Polyethylene Terephthalate (RPET) fibre-based panel for building heat insulation was carried out according to the ISO 14040:2006 and 14044:2006. All data used were collected on site based on observations during site visits, review of documents and interviews with technical personnel and management. These data were processed by using SimaPro 7.3.3, accessing the Ecoinvent v.2.2 database and using the Impact 2002+ method. The study showed damage to be equal to 0.000299 points mostly due to the: 1) PET thermo-bonding fibre supply from China by means of a freight-equipped intercontinental aircraft; 2) production of bottle-grade granulate PET; 3) medium voltage electricity consumption during the manufacturing of RPET fibre panel. It was also highlighted that there were environmental benefits due to recycling through mainly avoiding significant emissions and reduced resource consumption. An improvement assessment was carried out to find solutions aimed at reducing the damage coming from the most impacting phases. Furthermore, the environmental impacts due to the production of the analysed RPET fibre-based panel were compared to other materials with the same insulating function, such as polystyrene foam, rock wool and cork slab. Finally, the environmental benefits of the recycling of PET bottles for flake production were highlighted compared to other treatment scenarios such as landfill and municipal incineration. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization of systems for external insulation and retrofitting with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus; Rose, Jørgen

    1999-01-01

    to include the effect of thermal bridges by performing simple calculations, a task which normally requires the use of numerical models. The results show that thermal bridges in external insulation systems may decrease their thermal resistance by more than 25%.Key parameters was calculated by the use...... or unsatisfactory architectural look. One way of solving these problems is by adding a retrofitting system with thermal insulation to the existing building envelope. If external insulation systems are used, a new rain screen is applied on the outside of the insulation. Insulation can be applied either on the inside...... or the outside of the existing building envelope, but internal insulation has many disadvantages compared to external insulation. Several external insulation systems exist, each with different properties making it difficult for building designers to choose between systems in an objective manner.To help...

  8. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Shih-Wei Chen

    2012-06-01

    Full Text Available A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building’s envelope concrete material; therefore, the physiological signals (temperature and humidity within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC combined with temperature and humidity sensors (T/H sensors for the design of a smart temperature and humidity information material (STHIM that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF to the Building Physiology Information System (BPIS. This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  9. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  10. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example

    Directory of Open Access Journals (Sweden)

    Anja Hansen

    2016-06-01

    Full Text Available Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural fibers as material and generated production energies from fossil fuels; the other generated production energies from bioenergy carriers and transformed fossil resources into the insulation material. Both strategies finally yielded the same insulation effect. Hence, the energy demand for heating the building was ignored. None of the strategies operated best in all three criteria: While cropland demand was lower in the bioenergy than in the biomaterial system, its fossil fuel demand was higher. Net contribution to climate change was in the same range for both strategies if we considered no indirect changes in land use. Provided that effective recycling concepts for fossil-derived insulations are in place, using bioresources for energy generation was identified as a promising way to mitigate climate change along with efficient resource use.

  11. A Parametric Study of Thermal Performance of an Exterior Wall Insulated with Vacuum Insulation Panels

    OpenAIRE

    Ciobanu, Adrian-Alexandru; Iacob, Adrian

    2013-01-01

    The requirements regarding thermal insulation of the new buildings and thermal rehabilitation of the existing buildings tend to reach a threshold of insulation which allows to fulfill the necessary requirements for a low-energy building. To achieve this level of thermal insulation involves using either thick layers of conventional insulation (polystyrene, mineral wool, etc.) or high thermal performance materials. Vacuum insulation panels are high performance thermal insulation characteri...

  12. Selecting the Best Thermal Building Insulation Using a Multi-Attribute Decision Model

    Science.gov (United States)

    2008-03-01

    NFPA), there were 511,000 structure fires reported in 2005 which resulted in 17,925 injuries and 3,105 deaths (NFPA, 2006). The type of materials...Fundamentals of Life Cycle Analysis Life cycle analysis ( LCA ) uses a systems approach to identify the cradle-to-grave environmental impact of a material...typical LCA may include following life cycle stages: 1. Raw materials and energy acquisition. 21 2. Manufacturing, including intermediate materials

  13. Methods to include the influence of thermal bonds on the calculation of the energy performance of buildings and their influence on the heat demand for building heating

    Science.gov (United States)

    Valachova, D.; Zdrazilova, N.; Chudikova, B.

    2018-02-01

    The paper deals with the effect of thermal bonds on heat transmission of a building envelope. Then it deals with ways to include of thermal bonds in the calculation of heat loss through the building envelope and the calculation of energy efficiency of buildings. A solution of thermal bonds is very important, because it fundamentally influences the energy efficiency of the buildings. It is important to realize that building envelope comprises not only the peripheral surface structures but also thermal bonds in areas where building structures join.

  14. Experimental data and boundary conditions for a Double - Skin Facade building in transparent insulation mode

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Jensen, Rasmus Lund

    Frequent discussions of double skin façade energy performance have started a dialogue about the methods, models and tools for simulation of double façade systems and reliability of their results. Their reliability will increase with empirical validation of the software. Detailed experimental work...... with all information about the experimental data and measurements, necessary to complete an independent empirical validation of any simulation tool. The article includes detailed information about the experimental apparatus, experimental principles and experimental full-scale test facility ‘The Cube...

  15. Exploring Homeowners’ Insulation Activity

    OpenAIRE

    Friege, J; Holtz, G; Chappin, E.J.L.

    2016-01-01

    Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners’ decision-making processes regarding insulation and to explore how situatio...

  16. Building America Best Practices Series. Volume 17 - Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adams, K. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hefty, M. G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gilbride, T. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Love, Pat M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-05-01

    This guide will help contractors and homeowners identify ways to make their homes more comfortable, more energy efficient, and healthier to live in. It also identifies the steps to take, with the help of a qualified home performance contractor, to increase their home’s insulation, ensure healthy levels of ventilation, and prevent moisture problems. Contractors can use this document to explain the value of these insulation measures to their customers. The references in this document provide further explanation of insulation techniques and technologies.

  17. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  18. Passive and hybrid solar manufactured housing and buildings. [Includes architectural drawings

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, D; Bowling, C; Winter, S; Levy, E; Marks, R; Zgolinski, A

    1980-01-01

    The final design work on a passive solar two story modular home to be built by Unibilt Industries is summarized. After reviewing alternative insulation, glazing, and water wall schemes, five options were identified for detailed energy use and life cycle cost analysis. Using the PASCALC/SLR analysis procedure, the performance of the base case home and each of the energy conservation options was calculated. (MHR)

  19. 75 FR 51846 - BlueScope Buildings North America Including Workers Whose Unemployment Insurance (UI) Wages Are...

    Science.gov (United States)

    2010-08-23

    ... Buildings North America Including Workers Whose Unemployment Insurance (UI) Wages Are Reported Through... wages reported through a separate unemployment insurance (UI) tax account under the name Buttler... as follows: All workers of BlueScope Buildings North America, including workers whose unemployment...

  20. Building materials and systems with vacuum insulation panels for external walls; Bauelemente und Systeme mit VIP fuer Aussenwandkonstruktionen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Steinke, G.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at materials and systems using vacuum insulation panels (VIP) for the construction of external walls. The aim of this research project was the development, practical use and market introduction of VIP systems that take account of the special properties of VIP. Along with partners in industry, applications involving external and internal insulation were examined. The need for protecting the vacuum panels against mechanical damage is stressed. The specific needs for the protection of external and internal applications are discussed. The dynamic developments in this relatively new area are commented on. Various mounting systems are examined and commented on. The thermal properties of such insulation systems and applications are noted and commented on.

  1. Intention, Principle, Outputs and Aims of the Experimental Pavilion Research of Building Envelopes Including Windows for Wooden Buildings

    Science.gov (United States)

    Štaffenová, Daniela; Rybárik, Ján; Jakubčík, Miroslav

    2017-06-01

    The aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.

  2. Importance of Including the Acoustic Medium in Rooms on the Transmission Path between Source and Receiver Rooms within a Building

    DEFF Research Database (Denmark)

    Andersen, Lars; Kirkegaard, Poul Henning; Dickow, Kristoffer Ahrens

    2011-01-01

    Low-frequency noise is a potential nuisance to inhabitants in lightweight building structures. Hence, development of efficient and accurat methods for prediction of noice in such buildings is important. The aim of this paper is to assess the necessity of including the acoustic medium in rooms along...

  3. Effects of embedment including slip and separation on seismic SSI response of a nuclear reactor building

    International Nuclear Information System (INIS)

    Saxena, Navjeev; Paul, D.K.

    2012-01-01

    Highlights: ► Both the slip and separation of reactor base reduce with increase in embedment. ► The slip and separation become insignificant beyond 1/4 and 1/2 embedment respectively. ► The stresses in reactor reduce significantly upto 1/4 embedment. ► The stress reduction with embedment is more pronounced in case of tensile stresses. ► The modeling of interface is important beyond 1/8 embedment as stresses are underestimated otherwise. - Abstract: The seismic response of nuclear reactor containment building considering the effects of embedment, slip and separation at soil–structure interface requires modeling of the soil, structure and interface altogether. Slip and separation at the interface causes stress redistribution in the soil and the structure around the interface. The embedment changes the dynamic characteristics of the soil–structure system. Consideration of these aspects allows capturing the realistic response of the structure, which has been a research gap and presented here individually as well as taken together. Finite element analysis has been carried out in time domain to attempt the highly nonlinear problem. The study draws important conclusions useful for design of nuclear reactor containment building.

  4. Impact of Thermal Mass Oriented Measures Over CO2 Emissions Of a Thermally Insulated Lowrise Apartment Building in Izmir, Turkey

    Directory of Open Access Journals (Sweden)

    Mümine Gerçek

    2015-02-01

    Full Text Available Climate change has drawn the attention of many researchers and practitioners to focus on the methods to address the challenges in achieving low-carbon buildings and cities and in future developments. Nevertheless, few studies have explored the impacts of thermal mass applications for the lowest carbon emissions of building operational energy consumption. A comparative study of CO2 emissions due to different wall and floor compositions is presented in accordance with their lifespans for a hot-humid climate site. Aim of this study is to examine the relation between the energy oriented operations and carbon emissions of the building. Firstly, an existing low-rise building in İzmir is selected, then modelled in the dynamic simulation model software DesignBuilder v4 by synchronizing drawings with basic operational principles of the program. Furthermore, various influence factors of building envelope thermal characteristics are selected as follows: type, location, thickness and thermal specifications of materials used by keeping thermal conductivity value constant. At the end, the research presents remarkable influence of thermal mass oriented measures on reducing energy demands and carbon footprints.

  5. 24 CFR 200.949 - Building product standards and certification program for exterior insulated steel door systems.

    Science.gov (United States)

    2010-04-01

    ...) ASTM F476-84—(Reapproved 1991) Standard Test Methods for Security of Swinging Door Assemblies. (2... by an approved laboratory in accordance with the applicable standard. (2) The administrator also... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  6. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  7. Insulating and protecting systems for a circuit

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1975-01-01

    The invention concerns a device for insulating and protecting systems or pipework carrying liquid sodium in fast neutron nuclear reactor installations or water or superheated steam. This device considerably lowers the risks whilst making it possible to give the insulating improved mechanical strength, without limiting its thermal protection performance and particularly to build into this insulating a protection and safety barrier against projections of the fluid outwards should the system burst accidentally. To this effect, the device considered includes on the outer surface of the system at least two successive windings of a continuous and long strip composed of a flat sock in knitted metal, comprising transversal openings to provide communication between the inside and outside of the sock, such openings allowing the insertion of thin successive metal sheets extending over the length of the strip [fr

  8. Exploring Homeowners’ Insulation Activity

    NARCIS (Netherlands)

    Friege, J; Holtz, G; Chappin, E.J.L.

    2016-01-01

    Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing

  9. Efficiency of a novel "Food to waste to food" system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse.

    Science.gov (United States)

    Stoknes, K; Scholwin, F; Krzesiński, W; Wojciechowska, E; Jasińska, A

    2016-10-01

    At urban locations certain challenges are concentrated: organic waste production, the need for waste treatment, energy demand, food demand, the need for circular economy and limited area for food production. Based on these factors the project presented here developed a novel technological approach for processing organic waste into new food. In this system, organic waste is converted into biogas and digester residue. The digester residue is being used successfully as a stand-alone fertilizer as well as main substrate component for vegetables and mushrooms for the first time - a "digeponics" system - in a closed new low energy greenhouse system with dynamic soap bubble insulation. Biogas production provides energy for the process and CO2 for the greenhouse. With very limited land use highly efficient resource recycling was established at pilot scale. In the research project it was proven that a low energy dynamic bubble insulated greenhouse can be operated continuously with 80% energy demand reduction compared to conventional greenhouses. Commercial crop yields were achieved based on fertilization with digestate; in individual cases they were even higher than the control yields of vegetables such as tomatoes, cucumber and lettuce among others. For the first time an efficient direct use of digestate as substrate and fertilizer has been developed and demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  11. Thermal insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.; Asada, Y.; Matsuo, Y.; Mikoda, M.

    1985-07-16

    A thermal insulator comprises an expanded resin body having embedded therein an evacuated powder insulation portion which consists of fine powder and a container of film-like plastics or a film-like composite of plastics and metal for enclosing the powder. The resin body has been expanded by a Freon gas as a blowing agent. Since a Freon gas has a larger molecular diameter than the constituent gases of air, it is less likely to permeate through the container than air. Thus present invention provides a novel composite insulator which fully utilizes the benefits of vacuum insulation without necessitating a strong and costly material for a vacuum container.

  12. `INCLUDING' Partnerships to Build Authentic Research Into K-12 Science Education

    Science.gov (United States)

    Turrin, M.; Lev, E.; Newton, R.; Xu, C.

    2017-12-01

    Opportunities for authentic research experiences have been shown effective for recruiting and retaining students in STEM fields. Meaningful research experiences entail significant time in project design, modeling ethical practice, providing training, instruction, and ongoing guidance. We propose that in order to be sustainable, a new instructional paradigm is needed, one that shifts from being top-weighted in instruction to a distributed weight model. This model relies on partnerships where everyone has buy-in and reaps rewards, establishing broadened networks for support, and adjusting the mentoring model. We use our successful Secondary School Field Research Program as a model for this new paradigm. For over a decade this program has provided authentic geoscience field research for an expanding group of predominantly inner city high school youth from communities underrepresented in the sciences. The program has shifted the balance with returning participants now serving as undergraduate mentors for the high school student `researchers', providing much of the ongoing training, instruction, guidance and feedback needed. But in order to be sustainable and impactful we need to broaden our base. A recent NSF-INCLUDES pilot project has allowed us to expand this model, linking schools, informal education non-profits, other academic institutions, community partners and private funding agencies into geographically organized `clusters'. Starting with a tiered mentoring model with scientists as consultants, teachers as team members, undergraduates as team leaders and high school students as researchers, each cluster will customize its program to reflect the needs and strengths of the team. To be successful each organization must identify how the program fits their organizational goals, the resources they can contribute and what they need back. Widening the partnership base spreads institutional commitments for research scientists, research locations and lab space

  13. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  14. Vacuum foil insulation system

    Science.gov (United States)

    Hanson, John P.; Sabolcik, Rudolph E.; Svedberg, Robert C.

    1976-11-16

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly.

  15. Insulated Masonry Cavity Walls. Proceedings of the Research Correlation Conference by the Building Research Institute, Division of Engineering and Industrial Research. (April 1960).

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC.

    Publication of conference paper texts include --(1) history and development of masonry cavity walls, (2) recent research related to determination of thermal and moisture resistance, (3) wall design and detailing, (4) design for crack prevention, (5) mortar specification characteristics, (6) performance experience with low-rise buildings, (7)…

  16. Retrofitting Listed Buildings

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2011-01-01

    The paper presents a case study where the energy demand for a listed building constructed in 1900 is reduced. Many older buildings are listed and have restrictions that include the entire building or that include only its exterior. For the building presented, only its exterior facade is listed....... The paper demonstrates measures for the improvement of the thermal insulation of the building with solid brick walls. Durable customised measures are shown. The customised measures are required not to change the overall exterior architecture as the building is considered to contribute to the uniqueness...... of the local urban environment and therefore listed. The reduced energy demand, related to individual measures, is estimated and building physics requirements are addressed together with the economic options for evaluating the profitability....

  17. Better and cheaper extra insulation

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    1998-01-01

    of buildings. The thermal performance of the systems is compared to an ideal situation, showing that there is still a potential of further savings by improving the design of the insulation systems.To improve the thermal performance of the systems a number of product developments are proposed.......In the current energy plan, focus in placed on further savings of heat in buildings. If the target of the energy plan should be achieved, there is a need for saving heat both in new and existing buildings.The article investigate and compare the properties of several systems for external insulation...

  18. Sustainability of solid wall external insulation in existing UK housing

    Science.gov (United States)

    Eleni, Raskou

    2007-12-01

    The great contribution of the construction and operation of the buildings to the CO2 emissions in the UK that reach 45-50% of the total, therefore their huge impact on the greenhouse effect and global warming, forces the global and local authorities to set strict regulations as regards their energy demand and the thermal performance of their components. Especially in the case of existing buildings, which are the great majority of the building stock in Great Britain and whose overall performance is bad due to the degradation of their structure and low efficiency of their services, the UK Building Regulations set standards that require refurbishment actions so that the buildings can comply with them. This study focuses on the environmental performance and cost-effectiveness of the upgrade of external solid walls with external insulation systems, led by the concept that external insulation is considered thermally more efficient than internal insulation, and it is accredited by manufacturers and approval bodies providing guaranteed results. The choice of insulation material should be mostly based on factors such as longevity, thermal resistance and ozone depletion potential synthesis. The importance of embodied energy is considered less critical than the above as the energy savings from the use of insulation can be even 1000 times higher than the energy consumed for their manufacture and transport. Wet render systems are usually applied to low-rise buildings while dry-cladding systems, being more expensive, are most appropriate for high-rise buildings. "Wall Reform" system consists of phenolic Kingspan insulant and insulating render with polystyrene beads that increases the total thermal resistance of the system. Its application on an existing residential, currently uninsulated, building has shown that the system including 40mm phenolic can reduce the total of heating and cooling demand to 80% with a proportional decrease of the total costs and CO2 emissions. The

  19. Topological insulator homojunctions including magnetic layers: the example of n-p type (n-QLs Bi.sub.2./sub.Se.sub.3./sub./Mn-Bi.sub.2./sub.Se.sub.3./sub.) heterostructures

    Czech Academy of Sciences Publication Activity Database

    Vališka, M.; Warmuth, J.; Michiardi, M.; Vondráček, Martin; Ngankeu, A.S.; Holý, V.; Sechovský, V.; Springholz, G.; Bianchi, M.; Wiebe, J.; Hofmann, P.; Honolka, Jan

    2016-01-01

    Roč. 108, č. 26 (2016), 1-4, č. článku 262402. ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk LO1409; GA ČR(CZ) GA14-30062S Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : topological insulator * Mn-Bi2Se 3 * homojunction * ARPES Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  20. Investigation of sound and thermal insulation of pilot projects for low cost housing and exemplary solutions for weak points in building physics. Untersuchung des Schall- und Waermeschutzes in Pilotprojekten fuer den kostenguenstigen Wohnungsbau und beispielhafte Loesungen fuer bauphysikalische Schwachstellen

    Energy Technology Data Exchange (ETDEWEB)

    Lott, G.; Kurz, R.; Jenisch, R.; Lutz, P.

    1990-03-05

    In the framework of the research program six different pilot projects for housing at lowest cost have been investigated shortly before the occupation of the dwellings with regard to the quality of sound and thermal insulation. When correctly executed the attained sound insulation level met the minimum requirements of DIN 4109-62 and was thus slightly below average of other buildings. Composite screed with impact sound absorbent flooring, sound bridges in floating floors, very light interior walls, single-leaf partition wall in terraced houses, site concrete double walls, brickwork double walls with thinner leafs and wider joints, lengthwise sound conduction for attic storeys as well as stairs, doors and balconies have been investigated. Thermal insulation of exterior building units easily fulfilled the requirements of the DIN 4108. It is recommended to further develop at low cost light interior work with prefabricated walls as this method of construction is with regard to lengthwise sound conduction and installation noises not nearly as problematic as light interior walls. (BWI) With 29 figs., 2 annexes.

  1. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  2. Building

    Directory of Open Access Journals (Sweden)

    Ashwani kumar

    2015-08-01

    This paper discusses existing development scenario and issues to accommodate future development in hill towns located in Indian Himalayan region, also highlights the state of existing building regulations through an in-depth study of building regulations in major hill towns, and briefly discuses possible approaches to change existing building regulations for achieving contextually appropriate development.

  3. (H)-FCKW foamed insulating materials in the building industry in Germany. Estimation of the potential emissions up to the year 2010; (H)-FCKW-geschaeumte Daemmstoffe im Bauwesen in Deutschland. Schaetzung der potentiellen Emissionen bis zum Jahr 2010

    Energy Technology Data Exchange (ETDEWEB)

    Obernosterer, Richard [Ressourcen Management Agentur GmbH, Villach (Austria)

    2012-09-15

    fugitive losses (assumed to be between 0.35% and 0.68%) were deducted from those banks, specific to the relevant products and blowing agents. As result a bank of approximately 117.5 kt or 105 000 t-ODP in PU insulating foams was estimated for Germany. The entire ODS bank in insulating materials used in construction in Germany was estimated to amount to about 120 000 t-ODP. The bulk of these ODP quantities (more than three quarters) are concentrated in only a few applications. PU sandwich panels are mainly used to insulate roofs and walls in the construction of industrial buildings as well as for cold-storage buildings. PU insulating panels are mainly used to insulate flat roofs, saddle roofs and floors.

  4. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  5. Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-30

    This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  6. Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Musunuru, S. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.

  7. Development of High Performance Composite Foam Insulation with Vacuum Insulation Cores

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Kaushik [ORNL; Desjarlais, Andre Omer [ORNL; SmithPhD, Douglas [NanoPore, Inc.; LettsPhD, John [Firestone Building Products; YaoPhD, Jennifer [Firestone Building Products

    2016-01-01

    Development of a high performance thermal insulation (thermal resistance or R-value per inch of R-12 hr-ft2- F/Btu-in or greater), with twice the thermal resistance of state-of-the-art commercial insulation materials ( R6/inch for foam insulation), promises a transformational impact in the area of building insulation. In 2010, in the US, the building envelope-related primary energy consumption was 15.6 quads, of which 5.75 quads were due to opaque wall and roof sections; the total US consumption (building, industrial and transportation) was 98 quads. In other words, the wall and roof contribution was almost 6% of the entire US primary energy consumption. Building energy modeling analyses have shown that adding insulation to increase the R-value of the external walls of residential buildings by R10-20 (hr-ft2- F/Btu) can yield savings of 38-50% in wall-generated heating and cooling loads. Adding R20 will require substantial thicknesses of current commercial insulation materials, often requiring significant (and sometimes cost-prohibitive) alterations to existing buildings. This article describes the development of a next-generation composite insulation with a target thermal resistance of R25 for a 2 inch thick board (R12/inch or higher). The composite insulation will contain vacuum insulation cores, which are nominally R35-40/inch, encapsulated in polyisocyanurate foam. A recently-developed variant of vacuum insulation, called modified atmosphere insulation (MAI), was used in this research. Some background information on the thermal performance and distinguishing features of MAI has been provided. Technical details of the composite insulation development and manufacturing as well as laboratory evaluation of prototype insulation boards are presented.

  8. Evaluation of Seismic Response Trends from Long-Term Monitoring of Two Instrumented RC Buildings Including Soil-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Faheem Butt

    2012-01-01

    Full Text Available This paper presents analyses of the seismic responses of two reinforced concrete buildings monitored for a period of more than two years. One of the structures was a three-storey reinforced concrete (RC frame building with a shear core, while the other was a three-storey RC frame building without a core. Both buildings are part of the same large complex but are seismically separated from the rest of it. Statistical analysis of the relationships between maximum free field accelerations and responses at different points on the buildings was conducted and demonstrated strong correlation between those. System identification studies using recorded accelerations were undertaken and revealed that natural frequencies and damping ratios of the building structures vary during different earthquake excitations. This variation was statistically examined and relationships between identified natural frequencies and damping ratios, and the peak response acceleration at the roof level were developed. A general trend of decreasing modal frequencies and increasing damping ratios was observed with increased level of shaking and response. Moreover, the influence of soil structure interaction (SSI on the modal characteristics was evaluated. SSI effects decreased the modal frequencies and increased some of the damping ratios.

  9. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  10. An experimental investigation on morphological, mechanical and thermal properties of date palm particles reinforced polyurethane composites as new ecological insulating materials in building

    Directory of Open Access Journals (Sweden)

    A. Oushabi

    2017-12-01

    Full Text Available The rigid polyurethane (PU with apparent density about 40 kg/m3 was prepared using commercial polyols and polyisocyanate. This reference petrochemical formulation was modified with natural and renewable components such as date palm particles (DPP. The goal of this investigation was to reduce the environmental impacts, and reduce the cost of the petroleum based polyurethane (PU by obtaining polyurethane/date palm particles (PU-DPP composites with the heat insulating and mechanical properties similar or better as in the case of the reference material (PU. The composites were prepared with different (DPP loading; 5%, 10%, and 20% (by weight. The results showed that heat insulating and mechanical properties of the (PU-DPP composites were comparable with those from reference petrochemical formulation (PU. On the other hand these mechanical and thermal performances are competitive with those of other insulating material available on the market. Hence the (PU-DPP is a good candidate for development of efficient, low cost, and safe insulating materials.

  11. Energy Renovations: Volume 17: Insulation - A Guide for Contractors to Share with Homeowners

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, Michael C.; Adams, Karen; Hefty, Marye G.; Gilbride, Theresa L.; Love, Pat M.

    2012-05-15

    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various insulation options for improving the energy performance and comfort of existing homes. The report provides descriptions of many common insulation types, including their advantages and disadvantages, R-values, characteristics, and typical uses. The report also describes potentially hazardous products such as asbestos and formaldehyde and safety issues when conducting energy-efficient upgrades including radon. The guide is available for download at the DOE Building America website, www.buildingamerica.gov.

  12. 7 CFR 2902.17 - Plastic insulating foam for residential and commercial construction.

    Science.gov (United States)

    2010-01-01

    ... Protection Agency designated building insulation containing recovered materials as items for which Federal... building insulation products in the Recovered Materials Advisory Notice (RMAN) published for these products... provide a sealed thermal barrier for residential or commercial construction applications. (b) Minimum...

  13. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems...

  14. An experimental investigation on morphological, mechanical and thermal properties of date palm particles reinforced polyurethane composites as new ecological insulating materials in building

    OpenAIRE

    A. Oushabi; S. Sair; Y. Abboud; O. Tanane; A. El Bouari

    2017-01-01

    The rigid polyurethane (PU) with apparent density about 40 kg/m3 was prepared using commercial polyols and polyisocyanate. This reference petrochemical formulation was modified with natural and renewable components such as date palm particles (DPP). The goal of this investigation was to reduce the environmental impacts, and reduce the cost of the petroleum based polyurethane (PU) by obtaining polyurethane/date palm particles (PU-DPP) composites with the heat insulating and mechanical properti...

  15. Seismic response trends evaluation via long term monitoring and finite element model updating of an RC building including soil-structure interaction

    Science.gov (United States)

    Butt, F.; Omenzetter, P.

    2012-04-01

    This paper presents a study on the seismic response trends evaluation and finite element model updating of a reinforced concrete building monitored for a period of more than two years. The three storey reinforced concrete building is instrumented with five tri-axial accelerometers and a free-field tri-axial accelerometer. The time domain N4SID system identification technique was used to obtain the frequencies and damping ratios considering flexible base models taking into account the soil-structure-interaction (SSI) using 50 earthquakes. Trends of variation of seismic response were developed by correlating the peak response acceleration at the roof level with identified frequencies and damping ratios. A general trend of decreasing frequencies was observed with increased level of shaking. To simulate the behavior of the building, a three dimensional finite element model (FEM) was developed. To incorporate real in-situ conditions, soil underneath the foundation and around the building was modeled using spring elements and non-structural components (claddings and partitions) were also included. The developed FEM was then calibrated using a sensitivity based model updating technique taking into account soil flexibility and non-structural components as updating parameters. It was concluded from the investigation that knowledge of the variation of seismic response of buildings is necessary to better understand their behavior during earthquakes, and also that the participation of soil and non-structural components is significant towards the seismic response of the building and these should be considered in models to simulate the real behavior.

  16. 14 CFR 25.856 - Thermal/Acoustic insulation materials.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Thermal/Acoustic insulation materials. 25....856 Thermal/Acoustic insulation materials. (a) Thermal/acoustic insulation material installed in the.../acoustic insulation materials (including the means of fastening the materials to the fuselage) installed in...

  17. Some aspects to improve sound insulation prediction models for lightweight elements

    NARCIS (Netherlands)

    Gerretsen, E.

    2007-01-01

    The best approach to include lightweight building elements in prediction models for airborne and impact sound insulation between rooms, as in EN 12354, is not yet completely clear. Two aspects are at least of importance, i.e. to derive the sound reduction index R for lightweight elements for

  18. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  19. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  20. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  1. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  2. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  3. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant......, Organisation for Testing in Scandinavia funded the Nordtest....

  4. The effect on climate change impacts for building products when including the timing of greenhouse gas emissions

    Science.gov (United States)

    Richard D Bergman

    2012-01-01

    Greenhouse gases (GHGs) trap infrared radiation emitting from the Earth’s surface to generate the “greenhouse effect” thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...

  5. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  6. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS Inc., Pittsburgh, PA (United States)

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  7. ECONOMIC AND FINANCIAL ANALYSIS OF THE BUILDINGS REHABILITATION SOLUTIONS

    Directory of Open Access Journals (Sweden)

    STAN IVAN F.E.

    2016-07-01

    Full Text Available The paper includes a simplified economical and financial analysis of the buildings rehabilitation solutions, for heating and lighting. The most important economic and financial indicators analyzed and determined are: economic return on investment and payback period of investment in dynamic form, net present value, and internal rate of return economic residual value of the investment on thermal insulation, building maintenance costs, energy costs. In order to reduce the electricity consumption: the methods consisted in replacing inefficient lighting with some efficient energy and for heat consumption: the proposed solution was building rehabilitation (exterior wall insulation, floor insulation board. The analysis consists in determining the economical and financial indicators before and after the building rehabilitation. The 3 rooms apartment is located in Craiova town, (wind zone IV, 2nd floor, orientation is S.

  8. The Role of the Pulmonary Embolism Response Team: How to Build One, Who to Include, Scenarios, Organization, and Algorithms.

    Science.gov (United States)

    Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell

    2017-09-01

    Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. DETERMINING ENERGY SAVINGS IN BUILDINGS USING THE REDUCING COSTS METHOD

    Directory of Open Access Journals (Sweden)

    STAN IVAN F.E.

    2015-03-01

    Full Text Available The paper is structured in four parts. The first part presents the importance of thermal insulation for buildings energy economy and some insulation properties. In the second part of the paper it is described the reducing cost method to determine the energy savings. The third part of the paper includes an analysis and a comparison for an exterior wall provided with different thicknesses of insulation layer in order to determine the average savings cost. The last part presents conclusions and discussion.

  10. Systems and Methods for Providing Insulation

    Science.gov (United States)

    Golden, Johnny L. (Inventor)

    2015-01-01

    Systems and methods provide a multi-layer insulation (MLI) that includes a plurality of sealed metalized volumes in a stacked arrangement, wherein the plurality of sealed metalized volumes encapsulate a gas therein, with the gas having one of a thermal insulating property, an acoustic insulating property, or a combination insulating property thereof. The MLI also includes at least one spacer between adjacent sealed metalized volumes of the plurality of sealed metalized volumes and a protective cover surrounding the plurality of sealed metalized volumes.

  11. Environmental Impact Assessment of a School Building in Iceland Using LCA-Including the Effect of Long Distance Transport of Materials

    Directory of Open Access Journals (Sweden)

    Nargessadat Emami

    2016-11-01

    Full Text Available Buildings are the key components of urban areas and society as a complex system. A life cycle assessment was applied to estimate the environmental impacts of the resources applied in the building envelope, floor slabs, and interior walls of the Vættaskóli-Engi building in Reykjavik, Iceland. The scope of this study included four modules of extraction and transportation of raw material to the manufacturing site, production of the construction materials, and transport to the building site, as described in the standard EN 15804. The total environmental effects of the school building in terms of global warming potential, ozone depletion potential, human toxicity, acidification, and eutrophication were calculated. The total global warming potential impact was equal to 255 kg of CO2 eq/sqm, which was low compared to previous studies and was due to the limited system boundary of the current study. The effect of long-distance overseas transport of materials was noticeable in terms of acidification (25% and eutrophication (31% while it was negligible in other impact groups. The results also concluded that producing the cement in Iceland caused less environmental impact in all five impact categories compared to the case in which the cement was imported from Germany. The major contribution of this work is that the environmental impacts of different plans for domestic production or import of construction materials to Iceland can be precisely assessed in order to identify effective measures to move towards a sustainable built environment in Iceland, and also to provide consistent insights for stakeholders.

  12. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  13. Hierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2016-01-01

    This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because...... complexities and uncertainties in this kind of hybrid system, a hybrid supervisory control with an adaptive fuzzy sliding power control strategy is proposed to regulate the amount of requested fuel from a fuel cell power source to produce the electrical power and heat. Then, simulation results are used...... of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric power to zero emission buildings. First, the power flow structure between hybrid power resources is described. To do so, all necessary electrical and thermal equations are investigated. Next, due to the many...

  14. Cold Climate Building Enclosure Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kosny, Jan [Fraunhofer CSE, Cambridge, MA (United States); Fallahi, Ali [Fraunhofer CSE, Cambridge, MA (United States); Shukla, Nitin [Fraunhofer CSE, Cambridge, MA (United States)

    2013-01-01

    This project investigates the energy performance and cost effectiveness of several state-of-the-art retrofit strategies that could be used in triple-deckers and colonial houses, common house types in New England. Several emerging building enclosure technologies were integrated, including high R-value aerogel and vacuum insulations, in forms that would be energy efficient, flexible for different retrofit scenarios, durable, and potentially cost-competitive for deep energy retrofits.

  15. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  16. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  17. Energy Consumption of Insulated Material Using Thermal Effect Analysis

    Directory of Open Access Journals (Sweden)

    Fadzil M. A.

    2017-01-01

    Full Text Available Wall is one of the structures elements that resist direct heat from the atmosphere. Modification on several structures is relevance to reduce filtrate thermal movement on wall. Insulation material seems to be suitable to be implemented since its purpose meets the heat resistance requirement. Insulation material applied as to generate positive impact in energy saving through reduction in total building energy consumption. Fiberglass is one of the insulation materials that can be used to insulate a space from heat and sound. Fiberglass is flammable insulation material with R Value rated of R-2.9 to R-3.8 which meets the requirement in minimizing heat transfer. Finite element software, ABAQUS v6.13 employed for analyze non insulated wall and other insulated wall with different wall thicknesses. The several calculations related to overall heat movement, total energy consumption per unit area of wall, life cycle cost analysis and determination of optimal insulation thickness is calculated due to show the potential of the implementation in minimize heat transfer and generate potential energy saving in building operation. It is hoped that the study can contribute to better understanding on the potential building wall retrofitting works in increasing building serviceability and creating potential benefits for building owner.

  18. Multipurpose Thermal Insulation Test Apparatus

    Science.gov (United States)

    Fesmire, James E. (Inventor); Augustynowicz, Stanislaw D. (Inventor)

    2002-01-01

    A multi-purpose thermal insulation test apparatus is used for testing insulation materials, or other components. The test apparatus is a fluid boil-off calorimeter system for calibrated measurement of the apparent thermal conductivity (k-value) of a specimen material at a fixed vacuum level. The apparatus includes an inner vessel for receiving a fluid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including the inner vessel and thermal guards, is suspended from the top of the vacuum chamber. Handling tools attach to the cold mass assembly for convenient manipulation of the assembly and for the installation or wrapping of insulation test materials. Liquid nitrogen is typically supplied to the inner vessel using a fill tube with funnel. A single port through the top of the vacuum chamber facilitates both filling and venting. Aerogel composite stacks with reflective films are fastened to the top and the bottom of the inner vessel as thermal guards. The comparative k-value of the insulation material is determined by measuring the boil-off flow rate of gas, the temperature differential across the insulation thickness, and the dimensions (length and diameters) of the test specimen.

  19. High Density Building Stock Retrofit through Solar Strategies and Hybrid Ventilation Systems

    OpenAIRE

    Barbolini, Fausto; Guardigli, Luca; Cappellacci, Paolo

    2014-01-01

    The very actual theme of building stock retrofit includes wide ranges of possible actions, especially in social housing. Multi-criteria assessments should be lead to evaluate the proper operational approach (considering social, structural, maintenance, thermal and economic parameters). The lower-impact actions typically involve improvements on the building skin, such as insulation and window re-placement, while the higher-impact solutions lead to demolition and re-building. Overall, building ...

  20. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  1. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  2. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  3. Foundation helps refurbish buildings

    International Nuclear Information System (INIS)

    Camenzind, B.

    2006-01-01

    This article looks at the activities of the Swiss 'Climate-Cent' foundation, which is helping support the energetic refurbishment of building envelopes. The conditions which have to be fulfilled to receive grants are explained. Work supported includes the replacement of windows and the insulation of roofs and attics as well as outside walls. Details on the financial support provided and examples of projects supported are given. The source of the finance needed to provide such support - a voluntary levy on petrol - and further support provided in certain Swiss cantons is commented on

  4. The Effects of Roof and Wall Insulation on the Energy Costs of Low Income Housing in Mexico

    Directory of Open Access Journals (Sweden)

    Jorge Lucero-Álvarez

    2016-06-01

    Full Text Available Environmental conditions, such as air temperature and solar radiation, have a complex relationship with the energy requirements for heating and cooling of residential buildings. In this work, a comparative analysis of the insulation methods most commonly applied to low income single-family houses in Mexico is presented, in order to find the most energy-efficient combinations of methods for the various climates in this country. A common kind of building, small houses built with hollow cinder block walls and concrete slab roofs, was analyzed considering three insulation scenarios: walls only, roof only and both. We used dynamic simulation to evaluate energy consumption under the climate conditions found in several Mexican cities. From the energy consumption data and the cost of electricity in Mexico, we calculated net annual energy costs, including both annual energy savings and the annualized cost of the initial investment in better insulation. Results of this analysis show that insulating both roof and walls is most effective in cities with cold winters; insulating just the roof is best for temperate climates; and insulating walls (combined with high-albedo roofs is most effective for cities with year-long warm weather.

  5. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  6. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  7. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  8. Insulating modernism isolated and non-isolated thermodynamics in architecture

    CERN Document Server

    Moe, Kiel

    2014-01-01

    What is the best way to achieve sustainable energy savings in buildings? The mainstream construction industry has been saying for decades: it's insulation. Today there is a growing movement among architects who claim that, by contrast, it isintelligent design thatprovides the best energetic results. This book describes the history, theory and facts of the mainstream insulation technology and the emerging alternative design approaches.

  9. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    Directory of Open Access Journals (Sweden)

    José D. Silvestre

    2016-05-01

    Full Text Available Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions, including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  10. Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, C.; Lukachko, A.; Grin, A.; Bergey, D.

    2013-11-01

    Even builders who are relatively new to energy-efficient construction can consistently reach a target whole house airtightness of 1.5 air changes per hour at 50 Pascals (ACH50) with high R-value enclosures that use a hybrid insulation approach. The City of Wyandotte, Michigan, started a construction program in 2010 to build affordable, energy-efficient homes on lots in existing neighborhoods. A goal of the program was to engage local builders in energy-efficient construction and be able to deliver the new houses for less than $100/ft2. By the end of 2012, approximately 25 new houses were built by five local builders under this program. To help builders consistently achieve the airtightness target, a local architect worked with researchers from Building Science Corporation, a U.S. Department of Energy Building America team, to develop a technology specification with several key pieces. A high R-value wall and roof assembly made use of 2 ?6 advanced framing and a hybrid insulation approach that included insulating sheathing to control thermal bridging and closed cell spray polyurethane foam insulation (ccSPF) for its airtightness and vapor control benefits. This approach allows the air barrier to be completed and tested before any finishing work occurs, ensuring that problems are spotted and corrected early in the construction process.

  11. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    Science.gov (United States)

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  12. Court Buildings, LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including the locations and building footprints of schools, churches, government buildings, law enforcement and emergency response offices, pha, Published in 2011, 1:12000 (1in=1000ft) scale, LSU Louisiana Geographic Information Center (LAGIC).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Court Buildings dataset current as of 2011. LAGIC is consulting with local parish GIS departments to create spatially accurate point and polygons data sets including...

  13. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  14. Insulation Retrofit under Low-Slope Roofs.

    Science.gov (United States)

    1982-02-01

    structures. bar -joist/steel-deck structural system, while others use wood or concrete. These buildings can be thermally Approach upgraded if the owner is...provided information about a building where insulation was supported on chicken- Sprayed Systems wire between steel bar joists (Figure 10). Pins and The...Jin ’rlcral ( ti h/ni. ni t ’mOiial Retionjttts There ire no pubhlic tesi neihiods for this Lluality. It iiisolatioii shall 11ot decompose Mt :use

  15. Strongly Correlated Topological Insulators

    Science.gov (United States)

    2016-02-03

    Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or

  16. Environmental impact of thermal insulations: How do natural insulation products differ from synthetic ones?

    Science.gov (United States)

    Dovjak, M.; Košir, M.; Pajek, L.; Iglič, N.; Božiček, D.; Kunič, R.

    2017-10-01

    As the environmental awareness of the public is rising and at the same time contemporary buildings are becoming more and more energy efficient, the focus is shifting towards the usage of environmentally friendly building products. Human decisions are often driven by emotions and perceptions. Consequently, there exists a strong tendency towards preferring “natural” constructional products to the synthetic ones, especially in the case of thermal insulations. Life cycle assessment (LCA) has enabled an opportunity to widen the meaning of the word “environmentally friendly”, giving researchers and building designers an objective decision making tool to determine the environmental impact of building products, building components and buildings as a whole. The purpose of this study was to compare the environmental impact of various thermal insulations for the cradle to gate life cycle stages, based on a unified functional unit. Overall, 15 most commonly used thermal insulation products were analysed and classified into natural and synthetic groups. Based on the differentiation, we compared the impact in the selected environmental categories and identified the most influential environmental drivers. The results show that in some environmental categoriesnatural thermal insulations perform better (i.e. global warming potential), whilein others (i.e. eutrophication potential) they underperform. However, environmental impact trends can be identified, specifically for the natural and the synthetic materials.

  17. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  18. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  19. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Laboratories, Waterloo, ON (Canada); Fox, M. J. [Building Science Laboratories, Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  20. Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, C. J. [Building Science Labs., Waterloo, ON (Canada); Fox, M. J. [Building Science Labs., Waterloo, ON (Canada); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-02-01

    This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three (3) fiber glass insulation materials and one (1) stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.

  1. Plasmonics in Topological Insulators

    Directory of Open Access Journals (Sweden)

    Yi-Ping Lai

    2014-04-01

    Full Text Available With strong spin-orbit coupling, topological insulators have an insulating bulk state, characterized by a band gap, and a conducting surface state, characterized by a Dirac cone. Plasmons in topological insulators show high frequency-tunability in the mid-infrared and terahertz spectral regions with transverse spin oscillations, also called “spin-plasmons”. This paper presents a discussion and review of the developments in this field from the fundamental theory of plasmons in bulk, thin-film, and surface-magnetized topological insulators to the techniques of plasmon excitation and future applications.

  2. Technology Solutions for New and Existing Homes Case Study: Optimized Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR Buidling American Partnership, Madison, WI (United States); Goldberg, L. [NorthernSTAR Buidling American Partnership, Madison, WI (United States); Mosiman, G. [NorthernSTAR Buidling American Partnership, Madison, WI (United States)

    2016-05-01

    A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  3. Development of two Danish building typologies for residential buildings

    DEFF Research Database (Denmark)

    Kragh, Jesper; Wittchen, Kim Bjarne

    2014-01-01

    building types: single-family houses, terraced houses and blocks of flats. Each main building type is presented for nine periods representing age, typical building tradition and insulation levels. Finally, an energy balance model of the residential building stock was devised to validate the average...

  4. Determination of NRHP Eligibility for Buildings 28414, 32100, 33800, 36300, and 36302 at Fort Gordon, Georgia: Includes a Criteria Consideration G Evaluation of the 1988 Barracks Complex

    Science.gov (United States)

    2017-01-01

    2015 with the 5 buildings outlined by thin boxes (post office and bank located in same area), and the 14 buildings outlined by the thick box (DPW...Bicentennial Chapel 32100 1967 Movie Theater 33800 1968 Administration, General Purpose 36300 1966 Bank 36302 1974 Post Office 4.1 Building 28414...Army Engineer Research and Development Center 2902 Newmark Drive PO Box 9005 Champaign, IL 61826-9005 Final Report Approved for public release

  5. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  6. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  7. Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls

    Directory of Open Access Journals (Sweden)

    Omer Kaynakli

    2011-06-01

    Full Text Available Numerous studies have estimated the optimum thickness of thermal insulation materials used in building walls for different climate conditions. The economic parameters (inflation rate, discount rate, lifetime and energy costs, the heating/cooling loads of the building, the wall structure and the properties of the insulation material all affect the optimum insulation thickness. This study focused on the investigation of these parameters that affect the optimum thermal insulation thickness for building walls. To determine the optimum thickness and payback period, an economic model based on life-cycle cost analysis was used. As a result, the optimum thermal insulation thickness increased with increasing the heating and cooling energy requirements, the lifetime of the building, the inflation rate, energy costs and thermal conductivity of insulation. However, the thickness decreased with increasing the discount rate, the insulation material cost, the total wall resistance, the coefficient of performance (COP of the cooling system and the solar radiation incident on a wall. In addition, the effects of these parameters on the total life-cycle cost, payback periods and energy savings were also investigated.

  8. Thermal insulation blanket material

    Science.gov (United States)

    Pusch, R. H.

    1982-01-01

    A study was conducted to provide a tailorable advanced blanket insulation based on a woven design having an integrally woven core structure. A highly pure quartz yarn was selected for weaving and the cells formed were filled with a microquartz felt insulation.

  9. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  10. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  11. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  12. Energy restoration of Primary school building 'Dobrila Stambolic' in Svrljig

    Directory of Open Access Journals (Sweden)

    Radosavljević Jasmina M.

    2017-01-01

    Full Text Available Energy efficiency has become an integral part of the projects by adoption of laws and regulations on energy efficiency in 2011. This paper presents energy rehabilitation of the primary school building 'Dobrila Stambolic' in Svrljig. Energy restoration of this building, in addition to replacement of the roof cladding and roof constructions, included the installation of thermal insulation on all facade walls of the building, replacement of windows and heating system. By applying the suggested refurbishments the building energy class rating transferred from F to D which is two classes improvement.

  13. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  14. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    Science.gov (United States)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  15. Increasing homeowners’ insulation activity in Germany - A theoretically and empirically grounded agent-based model analysis

    OpenAIRE

    Friege, Jonas

    2017-01-01

    How is it possible to increase homeowners’ insulation activity? Answering this question is key to successful policies regarding energy-efficient buildings worldwide. In Germany, doubling today’s insulation rate of about 1% is an important element for reaching the government’s target of an 80% reduction in energy demand in the building sector by 2050. This thesis uses an agent-based model analysis to improve the understanding of homeowners’ insulation activity and to explore new approaches ...

  16. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  17. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  18. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1999-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  19. Electric Power Plants and Generation Stations, Power Plants - is a seperate layer, however, we have them included in local building layer as well, Published in 2010, 1:2400 (1in=200ft) scale, Effingham County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Electric Power Plants and Generation Stations dataset current as of 2010. Power Plants - is a seperate layer, however, we have them included in local building layer...

  20. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  1. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  2. Building calculations

    DEFF Research Database (Denmark)

    Jensen, Bjarne Christian; Hansen, Svend Ole

    Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion......Textbook on design of large panel building including rules on robustness and a method for producing the Statical documentattion...

  3. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  4. Photonic Floquet topological insulators

    Science.gov (United States)

    Rechtsman, Mikael C.; Zeuner, Julia M.; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2013-09-01

    Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on the surface. In two dimensions, surface electrons in topological insulators do not scatter despite defects and disorder, providing robustness akin to superconductors. Topological insulators are predicted to have wideranging applications in fault-tolerant quantum computing and spintronics. Recently, large theoretical efforts were directed towards achieving topological insulation for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional, and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. However, since magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatterfree edge states requires a fundamentally different mechanism - one that is free of magnetic fields. Recently, a number of proposals for photonic topological transport have been put forward. Specifically, one suggested temporally modulating a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, where temporal variations in solidstate systems induce topological edge states. Here, we propose and experimentally demonstrate the first external field-free photonic topological insulator with scatter-free edge transport: a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate acts as `time'. Thus the waveguides

  5. Improved Sprayable Insulation

    Science.gov (United States)

    Hill, W. F.; Sharpe, M. H.; Lester, C. N.; Echols, Sherman; Simpson, W. G.; Lambert, J. D.; Norton, W. F.; Mclemore, J. P.; Patel, A. K.; Patel, S. V.; hide

    1992-01-01

    MSA-2 and MSA-2A, two similar improved versions of Marshall sprayable ablator, insulating material developed at Marshall Space Flight Center to replace both sheets of cork and MSA-1. Suitable for use on large vehicles and structures exposed to fire or other sources of heat by design or accident. Ablative insulation turns into strong char when exposed to high temperature; highly desireable property in original spacecraft application and possibly in some terrestrial applications.

  6. A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent

    Directory of Open Access Journals (Sweden)

    Chan-Ki Jeon

    2017-01-01

    Full Text Available The insulation in buildings is very important. Insulation used in the building is largely divided into organic and inorganic insulation by its insulation material. Organic insulation materials which are made of Styrofoam or polyurethane are extremely vulnerable to fire. On the other hand, inorganic insulation such as mineral wool and glass wool is very weak with moisture, while it is nonflammable, so that its usage is very limited. Therefore, this study developed moisture resistance applicable to mineral wool and glass wool and measured the thermal conductivity of the samples which are exposed to moisture by exposing the product coated with moisture resistance and without moisture resistance to moisture and evaluated how the moisture affects thermal conductivity by applying this to inorganic insulation.

  7. Composite bulk Heat Insulation Made of loose Mineral and Organic Aggregate

    Directory of Open Access Journals (Sweden)

    Namsone Eva

    2015-12-01

    Full Text Available The task of building energy-efficiency is getting more important. Every house owner wishes to save up exploitation costs of heating, cooling, hot water production, ventilation, etc. and find cost-effective investments. One of the ways to reduce greenhouse gas emissions (GHGE is to minimize the heat transfer through the building by insulating it. Loose heat insulation is a good alternative to traditional board insulation, it is simple in use and cost-effective. Main drawback of this insulation is tendency to compact during exploitation. In the frame of this research composite loose heat insulation is elaborated, consisting on porous mineral foamed glass aggregate and local organic fiber materials (hemp and flaxen shives. Composite bulk insulation is an alternative solution which combines heat insulating properties and mechanical stability.

  8. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  9. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  10. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  11. Potential heat savings during ongoing renovation of buildings until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper; Aggerholm, Søren

    This report presents analyses with the purpose to clarify the energy savings of net heating until 2050 if the building components are being upgraded according to the requirements stipulated in the Danish Building Regulation 2010. Upgrading is assumed to be introduced when the building components...... renovation. Additionally, the effect of implementing more tight energy requirements has been analysed. A calculation model has been established using information from the Danish building and dwelling stock register (BBR) and data from the Danish building energy certification (EPC) scheme that include...... information about insulation level, building component areas, i.e. roofs, external walls, floors and windows/doors, per unit area (gross heated floor area). The report is made for the Danish Energy Agency and targeted the Danish building industry, the agency itself and political decision makers in preparation...

  12. Measured moisture properties for alternative insulation products

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Padfield, Tim

    1999-01-01

    During the past few years there has been a growing interest in using alternative insulation products in buildings. Among these products are the organic materials cellulose fibre, flax and sheep's wool as well as the inorganic perlite. The organic materials are regarded with some suspicion, becaus...... of their hygroscopicity. This paper describes two of the moisture-related properties of these materials: the water sorption and the water vapour transmission. For reference, some mineral fibre products are studied as well....

  13. Analytical model of heat transfer in porous insulation around cold pipes

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Karlsson, Per W.; Korsgaard, Vagn

    2011-01-01

    cloth is wrapped around the cold tube and extended through a slit in the tubular insulation and a slot in the facing to the ambient so that condensed water can evaporate into the air. Some of the moisture in that part of the wicking cloth situated in the slit in the tubular insulation will diffuse......A thermal insulation system is analysed that consists of a cold tube insulated with a porous material faced with a vapour retarding foil.Water vapour will diffuse through the vapour retarding foil and condense on the cold tube. To avoid build-up of water in the insulation a hydrophilic wicking...

  14. Thermal insulation materials for inside applications: Hygric and thermal properties

    Science.gov (United States)

    Jerman, Miloš; Černý, Robert

    2017-11-01

    Two thermal insulation materials suitable for the application on the interior side of historical building envelopes, namely calcium silicate and polyurethane-based foam are studied. Moisture diffusivity and thermal conductivity of both materials, as fundamental moisture and heat transport parameters, are measured in a dependence on moisture content. The measured data will be used as input parameters in computer simulation studies which will provide moisture and temperature fields necessary for an appropriate design of interior thermal insulation systems.

  15. Сombined Thermal Insulating Module of Mounted Vented Facades

    Directory of Open Access Journals (Sweden)

    Ryabukhina Svetlana

    2016-01-01

    Full Text Available In order to define an optimum type of mounted vented facades among the existing ones, comparative analysis of two façade modules has been conducted. The first module type is a widespread standard module of hinged vented facade and the second type is less applicable combined thermal insulating module. Those two technologies were compared thermal engineering and energy efficiency parameters. It was defined that the application of a thermal insulating module with combined insulation system improves thermal engineering parameters of the building as well as leads to a substantial savings. This article exposes innovative materials and structure of vented facades which can be applied in modern construction.

  16. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  17. Thermal Insulation Strips Conserve Energy

    Science.gov (United States)

    2009-01-01

    Launching the space shuttle involves an interesting paradox: While the temperatures inside the shuttle s main engines climb higher than 6,000 F hot enough to boil iron for fuel, the engines use liquid hydrogen, the second coldest liquid on Earth after liquid helium. Maintained below 20 K (-423 F), the liquid hydrogen is contained in the shuttle s rust-colored external tank. The external tank also contains liquid oxygen (kept below a somewhat less chilly 90 K or -297 F) that combines with the hydrogen to create an explosive mixture that along with the shuttle s two, powdered aluminum-fueled solid rocket boosters allows the shuttle to escape Earth s gravity. The cryogenic temperatures of the main engines liquid fuel can cause ice, frost, or liquefied air to build up on the external tank and other parts of the numerous launch fueling systems, posing a possible debris risk when the ice breaks off during launch and causing difficulties in the transfer and control of these cryogenic liquid propellants. Keeping the fuel at the necessary ultra-cold temperatures while minimizing ice buildup and other safety hazards, as well as reducing the operational maintenance costs, has required NASA to explore innovative ways for providing superior thermal insulation systems. To address the challenge, the Agency turned to an insulating technology so effective that, even though it is mostly air, a thin sheet can prevent a blowtorch from igniting a match. Aerogels were invented in 1931 and demonstrate properties that make them the most extraordinary insulating materials known; a 1-inch-thick piece of aerogel provides the same insulation as layering 15 panes of glass with air pockets in between. Derived from silica, aluminum oxide, or carbon gels using a supercritical drying process - resulting in a composition of almost 99-percent air - aerogels are the world s lightest solid (among 15 other titles they hold in the Guinness World Records), can float indefinitely on water if treated to be

  18. Insulating materials from renewable raw materials. 4. ed.; Daemmstoffe aus nachwachsenden Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Brandhorst, Joerg; Spritzendorfer, Josef; Gildhorn, Kai; Hemp, Markus

    2012-03-27

    The thermal insulation has become a central issue in the construction and renovation of buildings. The question of healthy building materials and appropriate construction follows the desire of a comfartable and allergy-free living. Due to these developments, insulation materials from renewable resources increasingly has raised the consciousness. The brochure under consideration describes the dynamic market of insulation materials consisting of renewable raw materials. Wood fibers, wood wool, sheep wool, flax, hemp, reeds, meadow grass, cork, cellulose, seaweed and bulrushes are considered as renewable raw materials for insulating materials.

  19. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  20. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  1. Test Report: Cost Effective Foundation Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; T. E. Rahl; G. A. Twitchell; R. G. Kobbe

    2003-06-01

    A field experiment was conducted to demonstrate and quantify the thermal effectiveness of rigid insulation board when installed on the exterior of a buried concrete foundation wall. A heated, insulated box was constructed along one wall of an existing, unheated building to simulate the living space of a home. The crawl space beneath the living space was divided into two sections. One featured external foundation insulation, while the other side had none. 36 temperature and heat flux sensors were installed at predetermined locations to measure the temperature profile and heat flow out of the living space. The temperature profile through the foundation was then used to calculate the total heat flow out of the foundation for both cases. This experiment showed that a significant energy savings is available with exterior foundation insulation. Over the course of 3 months, the heat-loss differential between the insulated and non-insulated foundations was 4.95 kilowatt-hours per lineal foot of foundation wall, for a ratio of 3:1. For a 2200 sq. ft home with a foundation perimeter 200 ft. long, this would amount to a savings of 990 kW-hrs in just 3 months, or 330 kW-hrs per month. Extrapolating to an 8-month heating year, we would expect to save over 2640 kW-hrs per year for such a home. The savings for a basement foundation, rather than a crawlspace, would be approach twice that amount, nearing 5280 kW-hr per year. Because these data were not collected during the coldest months of the year, they are conservative, and greater savings may be expected during colder periods.

  2. Retrofit of a Multifamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  3. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  4. Use of insulating concrete forms in residential housing construction.

    OpenAIRE

    Lewis, Dan C.

    2000-01-01

    The use of Insulated Concrete Forms (ICFs) represents a viable alternative construction method to conventional wood framing in today's residential housing marketplace. The Partnership for Advancing Housing Technology, a joint Government-private venture, will further propel the advancement of ICF construction. The National Evaluation Service is currently standardizing the ICF industry building requirements for inclusion in model building codes. There are three types of ICF building units and f...

  5. Performance Analysis of Cool Roof, Green Roof and Thermal Insulation on a Concrete Flat Roof in Tropical Climate

    OpenAIRE

    Zingre, Kishor T.; Yang, Xingguo; Wan, Man Pun

    2015-01-01

    In the tropics, the earth surface receives abundant solar radiation throughout the year contributing significantly to building heat gain and, thus, cooling demand. An effective method that can curb the heat gains through opaque roof surfaces could provide significant energy savings. This study investigates and compares the effectiveness of various passive cooling techniques including cool roof, green roof and thermal insulation for reducing the heat gain through a flat concrete roof in tropic...

  6. Transparent thermal insulation systems in industrial buildings. Rational energy use and low-energy buildings. Measured variables (g value, k value, long-term measurements), influence of building design and weather on the function of thermal insulation systems, behaviour in fire, exemplary applications (industrial buildings, school buildings, indoor swimming pools, etc.); Transparente Waermedaemmung im Industriebau. Rationelle Energieverwendung und Niedrigenergie-Gebaeude. Messdaten (g-Wert, k-Wert, Langzeitbeobachtung), Einfluss von Bauweise und Witterung auf die Funktion der TWD, Brandverhalten. Anwendungsbeispiele (Gewerbliche Bauten, Industriehallen, Schulen, Schwimmbaeder, etc.)

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, W. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Bertram, H.G. [eds.] [Forschungszentrum Juelich GmbH (DE). Projekttraeger Biologie, Energie, Oekologie (BEO)

    1998-07-01

    The increasing concern about an early depletion of available energy resources have led to world-wide considerations about possible energy conservation. Based on this aspect it seemed to be interesting to evaluate the possibilities and limits for the use of transparent thermal insulation in the field of industrial construction at a workshop and to question them in a detailed discussion. The workshop was held at the ''Crew Trainings Center'' (CTC) at the DLR in Cologne, which is an example of a successful application of transparent thermal insulation. The validity of different criteria for individual decisions in terms of construction and the necessity to consider advantages and disadvantages can be explained with this example. Furthermore a proof is given that a successful architectural design can very well be accomplished taking into account the facts in terms of construction physics. (orig.) [German] Zunehmende Besorgnis gegenueber einer vorzeitigen Erschoepfung der verfuegbaren Energieressourcen fuehrt weltweit zu Ueberlegungen hinsichtlich moeglicher Energieeinsparung. Unter diesem Aspekt schien es attraktiv, Moeglichkeiten und Grenzen fuer den Einsatz der Transparenten Waermedaemmung (TWD) im Industriebau im Rahmen eines Workshops auszuloten und in einer eingehenden Diskussion zu hinterfragen. Den aeusseren Rahmen fuer diese Veranstaltung gab das 'Crew Trainings Center' (CTC) beim DLR in Koeln ab, ein fruehes Beispiel einer gelungenen Anwendung der TWD. Die Gueltigkeit unterschiedlicher Kriterien fuer einzelne bauliche Entscheidungen und die Notwendigkeit einer Abwaegung von Vor- und Nachteilen lassen sich an diesem Einzelfall exemplarisch verdeutlichen. Darueber hinaus aber wird hier ein Beleg dafuer geboten, dass ein architektonisch gelungener Wurf die Beruecksichtigung bauphysikalischer Gegebenheiten keineswegs ausschliesst. (orig.)

  7. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1.What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2.Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3.What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  8. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  9. A model predictive control strategy for the space heating of a smart building including cogeneration of a fuel cell-electrolyzer system

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Bindner, Henrik W.; Madsen, Henrik

    2014-01-01

    The objective of this paper is to analyze the value of energy replacement in the context of demand response. Energy replacement is dened as the possibility of the consumer to choose the most convenient source for providing space heating to a smart building according to a dynamic electricity price....... In the proposed setup, heat is provided by conventional electric radiators and a combined heat and power generation system, composed by a fuel cell and an electrolyzer. The energy replacement strategy is formulated using model predictive control and mathematical models of the components involved. Simulations show...... that the predictive energy replacement strategy reduces the operating costs of the system and is able to provide a larger amount of regulating power to the grid. In the paper, we also develop a novel dynamic model of a PEM fuel cell suitable for micro-grid applications. The model is realized applying a grey...

  10. Interactive Configuration of High Performance Renovation of Apartment Buildings by the use of CSP

    DEFF Research Database (Denmark)

    Vareilles, E.; Thuesen, Christian; Falcon, M.

    2013-01-01

    of mid-rise (up to seven stories) apartment buildings. The renovation is based on external rectangular panels, always comprising insulation and cladding, and sometimes including, in addition, doors, windows or solar modules. The panels can be fixed directly onto the walls or onto a metal structure around...

  11. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  12. Conducting and insulating materials

    OpenAIRE

    Bolotinha, Manuel

    2016-01-01

    Conducting materials may be classified into three groups: conductors, semiconductors and imperfect insulators. This section will cover only conductors. In general, metals and alloys are conductors of electricity. The most common metals used in electricity are copper, aluminium and their alloys. info:eu-repo/semantics/publishedVersion

  13. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment...

  14. Fractional Chern Insulator

    Directory of Open Access Journals (Sweden)

    N. Regnault

    2011-12-01

    Full Text Available Chern insulators are band insulators exhibiting a nonzero Hall conductance but preserving the lattice translational symmetry. We conclusively show that a partially filled Chern insulator at 1/3 filling exhibits a fractional quantum Hall effect and rule out charge-density-wave states that have not been ruled out by previous studies. By diagonalizing the Hubbard interaction in the flat-band limit of these insulators, we show the following: The system is incompressible and has a 3-fold degenerate ground state whose momenta can be computed by postulating an generalized Pauli principle with no more than 1 particle in 3 consecutive orbitals. The ground-state density is constant, and equal to 1/3 in momentum space. Excitations of the system are fractional-statistics particles whose total counting matches that of quasiholes in the Laughlin state based on the same generalized Pauli principle. The entanglement spectrum of the state has a clear entanglement gap which seems to remain finite in the thermodynamic limit. The levels below the gap exhibit counting identical to that of Laughlin 1/3 quasiholes. Both the 3 ground states and excited states exhibit spectral flow upon flux insertion. All the properties above disappear in the trivial state of the insulator—both the many-body energy gap and the entanglement gap close at the phase transition when the single-particle Hamiltonian goes from topologically nontrivial to topologically trivial. These facts clearly show that fractional many-body states are possible in topological insulators.

  15. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  16. Building envelope for New Buildings and Energy Renovation of Existing Buildings. Project results

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Rose, Jørgen; Esbensen, Peter Kjær

    1999-01-01

    At the energy conference in 1995, Denmark agreed on reducing the total CO2-emission by 20%. To achieve this goal, it is necessary to increase thermal insulation thickness both in new and retrofitted buildings.This will, for both cases, impose a series of building physics problems, as the knowledge......, a group of scientists at the Department of Buildings and Energy, Technical University of Denmark, have started a research project to develop better solutions for new building and energy renovation.The publication report the status after the first 3 year of the Building Envelope Project with emphasis...... of heat- and moistureflow is insufficiently documented for large insulation thicknesses. Thermal bridges, for instance, plays a larger role for the overall heat loss in these constructions, and moisture in insulation materials will decrease the overall performance of the construction.Due to these facts...

  17. Effect of Autoclaved Aerated Concrete Modification with High-Impact Polystyrene on Sound Insulation

    Science.gov (United States)

    Brelak, Sylwia; Dachowski, Ryszard

    2017-10-01

    Autoclaved aerated concrete is one of the most commonly used building materials. Its advantages include low density, high thermal insulation capacity and high fire resistance. It has a relatively high compressive strength, though not high enough to be able to compete with other building materials in this respect. One of the directions leading to the improvement of physical and mechanical properties of autoclaved aerated concrete is the modification of its composition. A noticeable effect of pulverized high-impact polystyrene (improved compressive strength and water absorption) was relevant for the decision to continue the study of its effects. This paper discusses the effect of high-impact polystyrene on sound insulation in AAC products. The tests demonstrated a positive influence of the modifier on AAC sound insulation enhancement. Results from the tests performed on HIPS-modified AAC products were showed and compared with the properties of conventional products. The effect of the polymer on the microstructure of the products obtained was described briefly.

  18. Soldier use of dietary supplements, including protein and body building supplements, in a combat zone is different than use in garrison.

    Science.gov (United States)

    Austin, Krista G; McLellan, Tom M; Farina, Emily K; McGraw, Susan M; Lieberman, Harris R

    2016-01-01

    United States Army personnel in garrison who are not deployed to combat theater report using dietary supplements (DSs) to promote health, increase physical and mental strength, and improve energy levels. Given the substantial physical and cognitive demands of combat, DS use may increase during deployment. This study compared DS use by garrison soldiers with DS use by personnel deployed to a combat theater in Afghanistan. Prevalence and patterns of DS use, demographic factors, and health behaviors were assessed by survey (deployed n = 221; garrison n = 1001). Eighty-two percent of deployed and 74% of garrison soldiers used DSs ≥ 1 time·week(-1). Logistic regression analyses, adjusted for significant demographic and health predictors of DS use, showed deployed personnel were more likely than garrison soldiers to use protein, amino acids, and combination products. Deployed females were more likely to use protein supplements and deployed males were more likely to use multivitamins, combination products, protein, and body building supplements than garrison respondents. Significantly more deployed (17%) than garrison (10%) personnel spent more than $50∙month(-1) on DSs. Higher protein supplement use among deployed personnel was associated with higher frequency of strength training and lower amounts of aerobic exercise for males but similar amounts of strength training and aerobic exercise for females. Protein supplements and combination products are used more frequently by deployed than garrison soldiers with the intent of enhancing strength and energy.

  19. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  20. Methods for designing building envelope components prepared for repair and maintenance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian

    2000-01-01

    The dissertation consist of five parts:The purpose of the first part is to give the reader an introduction to the subjects of deterioration mechanisms, loss of function for building envelope components and prediction of service life for building envelope components.The purpose of the second part ...... condensation can be removed if detected (including an easy method for detection of moisture) and wall systems where extra insulation can easily be inserted later on if demanded....

  1. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings

    Science.gov (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei

    2018-02-01

    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  2. Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

    International Nuclear Information System (INIS)

    Green, M.A.

    1994-01-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included

  3. Spin-polarized tunneling through a ferromagnetic insulator

    NARCIS (Netherlands)

    Kok, M.; Kok, M.; Beukers, J.N.; Brinkman, Alexander

    2009-01-01

    The polarization of the tunnel conductance of spin-selective ferromagnetic insulators is modeled, providing a generalized concept of polarization including both the effects of electrode and barrier polarization. The polarization model is extended to take additional non-spin-polarizing insulating

  4. 16 CFR 460.2 - What is home insulation.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false What is home insulation. 460.2 Section 460.2 Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME..., cooperatives, apartments, modular homes, or mobile homes. It does not include pipe insulation. It does not...

  5. Constructions complying with tightened Danish sound insulation requirements for new housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Hoffmeyer, Dan

    New sound insulation requirements in Denmark in 2008 New Danish Building Regulations with tightened sound insulation requirements were introduced in 2008 (and in 2010 with unchanged acoustic requirements). Compared to the Building Regulations from 1995, the airborne sound insulation requirements...... were 2 –3 dB stricter and the impact sound insulation requirements 5 dB stricter. The limit values are given using the descriptors R’w and L’n,w as before. For the first time, acoustic requirements for dwellings are not found as figures in the Building Regulations. Instead, it is stated......), Denmark. [2] "Lydisolering mellem boliger – Nybyggeri" (Sound insulation between dwellings – Newbuild)". Publication expected in April 2011. The guideline is a part of a series of seven new SBi acoustic guidelines. Project leader Birgit Rasmussen. The series shall replace the existing guidelines 1984...

  6. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Directory of Open Access Journals (Sweden)

    Biseniece Edite

    2018-03-01

    Full Text Available Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel in a cold climate (average 4000 heating degree days. We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  7. Study of Hygrothermal Processes in External Walls with Internal Insulation

    Science.gov (United States)

    Biseniece, Edite; Freimanis, Ritvars; Purvins, Reinis; Gravelsins, Armands; Pumpurs, Aivars; Blumberga, Andra

    2018-03-01

    Being an important contributor to the final energy consumption, historic buildings built before 1945 have high specific heating energy consumption compared to current energy standards and norms. However, they often cannot be insulated from the outside due to their heritage and culture value. Internal insulation is an alternative. However internal insulation faces challenges related to hygrothermal behaviour leading to mold growth, freezing, deterioration and other risks. The goal of this research is to link hygrothermal simulation results with experimental results for internally insulated historic brick masonry to assess correlation between simulated and measured data as well as the most influential parameters. The study is carried out by both a mathematical simulation tool and laboratory tests of historic masonry with internal insulation with four insulation materials (mineral wool, EPS, wood fiber and granulated aerogel) in a cold climate (average 4000 heating degree days). We found disparity between measured and simulated hygrothermal performance of studied constructions due to differences in material parameters and initial conditions of materials. The latter plays a more important role than material parameters. Under a steady state of conditions, the condensate tolerating system varies between 72.7 % and 80.5 % relative humidity, but in condensate limiting systems relative humidity variates between 73.3 % and 82.3 %. The temperature between the masonry wall and all insulation materials has stabilized on average at +10 °C. Mold corresponding to Mold index 3 was discovered on wood fiber mat.

  8. Radio interference and transient field from gas-insulated substations

    International Nuclear Information System (INIS)

    Harvey, S.M.; Wong, P.S.; Balma, P.M.

    1995-01-01

    Gas-insulated substations (GIS), owing to their compact nature, offer an attractive alternative to conventional substations in areas where space is limited, such as in urban areas. Consequently, it is important to address the issue of environmental conditions within the substation and in the surrounding areas. This paper reports the result of radio interference (RI) and transient field measurements at two GIS in Ontario, Canada. For comparison with RI levels taken at the GIS, RI levels outside two hospitals in the Toronto area were also measured. The transient field study covers electromagnetic interference (EMI) levels generated during switching operations, and includes measurements inside and outside the GIS. Measurements show that RI levels from the GIS were either below background levels, or contributed little to the background. RI levels outside the GIS and the hospitals were similar. Peak transient field values up to 580 V/m were measured inside the station building, and dropped to background values of 10 V/m at about 120 m from the station. The transient field (E) dropped off at a rate of 3/2 power with distance (d) from the air-insulated 115 kV bus, i.e. E ∝ d -1.5

  9. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    Most research on the acoustic environment in the modern Western hospital identifies raised noise levels as the main causal explanation for ranking noise as a critical stressor for patients, relatives and staff. Therefore, the most widely used strategies to tackle the problem in practice are insul......Most research on the acoustic environment in the modern Western hospital identifies raised noise levels as the main causal explanation for ranking noise as a critical stressor for patients, relatives and staff. Therefore, the most widely used strategies to tackle the problem in practice...... are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence...

  10. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  11. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  12. Nuclear reactor vessel fuel thermal insulating barrier

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  13. Insulation Test Cryostat with Lift Mechanism

    Science.gov (United States)

    Fesmire, James E. (Inventor); Dokos, Adam G. (Inventor)

    2016-01-01

    A multi-purpose, cylindrical thermal insulation test apparatus is used for testing insulation materials and systems of materials using a liquid boil-off calorimeter system for absolute measurement of the effective thermal conductivity (k-value) and heat flux of a specimen material at a fixed environmental condition (cold-side temperature, warm-side temperature, vacuum pressure level, and residual gas composition). An inner vessel receives liquid with a normal boiling point below ambient temperature, such as liquid nitrogen, enclosed within a vacuum chamber. A cold mass assembly, including upper and lower guard chambers and middle test vessel, is suspended from a lid of the vacuum canister. Each of the three chambers is filled and vented through a single feedthrough. All fluid and instrumentation feedthroughs are mounted and suspended from a top domed lid allowing easy removal of the cold mass. A lift mechanism allows manipulation of the cold mass assembly and insulation test article.

  14. Cryogenic Vacuum Insulation for Vessels and Piping

    Science.gov (United States)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  15. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  16. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  17. Renovation of historic, protected buildings in Geneva

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.; Haefeli, P.

    2009-07-01

    This report for the Swiss Federal Office of Energy (SFOE) reports on work done within the IEA Solar Heating and Cooling Program's Task 37. The objective of SHC Task 37 is to develop a solid knowledge base on how to renovate housings to a very high energy standard and how to develop strategies that support the market penetration of such renovation methods. The report deals with four listed buildings of historical value in Geneva, Switzerland, and examines various aspects of the renovation. These aspects include a discussion of the techniques applied, including internal and external insulation. Simulation methods used and results obtained are discussed. The improvements made are evaluated.

  18. Energy in buildings: Efficiency, renewables and storage

    Science.gov (United States)

    Koebel, Matthias M.

    2017-07-01

    This lecture summary provides a short but comprehensive overview on the "energy and buildings" topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control) affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  19. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  20. Research of water-base nano-PU paint for heat insulation

    Science.gov (United States)

    Jwo, Ching-Song; Jeng, Lung-Yue; Cheng, Ho; Chen, Sih-Li

    2008-12-01

    The purpose of this study is to research and produce water-base nano-PU paint with energy conservation, environmental consciousness and high efficiency of heat insulation, which can be enhance the traditional PU paint for performance improvement of heat insulation and range of application. In this study, research will be held on the two-stage synthesis method. The SiO2 nanoparticles are added into the water-base PU paint to improve the properties of traditional PU paint. Next, the fundamental properties of this paint, including water resistance, weather rsistance, weak acid solvent resistance, and heat insulation rate, will be measured and analyzed, and the performance of heat insulation will be evaluated in order to confirm the performance and practicability of the heat insulation of water-base nano-PU paint in this study. The experimental results show that for the SiO2/W-PU composite nanopaint prepared by two-stage synthesis method, the dispersion of SiO2 powder in the water-base PU (W-PU) paint is even. For the SiO2/W-PU nanocomposite paint prepared by adding SiO2 powder at 8% wt. to the marketed water-base PU, the water absorption of its experimental sample is enhanced by around 10.1 times, whereas its weak acid dissolve erosion rate is increased by 3.3 times. However, the average heat insulation rate in the thermal properties is also increased, increasing around 24.22% for the W-PU paint without SiO2 powder. Through the multilayered coating construction, the water-base nano-PU paint added with SiO2 powder can be used on any facility of heat insulation, including vehicle, safety helmet, umbrella, drapes, and outer wall of building. The newly developed water-base nano-PU paint with high thermal resistance is especially suitable for application to the shell coating of air conditioner and cooling tower,. Due to the better thermal resistance of this nanopaint, the problems of poor heat transfer and temperature rise of cooling water caused by direct sunlight can be

  1. Impact Verification of Aerogel Insulation Paint on Historic Brick Facades

    Science.gov (United States)

    Ganobjak, Michal; Kralova, Eva

    2017-10-01

    Increasing the sustainability of existing buildings is being motivated by reduction of their energy demands. It is the above all the building envelope and its refurbishment by substitution or addition of new materials that makes the opportunity for reduction of energy consumption. A special type of refurbishment is conservation of historical buildings. Preservation of historic buildings permits also application of innovative methods and materials in addition to the original materials if their effects are known and the gained experience ensures their beneficial effect. On the market, there are new materials with addition of silica aerogel in various forms of products. They are also potentially useful in conservation of monuments. However, the effects of aerogel application in these cases are not known. For refurbishment is commercially available additional transparent insulation paint - Nansulate Clear Coat which is containing aerogel and can be used for structured surfaces such as bricks. A series of experiments examined the thermo-physical manifestation of an ultra-thin insulation coating of Nansulate Clear Coat containing silica aerogel on a brick facade. The experiments of active and passive thermography have observed effects of application on the small-scale samples of the brick façade of a protected historical building. Through a series of experiments were measured thermal insulation effect and influence on the aesthetic characteristics such as change in colour and gloss. The treated samples were compared to a reference. Results have shown no thermal-insulating manifestation of the recommended three layers of insulation paint. The three layers recommended by the manufacturer did not significantly affect the appearance of the brick facade. Color and gloss were not significantly changed. Experiments showed the absence of thermal insulation effect of Nansulate transparent triple coating. The thermal insulation effect could likely be reached by more layers of

  2. Risk assessment of desert pollution on composite high voltage insulators.

    Science.gov (United States)

    El-Shahat, Mohammed; Anis, Hussein

    2014-09-01

    Transmission lines located in the desert are subjected to desert climate, one of whose features is sandstorms. With long accumulation of sand and with the advent of moisture from rain, ambient humidity and dew, a conductive layer forms and the subsequent leakage current may lead to surface discharge, which may shorten the insulator life or lead to flashover thus interrupting the power supply. Strategically erected power lines in the Egyptian Sinai desert are typically subject to such a risk, where sandstorms are known to be common especially in the spring. In view of the very high cost of insulator cleaning operation, composite (silicon rubber) insulators are nominated to replace ceramic insulators on transmission lines in Sinai. This paper examines the flow of leakage current on sand-polluted composite insulators, which in turn enables a risk assessment of insulator failure. The study uses realistic data compiled and reported in an earlier research project about Sinai, which primarily included grain sizes of polluting sand as well as their salinity content. The paper also uses as a case study an ABB-designed composite insulator. A three-dimensional finite element technique is used to simulate the insulator and seek the potential and electric field distribution as well as the resulting leakage current flow on its polluted surface. A novel method is used to derive the probabilistic features of the insulator's leakage current, which in turn enables a risk assessment of insulator failure. This study is expected to help in critically assessing - and thus justifying - the use of this type of insulators in Sinai and similar critical areas.

  3. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  4. 52 KILN EFFICIENCY AND INSULATION. Anthony Obiy Etuokwu ...

    African Journals Online (AJOL)

    HP-G61

    temperature. For effective performance, the materials with which the kiln is built is of utmost importance, hence emphasis is always being laid on the quality of insulating bricks that is used in the building of the kiln. Firing is expensive as it consumes a lot of time, fuel and energy; hence in designing a kiln economy, efficiency ...

  5. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  6. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  7. Optimization of External Envelope Insulation Thickness: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Eleftheria Touloupaki

    2017-02-01

    Full Text Available Almost four years after the implementation deadline of the energy performance of buildings Directive recast (2010/31/EU and after being referred to the Court of Justice of the EU by the European Commission, Greece has not yet proceeded with the necessary calculations and legislative measures on the minimum, cost-optimal energy performance requirements for buildings. This paper aims to identify the optimal thickness of insulation that is cost-effective to apply in urban multi-family domestic buildings in the four climate zones of Greece. A reference building is selected in order to perform calculations over ten scenarios of external insulation thickness for each climate zone on a basic and three sensitivity analysis calculations according to the EU comparative methodology framework. The resulting energy savings for each insulation scenario are calculated, and then the cost-effectiveness of the measure is examined in financial and macroeconomic perspective for an economic lifecycle of 30 years. The results demonstrate the inadequacy of the national regulation’s current insulation limits and the externalities (funding gaps that need to be addressed in order to achieve the effective improvement of energy efficiency in Greek homes.

  8. Comparative study of hygrothermal properties of five thermal insulation materials

    OpenAIRE

    Laure Ducoulombier; Zoubeir Lafhaj

    2017-01-01

    The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three pa...

  9. Electrical insulating liquid: A review

    Science.gov (United States)

    Mahanta, Deba Kumar; Laskar, Shakuntala

    Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  10. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  11. Consequences of introducing requirements for tanks prepared for solar heating in the building regulations including examinations of bacteria risks; Konsekvenser ved solvarmeforberedte beholdere i bygningsreglementet herunder undersoegelse af risici for bakteriegener

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K.; Kaersgaard, K. [Teknologisk Inst., SolEnergiCentret, Taastrup (Denmark); Bagh, L. [Teknologisk Inst., Miljoedivisionen (Denmark)

    2000-07-01

    A larger dissemination of solar heating units must be expected, if requirements for tanks prepared for solar heating are introduced in the building regulations. However, this may have effects, which have to be discussed beforehand, just as it has to be decided how the regulations can be put into practice. 1) The aim is to examine and discuss the consequences of introducing requirements for tanks prepared for solar heating in the building regulations including connections with other legislation, potential, consequences for the building services sector and proposals for rules in the building regulations (exceptions etc.) 2) Furthermore, the aim is to explain the risk of bacteria in tanks prepared for solar heating according to existing or new additional studies. It must be explained whether tanks prepared for solar heating will result in an increased number of bacteria in the water compared to traditional hot water tanks and - if possible - whether the change is caused by the increased volume of the tank (the water stays in the tank for a longer period) or changed temperature conditions which favours growth of bacteria at a certain incubation temperature. (EHS)

  12. Retrofit with Interior Insulation on Solid Masonry Walls in Cool Temperate Climates

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Finken, G.R.; Odgaard, Tommy

    2015-01-01

    For historic buildings, where an alteration of the exterior façade is not wanted, interior insulation can be the solution to improve the indoor climate and reduce heat loss, but might also introduce moisture problems like condensation in the wall. Capillary active/hydrophilic insulation materials...... have been introduced to cope with the moisture problem. An extensive amount of calculations indicating where the challenges lie in the complex work with interior insulation in cool temperate climate has been carried out. In areas with high precipitation like Denmark, capillary active insulation may...

  13. Energy in buildings: Efficiency, renewables and storage

    Directory of Open Access Journals (Sweden)

    Koebel Matthias M.

    2017-01-01

    Full Text Available This lecture summary provides a short but comprehensive overview on the “energy and buildings” topic. Buildings account for roughly 40% of the global energy demands. Thus, an increased adoption of existing and upcoming materials and solutions for the building sector represents an enormous potential to reduce building related energy demands and greenhouse gas emissions. The central question is how the building envelope (insulation, fenestration, construction style, solar control affects building energy demands. Compared to conventional insulation materials, superinsulation materials such as vacuum insulation panels and silica aerogel achieve the same thermal performance with significantly thinner insulation layers. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduce thermal losses by up to an order of magnitude compared to old single pane windows, while vacuum insulation and aerogel filled glazing could reduce these even further. Electrochromic and other switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems into the building energy supply, buildings can become both producers and consumers of energy. Combined with dynamic user behavior, temporal variations in the production of renewable energy require appropriate storage solutions, both thermal and electrical, and the integration of buildings into smart grids and energy district networks. The combination of these measures allows a reduction of the existing building stock by roughly a factor of three —a promising, but cost intensive way, to prepare our buildings for the energy turnaround.

  14. Analysis of the Chinese Market for Building Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Sha [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, Meredydd [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Qing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-03-20

    China will account for about half of the new construction globally in the coming decade. Its floorspace doubled from 1996 to 2011, and Chinese rural buildings alone have as much floorspace as all of U.S. residential buildings. Building energy consumption has also grown, increasing by over 40% since 1990. To curb building energy demand, the Chinese government has launched a series of policies and programs. Combined, this growth in buildings and renovations, along with the policies to promote green buildings, are creating a large market for energy efficiency products and services. This report assesses the impact of China’s policies on building energy efficiency and on the market for energy efficiency in the future. The first chapter of this report introduces the trends in China, drawing on both historical analysis, and detailed modeling of the drivers behind changes in floorspace and building energy demand such as economic and population growth, urbanization, policy. The analysis describes the trends by region, building type and energy service. The second chapter discusses China’s policies to promote green buildings. China began developing building energy codes in the 1980s. Over time, the central government has increased the stringency of the code requirements and the extent of enforcement. The codes are mandatory in all new buildings and major renovations in China’s cities, and they have been a driving force behind the expansion of China’s markets for insulation, efficient windows, and other green building materials. China also has several other important policies to encourage efficient buildings, including the Three-Star Rating System (somewhat akin to LEED), financial incentives tied to efficiency, appliance standards, a phasing out of incandescent bulbs and promotion of efficient lighting, and several policies to encourage retrofits in existing buildings. In the third chapter, we take “deep dives” into the trends affecting key building components

  15. Fabrication of insulator nanocapillaries from diatoms

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Diatoms are unicellular microscopic organisms with silicon-dioxide based skeleton enveloped with an organic material, which composes essentially polysaccharides and proteins (see Fig. 1a.). As it was shown, the valva of the diatoms build up almost from clean silicondioxide [1]. Therefore, removing the organic compounds from the diatom, we can have in our hand an ideal, about 100 μ m-sized, and almost cylindrical shaped insulating nanostructure. There are various techniques available to disembarrass the diatom from its organic compounds. We used the so called hydrogen peroxide method. The advantageous properties of this method are the followings: a) this is one of the fastest procedures among the possible methods, b) do not require special equipment, c) cheap, and last but not least it is less harmful for health compared to other methods. This procedure can be an alternative way of the fabrication of insulator nanocapillaries. In this case the preparation of the nanocapillaries is simple and quick. Moreover, we do not need to invest expensive special techniques, (like micromachining-, electrochemical etching technique, moulding process etc) as it was necessary for the case of previously developed method producing insulator nanocapillaries [2,3]. Fig. 1b and Fig. 1c. show the scanning electron micrograph of the skeleton of the diatoms. The size of the cylindrical holes are roughly 200 nm (see Fig. 1c). (author)

  16. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  17. Insulators: estructura y funciones

    OpenAIRE

    Fresán Salvo, Ujué

    2016-01-01

    [spa] Los insulators son complejos de DNA y proteínas, cuya función no solo consiste en impedir la comunicación enhancer-promotor y/o bloquear la expansión del silenciamiento de la heterocromatina como clásicamente se habían descrito. Median interacciones intra e intercromosomales, cuyo objetivo fmal es la organización del genoma en diferentes dominios, regulando por consiguiente las funciones del DNA. Uno de los objetivos de esta tesis fue la búsqueda de nuevas funciones de proteínas insulat...

  18. Improving the reliability of stator insulation system in rotating machines

    International Nuclear Information System (INIS)

    Gupta, G.K.; Sedding, H.G.; Culbert, I.M.

    1997-01-01

    Reliable performance of rotating machines, especially generators and primary heat transport pump motors, is critical to the efficient operation on nuclear stations. A significant number of premature machine failures have been attributed to the stator insulation problems. Ontario Hydro has attempted to assure the long term reliability of the insulation system in critical rotating machines through proper specifications and quality assurance tests for new machines and periodic on-line and off-line diagnostic tests on machines in service. The experience gained over the last twenty years is presented in this paper. Functional specifications have been developed for the insulation system in critical rotating machines based on engineering considerations and our past experience. These specifications include insulation stress, insulation resistance and polarization index, partial discharge levels, dissipation factor and tip up, AC and DC hipot tests. Voltage endurance tests are specified for groundwall insulation system of full size production coils and bars. For machines with multi-turn coils, turn insulation strength for fast fronted surges in specified and verified through tests on all coils in the factory and on samples of finished coils in the laboratory. Periodic on-line and off-line diagnostic tests were performed to assess the condition of the stator insulation system in machines in service. Partial discharges are measured on-line using several techniques to detect any excessive degradation of the insulation system in critical machines. Novel sensors have been developed and installed in several machines to facilitate measurements of partial discharges on operating machines. Several off-line tests are performed either to confirm the problems indicated by the on-line test or to assess the insulation system in machines which cannot be easily tested on-line. Experience with these tests, including their capabilities and limitations, are presented. (author)

  19. Comparative Analysis of Houses Built from Insulating Concrete Formwork - case Study

    Science.gov (United States)

    Mačková, Daniela; Spišáková, Marcela

    2015-11-01

    More and more, people are looking to build and live in different ways. They want houses with a high standard of living and reasonable production and maintenance costs. However, they also want to build a way that does not adversely affect their quality of life. Currently, the using of modern methods of construction (MMC) expands consistently year on year. MMC include prefabricated products made in the factory and also new methods of building that are site-based and they are regarded as a means of achieving higher quality, reducing time spent onsite, increasing safety and overcoming skills shortages in the industry. Aim of this paper is to analyze and compare, trough case study, technical, cost and technological parameters of house built by modern method of construction (from insulating concrete formwork) and by traditional method (from brick system). The subject of case study is house modeled in two variants of insulating concrete formwork and a variant bricks and ceiling system. In conclusion, there is selected optimal method and system for house construction through multicriteria optimization.

  20. Comparative study of hygrothermal properties of five thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Laure Ducoulombier

    2017-09-01

    Full Text Available The objective of this article is to carry out a comparative study of the main hygrothermal properties of five thermal insulation materials for buildings. These properties are necessary for a correct prediction of heat and moisture transfers through the walls and the selection of the most appropriate materials according to the specific buildings. The studied materials were glass wool, rock wool, expanded polystyrene, wood fiberboard and polyester fiberfill. The article is divided into three parts. The first part presents the phenomena of hygrothermal transfers in walls in order to understand the need for determining specific properties of the insulating materials. The second part describes in details the five studied insulating materials and the methods used for the characterization and identification of their main properties. Finally, the last part presents the experimental results and makes comparisons between materials. The differences between the insulating materials are brought out, such as the strong dependence of the thermal conductivity of polystyrene on temperature, or the good permeability of fibrous insulating materials to water vapor. A detailed analysis of the obtained results is presented.

  1. Designing Predictive Diagnose Method for Insulation Resistance Degradation of the Electrical Power Cables from Neutral Insulated Power Networks

    Science.gov (United States)

    Dobra, R.; Pasculescu, D.; Risteiu, M.; Buica, G.; Jevremović, V.

    2017-06-01

    This paper describe some possibilities to minimize voltages switching-off risks from the mining power networks, in case of insulated resistance faults by using a predictive diagnose method. The cables from the neutral insulated power networks (underground mining) are designed to provide a flexible electrical connection between portable or mobile equipment and a point of supply, including main feeder cable for continuous miners, pump cable, and power supply cable. An electronic protection for insulated resistance of mining power cables can be made using this predictive strategy. The main role of electronic relays for insulation resistance degradation of the electrical power cables, from neutral insulated power networks, is to provide a permanent measurement of the insulated resistance between phases and ground, in order to switch-off voltage when the resistance value is below a standard value. The automat system of protection is able to signalize the failure and the human operator will be early informed about the switch-off power and will have time to take proper measures to fix the failure. This logic for fast and automat switch-off voltage without aprioristic announcement is suitable for the electrical installations, realizing so a protection against fires and explosion. It is presented an algorithm and an anticipative relay for insulated resistance control from three-phase low voltage installations with insulated neutral connection.

  2. Insulating panels with rice husk

    Energy Technology Data Exchange (ETDEWEB)

    Salas, J.; Veras, J.

    1986-01-01

    This study includes the quantitative results of tests caried out on 7.5 x 15.0 cm cylindrical test pieces and fullsized panels with a cement and rice husk, produced by using means belonging to the so-called ''appropriate technologies''. These results are summarized and analyzed with a view to providing a possible alternative for substituting other insulating materials, which are generally imported, in developing countries. The technical results presented point towards a promising future for the task undertaken, within the context of a research project on ''materials, technologies and prototypes for very low-cost housing'' which, in a - multinational capacity, is being developed at the Instituto E. Torroja.

  3. Organic Insulation Materials, the Effect on Indoor Humidity, and the Necessity of a Vapor Barrier

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Examples of organic insulation products are cellulose fiber, other plant fiber, and animal wool. These materials, which are all very hygroscopic, are associated with certain assertions about their building physical behavior that need to be verified.Examples of such assertions are: "A vapor barrier...... is not needed when using organic insulation materials" and "Organic insulation materials have a stabilizing effect on the indoor humidity".The paper presents some numerical analyses of the hygrothermal behavior of wall constructions and the occupied spaces they surround when an organic insulation material...... is used. The following two main problems are analyzed:· The risk of interstitial condensation in typical building constructions with different vapor retarders when either conventional or organic insulation materials are used.· The influence on diurnal and seasonal indoor humidity variations when using...

  4. Energy conservation in selected buildings, Gdansk. 1. final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This Final Report marks the end of the implementation stage of the project: `Energy Conservation in Selected Buildings in Gdansk, Poland` supported by the Danish Environment-related Energy Sector Programme for Poland under the Danish Energy Agency. The residential and commercial sectors together with public buildings account for 40-45% of the total energy consumption and are dominated by the use of space heating and hot water. The sector has a significant over-consumption of energy, which first of all is due to the lack of or too weak incentives for the individual tenants to decrease the energy consumption. Bad thermal insulation of buildings and inefficient central heating systems with a widespread lack of measurement and automatic control systems give cause for extensive heat losses. The objective of the project has been to document the effects of energy savings in 18 multi-family houses when different types of energy saving measures are applied. These measures include thermal insulation of buildings, refurbishment of the heating system and introduction of individual billing system for heating and hot tap water. Energy audits of 18 buildings were performed by combination of on-site inspection of all buildings and data collection from the available drawings, technical descriptions, etc. The on-site inspection was carried out by use of an energy audit scheme specially developed for this project. (EG)

  5. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  6. Build a Curriculum that Includes Everyone

    Science.gov (United States)

    McGarry, Robert

    2013-01-01

    In order to accommodate the education needs of lesbian, gay, bisexual and transgender students, American schools need to do more than add LGBT information to the curriculum in sex education class. If we believe, as Erikson (1968) suggested--that adolescence is the time when young people try to make sense of who they are--and if we believe that…

  7. Economic and Environmental Optimization of an Airport Terminal Building’s Wall and Roof Insulation

    Directory of Open Access Journals (Sweden)

    Mehmet Kadri Akyüz

    2017-10-01

    Full Text Available HVAC systems use the largest share of energy consumption in airport terminal buildings. Thus, the efficiency of the HVAC system and the performance of the building envelope have great importance in reducing the energy used for heating and cooling purposes. In this study, the application of thermal insulation on the walls and roof of the Hasan Polatkan Airport terminal building was investigated from energy, environment and cost aspects. This study determined the optimum insulation thickness and assessed its effects on environmental performance based on energy flows. Environmental payback periods were calculated depending on the optimum insulation thickness. The life cycle assessment (LCA method was used to assess whether the decrease in energy consumption after applying the insulation balanced the environmental effects during the period between the production and application of the thermal insulation material. The global warming potential (GWP based on IPCC100, and the effects on human health (HH, the ecosystem and natural resources were evaluated according to the ReCiPe method. LCA results were obtained by processing data taken from ecoinvent 3 database present in the Sima Pro 8.3.0.0 software. Applying thermal insulation on the walls and roof of the terminal building was found to decrease heat loss by 48% and 56%, respectively. In addition, the analyses showed that the environmental payback periods for the thermal insulation were shorter than the economic payback periods.

  8. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    Science.gov (United States)

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  9. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types

    Directory of Open Access Journals (Sweden)

    JunHee Kim

    2015-03-01

    Full Text Available A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs reinforced with grid-type glass-fiber-reinforced polymer (GFRP shear connectors. Two kinds of insulation-expanded polystyrene (EPS and extruded polystyrene (XPS with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  10. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  11. Wall Insulation; BTS Technology Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  12. Sound insulation requirements in the Nordic countries

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    of current projects and initiatives are: AkuLite ‐ Sound and vibrations in lightweight buildings (Swedish project 2009‐2012) http://www.sp.se/sv/index/services/sptrateklibrary/newsletter/Documents/Nr%2030%20dec%2009%20NY.pdf http://www.vinnova.se/upload/EPiStorePDF/vi‐10‐03.pdf (Pilot study, p.83) Silent...... and exchange of experience at a time, where cooperation is needed more than before due to the challenges related to defining appropriate acoustic requirements for comfortable light‐weight housing. There seems be a high interest for all parties involved in the building process to change the situation. Examples...... Spaces, Interreg IV project (Swedish‐Danish project 2010‐2013) http://www.interreg‐oks.eu/en/Menu/Projects/Project+List/Silent+Spaces Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions COST Action TU0901 (European network 2009‐2013, 26 countries) http://w3...

  13. Functionality of Ventilated Facades: Protection of Insulation

    Directory of Open Access Journals (Sweden)

    Petrichenko Mikhail

    2016-01-01

    Full Text Available This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a sound and thermal insulation properties. There are several problems of systems of the ventilated facades connected with an application of a heater. For more effective using it is necessary to minimize contact of a heater with environment.

  14. Washing Off Polyurethane Foam Insulation

    Science.gov (United States)

    Burley, Richard K.; Fogel, Irving

    1990-01-01

    Jet of hot water removes material quickly and safely. Simple, environmentally sound technique found to remove polyurethane foam insulation from metal parts. Developed for (but not limited to) use during rebuilding of fuel system of Space Shuttle main engine, during which insulation must be removed for penetrant inspection of metal parts.

  15. Optimization of transport thermal insulation and heat storage systems in consideration of thermal and hygric damage to the building. Final report; Optimierung von TWD-Speichersystemen unter Beachtung der Bauschadensfreiheit (thermisch-hygrisch). Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.

    2001-01-01

    Thermal and hygric loads and damage of transparent thermal insulation systems were investigated using the FEM code Abaqus, which enables 2D calculations of thermal stresses and strains in layered structures (e.g. external walls). The influence of hygric swelling and shrinking had to be implemented separately. In addition to the calculations, two variants were investigated experimentally in order to validate the theoretical results. In the case of climate-induced thermal and hygromechanical loads, the dynamic heat and moisture transport processes must be taken into account. [German] Es war das Ziel des ausgefuehrten Forschungsprojektes, TWD-bestueckte Fassadenelemente hinsichtlich thermisch-hygrisch verursachter Belastungen und Schaeden zu untersuchen. Zu diesem Zweck fand das FEM-Programm Abaqus Verwendung. Es gestattet zweidimensionale thermisch verursachte Spannungs-Dehnungs-Berechnungen von geschichteten Strukturen (z.B. Fassaden). Der Einfluss des hygrischen Quellens und Schwindens musste allerdings gesondert implementiert werden. Neben den Berechnungen sind zwei Ausfuehrungsvarianten experimentell untersucht worden, um durch die Ergebnisse die Resultate der Berechnungen abzusichern. Fuer die klimatisch verursachten thermo- und hygromechanischen Belastungen muessen die dynamischen Waerme- und Feuchtetransportprozesse ins Blickfeld gerueckt werden. (orig.)

  16. Optimization of transport thermal insulation and heat storage systems in consideration of thermal and hygric damage to the building. Pt. 2. Final report; Optimierung von TWD-Speichersystemen unter Beachtung der Bauschadensfreitheit (thermisch-hygrisch). T. 2. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U.; Mueller, K.

    2002-01-01

    Thermal and hygric loads and damage of transparent thermal insulation systems were investigated using the FEM code Abaqus, which enables 2D calculations of thermal stresses and strains in layered structures (e.g. external walls). The influence of hygric swelling and shrinking had to be implemented separately. In addition to the calculations, two variants were investigated experimentally in order to validate the theoretical results. In the case of climate-induced thermal and hygromechanical loads, the dynamic heat and moisture transport processes must be taken into account. [German] Es war das Ziel des ausgefuehrten Forschungsprojektes, TWD-bestueckte Fassadenelemente hinsichtlich thermisch-hygrisch verursachter Belastungen und Schaeden zu untersuchen. Zu diesem Zweck fand das FEM-Programm Abaqus Verwendung. Es gestattet zweidimensionale thermisch verursachte Spannungs-Dehnungs-Berechnungen von geschichteten Strukturen (z.B. Fassaden). Der Einfluss des hygrischen Quellens und Schwindens musste allerdings gesondert implementiert werden. Neben den Berechnungen sind zwei Ausfuehrungsvarianten experimentell untersucht worden, um durch die Ergebnisse die Resultate der Berechnungen abzusichern. Fuer die klimatisch verursachten thermo- und hygromechanischen Belastungen muessen die dynamischen Waerme- und Feuchtetransportprozesse ins Blickfeld gerueckt werden. (orig.)

  17. The relationship between sound insulation and acoustic quality in dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...... to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings....

  18. Optical properties of topological insulator nanoparticles

    Science.gov (United States)

    Siroki, Gleb; Lee, Derek; Haynes, Peter; Giannini, Vincenzo

    Topological insulators are materials that have metallic surface states protected by time-reversal symmetry. Such states are delocalised over the surface and are immune to non-magnetic defects and impurities. Building on previous work we have studied the interaction of light with topological insulator nanoparticles. Our main finding is that the occupied surface states can lead to charge density oscillations akin to plasmons in metallic nanoparticles. Furthermore, these oscillations can couple to phonons forming a previously unreported excitation. Because the states are localised at the surface a small number of them is enough to change the absorption spectrum of a particle containing many thousands of atoms. We are going to show how the effect can be adjusted by varying the particle's size and shape. Furthermore, we will discuss the robustness of the effect in the presence of disorder. In conclusion, topological nanoparticles can be used as a highly-tunable building block to create a metamaterial operating in THz range. This may be interesting for plasmonics and metamaterials communities as well as researchers working on cavity electrodynamics and quantum information. G.S. was supported through a studentship in the Centre for Doctoral Training on Theory and Simulation of Materials at Imperial College London funded by EPSRC Grant No. EP/L015579/1. V.G. acknowledges support of Leverhulme Trust.

  19. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  20. Topological Insulator Nanowires and Nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kong, D.S.

    2010-06-02

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

  1. Assessment of Energy Impact of Window Technologies for Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Yazdanian, Mehry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2009-10-01

    Windows play a significant role in commercial buildings targeting the goal of net zero energy. This report summarizes research methodology and findings in evaluating the energy impact of windows technologies for commercial buildings. The large office prototypical building, chosen from the DOE commercial building benchmarks, was used as the baseline model which met the prescriptive requirements of ASHRAE Standard 90.1-2004. The building simulations were performed with EnergyPlus and TMY3 weather data for five typical US climates to calculate the energy savings potentials of six windows technologies when compared with the ASHRAE 90.1-2004 baseline windows. The six windows cover existing, new, and emerging technologies, including ASHRAE 189.1 baseline windows, triple pane low-e windows, clear and tinted double pane highly insulating low-e windows, electrochromic (EC) windows, and highly insulating EC windows representing the hypothetically feasible optimum windows. The existing stocks based on average commercial windows sales are included in the analysis for benchmarking purposes.

  2. Thermal insulating concrete wall panel design for sustainable built environment.

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  3. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    Science.gov (United States)

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  4. Retrofit of a MultiFamily Mass Masonry Building in New England

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Kerrigan, P. [Building Science Corporation, Somerville, MA (United States); Wytrykowska, H. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

  5. Acoustic Properties of a Renovated Building

    Directory of Open Access Journals (Sweden)

    Tomas Januševičius

    2011-02-01

    Full Text Available The article explores the effects of partitions, ceilings and facades on noise insulation in the renovated different buildings. The conducted experiments were aimed at analyzing partitions of 120 mm brick mounted gypsum panels while other walls were 520 mm thick and plastered on both sides. Under natural conditions, sound insulation factors of facades were measured and compared according to comfort classes. The obtained results revealed that thick brick walls of 520 mm insulated the sound of 58 decibels (dB (class B. In contrast, 120 mm brick masonry partition reduced sound only to 48 dB which is class E and agrees with the lowest class of sound insulation. We also calculated the sound insulation factor applying three formulas considering the mass law of sound insulation and comparing it with other previous studies. The paper examines and discusses the findings of the performed calculations and measurements.Article in Lithuanian

  6. Concepts for evaluation of sound insulation of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2005-01-01

    with a trend towards light-weight constructions are contradictory and challenging. This calls for exchange of data and experience, implying a need for harmonized concepts, including use of spectrum adaptation terms. The paper will provide input for future discussions in EAA TC-RBA WG4: "Sound insulation......¬ments and classification schemes revealed significant differences of concepts. The paper summarizes the history of concepts, the disadvantages of the present chaos and the benefits of consensus concerning concepts for airborne and impact sound insulation between dwellings and airborne sound insulation of facades...

  7. New building technology based on low energy design

    International Nuclear Information System (INIS)

    Meggers, Forrest; Leibundgut, Hansjurg

    2009-01-01

    Full text: The construction, operation and maintenance of all residential, commercial, and industrial buildings are responsible for over half of global greenhouse gas emissions, and two-thirds of global electricity is generated solely for building operation. This single sector has a huge potential impact on the future sustainability of society, and therefore new advanced technologies must be rapidly developed and implemented in what is often a slow-moving sector. The concept of the low exergy building has created a new framework for the development of high performance building systems. Exergy analysis has been used to help minimize the primary energy demands of buildings through the minimization of losses in the chain of energy supply in a building system. The new systems that have been created have been shown to be more comfortable and more energy efficient. These systems include integrated thermal mass systems heated by high efficiency heat pumps integrated with energy recovery systems that eliminate the waste that is common in building systems. The underlying principles and concepts of low exergy building systems will be presented along with the analysis of several technologies being implemented in a low Ex building in Zurich, Switzerland. These include an advanced ground source heat pump strategy with integrated heat recovery, decentralized ventilation, and a unique active wall insulation system, which are being researched as part of the IEA ECBCS Annex 49 (www.annex49.org). (author)

  8. Dynamic integration of residential building design and green energies : the Bireth approach : building integrated renewable energy total harvest approach

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, K.P. [Hong Kong Univ., Hong Kong (China). Dept. of Architecture; Luk, C.L.P. [Chu Hai College of Higher Education, Hong Kong (China). Dept. of Architecture; Wong, S.T. [Hong Kong Univ., Hong Kong (China). Div. of Arts and Humanities, SPACE; Chung, S.L.; Fung, K.S.; Leung, M.F. [Hong Kong Inst. of Vocational Education, Hong Kong (China)

    2006-07-01

    Renewable energy sources that are commonly used in buildings include solar energy, wind energy and rainwater collection. High quality environmentally responsive residential buildings are designed to provide good insulation in winter and solar shading in summer. However, this study demonstrated that the green energy design in residential buildings is not usually well integrated. For example, windows with clear double or triple glazed glass, allow good penetration of sunlight during the day in winter, but are not further dynamically insulated for when the sun goes down to avoid heat loss from the building. Additionally, good solar static shading devices often block much needed daylight on cloudy winter days. These examples emphasize the lack of an integrated approach to gain the best advantage of green energies and to minimize energy costs in residential buildings. This study addressed issues facing the integrated approach with particular reference to the design of a small residential building in rural Beijing. The design included a new approach for interpreting a traditional Beijing court yard house in the modern Beijing rural context, while integrating multi-responding innovative green energy applications derived from first principles. This paper also presented a proposal for a village house in Hong Kong to harvest as much renewable energies as possible, primarily wind energy and solar energy, that come into contact with the building. The purpose was to work towards a renewable energy approach for buildings, namely the Bireth approach, which will benefit practically all houses by making them zero energy houses. The paper described the feasibility of integrating renewable energies in buildings to fulfill performance requirements such improving ventilation, providing warm interiors, drying clothes, or storing solar and wind energies into power batteries. The challenges facing the development of a proposed micro solar hot air turbine were also presented. 15 refs., 6

  9. Development of Lightweight Calcium-Magnesium based Panels (LCMP) as a Thermal Insulation for Structures

    OpenAIRE

    Karimi, Amir Khosro

    2013-01-01

    Buildings are consumers of large amounts of energy in all countries. In regions with tough climate conditions, a good percentage of the total energy consumption is due to cooling and heating of the buildings. The most important factor of saving energy in buildings is to be aware of thermal properties of the construction materials. The correct and effective use of thermal insulation in buildings contribute towards reducing the required air-conditioning or central heating system ...

  10. Development of a neural network heating controller for solar buildings.

    Science.gov (United States)

    Argiriou, A A; Bellas-Velidis, I; Balaras, C A

    2000-09-01

    Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.

  11. Commercial building design and energy conservation: a preliminary assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, A.; Rosoff, D.

    1982-02-01

    The purpose of the research was to determine the degree of change in commercial building design practice relating to energy conservation since the enactment of the Energy Conservation Standard for New Buildings Act of 1976. Data on current design practices consisted of information from 400 buildings advertised for bids or under construction in 1979 to 1980 on glass in windows and doors, exterior wall systems, roof system, heating plants, and lighting systems. In addition to these building design components, energy conservation measures used included: natural lighting; deadband thermostat; greenhouse-effect atrium collector, heat recovery from the top of the atrium, greenhouse passive heating panels; natural ventilation; insulating shutters, closable skylights, thermal shutters, Trombe wall, corridor trombe; attic ventilation; wind shielding, concrete wall; titlted windows; night flushing cycle; and cooling coils using cooling tower water. A brief explanation of these measures is given. (MCW)

  12. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  13. Method of constructing reactor buildings

    International Nuclear Information System (INIS)

    Hyuga, Takenori; Nagai, Fumio; Akutsu, Masayoshi.

    1985-01-01

    Purpose: To shorten the construction period for LMFBR type reactors, as well as smoothly introduce high pressure steams generated in concretes upon loss of coolant accidents to the outside of the system. Method: After disposing a liner plate as a chamber lining of reactor buildings, heat insulation materials having steam discharge channels at the outer surface are attached to the outside of the liner plate and, further, an organic films are disposed to the outside of the heat insulation materials. Then, concretes are spiked to the outside of the organic films using the liner plate and the heat insulation material as the mold for concretes. In this way, the construction period can be shortened by utilizing the liner plate and the heat insulation materials as the mold for concretes, as well as steams at high temperature resulted in the concretes upon loss of coolant accidents can smoothly be discharged to the outside of the system. (Moriyama, K.)

  14. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  15. Characteristics of high gradient insulators for accelerator and high power flow applications

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented

  16. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  17. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  18. Causes and Solutions for High Energy Consumption in Traditional Buildings Located in Hot Climate Regions

    Science.gov (United States)

    Barayan, Olfat Mohammad

    A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.

  19. Wide gap Chern Mott insulating phases achieved by design

    Science.gov (United States)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  20. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  1. Thermal/acoustical insulation foam

    Science.gov (United States)

    Lin, R. Y.; Struzik, E. A.

    1976-01-01

    Lightweight low-density substance can be used as fire resistant insulation in aircraft. Material density can be controlled over range from 0.6-1.2 pounds per cubic foot and has good thermal and acoustic properties.

  2. Evaluation of thermal insulation materials

    Science.gov (United States)

    Wilbers, O. J.; Conti, J. C.; Mcgee, J. V.; Mcpherson, J. I.

    1973-01-01

    Data was obtained on silicone-bonded fiberglass, isocyanurate foam, and two dozen other insulators. Materials were selected to withstand heat sterilization, outer space, and the Martian atmosphere. Significant environmental parameters were vibration, landing shock, and launch venting.

  3. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  4. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  5. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  6. Sound insulation between dwellings in multi-storey housing in Greenland - Need and feasibility of increased requirements?

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Thysell, Erik

    2014-01-01

    goals, one of them being check of fulfilment of the current regulatory sound insulation requirements, the other one being an evaluation of the possibilities to strengthen the requirements in the next building regulations. Sound insulation measurements between dwellings were made in three newly...

  7. 77 FR 29322 - Updating State Residential Building Energy Efficiency Codes

    Science.gov (United States)

    2012-05-17

    ... the Buildings Technologies Program-Building Energy Codes Program Manager, U.S. Department of Energy... hotel, motel, and other transient residential building types of any height as commercial buildings for... insulation and length requirements Skylight definition change Penalizing electric resistance heating in the...

  8. High voltage and electrical insulation engineering

    CERN Document Server

    Arora, Ravindra

    2011-01-01

    "The book is written for students as well as for teachers and researchers in the field of High Voltage and Insulation Engineering. It is based on the advance level courses conducted at TU Dresden, Germany and Indian Institute of Technology Kanpur, India. The book has a novel approach describing the fundamental concept of field dependent behavior of dielectrics subjected to high voltage. There is no other book in the field of high voltage engineering following this new approach in describing the behavior of dielectrics. The contents begin with the description of fundamental terminology in the subject of high voltage engineering. It is followed by the classification of electric fields and the techniques of field estimation. Performance of gaseous, liquid and solid dielectrics under different field conditions is described in the subsequent chapters. Separate chapters on vacuum as insulation and the lightning phenomenon are included"--

  9. Periodic table for Floquet topological insulators

    Science.gov (United States)

    Roy, Rahul; Harper, Fenner

    2017-10-01

    Dynamical phases with novel topological properties are known to arise in driven systems of free fermions. In this paper, we obtain a `periodic table' to describe the phases of such time-dependent systems, generalizing the periodic table for static topological insulators. Using K theory, we systematically classify Floquet topological insulators from the ten Altland-Zirnbauer symmetry classes across all dimensions. We find that the static classification scheme described by a group G becomes G×n in the time-dependent case, where n is the number of physically important gaps in the quasienergy spectrum (including any gaps at quasienergy π ). The factors of G may be interpreted as arising from the bipartite decomposition of the unitary time-evolution operator. Topologically protected edge modes may arise at the boundary between two Floquet systems, and we provide a mapping between the number of such edge modes and the topological invariant of the bulk.

  10. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  11. California residential energy standards: problems and recommendations relating to implementation, enforcement, and design. [Thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    Documents relevant to the development and implementation of the California energy insulation standards for new residential buildings were evaluated and a survey was conducted to determine problems encountered in the implementation, enforcement, and design aspects of the standards. The impact of the standards on enforcement agencies, designers, builders and developers, manufacturers and suppliers, consumers, and the building process in general is summarized. The impact on construction costs and energy savings varies considerably because of the wide variation in prior insulation practices and climatic conditions in California. The report concludes with a series of recommendations covering all levels of government and the building process. (MCW)

  12. Gas insulated switchgear and switches for application at medium voltages

    Energy Technology Data Exchange (ETDEWEB)

    Bapat, A.

    1995-12-31

    The application of gas insulated, metal enclosed and metalclad switchgear at medium voltage levels were discussed. Advantages of SF{sub 6} gas insulated switchgear (GIS) were explained, including reduced maintenance, negligible fire risk, capability of large numbers of operations under load and fault condition, compactness, safety and reliability. Several types of metal enclosed switchgear were described and illustrated. The SF{sub 6} load break switch and the breaking principle were described. Beneficial aspects of GIS for medium voltage (MV) applications and the world-wide scope of its usage was demonstrated. Results of a comparison of metal enclosed air insulated and gas insulated switchgear were discussed. Criteria considered in the comparison were security, protection from environmental influences, maintenance, compartmentation, size, visible break, integrated protection metering and monitoring relays, and voltage sensors. These results proved that GIS MS switchgear offers a reliable, safe, compact and maintenance free equipment alternative to traditional metalclad switchgear. 3 refs., 3 tabs., 4 figs.

  13. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Hansen, Tessa Kvist; Larsen, Poul Klenz; Hansen, Kurt Kielsgaard

    There are 1700 medieval churches in Denmark, and many of these have brick vaults. The thickness is only 12 – 15 cm, and the heat loss through this building component is large. Thermal insulation has not been permitted until now in respect for the antiquarian values and doubts about the effect...... on water vapour transport through the vault, and the risk of condensation inside the insulation. A new mortar was developed for thermal insulation of bricks vaults, consisting mainly of expanded perlite, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar...... joints. The insulation mortar is applied to the top side of the vault in a thickness of 10 cm, and covered by 10 mm lime plaster, reinforced with cattle hair. This assembly is resistant to the weight of a person, working with maintenance of the roof. The thermal conductivity of the insulation mortar...

  14. Sound insulation of dwellings - Legal requirements in Europe and subjective evaluation of acoustical comfort

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2003-01-01

    , the impact sound insulation and the noise level from traffic and building services. For road traffic noise it is well established that an outdoor noise level LAeq, 24 h below 55 dB in a housing area means that approximately 15-20% of the occupants are annoyed by the noise. However, for sound insulation...... against noise from neighbours the relationship is not so well understood. A comparison of sound insulation requirements in different countries shows that the sound insulation requirements differ considerably in terms of the concepts used, the frequency range considered and the level of requirement...... insulation requirements in several European countries and (b) a review of investigations related to the subjective and/or objective evaluation. Based on the analysis of several investigations in the field and by laboratory simulations it is suggested how to estimate the degree of satisfaction with a specific...

  15. Electron guiding through insulating nanocapillaries

    International Nuclear Information System (INIS)

    Schiessl, K.; Solleder, B.; Lemell, C.; Burgdoerfer, J.; Toekesi, K.

    2009-01-01

    Complete text of publication follows. The very recent observation of a guiding effect for electrons through Al 2 O 3 and PET capillaries came as surprise. Electrons are unlikely to encounter a Coulomb mirror as strong as in the case of highly charged ions guiding. Secondary electron emission coefficients for electron impact with a few hundred eV energy may suggest even positive charge up resulting in attraction to rather than repulsion from the surface. Additionally, even in absence of any charge up, the attractive long-range polarization potential (image potential) steers electrons towards the surface. This suggests that a fundamentally different guiding scenario must prevail. Indeed, first experimental data show a significant and, in many cases, dominant fraction of guided electrons having suffered considerable energy loss pointing to inelastic scattering events. In this work, we present the first microscopic simulation of electron transmission through insulating nanocapillaries within the framework of the mean-field classical transport theory (CTT). Within the CTT, it is possible to include quantum scattering effects via the collision kernel for the evolution of the ensemble of classical particles. We have shown for the first time that the electron guiding scenario through nanocapillaries entirely different from that for highly charged ions (see Fig. 1). Quantal specular reflection at an attractive average surface potential and multiple small angle elastic and inelastic scattering are key to guiding. Charge up of the surface does play only a minor role in the guiding process as opposed to the case of highly charged ionic projectiles where strong electrostatic fields are required for guiding through insulating materials. In view of the complexity of the underlying processes, we find surprisingly good agreement with available data. One consequence of this scenario is the prediction that electron guiding should also be operational for other materials, in particular

  16. The airborne sound insulations of timber-framed partitions

    Science.gov (United States)

    Plumb, G. D.

    The sound insulation performances of several lightweight, timber framed partitions were measured. The purpose was to assess the merits of various sheet materials and the effects of changes in the construction details on the sound insulation performances of the partitions. The aim was to produce a design for a new type of partition which was cheaper than the conventional 'Camden', which is currently widely used in the BBC. As a result, a new design was tested and is recommended for use as a replacement for the Camden. It uses less material, is much cheaper to build, and should be more tolerant of poor building practices. Several recommendations are made on construction techniques, which apply whether the partition being built is a traditional Camden or the new design. Also, the use of fiberboard as a damping material for plasterboard is shown to improve the isolation of partitions greatly, much more than the consideration of its mass alone would lead one to expect.

  17. Measure Guideline: Wall Air Sealing and Insulation Methods in Existing Homes; An Overview of Opportunity and Process

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, S.; Stephenson, R.

    2012-09-01

    This guide provides renovators and retrofit contractors an overview of considerations when including wall air sealing and insulation in an energy retrofit project. It also outlines the potential project risks, various materials for insulating, possible field inspections needed, installation procedures, as well as the benefits and drawbacks. The purpose of this document is to provide the outline of the overview and process of insulating and air sealing walls so that home retrofit professionals can identify approaches to air sealing and insulation measures.

  18. Additive Transforms Paint into Insulation

    Science.gov (United States)

    2007-01-01

    Tech Traders Inc. sought assistance developing low-cost, highly effective coatings and paints that created useful thermal reflectance and were safe and non-toxic. In cooperation with a group of engineers at Kennedy Space Center., Tech Traders created Insuladd, a powder additive made up of microscopic, inert gas-filled, ceramic microspheres that can be mixed into ordinary interior or exterior paint, allowing the paint to act like a layer of insulation. When the paint dries, this forms a radiant heat barrier, turning the ordinary house paint into heat-reflecting thermal paint. According to Tech Traders, the product works with all types of paints and coatings and will not change the coverage rate, application, or adhesion of the paint. Other useful applications include feed storage silos to help prevent feed spoilage, poultry hatcheries to reduce the summer heat and winter cold effects, and on military vehicles and ships. Tech Traders has continued its connection to the aerospace community by recently providing Lockheed Martin Corporation with one of its thermal products for use on the F-22 Raptor.

  19. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  20. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Podorson, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  1. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  2. Moisture buffer capacity of different insulation materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2004-01-01

    There is an increasing focus on the possibilities of utilizing the absorptive ability of porous materials to create passive control of humidity variations in the indoor air. These variations result in peaks in the indoor air humidity due to moisture production, or in the exterior building envelope...... lead to more durable constructions. In this paper, a large range of very different thermal insulation materials have been tested in specially constructed laboratory facilities to determine their moisture buffer capacity. Both isothermal and nonisothermal experimental set-ups have been used...... are discussed, and different ways are presented how to determine the moisture buffer capacity of the materials using partly standard material parameters and partly parameters determined from the actual measurements. The results so far show that the determination of moisture buffer capacity is very sensitive...

  3. Strengthening Building Retrofit Markets

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Mary [Michigan Saves; Jackson, Robert [Michigan Energy Office

    2014-04-15

    The Business Energy Financing (BEF) program offered commercial businesses in Michigan affordable financing options and other incentives designed to support energy efficiency improvements. We worked through partnerships with Michigan utilities, lenders, building contractors, trade associations, and other community organizations to offer competitive interest rates and flexible financing terms to support energy efficiency projects that otherwise would not have happened. The BEF program targeted the retail food market, including restaurants, grocery stores, convenience stores, and wholesale food vendors, with the goal of achieving energy efficiency retrofits for 2 percent of the target market. We offered low interest rates, flexible payments, easy applications and approval processes, and access to other incentives and rebates. Through these efforts, we sought to help customers strive for energy savings retrofits that would save 20 percent or more on their energy use. This program helped Michigan businesses reduce costs by financing energy efficient lighting, heating and cooling systems, insulation, refrigeration, equipment upgrades, and more. Businesses completed the upgrades with the help of our authorized contractors, and, through our lending partners, we provided affordable financing options.

  4. Efficient use of energy in buildings - Activities and projects in 2002; Rationelle Energienutzung in Gebaeuden. Aktivitaeten und Projekte 2002

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.

    2003-07-01

    This annual report for the Swiss Federal Office of Energy reviews the activities and projects of the Swiss Programme on the Efficient Use of Energy in Buildings in 2002. The aims of the programme, which concerns itself with building systems, technical installations and the use of solar energy in buildings, are reviewed. Areas targeted in the period 2002 - 2006 are listed, including high-insulation technologies, so-called 'passive' low-energy consumption housing, environmental technology and sustainable neighbourhood development. Progress made in the environmental technology area is described including eco-assessment methods and the development of alternative insulation materials. The topics of solar sustainable housing, low-energy consumption building standards, aids for the optimisation of solar installations in larger buildings and lighting are covered, as is progress in the development of vacuum insulation and translucent elements with latent energy storage and guidelines for air-tightness and mechanical ventilation in 'passive' housing. In the technical services area, the validation of planning tools and manuals for purchasers and operators of heating, ventilation and air-conditioning systems are discussed. Co-operation with national and international institutions is discussed. A list of pilot and demonstration projects completes the report.

  5. Impact of external wall insulation thickness on internal surface temperature behaviour

    Directory of Open Access Journals (Sweden)

    Ponechal Radoslav

    2017-01-01

    Full Text Available During the last years, the concept of low-energy buildings based on high insulation levels becomes the reality. The aim of this paper is to assess some alternatives of insulated and uninsulated external walls with respect of thermal inertia. The thermal damping factor, phase shift, together with the daily courses of indoor surface temperature of the external wall have been analysed. Analysed surface temperatures show the ability of constructions to accumulate heat gains, which can arise during the day.

  6. Joint efforts to harmonize sound insulation descriptors and classification schemes in Europe (COST TU0901)

    OpenAIRE

    Rasmussen, Birgit

    2010-01-01

    Sound insulation descriptors, regulatory requirements and classification schemes in Europe represent a high degree of diversity. One implication is very little exchange of experience of housing design and construction details for different levels of sound insulation; another is trade barriers for building systems and products. Unfortunately, there is evidence for a development in the "wrong" direction. For example, sound classification schemes for dwellings exist in nine countries. There is n...

  7. Insulating materials from renewable raw materials. 3. upd. ed.; Daemmstoffe aus nachwachsenden Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Brandhorst, Joerg; Spritzendorfer, Josef; Gildhorn, Kai; Hemp, Markus

    2009-07-01

    Due to increasing energy prices, obligations to climatic protection and the desire for comfortable, allergy-free living, the thermal insulation is a central question with building and sanitation. Under this aspect, the contribution under consideration describes the very dynamic market of the insulating materials from renewable raw materials and deals with the questions of the users. In particular, the following raw materials are considered in the production of insulating materials: Wood fibre, wood chips, wood wool, sheep wool, flax, hemp, reeds, straw, cellulose.

  8. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  9. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal...... conductivity: + 50% for expanded polystyrene (λ ≈ 30 mW/m.K), + 75% for mineral wools (λ ≈ 35 mW/m.K), etc. Despite its low thermal conductivity, polyurethane foam (PUR) is not much used as insulation material for walls because of its low resistance to fire. The most common PUR boards are classified C-s2-d0...

  10. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  11. Effect of highly reflective roofing sheet on building thermal loads for a school in Osaka

    Directory of Open Access Journals (Sweden)

    Yuan Jihui

    2017-01-01

    Full Text Available Currently, urban heat island (UHI phenomenon and building energy consumptions are becoming serious. Strategies to mitigate UHI and reduce building energy consumptions are implemented worldwide. In Japan, as an effective means of mitigating UHI and saving energy of buildings, highly reflective (HR and green roofs are increasingly used. In order to evaluate the effect of roofs with high reflection and thermal insulation on the energy conservation of buildings, we investigated the roof solar reflectivity of the subject school in Osaka, in which the HR roofing sheet was installed on the roof from 2010. Thermal loads, including cooling and heating loads of the top floor of school, were calculated using the thermal load calculation software, New HASP/ACLD-β. Comparing the thermal loads after HR roofing sheet installation to previous, the annual thermal load decreased about 25 MJ/m2-year and the cooling load decreased about 112 MJ/m2-year. However, the heating load increased about 87 MJ/m2-year in winter. To minimize the annual thermal load, thermal insulation of the roof was also considered be used together with HR roofing sheet in this study. The results showed that the combination of HR roofing sheet and high thermal insulation is more effective to reduce the annual thermal load.

  12. Lighter touch keeps in the heat. [Advantages of low-thermal-mass insulation

    Energy Technology Data Exchange (ETDEWEB)

    Pipes, A.

    1979-04-01

    Low-thermal-mass insulation of ceramic fibers and light refractory materials is more suitable to applications with intermittent processes and lower-temperature melting and retreating, where the heat-retention requirements do not require traditional furnace design. Old furnaces can be retrofitted by replacing bricks with insulation or by veneering. Insulating materials include ceramic, alumina, and quartz fibers, and microtherm in the form of blocks, blankets and other shapes. 4 figures. (DCK)

  13. Some consequences of including low frequencies in the evaluation of floor impact sound

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    A method for including frequencies down to 50 Hz in the evaluation of floor impact sound has become available with the new version of ISO 717-2. In addition to the single number quantity for rating the impact sound insulation, a new spectrum adaptation term has been defined. The method has been...... studied by the Acoustics Group of the Nordic Committee on Building Regulations. The new method has been applied to a large number of recent measuring results from the Nordic countries. It was found that the spectrum adaptation term for the extended frequency range depends on the type of floor construction...

  14. Solar heating system. [solar collector in building parapet

    Energy Technology Data Exchange (ETDEWEB)

    Hope, H.F.; Hope, S.F.

    1978-10-24

    A parapet-like component for a building is disclosed which includes an air plenum. The plenum is a multipurpose structure which allows for transfer of a predetermined amount of heat from the outside into the building. The plenum includes translucent surfaces which allow light to enter the building and concurrently provide insulation against loss of heat from within the building towards the outside. The parapet-like component can be operated reversibly in allowing for cooling of the interior of the building when its temperature exceeds that of the outside. The structure is highly functional and also is aesthetically pleasing, having the general appearance of a mansard. The novel design of the invention allows for and incorporates the use of traditional and widely accepted building and architectural practices and esthetics. In a preferred embodiment, the plenum has an exterior wall of a tinted plastic or glass and a clear inside wall of plastic or glass. The structure is relatively easy to conform to conventional architectural plans. Considerable savings in both heating and lighting costs are achievable by the system without increase in building construction costs.

  15. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  16. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  17. Managing Measurement Uncertainty in Building Acoustics

    Directory of Open Access Journals (Sweden)

    Chiara Scrosati

    2015-12-01

    Full Text Available In general, uncertainties should preferably be determined following the principles laid down in ISO/IEC Guide 98-3, the Guide to the expression of uncertainty in measurement (GUM:1995. According to current knowledge, it seems impossible to formulate these models for the different quantities in building acoustics. Therefore, the concepts of repeatability and reproducibility are necessary to determine the uncertainty of building acoustics measurements. This study shows the uncertainty of field measurements of a lightweight wall, a heavyweight floor, a façade with a single glazing window and a façade with double glazing window that were analyzed by a Round Robin Test (RRT, conducted in a full-scale experimental building at ITC-CNR (Construction Technologies Institute of the National Research Council of Italy. The single number quantities and their uncertainties were evaluated in both narrow and enlarged range and it was shown that including or excluding the low frequencies leads to very significant differences, except in the case of the sound insulation of façades with single glazing window. The results obtained in these RRTs were compared with other results from literature, which confirm the increase of the uncertainty of single number quantities due to the low frequencies extension. Having stated the measurement uncertainty for a single measurement, in building acoustics, it is also very important to deal with sampling for the purposes of classification of buildings or building units. Therefore, this study also shows an application of the sampling included in the Italian Standard on the acoustic classification of building units on a serial type building consisting of 47 building units. It was found that the greatest variability is observed in the façade and it depends on both the great variability of window’s typologies and on workmanship. Finally, it is suggested how to manage the uncertainty in building acoustics, both for one single

  18. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  19. Aerogels Insulate Against Extreme Temperatures

    Science.gov (United States)

    2010-01-01

    In 1992, NASA started to pursue the development of aerogel for cryogenic insulation. Kennedy Space Center awarded Small Business Innovation Research (SBIR) contracts to Aspen Systems Inc., of Marlborough, Massachusetts, that resulted in a new manufacturing process and a new flexible, durable, easy-to-use form of aerogel. Aspen Systems formed Aspen Aerogels Inc., in Northborough, Massachusetts, to market the product, and by 2009, the company had become the leading provider of aerogel in the United States, producing nearly 20 million square feet per year. With an array of commercial applications, the NASA-derived aerogel has most recently been applied to protect and insulate people s hands and feet.

  20. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  1. Thermal performance of vertical greening system on the building façade: A review

    Science.gov (United States)

    Sari, Astri Anindya

    2017-09-01

    Over the last decade, research on the application of vertical greening system on the building façade has gained much attention. Those studies proved that installing a vertical greening system on the building facade has many advantages not only for the building but also for the city. Acting as a shading as well as thermal insulation in the building, reducing greenhouse gas emission, and improving the microclimate are some of the advantages of vertical greening system that already being proved. This study aims to review some studies related to the thermal performance of vertical greening system on the building façade. The review will provide comprehensive knowledge about the thermal performance of vertical greening system over different variations including climates, orientations, plant types, and the design of vertical greening system. Furthermore, this review is expected to be a reference in designing such vertical greening system which suitable for certain climate area that able to produce the best thermal performance.

  2. Marginal costs of intensified energy-efficiency measures in residential buildings; Grenzkosten bei forcierten Energie-Effizienzmassnahmen in Wohngebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, M.; Jochem, E. [Eidgenoessische Technische Hochschule (ETH), Centre for Energy Policy and Economics (CEPE), Zuerich (Switzerland); Kristen, K. [Eidgenoessische Technische Hochschule (ETH), Architektur und Baurealisation, Zuerich (Switzerland)

    2002-07-01

    This detailed report for the Swiss Federal Office of Energy (SFOE) examines the large potential for increasing the energy efficiency of residential buildings in Switzerland. The aims of the research project are described including investigation of costs and marginal costs for thermal insulation and efficiency measures, the updating of technical parameters for cost - efficiency characteristics on an empirical basis, a transparent presentation of cost/benefit ratios for different concepts. Another aim is to obtain a more detailed overview of costs and benefits that could be of use for planners, building owners and technology companies. The methodology used for the collection of data for the study is described. The report also takes a look at the indirect advantages of improving the thermal insulation of buildings and examines the initial economic and technical situation. A detailed review of the costs and benefits is given for the various elements of a building such as walls, floors and windows and a reference development scenario for the period 2000 -2030 is presented. Marginal cost curves for various categories of buildings are presented for thermal insulation and ventilation measures.

  3. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  4. Demonstration of Hybrid Multilayer Insulation for Fixed Thickness Applications

    Science.gov (United States)

    Johnson, W. L.; Fesmire, J. E.; Heckle, K. W.

    2015-12-01

    Cryogenic multilayer insulation (MLI) systems provide both conductive and radiative thermal insulation performance. The use of radiation shields with low conductivity spacers in between are required. By varying the distance and types of the spacers between the radiation shields, the relative radiation and conduction heat transfers can be manipulated. However, in most systems, there is a fixed thickness or volume allocated to the insulation. To understand how various combinations of different multilayer insulation (MLI) systems work together and to further validate thermal models of hybrid MLI systems, test data are needed. The MLI systems include combinations of Load-Bearing MLI (LB-MLI) and traditional MLI (tMLI). To further simulate the space launch vehicle case wherein both ambient pressure and vacuum environments are addressed, different cold-side thermal insulation substrates were included for select tests. The basic hybrid construction consists of some number of layers of LB-MLI on the cold side of the insulation system followed by layers of tMLI on the warm side of the system. The advantages of LB-MLI on the cold side of the insulation blanket are that its low layer density (0.5 - 0.6 layer/mm) is better suited for lower temperature applications and is a structural component to support heat interception shields that may be placed within the blanket. The advantage of tMLI systems on the warm side is that radiation is more dominant than conduction at warmer temperatures, so that a higher layer density is desired (2 - 3 layer/mm) and less effort need be put into minimizing conduction heat transfer. Liquid nitrogen boiloff test data using a cylindrical calorimeter are presented along with analysis for spacecraft tank applications.

  5. The efficiency of night insulation using aerogel-filled polycarbonate panels during the heating season

    Science.gov (United States)

    Adelsberger, Kathleen

    Energy is the basis for modern life. All modern technology from a simple coffee maker to massive industrial facilities is powered by energy. While the demand for energy is increasing, our planet is suffering from the consequences of using fossil fuels to generate electricity. Therefore, the world is looking at clean energy and solar power to minimize this effect on our environment. However, saving energy is extremely important even for clean energy. The more we save the less we have to generate. Heat retention in buildings is one step towards achieving passive heating. Therefore, efforts are made to prevent heat from escaping buildings through the glass during cold nights. Movable insulation is a way to increase the insulation value of the glass to reduce heat loss towards the outdoor. This thesis examines the performance of the aerogel-filled polycarbonate movable panels in the Ecohawks building, a building located on the west campus of The University of Kansas. Onsite tests were performed using air and surface temperature sensors to determine the effectiveness of the system. Computer simulations were run by Therm 7.2 simulation software to explore alternative design options. A cost analysis was also performed to evaluate the feasibility of utilizing movable insulation to reduce the heating bills during winter. Results showed that sealed movable insulation reduces heat loss through the glazing by 67.5%. Replacing aerogel with XPS panels reduces this percentage to 64.3%. However, it reduces the cost of the insulation material by 98%.

  6. Insulated transcriptional elements enable precise design of genetic circuits.

    Science.gov (United States)

    Zong, Yeqing; Zhang, Haoqian M; Lyu, Cheng; Ji, Xiangyu; Hou, Junran; Guo, Xian; Ouyang, Qi; Lou, Chunbo

    2017-07-03

    Rational engineering of biological systems is often complicated by the complex but unwanted interactions between cellular components at multiple levels. Here we address this issue at the level of prokaryotic transcription by insulating minimal promoters and operators to prevent their interaction and enable the biophysical modeling of synthetic transcription without free parameters. This approach allows genetic circuit design with extraordinary precision and diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding NOT-gate functions were designed from scratch with mean errors of 96% using our insulated transcription elements. Furthermore, four-node transcriptional networks with incoherent feed-forward loops that execute stripe-forming functions were obtained without any trial-and-error work. This insulation-based engineering strategy improves the resolution of genetic circuit technology and provides a simple approach for designing genetic circuits for systems and synthetic biology.Unwanted interactions between cellular components can complicate rational engineering of biological systems. Here the authors design insulated minimal promoters and operators that enable biophysical modeling of bacterial transcription without free parameters for precise circuit design.

  7. Office Building, Roskilde, Denmark. Parkvænget 25, 4000 Roskilde

    DEFF Research Database (Denmark)

    Rose, Jørgen; Thomsen, Kirsten Engelund

    Built in 1968 the office building was a typical precast concrete building with a very limited level of insulation. In 1991 the building envelope was renovated and insulation was added to the wall (175 mm) and windows were replaced with traditional double-glazed windows. The main objective...... of the renovation was to reduce the overall energy consumption of the building while also improving the indoor climate. This was achieved by adding insulation to the facade, replacing existing windows, improving air tightness of the building envelope, replacing the ventilation system and adding photovoltaic cells...

  8. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  9. Assessing Foundation Insulation Strategies for the 2012 International Energy Conservation Code in Cold Climate New Home Construction

    Energy Technology Data Exchange (ETDEWEB)

    VonThoma, E. [Univ. of Minnesota, St. Paul, MN (United States); Ojczyk, C. [Univ. of Minnesota, St. Paul, MN (United States); Mosiman, G. [Univ. of Minnesota, St. Paul, MN (United States)

    2013-04-01

    While the International Energy Conservation Code 2012 (IECC 2012) has been adopted at a national level, only two cold climate states have adopted it as their new home energy code. Understanding the resistance to adoption is important in assisting more states accept the code and engage deep energy strategies nationwide. This three-part assessment by the NorthernSTAR Building America Partnership was focused on foundation insulation R-values for cold climates and the design, construction, and performance implications. In Part 1 a literature review and attendance at stakeholder meetings held in Minnesota were used to assess general stakeholder interest and concerns regarding proposed code changes. Part 2 includes drawings of robust foundation insulation systems that were presented at one Minnesota stakeholder meeting to address critical issues and concerns for adopting best practice strategies. In Part 3 a sampling of builders participated in a telephone interview to gain baseline knowledge on insulation systems used to meet the current energy code and how the same builders propose to meet the new proposed code.

  10. Variably insulating portable heater/cooler

    Science.gov (United States)

    Potter, T.F.

    1998-09-29

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  11. Radiation-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1995-07-18

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber that includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  12. Material-controlled dynamic vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1996-10-08

    A compact vacuum insulation panel is described comprising a chamber enclosed by two sheets of metal, glass-like spaces disposed in the chamber between the sidewalls, and a high-grade vacuum in the chamber includes apparatus and methods for enabling and disabling, or turning ``on`` and ``off`` the thermal insulating capability of the panel. One type of enabling and disabling apparatus and method includes a metal hydride for releasing hydrogen gas into the chamber in response to heat, and a hydrogen grate between the metal hydride and the chamber for selectively preventing and allowing return of the hydrogen gas to the metal hydride. Another type of enabling and disabling apparatus and method includes a variable emissivity coating on the sheets of metal in which the emissivity is controllably variable by heat or electricity. Still another type of enabling and disabling apparatus and method includes metal-to-metal contact devices that can be actuated to establish or break metal-to-metal heat paths or thermal short circuits between the metal sidewalls. 25 figs.

  13. Correlations in a band insulator

    Czech Academy of Sciences Publication Activity Database

    Sentef, M.; Kuneš, Jan; Werner, P.; Kampf, A. P.

    2009-01-01

    Roč. 80, č. 15 (2009), 155116/1-155116/7 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : electronic correlations * dynamical mean-field theory * band insulator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  14. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  15. Effects Of Radiation On Insulators

    Science.gov (United States)

    Bouquet, Frank L.

    1988-01-01

    Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.

  16. Simulation of radiation effects in ultra-thin insulating layers

    Directory of Open Access Journals (Sweden)

    Timotijević Ljubinko B.

    2013-01-01

    Full Text Available The Monte Carlo simulations of charged particle transport are used to investigate the effects of exposing ultra-thin layers of insulators (commonly used in integrated circuits to beams of protons, alpha particles and heavy ions. Materials considered include silicon dioxide, aluminum nitride, alumina, and polycarbonate - lexan. The parameters that have been varied in simulations include the energy of incident charged particles and insulating layer thickness. Materials are compared according to both ionizing and non-ionizing effects produced by the passage of radiation. [Projekat Ministarstva nauke Republike Srbije, br. 171007

  17. Investigation of building energy autonomy in the sahelian environment

    International Nuclear Information System (INIS)

    Coulibaly, O; Koulidiati, J; Ouedraogo, A; Kuznik, F; Baillis, D

    2012-01-01

    In this study, the energy generation of a set of photovoltaic panels is compared with the energy load of a building in order to analyse its autonomy in the sahelian environment when taking into account, the orientation, the insulation and the energy transfer optimisation of its windows. The Type 56 TRNSYS multizone building model is utilized for the energy load simulation and the Type 94 model of the same code enables the coupling of photovoltaic (PV) panels with the building. Without insulation, the PV energy generation represents 73.52 and 111.79% of the building electric energy load, respectively for poly-crystalline and mono-crystalline panels. For the same PV characteristics and when we insulate the roof and the floor, the energy generation increases to represent successively 121.09 and 184.13%. In the meantime, for building without insulation and with insulate the roof, the floor and 2 cm insulated walls, the energy consumption ratios decrease respectively from 201.13 to 105.20 kWh/m 2 /year. The investigations finally show that it is even possible to generate excess energy (positive energy building) and reduce the number and incident surface area of the PV panels if we conjugate the previous model with building passive architectural design mode (orientation, solar protection ...).

  18. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  19. Prediction of the Effective Thermal Conductivity of Powder Insulation

    Science.gov (United States)

    Jin, Lingxue; Park, Jiho; Lee, Cheonkyu; Jeong, Sangkwon

    The powder insulation method is widely used in structural and cryogenic systems such as transportation and storage tanks of cryogenic fluids. The powder insulation layer is constructed by small particle powder with light weight and some residual gas with high porosity. So far, many experiments have been carried out to test the thermal performance of various kinds of powder, including expanded perlite, glass microspheres, expanded polystyrene (EPS). However, it is still difficult to predict the thermal performance of powder insulation by calculation due to the complicated geometries, including various particle shapes, wide powder diameter distribution, and various pore sizes. In this paper, the effective thermal conductivity of powder insulation has been predicted based on an effective thermal conductivity calculationmodel of porous packed beds. The calculation methodology was applied to the insulation system with expanded perlite, glass microspheres and EPS beads at cryogenic temperature and various vacuum pressures. The calculation results were compared with previous experimental data. Moreover, additional tests were carried out at cryogenic temperature in this research. The fitting equations of the deformation factor of the area-contact model are presented for various powders. The calculation results show agood agreement with the experimental results.

  20. Evaluation of Boulder, CO, SmartRegs Ordinance and Better Buildings Program

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Vijayakumar, G.

    2012-04-01

    Under the SmartRegs ordinance in the city of Boulder, Colorado, all rental properties in the city must achieve an energy efficiency level comparable to a HERS Index of approximately 120 points or lower by the year 2019. The City of Boulder received a $12 million grant from the DOE's Better Buildings initiative to create and incentivize their EnergySmart Program. In this report, the Consortium for Advanced Residential Buildings (CARB) describes its work with the program, including energy audits of rental properties, developing training programs for insulators and inspectors, and conducting interviews with property owners.

  1. Evaluation of Boulder, CO,SmartRegs Ordinance and Better Buildings Program

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Vijayakumar, G. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-04-01

    Under the SmartRegs ordinance in the city of Boulder, Colorado, all rental properties in the city must achieve an energy efficiency level comparable to a HERS Index of approximately 120 points or lower by the year 2019. The City of Boulder received a $12 million grant from the DOE’s Better Buildings initiative to create and incentivize their EnergySmart Program. In this report, the Consortium for Advanced Residential Buildings (CARB) describes its work with the program, including energy audits of rental properties, developing training programs for insulators and inspectors, and conducting interviews with property owners.

  2. Thermal analysis of building roof assisted with water heater and ...

    Indian Academy of Sciences (India)

    D Prakash

    2018-03-14

    Mar 14, 2018 ... Thermal analysis; building roof; solar water heating system; roof insulation; numerical simulation. 1. Introduction. Nowadays, residential buildings are consuming a signifi- cant percentage of energy for lighting, cooling of buildings and for home appliances. Also, the ever-growing popula- tion increases the ...

  3. Center for the Polyurethanes Industry summary of unpublished industrial hygiene studies related to the evaluation of emissions of spray polyurethane foam insulation.

    Science.gov (United States)

    Wood, Richard D

    2017-09-01

    Spray polyurethane foam (SPF) insulation is used as thermal insulation for residential and commercial buildings. It has many advantages over other forms insulation; however, concerns have been raised related to chemical emissions during and after application. The American Chemistry Council's (ACC's) Center for the Polyurethanes Industry (CPI) has gathered previously unpublished industrial hygiene air sampling studies submitted by member companies that were completed during an eight-year period from 2007-2014. These studies address emissions from medium density closed cell and low density open cell formulations. This article summarizes the results of personal and area air samples collected during application and post application of SPF to interior building surfaces in both laboratory and field environments. Chemicals of interest included: Volatile Organic Compounds (VOCs), methylene diphenyl diisocyanate (MDI), flame retardants, amine catalysts, blowing agents, and aldehydes. Overall, the results indicate that SPF applicators and workers in close proximity to the application are potentially exposed to MDI in excess of recommended and governmental occupational exposure limits and should use personal protective equipment (PPE) consisting of air supplied respirators and full-body protective clothing to reduce exposure. Catalyst emissions can be reduced by using reactive catalysts in SPF formulations, and mechanical ventilation is important in controlling emissions during and after application.

  4. Existing buildings

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2014-01-01

    their homes. These policy measures include building regulations, energy tax and different types of incentives and information dissemination. The conclusion calls for new and innovative policy measures to cope with the realities of renovations of owner-occupied houses and how energy efficiency improvement...

  5. Data on anti-insulation detection via Point of Thermal Inflexion (PTI in 1248 cases; 13 climates, four occupancy profiles, six wall configurations and four insulation levels

    Directory of Open Access Journals (Sweden)

    Yasin M. Idris

    2017-06-01

    Full Text Available The data in this article are the simulation results of 1248 cases that were carried out to detect anti-insulation behaviour in the article titled “Anti-insulation mitigation by altering the envelope layers’ configuration” (Idris and Mae, 2017 [1]. These cases are generated by a matrix of 13 climates, 6 envelope layer configurations, 4 occupancy profiles and 4 levels of insulation thickness. The data are concerned with the annual cooling and heating loads of these cases. In addition, the data include the Point of Thermal Inflexion (PTI values and their anti-insulation pattern, when PTI is found. The PTI values are compiled in a single summary file and supplied as well. All These data are shared via this article where they can be reused in different ways, but mainly for serving researchers that intend to approach anti-insulation behaviour from different points of view.

  6. Insulator recognition based on convolution neural network

    Directory of Open Access Journals (Sweden)

    Yang Yanli

    2017-01-01

    Full Text Available Insulator fault detection plays an important role in maintaining the safety of transmission lines. Insulator recognition is a prerequisite for its fault detection. An insulator recognition algorithm based on convolution neural network (CNN is proposed. A dataset is established to train the constructed CNN. The correct rate is 98.52% for 1220 training samples and the accuracy rate of testing is 89.04% on 1305 samples. The classification result of the CNN is further used to segment the insulator image. The test results show that the proposed method can realize the effective segmentation of insulators.

  7. The electric strength of high-voltage transformers insulation at effect of partial dischargers

    International Nuclear Information System (INIS)

    Khoshravan, E.; Zeraatparvar, A.; Gashimov, A.M.; Mehdizadeh, R.N.

    2001-01-01

    Full text : In paper the change of electric strength of high-voltage transformers insulation at the effect of partial discharges with space charge accumulation was investigated. It is revealed that the effect of partial discharges of insulation materials results the reduction of their pulsing electric strength which can restore the own initial value at releasing of saved charge the volume of a material under condition of absence the ineversible structural changes in it. Researches of high-voltage transformers insulation's non-failure operation conditions show, that at increasing of insulation work time in a strong electrical field the reduction of average breakdown voltages with simultaneous increasing of spread in discharge voltage values takes place. It authentically testifies to reduction of short-time discharge voltage of insulation materials during their electrical aging. As the basic reason of insulation electrical aging the partial discharges occurring in gas cavities inside insulation were considered. It is known that the space charges will be formed in insulation elements of high-voltage devices which effects in dielectrical property of these elements including the electric strength and the space charge formation can occur also at partial discharges in an alternating voltage while the service of high-voltage transformers. In the given work the experiments in revealing separate influence partial discharges in pulsing electric strength of insulation materials at presence and at absence inside them the space charge were spent

  8. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    The first main objective deals with “aerogel process optimisation”. The general goal was to demonstrate that the elaboration process, developed during the recent HILIT project, permitted to obtain a significant amount of light transmitting, insulating and transparent 15-20 mm monolithic and crack...... material. Due to the low density, the acoustic impedance of aerogel could help boost the efficiency of piezoelectric transducers. • Waste encapsulation, spacers for vacuum insulation panels, membranes, etc.......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  9. Measure Guideline: Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, H.; Klocke, S.; Puttagunta, S.

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders, remodelers, contractors and homeowners.

  10. Measure Guideline. Installing Rigid Foam Insulation on the Interior of Existing Brick Walls

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Hariharan [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Klocke, Steve [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-06-01

    This measure guideline provides information on an effective method to insulate the interior of existing brick masonry walls with extruded polystyrene (XPS) insulation board. The guide outlines step-by-step design and installation procedures while explaining the benefits and tradeoffs where applicable. The authors intend that this document be useful to a varied audience that includes builders,remodelers, contractors and homeowners.

  11. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Global Building Physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2012-01-01

    High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or “global”, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. The keynote lecture and this brief paper...

  13. Global building physics

    DEFF Research Database (Denmark)

    Rode, Carsten

    2013-01-01

    High ambitions are set for the building physics performance of buildings today. No single technology can achieve fulfilment of these ambitions alone. Integrated, multi-facetted solutions and optimization are necessary. A holistic, or ‘global’, technological perspective is needed, which includes all...... aspects of the building as defined in building engineering. We live in an international society and building solutions are developed across country borders. Building physics is a global theme. The International Association of Building Physics has global appeal. This brief article reports the keynote...

  14. Attenuation of fluorocarbons released from foam insulation in landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Dote, Yukata; Fredenslund, Anders Michael

    2007-01-01

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project...... was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs...... in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate...

  15. Thermography Control of Heat Insulation and Tightness of Buildings,

    Science.gov (United States)

    1980-11-01

    wallpaper , white 0.54 Plasticized wallpaper , red 0.94 Burlap, natural color 0.67 Burlap, green 0. 68 Brick facing, red 09 Brick facing, yellow 0.72...portion. Upper temperature limit for color: white ................... + 21.00 C yellow .................. + 20.4 0C v red ..................... + 19.7C...layer (The wallpaper cracked in places). d) t ref + 200 C I A I = - 1.3 isotherm units At = 1.50C v = 0.5 - 2.5 m/s (at vertical joint in the g il

  16. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  17. Strain-induced high-temperature perovskite ferromagnetic insulator.

    Science.gov (United States)

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin

    2018-03-20

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.

  18. Vacuum Insulation Panels: Analysis of the Thermal Performance of Both Single Panel and Multilayer Boards

    Directory of Open Access Journals (Sweden)

    Alfonso Capozzoli

    2015-03-01

    Full Text Available The requirements for improvement in the energy efficiency of buildings, mandatory in many EU countries, entail a high level of thermal insulation of the building envelope. In recent years, super-insulation materials with very low thermal conductivity have been developed. These materials provide satisfactory thermal insulation, but allow the total thickness of the envelope components to be kept below a certain thickness. Nevertheless, in order to penetrate the building construction market, some barriers have to be overcome. One of the main issues is that testing procedures and useful data that are able to give a reliable picture of their performance when applied to real buildings have to be provided. Vacuum Insulation Panels (VIPs are one of the most promising high performing technologies. The overall, effective, performance of a panel under actual working conditions is influenced by thermal bridging, due to the edge of the panel envelope and to the type of joint. In this paper, a study on the critical issues related to the laboratory measurement of the equivalent thermal conductivity of VIPs and their performance degradation due to vacuum loss has been carried out utilizing guarded heat flux meter apparatus. A numerical analysis has also been developed to study thermal bridging effect when VIP panels are adopted to create multilayer boards for building applications.

  19. Metal-Insulator Transition in nanoparticle solids: a kinetic Monte Carlo study

    Science.gov (United States)

    Zimanyi, Gergely; Qu, Luman; Voros, Marton

    Nanoparticle (NP) solids recently emerged as a promising platform for high performance electronic/optoelectronic devices, including third generation solar cells, light emitting diodes and field effect transistors. A challenge of NP films is that their charge transport is in the unfavorable hopping/insulating regime. Recent experiments showed that it is possible to tune the NP solids through a Metal-Insulator Transition (MIT) via ligand engineering and ALD matrix infilling. However, the microscopic understanding of this transition is not yet clear. To address this challenge, we developed a Kinetic Monte Carlo transport modeling framework that builds on determining NP parameters from ab initio-based calculations of the energy level structures, charging energies and overlaps, and then uses these to compute the hopping mobility across a disordered NP array by the Marcus and Miller-Abrahams mechanisms. We reproduced and explained the observed non-monotonous dependence of the mobility on the NP diameter. Centrally, we extended our platform to be able to capture the MIT. We determined the MIT phase boundary on the (NP-NP overlap - Electron density) plane. We demonstrated that all mobilities fall on a universal scaling curve, allowing us to determine the critical behavior across the MIT. Supported by: UC Davis Office of Research RISE ANSWER Grant.

  20. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  1. Determination of optimum insulation thickness in pipe for exergetic life cycle assessment

    International Nuclear Information System (INIS)

    Keçebaş, Ali

    2015-01-01

    Highlights: • It is aimed to determine optimum insulation thickness in pipe. • A new methodology is used as exergetic life cycle assessment for this purpose. • It is evaluated for various fuels, different pipe diameters and some combustion parameters. • This methodology is not suitable for determining optimum insulation thickness of a pipe. • There are benefits to our understanding of the need for insulation use in pipes. - Abstract: The energy saving and the environmental impacts’ reduction in the world building sector have gained great importance. Therefore, great efforts have been invested to create energy-saving green buildings. To do so, one of the many things to be done is the insulation of cylindrical pipes, canals and tanks. In the current study, the main focus is on the determination of the optimum insulation thickness of the pipes with varying diameters when different fuels are used. Therefore, through a new method combining exergy analysis and life cycle assessment, optimum insulation thickness of the pipes, total exergetic environmental impact, net saving and payback period were calculated. The effects of the insulation thickness on environmental and combustion parameters were analyzed in a detailed manner. The results revealed that optimum insulation thickness was affected by the temperature of the fuel when it enters into the combustion chamber, the temperature of the stack gas and the temperature of the combustion chamber. Under these optimum effects, the optimum insulation thickness of a 100 mm pipe was determined to be 55.7 cm, 57.2 cm and 59.3 cm for coal, natural gas and fuel–oil, respectively with the ratios of 76.32%, 81.84% and 84.04% net savings in the exergetic environmental impact. As the environmental impacts of the fuels and their products are bigger than those of the insulation material, the values of the optimum insulation thickness of the method used this study was found greater. Moreover, in the pipes with greater

  2. A new approach to the Danish guidelines for fire protection of combustible insulation

    Directory of Open Access Journals (Sweden)

    Dragsted Anders

    2013-11-01

    Full Text Available The tendency to use thicker layers of insulation and a wider use of combustible insulation materials is identified to pose a potential risk to fire safety of buildings. A new approach to the current Danish prescriptive code on fire protection of combustible insulation is proposed as a way to meet the concern. The new approach uses the fire properties of the insulation material itself to point out the necessary protective measures. This is contrary to the most European countries were only a reaction to fire class of the façade construction as a whole is required. The basic principle is presented but more research is needed to complete the new approach.

  3. Harmonization of sound insulation descriptors and classification schemes in Europe: COST Action TU0901

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    -in-Chief. Handbook of noise and vibration control, USA: Wiley and Son; 2007 [Ch. 114]. [4] COST Action TU0901 “Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions”, 2009-2013, www.cost.eu/index.php?id=240&action_number=tu0901 (public information at COST website) or http...... Sound Insulation Aspects in Sustainable Urban Housing Constructions" has been approved and runs for four years from November 2009. Until now (end 2010), 28 countries in Europe and 3 overseas countries have signed up for TU0901, and about 85 people have been nominated for the management committee...... of the inhabitants and the society. References [1] "Sound insulation between dwellings – Descriptors in building regulations in Europe" by Birgit Rasmussen & Jens Holger Rindel. Applied Acoustics, 2010, 71(3), 171-180. http://dx.doi.org/10.1016/j.apacoust.2009.05.002 [2] "Sound insulation between dwellings...

  4. Further measurements of the sound insulations of metal-framed partitions

    Science.gov (United States)

    Plumb, G. D.

    1994-12-01

    The sound insulations were measured of a number of single and double leaf metal-framed partitions. The purpose of the work was to develop alternative designs for partitions to that of the Camden. The Camden contains fiberboard as one of its constituent elements. The new partitions used plasterboard as the sole board material. Therefore, the new partitions were heavier than the comparable metal-framed partitions. The levels of sound insulation achieved from the new partitions were generally slightly higher than those of comparable metal-framed Camdens. However, the greater masses of the new partitions may rule out their use in certain circumstances because of the loadbearing requirements of the surrounding building. The installation of glass wool insulation batts in the cavities of the new partitions resulted in large increases in the measured sound insulations. The glass wool damps the motion of the boards and absorbs sound that has been transmitted into the cavities.

  5. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  6. Joint efforts to harmonize sound insulation descriptors and classification schemes in Europe (COST TU0901)

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2010-01-01

    Sound insulation descriptors, regulatory requirements and classification schemes in Europe represent a high degree of diversity. One implication is very little exchange of experience of housing design and construction details for different levels of sound insulation; another is trade barriers...... for building systems and products. Unfortunately, there is evidence for a development in the "wrong" direction. For example, sound classification schemes for dwellings exist in nine countries. There is no sign on increasing harmonization, rather the contrary, as more countries are preparing proposals with new......, new housing must meet the needs of the people and offer comfort. Also for existing housing, sound insulation aspects should be taken into account, when renovating housing; otherwise the renovation is not “sustainable”. A joint European Action, COST TU0901 "Integrating and Harmonizing Sound Insulation...

  7. Radioactivity in building materials

    International Nuclear Information System (INIS)

    Stranden, E.

    1979-01-01

    The object of this brief report is to make the pollution inspectorate aware of the radiation hazards involved in new building materials, such as gypsum boards and alum slate based concrete blocks whose radium content is high. Experience in Swedish housebuilding has shown that a significant increase in the radiation dose to the occupants can occur. Improved insulation and elimination of draughts in fuel conservation accentuate the problem. Norwegian investigations are referred to and OECD and Scandinavian discussions aiming at recommendations and standards are mentioned. Suggested measures by the Norwegian authorities are given. (JIW)

  8. Improving the Performance of a Semitransparent BIPV by Using High-Reflectivity Heat Insulation Film

    Directory of Open Access Journals (Sweden)

    Huei-Mei Liu

    2016-01-01

    Full Text Available Currently, standard semitransparent photovoltaic (PV modules can largely replace architectural glass installed in the windows, skylights, and facade of a building. Their main features are power generation and transparency, as well as possessing a heat insulating effect. Through heat insulation solar glass (HISG encapsulation technology, this study improved the structure of a typical semitransparent PV module and explored the use of three types of high-reflectivity heat insulation films to form the HISG building-integrated photovoltaics (BIPV systems. Subsequently, the authors analyzed the influence of HISG structures on the optical, thermal, and power generation performance of the original semitransparent PV module and the degree to which enhanced performance is possible. The experimental results indicated that the heat insulation performance and power generation of HISGs were both improved. Selecting an appropriate heat insulation film so that a larger amount of reflective solar radiation is absorbed by the back side of the HISG can yield greater enhancement of power generation. The numerical results conducted in this study also indicated that HISG BIPV system not only provides the passive energy needed for power loading in a building, but also decreases the energy consumption of the HVAC system in subtropical and temperate regions.

  9. High temperature structural insulating material

    Science.gov (United States)

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  10. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  11. Composition and process for making an insulating refractory material

    Science.gov (United States)

    Pearson, A.; Swansiger, T.G.

    1998-04-28

    A composition and process are disclosed for making an insulating refractory material. The composition includes calcined alumina powder, flash activated alumina powder, an organic polymeric binder and a liquid vehicle which is preferably water. Starch or modified starch may also be added. A preferred insulating refractory material made with the composition has a density of about 2.4--2.6 g/cm{sup 3} with reduced thermal conductivity, compared with tabular alumina. Of importance, the formulation has good abrasion resistance and crush strength during intermediate processing (commercial sintering) to attain full strength and refractoriness.

  12. Assessment of reflective insulations for residential and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Yarbrough, D.W.

    1983-10-01

    A survey of available products, uses, and thermal resistance data for thermal insulations that use combinations of air gaps and reflective surfaces to form thermal barriers is presented. Reflective products like pipe insulation or high thermal resistance evacuated panels that are used exclusively in industrial applications are not included. A one-dimensional steady-state calculation has been developed to provide a way of discussing the R-values of refelctive assemblies and their sensitivity to properties like surface emissivity or positioning of foil surfaces in a cavity. The products considered are used in residential or commercial applications.

  13. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  14. Performance of Topological Insulator Interconnects

    OpenAIRE

    Philip, Timothy M.; Hirsbrunner, Mark R.; Park, Moon Jip; Gilbert, Matthew J.

    2016-01-01

    The poor performance of copper interconnects at the nanometer scale calls for new material solutions for continued scaling of integrated circuits. We propose the use of three dimensional time-reversal-invariant topological insulators (TIs), which host backscattering-protected surface states, for this purpose. Using semiclassical methods, we demonstrate that nanoscale TI interconnects have a resistance 1-3 orders of magnitude lower than copper interconnects and graphene nanoribbons at the nano...

  15. Building Blueprints: Making Music.

    Science.gov (United States)

    College Planning & Management, 2002

    2002-01-01

    Depicts how Cornell University renovated its civil engineering and architecture building to include space for musical performances, teaching, and rehearsals. The article highlights the facility's contemporary design, which also compliments the form and massing of the original building. (GR)

  16. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)

  17. Magnonic topological insulators in antiferromagnets

    Science.gov (United States)

    Nakata, Kouki; Kim, Se Kwon; Klinovaja, Jelena; Loss, Daniel

    2017-12-01

    Extending the notion of symmetry protected topological phases to insulating antiferromagnets (AFs) described in terms of opposite magnetic dipole moments associated with the magnetic N e ´el order, we establish a bosonic counterpart of topological insulators in semiconductors. Making use of the Aharonov-Casher effect, induced by electric field gradients, we propose a magnonic analog of the quantum spin Hall effect (magnonic QSHE) for edge states that carry helical magnons. We show that such up and down magnons form the same Landau levels and perform cyclotron motion with the same frequency but propagate in opposite direction. The insulating AF becomes characterized by a topological Z2 number consisting of the Chern integer associated with each helical magnon edge state. Focusing on the topological Hall phase for magnons, we study bulk magnon effects such as magnonic spin, thermal, Nernst, and Ettinghausen effects, as well as the thermomagnetic properties of helical magnon transport both in topologically trivial and nontrivial bulk AFs and establish the magnonic Wiedemann-Franz law. We show that our predictions are within experimental reach with current device and measurement techniques.

  18. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  19. Thermal performances of an insulating structure for a reactor vessel

    International Nuclear Information System (INIS)

    Aranovitch, E.; Crutzen, S.; Le Det, M.; Denis, R.

    1974-12-01

    This report describes the thermal and technological tests performed on a multilayer thermal insulation system for high temperature gas reactors. It includes the description of test facilities, global tests, interpretation of data, and technological tests. Results obtained make it possible to predetermine with a satisfactory precision thermal performances under various nominal conditions

  20. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  1. NEW, EFFICIENT AND GENERALLY APPLICABLE DESIGN OF RADON-PROOF INSULATIONS-A PROPOSAL FOR A UNIFORM APPROACH.

    Science.gov (United States)

    Jiránek, M

    2017-11-01

    A comparison of existing methods used for dimensioning radon-proof insulations showed that they generate significantly different thicknesses. As a consequence, they fail to provide relevant information about the applicability of particular waterproofing materials. A new, generally applicable and simple method for dimensioning radon-proof insulation is therefore proposed here. It is based on comparing two values: the radon resistance of the insulation, and the minimum radon resistance. Whilst the radon resistance of a particular insulation can be provided by the manufacturers in technical data sheets in dependence on the thickness and the radon diffusion coefficient, the minimum radon resistance is tabulated in dependence on the radon risk of the foundation soils and the parameters of the building. The new method allows fast, reliable and optimized design of radon-prof insulations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  3. Dynamic Thermal Features of Insulated Blocks: Actual Behavior and Myths

    Directory of Open Access Journals (Sweden)

    Marta Cianfrini

    2017-11-01

    Full Text Available The latest updates in the European directive on energy performance of buildings have introduced the fundamental “nearly zero-energy building (NZEB” concept. Thus, a special focus needs to be addressed to the thermal performance of building envelopes, especially concerning the role played by thermal inertia in the energy requirements for cooling applications. In fact, a high thermal inertia of the outer walls results in a mitigation of the daily heat wave, which reduces the cooling peak load and the related energy demand. The common assumption that high mass means high thermal inertia typically leads to the use of high-mass blocks. Numerical and experimental studies on thermal inertia of hollow envelope components have not confirmed this general assumption, even though no systematic analysis is readily available in the open literature. Yet, the usually employed methods for the calculation of unsteady heat transfer through walls are based on the hypothesis that such walls are composed of homogeneous layers. In this framework, a study of the dynamic thermal performance of insulated blocks is brought forth in the present paper. A finite-volume method is used to solve the two-dimensional equation of conduction heat transfer, using a triangular-pulse temperature excitation to analyze the heat flux response. The effects of both the type of clay and the insulating filler are investigated and discussed at length. The results obtained show that the wall front mass is not the basic independent variable, since clay and insulating filler thermal diffusivities are more important controlling parameters.

  4. Ventilation Guidance To Promote the Safe Use of Spray Polyurethane Foam (SPF) Insulation, Incluyendo la Versión de Español

    Science.gov (United States)

    This guidance describes basic ventilation principles and strategies to help protect workers and building occupants and promote the safe use of spray polyurethane foam (SPF) insulation. Guia para la ventilacion sobre la application del aerosol de espuma.

  5. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    Science.gov (United States)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  6. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    Science.gov (United States)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  7. ADVANCED INSULATIONS FOR REFRIGERATOR/FREEZERS: THE POTENTIAL FOR NEW SHELL DESIGNS INCORPORATING POLYMER BARRIER CONSTRUCTION

    Science.gov (United States)

    The report examines domestic refrigerator/freezer (R/F) design alternatives which may offer greater increase in thermal performance than is possible with panel/foam composites. (NOTE: Current efforts to design and build R/Fs with high performance insulation technology are directe...

  8. Use of XPS thermal insulator boards in design of educational spaces

    African Journals Online (AJOL)

    Heating and cooling equipment capacity becomes smaller than half after proper implementation of thermal insulation. As air conditioning equipment becomes small, implementation of optimization not only becomes free but also reduces the overall cost of construction. Keywords: School, modern materials, Building and ...

  9. Unconventional Fermi surface in an insulating state

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, B. S. [Cambridge Univ., Cambridge (United Kingdom); Hsu, Y. -T. [Cambridge Univ., Cambridge (United Kingdom); Zeng, B. [National High Magnetic Field Lab., Tallahassee, FL (United States); Hatnean, M. Ciomaga [Univ. of Warwick, Coventry (United Kingdom); Zhu, Z. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartstein, M. [Cambridge Univ., Cambridge (United Kingdom); Kiourlappou, M. [Cambridge Univ., Cambridge (United Kingdom); Srivastava, A. [Cambridge Univ., Cambridge (United Kingdom); Johannes, M. D. [Center for Computational Materials Science, Washington, DC (United States); Murphy, T. P. [National High Magnetic Field Lab., Tallahassee, FL (United States); Park, J. -H. [National High Magnetic Field Lab., Tallahassee, FL (United States); Balicas, L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lonzarich, G. G. [Cambridge Univ., Cambridge (United Kingdom); Balakrishnan, G. [Univ. of Warwick, Coventry (United Kingdom); Sebastian, Suchitra E. [Cambridge Univ., Cambridge (United Kingdom)

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  10. Choice of insulation standard for pipe networks in 4th generation district heating systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mohammadi, Soma

    2016-01-01

    and smart gas grids. Improving DH pipes by improving the insulation standard results in decreasing the heat and temperature losses from the pipe networks. When reducing heat losses from DH pipes, there is a trade-off between the increasing cost of pipe insulation and the associated savings in the heat...... by implementing different pipe insulation standards. In the second step, the specific grid losses found in the first step are analysed in an integrated energy systems model where all main energy sectors and their interrelations are included. The outcome of the study can provide decision support when planning...... investments in DH systems today and in the future. The results from the case of Denmark shows that pipes with higher insulation standard (series 3) is generally preferable, but the highest insulation standard available today (series 4) might be preferable in the future if fuel prices or increase or investment...

  11. A Short Course on Topological Insulators: Band-structure topology and edge states in one and two dimensions

    OpenAIRE

    Asbóth, János K.; Oroszlány, László; Pályi, András

    2015-01-01

    This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological band insulators in one and two dimensions. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. We use noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dime...

  12. 78 FR 27906 - Lead; Renovation, Repair, and Painting Program for Public and Commercial Buildings; Notice of...

    Science.gov (United States)

    2013-05-13

    ... construction (NAICS code 236), e.g., commercial building construction, industrial building construction, commercial and institutional building construction, building finishing contractors, drywall and insulation... or email. Clearly mark the part or all of the information that you claim to be CBI. For CBI...

  13. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  14. Natural ageing of EPDM composite insulators

    Energy Technology Data Exchange (ETDEWEB)

    Vlastos, A.E.; Sherif, E. (Chalmers Univ. of Technology, High Voltage Engineering, S-412 96 Gothenburg (SW))

    1990-01-01

    Long-rod composite insulators, with weather sheds (sheds) made of ethylene propylene rubbers (EPDM), were exposed for many years to HVAC and HVDC under realistic conditions and natural pollution. The change of their properties with time and their aging was studied. The results show that the insulator shed material undergoes a slow degradation process and loses successively its water repelling properties which initially make the EPDM composite insulators superior to inorganic glass and porcelain insulator. The outdoor degradation of the shed material depends on the electric stress, in the environmental factors (such as pollution, rain, salt-laden fog, and UV-radiation from sun) and on the materials and fillers used in the construction of the composite insulators. A thorough macro- and microscopic study of the EPDM composite insulator sheds illustrates the differences of the surface state of EPDM insulators of different makes in which different basic material compositions and fillers are used. The poor performance of aged EPDM composite insulators compared to inorganic insulators depends on the design and on environmental factors.

  15. Characterization of Microporous Insulation, Microsil

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-15

    Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within this report.

  16. Transport Experiments on Topological Insulators

    Science.gov (United States)

    2016-08-16

    neutral currents as well. In insulating magnets, the heat current below 2 K is largely carried by spin waves or magnons (phonons die out rapidly below 2 K...are not magnons (theorists call them “spinons”). The 2 experiments confirm that \\Omega can exert a large Hall-like force on excitations even when...largely carried by spin waves or magnons (phonons die out rapidly below 2 K). In a certain class of magnets with a Kagome lattice, theory predicts that

  17. Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation

    Science.gov (United States)

    Werlink, Rudolph J.; Fesmire, James E.; Sass, Jared P.

    2011-01-01

    The use of glass bubbles as an efficient and practical thermal insulation system has been previously demonstrated in cryogenic storage tanks. One such example is a spherical, vacuum-jacketed liquid hydrogen vessel of 218,000 liter capacity where the boiloff rate has been reduced by approximately 50 percent. Further applications may include non-stationary tanks such as mobile tankers and tanks with extreme duty cycles or exposed to significant vibration environments. Space rocket launch events and mobile tanker life cycles represent two harsh cases of mechanical vibration exposure. A number of bulk fill insulation materials including glass bubbles, perlite powders, and aerogel granules were tested for vibration effects and mechanical behavior using a custom design holding fixture subjected to random vibration on an Electrodynamic Shaker. The settling effects for mixtures of insulation materials were also investigated. The vibration test results and granular particle analysis are presented with considerations and implications for future cryogenic tank applications. A thermal performance update on field demonstration testing of a 218,000 L liquid hydrogen storage tank, retrofitted with glass bubbles, is presented. KEYWORDS: Glass bubble, perlite, aerogel, insulation, liquid hydrogen, storage tank, mobile tanker, vibration.

  18. Control buildings for blast resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.A.

    1982-08-01

    Offers advice on interior design for blast-resistant control buildings. Suggests that for the comfort and safety of occupants, special attention must be paid to internal finishes and color schemes. Considers external treatment (e.g. panels, cladding fixings, thermal insulation), air intakes and exhausts, internal finishes (e.g. stud lining method), and internal walls and partitions. Presents diagrams showing construction method for a control building; elimination of ''cold bridge'' at eaves level; staggering door openings to minimize blast effects; and flexure of concrete walls without affecting the inner lining.

  19. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  20. Estimating building energy consumption using extreme learning machine method

    International Nuclear Information System (INIS)

    Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey

    2016-01-01

    The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.

  1. Insulated electrocardiographic electrodes. [without paste electrolyte

    Science.gov (United States)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  2. From insulation contracting to radon mitigation

    International Nuclear Information System (INIS)

    West, D.R.

    1990-01-01

    As the definition of house doctor has evolved over the past ten years and the field of energy services has grown more sophisticated, many contractors have expanded the services they offer their clients. This paper presents the story of one insulation contractor who has found a niche in radon testing and mitigation. The EPA now has a national program for the radon mitigator called the Radon Contractor Proficiency Program. The requirements include attending the Radon Technology for Mitigators course, passing an exam, and taking continuing education. In the Midwest, the most popular mitigation technique is the subslab depressurization system. To draw suction from under the slab, the system can take advantage of an existing sump crock or can penetrate the slab. Interior drain tiles collect water to empty into the crock, providing an excellent pathway to draw from. This mitigation process is explained

  3. Möbius Kondo insulators

    Science.gov (United States)

    Chang, Po-Yao; Erten, Onur; Coleman, Piers

    2017-08-01

    Heavy fermion materials have recently attracted attention for their potential to combine topological protection with strongly correlated electron physics. To date, the ideas of topological protection have been restricted to the heavy fermion or `Kondo' insulators with the simplest point-group symmetries. Here we argue that the presence of nonsymmorphic crystal symmetries in many heavy fermion materials opens up a new family of topologically protected heavy electron systems. Re-examination of archival resistivity measurements in the nonsymmorphic heavy fermion insulators Ce3Bi4Pt3 and CeNiSn reveals the presence of a low-temperature conductivity plateau, making them candidate members of the new class of material. We illustrate our ideas with a specific model for CeNiSn, showing how glide symmetries generate surface states with a novel Möbius braiding that can be detected by ARPES or non-local conductivity measurements. One of the interesting effects of strong correlation is the development of partially localization or `Kondo breakdown' on the surfaces, which transforms Möbius surface states into quasi-one-dimensional conductors, with the potential for novel electronic phase transitions.

  4. Space heating in buildings: thermal diagnosis of an industrial building; Chauffage des batiments: bilan thermique d`un batiment industriel

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, R.

    1996-12-31

    The various heat transfer equations used for calculations in thermal diagnosis of an industrial building are reviewed: calculation of the heat losses through walls as a function of building materials, calculation of the energy consumption for heating fresh air (as a function of the air pollution rate in the building), calculation of the total heat losses, the heating energy demand and the annual energy consumption. Data concerning building materials characteristics, insulation and heating loads in the various regions of France, are also presented

  5. A low-energy building under arctic conditions – a case study

    DEFF Research Database (Denmark)

    Norling, Casper Roland; Rode, Carsten; Svendsen, Svend

    2006-01-01

    Greenland is a relatively small community with limited natural resources, which results in the necessity to import all supplies, including a big share of the energy. Because of this, it is important to decrease the energy consumption. This can be done by developing new construction technology...... with larger focus on energy efficiency. Therefore a low-energy house, located in Sisimiut, has been constructed. The low-energy house will be a forerunner for the development of new building element designs and technologies in Greenland. In the forthcoming years, the house will also be a base for scientific...... projects which will evaluate the design of the low-energy house including an assessment of the effect of the highly insulated building envelope, advanced windows and a ventilation system with heat recovery, all of which cuts the energy consumption of the building to half of what will be the requirement...

  6. Advanced Insulation for High Performance Cost-Effective Wall, Roof, and Foundation Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Costeux, Stephane [Dow Chemical Company, Midland, MI (United States); Bunker, Shanon [Dow Chemical Company, Midland, MI (United States)

    2013-12-20

    The objective of this project was to explore and potentially develop high performing insulation with increased R/inch and low impact on climate change that would help design highly insulating building envelope systems with more durable performance and lower overall system cost than envelopes with equivalent performance made with materials available today. The proposed technical approach relied on insulation foams with nanoscale pores (about 100 nm in size) in which heat transfer will be decreased. Through the development of new foaming methods, of new polymer formulations and new analytical techniques, and by advancing the understanding of how cells nucleate, expand and stabilize at the nanoscale, Dow successfully invented and developed methods to produce foams with 100 nm cells and 80% porosity by batch foaming at the laboratory scale. Measurements of the gas conductivity on small nanofoam specimen confirmed quantitatively the benefit of nanoscale cells (Knudsen effect) to increase insulation value, which was the key technical hypotheses of the program. In order to bring this technology closer to a viable semi-continuous/continuous process, the project team modified an existing continuous extrusion foaming process as well as designed and built a custom system to produce 6" x 6" foam panels. Dow demonstrated for the first time that nanofoams can be produced in a both processes. However, due to technical delays, foam characteristics achieved so far fall short of the 100 nm target set for optimal insulation foams. In parallel with the technology development, effort was directed to the determination of most promising applications for nanocellular insulation foam. Voice of Customer (VOC) exercise confirmed that demand for high-R value product will rise due to building code increased requirements in the near future, but that acceptance for novel products by building industry may be slow. Partnerships with green builders, initial launches in smaller markets (e.g. EIFS

  7. Technical - Economic Research for Passive Buildings

    Science.gov (United States)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  8. City of Indianapolis Better Buildings Program

    Energy Technology Data Exchange (ETDEWEB)

    Trovillion, Kristen [City of Indianapolis, IN (United States)

    2014-11-04

    In June 2010, the City of Indianapolis’ Office of Sustainability was awarded $10 million in grant funds through the U.S. Department of Energy’s Better Buildings Neighborhood Program (CFDA 81.128) funded by the 2009 American Recovery and Reinvestment Act. The purpose of the grant funds was to achieve energy savings in residential and commercial buildings through energy efficiency upgrades such as air sealing and insulation.

  9. Low-cost exterior insulation process and structure

    Science.gov (United States)

    Vohra, A.

    1999-03-02

    A low-cost exterior insulation process of stacking bags of insulating material against a wall and covering them with wire mesh and stucco provides a durable structure with good insulating value. 2 figs.

  10. Topological insulators: A romance with many dimensions

    Science.gov (United States)

    Manoharan, Hari C.

    2010-07-01

    Electric charges on the boundaries of certain insulators are programmed by topology to keep moving forward when they encounter an obstacle, rather than scattering backwards and increasing the resistance of the system. This is just one reason why topological insulators are one of the hottest topics in physics right now.

  11. Insulation materials for advanced water storages

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    2005-01-01

    sections different insulation materials are described with respect to material characteristics and some comments on the easiness of application for tank insulation. The material properties listed in this paper are typical values, which gives an idea of the possibilities but in case of a specific design...

  12. 49 CFR 179.201-11 - Insulation.

    Science.gov (United States)

    2010-10-01

    ...) Insulation shall be of sufficient thickness so that the thermal conductance at 60 °F. is not more than 0.075... 49 Transportation 2 2010-10-01 2010-10-01 false Insulation. 179.201-11 Section 179.201-11 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY...

  13. Food Price Spikes, Price Insulation, and Poverty

    OpenAIRE

    Anderson, Kym; Ivanic, Maros; Martin, Will

    2013-01-01

    This paper has two purposes. It first considers the impact on world food prices of the changes in restrictions on trade in staple foods during the 2008 world food price crisis. Those changes -- reductions in import protection or increases in export restraints -- were meant to partially insulate domestic markets from the spike in international prices. The authors find that this insulation a...

  14. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  15. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  16. Energy Performance of Verandas in the Building Retrofit Process

    Directory of Open Access Journals (Sweden)

    Rossano Albatici

    2016-05-01

    Full Text Available Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.

  17. Government Buildings, Leased, County leased properties within Sedgwick County. This layer is maintained interactively by GIS staff using lease information provided by DIO Facilities Project Services. Primary attributes include property lease and group ID, building, address, parcel I, Published in 2008, 1:1200 (1in=100ft) scale, Sedgwick County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Government Buildings, Leased dataset current as of 2008. County leased properties within Sedgwick County. This layer is maintained interactively by GIS staff using...

  18. Redesign of a Rural Building in a Heritage Site in Italy: Towards the Net Zero Energy Target

    Directory of Open Access Journals (Sweden)

    Maurizio Cellura

    2017-07-01

    Full Text Available In order to achieve the ambitious objective of decarbonising the economy, it is mandatory, especially in Europe and in Italy, to include the retrofitting of existing buildings. In a country where a large share of existing buildings have heritage value, it is important to design effective retrofit solutions also in historical buildings. In this context, the paper describes the experience of re-design of an existing rural building located in Sicily, inside the ancient Greeks' “Valley of the Temples”. An energy audit was performed on the building, and its energy uses were thoroughly investigated. A building model was developed in the TRNSYS environment and its performances validated. The validated model was used for redesign studies aimed towards the achievement of the Net Zero Energy Building target. The best performing solutions to be applied to a case study like the Sanfilippo House were those regarding the management of the building, as in the case of the natural ventilation and the energy systems setpoints, that would allow a large impact (up to 10% reductions in energy uses on the energy performances of the building with no invasiveness, and those with very limited invasiveness and high impact on the energy efficiency of the building, as in the lighting scenario (up to 30% energy uses reduction. The most invasive actions can only be justified in the case of high energy savings, as in the case of the insulation of the roof, otherwise they should be disregarded.

  19. Investigation of interior post-insulated masonry walls with wooden beam ends

    DEFF Research Database (Denmark)

    Morelli, Martin; Svendsen, Svend

    2013-01-01

    The preponderant number of multistorey buildings constructed in Denmark in the period between 1850 and 1930 were built with masonry walls incorporating wooden floor beams. Given the nature of this construction, it is supposed that significant energy savings could be achieved by simply insulating...... of the wall, and this in turn may lead to increased freeze–thaw damages and moisture problems at the beam ends embedded in the masonry, when the masonry facade is subjected to driving rain. This article presents a method to investigate retrofit measures of interior-insulated masonry walls having wooden floor...... reduce the heat loss of the original wall structure by half....

  20. Objective and subjective evaluation of façade sound insulation

    DEFF Research Database (Denmark)

    Ordoñez, Rodrigo Pizarro; Visentin, Chiara; Markovic, Milos

    2013-01-01

    by filtering recordings of traffic noise with the frequency response of sound insulation measurements. The measurements were performed in typical Italian buildings in accordance with the ISO 140-5 standard. The objectives of the present paper are to compare the subjective evaluations obtained with the two...... psychoacoustic methods, and to investigate the correlation between subjective assessments and objective ratings in different construction types.......Façade insulation of several different construction types were subjectively evaluated using two psychoacoustic methods: paired comparisons using a two alternative forced choice (2-AFC) paradigm and direct scaling using a visual analogue scale (VAS). The stimuli used in the evaluations were obtained...

  1. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  2. Thermal properties of a sandwich construction insulated with Polyurethane (DC-System)

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Dreau, Jerome Le

    Rigid polyurethane foam (PUR) is a good thermal insulation product for buildings, mainly due to its low thermal conductivity (λ ≈ 20 mW/m.K), low permeability to water and stability over time. The other types of insulation products available on the market have a significantly higher thermal condu...... resist to temperature as high as 800°C without major structural changes [3]. The challenge of this project consists in the association of the two materials. The study will be based both on numerical models and experimental tests (small and large scales)....

  3. Thermophysical investigations of nanotechnological insulation materials

    Science.gov (United States)

    Lakatos, Ákos

    2017-07-01

    Nowadays, to sufficiently reduce the heat loss through the wall structures with the so-called traditional insulations (polystyrene and fibrous slabs), huge thicknesses (20 - 25 cm) must be applied. In some cases there is no place for their applications e.g.: historical or heritage builfings, since the use of nano-insulation materials (aerogel, vacuum ceramic paints) takes place. They are said to be much more efficient insulations than the above mentioned ones, since they should be used in thinner forms. In this article the thermal insulating capability of solid brick wall covered with a silica-aerogel slab with 1.3 cm, moreover with a vacuum ceramic hollow contained paint with 2 mm thick are investigated. As well as a literature review about the thermal conductivity of nano-technological insulation materials will be given. Comparison of the atomic and thermal diffusion will be also presented.

  4. Electrically Tunable Magnetism in Magnetic Topological Insulators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Lian, Biao; Zhang, Shou-Cheng

    2015-07-14

    The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modification of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. In particular, the field-controlled ferromagnetism in a magnetic topological insulator can be used for voltage based writing of magnetic random access memories in magnetic tunnel junctions. The simultaneous electrical control of magnetic order and chiral edge transport in such devices may lead to electronic and spintronic applications for topological insulators.

  5. Verification of the behavior of insulating materials under ionizing radiation

    International Nuclear Information System (INIS)

    Reis, Joao C. Marques dos; Rezende, Aurimar de P.; Menzel, Silvio C.

    2009-01-01

    To analyze the behavior of specifics electrical insulating materials and components under ionizing radiation, a test program was developed to verify the overall effects of general electrical equipment under high radiation fields conditions. The main objective is for maintenance purposes, in the substitution of electrical components installed in the reactor building of the Angra 1 nuclear power plant. Knowing the characteristics of electrical insulating materials available in the country and determining by tests their ability to withstand the ionizing radiation effects, is feasible to implement specific maintenance services of electrical equipment, maintaining the same level of quality and safety for the specified application. This procedure reduces the time and also costs of maintenance services, in comparison with materials acquired or services performed abroad. The isolating materials and components of electrical equipment should be specified, manufactured and qualified to withstand aggressive environmental conditions in the reactor building during the normal operation and postulated accident. Additional tests should be conducted to verify the conditions of the aged material by ionizing radiation. Examples of additional tests: dielectric strength, tensile strength and elongation and impact resistance. (author)

  6. Influence of building orientation on internal temperature in saharan climates, building located in Ghardaïa region (Algeria

    Directory of Open Access Journals (Sweden)

    Bekkouche Sidi Mohammed El Amine

    2013-01-01

    Full Text Available In desert regions, the orientation of buildings has an important influence in the inside air temperature. In the present work, we carry out a study on the influence of the buildings orientation as well as the thermal insulation on the internal temperature. To do so, we have considered the case where only the exposed walls are isolated. The main objective of the current work is to determine the temperatures of the building in question with and without thermal insulation. This study aims at assessing also the geographic parameter enhancing or damping the role of thermal inertia, providing a variety of results. As result, this work proves that stones play a contradictory role on thermal comfort. We have verified that thermal insulation is specified to reduce heat transfer through the building. Concerning the orientation, results indicates that the variation in orientation does not influence significantly the internal air temperature of a well thermally insulated building. Moreover, in hot period, whatever orientation considered, the phenomenon of overheating presents a serious problem to minimize consumption of energy and control of indoor temperature in case of building without insulation. The numerical data was compared to the experimental measurements in order to validate the mathematical model. In conclusion, to achieve a better thermal comfort arid and semi arid regions, the habitation will have to be situated in south flan of a hill to satisfy the two strategies (hot and cold.

  7. Memory window engineering of Ta2O5-x oxide-based resistive switches via incorporation of various insulating frames

    Science.gov (United States)

    Lee, Ah Rahm; Baek, Gwang Ho; Kim, Tae Yoon; Ko, Won Bae; Yang, Seung Mo; Kim, Jongmin; Im, Hyun Sik; Hong, Jin Pyo

    2016-07-01

    Three-dimensional (3D) stackable memory frames, including nano-scaled crossbar arrays, are one of the most reliable building blocks to meet the demand of high-density non-volatile memory electronics. However, their utilization has the disadvantage of introducing issues related to sneak paths, which can negatively impact device performance. We address the enhancement of complementary resistive switching (CRS) features via the incorporation of insulating frames as a generic approach to extend their use; here, a Pt/Ta2O5-x/Ta/Ta2O5-x/Pt frame is chosen as the basic CRS cell. The incorporation of Ta/Ta2O5-x/Ta or Pt/amorphous TaN/Pt insulting frames into the basic CRS cell ensures the appreciably advanced memory features of CRS cells including higher on/off ratios, improved read margins, and increased selectivity without reliability degradation. Experimental observations identified that a suitable insulating frame is crucial for adjusting the abrupt reset events of the switching element, thereby facilitating the enhanced electrical characteristics of CRS cells that are suitable for practical applications.

  8. Improved DC Gun and Insulator Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  9. Elements that contribute to healthy building design.

    Science.gov (United States)

    Loftness, Vivian; Hakkinen, Bert; Adan, Olaf; Nevalainen, Aino

    2007-06-01

    The elements that contribute to a healthy building are multifactorial and can be discussed from different perspectives. WE PRESENT THREE VIEWPOINTS OF DESIGNING A HEALTHY BUILDING: the importance of sustainable development, the role of occupants for ensuring indoor air quality, and ongoing developments related to indoor finishes with low chemical emissions and good fungal resistance. Sustainable design rediscovers the social, environmental, and technical values of pedestrian and mixed-use communities, using existing infrastructures including "main streets" and small-town planning principles and recapturing indoor-outdoor relationships. This type of design introduces nonpolluting materials and assemblies with lower energy requirements and higher durability and recyclability. Building occupants play a major role in maintaining healthy indoor environments, especially in residences. Contributors to indoor air quality include cleaning habits and other behaviors; consumer products, furnishings, and appliances purchases, as well as where and how the occupants use them. Certification of consumer products and building materials as low-emitting products is a primary control measure for achieving good indoor air quality. Key products in this respect are office furniture, flooring, paints and coatings, adhesives and sealants, wall coverings, wood products, textiles, insulation, and cleaning products. Finishing materials play a major role in the quality of indoor air as related to moisture retention and mold growth. Sustainable design emphasizes the needs of infrastructure, lower energy consumption, durability, and recyclability. To ensure good indoor air quality, the product development for household use should aim to reduce material susceptibility to contaminants such as mold and should adopt consumer-oriented product labeling.

  10. Courthouse Prototype Building

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Mini [ORNL; New, Joshua Ryan [ORNL; Im, Piljae [ORNL

    2018-02-01

    As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, and jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses

  11. A Phase-Change Composite for Use in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Ron S. [LMES/ORNL; Stovall, T. K. [LMES/ORNL; Weaver, K. E. [LMES/ORNL; Wilkes, K. E. [LMES/ORNL; Roy, S. [PhD Research Group, Inc.

    1992-06-15

    The objective of this project is to develop composite thermal insulations containing phase-change materials for use in the building envelope. The use of a phase-change insulation composite in the building envelope could result in a significant increase in energy efficiency. PhD Research provided candidate phase-change composites, and ORNL performed analytical and experimental evaluations of their thermal performance. The thermal resistance of the prototype panels was somewhat less than that of commercial products, although their thermal capacity was greater. Using these results, PhD Research has been working to modify the design and to produce practical building elements that incorporate phase-change material.

  12. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  13. Neutron shielding heat insulation material

    International Nuclear Information System (INIS)

    Aoki, Susumu; Asaumi, Hiroshi; Take, Shigeo; Miyakoshi, Jun-ichi; Takemoto, Hiroshi.

    1979-01-01

    Purpose: To improve decceleration and absorption of neutrons by incorporating neutron moderators and neutron absorbers in asbestos to thereby increase hydrogen concentration. Constitution: A mixture consisting of crysotile asbestos, surface active agent and water is well stirred and compounded to open the crysotile asbestos filaments and prepare a high viscosity slurry. After adding hydroxides such as magnesium hydroxide, hydrated salts such as magnesium borate hydrate or water containing minerals such as alumina cement hydrate, or boron compound to the slurry, the slurry is charged in a predetermined die, and dried and compressed to prepare shielding heat insulation products. The crysotile asbestos has 18 - 15 wt.% of water of crystallinity in the structure and contains a considerably high hydrogen concentration that acts as neutron moderators. (Kawakami, Y.)

  14. Energy Efficiency Building Systems Regional Innovation Cluster Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Martha [Pennsylvania State Univ., University Park, PA (United States)

    2016-07-29

    The Consortium for Building Energy Innovation (CBEI) was established through a Funding Opportunity Announcement led by the U.S. Department of Energy, under a cooperative agreement managed by the National Energy Technology Laboratory. CBEI is led by The Pennsylvania State University and is composed of partners from academia, the private sector, and economic development agencies. The Consortium has included as many as 24 different partners over the five years, but 14 have been core to the work over the five year cooperative agreement. CBEI primarily focused on developing energy efficiency solutions for the small and medium commercial building market, with a focus on buildings less than 50,000 square feet. This market has been underserved by the energy efficiency industry, which has focused on larger commercial buildings where the scale of an individual retrofit lends itself to the use of sophisticated modeling tools and more advanced solutions. Owners/operators and retrofit providers for larger buildings have a greater level of understanding of, and experience with different solutions. In contrast, smaller commercial building retrofits, like residential retrofits, often have owners with less knowledge about energy management and less time to learn about it. This market segment is also served by retrofit providers that are smaller and often focused on particular building systems, e.g. heating, ventilation and air conditioning (HVAC), lighting, roofing, or insulation. The size of a smaller commercial building retrofit does not lend itself, from a cost perspective, to the application of multiple, sophisticated design and modeling tools, which means that they are less likely to have integrated solutions.

  15. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  16. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  17. Metal-insulator transition in epitaxial vanadium sesquioxide thin films

    Science.gov (United States)

    Allimi, Bamidele S.

    Of all the transition metal oxides which exhibit metal-insulator transitions (MIT), one of the most extensively studied in recent years is the vanadium sesquioxide (V2O3), both from experimental and theoretical point of view. At a transition temperature of about 160 K at an ambient pressure of 1 atm, pure V2O3 transforms from a rhombohedral paramagnetic metallic (PM) to a monoclinic antiferromagnetic insulating (AFI) phase upon cooling, with a jump in the resistivity of about seven orders of magnitude. Experimental studies have focused more on bulk V2O3 and recently there have been significant interest in thin film fabrication of this material due to potential applications as thermal sensors, current limiters, Positive Temperature Coefficient (PTC) thermistors, and optical switches. This study addresses the deposition, characterization, and properties of high-quality epitaxial V2O3 thin films grown on a-, c-Al2O3 and c-LiTaO 3 substrates by a straightforward method of pulsed laser deposition (PLD). Various characterization techniques including X-ray diffraction, atomic force microscopy, scanning electron microscopy, and X-ray photoemission spectroscopy were used to examine the structural, crystallographic, and surface properties, while four point probe resistivity measurements were used to examine the electrical properties of the films. V2O3 thin films of different thicknesses ranging from 10-450 nm were deposited on c-Al 2O3 and c-LiTaO3 substrates by PLD to understand also the role of epitaxial strains. Resistivity measurements showed that depending on the thicknesses of films, different electrical transitions were exhibited by the samples. While some of the samples displayed the expected metal-insulator transition typical of bulk V2O3, some showed insulating behavior only and others exhibited metallic characteristics only over the whole temperature range. For example, for films on c-LiTaO3 with increasing film thickness, first an insulator-insulator, then a

  18. The CRRES IDM spacecraft experiment for insulator discharge pulses. [Internal Discharge Monitor

    Science.gov (United States)

    Frederickson, A. R.; Mullen, E. G.; Kerns, K. J.; Robinson, P. A.; Holeman, E. G.

    1993-01-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The characteristics of the instrument are described. The IDM was flown on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples included G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. Published data in the literature provides a simple method for determining the flux of penetrating electrons. The pulse rate is compared to the penetrating flux of electrons.

  19. Concepts for evaluation of sound insulation of dwellings - from chaos to consensus?

    DEFF Research Database (Denmark)

    Rasmussen, Birgit; Rindel, Jens Holger

    2005-01-01

    with a trend towards light-weight constructions are contradictory and challenging. This calls for exchange of data and experience, implying a need for harmonized concepts, including use of spectrum adaptation terms. The paper will provide input for future discussions in EAA TC-RBA WG4: "Sound insulation......¬ments and classification schemes revealed significant differences of concepts. The paper summarizes the history of concepts, the disadvantages of the present chaos and the benefits of consensus concerning concepts for airborne and impact sound insulation between dwellings and airborne sound insulation of facades...

  20. Conditioning of heat insulation waste contaminated by radionuclides

    International Nuclear Information System (INIS)

    Oleinik, M. S.; Trofimov, V. V.; Shuisky, D. B.

    1997-01-01

    Operation of nuclear power stations, repair and replacement of equipment generate waste of heat insulation materials made of mineral and glass wool which feature low density (75-150 kg/cu.m). Specific contamination of the waste with β and βγ nuclides is ∼∼ 4*(10 4 /10 5 ) Bq/kg. According to the standards effective in the Russian Federation, construction materials can be stored in simple ground burials if their contamination is not more than 37 kBq/kg, i.e. the major part of used heat insulation materials must be stored in concrete burials. However, because of the low specific weight of this waste their burial without preliminary processing (in bulk) entails unreasonable use of the storage space. At the Zaporozhye nuclear power plant heat insulation waste is pressed and seamed into 200-liter barrels; at the Voronezh nuclear power plant fine waste (50% of which is heat insulation) is also pressed and then sent to burial. Pressing allows a 2-3-fold reduction of volume and generates radioactive dust, at the same time the environmental safety (firm binding of radionuclides) is not substantially improved. Probably, recovery of this type of waste has not been given full attention because of its relatively small amount. For one, the Smolensk nuclear power plant generates some hundreds cubic meters of such waste annually. When removing plants from operation, the problem of recycling of such waste is becoming more critical. Depending on the adopted procedure of the removal of a facility from operation, waste may include both materials used for heat insulation of pipelines and equipment and identical materials used in construction for warming of walls and intermediate floors, and sound-proofing