WorldWideScience

Sample records for include bioremediation oxidation

  1. Effect of Fenton pre-oxidation on mobilization of nutrients and efficient subsequent bioremediation of crude oil-contaminated soil.

    Science.gov (United States)

    Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei

    2017-08-01

    Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2  CFU/g soil) or low ( 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Systematic Approach to In Situ Bioremediation in Groundwater Including Decision Trees on In Situ Bioremediation for Nitrates, Carbon Tetrachloride, and Perchlorate

    Science.gov (United States)

    2002-08-01

    Microbial Reduction of Perchlorate in Pure and Mixed Culture Packed-Bed Bioreactors ,” Elsevier Science Ltd., Great Britain, pp. 1–6...Triangle Institute, and Aerojet and Bioprocess . Other unnamed members also contributed valuable perspectives with their advice throughout the...contaminants in groundwater. Bioremediation melds an understanding of microbiology, chemistry, hydrogeology, and engineering into a cohesive strategy for

  3. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  4. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil.

    Science.gov (United States)

    Sutton, Nora B; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-02-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ... . . .. .. . . . .. . . .. . . . . . .. . . . . . .. . . . .. . .. . . . . . . .. . . . .., . .. . . . . *... *.. . . . . . . .. . .. . . . . . . . .. .. .. . . . . . v IX PART I. OVERVIEW ., .,... . ,.. .. . . . . . . .. .. . . ., 7 1 Uses Emer of Bacteria Colleran in Bioremediation...

  6. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  7. Bioremediation: A natural solution

    International Nuclear Information System (INIS)

    Hicks, B.N.; Caplan, J.A.

    1993-01-01

    Bioremediation is an attractive remediation alternative because most full-scale bioremediation projects involve cost-effective contaminant treatment on-site. Recently, large scale bioremediation projects have included cleanups of ocean tanker spills, land-based chemical spills, and leaking chemical and petroleum storage tanks. Contaminated matrices have included beaches, soils, groundwater, surface waters (i.e., pits, ponds, lagoons), process waste streams and grease traps. Bioremediation is especially cost-effective when both soil and groundwater matrices are impacted because one remediation treatment system can be design to treat both media simultaneously in place. The primary advantages of in situ bioremediation include: on-site destruction of contaminants; accelerated cleanup time; minimal disruption to operations; lower remediation costs; and reduction of future liability

  8. Bioremediation protocols

    National Research Council Canada - National Science Library

    Sheehan, David

    1997-01-01

    ..., .. . . . . .. ,. . . .. . . . . . . . .. . . . . .. . . .. . .. 3 2 Granular Nina Sludge Christiansen, Consortia lndra for Bioremediation, M. Mathrani, and Birgitte K. Ahring . 23 PART II PROTOCOLS...

  9. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  10. Cometabolic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-15

    Cometabolic bioremediation is probably the most under appreciated bioremediation strategy currently available. Cometabolism strategies stimulate only indigenous microbes with the ability to degrade the contaminant and cosubstrate e.g. methane, propane, toluene and others. This highly targeted stimulation insures that only those microbes that can degrade the contaminant are targeted, thus reducing amendment costs, well and formation plugging, etc. Cometabolic bioremediation has been used on some of the most recalcitrant contaminants, e.g. PCE, TCE, MTBE, TNT, dioxane, atrazine, etc. Methanotrophs have been demonstrated to produce methane monooxygense, an oxidase that can degrade over 300 compounds. Cometabolic bioremediation also has the advantage of being able to degrade contaminants to trace concentrations, since the biodegrader is not dependent on the contaminant for carbon or energy. Increasingly we are finding that in order to protect human health and the environment that we must remediate to lower and lower concentrations, especially for compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only possibility that we have to bioremediate some contaminants.

  11. Bioremediation of contaminated sites

    International Nuclear Information System (INIS)

    Schneider, C.

    1996-01-01

    By volatilizing aromatic compounds through aeration, landfarming is a recognized approach to the bioremediation of hydrocarbon contaminated soil. With this method, the soil is cultivated and aided with fertilizer amendment to provide a nutrient source for the microbial population involved in the degradation of hydrocarbons. The effectiveness of bioremediation will depend on several factors, including topographic features, soil properties, and biochemistry. Since bioremediation is inhibited by anaerobic conditions, sites that are sloped or have trenches to collect runoff water are preferable. As for soil properties, the percentage of sand should not be too high, but aeration is essential to avoid anaerobic conditions. Addition of straw is generally beneficial, and fertilizers with nitrogen, phosphorous and potassium will help degrading hydrocarbons. Temperature, pH, and salt content are also important factors since they facilitate microbial activity. 3 refs

  12. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  13. Bioremediation of marine oil pollution

    International Nuclear Information System (INIS)

    Gutnick, D.L.

    1991-11-01

    An assessment is presented of the scientific and technological developments in the area of bioremediation and biodegradation of marine oil pollution. A number of allied technologies are also considered. The basic technology in bioremediation involves adding fertilizers to an oil spill to enhance the natural process of oil biodegradation. Bioremediation can be applied to open systems such as beach or land spills, or in closed and controlled environments such as storage containers, specially constructed or modified bioreactors, and cargo tanks. The major advantage of using closed environments is the opportunity to control the physical and nutritional parameters to optimize the rate of biodegradation. An evaluation of the state of the art of bioremediation in Canada is also included. Recommendations are made to involve the Canadian Transportation Development Centre in short-term research projects on bioremediation. These projects would include the use of a barge as a mobile bioreactor for the treatment of off-loaded oily waste products, the use of in-situ bioremediation to carry out extensive cleaning, degassing, and sludge remediation on board an oil tanker, and the use of a barge as a mobile bioreactor and facility for the bioremediation of bilges. 51 refs., 4 figs., 14 tabs

  14. Biodegradation and bioremediation

    DEFF Research Database (Denmark)

    Albrechtsen, H.-J.

    1996-01-01

    Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994......Anmeldelse af Alexander,M.: Biodegradation and bioremediation. Academic Press, Sandiego, USA, 1994...

  15. Postremediation bioremediation

    International Nuclear Information System (INIS)

    Brown, R.A.; Hicks, P.M.; Hicks, R.J.; Leahy, M.C.

    1995-01-01

    In applying remediation technology, an important question is when to stop operations. Conventional wisdom states that each site has a limit of treatability. Beyond a point, the site conditions limit access to residual contaminants and, therefore, treatment effectiveness. In the treatment of petroleum hydrocarbons, the issue in ceasing remedial operations is not what is the limit of treatment, but what should be the limit of effort. Because hydrocarbons are inherently biodegradable, there is a point in remediation where natural or intrinsic bioremediation is adequate to complete the remedial process. This point is reached when the rate of residual carbon release is the limiting factor, not the rate of oxygen or nutrient supply. At such a point, the rate and degree of remediation is the same whether an active system is being applied or whether nothing is being actively done. This paper presents data from several bioremediation projects where active remediation was terminated above the desired closure levels. These site data illustrate that intrinsic bioremediation is as effective in site closure as continued active remediation

  16. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  17. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  18. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, Anna; Hazen, Terry

    2003-09-30

    This primer is intended for people interested in environmental problems of the U.S. Department of Energy (DOE) and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. The second edition of the primer incorporates recent findings by researchers in DOE's Natural and Accelerated Bioremediation Research (NABIR) Program. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on the physical-chemical environment, microbial communities, and nature of the contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through the addition of nutrients (biostimulation) or inoculation with microorganisms (bioaugmentation). Over the past few years, interest in bioremediation has increased. It has become clear that many organic contaminants such as hydrocarbon fuels can be degraded to relatively harmless products such as CO{sub 2} (the end result of the degradation process). Waste water managers and scientists have also found that microorganisms can interact with metals and convert them from one chemical form to another. Laboratory tests and ex situ bioremediation applications have shown that microorganisms can change the valence, or oxidation state, of some heavy metals (e.g., chromium and mercury) and radionuclides (e.g., uranium) by using them as electron acceptors. In some cases, the solubility of the altered species decreases and the contaminant is immobilized in situ, i.e., precipitated into

  20. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  1. Guidelines for the Bioremediation of Oil-Contaminated Salt Marshes

    Science.gov (United States)

    This document includes a review and critique of the literature and theories pertinent to oil biodegradation and nutrient dynamics and provides examples of bioremediation options and case studies of oil bioremediation in coastal wetland environments.

  2. Bioremediation of soils

    International Nuclear Information System (INIS)

    Woodward, D.

    1991-01-01

    Bioremediation of hydrocarbon contaminated soils has evolved from the refinery land treatment units of thirty years ago to the modern slurry reactors of today. Modifications in the process include engineering controls designed to prevent the migration of hydrocarbons into the unsaturated zone, the saturated zone and groundwater, and the atmosphere. Engineering innovations in the area of composting and bioaugmentation that have focused on further process control and the acceleration of the treatment process will form the basis for future improvements in bioremediation technology. Case studies for established methods that have survived this development process and continue to be used as cost effective biological treatments like engineered land farms, soil heap treatment and in situ treatment will be discussed

  3. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Lynn, J.

    2001-01-01

    The conversion of oil to environmentally benign chemicals such as water and carbon dioxide by 'hydrocarbon-eating' bacteria is described. The emphasis is on a new process to selectively increase the population of 'oil eating' bacteria, a development that became the foundation for the second-generation bioremediation accelerator, Inipol EAP-22. Second-generation bioremediation products focus on providing nitrogen and phosphorus, chemicals that are not present in crude oil in readily available form, but are essential for the synthesis of proteins, nucleic acids, phospholipids and the energy metabolism of the bacteria. Providing these chemicals in the proper amounts encourages the preferential growth of oil-degrading microbes already present in the local biomass, thus overcoming the major limiting factor for biodegradation. These second-generation bioremediation products also have strong oleophilic properties engineered into them, to assure that the nutrients essential for the bacteria are in contact with the oil. The first major test for second-generation bioremediation accelerators came with the clean-up of the oil spill from the Exxon Valdez, a disaster that contaminated more than 120 kilometres of Alaskan beaches along the shores of Prince William Sound. The Inipol EAP-22 successfully held the nutrients in contact with the oil for the duration of the treatment period, despite constant exposure to the washing action of the surf and occasional heavy rainstorms. Today, the accelerator is routinely used in cleaning up all types of ordinary spills including diesel fuel spills along railway right-of-ways, truck yards and refinery sludge. Conditions under which the application of the accelerator is likely to be most successful are described

  4. Bioremediation of bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bioremediation, Inc. has had an opportunity to perform two projects involving soil contaminated with bunker C. One was at a bulk terminal site which involved predominantly diesel, but also had bunker C contamination; the other was a paper-mill site which had exclusively bunker C contamination. This paper will address the authors' experiences at the paper-mill site. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. They have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps, as discussed later, have been developed for their own use in their treatability laboratory

  5. Bioremediation of Bunker C

    International Nuclear Information System (INIS)

    Emery, D.D.

    1992-01-01

    In the states of Washington and Oregon, the highest priority for waste management is now given to recycling, reuse and permanent solutions as opposed to landfill disposal. Bioremediation is recognized as a treatment of choice over other technologies that do not provide permanent solutions. From a business point of view, it is usually the most cost-effective. Bioremediation works extremely well for most common hydrocarbons including aviation fuel, heating oil and diesel oil. Bunker C, a high boiling point distillate, is the most recalcitrant hydrocarbon for treatment and is the topic of this paper. Bunker C lives up to its reputation of being a very recalcitrant hydrocarbon to biodegrade. The authors have demonstrated, however, that the soil matrix standards at industrial sites in Washington and Oregon can be achieved using new bioremediation techniques. These techniques are necessary over those typically used to biodegrade jet fuel, heating oil and diesel oil. These extra steps have been developed for our own use in our treatability laboratory

  6. Reactions of benzene oxide with thiols including glutathione.

    Science.gov (United States)

    Henderson, Alistair P; Barnes, Martine L; Bleasdale, Christine; Cameron, Richard; Clegg, William; Heath, Sarah L; Lindstrom, Andrew B; Rappaport, Stephen M; Waidyanatha, Suramya; Watson, William P; Golding, Bernard T

    2005-02-01

    S-Phenylmercapturic acid is a minor metabolite of benzene used as a biomarker for human benzene exposures. The reaction of intracellular glutathione with benzene oxide-oxepin, the initial metabolite of benzene, is presumed to give 1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which undergoes dehydration to S-phenylglutathione, the precursor of S-phenylmercapturic acid. To validate the proposed route to S-phenylglutathione, reactions of benzene oxide-oxepin with glutathione and other sulfur nucleophiles have been studied. The reaction of benzene oxide with an excess of aqueous sodium sulfide, followed by acetylation, gave bis-(6-trans-5-acetoxycyclohexa-1,3-dienyl)sulfide, the structure of which was proved by X-ray crystallography. Reactions of benzene oxide-oxepin in a 95:5 (v/v) mixture of phosphate buffer in D2O with (CD3)2SO were monitored by 1H NMR spectroscopy. In the absence of glutathione, the half-life of benzene oxide-oxepin was ca. 34 min at 25 degrees C and pD 7.0. The half-life was not affected in the range of 2-15 mM glutathione in the presence and absence of a commercial sample of human glutathione S-transferase (at pH 7.0, 8.0, 8.5, or 10.0). The adduct 1-(S-glutathionyl)-cyclohexa-3,5-diene-2-ol was identified in these reaction mixtures, especially at higher pH, by mass spectrometry and by its acid-catalyzed decomposition to S-phenylglutathione. Incubation of benzene oxide with N-acetyl-L-cysteine at 37 degrees C and pH 10.0 and subsequent mass spectrometric analysis of the mixture showed formation of pre-S-phenylmercapturic acid and the dehydration product, S-phenylmercapturic acid. The data validate the premise that benzene oxide-oxepin can be captured by glutathione to give (1R,2R)- and/or (1S,2S)-1-(S-glutathionyl)-cyclohexa-3,5-dien-2-ol, which dehydrate to S-phenylglutathione. The capture is a relatively inefficient process at pH 7 that is accelerated at higher pH. These studies account for the observation that the metabolism of benzene is

  7. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  8. Natural carriers in bioremediation: A review

    Directory of Open Access Journals (Sweden)

    Anna Dzionek

    2016-09-01

    Full Text Available Bioremediation of contaminated groundwater or soil is currently the cheapest and the least harmful method of removing xenobiotics from the environment. Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes, reduces their costs, and also allows for the multiple use of biocatalysts. Among the developed methods of immobilization, adsorption on the surface is the most common method in bioremediation, due to the simplicity of the procedure and its non-toxicity. The choice of carrier is an essential element for successful bioremediation. It is also important to consider the type of process (in situ or ex situ, type of pollution, and properties of immobilized microorganisms. For these reasons, the article summarizes recent scientific reports about the use of natural carriers in bioremediation, including efficiency, the impact of the carrier on microorganisms and contamination, and the nature of the conducted research.

  9. Principles of Bioremediation Assessment

    Science.gov (United States)

    Madsen, E. L.

    2001-12-01

    Although microorganisms have successfully and spontaneously maintained the biosphere since its inception, industrialized societies now produce undesirable chemical compounds at rates that outpace naturally occurring microbial detoxification processes. This presentation provides an overview of both the complexities of contaminated sites and methodological limitations in environmental microbiology that impede the documentation of biodegradation processes in the field. An essential step toward attaining reliable bioremediation technologies is the development of criteria which prove that microorganisms in contaminated field sites are truly active in metabolizing contaminants of interest. These criteria, which rely upon genetic, biochemical, physiological, and ecological principles and apply to both in situ and ex situ bioremediation strategies include: (i) internal conservative tracers; (ii) added conservative tracers; (iii) added radioactive tracers; (iv) added isotopic tracers; (v) stable isotopic fractionation patterns; (vi) detection of intermediary metabolites; (vii) replicated field plots; (viii) microbial metabolic adaptation; (ix) molecular biological indicators; (x) gradients of coreactants and/or products; (xi) in situ rates of respiration; (xii) mass balances of contaminants, coreactants, and products; and (xiii) computer modeling that incorporates transport and reactive stoichiometries of electron donors and acceptors. The ideal goal is achieving a quantitative understanding of the geochemistry, hydrogeology, and physiology of complex real-world systems.

  10. Emerging technologies in bioremediation: constraints and opportunities.

    Science.gov (United States)

    Rayu, Smriti; Karpouzas, Dimitrios G; Singh, Brajesh K

    2012-11-01

    Intensive industrialisation, inadequate disposal, large-scale manufacturing activities and leaks of organic compounds have resulted in long-term persistent sources of contamination of soil and groundwater. This is a major environmental, policy and health issue because of adverse effects of contaminants on humans and ecosystems. Current technologies for remediation of contaminated sites include chemical and physical remediation, incineration and bioremediation. With recent advancements, bioremediation offers an environmentally friendly, economically viable and socially acceptable option to remove contaminants from the environment. Three main approaches of bioremediation include use of microbes, plants and enzymatic remediation. All three approaches have been used with some success but are limited by various confounding factors. In this paper, we provide a brief overview on the approaches, their limitations and highlights emerging technologies that have potential to revolutionise the enzymatic and plant-based bioremediation approaches.

  11. Bioremediation of contaminated soil

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1992-01-01

    Microorganisms, especially bacteria, yeast and fungi are capable of degrading many kinds of xenobiotic compounds and toxic chemicals such as petroleum hydrocarbon compounds. These microorganisms are ubiquitous in nature and, despite their enormous versatility, there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of microorganisms to metabolize these compounds under the prevailing environmental condition. This paper reports on biological remediation of contaminated sites which can be accomplished by using naturally-occurring microorganisms to treat the contaminants. The development of a bioremediation program for a specific contaminated soil system usually includes: A thorough site/soil/waste characterization; Treatability studies

  12. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil.

    Science.gov (United States)

    Kulik, Niina; Goi, Anna; Trapido, Marina; Tuhkanen, Tuula

    2006-03-01

    The ability of pre-oxidation to overcome polycyclic aromatic hydrocarbons (PAH) recalcitrance to biodegradation was investigated in creosote contaminated soil. Sand and peat artificially spiked with creosote (quality WEI C) were used as model systems. Ozonation and Fenton-like treatment were proved to be feasible technologies for PAH degradation in soil. The efficiency of ozonation was strongly dependent on the water content of treated soil samples. The removal of PAH by Fenton-like treatment depended on the applied H2O2/soil weight ratio and ferrous ions addition. It was determined that the application of chemical oxidation in sand resulted in a higher PAH removal and required lower oxidant (ozone, hydrogen peroxide) doses. The enhancement of PAH biodegradability by different pre-treatment technologies also depended on the soil matrix. It was ascertained that combined chemical and biological treatment was more efficient in PAH elimination in creosote contaminated soil than either one alone. Thus, the combination of Fenton-like and the subsequent biological treatment resulted in the highest removal of PAH in creosote contaminated sand, and biodegradation with pre-ozonation was found to be the most effective technology for PAH elimination in peat.

  13. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Niina Kulik; Anna Goi; Marina Trapido; Tuula Tuhkanen [Tallinn University of Technology, Tallinn (Estonia). Department of Chemical Engineering

    2006-03-15

    The ability of pre-oxidation to overcome polycyclic aromatic hydrocarbons (PAH) recalcitrance to biodegradation was investigated in creosote contaminated soil. Sand and peat artificially spiked with creosote (quality WEI C) were used as model systems. Ozonation and Fenton-like treatment were proved to be feasible technologies for PAH degradation in soil. The efficiency of ozonation was strongly dependent on the water content of treated soil samples. The removal of PAH by Fenton-like treatment depended on the applied H{sub 2}O{sub 2}/soil weight ratio and ferrous ions addition. It was determined that the application of chemical oxidation in sand resulted in a higher PAH removal and required lower oxidant (ozone, hydrogen peroxide) doses. The enhancement of PAH biodegradability by different pre-treatment technologies also depended on the soil matrix. It was ascertained that combined chemical and biological treatment was more efficient in PAH elimination in creosote contaminated soil than either one alone. Thus, the combination of Fenton-like and the subsequent biological treatment resulted in the highest removal of PAH in creosote contaminated sand, and biodegradation with pre-ozonation was found to be the most effective technology for PAH elimination in peat.

  14. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation.

    Science.gov (United States)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-08-30

    A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62±0.14nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Bioremediation of nonylphenol polyethoxylates with a focus on nonylphenol

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Pugsley, J.; Velicogna, D.; Punt, M.M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div

    2005-07-01

    Nonylphenol polyethoxylates (NPEs) are non-ionic surfactants used in many household products and industrial applications because of their thermal stability and cleaning properties. NPEs are endocrine disruptor substances. As a result, there is concern about the release and fate of NPEs and the persistence of their degradation in the environment. Although NPEs are stable and do not undergo spontaneous hydrolysis and photolysis, they do react with strong oxidizing agents, acids and bases. There is increasing interest in using bioremediation as an option to rid the environment of estrogenic pollutants. This study examined the effectiveness of a bioremediation approach to remediate NPEs with a focus on nonylphenol (NP), which is considered the most difficult component to treat. Three liquid environmental matrices were selected as the sources of NP-degrading bacteria, including activated sludge; landfill leachate; and river water waste near the effluent discharge of the Ottawa Airport. Biological liquids containing only minerals and NP were inoculated from the environmental sources. NP was the sole source of nutrient to the environmental microorganisms. The experiments were performed using flasks incubated at room temperature for a period of 45 days, with samples taken at different time intervals for analysis using gas chromatography-mass spectrometry operating in the single ion monitoring mode. Promising results were obtained using the activated sludge, signifying that a bioremediation technology has been identified for the bioremediation of NPEs. At day 15, the activated sludge was able to completely mineralize NP, with further results confirmed on day 30 to day 45. 5 refs., 1 tab., 6 figs.

  16. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Foght, J.M.; Westlake, D.W.S.

    1992-01-01

    In-situ bioremediation of crude oil spills relies on either the indigenous microbes at the polluted site, whose degradative abilities are accelerated by adding such agents as fertilizers or dispersants, or on introducing pollutant-degrading microbes into the site (possibly accompanied by stimulatory chemicals). The bioremediation method to be used at a specific site must be selected to be suitable for that site and its environmental conditions. The basic components of bioremediation are outlined and the background information needed to understand the chemical and biological limitations of the technique are presented. Specifically, the microbial community, the crude oil substrate composition, and biological limiting factors are discussed. Generalized examples of bioremediation applications are illustrated. 10 refs

  17. Chemometric assessment of enhanced bioremediation of oil contaminated soils

    DEFF Research Database (Denmark)

    Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H.

    2013-01-01

    Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting...

  18. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  19. Characterization of the Aerobic Oxidation of cis-Dichloroethene and Vinyl Chloride in Support of Bioremediation of Chloroethene-Contaminated Sites

    Science.gov (United States)

    2004-11-05

    23084c Possible OriT region, Hypothetical protein, related to putative retroelement ( Oryza sativa ) NP_920563 25/73 (34%) 0.12 23 1818 23202-28658c...attenuation of lesser-chlorinated ethenes. Results provide the basis for improved site assessment , improved remedial-action decision-making, and more...improved site assessment , improved remedial-action decision- making, and more reliable bioremediation technologies. By isolating bacteria capable of

  20. Getting results in bioremediation

    International Nuclear Information System (INIS)

    Konzuk, Julie

    2014-01-01

    Bioremediation can be a sustainable, low-cost solution for many contaminated sites, but it is important to know which sites are suitable and be aware of common pitfalls. Chlorinated solvents, lighter petroleum hydrocarbons, non-aqueous phase liquids have all be demonstrated to be readily biodegradable. However, the success of enhanced in situ bioremediation (EISB) depends on the successful growth and establishment of a viable, mature microbial community. Low or high pH groundwater, or high concentrations of some chemicals can inhibit microbial activity.

  1. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review.

    Science.gov (United States)

    Singh, Kriti; Chandra, Subhash

    2014-01-01

    Bioremediation play key role in the treatment of petroleum hydrocarbon contaminated environment. Exposure of petroleum hydrocarbon into the environment occurs either due to human activities or accidentally and cause environmental pollution. Petroleum hydrocarbon cause many toxic compounds which are potent immunotoxicants and carcinogenic to human being. Remedial methods for the treatment of petroleum contaminated environment include various physiochemical and biological methods. Due to the negative consequences caused by the physiochemical methods, the bioremediation technology is widely adapted and considered as one of the best technology for the treatment of petroleum contaminated environment. Bioremediation utilizes the natural ability of microorganism to degrade the hazardous compound into simpler and non hazardous form. This paper provides a review on the role of bioremediation in the treatment of petroleum contaminated environment, discuss various hazardous effects of petroleum hydrocarbon, various factors influencing biodegradation, role of various enzymes in biodegradation and genetic engineering in bioremediation.

  2. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  3. Bioremediation of nanomaterials

    Science.gov (United States)

    Chen, Frank Fanqing; Keasling, Jay D; Tang, Yinjie J

    2013-05-14

    The present invention provides a method comprising the use of microorganisms for nanotoxicity study and bioremediation. In some embodiment, the microorganisms are bacterial organisms such as Gram negative bacteria, which are used as model organisms to study the nanotoxicity of the fullerene compounds: E. coli W3110, a human related enterobacterium and Shewanella oneidensis MR-1, an environmentally important bacterium with versatile metabolism.

  4. Bioremediation of Petroleum Hydrocarbon Contaminated Sites

    Energy Technology Data Exchange (ETDEWEB)

    Fallgren, Paul

    2009-03-30

    Bioremediation has been widely applied in the restoration of petroleum hydrocarbon-contaminated. Parameters that may affect the rate and efficiency of biodegradation include temperature, moisture, salinity, nutrient availability, microbial species, and type and concentration of contaminants. Other factors can also affect the success of the bioremediation treatment of contaminants, such as climatic conditions, soil type, soil permeability, contaminant distribution and concentration, and drainage. Western Research Institute in conjunction with TechLink Environmental, Inc. and the U.S. Department of Energy conducted laboratory studies to evaluate major parameters that contribute to the bioremediation of petroleum-contaminated drill cuttings using land farming and to develop a biotreatment cell to expedite biodegradation of hydrocarbons. Physical characteristics such as soil texture, hydraulic conductivity, and water retention were determined for the petroleum hydrocarbon contaminated soil. Soil texture was determined to be loamy sand to sand, and high hydraulic conductivity and low water retention was observed. Temperature appeared to have the greatest influence on biodegradation rates where high temperatures (>50 C) favored biodegradation. High nitrogen content in the form of ammonium enhanced biodegradation as well did the presence of water near field water holding capacity. Urea was not a good source of nitrogen and has detrimental effects for bioremediation for this site soil. Artificial sea water had little effect on biodegradation rates, but biodegradation rates decreased after increasing the concentrations of salts. Biotreatment cell (biocell) tests demonstrated hydrocarbon biodegradation can be enhanced substantially when utilizing a leachate recirculation design where a 72% reduction of hydrocarbon concentration was observed with a 72-h period at a treatment temperature of 50 C. Overall, this study demonstrates the investigation of the effects of

  5. Bioremediation of toxic substances by mercury resistant marine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Sarkar, A.; Ramaiah, N.

    Bioremediation of toxic substances includes microbe-mediated enzymatic transformation of toxicants to non-toxic, often assimilable, forms. Mercury-resistant marine bacteria are found to be very promising in dealing with mercury, and a host of other...

  6. Bioremediation of Creosote - contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    Bioremediation of creosote-contaminated soil was studied employing the methods of soil microbial biology and using new gas chromatography-mass spectrometry-mass spectrometry analytical approach. The changes of the soil microbial community under the polycyclic aromatic hydrocarbons (PAH) pollution impact were analyzed and described, as well as the changes during the bioremediation experiments. Laboratory-scale bioremediation experiments using the soil microbial community (consisted of bacteria...

  7. Development and application of the lux gene for environmental bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.; Yang, Z. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Palmer, R.J. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Khang, Y. [Yeungnam Univ., Kyongsan (Korea, Republic of)

    1996-09-01

    Bioremediation is the use of living systems, usually microorganisms, to treat a quantity of soil or water for the presence of hazardous wastes. Bioremediation has many advantages over other remediation approaches, including cost savings, versatility, and the ability to treat the wastes in situ. In order to study the processes of microbial bioremediation, the authors have constructed bacterial strains that incorporate genetically engineered bioreporter genes. These bioreporter genes allow the bacteria to be detected during in situ processes, as manifested by their ability to bioluminescence or to fluoresce. This bioreporter microorganisms are described, along with the technology for detecting them and the projects which are benefiting from their application.

  8. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J

    2018-04-10

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth\\'s surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  9. Applied bioremediation of hazardous, petroleum, and industrial wastes

    International Nuclear Information System (INIS)

    Ulm, D.J.; McGuire, P.N.; Lynch, E.R.

    1994-01-01

    Blasland and Bouck Engineers, P.C. (Blasland and Bouck) conducted a large-scale soil bioremediation pilot study at an inactive hazardous waste site in Upstate New York. Remediation of soils at the site is regulated in accordance with a Consent Order entered into with the New York State Department of Environmental Conservation. The chemicals of concern in soils at the site consist of a wide range of volatile and semi-volatile organic compounds including: trichloroethylene, methylene chloride, methanol, aniline, and N,N-dimethylaniline. The large-scale soil Bioremediation Pilot Study consisted of evaluating the effectiveness of two bioremediation techniques: ex-situ solid phase treatment of excavation soils; and in-situ solid phase treatment with soil mixing. The feasibility of bioremediation for soils at this site was evaluated in the field at pilot scale due to the generally high sensitivity of the technology's effectiveness and feasibility from site to site

  10. Bioremediation of wastewater using microalgae

    Science.gov (United States)

    Chalivendra, Saikumar

    Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in

  11. TECHNOLOGIES FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Roxana Gabriela POPA

    2012-05-01

    Full Text Available Biological methods for remediation of soils is based on the degradation of pollutants due to activity of microorganisms (bacteria, fungi. Effectiveness of biological decontamination of soils depends on the following factors: biodegradation of pollutants, type of microorganisms used, choice of oxidant and nutrient and subject to clean up environmental characteristics. Ex situ techniques for bioremediation of soils polluted are: composting (static / mechanical agitation, land farming and biopiles. Techniques in situ bioremediation of soils polluted are: bioventingul, biospargingul and biostimulation – bioaugumentarea.

  12. Bioremediation of oil contaminated soils

    International Nuclear Information System (INIS)

    Beeson, D.L.; Hogue, J.I.; Peterson, J.C.; Guerra, G.W.

    1994-01-01

    The Baldwin Waste Oil Site was an abandoned waste oil recycling facility located in Robstown, Nueces County, Texas. As part of their site assessment activities, the US Environmental Protection Agency (EPA) requested that the Ecology and Environment, Inc., Technical Assistance Team (TAT) investigate the feasibility of using in-situ bioremediation to remediate soils contaminated with oil and grease components, petroleum hydrocarbons, and volatile organic compounds. Bioremediation based on the land treatment concept was tested. The land treatment concept uses techniques to optimize indigenous microbial populations and bring them in contact with the contaminants. The study was designed to collect data upon which to base conclusions on the effectiveness of bioremediation, to demonstrate the effectiveness of bioremediation under field conditions, and to identify potential problems in implementing a full-scale project. Bioremediation effectiveness was monitored through total petroleum hydrocarbons (TPH) and Oil and Grease (O and G) analyses. Site specific treatment goals for the pilot project were concentrations of less than 1% for O and G and less than 10,000 mg/kg for TPH. Based on the reduction of TPH and O and G concentrations and the cost effectiveness of bioremediation based on the land treatment concept, full-scale in-situ bioremediation was initiated by the EPA at the Baldwin Waste Oil Site in February of 1993

  13. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Pous, Narcis [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Casentini, Barbara; Rossetti, Simona; Fazi, Stefano [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy); Puig, Sebastià [Laboratory of Chemical and Environmental Engineering (LEQUiA), Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69 E-17071 Girona (Spain); Aulenta, Federico, E-mail: aulenta@irsa.cnr.it [Water Research Institute (IRSA-CNR), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo (Italy)

    2015-02-11

    Highlights: • As(III) was oxidized to As(V) in a bioelectrochemical system. • A polarized graphite electrode served as electron acceptor. • Gammaproteobacteria were the dominating organisms at the electrode. - Abstract: Arsenic contamination of soil and groundwater is a serious problem worldwide. Here we show that anaerobic oxidation of As(III) to As(V), a form which is more extensively and stably adsorbed onto metal-oxides, can be achieved by using a polarized (+497 mV vs. SHE) graphite anode serving as terminal electron acceptor in the microbial metabolism. The characterization of the microbial populations at the electrode, by using in situ detection methods, revealed the predominance of gammaproteobacteria. In principle, the proposed bioelectrochemical oxidation process would make it possible to provide As(III)-oxidizing microorganisms with a virtually unlimited, low-cost and low-maintenance electron acceptor as well as with a physical support for microbial attachment.

  14. Bioremediation of oil spills

    International Nuclear Information System (INIS)

    Webb, M.

    1992-01-01

    For some years now UK and European oil spill response agencies, together with oil companies having an exploration or production interest in the European area, have been developing interest in the possible use of bioremediation techniques in combatting oil spills. The interest has accelerated in the aftermath of Exxon Valdez but there is significant scepticism over the actual value of the technique. The promise of increased rates of oil degradation, using bacteria or nutrients, does not yet appear to have been properly validated and there is concern over possible knock-on environmental effects. In consequence the response agencies are reluctant to bring the technique into their current combat armory. Some of the questions raised are: What efficacious techniques are available and how were they proven? On what type of oils can they be used? What is the scope for their use (at sea, type of coastline, temperature limitations, etc.)? What are the short and long term effects? Does bioremediation really work and offer a potential tool for oil spill clean-up? How do cleaning rates compare with natural recovery? There are many others. The view of the European Commission is that there should be a coordinated effort to answer these questions, but that effort should be properly targeted. I concur strongly with this view. The tasks are too large and varied for piecemeal attention. The European Commission wishes to initiate appropriate coordinated work, directed at the needs of European nations but which will subsequently inform the international response community through the International Maritime Organization and its Oil Pollution Preparedness and Response Cooperation initiative

  15. Cyclic nucleotide metabolism including nitric oxide and phosphodiesterase-related targets in the lower urinary tract.

    Science.gov (United States)

    Uckert, Stefan; Kuczyk, Markus A

    2011-01-01

    The clinical data on the use of the orally active phosphodiesterase (PDE) type 5 inhibitors sildenafil (VIAGRA™), vardenafil (LEVITRA™), and tadalafil (CIALIS™) for the treatment of male erectile dysfunction have boosted research activities on the physiology and pharmacology of the organs of the lower urinary tract (LUT). This includes both intracellular signal transduction in the prostate, urinary bladder (detrusor), and urethra, as well as central brain and spinal cord pathways controlling the function of the LUT. Such efforts provided the basis for the development of new therapeutic modalities into the management of dysfunctions/ syndromes of the LUT, some of which are already offered to the patients. The pharmacological treatment of the overactive bladder and the so-called benign prostatic syndrome, including LUT symptomatology and bladder outlet obstruction secondary to benign prostatic enlargement, has primarily focused on selective, orally available drugs acting by influencing intracellular regulatory mechanisms. These agents are regarded efficacious, have a fast onset of drug action in the target tissue and an improved effect-to-side-effect ratio. Better understanding of the functional significance of proteins related to cyclic nucleotide-dependent pathways, such as nitric oxide synthase, cytosolic and membrane-bound guanylyl cyclases, PDE isoenzymes and cyclic AMP- and cyclic GMP-binding protein kinases, the relative distribution in tissues of the LUT, and the consequences for urogenital function, seems to be of particular interest in order to identify new or more selective pharmacological approaches to manage disorders of the LUT. The present review focuses on cyclic nucleotide-related targets involved in the control of the function of the bladder, prostate, and urethra and the significance of those proteins in the process of evolving new pharmacological options for the treatment of LUT symptoms secondary to benign prostatic hyperplasia as well as

  16. Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Bruheim, P.; Bredholt, H.; Eimhjellen, K. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Biotechnology

    1999-04-01

    Mixtures of nonionic and anionic surfactants, including Corexit 9527, were tested to determine their effects on bacterial oxidation of acetate and alkanes in crude oil by cells pregrown on these substrates. Corexit 9527 inhibited oxidation of the alkanes in crude oil by Acinetobacter calcoaceticus ATCC 31012, while Span 80, a Corexit 9527 constituent, markedly increased the oil oxidation rate. Another Corexit 9257 constituent, the negatively charged dioctyl sulfosuccinate (AOT), strongly reduced the oxidation rate. The combination of Span 80 and AOT increased the rate, but not as much as Span 80 alone increased it, which tentatively explained the negative effect of Corexit 9527. The results of acetate uptake and oxidation experiments indicated that the nonionic surfactants interacted with the acetate uptake system while the anionic surfactant interacted with the oxidation system of the bacteria. The overall effect of Corexit 9527 on alkane oxidation by A. calcoaceticus ATCC 31012 thus seems to be the sum of the independent effects of the individual surfactants in the surfactant mixture. When Rhodococcus sp. strain 094 was used, the alkane oxidation rate decreased to almost zero in the presence of a mixture of Tergitol 15-S-7 and AOT even though the Tergitol 15-S-7 surfactant increased the alkane oxidation rate and AOT did not affect it. This indicated that there was synergism between the two surfactants rather than an additive effect like that observed for A. calcoaceticus ATCC 31012.

  17. In-situ bioremediation of TCE-contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.J. [Los Alamos National Lab., NM (United States); Rosenberg, N.D. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A barrier to wider use of in situ bioremediation technology is that results are often variable and difficult to predict. In situ bioremediation has shown some very notable and well publicized successes, but implementation of the technology is complex. An incomplete understanding of the effects of variable site characteristics and the lack of adequate tools to predict and measure success have made the design, control and validation of bioremediation more empirical than desired. The long-term objective of this project is to improve computational tools used to assess and optimize the expected performance of bioremediation at a site. An important component of the approach is the explicit inclusion of uncertainties and their effect on the end result. The authors have extended their biokinetics model to include microbial competition and predation processes. Predator species can feed on the microbial species that degrade contaminants, and the simulation studies show that species interactions must be considered when designing in situ bioremediation systems. In particular, the results for TCE indicate that protozoan grazing could reduce the amount of biodegradation by about 20%. These studies also indicate that the behavior of barrier systems can become complex due to predator grazing.

  18. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.

    Science.gov (United States)

    Azubuike, Christopher Chibueze; Chikere, Chioma Blaise; Okpokwasili, Gideon Chijioke

    2016-11-01

    Environmental pollution has been on the rise in the past few decades owing to increased human activities on energy reservoirs, unsafe agricultural practices and rapid industrialization. Amongst the pollutants that are of environmental and public health concerns due to their toxicities are: heavy metals, nuclear wastes, pesticides, green house gases, and hydrocarbons. Remediation of polluted sites using microbial process (bioremediation) has proven effective and reliable due to its eco-friendly features. Bioremediation can either be carried out ex situ or in situ, depending on several factors, which include but not limited to cost, site characteristics, type and concentration of pollutants. Generally, ex situ techniques apparently are more expensive compared to in situ techniques as a result of additional cost attributable to excavation. However, cost of on-site installation of equipment, and inability to effectively visualize and control the subsurface of polluted sites are of major concerns when carrying out in situ bioremediation. Therefore, choosing appropriate bioremediation technique, which will effectively reduce pollutant concentrations to an innocuous state, is crucial for a successful bioremediation project. Furthermore, the two major approaches to enhance bioremediation are biostimulation and bioaugmentation provided that environmental factors, which determine the success of bioremediation, are maintained at optimal range. This review provides more insight into the two major bioremediation techniques, their principles, advantages, limitations and prospects.

  19. Systems biology approach to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.

    2012-06-01

    Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.

  20. Bioremediation of petroleum-contaminated soil: A Review

    Science.gov (United States)

    Yuniati, M. D.

    2018-02-01

    Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.

  1. Effects of Adiponectin Including Reduction of Androstenedione Secretion and Ovarian Oxidative Stress Parameters In Vivo.

    Directory of Open Access Journals (Sweden)

    Fabio V Comim

    Full Text Available Adiponectin is the most abundantly produced human adipokine with anti-inflammatory, anti-oxidative, and insulin-sensitizing properties. Evidence from in vitro studies has indicated that adiponectin has a potential role in reproduction because it reduces the production of androstenedione in bovine theca cells in vitro. However, this effect on androgen production has not yet been observed in vivo. The current study evaluated the effect of adiponectin on androstenedione secretion and oxidative stress parameters in a rodent model. Seven-week-old female Balb/c mice (n = 33, previously treated with equine gonadotropin chorionic, were assigned to one of four different treatments: Group 1, control (phosphate-buffered saline; Group 2, adiponectin 0.1 μg/mL; Group 3, adiponectin 1.0 μg/mL; Group 4, adiponectin 5.0 μg/mL. After 24 h, all animals were euthanized and androstenedione levels were measured in the serum while oxidative stress markers were quantified in whole ovary tissue. Female mice treated with adiponectin exhibited a significant reduction (about 60% in serum androstenedione levels in comparison to controls. Androstenedione levels decreased from 0.78 ± 0.4 ng/mL (mean ± SD in controls to 0.28 ± 0.06 ng/mL after adiponectin (5 μg/mL treatment (P = 0.01. This change in androgen secretion after 24 hours of treatment was associated with a significant reduction in the expression of CYP11A1 and STAR (but not CYP17A1. In addition, ovarian AOPP product levels, a direct product of protein oxidation, decreased significantly in adiponectin-treated mice (5 μg/mL; AOPP (mean ± SD decreased to 4.3 ± 2.1 μmol/L in comparison with that of the controls (11.5 ± 1.7 μmol/L; P = 0.0003. Our results demonstrated for the first time that acute treatment with adiponectin reduced the levels of a direct oxidative stress marker in the ovary as well as decreased androstenedione serum levels in vivo after 24 h.

  2. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    Science.gov (United States)

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. Published by Elsevier Inc.

  3. Bioremediation of fossil fuel contaminated soils

    International Nuclear Information System (INIS)

    Atlas, R.M.

    1991-01-01

    Bioremediation involves the use of microorganisms and their biodegradative capacity to remove pollutants. The byproducts of effective bioremediation, such as water and carbon dioxide, are nontoxic and can be accommodated without harm to the environment and living organisms. This paper reports that using bioremediation to remove pollutants has many advantages. This method is cheap, whereas physical methods for decontaminating the environment are extraordinarily expensive. Neither government nor private industry can afford the cost to clean up physically the nation's known toxic waste sites. Therefore, a renewed interest in bioremediation has developed. Whereas current technologies call for moving large quantities of toxic waste and its associated contaminated soil to incinerators, bioremediation can be done on site and requires simple equipment that is readily available. Bioremediation, though, is not the solution for all environmental pollution problems. Like other technologies, bioremediation has limitations

  4. Genome Sequencing Reveals the Potential of Achromobacter sp. HZ01 for Bioremediation

    Directory of Open Access Journals (Sweden)

    Yue-Hui Hong

    2017-08-01

    Full Text Available Petroleum pollution is a severe environmental issue. Comprehensively revealing the genetic backgrounds of hydrocarbon-degrading microorganisms contributes to developing effective methods for bioremediation of crude oil-polluted environments. Marine bacterium Achromobacter sp. HZ01 is capable of degrading hydrocarbons and producing biosurfactants. In this study, the draft genome (5.5 Mbp of strain HZ01 has been obtained by Illumina sequencing, containing 5,162 predicted genes. Genome annotation shows that “amino acid metabolism” is the most abundant metabolic pathway. Strain HZ01 is not capable of using some common carbohydrates as the sole carbon sources, which is due to that it contains few genes associated with carbohydrate transport and lacks some important enzymes related to glycometabolism. It contains abundant proteins directly related to petroleum hydrocarbon degradation. AlkB hydroxylase and its homologs were not identified. It harbors a complete enzyme system of terminal oxidation pathway for n-alkane degradation, which may be initiated by cytochrome P450. The enzymes involved in the catechol pathway are relatively complete for the degradation of aromatic compounds. This bacterium lacks several essential enzymes for methane oxidation, and Baeyer-Villiger monooxygenase involved in the subterminal oxidation pathway and cycloalkane degradation was not identified. These results suggest that strain HZ01 degrades n-alkanes via the terminal oxidation pathway, degrades aromatic compounds primarily via the catechol pathway and cannot perform methane oxidation or cycloalkane degradation. Additionally, strain HZ01 possesses abundant genes related to the metabolism of secondary metabolites, including some genes involved in biosurfactant (such as glycolipids and lipopeptides synthesis. The genome analysis also reveals its genetic basis for nitrogen metabolism, antibiotic resistance, regulatory responses to environmental changes, cell motility

  5. Laboratory method used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  6. In situ bioremediation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Porta, A. [Battelle Europe, Geneva (CH); Young, J.K.; Molton, P.M. [Pacific Northwest Lab., Richland, WA (US)

    1993-06-01

    Site remediation activity in Europe is increasing, even if not at the forced pace of the US. Although there is a better understanding of the benefits of bioremediation than of other approaches, especially about in situ bioremediation of contaminated soils, relatively few projects have been carried out full-scale in Europe or in the US. Some engineering companies and large industrial companies in Europe are investigating bioremediation and biotreatment technologies, in some cases to solve their internal waste problems. Technologies related to the application of microorganisms to the soil, release of nutrients into the soil, and enhancement of microbial decontamination are being tested through various additives such as surfactants, ion exchange resins, limestone, or dolomite. New equipment has been developed for crushing and mixing or injecting and sparging the microorganisms, as have new reactor technologies (e.g., rotating aerator reactors, biometal sludge reactors, and special mobile containers for simultaneous storage, transportation, and biodegradation of contaminated soil). Some work has also been done with immobilized enzymes to support and restore enzymatic activities related to partial or total xenobiotic decontamination. Finally, some major programs funded by public and private institutions confirm that increasing numbers of firms have a working interest in bioremediation.

  7. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity

    Science.gov (United States)

    Chibwe, Leah; Geier, Mitra C.; Nakamura, Jun; Tanguay, Robert L.; Aitken, Michael D.; Simonich, Staci L. Massey

    2015-01-01

    The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (pre-bioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (post-bioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, post-bioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental to xicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, post-bioremediation (p bioremediation (p bioremediation. The increased toxicity measured post-bioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase post-bioremediation. However, the increased toxicity measured post-bioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded. PMID:26200254

  8. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review.

    Science.gov (United States)

    Maqbool, Zahid; Hussain, Sabir; Imran, Muhammad; Mahmood, Faisal; Shahzad, Tanvir; Ahmed, Zulfiqar; Azeem, Farrukh; Muzammil, Saima

    2016-09-01

    Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.

  9. Influence of salinity and fungal prevalence on bioremediation of ...

    African Journals Online (AJOL)

    The effect of NaCI salt on bioremediation of crude oil polluted soil was studied. Salt· treatments included NaCI amendments to adjust the soil solution electrical conductivities to 50, 130, 210 dsm-1. Oil biodegradation was estimated from quantities of CO2 evolved. Salt concentration at 210 dsm-1 in oil polluted soil resulted in ...

  10. Genomic and physiological perspectives on bioremediation processes at the FRC

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Erick; Leigh, Mary Beth; Hemme, Christopher; Gentry, Terry; Harzman, Christina; Wu, Weimin; Criddle, Craig S.; Zhou, Jizhong; Marsh, Terence; Tiedje, James M.

    2006-04-05

    A suite of molecular and physiological studies, including metal reduction assays, metagenomics, functional gene microarrays and community sequence analyses were applied to investigate organisms involved in bioremediation processes at the ERSP Field Research Center and to understand the effects of stress on the makeup and evolution of microbial communities to inform effective remediation strategies.

  11. Potential for Methanosarcina to contribute to uranium reduction during acetate-promoted groundwater bioremediation

    DEFF Research Database (Denmark)

    Holmes, Dawn E; Orellana, Roberto; Giloteaux, Ludovic

    2018-01-01

    Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcrA) transcr......Previous studies of acetate-promoted bioremediation of uranium-contaminated aquifers focused on Geobacter because no other microorganisms that can couple the oxidation of acetate with U(VI) reduction had been detected in situ. Monitoring the levels of methyl CoM reductase subunit A (mcr......(VI) reduction was observed in inactive controls. These results demonstrate that Methanosarcina species could play an important role in the long-term bioremediation of uranium-contaminated aquifers after depletion of Fe(III) oxides limits the growth of Geobacter species. The results also suggest...... that Methanosarcina have the potential to influence uranium geochemistry in a diversity of anaerobic sedimentary environments....

  12. Bioremediation of mine water.

    Science.gov (United States)

    Klein, Robert; Tischler, Judith S; Mühling, Martin; Schlömann, Michael

    2014-01-01

    Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate-the main pollutants in mine waters-are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.

  13. Pancreatic Response to Gold Nanoparticles Includes Decrease of Oxidative Stress and Inflammation In Autistic Diabetic Model

    Directory of Open Access Journals (Sweden)

    Manar E. Selim

    2015-01-01

    Full Text Available Background: Gold nanoparticles (AuNPs have a wide range of applications in various fields. This study provides an understanding of the modulatory effects of AuNPs on an antioxidant system in male Wistar diabetic rats with autism spectrum disorder (ASD. Normal littermates fed by control mothers were injected with citrate buffer alone and served as normal, untreated controls controlin this study. Diabetes mellitus (DM was induced by administering a single intraperitoneal injection of streptozotocin (STZ (100 mg/kg to the pups of (ND diabetic group, which had been fasted overnight. Autistic pups from mothers that had received a single intraperitoneal injection of 600 mg/kg sodium valproate on day 12.5 after conception were randomly divided into 2 groups (n 2 7/group as follow; administering single intraperitoneal injection of streptozotocin (STZ ( (100 mg/kg to the overnight fasted autistic pups of (AD autistic diabetic group. The treatment was started on the 5th day after STZ injection with the same dose as in group II and it was considered as 1st day of treatment with gold nanoparticles for 7 days to each rat of (group IV treated autistic diabetic group(TAD at a dosage of 2.5 mg/kg. b. wt. Results: At this dose of administration AuNPs, the activities of hepatic superoxide dismutase (SOD, glutathione peroxidase (GPx, and catalase were greater in group TAD compared with the control group (P 0.05 in the liver of autistic diabetic AuNPs -supplemented rats, whereas reduced glutathione was markedly higher than in control rats, especially after administration of AuNPs. Moreover, the kidney functions in addition to the fat profile scoring supported the protective potential of that dose of AuNPs. The beta cells revealed euchromatic nuclei with no evidence of separation of nuclear membrane. Conclusions: Our results showed that AuNPs improved many of the oxidative stress parameters (SOD, GPx and, CAT, plasma antioxidant capacity (ORAC and lipid profile

  14. Microbes safely, effectively bioremediate oil field pits

    International Nuclear Information System (INIS)

    Shaw, B.; Block, C.S.; Mills, C.H.

    1995-01-01

    Natural and augmented bioremediation provides a safe, environmental, fast, and effective solution for removing hydrocarbon stains from soil. In 1992, Amoco sponsored a study with six bioremediation companies, which evaluated 14 different techniques. From this study, Amoco continued using Environmental Protection Co.'s (EPC) microbes for bioremediating more than 145 sites near Farmington, NM. EPC's microbes proved effective on various types of hydrocarbon molecules found in petroleum stained soils from heavy crude and paraffin to volatiles such as BTEX (benzene, toluene, ethylbenzene, xylene) compounds. Controlled laboratory tests have shown that these microbes can digest the hydrocarbon molecules with or without free oxygen present. It is believed that this adaptation gives these microbes their resilience. The paper describes the bioremediation process, environmental advantages, in situ and ex situ bioremediation, goals of bioremediation, temperature effects, time, cost, and example sites that were treated

  15. Bioremediation of petroleum hydrocarbon-contaminated ground water: The perspectives of history and hydrology

    Science.gov (United States)

    Chapelle, F.H.

    1999-01-01

    Bioremediation, the use of microbial degradation processes to detoxify environmental contamination, was first applied to petroleum hydrocarbon-contaminated ground water systems in the early 1970s. Since that time, these technologies have evolved in some ways that were clearly anticipated early investigators, and in other ways that were not foreseen. The expectation that adding oxidants and nutrients to contaminated aquifers would enhance biodegradation, for example, has been born out subsequent experience. Many of the technologies now in common use such as air sparging, hydrogen peroxide addition, nitrate addition, and bioslurping, are conceptually similar to the first bioremediation systems put into operation. More unexpected, however, were the considerable technical problems associated with delivering oxidants and nutrients to heterogeneous ground water systems. Experience has shown that the success of engineered bioremediation systems depends largely on how effectively directions and rates of ground water flow can be controlled, and thus how efficiently oxidants and nutrients can be delivered to contaminated aquifer sediments. The early expectation that injecting laboratory-selected or genetically engineered cultures of hydrocarbon-degrading bacteria into aquifers would be a useful bioremediation technology has not been born out subsequent experience. Rather, it appears that petroleum hydrocarbon-degrading bacteria are ubiquitous in ground water systems and that bacterial addition is usually unnecessary. Perhaps the technology that was least anticipated early investigators was the development of intrinsic bioremediation. Experience has shown that natural attenuation mechanisms - biodegradation, dilution, and sorption - limit the migration of contaminants to some degree in all ground water systems. Intrinsic bioremediation is the deliberate use of natural attenuation processes to treat contaminated ground water to specified concentration levels at predetermined

  16. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  17. Introduction to In Situ Bioremediation of Groundwater

    Science.gov (United States)

    Bioremediation is an engineered technology that modifies environmental conditions (physical, chemical, biochemical, or microbiological) to encourage microorganisms to destroy or detoxify organic and inorganic contaminants in the environment.

  18. Natural and Accelerated Bioremediation Research Program. Final Report

    International Nuclear Information System (INIS)

    Wall, Judy D.

    2009-01-01

    Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic investigation into the pathway of reductant flow to U(VI) in the SRB belonging to the genus Desulfovibrio has been the focus of this project. In Dv. desulfuricans strain G20, we confirmed the importance of the tetraheme cytochrome c3 by disruption of the gene encoding that cytochrome, cycA, and demonstrated a decrease in the ability of the mutant (I2) to reduce U(VI). We found that the cytochrome c3 was necessary for electrons from pyruvate to reach sulfate or fumarate as terminal electron acceptors. It was not needed for electrons from lactate to reach sulfate, from which we infer that a different pathway is used for the electrons from these two substrates. Cyrstal structure of the tetraheme cytochrome c3 was obtained and site-directed mutations of the protein indicated a binding site for metals at heme 4 of the structure. Kinetic studies for oxidation of reduced cytochrome c3 with U(VI) or molybdate revealed a preference for U(VI) as a substrate. Evidence for a role for sodium gradients in the energetic scheme for this soil organism was obtained.

  19. Legal and social concerns to the development of bioremediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment.

  20. U.S. bioremediation market: Yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Devine, K.

    1995-01-01

    The use of bioremediation for full-scale cleanup has increased dramatically throughout the past 10 years. This growth in activity is expected to continue through the year 2000. It is estimated that fewer than 10 companies offered field-level bioremedial services prior to 1985. Although the market today still is dominated by a small number of companies, the total number of firms claiming to offer services and/or products for bioremediation purposes has grown to over 1,000. It is estimated that aggregate bioremediation revenues for 1994 through 2000 will equal $2 to $3 billion (1994 dollars). This revenue will be generated in the initial part of this 7-year period primarily from underground storage cleanup, with revenues from hazardous waste sites becoming an increasingly important factor by accounting for the majority of revenues in the latter years. Market opportunities exist in technology development and implementation including biosparging, centralized treatment facilities for petroleum-contaminated soils, biofilters, and improvements in the cost-effectiveness of the technology

  1. Bioremediation of lead contaminated soil with Rhodobacter sphaeroides.

    Science.gov (United States)

    Li, Xiaomin; Peng, Weihua; Jia, Yingying; Lu, Lin; Fan, Wenhong

    2016-08-01

    Bioremediation with microorganisms is a promising technique for heavy metal contaminated soil. Rhodobacter sphaeroides was previously isolated from oil field injection water and used for bioremediation of lead (Pb) contaminated soil in the present study. Based on the investigation of the optimum culturing conditions and the tolerance to Pb, we employed the microorganism for the remediation of Pb contaminated soil simulated at different contamination levels. It was found that the optimum temperature, pH, and inoculum size for R. sphaeroides is 30-35 °C, 7, and 2 × 10(8) mL(-1), respectively. Rhodobacter sphaeroides did not remove the Pb from soil but did change its speciation. During the bioremediation process, more available fractions were transformed to less accessible and inert fractions; in particular, the exchangeable phase was dramatically decreased while the residual phase was substantially increased. A wheat seedling growing experiment showed that Pb phytoavailability was reduced in amended soils. Results inferred that the main mechanism by which R. sphaeroides treats Pb contaminated soil is the precipitation formation of inert compounds, including lead sulfate and lead sulfide. Although the Pb bioremediation efficiency on wheat was not very high (14.78% root and 24.01% in leaf), R. sphaeroides remains a promising alternative for Pb remediation in contaminated soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Legal and social concerns to the development of bioremediation technologies

    International Nuclear Information System (INIS)

    Bilyard, G.R.; McCabe, G.H.; White, K.A.; Gajewski, S.W.; Hendrickson, P.L.; Jaksch, J.A.; Kirwan-Taylor, H.A.; McKinney, M.D.

    1996-09-01

    The social and legal framework within which bioremediation technologies must be researched, developed, and deployed in the US are discussed in this report. Discussions focus on policies, laws and regulations, intellectual property, technology transfer, and stakeholder concerns. These discussions are intended to help program managers, scientists and engineers understand the social and legal framework within which they work, and be cognizant of relevant issues that must be navigated during bioremediation technology research, development, and deployment activities. While this report focuses on the legal and social environment within which the DOE operates, the laws, regulations and social processes could apply to DoD and other sites nationwide. This report identifies specific issues related to bioremediation technologies, including those involving the use of plants; native, naturally occurring microbes; non-native, naturally occurring microbes; genetically engineered organisms; and microbial products (e.g., enzymes, surfactants, chelating compounds). It considers issues that fall within the following general categories: US biotechnology policy and the regulation of field releases of organisms; US environmental laws and waste cleanup regulations; intellectual property and patenting issues; technology transfer procedures for commercializing technology developed through government-funded research; stakeholder concerns about bioremediation proposals; and methods for assuring public involvement in technology development and deployment

  3. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...

  4. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk

    Energy Technology Data Exchange (ETDEWEB)

    Davie-Martin, Cleo L. [Department; Department; Stratton, Kelly G. [Pacific Northwest; Teeguarden, Justin G. [Pacific Northwest; Waters, Katrina M. [Pacific Northwest; Simonich, Staci L. Massey [Department; Department

    2017-08-09

    same bioremediated soil. Conclusions: Bioremediation strategies often fail to reduce carcinogenic PAH concentrations in contaminated soils below USEPA acceptable cancer risk levels. Additionally, MW302 PAHs and ‘unknown’ metabolites (compounds not routinely measured) are not included in current cancer risk assessments and could significantly contribute to soil carcinogenicity.

  5. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor

    OpenAIRE

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2010-01-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic me...

  6. Bioremediation of treated wood with bacteria

    Science.gov (United States)

    Carol A. Clausen

    2006-01-01

    This chapter reviews prior research in the field of bacterial bioremediation for wood treated with oilborne and inorganic preservatives. Current state of the art is summarized along with potential benefits and pitfalls of a pilot-scale bioremediation process for CCA-treated waste wood.

  7. Bioremediating silty soil contaminated by phenanthrene, pyrene ...

    African Journals Online (AJOL)

    ... followed in the order of their increasing molecular weight. The synergy of the bacterial isolates and the biosurfactant produced from B. vulgaris agrowaste could be used in environmental bioremediation of PAHs even in silty soil. Keywords: Benz(a)anthracene, benzo(a)pyrene, bioremediation, biosurfactant, Beta vulgaris, ...

  8. Intrinsic bioremediation of landfills interim report

    International Nuclear Information System (INIS)

    Brigmon, R.L.; Fliermans, C.B.

    1997-01-01

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP)

  9. BIOREMEDIATION OF OIL-CONTAMINATED FINE SEDIMENTS.

    Science.gov (United States)

    Bioremediation of oil contamination has been shown to be effective for cobble and sandy shorelines. To assess the operational limitations of this technology, this project studied its potential to treat buried oil in fine sediments. The effectiveness of bioremediation by nutrient ...

  10. Intrinsic bioremediation of landfills interim report

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L. [Westinghouse Savannah River Company, Aiken, SC (United States); Fliermans, C.B.

    1997-07-14

    Intrinsic bioremediation is a risk management option that relies on natural biological and physical processes to contain the spread of contamination from a source. Evidence is presented in this report that intrinsic bioremediation is occurring at the Sanitary Landfill is fundamental to support incorportion into a Corrective Action Plan (CAP).

  11. Bioremediation of metals and radionuclides: What it is and How itWorks

    Energy Technology Data Exchange (ETDEWEB)

    McCullough, J.; Hazen, Terry; Benson, Sally

    1999-01-01

    This primer is intended for people interested in DOE environmental problems and in their potential solutions. It will specifically look at some of the more hazardous metal and radionuclide contaminants found on DOE lands and at the possibilities for using bioremediation technology to clean up these contaminants. Bioremediation is a technology that can be used to reduce, eliminate, or contain hazardous waste. Over the past two decades, it has become widely accepted that microorganisms, and to a lesser extent plants, can transform and degrade many types of contaminants. These transformation and degradation processes vary, depending on physical environment, microbial communities, and nature of contaminant. This technology includes intrinsic bioremediation, which relies on naturally occurring processes, and accelerated bioremediation, which enhances microbial degradation or transformation through inoculation with microorganisms (bioaugmentation) or the addition of nutrients (biostimulation).

  12. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  13. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    OpenAIRE

    Ajoy Kumar Mandal; Atanu Jana; Abhijit Datta; Priyangshu M. Sarma; Banwari Lal; Jayati Datta

    2014-01-01

    Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste) and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of th...

  14. Structural analysis of enzymes used for bioindustry and bioremediation.

    Science.gov (United States)

    Tanokura, Masaru; Miyakawa, Takuya; Guan, Lijun; Hou, Feng

    2015-01-01

    Microbial enzymes have been widely applied in the large-scale, bioindustrial manufacture of food products and pharmaceuticals due to their high substrate specificity and stereoselectivity, and their effectiveness under mild conditions with low environmental burden. At the same time, bioremedial techniques using microbial enzymes have been developed to solve the problem of industrial waste, particularly with respect to persistent chemicals and toxic substances. And finally, structural studies of these enzymes have revealed the mechanistic basis of enzymatic reactions, including the stereoselectivity and binding specificity of substrates and cofactors. The obtained structural insights are useful not only to deepen our understanding of enzymes with potential bioindustrial and/or bioremedial application, but also for the functional improvement of enzymes through rational protein engineering. This review shows the structural bases for various types of enzymatic reactions, including the substrate specificity accompanying cofactor-controlled and kinetic mechanisms.

  15. Monitoring and interpreting bioremediation effectiveness

    International Nuclear Information System (INIS)

    Bragg, J.R.; Prince, R.C.; Harner, J.; Atlas, R.M.

    1993-01-01

    Following the Exxon Valdez oil spill in 1989, extensive research was conducted by the US Environments Protection Agency and Exxon to develop and implement bioremediation techniques for oil spill cleanup. A key challenge of this program was to develop effective methods for monitoring and interpreting bioremediation effectiveness on extremely heterogenous intertidal shorelines. Fertilizers were applied to shorelines at concentrations known to be safe, and effectiveness achieved in acceleration biodegradation of oil residues was measure using several techniques. This paper describes the most definitive method identified, which monitors biodegradation loss by measuring changes in ratios of hydrocarbons to hopane, a cycloalkane present in the oil that showed no measurable degradation. Rates of loss measured by the hopane ratio method have high levels of statistical confidence, and show that the fertilizer addition stimulated biodegradation rates as much a fivefold. Multiple regression analyses of data show that fertilizer addition of nitrogen in interstitial pore water per unit of oil load was the most important parameter affecting biodegradation rate, and results suggest that monitoring nitrogen concentrations in the subsurface pore water is preferred technique for determining fertilizer dosage and reapplication frequency

  16. Bioremediation at a petroleum refinery

    International Nuclear Information System (INIS)

    Carson, A.W.; Jarvis, J.; Richardson, K.E.

    1994-01-01

    This paper presents a summary of three projects at the Mobil Refinery in Torrance, California where bioremediation technologies were successfully employed for the remediation of hydrocarbon contaminated soil. The three projects represent variations of implementation of bioremediation, both in-situ and ex-situ. Soil from all of the projects was considered non-hazardous designated waste under the California Code of Regulations, Title 23, section 2522. The projects were permitted and cleanup requirements were defined with the Los Angeles Regional Water Quality Control Board. In all of the projects, different methods were used for supplying water, oxygen, and nutrients to the hydrocarbon degrading bacteria to stimulate growth. The Stormwater Retention Basin Project utilized in-situ mechanical mixing of soils to supply solid nutrients and oxygen, and a self-propelled irrigation system to supply water. The Tank Farm Lake project used an in-situ active bioventing technology to introduce oxygen, moisture, and vapor phase nutrients. The Tank 1340X247 project was an ex-situ bioventing remediation project using a drip irrigation system to supply water and dissolved nutrients, and a vapor extraction system to provide oxygen

  17. Geochemical indicators of intrinsic bioremediation

    International Nuclear Information System (INIS)

    Borden, R.C.; Gomez, C.A.; Becker, M.T.

    1995-01-01

    A detailed field investigation has been completed at a gasoline-contaminated aquifer near Rocky Point, NC, to examine possible indicators of intrinsic bioremediation and identify factors that may significantly influence the rae and extent of bioremediation. The dissolved plume of benzene, toluene, ethylbenzene, and xylene (BTEX) in ground water is naturally degrading. Toluene and o-xylene are most rapidly degraded followed by m-, p-xylene, and benzene. Ethylbenzene appears to degrade very slowly under anaerobic conditions present in the center of the plume. The rate and extent of biodegradation appears to be strongly influenced by the type and quantity of electron acceptors present in the aquifer. At the upgradient edge of the plume, nitrate, ferric iron, and oxygen are used as terminal electron acceptors during hydrocarbon biodegradation. The equivalent of 40 to 50 mg/l of hydrocarbon is degraded based on the increase in dissolved CO 2 relative to background ground water. Immediately downgradient of the source area, sulfate and iron are the dominant electron acceptors. Toluene and o-xylene are rapidly removed in this region. Once the available oxygen, nitrate, and sulfate are consumed, biodegradation is limited and appears to be controlled by mixing and aerobic biodegradation at the plume fringes

  18. Fungal laccases and their applications in bioremediation.

    Science.gov (United States)

    Viswanath, Buddolla; Rajesh, Bandi; Janardhan, Avilala; Kumar, Arthala Praveen; Narasimha, Golla

    2014-01-01

    Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  19. Fungal Laccases and Their Applications in Bioremediation

    Directory of Open Access Journals (Sweden)

    Buddolla Viswanath

    2014-01-01

    Full Text Available Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.

  20. Case study: Bioremediation in the Aleutian Islands

    International Nuclear Information System (INIS)

    Steward, K.J.; Laford, H.D.

    1995-01-01

    This case study describes the design, construction, and operation of a bioremediation pile on Adak Island, which is located in the Aleutian Island chain. Approximately 1,900 m 3 of petroleum-contaminated soil were placed in the bioremediation pile. The natural bioremediation process was enhanced by an oxygen and nutrient addition system to stimulate microbial activity. Despite the harsh weather on the island, after the first 6 months of operation, laboratory analyses of soil samples indicated a significant (80%) reduction in diesel concentrations

  1. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2013-01-01

    of the machinery system. The wet sulphuric acid process has shown to be an effective way of removing sulphur oxides from flue gas of land-based coal fired power plants. Moreover, organic Rankine cycles are suitable for heat to power conversion for low temperature heat sources. This paper is aimed at designing...... consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal and an advanced waste heat recovery system including a conventional steam Rankine cycle and an organic Rankine cycle. The results are compared with those of a state-of-the-art machinery system featuring a two......-stroke diesel engine and a conventional waste heat recovery system. The results suggest that an organic Rankine cycle placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase power generation from waste heat by 32...

  2. Enhancement of metal bioremediation by use of microbial surfactants

    International Nuclear Information System (INIS)

    Singh, Pooja; Cameotra, Swaranjit Singh

    2004-01-01

    Metal pollution all around the globe, especially in the mining and plating areas of the world, has been found to have grave consequences. An excellent option for enhanced metal contaminated site bioremediation is the use of microbial products viz. microbial surfactants and extracellular polymers which would increase the efficiency of metal reducing/sequestering organisms for field bioremediation. Important here is the advantage of such compounds at metal and organic compound co-contaminated site since microorganisms have long been found to produce surface-active compounds when grown on hydrocarbons. Other options capable of proving efficient enhancers include exploiting the chemotactic potential and biofilm forming ability of the relevant microorganisms. Chemotaxis towards environmental pollutants has excellent potential to enhance the biodegradation of many contaminants and biofilm offers them a better survival niche even in the presence of high levels of toxic compounds

  3. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Q.; Mendelssohn, I.A. [Louisiana State Univ., Wetland Biogeochemistry Inst., Baton Rouge, LA (United States); Henry, C.B. Jr.; Roberts, P.O.; Walsh, M.M.; Overton, E.B.; Portier, R.J. [Louisiana State Univ., Inst. for Environmental Studies, Baton Rouge, LA (United States)

    1999-08-01

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m{sup -2}. Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  4. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments

    International Nuclear Information System (INIS)

    Lin, Q.; Mendelssohn, I.A.; Henry, C.B. Jr.; Roberts, P.O.; Walsh, M.M.; Overton, E.B.; Portier, R.J.

    1999-01-01

    Although bioremediation for oil spill cleanup has received considerable attention in recent years, its satisfactory use in the cleanup of oil spills in the wetland environment is still generally untested. A study of the often most used bioremediation agents, fertiliser, microbial product and soil oxidation, as a means of enhancing oil biodegradation in coastal mineral and sandy marsh substrates was conducted in controlled greenhouse conditions. Artificially weathered south Louisiana crude oil was applied to sods of marsh (soil and intact vegetation) at the rate of 2 l m -2 . Fertiliser application enhanced marsh plant growth, soil microbial populations, and oil biodegradation rate. The live aboveground biomass of Spartina alterniflora with fertiliser application was higher than that without fertiliser. The application of fertiliser significantly increased soil microbial respiration rates, indicating the potential for enhancing oil biodegradation. Bioremediation with fertiliser application significantly reduced the total targeted normal hydrocarbons (TTNH) and total targeted aromatic hydrocarbons (TTAH) remaining in the soil, by 81% and 17%, respectively, compared to those of the oil controls. TTNH/hopane and TTAAH/hopane ratios showed a more consistent reduction, further suggesting an enhancement of oil biodegradation by fertilisation. Furthermore, soil type affected oil bioremediation; the extent of fertiliser-enhanced oil biodegradation was greater for sandy (13% TTNH remaining in the treatments with fertiliser compared to the control) than for mineral soils (26% of the control), suggesting that fertiliser application was more effective in enhancing TTNH degradation in the former. Application of microbial product and soil oxidant had no positive effects on the variables mentioned above under the present experimental conditions, suggesting that microbial degraders are not limiting biodegradation in this soil. Thus, the high cost of microbial amendments during

  5. Bioremediation of contaminated soil: Strategy and case histories

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1991-01-01

    Microorganisms are capable of degrading many kinds of xenobiotic compounds and toxic chemicals. These microorganisms are ubiquitous in nature and there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of micro-organisms to metabolize these compounds under the prevailing environmental conditions. Two general reasons account for the failure of microbes to degrade pollutants in any environment: (1) inherent molecular recalcitrance of the contaminants and (2) environmental factors. The inherent molecular recalcitrance is usually associated with xenobiotic compounds where the chemical structure of the molecule is such that microbes and enzymes required for its catabolism have not evolved yet in nature. The environmental factors include a range of physicochemical conditions which influence microbial growth and activity. Biological remediation of contaminated sites can be accomplished using naturally-occurring microorganisms to treat the contaminants. Only particular groups of microorganisms are capable of decomposing specific compounds. The development of a bioremediation program for a specific contaminated soil system usually includes: thorough site/soil/waste characterization; treatability studies; and design and implementation of the bioremediation plan. The results of in situ and ex situ treatment programs involving the cleanup of petroleum hydrocarbon-contaminated soil will be discussed in detail. The paper will address key issues affecting the success of the bioremediation process such as nutrient transport, metal precipitation and potential soil clogging, microbial inoculation, etc

  6. Microbial bioremediation of Uranium: an overview

    International Nuclear Information System (INIS)

    Acharya, Celin

    2015-01-01

    Uranium contamination is a worldwide problem. Preventing uranium contamination in the environment is quite challenging and requires a thorough understanding of the microbiological, ecological and biogeochemical features of the contaminated sites. Bioremediation of uranium is largely dependent on reducing its bioavailability in the environment. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. It is therefore vital to advance our understanding of the uranium-microbe interactions to develop suitable bioremediation strategies for uranium contaminated sites. This article focuses on the fundamental mechanisms adopted by various microbes to mitigate uranium toxicity which could be utilized for developing various approaches for uranium bioremediation. (author)

  7. Treatment of a mud pit by bioremediation.

    Science.gov (United States)

    Avdalović, Jelena; Đurić, Aleksandra; Miletić, Srdjan; Ilić, Mila; Milić, Jelena; Vrvić, Miroslav M

    2016-08-01

    The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment. © The Author(s) 2016.

  8. Biosurfactant-enhanced soil bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Kosaric, N.; Lu, G.; Velikonja, J. [Univ. of Western Ontario, London, Ontario (Canada)

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  9. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    Science.gov (United States)

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. EFFECTIVENESS AND SAFETY OF STRATEGIES FOR OIL SPILL BIOREMEDIATION: POTENTIAL AND LIMITATION, LABORATORY TO FIELD (RESEARCH BRIEF)

    Science.gov (United States)

    Several important additional research efforts were identified during the development of test systems and protocols for assessing the effectiveness and environmental safety of oil spill commercial bioremediation agents (CBAs). Research that examined CBA efficacy issues included: (...

  11. LITERATURE REVIEW ON THE USE OF COMMERCIAL BIOREMEDIATION AGENTS FOR CLEAN-UP OF OIL-CONTAMINATED ESTUARINE ENVIRONMENTS

    Science.gov (United States)

    The objective of this document is to conduct a comprehensive review of the use of commercial bioremediation products treating oil spills in all environments, Literature assessed includes peer-reviewed articles, company reports, government reports, and reports by cleanup contracto...

  12. Determination of the point-of-zero, charge of manganese oxides with different methods including an improved salt titration method

    NARCIS (Netherlands)

    Tan, W.F.; Lu, S.J.; Liu, F.; Feng, X.H.; He, J.Z.; Koopal, L.K.

    2008-01-01

    Manganese (Mn) oxides are important components in soils and sediments. Points-of-zero charge (PZC) of three synthetic Mn oxides (birnessite, cryptomelane, and todorokite) were determined by using three classical techniques (potentiometric titration or PT, rapid PT or R-PT, and salt titration or ST)

  13. Walking softly : using bioremediation to reclaim sites leaves a smaller footprint than traditional dig-and-dump technologies

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    Recent developments in the bioremediation industry in Alberta were outlined. The market for bioremediation services in the United States alone is estimated to hit $1 billion by 2010 and has become a staple of the U.S. Environmental Protection Agency's emergency management practices in the event of an oil spill. Alberta Environment has recently updated its policies and guidance documents on contaminated sites management, and is planning a manual that will include best bioremediation practices. Advances in the science and technology of bioremediation and a rise in environmental awareness have contributed to the sector's growth in recent years. In the past, oil companies in Alberta typically reclaimed sites by digging up contaminated soil and trucking it to landfills. Recent techniques developed by industry and bioremediation experts now mean that soil profiles can remain undisturbed, and biological treatment amendments are often introduced into the fractures to destroy contaminants where they lie. The National Research Council's Biotechnology Research Institute (NRC-BRI) is now conducting research to identify and profile unknown micro-organisms to improve conditions for the breakdown of toxins. Bioremediation techniques are also being used in urban redevelopment. It was concluded that while the environmental industry is regulatory-driven, many oil and mining companies are deciding to invest in remediation instead of waiting until a later date. A list of new bioremediation partnerships with industry, government and municipalities was also provided. 2 figs

  14. ENHANCING STAKEHOLDER ACCEPTANCE OF BIOREMEDIATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Focht, Will; Albright, Matt; Anex, Robert P., Jr., ed.

    2009-04-21

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  15. Enhancing Stakeholder Acceptance Of Bioremediation Technologies

    International Nuclear Information System (INIS)

    Focht, Will; Albright, Matt; Anex, Robert P. Jr.

    2009-01-01

    This project inquired into the judgments and beliefs of people living near DOE reservations and facilities at Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, Tennessee about bioremediation of subsurface contamination. The purpose of the investigation was to identify strategies based on these judgments and beliefs for enhancing public support of bioremediation. Several methods were used to collect and analyze data including content analysis of transcripts of face-to-face personal interviews, factor analysis of subjective perspectives using Q methodology, and statistical analysis of results from a large-sample randomized telephone survey. Content analysis of interview transcripts identified themes about public perceptions and constructions of contamination risk, risk management, and risk managers. This analysis revealed that those who have no employment relationship at the sites and are not engaged in technical professions are most concerned about contamination risks. We also found that most interviewees are unfamiliar with subsurface contamination risks and how they can be reduced, believe they have little control over exposure, are frustrated with the lack of progress in remediation, are concerned about a lack of commitment of DOE to full remediation, and distrust site managers to act in the public interest. Concern is also expressed over frequent site management turnover, excessive secrecy, ineffective and biased communication, perceived attempts to talk the public into accepting risk, and apparent lack of concern about community welfare. In the telephone survey, we asked respondents who were aware of site contamination about their perceptions of risk from exposure to subsurface contamination. Response analysis revealed that most people believe that they are at significant risk from subsurface contamination but they acknowledge that more education is needed to calibrate risk perceptions against scientific risk assessments. Most rate their personal

  16. A geometric construction of traveling waves in a bioremediation model

    NARCIS (Netherlands)

    Beck, M.A.; Doelman, A.; Kaper, T.J.

    2006-01-01

    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory,

  17. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    International Nuclear Information System (INIS)

    Gallego, J.R.; Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J; Garcia-Martinez, M.J.; Llamas, J.F.

    2006-01-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs

  18. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F.; Dixon, David A.

    2016-08-09

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.

  19. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    International Nuclear Information System (INIS)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-01-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1

  20. Method for phosphate-accelerated bioremediation

    Science.gov (United States)

    Looney, Brian B.; Lombard, Kenneth H.; Hazen, Terry C.; Pfiffner, Susan M.; Phelps, Tommy J.; Borthen, James W.

    1996-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  1. Surfactant use with nitrate-based bioremediation

    International Nuclear Information System (INIS)

    Wilson, B.H.; Hutchins, S.R.; West, C.C.

    1995-01-01

    This study presents results of an initial survey on the effect of six surfactants on the biodegradation of petroleum hydrocarbons in bioremediation applications using nitrate as the electron acceptor. Aquifer material from Park City, Kansas, was used for the study. The three atomic surfactants chosen were Steol CS-330, Dowfax 8390 and sodium dodecylbenzene sulfonate (SDBS); the three nonionic surfactants were T-MAZ-60, Triton X-100, and Igepal CO-660. Both Steol CS-330 and T-MAZ-60 biodegraded under denitrifying conditions. The Steol inhibited biodegradation of benzene, toluene, ethylbenzene, xylenes, and trimethylbenzenes (BTEXTMB). Only toluene was rapidly degraded in the presence of T-MAZ-60. Biodegradation of all compounds, including toluene, appears to be inhibited by Dowfax 8390 and SDBS. No biodegradation of Dowfax 8390 or SDBS was observed. SDBS inhibited denitrification, but Dowfax 8390 did not. For the microcosms containing Triton X-100 or Igepal CO-660, removal of toluene, ethylbenzene, m-xylene, 1,3,5-TMB, and 1,2,4-TMB were similar to their removals in the no-surfactant treatment. These two surfactants did not biodegrade, did not inhibit biodegradation of the alkylbenzenes, and did not inhibit denitrification. Further studies are continuing with aquifer material from Eglin Air Force Base

  2. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    OpenAIRE

    Mohsenzadeh Fariba; Chehregani Rad Abdolkarim; Akbari Mehrangiz

    2012-01-01

    Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was ch...

  3. Bioremediation: Effective treatment of petroleum-fuel-contaminated soil, a common environmental problem at industrial and governmental agency sites

    International Nuclear Information System (INIS)

    Jolley, R.L.; Donaldson, T.L.; Siegrist, R.L.; Walker, J.F.; MacNeill, J.J.; Ott, D.W.; Machanoff, R.A.; Adler, H.I.; Phelps, T.J.

    1992-01-01

    Bioremediation methods are receiving increased attention for degradation of petroleum-fuel-hydrocarbon contamination in soils. An in situ bioremediation demonstration is being conducted on petroleum-fuel-contaminated soil at Kwajalein Island, a remote Pacific site. Bioreaction parameters studied include water, air, nutrient, and microorganism culture addition. This paper presents planning and design aspects of the demonstration that is scheduled to be completed in 1993

  4. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. bioremediation of some environmental pollutants by the biological activity of fungi

    International Nuclear Information System (INIS)

    Ali, G.A.M.

    2006-01-01

    Sharkia governorate is an important area of egypt because it include an important places, economically and scientifically as 10th of Ramadan City which is the biggest industrial City and the nuclear reactor of the Egyptian Atomic Energy Authority (EAEA). so that this study was conducted for isolation of some fungal bioremediators of the famous pollutants as some of heavy metals Mn +2 and Co +2 and some of the polycyclic aromatic hydrocarbons (PAHs)as textile direct dyes (orange,pink,red and black) regarding the aim of this study, which was conducted for isolation of some fungal bioremediators and study the bioremediation efficiency in the most suitable conditions for a success to attain bioremediation process of some dangerous heavy metals and / or toxic, carcinogenic and mutagenic textile dyes, in addition to the biological pathways for the uptake of heavy metals and dyes accumulation and/or degradation and after finishing this study, it can be concluded that; the fungal microfolora of each polluted sites is best bioremediators for these sites

  6. Degradation of Redox-Sensitive Proteins including Peroxiredoxins and DJ-1 is Promoted by Oxidation-induced Conformational Changes and Ubiquitination

    Science.gov (United States)

    Song, In-Kang; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jihye; Shin, Dong-Hae; Lee, Kong-Joo

    2016-10-01

    Reactive oxygen species (ROS) are key molecules regulating various cellular processes. However, what the cellular targets of ROS are and how their functions are regulated is unclear. This study explored the cellular proteomic changes in response to oxidative stress using H2O2 in dose- and recovery time-dependent ways. We found discernible changes in 76 proteins appearing as 103 spots on 2D-PAGE. Of these, Prxs, DJ-1, UCH-L3 and Rla0 are readily oxidized in response to mild H2O2 stress, and then degraded and active proteins are newly synthesized during recovery. In studies designed to understand the degradation process, multiple cellular modifications of redox-sensitive proteins were identified by peptide sequencing with nanoUPLC-ESI-q-TOF tandem mass spectrometry and the oxidative structural changes of Prx2 explored employing hydrogen/deuterium exchange-mass spectrometry (HDX-MS). We found that hydrogen/deuterium exchange rate increased in C-terminal region of oxidized Prx2, suggesting the exposure of this region to solvent under oxidation. We also found that Lys191 residue in this exposed C-terminal region of oxidized Prx2 is polyubiquitinated and the ubiquitinated Prx2 is readily degraded in proteasome and autophagy. These findings suggest that oxidation-induced ubiquitination and degradation can be a quality control mechanism of oxidized redox-sensitive proteins including Prxs and DJ-1.

  7. Markers of Lipid Oxidative Damage among Office Workers Exposed Intermittently to Air Pollutants including NanoTiO2 Particles.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Komarc, M.; Fenclová, Z.; Vlčková, Š.; Zíková, Naděžda; Schwarz, Jaroslav; Makeš, Otakar; Navrátil, Tomáš; Zakharov, S.; Bello, D.

    2017-01-01

    Roč. 32, 1-2 (2017), s. 193-200 ISSN 0048-7554 Institutional support: RVO:67985858 ; RVO:61388955 Keywords : exhaled breath condensate * occupational exposure * oxidative stress * spirometry * urine Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health ; Physical chemistry (UFCH-W)

  8. Technical Basis for Assessing Uranium Bioremediation Performance

    International Nuclear Information System (INIS)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N'Guessan

    2008-01-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation

  9. Technical Basis for Assessing Uranium Bioremediation Performance

    Energy Technology Data Exchange (ETDEWEB)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  10. Soil mesocosm studies on atrazine bioremediation.

    Science.gov (United States)

    Sagarkar, Sneha; Nousiainen, Aura; Shaligram, Shraddha; Björklöf, Katarina; Lindström, Kristina; Jørgensen, Kirsten S; Kapley, Atya

    2014-06-15

    Accumulation of pesticides in the environment causes serious issues of contamination and toxicity. Bioremediation is an ecologically sound method to manage soil pollution, but the bottleneck here, is the successful scale-up of lab-scale experiments to field applications. This study demonstrates pilot-scale bioremediation in tropical soil using atrazine as model pollutant. Mimicking field conditions, three different bioremediation strategies for atrazine degradation were explored. 100 kg soil mesocosms were set-up, with or without atrazine application history. Natural attenuation and enhanced bioremediation were tested, where augmentation with an atrazine degrading consortium demonstrated best pollutant removal. 90% atrazine degradation was observed in six days in soil previously exposed to atrazine, while soil without history of atrazine use, needed 15 days to remove the same amount of amended atrazine. The bacterial consortium comprised of 3 novel bacterial strains with different genetic atrazine degrading potential. The progress of bioremediation was monitored by measuring the levels of atrazine and its intermediate, cyanuric acid. Genes from the atrazine degradation pathway, namely, atzA, atzB, atzD, trzN and trzD were quantified in all mesocosms for 60 days. The highest abundance of all target genes was observed on the 6th day of treatment. trzD was observed in the bioaugmented mesocosms only. The bacterial community profile in all mesocosms was monitored by LH-PCR over a period of two months. Results indicate that the communities changed rapidly after inoculation, but there was no drastic change in microbial community profile after 1 month. Results indicated that efficient bioremediation of atrazine using a microbial consortium could be successfully up-scaled to pilot scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  12. Microbial Metabolite Production for Accelerated Metal and Radionuclide Bioremediation (Microbial Metabolite Production Report)

    International Nuclear Information System (INIS)

    TURICK, CHARLES

    2004-01-01

    Biogeochemical activity is an ongoing and dynamic process due to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. As basic science reveals more information about specific mechanisms of bacterial-metal reduction, an even greater contribution of bacteria to biogeochemical activities is realized. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. Most bacteria are capable of biogeochemical transformation as a result of meeting nutrient requirements. These assimilatory mechanisms for metals transformation include production of small molecules that serve as electron shuttles for metal reduction. This contribution to biogeochemistry is small however due to only trace requirements for minerals by bacteria. Dissimilatory metal reducing bacteria (DMRB) reduce oxidized metals and insoluble mineral oxides as a means for biological energy production during growth. These types of bacteria offer considerable potential for bioremediation of environments contaminated with toxic metals and radionuclides because of the relatively large amount of metal biotransformation they require for growth. One of the mechanisms employed by some DMRB for electron transfer to insoluble metal oxides is melanin production. The electrochemical properties of melanin provide this polymeric, humic-type compound with electron shuttling properties. Melanin, specifically, pyomelanin, increases the rate and degree of metal reduction in DMRB as a function of pyomelanin concentration. Due to its electron shuttling behavior, only low femtogram quantities per cell are required to significantly increase metal reduction capacity of DMRB. Melanin production is not limited to DMRB. In fact melanin is one of the most common pigments produced by biological systems. Numerous soil microorganisms produce melanin, contributing

  13. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  14. Review of heavy metal bio-remediation in contaminated freeway facilitated by adsorption

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Toxicity around biological systems is a significant issue for environmental health in a long term. Recent biotechnological approaches for bio-remediation of heavy metals in freeway frequently include mineralization, bio-adsorption or even remediation. Thus, adequate restoration in freeway requiring cooperation, integration and assimilation of such biotechnological advances along with traditional and ethical wisdom to unravel the mystery of nature in the emerging field of bio-remediation was reviewed with highlights to better understand problems associated with toxicity of heavy metals and eco-friendly technologies.

  15. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review.

    Science.gov (United States)

    de Alencar, Feliphe Lacerda Souza; Navoni, Julio Alejandro; do Amaral, Viviane Souza

    2017-07-01

    Metal pollution is a current environmental issue as a consequence of unregulated anthropic activiy. A wide range of bioremediation strategies have been successfully implemented to recover contaminated areas. Among them, bacterial bioremediation stands out as a promising tool to confront these types of concerns. This study aimed to compare and discuss worldwide scientific evolution of bacterial potential for metal bioremediation in aquatic ecosystems. The study consisted of a systematic review, elaborated through a conceptual hypothesis model, during the period from 2000 to 2016, using PubMed, MEDLINE, and SciELO databases as data resources. The countries with the largest number of reports included in this work were India and the USA. Industrial wastewater discharge was the main subject associated to metal contamination/pollution and where bacterial bioremediations have mostly been applied. Biosorption is the main bioremediation mechanism described. Bacterial adaptation to metal presence was discussed in all the selected studies, and chromium was the most researched bioremedied substrate. Gram-negative Pseudomonas aeruginosas and the Gram-positive Bacillus subtilis bacteria were microorganisms with the greatest applicability for metal bioremediation. Most reports involved the study of genes and/or proteins related to metal metabolism and/or resistence, and Chromobacterium violaceum was the most studied. The present work shows the relevance of metal bacterial bioremediation through the high number of studies aimed at understanding the microbiological mechanisms involved. Moreover, the developed processes applied in removal and/or reducing the resulting environmental metal contaminant/pollutant load have become a current and increasingly biotechnological issue for recovering impacted areas.

  16. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  17. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  18. Bioremediation of treated wood with fungi

    Science.gov (United States)

    Barbara L. Illman; Vina W. Yang

    2006-01-01

    The authors have developed technologies for fungal bioremediation of waste wood treated with oilborne or metal-based preservatives. The technologies are based on specially formulated inoculum of wood-decay fungi, obtained through strain selection to obtain preservative-tolerant fungi. This waste management approach provides a product with reduced wood volume and the...

  19. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    Contaminated soil (FAO: Lithosol) containing >380 000 mg kg-1 total petroleum hydrocarbons (TPH) was bioremediated by composting. The soil was inoculated with sewage sludge and incubated for 19 months. The soil was mixed in a ratio of 1:1 (v/v) with wood chips. The soil-wood chips mixture was then mixed in a ratio ...

  20. Compost bioremediation of hydrocarbon-contaminated soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Contaminated soil (FAO: Lithosol) containing >380 000 mg kg-1 total petroleum hydrocarbons (TPH) was bioremediated by composting. The soil was inoculated with sewage sludge and incubated for 19 months. The soil was mixed in a ratio of 1:1 (v/v) with wood chips. The soil-wood chips mixture was.

  1. Bioremediation: Effectiveness in reducing the ecological impact

    International Nuclear Information System (INIS)

    Scholten, M.C.T.

    1992-01-01

    Bioremediation becomes an important technique in oil spill combat programmes. The purpose is to shorten the exposure time of biota to oil compounds, in order to reduce long term environmental effects. Although bioremediation products have the advantage of stimulating the natural capacity to degrade oil, there are some limitations to be considered. Application as a technique for first emergency actions following an oil spill is not effective, and can therefore be no alternative for dispersion or mechanical removal of floating or freshly stranded oil slicks. Acute toxic effects are related to the short term exposure to unweathered oils. An immediate removal of oil is necessary to reduce the extent of the environmental impact of an oil spill. Physical processes (transport, dilution and evaporation) are determining the initial fate of environmentally released oil. Biodegradation only becomes important as a process of removing oil in the next phase. It is the only effective way to further reduce the concentration of oil that is left in (intertidal) coastal areas. Bioremediation thus reduces the duration of the environmental impact of an oil spill. This is especially important in ecosystems with a low recovery potential (e.g., salt marshes, rocky shores). The experimental evaluation of bioremediation products is mainly based on the capacity to reduce fresh oil and the acute toxicity of the product itself, rather than on the capacity to enhance the further reduction of weathered oil and the toxicological consequences of higher release rates of intermediate metabolites produced during the biotransformation processes

  2. In situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  3. Earthworm-assisted bioremediation of petroleum hydrocarbon ...

    African Journals Online (AJOL)

    Ameh

    The use of earthworms (Eudrilus eugenia) for vermi-assisted bioremediation of petroleum hydrocarbon contaminated mechanic workshop soils ... not always result in complete neutrali- zation of pollutants (Yerushalmi et al., 2003). ..... Screening of biofouling activity in marine bacterial isolate from ship hull. Int. J. Environ. Sci.

  4. States' attitudes on the use of bioremediation

    International Nuclear Information System (INIS)

    Devine, K.; Graham, L.L.

    1995-01-01

    Results from a telephone survey of state government program coordinators and representatives from companies performing full-scale bioremediation shows differences among states in the use and degree of acceptance of bioremediation for environmental cleanup. The survey also found that states vary in the potential future direction of regulatory activity concerning bioremediation. The survey focused primarily on underground storage tank (UST) cleanups. Diminishing state UST cleanup funds have provided the impetus for many states to consider alternative cost-effective measures in order to continue with cleanups. In recent years, more than 30 states have either implemented programs that consider the cost-effectiveness of various cleanup measures, or are considering adoption of programs that are founded on risk-based corrective action. Less than a dozen states were considered as having made significant strides in innovative technology utilization. Forums whereby state groups can exchange ideas and experiences associated with the practical application of bioremediation will facilitate this nationwide movement towards cost-effective cleanup

  5. Bioremediation of petroleum products impacted freshwater using ...

    African Journals Online (AJOL)

    Bioremediation seeks to degrade or decompose toxic pollutants in the environment into less harmful ones using organisms. This is achieved when the organisms metabolize the pollutants for cellular growth. Algae grow naturally in puddles, drainages and on wet soils and could constitute a nuisance when they cause ...

  6. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  7. Bioremediation of contaminated soil beds and groundwater

    Indian Academy of Sciences (India)

    Bioremediation of contaminated soil beds and groundwater 45. 3. Simulation. The coupled set of ODEs is integrated by using IMSL (1991) subroutine DIVPAG. This employs Green's algorithm for stiff equations and is based on backward differentiation formulas. It requires an algebraic system of equations to be Solved at ...

  8. Bioremediation of Polycyclic Aromatic Hydrocarbon contaminated ...

    African Journals Online (AJOL)

    This study investigates the effect of lead and chromium on the rate of bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated clay soil. Naphthalene was used as a target PAH. The soil was sterilized by heating at 120oC for one hour. 100g of the soil was contaminated with lead, chromium, nickel and mercury ...

  9. Bioremediation of petroleum refinery effluent by Planococcus ...

    African Journals Online (AJOL)

    In the present investigation, Planococcus halophilus was screened for hydrocarbon degradation and bioremediation of refinery effluent. The test organism, P. halophilus, showed the capability to utilize kerosene as carbon source in minimal medium. Biological treatment of the refinery effluent with P. halophilus reduced the ...

  10. Importance of soil-water relation in assessment endpoint in bioremediated soils: Plant growth and soil physical properties

    International Nuclear Information System (INIS)

    Li, X.; Sawatsky, N.

    1995-01-01

    Much effort has been focused on defining the end-point of bioremediated soils by chemical analysis (Alberta Tier 1 or CCME Guideline for Contaminated Soils) or toxicity tests. However, these tests do not completely assess the soil quality, or the capability of soil to support plant growth after bioremediation. This study compared barley (Hordeum vulgare) growth on: (i) non-contaminated, agricultural topsoil, (2) oil-contaminated soil (4% total extractable hydrocarbons, or TEH), and (3) oil-contaminated soil treated by bioremediation (< 2% TEH). Soil physical properties including water retention, water uptake, and water repellence were measured. The results indicated that the growth of barley was significantly reduced by oil-contamination of agricultural topsoil. Furthermore, bioremediation did not improve the barley yield. The lack of effects from bioremediation was attributed to development of water repellence in hydrocarbon contaminated soils. There seemed to be a critical water content around 18% to 20% in contaminated soils. Above this value the water uptake by contaminated soil was near that of the agricultural topsoil. For lower water contents, there was a strong divergence in sorptivity between contaminated and agricultural topsoil. For these soils, water availability was likely the single most important parameter controlling plant growth. This parameter should be considered in assessing endpoint of bioremediation for hydrocarbon contaminated soils

  11. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  12. Rapid bioremediation processes: Theory and application

    International Nuclear Information System (INIS)

    Autry, A.R.; Shearon, M.S.; Archer, B.

    1991-01-01

    Bioremediation generally involves stimulating microorganisms (bacteria and fungi) to grow and in the process of growth, degrade hazardous waste. A variety of contaminant compounds can be readily biodegraded by both pure cultures of bacteria and by bacteria under field conditions. These compounds include petroleum and its distillates (gasoline, diesel fuel, etc.), aromatic hydrocarbons (BTEX and PAHS), PCBs (most congeners), chlorinated aeromatics (TCE and dichloroethane) and chlorinated aromatics (polychlorophenols and chlorobenzene). While the metabolic pathways for biodegradation are fairly distinct for each class of contaminants, the pathways generally converge on a central metabolite, acetyl-CoA, which can then be directly converted to CO 2 or microbial biomass. Organic compounds are most rapidly degraded aerobically. SafeSoil is a proprietary additive and biotreatment process. The additive contains inorganic nutrients (primarily N and P) and organic nutrients (simple sugars, protein and more complex cometabolites) which, upon addition to soil, stimulate natural microbial (primarily bacterial) populations to grow and degrade the contaminants of interest. Field applications of SafeSoil at Channel Gateway Development Project in Marina del Rey, California, validated that the SafeSoil treatment process effectively reduced TPH and BTEX concentrations for petroleum-contaminated soils to below action levels in as few as 4 days; the median curing time was 14 days. Longer chain hydrocarbons required more time, up to 36 days for TPH. Aerobic soil bacterial populations increased up to five-fold in response to treatment and returned to near pretreatment levels soon after the contaminant level was depleted. Volatilization of organics was measured and was found to be insignificant when compared to the total contaminant load indicating that the majority of the hydrocarbon contaminants were removed by biological means

  13. Preliminary technology report for Southern Sector bioremediation

    International Nuclear Information System (INIS)

    Brigmon, R.L.; White, R.; Hazen, T.C.; Jones, D.; Berry, C.

    1997-01-01

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE

  14. Preliminary technology report for Southern Sector bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.L.; White, R.; Hazen, T.C.; Jones, D.; Berry, C.

    1997-06-01

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE.

  15. Ripening of PAH and TPH polluted sediments : determination and quantification of bioremediation parameters

    NARCIS (Netherlands)

    Vermeulen, J.

    2007-01-01

    In this study, bioremediation parameters were determined and quantified for different clayey dredged sediments. The research described in this thesis increased the insight into the individual processes of physical ripening, biochemical ripening – including PAH and TPH degradation – that result from

  16. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells

    International Nuclear Information System (INIS)

    Banzet, N.; Richaud, C.; Deveaux, Y.; Kazmaier, M.; Gagnon, J.; Triantaphylides, C.

    1998-01-01

    Changes in gene expression, by application of H2O2, O2.- generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2.- generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I-IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential

  17. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation.

    Science.gov (United States)

    Teplova, Vera V; Belosludtsev, Konstantin N; Kruglov, Alexey G

    2017-06-05

    Triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol), a widely used antibacterial agent, exerts adverse effects on the organism of mammals. Recent research reviled that triclosan at low micromolar concentrations causes mitochondrial dysfunction in many cell types, but the mechanisms of its effect are not fully understood. Here we show that exposure to triclosan disrupted membrane potential, prevented the calcium uptake-driven high-amplitude mitochondrial swelling, stimulated the respiration in the presence of complex I substrates, and suppressed the ADP-stimulated respiration in the presence of complex II substrate, succinate. Triclosan directly inhibited complex II activity. Similar to the complex II inhibitor thenoyltrifluoroacetone, triclosan induced the oxidation of the cytochromes b566 and b562 and caused the release of mitochondrial superoxide. Opposite to thenoyltrifluoroacetone, triclosan increased superoxide release synergistically with myxothiazol but not with antimycin A, indicating different topology of superoxide-producing sites. We concluded that triclosan is unique by its capability of acting as both a protonophore and an unusual complex II inhibitor, which interferes with the mitochondrial respiration by blocking the electron transfer between ubiquinone at the Q d -binding site and heme b. Our data can provide an insight into the mechanisms of the carcinogenic effect of triclosan in the liver and other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prediction of oxidation parameters of purified Kilka fish oil including gallic acid and methyl gallate by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network.

    Science.gov (United States)

    Asnaashari, Maryam; Farhoosh, Reza; Farahmandfar, Reza

    2016-10-01

    As a result of concerns regarding possible health hazards of synthetic antioxidants, gallic acid and methyl gallate may be introduced as natural antioxidants to improve oxidative stability of marine oil. Since conventional modelling could not predict the oxidative parameters precisely, artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS) modelling with three inputs, including type of antioxidant (gallic acid and methyl gallate), temperature (35, 45 and 55 °C) and concentration (0, 200, 400, 800 and 1600 mg L(-1) ) and four outputs containing induction period (IP), slope of initial stage of oxidation curve (k1 ) and slope of propagation stage of oxidation curve (k2 ) and peroxide value at the IP (PVIP ) were performed to predict the oxidation parameters of Kilka oil triacylglycerols and were compared to multiple linear regression (MLR). The results showed ANFIS was the best model with high coefficient of determination (R(2)  = 0.99, 0.99, 0.92 and 0.77 for IP, k1 , k2 and PVIP , respectively). So, the RMSE and MAE values for IP were 7.49 and 4.92 in ANFIS model. However, they were to be 15.95 and 10.88 and 34.14 and 3.60 for the best MLP structure and MLR, respectively. So, MLR showed the minimum accuracy among the constructed models. Sensitivity analysis based on the ANFIS model suggested a high sensitivity of oxidation parameters, particularly the induction period on concentrations of gallic acid and methyl gallate due to their high antioxidant activity to retard oil oxidation and enhanced Kilka oil shelf life. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Bioremediation in Germany: Markets, technologies, and leading companies

    International Nuclear Information System (INIS)

    Raphael, T.; Glass, D.J.

    1995-01-01

    Bioremediation has become an internationally accepted remediation tool. Commercial bioremediation activities take place in many European countries, but Germany and the Netherlands are the clear European leaders, with both having a long history of public and private sector activity in biological technologies. The German bioremediation market has been driven by government regulation, in particular the waste laws that apply to contaminated soils. The 1994 German market for bioremediation is estimated at $70 to 100 million (US $). There are at least 150 companies active in bioremediation in Germany, most of which practice bioremediation of hydrocarbon-contaminated soils, either in situ or ex situ. Because of their predominance in the current European market, German firms are well positioned to expand into those nations in the European Union (EU) currently lacking an environmental business infrastructure

  20. Influence of salinity on bioremediation of oil in soil

    International Nuclear Information System (INIS)

    Rhykerd, R.L.; Weaver, R.W.; McInnes, K.J.

    1995-01-01

    Spills from oil production and processing result in soils being contaminated with oil and salt. The effect of NaCl on degradation of oil in a sandy-clay loam and a clay loam soil was determined. Soils were treated with 50 g kg -1 non-detergent motor oil (30 SAE). Salt treatments included NaCl amendments to adjust the soil solution electrical conductivities to 40, 120, and 200 dS m -1 . Soils were amended with nutrients and incubated at 25 o C. Oil degradation was estimated from the quantities of CO 2 evolved and from gravimetric determinations of remaining oil. Salt concentrations of 200 dS m -1 in oil amended soils resulted in a decrease in oil mineralized by 44% for a clay loam and 20% for a sandy-clay loam soil. A salt concentration of 40 dS m -1 reduced oil mineralization by about 10% in both soils. Oil mineralized in the oil amended clay-loam soil was 2-3 times greater than for comparable treatments of the sandy-clay loam soil. Amending the sandy-clay loam soil with 5% by weight of the clay-loam soil enhanced oil mineralization by 40%. Removal of salts from oil and salt contaminated soils before undertaking bioremediation may reduce the time required for bioremediation. (author)

  1. In situ bioremediation of petroleum hydrocarbons and chlorinated hydrocarbons: Three case studies

    International Nuclear Information System (INIS)

    Bost, R.C.; Perry, R.G.; Barber, T.

    1997-01-01

    In situ biodegradation of organic contaminants is one of the most cost-effective means of site remediation. This method has proven successful in soils, ground water, and slurries. Bacteria capable of degrading organic contaminants within an aquifer include many species from a wide spectrum of genera, e.g. Pseudomonas, Corynebacterium, Bacillus, etc. In most cases, a mixture of bacterial strains is required to completely oxidize a complex organic contaminant. Each strain of an organism may target a specific compound, working together with other organisms to ultimately degrade each intermediate until complete degradation, also known as mineralization, occurs. One or more of the following mechanisms are utilized by bacteria for organic chemical degradation: (1) aerobic, (2) anaerobic, and (3) co-metabolic. During aerobic oxidation of organic chemicals, bacteria utilize the pollutant as an electron and hydrogen source and oxygen acts as the electron and hydrogen acceptor, resulting in water. As the bacterial enzymes cleave the compound, oxidized products are produced along with energy for the reaction to proceed. This is the most rapid and widely utilized mechanism. Dehalogenation occurs under aerobic, or perhaps more often, under anoxic conditions. This process occurs in the presence of alternate electron acceptors and replaces chlorine with hydrogen. The mechanism of co-metabolism can be aerobic or anaerobic, but is more often aerobic. This process requires a separate energy source for the bacterial cell because the pollutant is not utilized as an energy source. The role of bioremediation in site remediation is demonstrated below by three case studies: (1) a refinery, (2) a municipal landfill and (3) a pesticide formulation plant

  2. Strategy for implementing a bioremediation project

    International Nuclear Information System (INIS)

    Memood, T.; Malik, S.A.; Kazmi, S.A.R.; Alam, T.

    2005-01-01

    Biodegradation, is the partial simplification or complete destruction of the molecular structure of environmental pollutants by physiological reactions catalyzed by microorganisms, by applying chemical and physiological assays to laboratory incubations of flasks containing pure culture of microorganism, mixed cultures or environmental. whereas Bioremediation is the intentional use of biodegradation process to eliminate environmental pollutants from sites where they have been released either intentionally or inadvertently, as documented most readily in laboratory assays to eliminate or reduce the concentration of environmental pollutants in field sites to levels that acceptable to site owners or Regulatory Agencies. The poster highlights the demonstration, how the diverse techniques derived from the Science of microbial contaminants from field sites., which is inherently multidisciplinary Bioremediation integrate the approaches, protocols, strategies and analysis from Microbiology, Molecular Biology, Hydrology, Soil Science, Physiology and Analytical Chemistry. (author)

  3. Metagenomic applications in environmental monitoring and bioremediation.

    Science.gov (United States)

    Techtmann, Stephen M; Hazen, Terry C

    2016-10-01

    With the rapid advances in sequencing technology, the cost of sequencing has dramatically dropped and the scale of sequencing projects has increased accordingly. This has provided the opportunity for the routine use of sequencing techniques in the monitoring of environmental microbes. While metagenomic applications have been routinely applied to better understand the ecology and diversity of microbes, their use in environmental monitoring and bioremediation is increasingly common. In this review we seek to provide an overview of some of the metagenomic techniques used in environmental systems biology, addressing their application and limitation. We will also provide several recent examples of the application of metagenomics to bioremediation. We discuss examples where microbial communities have been used to predict the presence and extent of contamination, examples of how metagenomics can be used to characterize the process of natural attenuation by unculturable microbes, as well as examples detailing the use of metagenomics to understand the impact of biostimulation on microbial communities.

  4. Bioremediation case studies: Abstracts. Final report

    International Nuclear Information System (INIS)

    Devine, K.

    1992-03-01

    The report contains abstracts of 132 case studies of bioremediation technology applied to hazardous waste clean-up. It was prepared to compile bioremediation studies in a variety of locations and treating diverse contaminants, most of which were previously undocumented. All data are based on vendor-supplied information and there was no opportunity to independently confirm its accuracy. These 132 case studies, from 10 different biotechnology companies, provide users with reference information about on-going and/or completed field applications and studies. About two-thirds of the cases were at full-scale clean-up level with the remainder at pilot or laboratory scale. In 74 percent of the cases, soil was at least one of the media treated. Soil alone accounts for 46 percent of the cases. Petroleum-related wastes account for the largest contaminant with 82 cases. Thirty-one states are represented in the case studies

  5. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  6. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  7. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  8. Use of molecular techniques in bioremediation.

    Science.gov (United States)

    Płaza, G; Ulfig, K; Hazen, T C; Brigmon, R L

    2001-01-01

    In a practical sense, biotechnology is concerned with the production of commercial products generated by biological processes. More formally, biotechnology may be defined as "the application of scientific and engineering principles to the processing of material by biological agents to provide goods and services" (Cantor, 2000). From a historical perspective, biotechnology dates back to the time when yeast was first used for beer or wine fermentation, and bacteria were used to make yogurt. In 1972, the birth of recombinant DNA technology moved biotechnology to new heights and led to the establishment of a new industry. Progress in biotechnology has been truly remarkable. Within four years of the discovery of recombinant DNA technology, genetically modified organisms (GMOs) were making human insulin, interferon, and human growth hormone. Now, recombinant DNA technology and its products--GMOs are widely used in environmental biotechnology (Glick and Pasternak, 1988; Cowan, 2000). Bioremediation is one of the most rapidly growing areas of environmental biotechnology. Use of bioremediation for environmental clean up is popular due to low costs and its public acceptability. Indeed, bioremediation stands to benefit greatly and advance even more rapidly with the adoption of molecular techniques developed originally for other areas of biotechnology. The 1990s was the decade of molecular microbial ecology (time of using molecular techniques in environmental biotechnology). Adoption of these molecular techniques made scientists realize that microbial populations in the natural environments are much more diverse than previously thought using traditional culture methods. Using molecular ecological methods, such as direct DNA isolation from environmental samples, denaturing gradient gel electrophoresis (DGGE), PCR methods, nucleic acid hybridization etc., we can now study microbial consortia relevant to pollutant degradation in the environment. These techniques promise to

  9. Bioremediation: Copper Nanoparticles from Electronic-waste

    OpenAIRE

    D. R. MAJUMDER

    2012-01-01

    A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm) from integrated ...

  10. Biomarkers of marine pollution and bioremediation

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    pollution and bioremediation Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 This special issue of Ecotoxicology is dealt with selected papers presented at the ‘International Workshop... on Marine Pollution and Ecotoxicology’ held during February 25–26, 2004 at the National Institute of oceanography, Dona Paula, Goa, India. The theme of this special issue is ‘Biomarkers of marine pollution and microbial degradation of pollutants. Marine...

  11. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    OpenAIRE

    M. Šabić; M. Vuković Domanovac; Z. Findrik Blažević; E. Meštrović

    2015-01-01

    In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmente...

  12. Fungal Bioremediation of Creosote-contaminated Soil

    OpenAIRE

    BYSS, Marius

    2008-01-01

    The influence of two ligninolytic fungi (Pleurotus ostreatus and Irpex lacteus) on bioremediation of creosote-contaminated soil was studied. The thesis describes the polycyclic aromatic hydrocarbon concentration decrease during the laboratory-scale experiments and reveals the changes in the present soil microbial community under the influence of either fungus. The thesis compares different impact on PAH concentrations and soil microbial community depending on the fungus applied.

  13. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone.

    Science.gov (United States)

    Nousiainen, Aura O; Björklöf, Katarina; Sagarkar, Sneha; Nielsen, Jeppe Lund; Kapley, Atya; Jørgensen, Kirsten S

    2015-12-01

    Strategies for bioremediation of atrazine, a pesticide commonly polluting groundwater in low concentrations, were studied in two boreal nonagricultural soils. Atrazine was not mineralized in soil without bioremediation treatments. In biostimulation treatment with molasses, up to 52% of atrazine was mineralized at 10 °C, even though the degradation gene copy numbers did not increase. Incubations with radioactively labeled atrazine followed by microautoradiographic analysis revealed that bioremediation strategies increased the relative proportion of active degraders from 0.3 up to 1.9% of the total bacterial count. These results indicate that atrazine degradation might not solely be facilitated by atzA/trzN-atzB genes. In combined biostimulation treatment using citrate or molasses and augmentation with Pseudomonas citronellolis ADP or Arthrobacter aurescens strain TC1, up to 76% of atrazine was mineralized at 30 °C, and the atrazine degradation gene numbers increased up to 10(7) copies g(-1) soil. Clone libraries from passive samplers in groundwater monitoring wells revealed the presence of phylogenetic groups formerly shown to include atrazine degraders, and the presence of atrazine degradation genes atzA and atzB. These results show that the mineralization of low concentrations of atrazine in the groundwater zone at low temperatures is possible by bioremediation treatments.

  14. Bioremediation of soils and sediments containing PAHs and PCP using Daramend trademark

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    A full-scale demonstration of Grace Dearborn's Daramend trademark for bioremediation of soil containing chlorinated phenols, PAHs and petroleum hydrocarbons is being conducted at an industrial wood treatment site in Ontario. A pilot-scale demonstration of Daramend for the clean-up of sediments contaminated with PAHs was also conducted. The full-scale demonstration, which includes bioremediation of approximately 4,500 m 3 of soil, was initiated at a wood preserving facility in Ontario, in the summer of 1993. The soil contains chlorinated phenols, PAHs and total petroleum hydrocarbons at concentrations of up to 700, 1,400 and 6,300 mg/kg respectively. Full-scale bioremediation at this site employs the same Daramend protocols and organic amendment treatments that were used at the pilot-scale phase where the PAH, total petroleum hydrocarbon, and pentachlorophenol concentrations were reduced to below the Canadian clean-up guidelines for industrial soils. In addition, the toxicity of the soil to earthworms was eliminated while the rate of seed germination was increased to that of an agricultural soil during the pilot scale demonstration phase. The ex-situ portion of the full-scale demonstration is currently being audited by the EPA under the SITE program. This paper will focus on the ex-situ work. The pilot-scale demonstration of sediment remediation consisted of ex-situ bioremediation of approximately 90 tonnes of PAH-contaminated sediment in a confined treatment area

  15. Bioremediation in fractured rock: 1. Modeling to inform design, monitoring, and expectations

    Science.gov (United States)

    Tiedeman, Claire; Shapiro, Allen M.; Hsieh, Paul A.; Imbrigiotta, Thomas; Goode, Daniel J.; Lacombe, Pierre; DeFlaun, Mary F.; Drew, Scott R.; Johnson, Carole D.; Williams, John H.; Curtis, Gary P.

    2018-01-01

    Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.

  16. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Chakraborty, Romy; Fleming, James M.; Gregory, Ingrid R.; Bowman, John P.; Jimenez, Luis; Zhang, Dai; Pfiffner, Susan M.; Brockman, Fred J.; Sayler, Gary S.

    2009-03-15

    Gene probe hybridization was used to determine distribution and expression of co-metabolic genes at a contaminated site as it underwent in situ methanotrophic bioremediation of trichloroethylene (TCE). The bioremediation strategies tested included a series of air, air:methane, and air:methane:nutrient pulses of the test plot using horizontal injection wells. During the test period, the levels of TCE reduced drastically in almost all test samples. Sediment core samples (n = 367) taken from 0 m (surface)-43 m depth were probed for gene coding for methanotrophic soluble methane monooxygenase (sMMO) and heterotrophic toluene dioxygenase (TOD), which are known to co-metabolize TCE. The same sediment samples were also probed for genes coding for methanol dehydrogenase (MDH) (catalyzing the oxidation of methanol to formaldehyde) to assess specifically changes in methylotrophic bacterial populations in the site. Gene hybridization results showed that the frequency of detection of sMMO genes were stimulated approximately 250% following 1% methane:air (v/v) injection. Subsequent injection of 4% methane:air (v/v) resulted in an 85% decline probably due to nutrient limitations, since addition of nutrients (gaseous nitrogen and phosphorus) thereafter caused an increase in the frequency of detection of sMMO genes. Detection of TOD genes declined during the process, and eventually they were non-detectable by the final treatment, suggesting that methanotrophs displaced the TOD gene containing heterotrophs. Active transcription of sMMO and TOD was evidenced by hybridization to mRNA. These analyses combined with results showing the concomitant decline in TCE concentrations, increases in chloride concentration and increases in methanotroph viable counts, provide multiple lines of evidence that TCE remediation was caused specifically by methanotrophs. Our results suggest that sMMO genes are responsible for most, if not all, of the observed biodegradation of TCE. This study

  17. Removing environmental organic pollutants with bioremediation and phytoremediation.

    Science.gov (United States)

    Kang, Jun Won

    2014-06-01

    Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.

  18. Microbial Diversity and Bioremediation of a Hydrocarbon-Contaminated Aquifer (Vega Baja, Puerto Rico

    Directory of Open Access Journals (Sweden)

    Arturo A. Massol-Deyá

    2006-09-01

    Full Text Available Hydrocarbon contamination of groundwater resources has become a major environmental and human health concern in many parts of the world. Our objectives were to employ both culture and culture-independent techniques to characterize the dynamics of microbial community structure within a fluidized bed reactor used to bioremediate a diesel-contaminated groundwater in a tropical environment. Under normal operating conditions, 97 to 99% of total hydrocarbons were removed with only 14 min hydraulic retention time. Over 25 different cultures were isolated from the treatment unit (96% which utilized diesel constituents as sole carbon source. Approximately 20% of the isolates were also capable of complete denitrification to nitrogen gas. Sequence analysis of 16S rDNA demonstrated ample diversity with most belonging to the ∝, β and γ subdivision of the Proteobacteria, Bacilli, and Actinobacteria groups. Moreover, the genetic constitution of the microbial community was examined at multiple time points with a Functional Gene Array (FGA containing over 12,000 probes for genes involved in organic degradation and major biogeochemical cycles. Total community DNA was extracted and amplified using an isothermal φ29 polymerase-based technique, labeled with Cy5 dye, and hybridized to the arrays in 50% formimide overnight at 50°C. Cluster analysis revealed comparable profiles over the course of treatment suggesting the early selection of a very stable microbial community. A total of 270 genes for organic contaminant degradation (including naphthalene, toluene [aerobic and anaerobic], octane, biphenyl, pyrene, xylene, phenanthrene, and benzene; and 333 genes involved in metabolic activities (nitrite and nitrous oxide reductases [nirS, nirK, and nosZ], dissimilatory sulfite reductases [dsrAB], potential metal reducing C-type cytochromes, and methane monooxygenase [pmoA] were repeatedly detected. Genes for degradation of MTBE

  19. enhanced ex-situ bioremediation of soil contaminated

    African Journals Online (AJOL)

    user

    Ex situ bioremediation is an attractive and often cost-effective technology for the clean-up of organics-contaminated sites; however, it often requires extended treatment time under field conditions. Electrokinetic bioremediation is an emerging technology to remediate organic-contaminated soil. Thus, the objective of this study ...

  20. Entomoremediation - A Novel In-Situ Bioremediation Approach ...

    African Journals Online (AJOL)

    The candidacy of collembolans, ants, beetles and termites in entomoremediation is advocated because of their role as ecosystem engineers. The need for mass rearing of the insects to be used in proposed bioremediation is discussed. Bioremediation as a measure that requires interdisciplinary approach is emphasized.

  1. Combination of aquifer thermal energy storage and enhanced bioremediation

    NARCIS (Netherlands)

    Ni, Zhuobiao; Gaans, van Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-01-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not

  2. Effects of Particle Size Distribution on Bioremediation of Crude Oil ...

    African Journals Online (AJOL)

    Bioremediation has been proven to be the most effective method of cleaning up oil contaminated soils through the application of nutrients and microorganism. Hence, this research presents the effects of particle size distribution on bioremediation of crude oil polluted sandy soils. Six different soil samples were sieved using ...

  3. The use of modern on-site bioremediation systems to reduce crude oil contamination on oilfield properties

    International Nuclear Information System (INIS)

    Hildebrandt, W.W.; Wilson, S.B.

    1991-01-01

    Oil-field properties frequently have areas in which the soil has been degraded with crude oil. Soil contaminated in this manner is often considered either a hazardous waste or designated waste under regulatory guidelines. As a result, there is often concern about an owner's liabilities and the financial institution's liabilities whenever oilfield properties are transferred to new operators, abandoned, or converted to other uses such as real estate. There is also concern about the methods and relative costs to remediate soil which has been contaminated with crude oil. Modern, well-designed, soil bioremediation systems are cost effective for the treatment of crude oil contamination, and these systems can eliminate an owner's subsequent liabilities. Compared to traditional land-farming practices, a modern on-site bioremediation system (1) requires significantly less surface area, (2) results in lower operating costs, and (3) provides more expeditious results. Compared to excavation and off-site disposal of the contaminated soil, on-site bioremediation will eliminate subsequent liabilities and is typically more cost effective. Case studies indicate that o-site bioremediation systems have been successful at reducing the crude oil contamination in soil to levels which are acceptable to regulatory agencies in less than 10 weeks. Total costs for on-site bioremediation has ranged from $35 to $40 per cubic yard of treated soil, including excavation

  4. Bioremediation of hydrocarbon contaminated surface water, groundwater, and soils

    International Nuclear Information System (INIS)

    Piotrowski, M.R.

    1991-01-01

    Bioremediation is currently receiving considerable attention as a remediation option for sites contaminated with hazardous organic compounds. There is an enormous amount of interest in bioremediation, and numerous journals now publish research articles concerning some aspect of the remediation approach. A review of the literature indicates that two basic forms of bioremediation are currently being practiced: the microbiological approach and the microbial ecology approach. Each form has its advocates and detractors, and the microbiological approach is generally advocated by most of the firms that practice bioremediation. In this paper, the merits and disadvantages of these forms are reviewed and a conceptual approach is presented for assessing which form may be most useful for a particular contaminant situation. I conclude that the microbial ecology form of bioremediation may be the most useful for the majority of contaminant situations, and I will present two case histories in support of this hypothesis

  5. Deploying in situ bioremediation at the Hanford Site

    International Nuclear Information System (INIS)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1 4 ) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl 4 . Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy's Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process

  6. Modeling shoreline bioremediation: Continuous flow and seawater exchange columns

    International Nuclear Information System (INIS)

    Ramstad, S.; Sveum, P.; Bech, C.; Faksness, L.G.

    1995-01-01

    This paper describes the design and use of the columns in the study of bioremediation processes, and gives some results from an experiment designed to study the effects of different additives (fish meal, stick water, and Max Bac) on biodegradation of crude oil. There is significant difference in oil degradation(nC 17 /pristane ratio) between the column with additives and those without. Open system models in this type of open column give valuable data o how the chemical and biological parameters, including oil degradation, are affected by the additives, and simultaneously by the dilutive effect of seawater washing through the sediment, and for optimizing formulations. The system is designed with a large number of units and provides a good first approximation for mesocosm studies and field experiments, thus reducing the need for large numbers of such resource-demanding experiments

  7. Deploying in situ bioremediation at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, M.J.; Johnson, C.D.; Newcomer, D.R.; Doremus, L.A.; Hooker, B.S.; Peyton, B.M.; Skeen, R.S.; Chilakapati, A.

    1994-11-01

    An innovative in-situ bioremediation technology was developed by Pacific Northwest Laboratory (PNL) to destroy nitrate and carbon tetrachloride (CC1{sub 4}) in the Hanford ground water. The goal of this in-situ treatment process is to stimulate native microorganisms to degrade nitrate and CCl{sub 4}. Nutrient solutions are distributed in the contaminated aquifer to create a biological treatment zone. This technology is being demonstrated at the US Department of Energy`s Hanford Site to provide the design, operating, and cost information needed to assess its effectiveness in contaminated ground water. The process design and field operations for demonstration of this technology are influenced by the physical, chemical, and microbiological properties observed at the site. A description of the technology is presented including the well network design, nutrient injection equipment, and means for controlling the hydraulics and microbial reactions of the treatment process.

  8. Bioremediation and remediation with acid residual fluid

    OpenAIRE

    Rondon, Josimara Nolasco; Aguiar, Mariane Baia de; Pimenta, Talita Thais Correia; Otsubo, Helena de Cassia Brassaloti; Thomazelli Junior, Ismael; Rondon, Marcelo Nolasco; Fabri, João Roberto; Carvalho, Cristiano Marcelo Espinola; Morais, Digelson Pazeto

    2014-01-01

    http://dx.doi.org/10.5902/2236117013286The aim of this study was to evaluate the feasibility of using bioremediation and F. moliniforme in remediation of compounds made from plastics and other polymers using waste pollutants. The survival analyzes for survival / growth resistance and pollutants in the concrete for 30 days was observed. We evaluated the size of the colonies in battery fluid (pH = 0.1) and weekly reviews of pH in three 1000 mL volumetric flasks, having in each 133 mL of battery...

  9. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites

  10. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.

    2006-09-29

    Treatment of waste streams containing radionuclides, the remediation of contaminated materials, soils, and water, and the safe and economical disposal of radionuclides and toxic metals containing wastes is a major concern. Radionuclides may exist in various oxidation states and may be present as oxide, coprecipitates, inorganic, and organic complexes depending on the process and waste stream. Unlike organic contaminants, the metals cannot be destroyed, but must either be converted to a stable form or removed. Microorganisms present in the natural environment play a major role in the mobilization and immobilization of radionuclides and toxic metals by direct enzymatic or indirect non-enzymatic actions and could affect the chemical nature of the radionuclides by altering the speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides by reductive precipitation from higher to lower oxidation state with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated surfaces, soils, and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation followed by photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal. These processes use all naturally occurring materials, common soil bacteria, naturally occurring organic compound citric acid and sunlight.

  11. Influence of a precepitator on bioremedial processes

    Directory of Open Access Journals (Sweden)

    Nježić Zvonko B.

    2010-01-01

    Full Text Available Natural environment represents a dynamic bioreactor with numerous chemical, biochemical and microbiological processes through which harmful materials are destroyed, so that living organisms and human beings are not endanger. Controlled anthropogenic actions can assist the natural ecosystem to become an efficient bioremedial unit and to reduce the level of effluents produced in the biotechnological transformations during massive food production. In this study, a monitoring system for the chemical oxygen demand (COD and the heavy metal levels in water was established, followed by construction and building of a precipitator in order to prevent discharging of sludge. The results contribute to the hypothesis of existence of in situ bioremedial processes in the observed ecosystem. The significant influence of the precipitator on the decrease of pollution was demonstrated: a decrease of both the COD value and the heavy metal levels downstream from the precipitator for about 15%. Therefore it can be concluded that the precipitator significantly contributes to the ecosystem by the reduction of pollutant level.

  12. The Kwajalein bioremediation demonstration: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail.

  13. The Kwajalein bioremediation demonstration: Final technical report

    International Nuclear Information System (INIS)

    Walker, J.R. Jr.; Walker, A.B.

    1994-12-01

    The US Army Kwajalein Atoll (USAKA) Base, located in the Republic of the Marshall Islands (RMI) in the east-central Pacific Ocean, has significant petroleum hydrocarbon contamination resulting from years of military activities. Because of its remoteness, the lack of on-site sophisticated remediation or waste disposal facilities, the amenability of petroleum hydrocarbons to biodegradation, and the year-round temperature favorable for microbial activity, USAKA requested, through the Hazardous Waste Remedial Actions Program (HAZWRAP), that a project be conducted to evaluate the feasibility of using bioremediation for environmental restoration of contaminated sites within the atoll. The project was conducted in four distinct phases: (1) initial site characterization and on-site biotreatability studies, (2) selection of the demonstration area and collection of soil columns, (3) laboratory column biotreatability studies, and (4) an on-site bioremediation demonstration. The results of phases (1) and (3) have been detailed in previous reports. This report summarizes the results of phases (1) and (3) and presents phases (2) and (4) in detail

  14. Bioremediation Kinetics of Pharmaceutical Industrial Effluent

    Directory of Open Access Journals (Sweden)

    M. Šabić

    2015-05-01

    Full Text Available In recent years, concerns about the occurrence and fate of pharmaceuticals that could be present in water and wastewater has gained increasing attention. With the public’s enhanced awareness of eco-safety, environmentally benign methods based on microorganisms have become more accepted methods of removing pollutants from aquatic systems. This study investigates bioremediation of pharmaceutical wastewater from pharmaceutical company Pliva Hrvatska d.o.o., using activated sludge and bioaugmented activated sludge with isolated mixed bacterial culture. The experiments were conducted in a batch reactor in submerged conditions, at initial concentration of organic matter in pharmaceutical wastewater, expressed as COD, 5.01 g dm–3 and different initial concentrations of activated sludge, which ranged from 1.16 to 3.54 g dm–3. During the experiments, the COD, pH, concentrations of dissolved oxygen and biomass were monitored. Microscopic analyses were performed to monitor the quality of activated sludge. Before starting with the bioremediation in the batch reactor, toxicity of the pharmaceutical wastewater was determined by toxicity test using bacteria Vibrio fischeri. The obtained results showed that the effective concentration of the pharmaceutical wastewater was EC50 = 17 % and toxicity impact index was TII50 = 5.9, meaning that the untreated pharmaceutical industrial effluent must not be discharged into the environment before treatment. The results of the pharmaceutical wastewater bioremediation process in the batch reactor are presented in Table 1. The ratio γXv ⁄ γX maintained high values throughout all experiments and ranged from 0.90 and 0.95, suggesting that the concentrations of biomass remained unchanged during the experiments. The important kinetic parameters required for performance of the biological removal process, namely μmax, Ks, Ki, Y and kd were calculated from batch experiments (Table 2. Figs. 1 and 2 show the experimental

  15. Bioremediation, regulatory agencies and public acceptance of this technology

    International Nuclear Information System (INIS)

    Westlake, D. W. S.

    1997-01-01

    The technology of bioremediation, i.e. the utilization of microorganisms to degrade environmental pollutants, the dangers and consequences inherent in the large-scale use of microbial organisms in such processes, and the role of regulatory agencies in the utilization and exploitation of bioremediation technologies, were discussed. Factors influencing public acceptance of bioremediation as a satisfactory tool for cleaning up the environment vis-a-vis other existing and potential rehabilitation techniques were also reviewed. The ambiguity of regulatory agencies in the matter of bioremediation was noted. For example, there are many regulatory hurdles relative to the testing, use and approval of transgenic microorganisms for use in bioremediation. On the other hand, the use and release of engineered plants is considered merely another form of hybrid and their endorsement is proceeding rapidly. With regard to public acceptance, the author considered bioremediation technology as too recent, with not enough successful applications to attract public attention. Although the evidence suggests that bioremediation is environmentally safe, the efficacy, reliability and predictability of the various technologies have yet to be demonstrated. 25 refs

  16. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    OpenAIRE

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patr?cia Lopes; J?lio, Aline Daniela Lopes; Fernandes, Rita de C?ssia Rocha; Borges, Arnaldo Chaer; T?tola, Marcos Rog?rio

    2016-01-01

    Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gas...

  17. Monitoring of ground water quality and heavy metals in soil during large scale bioremediation of petroleum hydrocarbon contaminated waste in India: case studies

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Mandal

    2014-10-01

    Full Text Available Bioremediation using microbes has been well accepted as an environmentally friendly and economical treatment method for disposal of hazardous petroleum hydrocarbon contaminated waste (oily waste and this type of bioremediation has been successfully conducted in laboratory and on a pilot scale in various countries, including India. Presently there are no federal regulatory guidelines available in India for carrying out field-scale bioremediation of oily waste using microbes. The results of the present study describe the analysis of ground water quality as well as selected heavy metals in oily waste in some of the large-scale field case studies on bioremediation of oily waste (solid waste carried out at various oil installations in India. The results show that there was no contribution of oil and grease and selected heavy metals to the ground water in the nearby area due to adoption of this bioremediation process. The results further reveal that there were no changes in pH and EC of the groundwater due to bioremediation. In almost all cases the selected heavy metals in residual oily waste were within the permissible limits as per Schedule – II of Hazardous Waste Management, Handling and Transboundary Movement Act, Amendment 2008, (HWM Act 2008, by the Ministry of Environment and Forests (MoEF, Government of India (GoI.

  18. Microbial Studies Supporting Implementation of In Situ Bioremediation at TAN

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Joan Marie; Matthern, Gretchen Elise; Rae, Catherine; Ely, R. L.

    2000-11-01

    The Idaho National Engineering and Environmental Laboratory is evaluating in situ bioremediation of contaminated groundwater at its Test Area North Facility. To determine feasibility, microcosm and bioreactor studies were conducted to ascertain the ability of indigenous microbes to convert trichloroethene and dichloroethene to non-hazardous byproducts under aerobic and anaerobic conditions, and to measure the kinetics of microbial reactions associated with the degradation process. Microcosms were established from core samples and groundwater obtained from within the contaminant plume. These microcosms were amended with nutrients, under aerobic and anaerobic conditions, to identify electron donors capable of stimulating the degradation process. Results of the anaerobic microcosm studies showed that lactate, acetate and propionate amendments stimulated indigenous cell growth and functioned as effective substrates for reductive degradation of chloroethenes. Bioreactors inoculated with cultures from these anaerobic microcosms were operated under a batch mode for 42 days then converted to a fed-batch mode and operated at a 53-day hydraulic residence time. It was demonstrated that indigenous microbes capable of complete anaerobic reductive dechlorination are present in the subject well. It was also demonstrated that aerobic microbes capable of oxidizing chlorinated compounds produced by anaerobic reductive dechlorination are present. Kinetic data suggest that controlling the type and concentration of electron donors can increase trichlorethene conversion rates. In the event that complete mineralization of trichlorethene does not occur following stimulation, and anaerobic/aerobic treatment scheme is feasible.

  19. A miniaturized bismuth-based sensor to evaluate the marine organism Styela plicata bioremediation capacity toward heavy metal polluted seawater.

    Science.gov (United States)

    Colozza, Noemi; Gravina, Maria Flavia; Amendola, Luca; Rosati, Modesto; Akretche, Djamal Eddine; Moscone, Danila; Arduini, Fabiana

    2017-04-15

    Cadmium and lead are highly toxic heavy metals which cause a severe worldwide pollution. In addition to the toxic effect produced by the direct exposure, they can be bioconcentrated and accumulated in living organisms, including humans. Herein, a miniaturized and disposable electrochemical sensor was improved for the simultaneous detection of cadmium and lead ions to study the bioremediation of polluted seawater in presence of the filter-feeding marine organism Styela plicata. A screen-printed electrode modified in situ with a bismuth film was selected using the anodic stripping analysis as detection technique. This sensor was coupled with a portable potentiostat and the detection of cadmium and lead ions was carried out by Square Wave Anodic Stripping Voltammetry, allowing the simultaneous detection of both heavy metals at ppb level (LOD=0.3ppb for lead, 1.5ppb for cadmium). This analytical tool was then applied to assess the bioremediation capacity of S. plicata through a bioremediation experiment, in which the organism has been exposed to seawater artificially polluted with 1000ppb of Cd 2+ and Pb 2+ . The matrix effect of both seawater and acid digested biological samples was evaluated. A bioconcentration phenomenon was observed for both heavy metals through the analysis of S. plicata tissues. In details, Pb 2+ resulted to be about 2.5 times more bioconcentrated than Cd 2+ , giving an effective bioremediation level in seawater of 13% and 40% for Cd 2+ and Pb 2+ , respectively. Thus, our results demonstrate the capability of S. plicata to bioremediate Cd 2+ and Pb 2+ polluted seawater as well as the suitability of the electrochemical sensor for contaminated marine environment monitoring and bioremediation evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Bioremediation techniques applied to aqueous media contaminated with mercury.

    Science.gov (United States)

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  1. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.

    Science.gov (United States)

    Majone, Mauro; Verdini, Roberta; Aulenta, Federico; Rossetti, Simona; Tandoi, Valter; Kalogerakis, Nicolas; Agathos, Spiros; Puig, Sebastià; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    This paper contains a critical examination of the current application of environmental biotechnologies in the field of bioremediation of contaminated groundwater and sediments. Based on analysis of conventional technologies applied in several European Countries and in the US, scientific, technical and administrative barriers and constraints which still need to be overcome for an improved exploitation of bioremediation are discussed. From this general survey, it is evident that in situ bioremediation is a highly promising and cost-effective technology for remediation of contaminated soil, groundwater and sediments. The wide metabolic diversity of microorganisms makes it applicable to an ever-increasing number of contaminants and contamination scenarios. On the other hand, in situ bioremediation is highly knowledge-intensive and its application requires a thorough understanding of the geochemistry, hydrogeology, microbiology and ecology of contaminated soils, groundwater and sediments, under both natural and engineered conditions. Hence, its potential still remains partially unexploited, largely because of a lack of general consensus and public concerns regarding the lack of effectiveness and control, poor reliability, and possible occurrence of side effects, for example accumulation of toxic metabolites and pathogens. Basic, applied and pre-normative research are all needed to overcome these barriers and make in situ bioremediation more reliable, robust and acceptable to the public, as well as economically more competitive. Research efforts should not be restricted to a deeper understanding of relevant microbial reactions, but also include their interactions with the large array of other relevant phenomena, as a function of the truly variable site-specific conditions. There is a need for a further development and application of advanced biomolecular tools for site investigation, as well as of advanced metabolic and kinetic modelling tools. These would allow a

  2. Microbial activity in subsurface samples before and during nitrate-enhanced bioremediation

    International Nuclear Information System (INIS)

    Thomas, J.M.; Gordy, V.R.; Bruce, C.L.; Ward, C.H.; Hutchins, S.R.; Sinclair, J.L.

    1995-01-01

    A study was conducted to determine the microbial activity at a site contaminated with JP-4 jet fuel before and during nitrate-enhanced bioremediation. Samples at three depths from six different locations were collected aseptically under anaerobic conditions before and during treatment. Cores were located in or close to the source of contamination, downgradient of the source, or outside the zone of contamination. Parameters for microbial characterization included (1) viable counts of aerobic heterotrophic, JP-4 degrading, and oligotrophic bacteria; (2) the most probable number (MPN) of aerobic and anaerobic protozoa; (3) the MPN of total denitrifiers; and (4) the MPN of denitrifiers in hydrocarbon-amended microcosms. The results indicate that the total number of denitrifiers increased by an order of magnitude during nitrate-enhanced bioremediation in most samples. The number of total heterotrophs and JP-4-degrading microorganisms growing aerobically also increased. In addition, the first anaerobic protozoa associated with hydrocarbon-contaminated subsurface materials were detected

  3. Evaluation of Four Bio fertilizers for Bioremediation of Pesticide contaminated Soil

    International Nuclear Information System (INIS)

    El- Kabbany, S.

    1999-01-01

    Experiments were conducted to asses the ability of mixed populations of microorganisms which produced as a bio fertilizers by the General Organization of Agriculture Fund, Ministry of Agriculture, Egypt (phosphoren, microbien, cerealin and azospirillum) to degrade five selected pesticides representing different classes including organophosphate, carbamate and chlorinated organic compounds. There were differences in rates of biotransformation, suggesting the selective induction of certain metabolic enzymes. Inoculation of soil incorporated with malathion, fenamiphos, carbaryl, aldicarb and dieldrin, resulted in ca. 80-90% removal of malathion and fenamiphos within 8 days, carbaryl and aldicarb within 11-15 days respectively. Dieldrin removal occurred slowly within 2 months. These data suggest that bioremediate may act as potential candidates for soil inoculation to bioremediate pesticide contaminated soil. The production of Co2 (soil respiration ) was stimulated by some pesticides. In samples with microbien, an about 2 times higher Co2 production was measured

  4. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  5. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  6. Proceedings of Japan-Germany Workshop of Bioremediation; Nichidoku bio remediation workshop hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-04

    This is a proceedings of Japan-Germany Workshop on Bioremediation held on December 4 and 5, 1995. The keynote lectures include `Environmental preservation using biotechnology` by Prof. Karube of University of Tokyo, and `Environmental technology in Germany: status, achievements, and problems` by Prof. R.D.Schmid of University of Stuttgart. In the oral session, 7 papers are presented in the microbiological aspects of bioremediation, 10 papers in the environmental monitoring, and 6 papers in the engineering aspects of bioremediation. This workshop was sponsored by the German Federal Ministry for Education, Science and Technology, New Energy and Industrial Technology Development Organization, and Research Institute of Innovative Technology for the Earth. According to the lecture by Prof. Karube, key technologies for the environmental preservation include biotechnologies, such as the culture of fine algae with high CO2 concentration resistant properties using a solar light condenser, production of effective substances from CO2, and production of organic fertilizer from the sediments of lakes and sea. 19 refs., 12 figs., 3 tabs.

  7. Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands

    Science.gov (United States)

    For oil spill responders:presents rational approach, evaluates current practices and state-of-the-art research results pertaining to bioremediation of hydrocarbon contamination relative to types and amounts of amendments used, application frequency, extent

  8. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  9. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

    Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology

    The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds

  10. Bioremediation of chlorinated ethenes in aquifer thermal energy storage

    NARCIS (Netherlands)

    Ni, Z.

    2015-01-01

      Subjects: bioremediation; biodegradation; environmental biotechnology, subsurface and groundwater contamination; biological processes; geochemistry; microbiology The combination of enhanced natural attenuation (ENA) of chlorinated volatile organic compounds (CVOCs) and

  11. Enhanced ex-situ bioremediation of soil contaminated with ...

    African Journals Online (AJOL)

    contaminated soil. Thus, the objective of this study was to investigate the feasibility and effectiveness of using electrical biostimulation processes to enhance ex-situ bioremediation of soils contaminated with organic pollutants. The effect of ...

  12. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  13. Bioremediation of PCBs. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T. [Oak Ridge National Lab., TN (United States). Chemical Technology Div., TN (United States); Abramowicz, D.A. [General Electric Co. Corporate Research and Development, Niskayuna, NY (United States)

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL`s effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site.

  14. Letter report: Ari Patrinos -- Subsurface bioremediation

    International Nuclear Information System (INIS)

    Happer, W.; MacDonald, G.J.; Ruderman, M.A.; Treiman, S.B.

    1995-01-01

    During the past summer, the authors had the opportunity to examine aspects of the remediation program of the Department of Energy (DOE). The most important conclusion that they have come to is that there is an urgent need to mount a comprehensive research program in remediation. It is also clear to them that DOE does not have the funding to carry out a program on the scale that is required. On the other hand, Environmental Management could very well fund such activities. They would hope that in the future there would be close collaboration between Environmental Management and Energy Research in putting together a comprehensive and well thought-out research program. Here, the authors comment on one aspect of remediation: subsurface bioremediation

  15. Bioremediation of PCBs. CRADA final report

    International Nuclear Information System (INIS)

    Klasson, K.T.; Abramowicz, D.A.

    1996-06-01

    The Cooperative Research and Development Agreement was signed between Oak Ridge National Laboratory (ORNL) and General Electric Company (GE) on August 12, 1991. The objective was a collaborative venture between researchers at GE and ORNL to develop bioremediation of polychlorinated biphenyls (PCBs). The work was conducted over three years, and this report summarizes ORNL's effort. It was found that the total concentration of PCBs decreased by 70% for sequential anaerobic-aerobic treatment compared with a 67% decrease for aerobic treatment alone. The sequential treatment resulted in PCB products with fewer chlorines and shorter halflives in humans compared with either anaerobic or aerobic treatment alone. The study was expected to lead to a technology applicable to a field experiment that would be performed on a DOE contaminated site

  16. A field experimentation on bioremediation: Bioren

    International Nuclear Information System (INIS)

    Le Floch, S.; Merlin, F.-X.; Guillerme, M.; Dalmazzone, C.; Le Corre, P.

    1999-01-01

    Most shoreline bioremediation strategies are based on the addition of limiting nutrients to contaminated environments to cause an acceleration of the natural biodegradation process. Before approval for operational use, these products designed to be used in the environment, should be validated in field trials to assure their efficiency in reducing residual contaminant concentrations and toxicity. This paper describes the design, implementation and preliminary results of an experimental field study to evaluate the effectiveness of the bioremediation agents BIOREN 1 and BIOREN 2 of interest to the EUREKA BIOREN program. The agents BIOREN 1 and 2 are proprietary formulations of nutrients synthesised from fish meal and they were proven effective in laboratory studies of the two granular nutrient formulations. BIOREN 1 is unique in that it is augmented with a biosurfactant. To provide equivalent nitrogen concentrations the quantities of BIOREN 1 and 2 added were respectively 10 and 14.4% of the oil quantity. The results showed a 'starter effect' for the formulation BIOREN 1: biodegradation was significantly enhance during the first five weeks of the experiment; after that the enhancement was weaker and significant differences were not observed between treatments. These results may be attributed to the fact that significant nutrient depletion may not occur in small scale controlled spill experiments. In addition, it has been proven that oxygen availability limited biodegradation. There is a need to develop aeration techniques, such as raking, that aerate the sediment without further burying the pollutant. Final oil balance assessment proved to be very instructive as it is the main practical factor taken into consideration by the operational team: the aim of the shoreline cleaning operation remains to reduce oil sediment content. (Author)

  17. Bioremediation of crude oil spills in marine and terrestrial environments

    International Nuclear Information System (INIS)

    Prince, R.C.

    1995-01-01

    Bioremediation can be a safe and effective tool for dealing with crude oil spills, as demonstrated during the cleanup following the Exxon Valdez spill in Alaska. Crude oil has also been spilled on land, and bioremediation is a promising option for land spills too. Nevertheless, there are still areas where understanding of the phenomenon is rather incomplete. Research groups around the world are addressing these problems, and this symposium provides an excellent overview of some of this work

  18. Effectiveness of bioremediation for the Exxon Valdez oil spill

    Science.gov (United States)

    Bragg, James R.; Prince, Roger C.; Harner, E. James; Atlas, Ronald M.

    1994-03-01

    The effectiveness of bioremediation for oil spills has been difficult to establish on dynamic, heterogeneous marine shorelines. A new interpretative technique used following the 1989 Exxon Valdez spill in Alaska shows that fertilizer applications significantly increased rates of oil biodegradation. Biodegradation rates depended mainly on the concentration of nitrogen within the shoreline, the oil loading, and the extent to which natural biodegradation had already taken place. The results suggest ways to improve the effectiveness of bioremediation measures in the future.

  19. Bioremediation, an environmental remediation technology for the bioeconomy.

    Science.gov (United States)

    Gillespie, Iain M M; Philp, Jim C

    2013-06-01

    Bioremediation differs from other industrial biotechnologies in that, although bioremediation contractors must profit from the activity, the primary driver is regulatory compliance rather than manufacturing profit. It is an attractive technology in the context of a bioeconomy but currently has limitations at the field scale. Ecogenomics techniques may address some of these limitations, but a further challenge would be acceptance of these techniques by regulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Development of combinatorial bacteria for metal and radionuclide bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    A. C. Matin, Ph. D.

    2006-06-15

    The grant concerned chromate [Cr(VI)] bioremediation and it was our aim from the outset to construct individual bacterial strains capable of improved bioremediation of multiple pollutants and to identify the enzymes suited to this end. Bacteria with superior capacity to remediate multiple pollutants can be an asset for the cleanup of DOE sites as they contain mixed waste. I describe below the progress made during the period of the current grant, providing appropriate context.

  1. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    Science.gov (United States)

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  2. Bioremediation--Why doesn't it work sometimes?

    International Nuclear Information System (INIS)

    Block, R.; Stroo, H.; Swett, G.H.

    1993-01-01

    Biological treatment has rapidly become the technology of choice for remediation of soils contaminated by petroleum constituents. Since the mid-1980s, bioremediation has been used at more than 100 locations to cost-effectively remediate hundreds of thousands of cubic yards of contaminated soil. However, despite the excellent track record of bioremediation, during the past few years bioremediation was not successful at several sites. The same type of contaminated soils has been treated successfully at numerous other sites. The treatment process was the same, but bioremediation was not effective. Testing identified other sites where bioremediation was unsuccessful for remediating petroleum constituents, and the factors that contributed to the failures were explored in greater depth. This article outlines a quick and inexpensive screening technique that allows one to determine whether bioremediation is practical and also provides an assessment of the time and cost factors. It involves four steps: (1) Site study; (2) Regulatory analysis; (3) Biological screening; (4) Treatability testing. The methodology can be reduced to a set of decision trees to simplify the screening process

  3. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  4. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    International Nuclear Information System (INIS)

    Altman, D.J.; Hazen, T.C.; Tien, A.J.

    1997-01-01

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH's, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass

  5. Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

    1997-05-10

    The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

  6. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  7. Phytoplankton diversity in the bioremediation pool in PTAPB-BATAN Yogyakarta

    International Nuclear Information System (INIS)

    Wijiyono; Artiningsih, Sri

    2013-01-01

    Research has been done on Phytoplankton Diversity in Bioremediation Pool in PTAPB-BATAN Yogyakarta. This study aims to determine the diversity of phytoplankton and phytoplankton species are numerous in the bioremediation pool in PTAPB BATAN. This study is an observational study conducted from September to November 2012. The population in this study is all kinds of phytoplankton that live in the bioremediation pool. The sample was filtered with all phytoplankton plankton net at each sampling point. This study was conducted to determine the point of sampling as much as 3 points, namely at the inlet, the center of the pond, and exit channel, with each point done 3 times repetition. Sampling was done by taking as much as 50 liters of water at each sample point, the water sample is filtered directly into the plankton net. Filtered water put into flakon bottles. Observation and identification of plankton were done in the laboratory. The research found as many as 21 species of phytoplankton consisting of Scenedesmus acuminatus, Scenedesmus quadricauda, Closterium moniiferum, Pleurosigma sp., Rivularia bullata, Chroococcus sp., Cocconeis sp., Pinnularia viridis, Navicula sp., Spirogyra sp., Thiopedia rosea, Cyclotella sp., Minidiscus sp., Achnantes sp., ChIorella sp., Oscillatoria sp., Hemiaulus sp., Surirella sp., Chattonella sp., Thalasiossira mala, Leuvenia sp. Phytoplankton density value of 5.330 ind / I. Phytoplankton diversity index value was 2.6062, included in the medium category. (author)

  8. Bioremediation of marine oil spills: when and when not – the Exxon Valdez experience

    Science.gov (United States)

    Atlas, Ronald; Bragg, James

    2009-01-01

    Summary In this article we consider what we have learned from the Exxon Valdez oil spill (EVOS) in terms of when bioremediation should be considered and what it can accomplish. We present data on the state of oiling of Prince William Sound shorelines 18 years after the spill, including the concentration and composition of subsurface oil residues (SSOR) sampled by systematic shoreline surveys conducted between 2002 and 2007. Over this period, 346 sediment samples were analysed by GC‐MS and extents of hydrocarbon depletion were quantified. In 2007 alone, 744 sediment samples were collected and extracted, and 222 were analysed. Most sediment samples from sites that were heavily oiled by the spill and physically cleaned and bioremediated between 1989 and 1991 show no remaining SSOR. Where SSOR does remain, it is for the most part highly weathered, with 82% of 2007 samples indicating depletion of total polycyclic aromatic hydrocarbon (Total PAH) of > 70% relative to EVOS oil. This SSOR is sequestered in patchy deposits under boulder/cobble armour, generally in the mid‐to‐upper intertidal zone. The relatively high nutrient concentrations measured at these sites, the patchy distribution and the weathering state of the SSOR suggest that it is in a form and location where bioremediation likely would be ineffective at increasing the rate of hydrocarbon removal. PMID:21261915

  9. Bioremediation of marine oil spills: when and when not--the Exxon Valdez experience.

    Science.gov (United States)

    Atlas, Ronald; Bragg, James

    2009-03-01

    In this article we consider what we have learned from the Exxon Valdez oil spill (EVOS) in terms of when bioremediation should be considered and what it can accomplish. We present data on the state of oiling of Prince William Sound shorelines 18 years after the spill, including the concentration and composition of subsurface oil residues (SSOR) sampled by systematic shoreline surveys conducted between 2002 and 2007. Over this period, 346 sediment samples were analysed by GC-MS and extents of hydrocarbon depletion were quantified. In 2007 alone, 744 sediment samples were collected and extracted, and 222 were analysed. Most sediment samples from sites that were heavily oiled by the spill and physically cleaned and bioremediated between 1989 and 1991 show no remaining SSOR. Where SSOR does remain, it is for the most part highly weathered, with 82% of 2007 samples indicating depletion of total polycyclic aromatic hydrocarbon (Total PAH) of >70% relative to EVOS oil. This SSOR is sequestered in patchy deposits under boulder/cobble armour, generally in the mid-to-upper intertidal zone. The relatively high nutrient concentrations measured at these sites, the patchy distribution and the weathering state of the SSOR suggest that it is in a form and location where bioremediation likely would be ineffective at increasing the rate of hydrocarbon removal. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U. [Univ. of Tennessee, Knoxville, TN (United States); Burlage, R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  11. Impact of bioremediation treatments on the biodegradation of buried oil and predominant bacterial populations

    International Nuclear Information System (INIS)

    Swannell, R.P.J.; Mitchell, D.J.; Waterhouse, J.C.; Miskin, I.P.; Head, I.M.; Petch, S.; Jones, D.M.; Willis, A.; Lee, K.; Lepo, J.E.

    2000-01-01

    The feasibility of using mineral fertilizers as a bioremediation treatment for oil buried in fine sediments was tested in field trials at a site in the south-west of England. The plots were divided into three blocks of four treatments including untreated, fertilized, oiled unfertilized and oiled fertilized plots. The changes in residual hydrocarbons were monitored to study the biodegradation of Arabian Light Crude Oil which is known to have a high portion of biodegradable components. Samples were extracted at random points at intervals of 0, 42 and 101 days. The analysis process identified a range of aliphatic and aromatic hydrocarbons, as well as a range of geochemical biomarkers. The final results suggested that the oil in the fertilized plots was more degraded than in the oiled, unfertilized control plots. Three way, factorial analysis of variance was used to analyse the data from the oiled fertilized and oiled unfertilized plots. No significant effect of treatment on the degradation of aromatic hydrocarbons was observed. The results also showed that oil treatment and treatment with oil and fertilizer increased the abundance of hydrocarbon-degrading bacterial population. One significant observation was that different bacterial populations were stimulated in response to oil alone and a bioremediation treatment. It was concluded that the addition of inorganic fertilizers to the oiled oxic fine sediment substantially enhanced the level of biodegradation compared to untreated oiled sediment. Bioremediation is a feasible treatment for oil spills where the oil is buried in fine sediment. 14 refs., 1 tab., 4 figs

  12. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    Directory of Open Access Journals (Sweden)

    Darcy Young

    Full Text Available Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes. Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  13. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  14. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  15. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils.

    Science.gov (United States)

    Mohsenzadeh, Fariba; Chehregani Rad, Abdolkarim; Akbari, Mehrangiz

    2012-12-15

    Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran) and their growth ability was checked in potato dextrose agar (PDA) media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase) was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w). Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  16. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  17. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    Science.gov (United States)

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  18. Rehabilitation of oil polluted soils by bioremediation

    Science.gov (United States)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  19. Biostimulation of Indigenous Microbial Community for Bioremediation of Petroleum Refinery Sludge

    Science.gov (United States)

    Sarkar, Jayeeta; Kazy, Sufia K.; Gupta, Abhishek; Dutta, Avishek; Mohapatra, Balaram; Roy, Ajoy; Bera, Paramita; Mitra, Adinpunya; Sar, Pinaki

    2016-01-01

    Nutrient deficiency severely impairs the catabolic activity of indigenous microorganisms in hydrocarbon rich environments (HREs) and limits the rate of intrinsic bioremediation. The present study aimed to characterize the microbial community in refinery waste and evaluate the scope for biostimulation based in situ bioremediation. Samples recovered from the wastewater lagoon of Guwahati refinery revealed a hydrocarbon enriched [high total petroleum hydrocarbon (TPH)], oxygen-, moisture-limited, reducing environment. Intrinsic biodegradation ability of the indigenous microorganisms was enhanced significantly (>80% reduction in TPH by 90 days) with nitrate amendment. Preferred utilization of both higher- (>C30) and middle- chain (C20-30) length hydrocarbons were evident from GC-MS analysis. Denaturing gradient gel electrophoresis and community level physiological profiling analyses indicated distinct shift in community’s composition and metabolic abilities following nitrogen (N) amendment. High throughput deep sequencing of 16S rRNA gene showed that the native community was mainly composed of hydrocarbon degrading, syntrophic, methanogenic, nitrate/iron/sulfur reducing facultative anaerobic bacteria and archaebacteria, affiliated to γ- and δ-Proteobacteria and Euryarchaeota respectively. Genes for aerobic and anaerobic alkane metabolism (alkB and bssA), methanogenesis (mcrA), denitrification (nirS and narG) and N2 fixation (nifH) were detected. Concomitant to hydrocarbon degradation, lowering of dissolve O2 and increase in oxidation-reduction potential (ORP) marked with an enrichment of N2 fixing, nitrate reducing aerobic/facultative anaerobic members [e.g., Azovibrio, Pseudoxanthomonas and Comamonadaceae members] was evident in N amended microcosm. This study highlighted that indigenous community of refinery sludge was intrinsically diverse, yet appreciable rate of in situ bioremediation could be achieved by supplying adequate N sources. PMID:27708623

  20. Oxygen transport in an in-situ bioremediation application

    International Nuclear Information System (INIS)

    Gupta, S.K.; Djafari, S.H.; Zhang, J.

    1995-01-01

    Contamination of groundwater and soils by toxic organic chemicals is widespread and poses serious health and environmental problems. The area under study is comprised of lagoons containing waste from former coking plant operations. The primary contaminants of concern in the waste are the polycyclic aromatic hydrocarbons (PAHs). Due to their hydrophobicity, these compounds tend to partition into hydrophobic adsorbents such as soil organic matter. In the presence of appropriate microorganisms, the biodegradation of higher molecular weight PAHs (with more than three benzene rings) is relatively slow, and generally involves cometabolism. The PAH compounds in general have been shown to be biodegradable and site-specific treatability tests have indicated that bioremediation has been effective in reducing PAH contamination levels at the study site. The subsurface permeability must be sufficient to allow for perfusion with solutions of oxygen and nutrients as required for biodegradation processes. Sources of oxygen that may e used include air (which has approximately 20% oxygen content), hydrogen peroxide (which releases oxygen through dissociation), and pure oxygen (industrially produced oxygen with greater than 90% purity). The stability of hydrogen peroxide in the presence of lagoon materials was evaluated during the predesign investigation conducted at the study site. The half-lives of hydrogen peroxide which were found to be between 20 minutes and 3 hours for the lagoon wastes, were determined to be marginal. Alternative oxygen sources considered included the use of air and pure oxygen

  1. Investigation of pyrrolizidine alkaloids including their respective N-oxides in selected food products available in Hong Kong by liquid chromatography electrospray ionisation mass spectrometry.

    Science.gov (United States)

    Chung, Stephen W C; Lam, Aaron C H

    2017-07-01

    This study determined the levels of pyrrolizidine alkaloids (PAs), including their respective N-oxides, in foodstuffs available in Hong Kong by liquid chromatography-electrospray ionisation tandem mass spectrometry. A total of 234 samples (48 food items) were collected randomly from a local market and analysed. About 50% of samples were found to contain detectable amount of PAs. Amongst the 48 food items, PAs were not detected in 11 food items, including barley flour, beef, cattle liver, pork, pig liver, chicken meat, chicken liver, milk, non-fermented tea, Melissa tea and linden tea. For those found to contain detectable PAs, the summed PA content ranged up to 11,000 µg kg -1 . The highest sum of PA content among the 37 food items calculated with lower bound was cumin seed, then followed by oregano, tarragon and herbs de Provence with ranges of 2.5-11,000, 1.5-5100, 8.0-3300 and 18-1300 µg kg -1 respectively. Among the samples, the highest sum of PA content was detected in a cumin seed sample (11,000 µg kg -1 ), followed by an oregano (5100 µg kg -1 ), a tarragon (3300 µg kg -1 ) and a herbs de Provence (1300 µg kg -1 ). In general, the results of this study agreed well with other published results in peer-reviewed journals, except that the total PAs in honey and specific tea infusion in this study were comparatively lower.

  2. Bioremediation of PAH contaminated soil samples

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1994-01-01

    Soils contaminated with polynuclear aromatic hydrocarbons (PAHs) pose a hazard to life. The remediation of such sites can be done using physical, chemical, and biological treatment methods or a combination of them. It is of interest to study the decontamination of soil using bioremediation. The experiments were conducted using Acinetobacter (ATCC 31012) at room temperature without pH or temperature control. In the first series of experiments, contaminated soil samples obtained from Alberta Research Council were analyzed to determine the toxic contaminant and their composition in the soil. These samples were then treated using aerobic fermentation and removal efficiency for each contaminant was determined. In the second series of experiments, a single contaminant was used to prepare a synthetic soil sample. This sample of known composition was then treated using aerobic fermentation in continuously stirred flasks. In one set of flasks, contaminant was the only carbon source and in the other set, starch was an additional carbon source. In the third series of experiments, the synthetic contaminated soil sample was treated in continuously stirred flasks in the first set and in fixed bed in the second set and the removal efficiencies were compared. The removal efficiencies obtained indicated the extent of biodegradation for various contaminants, the effect of additional carbon source, and performance in fixed bed without external aeration

  3. Treatment of chromium contaminated soil using bioremediation

    Science.gov (United States)

    Purwanti, Ipung Fitri; Putri, Tesya Paramita; Kurniawan, Setyo Budi

    2017-11-01

    Chromium contamination in soil occurs due to the disposal of chromium industrial wastewater or sludge that excess the quality standard. Chromium concentration in soil is ranged between 1 to 300 mg/kg while the maximum health standard is 2.5 mg/kg. Bioremediation is one of technology that could be used for remediating heavy metal contamination in soil. Bacteria have an ability to remove heavy metal from soil. One bacteria species that capable to remove chromium from soil is Bacillus subtilis. The aim of this research was to know the chromium removal percentage in contaminated soil by Bacillus subtilis. Artificial chromium contaminated soil was used by mixing 425gram sand and chromium trichloride solution. Concentration of chromium added into the spiked soil were 50, 75, and 100 mg/L. During 14 days, pH, soil temperature and soil moisture were tested. Initial and final number of bacterial colony and chromium concentration analysed. The result showed that the highest percentage of chromium removal was 11% at a chromium concentration of 75 mg/L

  4. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Troy, M.A.; Jerger, D.E.

    1992-01-01

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  5. Bioremediation of PAH polluted soils: column studies

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, R.O. [Dept. of Geology and Geochemistry, Stockholm Univ., Stockholm (Sweden); Trepte, B.S. [Angpannefoereningen AB, Stockholm (Sweden)

    2003-07-01

    Background. Due to spills, discharges and leakage, the gaswork site at Husarviken in Stockholm is today the largest (36 ha) creosote-contaminated site in Sweden. The main pollutants are creosote, lead and mercury. The remediation costs are estimated to be as high as US $125 million. It is thus of great interest to find more cost effective remediation methods. Objectives. The aim of this study was to investigate i) if the addition of NTA, EDTA, nitrate, iron and dry yeast would enhance the bioremediation rate of a complex organic pollutant like PAH and, if so, at what concentrations they would be most efficient, ii) the effect on PAH reduction when larger dimensions of the column is used to diminish the effect of water passing along the sides of the column, iii) long-term effects on the reduction of PAH in field-contaminated soil with high concentrations. Materials and Methods. Creosote-contaminated soil from the Husarviken gaswork site was treated with aerated water in column experiments at room temperature. Three column experiments were performed in 2 and 100 L of homogenised soil samples percolated by recirculating flushing water. Fluoranthene was analysed as a representative of the overall degradation of PAH in the columns. (orig.)

  6. Oil bioremediation processes in Brazilian marine environments : laboratory simulations

    International Nuclear Information System (INIS)

    Souza, E.S.; Triguis, J.A.

    2003-01-01

    Bioremediation methods have been used in Brazil to remediate contaminated soils from refinery residues. In particular, bioremediation is a process that can reduce the amount of oil that reaches shorelines, by enhancing natural biodegradation. This presentation presents the results of a laboratory study in which seawater contaminated with light crude oil was bioremediated in a period of 28 days using NPK fertilizer. Whole oil gas chromatography and gas chromatography-mass spectrometry analyses of the hydrocarbon fractions were used to determine the extent of oil biodegradation. It was determined that natural degradation occurred in the first 4 days, and mostly through the evaporation of light end n-alkanes. Biodegradation of n-alkanes was found to be most effective after 7 days, and no changes were observed in the relative abundance of steranes and triterpanes. It appears that the addition of NPK nutrient reduces the biodegradation potential of polyaromatic compounds. Seawater samples were also measured to determine the efficiency of bioremediation. The use of NPK fertilizer resulted in higher toxicity after 14 days probably due to the creation of metabolites as polyaromatic compounds biodegrade. Non toxic levels were found to be reestablished after 28 days of bioremediation. 16 refs., 4 tabs., 6 figs

  7. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

    Directory of Open Access Journals (Sweden)

    David A Roberts

    Full Text Available The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2. Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW m(-2 d(-1 to a maximum of 22.5 g DW m(-2 d(-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn to meet guidelines within two to four weeks.

  8. Apparatus and method for phosphate-accelerated bioremediation

    Science.gov (United States)

    Looney, Brian B.; Pfiffner, Susan M.; Phelps, Tommy J.; Lombard, Kenneth H.; Hazen, Terry C.; Borthen, James W.

    1998-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  9. A comparison of organophosphate degradation genes and bioremediation applications.

    Science.gov (United States)

    Iyer, Rupa; Iken, Brian; Damania, Ashish

    2013-12-01

    Organophosphates (OPs) form the bulk of pesticides that are currently in use around the world accounting for more than 30% of the world market. They also form the core for many nerve-based warfare agents including sarin and soman. The widespread use and the resultant build-up of OP pesticides and chemical nerve agents has led to the development of major health problems due to their extremely toxic interaction with any biological system that encounters them. Growing concern over the accumulation of OP compounds in our food products, in the soils from which they are harvested and in wastewater run-off has fuelled a growing interest in microbial biotechnology that provides cheap, efficient OP detoxification to supplement expensive chemical methods. In this article, we review the current state of knowledge of OP pesticide and chemical agent degradation and attempt to clarify confusion over identification and nomenclature of two major families of OP-degrading enzymes through a comparison of their structure and function. The isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation of OP pesticides and chemical nerve agents are discussed as well as the achievements and technological advancements made towards the bioremediation of such compounds. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  10. Respons of archaeal communities in beach sediments to spilled oil and bioremediation.

    NARCIS (Netherlands)

    Roling, W.F.M.; Couo de Brito, I.R.; Swannell, R.P.J.; Head, I.M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory

  11. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  12. Trace Metal Bioremediation: Assessment of Model Components from Laboratory and Field Studies to Identify Critical Variables

    International Nuclear Information System (INIS)

    Peter Jaffe; Herschel Rabitz

    2003-01-01

    bioremediation of trace metals was highly sensitive to the formulation of the denitrification process. Simulations were performed to illustrate the effect of biostimulation on the transport and precipitation of uranium in the subsurface, at conditions equivalent to UMTRA sites. These simulations predicted that uranium would precipitate in bands that are located relatively close to the acetate injection well. The simulations also showed the importance of properly determining U(IV) oxidative dissolution rates, in order to assess the stability of precipitates once oxygenated water reenters the aquifer after bioremediation is discontinued. The objective of this project was to provide guidance to NABIR's Systems Integration Element, on the development of models to simulate the bioremediation of trace metals and radionuclides. Such models necessarily need to integrate hydrological, geochemical, and microbiological processes. In order to gain a better understanding of the key processes that such a model should contain, it was deemed desirable to convene a workshop with experts from these different fields. The goal was to obtain a preliminary consensus on the required level of detail for the formulations of these different chemical, physical, and microbiological processes. The workshop was held on December 18, 1998

  13. Properties of bacterial laccases and their application in bioremediation of industrial wastes.

    Science.gov (United States)

    Chandra, Ram; Chowdhary, Pankaj

    2015-02-01

    The bioremediation process of industrial waste can be made more efficient using ligninolytic laccase enzymes, which are obtained from fungi, bacteria, higher plants, insects, and also in lichen. Laccase are catalyzed in the mono-electronic oxidation of a substrate from the expenditure of molecular oxygen. This enzyme belongs to the multicopper oxidases and participates in the cross linking of monomers, involved in the degradation of wide range industrial pollutants. In recent years, these enzymes have gained application in pulp and paper, textile and food industries. There are numerous reviews on laccases; however, a lot of information is still unknown due to their broad range of functions and applications. In this review, the bacterial laccases are focused for the bioremediation of various industrial pollutants. A brief description on structural molecular and physicochemical properties has been made. Moreover, the mechanism by which the reaction is catalyzed, the physical basis of thermostability and enantioselectivity, which requires more attention from researchers, and applications of laccase in various fields of biotechnology are pointed out.

  14. Naproxen degradation test to monitor Trametes versicolor activity in solid-state bioremediation processes.

    Science.gov (United States)

    Rodríguez-Rodríguez, Carlos E; Marco-Urrea, Ernest; Caminal, Gloria

    2010-07-15

    The white-rot fungus Trametes versicolor has been studied as a potential agent for the removal of environmental pollutants. For long-time solid-phase bioremediation systems a test is required to monitor the metabolic status of T. versicolor and its degradation capability at different stages. A biodegradation test based on the percentage of degradation of a spiked model pharmaceutical (anti-inflammatory naproxen) in 24 h (ND24) is proposed to monitor the removal of pharmaceuticals and personal care products in sewage sludge. ND24 is intended to act as a test complementary to ergosterol quantification as specific fungal biomarker, and laccase activity as extracellular oxidative capacity of T. versicolor. For samples collected over 45 d, ND24 values did not necessarily correlate with ergosterol or laccase amounts but in most cases, they were over 30% degradation, indicating that T. versicolor may be suitable for bioremediation of sewage sludge in the studied period. 2010 Elsevier B.V. All rights reserved.

  15. Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Bollag, J.M. [Penn State University, University Park, PA (USA). Soil Biochemical Lab.

    2003-07-01

    Biosurfactants are surface-active compounds synthesized by it wide variety of micro-organisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures - lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs) can be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released to the environment its a result of spillage of oil and byproducts of coal treatment processes. The low water solubility of PAHs limits their availability to microorganisms, which is a potential problem for bioremediation of PAH-contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of PAHs has potential applications in bioremediation.

  16. An application of adaption-innovation theory to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, L.J. [World Trade Centre, Melbourne, Victoria (Australia); Guerin, T.F. [Minenco Bioremediation Services, Bundoora, Victoria (Australia)

    1995-12-31

    This paper provides a discussion of the potential application of the Kirton Adaption-Innovation Inventory (KAI) for assessing the adaptive-innovative cognitive style of individuals and organizations within the bioremediation industry. Human-resource and line managers, or other individuals responsible for staff evaluation, selection, and project planning, should consider using the KAI to assist them in selecting individuals for specific roles requiring either an innovative or adaptive style. The KAI, a measure for assessing adaption-innovation at the individual employee level, is introduced and its potential value in the bioremediation industry is discussed.

  17. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  18. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that uses thisstrategy.

  19. Optical modulator including grapene

    Science.gov (United States)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Self-Sustained Flameless Heat Generator Based on Catalytic Oxidation of Methane or Propane-Butane Mixture for Various Object Heating Including Field Heating

    Directory of Open Access Journals (Sweden)

    Strizhak, P.Ye.

    2016-09-01

    Full Text Available An effective catalyst based on ceramic block support with honeycomb structure made of synthetic cordierite with low coefficient of temperature linear expansion has been developed. Flameless heat generator based on oxidation of methane or propane-butane mixture has been designed. Laboratory and bench testing revealed that the effectiveness of the generators is identical to foreign analogues. The production of self-sustained flameless heat catalytic generators and the catalysts have been adjusted.

  1. A Year in the Life: Annual Patterns of CO2 and CH4 from a Northern Finland Peatland, Including Anaerobic Methane Oxidation and Summer Ebullition Rates

    Science.gov (United States)

    Miller, K.; Lipson, D.; Biasi, C.; Dorodnikov, M.; Männistö, M.; Lai, C. T.

    2014-12-01

    The major ecological controls on methane (CH4) and carbon dioxide (CO2) fluxes in northern wetland systems are well known, yet estimates of source/sink magnitudes are often incongruous with measured rates. This mismatch persists because holistic flux datasets are rare, preventing 'whole picture' determinations of flux controls. To combat this, we measured net CO2 and CH4 fluxes from September 2012-2013 within a peatland in northern Lapland, Finland. In addition, we performed in situ manipulations and in vitro soil incubations to quantify anaerobic methane oxidation and methanogenic rates as they related to alternative electron acceptor availability. Average annual fluxes varied substantially between different depressions within the wetland, a pattern that persisted through all seasons. Season was a strong predictor of both CO2 and CH4 flux rates, yet CH4 rates were not related to melt-season 10cm or 30cm soil temperatures, and only poorly predicted with air temperatures. We found evidence for both autumnal and spring thaw CH4 bursts, collectively accounting for 26% of annual CH4 flux, although the autumnal burst was more than 5 fold larger than the spring burst. CH4 ebullition measured throughout the growing season augmented the CH4 source load by a factor of 1.5, and was linked with fine-scale spatial heterogeneity within the wetland. Surprisingly, CH4 flux rates were insensitive to Fe(III) and humic acid soil amendments, both of which amplified CO2 fluxes. Using in vitro incubations, we determined anaerobic methane oxidation and methanogenesis rates. Measured anaerobic oxidation rates showed potential consumption of between 6-39% of the methane produced, contributing approximately 1% of total carbon dioxide flux. Treatments of nitrate, sulfate and ferric iron showed that nitrate suppressed methanogenesis, but were not associated with anaerobic oxidation rates.

  2. Markers of Nucleic Acids and Proteins Oxidation among Office Workers Exposed to Air Pollutants Including (nano) TiO2 Particles.

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Ždímal, Vladimír; Kačer, P.; Vlčková, Š.; Fenclová, Z.; Navrátil, Tomáš; Komarc, M.; Schwarz, Jaroslav; Zíková, Naděžda; Makeš, Otakar; Zakharov, S.

    2016-01-01

    Roč. 37, Suppl.1 (2016), s. 13-16 ISSN 0172-780X Institutional support: RVO:67985858 ; RVO:61388955 Keywords : nanoparticles * exhaled breath condensate * oxidative stress * occupation * TiO Subject RIV: DN - Health Impact of the Environment Quality; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Public and environmental health; Physical chemistry (UFCH-W) Impact factor: 0.918, year: 2016

  3. Mechanistic characterization of aerobic alcohol oxidation catalyzed by Pd(OAc)(2)/pyridine including identification of the catalyst resting state and the origin of nonlinear [catalyst] dependence.

    Science.gov (United States)

    Steinhoff, Bradley A; Guzei, Ilia A; Stahl, Shannon S

    2004-09-15

    The Pd(OAc)(2)/pyridine catalyst system is one of the most convenient and versatile catalyst systems for selective aerobic oxidation of organic substrates. This report describes the catalytic mechanism of Pd(OAc)(2)/pyridine-mediated oxidation of benzyl alcohol, which has been studied by gas-uptake kinetic methods and (1)H NMR spectroscopy. The data reveal that turnover-limiting substrate oxidation by palladium(II) proceeds by a four-step pathway involving (1) formation of an adduct between the alcohol substrate and the square-planar palladium(II) complex, (2) proton-coupled ligand substitution to generate a palladium-alkoxide species, (3) reversible dissociation of pyridine from palladium(II) to create a three-coordinate intermediate, and (4) irreversible beta-hydride elimination to produce benzaldehyde. The catalyst resting state, characterized by (1)H NMR spectroscopy, consists of an equilibrium mixture of (py)(2)Pd(OAc)(2), 1, and the alcohol adduct of this complex, 1xRCH(2)OH. These in situ spectroscopic data provide direct support for the mechanism proposed from kinetic studies. The catalyst displays higher turnover frequency at lower catalyst loading, as revealed by a nonlinear dependence of the rate on [catalyst]. This phenomenon arises from a competition between forward and reverse reaction steps that exhibit unimolecular and bimolecular dependences on [catalyst]. Finally, overoxidation of benzyl alcohol to benzoic acid, even at low levels, contributes to catalyst deactivation by formation of a less active palladium benzoate complex.

  4. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  5. Bioremediation of Soil Microcosms from Auto-Mechanic Workshops ...

    African Journals Online (AJOL)

    Michael Horsfall

    diesel oil – Contaminated alpine soils at low temperatures App. Microbiology. 47, 462,. Mishra, S, Jyot,J;Kuhadi,RC;Lai,B (2001). Evaluation of Inoculum addition to Stimulate in. Situ of inoculum addition to stimulate in situ. Bioremediation of oily-sludge contaminated soil. Appl. Environ. Microbiol. 67(4): 1675-1681. Wunsche ...

  6. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  7. Bioremediation of soil contaminated with crude oil using fresh and ...

    African Journals Online (AJOL)

    A laboratory incubation study was conducted to evaluate the bioremediation potentials of different types of animal manure on soil contaminated with crude oil (Forcados). Treatments consisting of 20 t ha-1 each of poultry dropping (PD), swine manure(SM) and beef cattle manure (BCM) both in fresh (f) and partially ...

  8. Use of Additives in Bioremediation of Contaminated Groundwater and Soil

    Science.gov (United States)

    This chapter reviews application of additives used in bioremediation of chlorinated solvents and fuels for groundwater and soil remediation. Soluble carbon substrates are applicable to most site conditions except aquifers with very high or very low groundwater flow. Slow-release ...

  9. Monitoring for bioremediation efficacy: The marrow marsh experience

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1993-01-01

    The US Environmental Protection Agency's Environmental Response Team analyzed samples taken from Marrow Marsh, Galveston Bay, Texas, to assess the efficacy of a bioremediation effort in the marsh following the Apex barges spill on July 28, 1990. Samples from the marsh had been collected over a 96-hour period following the first application of the bioremediation agent and then 25 days after the second application, which occurred 8 days after the first. Results of sample analyses to evaluate changes in the chemical characteristics of spilled oil failed to show evidence of oil degradation during the 96 hours after the initial treatment, but did show evidence of degradation 25 days after the second treatment-although differences between samples from treated and untreated sites were not evident. Because control areas had not been maintained after the second application, contamination by the bioremediation agent of previously untreated (control) areas may have occurred, perhaps negating the possibility of detecting differences between treated and control areas. Better preparedness to implement bioremediation and conduct monitoring might have increased the effectiveness of the monitoring effort

  10. BIOREMEDIATION OF HAZARDOUS WASTES - RESEARCH, DEVELOPMENT AND FIELD EVALUATIONS - 1995

    Science.gov (United States)

    The proceedings of the 1995 Symposium on Bioremediation of Hazardous Wastes, hosted by the Office of Research and Development (ORD) of the EPA in Rye Brook, New York. he symposium was the eighth annual meeting for the presentation of research conducted by EPA's Biosystems Technol...

  11. Bioremediation and degradation of CCA-treated wood waste.

    Science.gov (United States)

    Barbara L Illman; Vina W. Yang

    2004-01-01

    Bioprocessing CCA wood waste is an efficient and economical alternative to depositing the waste in landfills, especially if landfill restrictions on CCA waste are imposed nation wide. We have developed bioremediation and degradation technologies for microbial processing of CCA waste. The technologies are based on specially formulated inoculum of wood decay fungi,...

  12. Bioremediation of soil contaminated by spent diesel oil using ...

    African Journals Online (AJOL)

    Objectives: To investigate the potential of Pleurotus pulmonarius in the bioremediation of soil contaminated with spent diesel oil at 5, 10 and 15% (v/w) level of contamination over a period of one and two months of incubation. Methodology and results: A pure culture of P. pulmonarius was obtained from the Plant physiology ...

  13. influence of salinity and fungal prevalence on bioremediation of ...

    African Journals Online (AJOL)

    Uduak Jimmy

    KEY WORDS: Salinity Effect, Bioremediation, Fungal Prevalence, Crude Oil Polluted Soil. INTRODUCTION ... of Science, 1985) in marine and land ..... Marine. Pollution. (4th edition). Oxford University. Press Inc. N. Y. 161p. Day, P. R., 1965. Particles Grain Size Analysis in. CA Black et al (eds) Methods of Soil. Analysis.

  14. Effect of Microorganisms in the Bioremediation of Spent Engine Oil ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Effect of Microorganisms in the Bioremediation of Spent Engine Oil and Petroleum. Related Environmental Pollution. 1* .... classified as linear, branched or cyclic in structures (Riser-. Roberts, 1998). Unsaturated compounds in .... isolated from petroleum polluted soil proved to be the potential microorganisms accountable ...

  15. Impact Assessment and Bioremediation of oil Contaminated Soil: A ...

    African Journals Online (AJOL)

    Impact Assessment and Bioremediation of oil Contaminated Soil: A Case Study of Koko and Ajoki Communities, Niger Delta Nigeria. ... Journal of Applied Sciences and Environmental Management. Journal Home ... The soils were first tested to ascertain the level of contamination before the experimental procedure began.

  16. Advanced physical models and monitoring methods for in situ bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, K.; Chalmer, P.

    1996-05-30

    Numerous reports have indicated that contamination at DOE facilities is widespread and pervasive. Existing technology is often too costly or ineffective in remediating these contamination problems. An effective method to address one class of contamination, petroleum hydrocarbons, is in situ bioremediation. This project was designed to provide tools and approaches for increasing the reliability of in situ bioremediation. An example of the recognition within DOE for developing these tools is in the FY-1995 Technology Development Needs Summary of the Office of Technology Development of the US DOE. This document identifies specific needs addressed by this research. For example, Section 3.3 Need Statement IS-3 identifies the need for a {open_quotes}Rapid method to detect in situ biodegradation products.{close_quotes} Also, BW-I identifies the need to recognize boundaries between clean and contaminated materials and soils. Metabolic activity could identify these boundaries. Measuring rates of in situ microbial activity is critical to the fundamental understanding of subsurface microbiology and in selecting natural attenuation as a remediation option. Given the complexity and heterogeneity of subsurface environments, a significant cost incurred during bioremediation is the characterization of microbial activity, in part because so many intermediate end points (biomass, gene frequency, laboratory measurements of activity, etc.) must be used to infer in situ activity. A fast, accurate, real-time, and cost-effective method is needed to determine success of bioremediation at DOE sites.

  17. Bioremediation of soil contaminated with spent and fresh cutting ...

    African Journals Online (AJOL)

    OLAYONWAOLUWOLE JOHN

    2013-10-16

    Oct 16, 2013 ... This growing concern about contamination with cutting fluids makes remediation process imperative. White rot fungus, Pleurotus pulmonarius was investigated in this pilot study for its potential to bioremediate contaminants such as heavy metals and total petroleum hydrocarbon at 10, 20 and 30%.

  18. Perspectives of bioremediation as a panacea for ecological pollution ...

    African Journals Online (AJOL)

    Analyzing the prospects of bioremediation methods and technologies as a potential clean up solution and remedy to the current environmental pollution problems facing the world today. Due to the significant rise in the number of manufacturing/ heavy industries, increase in the volume of crude oil drilling, and refining and ...

  19. Effect of earthworm inoculation on the bioremediation of used ...

    African Journals Online (AJOL)

    The effect of earthworm (Eudrilus eugeniae) on the bioremediation of used engine oil contaminated soil, amended with poultry manure, was investigated. Investigation into the effect of initial concentration of used engine oil, in soil, for earthworm inoculated samples showed that the biodegradation rate of used engine oil ...

  20. Genetic engineering microbes for bioremediation/ biorecovery of uranium

    International Nuclear Information System (INIS)

    Apte, S.K.; Rao, A.S.; Appukuttan, D.; Nilgiriwala, K.S.; Acharya, C.

    2005-01-01

    Bioremediation (both bioremoval and biorecovery) of metals is considered a feasible, economic and eco-friendly alternative to chemical methods of metal extraction, particularly when the metal concentration is very low. Scanty distribution along with poor ore quality makes biomining of uranium an attractive preposition. Biosorption, bioprecipitation or bioaccumulation of uranium, aided by recombinant DNA technology, offer a promising technology for recovery of uranium from acidic or alkaline nuclear waste, tailings or from sea-water. Genetic engineering of bacteria, with a gene encoding an acid phosphatase, has yielded strains that can bioprecipitate uranium from very low concentrations at acidic-neutral pH, in a relatively short time. Organisms overproducing alkaline phosphatase have been selected for uranium precipitation from alkaline waste. Such abilities have now been transferred to the radioresistant microbe Deinococcus radiodurans to facilitate in situ bioremediation of nuclear waste, with some success. Sulfate-reducing bacteria are being characterized for bioremediation of uranium in tailings with the dual objective of uranium precipitation and reduction of sulfate to sulphide. Certain marine cyanobacteria have shown promise for uranium biosorption to extracellular polysaccharides, and intracellular accumulation involving metal sequestering metallothionin proteins. Future work is aimed at understanding the genetic basis of these abilities and to engineer them into suitable organisms subsequently. As photosynthetic, nitrogen-fixing microbes, which are considerably resistant to ionizing radiations, cyanobacteria hold considerable potential for bioremediation of nuclear waste. (author)

  1. Soil bioremediation approaches for petroleum hydrocarbon polluted environments

    Directory of Open Access Journals (Sweden)

    Eman Koshlaf

    2017-01-01

    Full Text Available Increasing industrialisation, continued population growth and heavy demand and reliance on petrochemical products have led to unprecedented economic growth and development. However, inevitably this dependence on fossil fuels has resulted in serious environmental issues over recent decades. The eco-toxicity and the potential health implications that petroleum hydrocarbons pose for both environmental and human health have led to increased interest in developing environmental biotechnology-based methodologies to detoxify environments impacted by petrogenic compounds. Different approaches have been applied for remediating polluted sites with petroleum derivatives. Bioremediation represents an environmentally sustainable and economical emerging technology for maximizing the metabolism of organic pollutants and minimizing the ecological effects of oil spills. Bioremediation relies on microbial metabolic activities in the presence of optimal ecological factors and necessary nutrients to transform organic pollutants such as petrogenic hydrocarbons. Although, biodegradation often takes longer than traditional remediation methods, the complete degradation of the contaminant is often accomplished. Hydrocarbon biodegradation in soil is determined by a number of environmental and biological factors varying from site to site such as the pH of the soil, temperature, oxygen availability and nutrient content, the growth and survival of hydrocarbon-degrading microbes and bioavailability of pollutants to microbial attack. In this review we have attempted to broaden the perspectives of scientists working in bioremediation. We focus on the most common bioremediation technologies currently used for soil remediation and the mechanisms underlying the degradation of petrogenic hydrocarbons by microorganisms.

  2. Remediation case studies: Bioremediation and vitrification. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report is a collection of six case studies of bioremediation and two case studies of vitrification projects prepared by federal agencies. The case studies, collected under the auspices of the Federal Remediation Technologies Roundtable, were undertaken to document the results and lessons learned from early technology applications.

  3. Bioremediation of Petroleum Hydrocarbon-Contaminated Soils, Comprehensive Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, D.J.

    2001-01-12

    The US Department of Energy and the Institute for Ecology of Industrial Areas, Katowice, Poland have been cooperating in the development and implementation of innovative environmental remediation technologies since 1995. U.S. experts worked in tandem with counterparts from the IETU and CZOR throughout this project to characterize, assess and subsequently, design, implement and monitor a bioremediation system.

  4. Occurrence and bioremediation of anthracene in the environment ...

    African Journals Online (AJOL)

    Occurrence of PAH in the environment has been a concern of many environmentalist for its obstinac, toxicity and harm that it may impose. Anthracene is a common low molecular weight PAH that is often used as a model PAH in bioremediation study due to its structure that is also found in high molecular weight PAH.

  5. Bioremediation of a Petroleum-Hydrocarbon Polluted Agricultural ...

    African Journals Online (AJOL)

    A combination of field cells involving a control and five treatment cells were evaluated under field conditions in the bioremediation of a petroleum- hydrocarbon polluted agricultural soil over a six-week period. Previous works have indicated that crude oil contamination of soils depletes oxygen reserves in the soils and slows ...

  6. Heavy Metal Resistance Strategies of Acidophilic Bacteria and Their Acquisition: Importance for Biomining and Bioremediation

    Directory of Open Access Journals (Sweden)

    Claudio A Navarro

    2013-01-01

    Full Text Available Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI, which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each

  7. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

    Science.gov (United States)

    Dvořák, Pavel; Nikel, Pablo I; Damborský, Jiří; de Lorenzo, Víctor

    2017-11-15

    Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effects of Molecular Structure of the Oxidation Products of Reactive Atmospheric Hydrocarbons on the Formation of Secondary Organic Particular Matter, Including the Effects of Water

    Science.gov (United States)

    Niakan, Negar

    Organic aerosols have significant effects on human health, air quality and climate. Secondary organic aerosols (SOA) are produced by the oxidation of primary-volatile organic compounds (VOC). For example, α-pinene reacts with oxidants such as hydroxyl radical (OH), ozone (O3), and nitrate radical (NO3), accounting for a significant portion of total organic aerosol in the atmosphere. Experimental studies have shown that the oxidation process between α-pinene and ozone has the most significant impact in the formation of SOA (Hoffmann et al., 1997). Most of the models used to predict SOA formation, however, are limited in that they neglect the role of water due to uncertainty about the structure and nature of organic compounds, in addition to uncertainty about the effect of varying relative humidity (RH) on atmospheric organic particulate matter (OPM) (Kanakidou et al., 2005). For this study, structures of organic compounds involved in the formation of SOA are estimated, and the role of water uptake is incorporated in the process. The Combinatorial Aerosol Formation Model (CAFM) is a deterministic model used to determine the amount of organic mass (M o µg m-3) formation based on the predicted structures. Results show that the amount of SOA that is formed is almost negligible when the amount of parent hydrocarbon involved in the reaction is low ( i.e. around 5 µg m-3), especially at lower RH. Observing compounds with a greater number of polar groups (alcohol and carboxylic acid) indicates that structure has a significant effect on organic mass formation. This observation is in agreement with the fact that the more hydrophilic the compound is, the higher RH, leading to more condensation into the PM phase.

  9. Bioremediation potential of diesel-contaminated Libyan soil.

    Science.gov (United States)

    Koshlaf, Eman; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Taha, Mohamed; Haleyur, Nagalakshmi; Makadia, Tanvi H; Morrison, Paul D; Ball, Andrew S

    2016-11-01

    Bioremediation is a broadly applied environmentally friendly and economical treatment for the clean-up of sites contaminated by petroleum hydrocarbons. However, the application of this technology to contaminated soil in Libya has not been fully exploited. In this study, the efficacy of different bioremediation processes (necrophytoremediation using pea straw, bioaugmentation and a combination of both treatments) together with natural attenuation were assessed in diesel contaminated Libyan soils. The addition of pea straw was found to be the best bioremediation treatment for cleaning up diesel contaminated Libyan soil after 12 weeks. The greatest TPH degradation, 96.1% (18,239.6mgkg(-1)) and 95% (17,991.14mgkg(-1)) were obtained when the soil was amended with pea straw alone and in combination with a hydrocarbonoclastic consortium respectively. In contrast, natural attenuation resulted in a significantly lower TPH reduction of 76% (14,444.5mgkg(-1)). The presence of pea straw also led to a significant increased recovery of hydrocarbon degraders; 5.7log CFU g(-1) dry soil, compared to 4.4log CFUg(-1) dry soil for the untreated (natural attenuation) soil. DGGE and Illumina 16S metagenomic analyses confirm shifts in bacterial communities compared with original soil after 12 weeks incubation. In addition, metagenomic analysis showed that original soil contained hydrocarbon degraders (e.g. Pseudoxanthomonas spp. and Alcanivorax spp.). However, they require a biostimulant (in this case pea straw) to become active. This study is the first to report successful oil bioremediation with pea straw in Libya. It demonstrates the effectiveness of pea straw in enhancing bioremediation of the diesel-contaminated Libyan soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  11. Draft Genome Sequence of Pseudomonas putida CBF10-2, a Soil Isolate with Bioremediation Potential in Agricultural and Industrial Environmental Settings

    OpenAIRE

    Iyer, Rupa; Damania, Ashish

    2016-01-01

    Pseudomonas putida CBF10-2 is a microorganism isolated from farmland soil in Fairchild, TX, found to degrade high-impact xenobiotics, including organophosphate insecticides, petroleum hydrocarbons, and both monocyclic and polycyclic aromatics. The versatility of CBF10-2 makes it useful for multipurpose bioremediation of contaminated sites in agricultural and industrial environments.

  12. Bioremediation of oil sludge contaminated soil using bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost

    International Nuclear Information System (INIS)

    Tri Retno, D.L.; Mulyana, N.

    2013-01-01

    Bulking agent mixture enriched consortia of microbial inoculants based by irradiated compost was used on bioremediation of microcosm scale contaminated by hydrocarbon soil. Bioremediation composting was carried out for 42 days. Composting was done with a mixture of bulking agent (sawdust, residual sludge biogas and compost) by 30%, mud petroleum (oil sludge) by 20% and 50% of soil. Mixture of 80% soil and 20% oil sludge was used as a control. Irradiated compost was used as a carrier for consortia of microbial inoculants (F + B) which biodegradable hydrocarbons. Treatment variations include A1, A2, B1, B2, C1, C2, D1 and D2. Process parameters were observed to determine the optimal conditions include: temperature, pH, water content, TPC (Total Plate Count) and degradation of % TPH (Total Petroleum Hydrocarbon). Optimal conditions were achieved in the remediation of oil sludge contamination of 20% using the B2 treatment with the addition consortia of microbial inoculants based by irradiated compost of sawdust (bulking agentby 30% at concentrations of soil by 50% with TPH degradation optimal efficiency of 81.32%. The result of GC-MS analysis showed that bioremediation for 42 days by using a sawdust as a mixture of bulking agents which enriched consortia of microbial inoculants based by irradiated compost is biodegradeable, so initial hydrocarbons with the distribution of the carbon chain C-7 to C-54 into final hydrocarbons with the distribution of carbon chain C-6 to C-8. (author)

  13. Potential of Trichoderma spp. strains for the bioremediation of soils contaminated with petroleum

    Directory of Open Access Journals (Sweden)

    Marcia Pesántez

    2016-10-01

    Full Text Available Fungi species can degrade xenobiotic compounds contaminating the soil, including hydrocarbons. The objective of this work was to determine the potential of three strains of Trichoderma, isolated from soil contaminated with petroleum, for bioremediation. Trichoderma harzianum CCECH-Te1, Trichoderma viride CCECH-Te2 and Trichoderma psedokoningii CCECH-Te3 were included in one assay with each independent strain. The inoculum was adjusted to a concentration of 1x1010 conidia ml-1 which was applied to soil contaminated by an oil spill. After 96 days of inoculation, soil samples were taken at 10 and 15 cm depth. The content of total hydrocarbons, polycyclic aromatic hydrocarbons and heavy metals such as cadmium, nickel and lead were determined. With the data, it was calculated the percentage of removal of the analyzed compounds by each strain. At 10 cm and 15 cm depth, it was observed the removal of the compounds in percentages that reached between 47 and 69.1% in the hydrocarbons and up to 53.72% in the heavy metals. It which denoted the potential of the three strains for bioremediation in contaminated soils.   Keywords: heavy metals, polycyclic aromatic hydrocarbons, xenobiotic compounds

  14. Bio-electro oxidation of indigo carmine by using microporous activated carbon fiber felt as anode and bioreactor support.

    Science.gov (United States)

    Garcia, Luane Ferreira; Rodrigues Siqueira, Ana Claudia; Lobón, Germán Sanz; Marcuzzo, Jossano Saldanha; Pessela, Benevides Costa; Mendez, Eduardo; Garcia, Telma Alves; de Souza Gil, Eric

    2017-11-01

    The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Improving Polycyclic Aromatic Hydrocarbon Biodegradation in Contaminated Soil Through Low-Level Surfactant Addition After Conventional Bioremediation.

    Science.gov (United States)

    Adrion, Alden C; Singleton, David R; Nakamura, Jun; Shea, Damian; Aitken, Michael D

    2016-09-01

    Efficacy of bioremediation for soil contaminated with polycyclic aromatic hydrocarbons (PAHs) may be limited by the fractions of soil-bound PAHs that are less accessible to PAH-degrading microorganisms. In previous test-tube-scale work, submicellar doses of nonionic surfactants were screened for their ability to enhance the desorption and biodegradation of residual PAHs in soil after conventional bioremediation in a laboratory-scale, slurry-phase bioreactor. Polyoxyethylene sorbitol hexaoleate (POESH) was the optimum surfactant for enhancing PAH removal, especially the high-molecular weight PAHs. This work extends that concept by treating the effluent from the slurry-phase bioreactor in a second-stage batch reactor, to which POESH was added, for an additional 7 or 12 days. Surfactant amendment removed substantial amounts of the PAHs and oxy-PAHs remaining after conventional slurry-phase bioremediation, including more than 80% of residual 4-ring PAHs. Surfactant-amended treatment decreased soil cytotoxicity, but often increased the genotoxicity of the soil as measured using the DT-40 chicken lymphocyte DNA damage response assay. Potential ecotoxicity, measured using a seed germination assay, was reduced by bioreactor treatment and was reduced further after second-stage treatment with POESH. Of bacteria previously implicated as potential PAH degraders under POESH-amended conditions in a prior study, members of the Terrimonas genus were associated with differences in high-molecular weight PAH removal in the current study. Research using submicellar doses of surfactant as a second-stage treatment step is limited and these findings can inform the design of bioremediation systems at field sites treating soil contaminated with PAHs and other hydrophobic contaminants that have low bioaccessibility.

  16. Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.

    Science.gov (United States)

    Mkandawire, Martin

    2013-11-01

    The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.

  17. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain); Mayor, Lourdes Rodríguez [National Institute for Hydrogen Research, C/Fernando el Santo, 13500 Puertollano (Spain); Camacho, José Villaseñor, E-mail: jose.villasenor@uclm.es [Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla La Mancha, 13071 Ciudad Real (Spain)

    2016-07-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  18. QUANTIFICATION AND BIOREMEDIATION OF ENVIRONMENTAL SAMPLES BY DEVELOPING A NOVEL AND EFFICIENT METHOD

    Directory of Open Access Journals (Sweden)

    Mohammad Osama

    2014-06-01

    Full Text Available Pleurotus ostreatus, a white rot fungus, is capable of bioremediating a wide range of organic contaminants including Polycyclic Aromatic Hydrocarbons (PAHs. Ergosterol is produced by living fungal biomass and used as a measure of fungal biomass. The first part of this work deals with the extraction and quantification of PAHs from contaminated sediments by Lipid Extraction Method (LEM. The second part consists of the development of a novel extraction method (Ergosterol Extraction Method (EEM, quantification and bioremediation. The novelty of this method is the simultaneously extraction and quantification of two different types of compounds, sterol (ergosterol and PAHs and is more efficient than LEM. EEM has been successful in extracting ergosterol from the fungus grown on barley in the concentrations of 17.5-39.94 µg g-1 ergosterol and the PAHs are much more quantified in numbers and amounts as compared to LEM. In addition, cholesterol usually found in animals, has also been detected in the fungus, P. ostreatus at easily detectable levels.

  19. Performance Indicators for Uranium Bioremediation in the Subsurface: Basis and Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yabusaki, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2006-12-29

    The purpose of this letter report is to identify performance indicators for in situ engineered bioremediation of subsurface uranium (U) contamination. This report focuses on in situ treatment of groundwater by biostimulation of extant in situ microbial populations (see http://128.3.7.51/NABIR/generalinfo/primers_guides/03_NABIR_primer.pdf for background information on bioremediation of metals and radionuclides). The treatment process involves amendment of the subsurface with an electron donor such as acetate, lactate, ethanol or other organic compound such that in situ microorganisms mediate the reduction of U(VI) to U(IV). U(VI) precipitates as uraninite or other insoluble U phase. Uranium is thus immobilized in place by such processes and is subject to reoxidation that may remobilize the reduced uranium. Related processes include augmenting the extant subsurface microbial populations, addition of electron acceptors, and introduction of chemically reducing materials such as zero-valent Fe. While metrics for such processes may be similar to those for in situ biostimulation, these related processes are not directly in the scope of this letter report.

  20. Kinetic modelling of a diesel-polluted clayey soil bioremediation process

    International Nuclear Information System (INIS)

    Fernández, Engracia Lacasa; Merlo, Elena Moliterni; Mayor, Lourdes Rodríguez; Camacho, José Villaseñor

    2016-01-01

    A mathematical model is proposed to describe a diesel-polluted clayey soil bioremediation process. The reaction system under study was considered a completely mixed closed batch reactor, which initially contacted a soil matrix polluted with diesel hydrocarbons, an aqueous liquid-specific culture medium and a microbial inoculation. The model coupled the mass transfer phenomena and the distribution of hydrocarbons among four phases (solid, S; water, A; non-aqueous liquid, NAPL; and air, V) with Monod kinetics. In the first step, the model simulating abiotic conditions was used to estimate only the mass transfer coefficients. In the second step, the model including both mass transfer and biodegradation phenomena was used to estimate the biological kinetic and stoichiometric parameters. In both situations, the model predictions were validated with experimental data that corresponded to previous research by the same authors. A correct fit between the model predictions and the experimental data was observed because the modelling curves captured the major trends for the diesel distribution in each phase. The model parameters were compared to different previously reported values found in the literature. Pearson correlation coefficients were used to show the reproducibility level of the model. - Highlights: • A mathematical model is proposed to describe a soil bioremediation process. • The model couples mass transfer phenomena among phases with biodegradation. • Model predictions were validated with previous data reported by the authors. • A correct fit and correlation coefficients were observed.

  1. Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites

    Science.gov (United States)

    2015-03-19

    Bioremediation Approaches at Chlorinated Solvent Sites March 19, 2015 SERDP & ESTCP Webinar Series (#11) SERDP & ESTCP Webinar Series Welcome and...Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated Solvent Sites Ms. Carmen Lebrón, Independent Consultant (20 minutes + Q&A) Dr...ESTCP Webinar Series Quantitative Framework and Management Expectation Tool for the Selection of Bioremediation Approaches at Chlorinated

  2. In Situ Bioremediation and Efficacy Monitoring SERDP Project CU-O3O

    Science.gov (United States)

    1998-06-30

    bioremediation performance at Gainesville site ( creosote ) where inorganic nutrients are limiting. Anaerobic biodegradation is an important...hydrocarbons collected from two creosote contaminated sites," chapter in "In Situ Bioremediation and Efficacy Monitoring," Edited by B.J. Spargo...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6115-98-8179 In Situ Bioremediation and - Efficacy Monitoring SERDP Project CU-030

  3. Bioremediation capacity, nutritional value and biorefining of macroalga Saccharina latissima

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo

    two growing seasons enhanced the biomass yield and thus value, but not the bioremediation capacity. Harvest time had a significant impact in overall chemical composition, while cultivation site did not generally result in marked differences. The growth of epiphytic organisms from July to November......Macroalgae have the ability to assimilate and convert waste nutrients (N and P) into valuable biomass. In this context, they have been extensively studied for their bioremediation potential for integrated multi-trophic aquaculture (IMTA). With a global aquaculture production of 23.8 million tonnes...... provides better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables. Regarding safety regulations, however, the main conclusions on the mineral analyses showed that high concentrations of iodine (up to 5,001 mg kg-1 DM) in the biomass may be of concern for human...

  4. Bioremediation of a marine oil spill in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Prince, R.C.; Grossman, M.J.; Bare, R.E. [ExxonMobil Research and Engineering Co., Annandale, NJ (United States); Guenette, C.C. [SINTEF Applied Chemistry, Trondheim (Norway); Owens, E.H. [Polaris Applied Sciences, Bainbridge Island, WA (United States); Lee, K. [Department of Fisheries and Oceans, Mont-Joli, PQ (Canada). Maurice Lamontagne Inst.; Sergy, G.A. [Environment Canada, Edmonton, AB (Canada)

    2001-07-01

    This paper presents the results of a bioremediation field trial on an Arctic beach on Spitsbergen where shores are generally ice-bound for more than 6 months of the year. An intermediate fuel oil was applied at about 5 litres per square metre directly onto 140 metres of shoreline in July 1997. The oil penetrated to a depth of 15 cm. The area was divided into 4 plots, two of which were tilled, one was treated with soluble, slow release fertilizers, and one was left untreated. The objective was to determine if bioremediation is an environmentally viable and cost-effective option for oiled shorelines in the Arctic. The study showed that the addition of soluble and slow release fertilizers doubled the rate of oil biodegradation in situ with no adverse environmental side effects. The effectiveness of the fertilizer applications in delivering nutrients to the oiled zone was measured in the field with simple test kits. 23 refs.

  5. Monitoring bioremediation of weathered diesel NAPL using oxygen depletion profiles

    International Nuclear Information System (INIS)

    Davis, G.B.; Johnston, C.D.; Patterson, B.M.; Barber, C.; Bennett, M.

    1995-01-01

    Semicontinuous logging of oxygen concentrations at multiple depths has been used to evaluate the progress of an in situ bioremediation trial at a site contaminated by weathered diesel nonaqueous-phase liquid (NAPL). The evaluation trial consisted of periodic addition of nutrients and aeration of a 100-m 2 trial plot. During the bioremediation trial, aeration was stopped periodically, and decreases in dissolved and gaseous oxygen concentrations were monitored using data loggers attached to in situ oxygen sensors placed at multiple depths above and within a thin NAPL-contaminated zone. Oxygen usage rate coefficients were determined by fitting zero- and first-order rate equations to the oxygen depletion curves. For nutrient-amended sites within the trial plot, estimates of oxygen usage rate coefficients were significantly higher than estimates from unamended sites. These rates also converted to NPL degradation rates, comparable to those achieved in previous studies, despite the high concentrations and weathered state of the NAPL at this test site

  6. Contributions of biosurfactants to natural or induced bioremediation.

    Science.gov (United States)

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  7. Action of plant root exudates in bioremediations: a review

    Directory of Open Access Journals (Sweden)

    Peter Dundek

    2011-01-01

    Full Text Available This work presents a summary of literature dealing with the use of plant root exudates in bioremediations. Bioremediation using plants (phytoremediation or rhizoremediation and associate rhizosphere to decontaminate polluted soil is a method based on the catabolic potential of root-associated microorganisms, which are supported by the organic substrates released from roots. These substrates are called “root exudates”. Root exudates support metabolism of pollutants-decomposing microorganisms in the rhizosphere, and affect sorption / desorption of pollutants. Awareness of exudation rates is necessary for testing soil decontamination. Commonly, water-soluble root exudates of different plants are studied for their qualitative composition which should be related to total carbon of exuded water-soluble compounds. This paper presents the determined rate of plant root exudation and the amount of root exudates carbon used to form artificial rhizosphere.

  8. Subtask 1.16-Slow-Release Bioremediation Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Marc D. Kurz; Edwin S. Olson

    2006-07-31

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy & Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation.

  9. Subtask 1.16-Slow-Release Bioremediation Accelerators

    International Nuclear Information System (INIS)

    Marc D. Kurz; Edwin S. Olson

    2006-01-01

    Low-cost methods are needed to enhance various bioremediation technologies, from natural attenuation to heavily engineered remediation of subsurface hydrocarbon contamination. Many subsurface sites have insufficient quantities of nitrogen and phosphorus, resulting in poor bioactivity and increased remediation time and costs. The addition of conventional fertilizers can improve bioactivity, but often the nutrients dissolve quickly and migrate away from the contaminant zone before being utilized by the microbes. Through this project, conducted by the Energy and Environmental Research Center, polymers were developed that slowly release nitrogen and phosphorus into the subsurface. Conceptually, these polymers are designed to adhere to soil particles in the subsurface contamination zone where they slowly degrade and release nutrients over longer periods of time compared to conventional fertilizer applications. Tests conducted during this study indicate that some of the developed polymers have excellent potential to satisfy the microbial requirements for enhanced bioremediation

  10. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  11. Next generation of microbial inoculants for agriculture and bioremediation.

    Science.gov (United States)

    Baez-Rogelio, Antonino; Morales-García, Yolanda Elizabeth; Quintero-Hernández, Verónica; Muñoz-Rojas, Jesús

    2017-01-01

    In this Crystal Ball we describe the negative effects of the scheme of intensive agriculture of the green revolution technology. To recover the contaminated soils derived from intensive farming is necessary introduce new successful technologies to replace the use of chemical fertilizer and toxic pesticides by organic fertilizers and biological control agents. Our principal speculation is that in a short time authors in the field of PGPB and bioremediation will be expanding the knowledge on the development of different formulations containing super-bacteria or a mixture of super-bacteria able to provide beneficial effect for agriculture and bioremediation. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. The Effects of Subsurface Bioremediation on Soil Structure, Colloid Formation, and Contaminant Transport

    Science.gov (United States)

    Wang, Y.; Liang, X.; Zhuang, J.; Radosevich, M.

    2016-12-01

    Anaerobic bioremediation is widely applied to create anaerobic subsurface conditions designed to stimulate microorganisms that degrade organic contaminants and immobilize toxic metals in situ. Anaerobic conditions that accompany such techniques also promotes microbially mediated Fe(III)-oxide mineral reduction. The reduction of Fe(III) could potentially cause soil structure breakdown, formation of clay colloids, and alternation of soil surface chemical properties. These processes could then affect bioremediation and the migration of contaminants. Column experiments were conducted to investigate the impact of anaerobic bioreduction on soil structure, hydraulic properties, colloid formation, and transport of three tracers (bromide, DFBA, and silica shelled silver nanoparticles). Columns packed with inoculated water stable soil aggregates were placed in anaerobic glovebox, and artificial groundwater media was pumped into the columns to simulate anaerobic bioreduction process for four weeks. Decent amount of soluble Fe(II) accompanied by colloids were detected in the effluent from bioreduction columns a week after initiation of bioreduction treatment, which demonstrated bioreduction of Fe(III) and formation of colloids. Transport experiments were performed in the columns before and after bioreduction process to assess the changes of hydraulic and surface chemical properties through bioreduction treatment. Earlier breakthrough of bromide and DFBA after treatment indicated alterations in flow paths (formation of preferential flow paths). Less dispersion of bromide and DFBA, and less tailing of DFBA after treatment implied breakdown of soil aggregates. Dramatically enhanced transport and early breakthrough of silica shelled silver nanoparticles after treatment supported the above conclusion of alterations in flow paths, and indicated changes of soil surface chemical properties.

  13. Engineering Deinococcus geothermailis for Bioremediation of High-Temperature Radioactive Waste Environments

    International Nuclear Information System (INIS)

    Brim, Hassan; Venkateswaran, Amudhan; Kostandarithes, Heather M.; Fredrickson, Jim K.; Daly, Michael J.

    2003-01-01

    Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes

  14. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999; TOPICAL

    International Nuclear Information System (INIS)

    Hazen, Terry C.

    2000-01-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs

  15. Bioremediation of the textile waste effluent by Chlorella vulgaris

    OpenAIRE

    El-Kassas, Hala Yassin; Mohamed, Laila Abdelfattah

    2014-01-01

    The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE) was investigated using 22 Central Composite Design (CCD). This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE) and the study of the best dilution of the WE for maximum biomass production...

  16. Bioremediation of toxic and hazardous wastes by denitrifying bacteria

    International Nuclear Information System (INIS)

    Barraquio, Wilfredo L.

    2005-01-01

    This papers discusses the wastes coming rom domestic, industrial and agricultural sources are polluting the forests, rivers lakes, groundwater, and air and there are some measures like the physicochemical and biological measures are being utilized to remedy the destruction of resources; and of the measures, bioremediation offers great potential in cleaning up the environment of pollutants which is a cost-effective and environment-friendly technology that uses microorganisms to degrade hazardous substances into less toxic

  17. Assisted bioremediation tests on three natural soils contaminated with benzene

    Directory of Open Access Journals (Sweden)

    Maria Manuela Carvalho

    2015-07-01

    Full Text Available Bioremediation is an attractive and useful method of remediation of soils contaminated with petroleum hydrocarbons because it is simple to maintain, applicable in large areas, is economic and enables an effective destruction of the contaminant. Usually, the autochthone microorganisms have no ability to degrade these compounds, and otherwise, the contaminated sites have inappropriate environmental conditions for microorganism’s development. These problems can be overcome by assisted bioremediation (bioaugmentation and/or biostimulation. In this study the assisted bioremediation capacity on the rehabilitation of three natural sub-soils (granite, limestone and schist contaminated with benzene was evaluated. Two different types of assisted bioremediation were used: without and with ventilation (bioventing. The bioaugmentation was held by inoculating the soil with a consortium of microorganisms collected from the protection area of crude oil storage tanks in a refinery. In unventilated trials, biostimulation was accomplished by the addition of a nutrient mineral media, while in bioventing oxygen was also added. The tests were carried out at controlled temperature of 25 ºC in stainless steel columns where the moist soil contaminated with benzene (200 mg per kg of soil occupied about 40% of the column’s volume. The processes were daily monitored in discontinued mode. Benzene concentration in the gas phase was quantified by gas chromatography (GC-FID, oxygen and carbon dioxide concentrations were monitored by respirometry. The results revealed that the three contaminated soils were remediated using both technologies, nevertheless, the bioventing showed faster rates. With this work it was proved that respirometric analysis is an appropriate instrument for monitoring the biological activity.

  18. Next generation of microbial inoculants for agriculture and bioremediation

    OpenAIRE

    Baez?Rogelio, Antonino; Morales?Garc?a, Yolanda Elizabeth; Quintero?Hern?ndez, Ver?nica; Mu?oz?Rojas, Jes?s

    2016-01-01

    In this Crystal Ball we describe the negative effects of the scheme of intensive agriculture of the green revolution technology. To recover the contaminated soils derived from intensive farming is necessary introduce new successful technologies to replace the use of chemical fertilizer and toxic pesticides by organic fertilizers and biological control agents. Our principal speculation is that in a short time authors in the field of PGPB and bioremediation will be expanding the knowledge on th...

  19. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-01-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  20. Bioremediation of cooking oil waste using lipases from wastes.

    Directory of Open Access Journals (Sweden)

    Clarissa Hamaio Okino-Delgado

    Full Text Available Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  1. Bioremediation of cooking oil waste using lipases from wastes

    Science.gov (United States)

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  2. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology.

    Science.gov (United States)

    Mangwani, Neelam; Kumari, Supriya; Das, Surajit

    Increased contamination of the environment with toxic pollutants has paved the way for efficient strategies which can be implemented for environmental restoration. The major problem with conventional methods used for cleaning of pollutants is inefficiency and high economic costs. Bioremediation is a growing technology having advanced potential of cleaning pollutants. Biofilm formed by various micro-organisms potentially provide a suitable microenvironment for efficient bioremediation processes. High cell density and stress resistance properties of the biofilm environment provide opportunities for efficient metabolism of number of hydrophobic and toxic compounds. Bacterial biofilm formation is often regulated by quorum sensing (QS) which is a population density-based cell-cell communication process via signaling molecules. Numerous signaling molecules such as acyl homoserine lactones, peptides, autoinducer-2, diffusion signaling factors, and α-hydroxyketones have been studied in bacteria. Genetic alteration of QS machinery can be useful to modulate vital characters valuable for environmental applications such as biofilm formation, biosurfactant production, exopolysaccharide synthesis, horizontal gene transfer, catabolic gene expression, motility, and chemotaxis. These qualities are imperative for bacteria during degradation or detoxification of any pollutant. QS signals can be used for the fabrication of engineered biofilms with enhanced degradation kinetics. This review discusses the connection between QS and biofilm formation by bacteria in relation to bioremediation technology.

  3. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  4. Fast-track aquifer characterization and bioremediation of groundwater

    International Nuclear Information System (INIS)

    Owen, S.B.; Erskine, J.A.; Adkisson, C.

    1995-01-01

    A short duration step-drawdown pumping test has been used to characterize a highly permeable aquifer contaminated with petroleum hydrocarbons in support of an in situ, closed loop extraction and reinjection bioremediation system for groundwater. The short-term pumping test produces a manageable quantity of contaminated groundwater while yielding a range of values for transmissivity and specific yield parameters. This range of aquifer coefficients is used in an analytical model to estimate a range of groundwater extraction rates that provide a suitable radius of influence for the extraction and reinjection system. A multi-enzyme complex catalyzed bioremediation process has been used to aerobically degrade petroleum hydrocarbons. Enzymes, amino acids, and biosurfactants are supplied to the extracted groundwater to significantly speed up the degradation by naturally occurring bacteria. During the process, amino acids promote the rapid growth of the microbial population while enzymes and bacteria attach to hydrocarbons forming a transformation state complex that degrades to fatty acids, carbon dioxide, and water. This paper presents a case study of a fast-track bioremediation using pumping test data, analytical modeling, and an enzyme technology

  5. Characterization of weathered petroleum hydrocarbons during a landfarming bioremediation study

    Directory of Open Access Journals (Sweden)

    Maletić Snežana

    2012-01-01

    Full Text Available Landfarming bioremediation was performed over 2 years on soil heavily polluted with weathered oil and oil derivatives: 23200 mg kg-1 of mineral oil, 35300 mg kg-1 total hydrocarbons, and 8.65 mg kg-1 of total PAHs. During the experiment, mineral oil, total hydrocarbon and PAH concentrations decreased by approximately 53%, 27% and 72%, respectively. A GC/MS-Scan was used to identify the crude oil components that persist after bioremediation treatment of contaminated soil and the metabolites generated during this process. The data shows that in weathered-hydrocarbons contaminated soil, the number of initially detected compounds after the bioremediation process further decreased over a 2 year period, and at the same time several new compounds were observed at the end of experiment. Higher persistence was also shown for heavier n-alkanes and branched alkanes, which could be detected over a longer period of time. The analysis highlights the importance of n-alkanes, their substituted derivatives and polycyclic aromatic hydrocarbons as the most significant pollutants.

  6. Treatability and scale-up protocols for polynuclear aromatic hydrocarbon bioremediation of manufactured-gas-plant soils. Final report, September 1987-July 1991

    International Nuclear Information System (INIS)

    Blackburn, J.W.; DiGrazia, P.M.; Sanseverino, J.

    1991-07-01

    The report describes activities to develop a framework to reliably scale-up and apply challenging bioremediation processes to polynuclear aromatic hydrocarbons in Manufactured Gas Plant (MGP) soils. It includes: a discussion of the accuracy needed for competitive application of bioremediation; a framework and examples for treatability and scale-up protocols for selection, design and application of these processes; both batch and continuous testing protocols for developing predictive rate data; and special predictive relationships that may be used in process selection/scale-up. The work, coupled with subsequent work (as recommended) to develop an MGP soil desorption/diffusion protocol and new scale-up methods, and with subsequent scale-up testing should lead to the capability for improved selection of MGP sites for bioremediation and improved performance, success, and reliability of field applications. With this greater predictive reliability, bioremediation will be used more often in the field on the most favorable applications and its cost advantages over other remediation options will be realized

  7. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  8. Coliform Bacteria for Bioremediation of Waste Hydrocarbons

    Science.gov (United States)

    2017-01-01

    Raw, domestic sewage of Kuwait City contained about 106 ml−1 colony forming units of Enterobacter hormaechei subsp. oharae (56.6%), Klebsiella spp. (36%), and Escherichia coli (7.4%), as characterized by their 16S rRNA-gene sequences. The isolated coliforms grew successfully on a mineral medium with crude oil vapor as a sole source of carbon and energy. Those strains also grew, albeit to different degrees, on individual n-alkanes with carbon chains between C9 and C36 and on the individual aromatic hydrocarbons, toluene, naphthalene, phenanthrene, and biphenyl as sole sources of carbon and energy. These results imply that coliforms, like other hydrocarbonoclastic microorganisms, oxidize hydrocarbons to the corresponding alcohols and then to aldehydes and fatty acids which are biodegraded by β-oxidation to acetyl CoA. The latter is a well-known key intermediate in cell material and energy production. E. coli cells grown in the presence of n-hexadecane (but not in its absence) exhibited typical intracellular hydrocarbon inclusions, as revealed by transmission electron microscopy. Raw sewage samples amended with crude oil, n-hexadecane, or phenanthrene lost these hydrocarbons gradually with time. Meanwhile, the numbers of total and individual coliforms, particularly Enterobacter, increased. It was concluded that coliform bacteria in domestic sewage, probably in other environmental materials too, are effective hydrocarbon-biodegrading microorganisms. PMID:29082238

  9. Hydrogen as an Indicator to Assess Biological Activity During Trace-Metal Bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Peter R. Jaffe, John Komlos, Derick Brown

    2005-09-27

    2 concentration in the presence of an organic as electron donor is not only dependent on the biokinetic coefficients of the TEAP, but also the concentration of the organic substrate, and that the H2 concentration does not start to change very dramatically as long as the organic substrate concentration remains below the half saturation constant. The results for this phase of research are provided in Section 1. The second phase of research measured steady-state H2 concentrations under iron reducing conditions using NABIR Field Research Center background soil in a simulated bioremediation scenario involving acetate injection to stimulate indigenous microbial activity in a flow-through column. Steady-state H2 concentrations measured during this long-term (500 day) column experiment were higher than observed for iron-reducing conditions in the field even though evidence suggests that iron reduction was the dominant TEAP in the column. Additional column experiments were performed to determine the effect of iron bioavailability on steady-state H2 concentrations using the humics analogue, AQDS (9,10-anthraquinone-2,6-disulfonic acid). The iron reduction rate in the column with AQDS was double the rate in a parallel column without AQDS and lower steady state H2 levels were observed in the presence of AQDS, indicating that even though iron reduction does occur, a decreased bioavailability of iron may inhibit iron reduction such that H2 concentrations increase to levels that are more typical for less energetically favorable reactions (sulfate-reduction, methanogenigesis). The results for this phase of research are in Section 2. A final phase of research measured the effect of carbon concentration and iron bioavailability on surface bound iron reduction kinetics and steady-state H2 levels using synthetic iron oxide coated sand (IOCS). Results show a significant decrease in the microbial iron reduction and acetate oxidation rates for systems with surface bound Fe(III) (IOCS

  10. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  11. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  12. GENOTOXICITY OF BIOREMEDIATED SOILS FROM THE REILLY TARSITE, ST. LOUIS PARK, MINNESOTA

    Science.gov (United States)

    An in vitro approach was used to measure the genotoxicity of creosote-contaminated soil before and after four bioremediation processes. The soil was taken from the Reilly Tar site, a closed Superfund site in Saint Louis Park, Minnesota. The creosote soil was bioremediated in bios...

  13. Regression analysis of major environmental parameters support an enhanced bioremediation of conglomerate heavy metals using an integrated ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Ibeanusi, V.M.; Henneman, T.; Cash, D. [Spelman College, Atlanta, GA (United States)

    1995-12-31

    We have developed an integrated ecosystem that supports the on-site speciation, detoxification, and mobilization of conglomerate toxic heavy metals of As(III), CR(VI), Pb, and Se from contaminated soil and water. The observed ecosystem dynamics of laboratory simulated ponds generated a pH profile (3-8.5) and a redox condition (0.25 V) that supported the oxidation of H{sub 3}AsO{sub 3} to H{sub 2}AsO{sub 4}. The infrared analysis of spent media identified an arsonic acid. The Cr(VI), Pb{sup 2} and Se (as in selenite) were reduced to Cr(III), PbS, and Se{sub 0}. In addition, molecular studies have identified unique protein molecules (< 10 KD) that are associated in the bioremediation processes. In these studies, the presence of a resistant bacterium (MRS-1), and cyanobacteria were highly significant in the bioremediation and sequestering of the metal ions to the pond surface. These results may have implications in the treatment of mixed wastes often encountered in mining areas.

  14. Biodegradation and bioremediation of endosulfan contaminated soil.

    Science.gov (United States)

    Kumar, Mohit; Lakshmi, C Vidya; Khanna, Sunil

    2008-05-01

    Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.

  15. Toxicity of oiled sediments treated with bioremediation agents: A shoreline experiment in Delaware, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mearna, A. [National Oceanic and Atmospheric Administration, Seattle, WA (United States); Doe, K. [Environment Canada, Dartmouth, Nova Scotia (Canada); Fisher, W. [Environmental Protection Agency, Gulf Breeze, FL (United States); Lee, K. [Department of Fisheries and Oceans, Mont-Joli, Quebec (Canada); Mueller, C. [SAIC, Inc., Narragansett, RI (United States)

    1995-12-31

    Using a randomized complete block design, a battery of five pore water and sediment bioassays were used to monitor and compare toxicity among un-oiled, oiled (light Nigerian crude) and nutrient and bacteria-treated shoreline plots on a sandy beach. Tests included sea urchin fertilization, water and modified-solid phase microtox, 10-day amphipod survival and grass shrimp embryo bioassays. During the 13-week study, bioremediation treatment with nutrients and/or bacteria did not decrease toxicity relative to that in untreated plots. Results from at least one bioassay suggested that, relative to no treatment, treatment may have increased toxicity for several weeks. The least and most sensitive tests were sea urchin fertilization (pore water) and 10-day amphipod test, respectively. Coupled with chemical monitoring, the study produced a large data-base for evaluating toxic concentrations of petroleum hydrocarbons in sandy sediments.

  16. Enhanced bioremediation process: A case study of effectiveness on PAH contamination in soils at a former wood-treating site

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.F. [Miltech Environmental, Inc., Tucker, GA (United States); Matens, B.L. [Dames and Moore, Baton Rouge, LA (United States); Buchalter, D.S. [EMCON, Norcross, GA (United States); Montgomery, D.N. [Georgia Dept. of Transportation, Forest Park, GA (United States). Office of Materials and Research

    1997-12-31

    The Enhanced Bioremediation Process (EBP) technology is an exsitu biodegradation process that utilizes bacterial and fungal inoculants to effectively oxidize and bioremediate persistent hard to degrade organics in contaminated soils. The EBP fungal inoculants produce highly reactive extracellular peroxidase enzymes that can oxidize and degrade lignin, a complex, natural polymer composed of phenylpropane units that is resistant to decay. The lignin peroxidase enzymes are highly nonspecific because of their ability to oxidize the heterogenic lignin molecule, and are capable of degrading a wide variety of complex organic compounds. Because the chemical sub-structure of lignin (1,2-aryl diethers, alkyl sidechains and connected aryl systems) resembles that of many persistent organic compounds, the EBP inoculants are very effective in biodegrading similar hazardous organic pollutants in contaminated soils. As an inadvertent by-product of these biochemical processes, the EBP organisms reduce the organic constituents to a soluble form. In a soluble form, the indigenous organisms can further degrade the contaminants. The technology is applied in such a manner as to maximize the activity of the indigenous organisms by establishing optimum growth conditions. The efficacy of the EBP technology in degrading persistent environmental pollutants has been documented at both the bench scale and pilot demonstration levels. A recently completed field pilot demonstration was conducted at a creosote contaminated site. The demonstration entailed the treatment of approximately 700 tons of soil contaminated with PAH constituents. Laboratory analyses of pre and post-treated soils indicate that total average PAH concentrations in many samples were reduced by greater than 91 percent over a two month treatment period.

  17. In-situ bioremediation drilling and characterization work plan

    International Nuclear Information System (INIS)

    Koegler, K.J.

    1994-01-01

    This work plan describes the design and construction of proposed wells and outlines the characterization activities to be performed in support of the In Situ Bioremediation Task for FY 1994. The purpose of the well-design is to facilitate implementation and monitoring of in situ biodegradation of CCl 4 in ground water. However, the wells will also be used to characterize the geology, hydrology, microbiology, and contaminant distribution, which will all feed into the design of the technology. Implementation and design of this remediation demonstration technology will be described separately in an integrated test plan

  18. Integrated green algal technology for bioremediation and biofuel.

    Science.gov (United States)

    Sivakumar, Ganapathy; Xu, Jianfeng; Thompson, Robert W; Yang, Ying; Randol-Smith, Paula; Weathers, Pamela J

    2012-03-01

    Sustainable non-food energy biomass and cost-effective ways to produce renewable energy technologies from this biomass are continuously emerging. Algae are capable of producing lipids and hydrocarbons quickly and their photosynthetic abilities make them a promising candidate for an alternative energy source. In addition, their favorable carbon life cycle and a renewed focus on rural economic development are attractive factors. In this review the focus is mainly on the integrated approach of algae culture for bioremediation and oil-based biofuel production with mention of possible other value-added benefits of using algae for those purposes. Published by Elsevier Ltd.

  19. Analysis of plutonium isotope ratios including238Pu/239Pu in individual U-Pu mixed oxide particles by means of a combination of alpha spectrometry and ICP-MS.

    Science.gov (United States)

    Esaka, Fumitaka; Yasuda, Kenichiro; Suzuki, Daisuke; Miyamoto, Yutaka; Magara, Masaaki

    2017-04-01

    Isotope ratio analysis of individual uranium-plutonium (U-Pu) mixed oxide particles contained within environmental samples taken from nuclear facilities is proving to be increasingly important in the field of nuclear safeguards. However, isobaric interferences, such as 238 U with 238 Pu and 241 Am with 241 Pu, make it difficult to determine plutonium isotope ratios in mass spectrometric measurements. In the present study, the isotope ratios of 238 Pu/ 239 Pu, 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu were measured for individual Pu and U-Pu mixed oxide particles by a combination of alpha spectrometry and inductively coupled plasma mass spectrometry (ICP-MS). As a consequence, we were able to determine the 240 Pu/ 239 Pu, 241 Pu/ 239 Pu, and 242 Pu/ 239 Pu isotope ratios with ICP-MS after particle dissolution and chemical separation of plutonium with UTEVA resins. Furthermore, 238 Pu/ 239 Pu isotope ratios were able to be calculated by using both the 238 Pu/( 239 Pu+ 240 Pu) activity ratios that had been measured through alpha spectrometry and the 240 Pu/ 239 Pu isotope ratios determined through ICP-MS. Therefore, the combined use of alpha spectrometry and ICP-MS is useful in determining plutonium isotope ratios, including 238 Pu/ 239 Pu, in individual U-Pu mixed oxide particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In Situ Bioremediation of Perchlorate in Groundwater

    Science.gov (United States)

    2009-07-01

    Figure 3.9). This was true, even though in bottles receiving lactate, acetate was detected at the 60-day sampling point, suggesting that fermentation ...propionate were detected in the citrate- amended samples, suggesting that fermentation was also occurring in bottles treated with this electron...concentrations in the wells. The fatty acids measured included citrate, lactate, valerate, acetate, formate, butyrate , and propionate. During Phase I

  1. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  2. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    Science.gov (United States)

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  3. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 μg/L in the aqueous phase and from approximately 10 to 290 μg/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone

  4. Changes in the microbial community during bioremediation of gasoline-contaminated soil

    Directory of Open Access Journals (Sweden)

    Aline Jaime Leal

    Full Text Available Abstract We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N–P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50 g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50 g/kg of inoculants A and B led to the largest CO2 emission from soil. CO2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil.

  5. Changes in the microbial community during bioremediation of gasoline-contaminated soil.

    Science.gov (United States)

    Leal, Aline Jaime; Rodrigues, Edmo Montes; Leal, Patrícia Lopes; Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Borges, Arnaldo Chaer; Tótola, Marcos Rogério

    We aimed to verify the changes in the microbial community during bioremediation of gasoline-contaminated soil. Microbial inoculants were produced from successive additions of gasoline to municipal solid waste compost (MSWC) previously fertilized with nitrogen-phosphorous. To obtain Inoculant A, fertilized MSWC was amended with gasoline every 3 days during 18 days. Inoculant B received the same application, but at every 6 days. Inoculant C included MSWC fertilized with N-P, but no gasoline. The inoculants were applied to gasoline-contaminated soil at 10, 30, or 50g/kg. Mineralization of gasoline hydrocarbons in soil was evaluated by respirometric analysis. The viability of the inoculants was evaluated after 103 days of storage under refrigeration or room temperature. The relative proportions of microbial groups in the inoculants and soil were evaluated by FAME. The dose of 50g/kg of inoculants A and B led to the largest CO 2 emission from soil. CO 2 emissions in treatments with inoculant C were inversely proportional to the dose of inoculant. Heterotrophic bacterial counts were greater in soil treated with inoculants A and B. The application of inoculants decreased the proportion of actinobacteria and increased of Gram-negative bacteria. Decline in the density of heterotrophic bacteria in inoculants occurred after storage. This reduction was bigger in inoculants stored at room temperature. The application of stored inoculants in gasoline-contaminated soil resulted in a CO 2 emission twice bigger than that observed in uninoculated soil. We concluded that MSWC is an effective material for the production of microbial inoculants for the bioremediation of gasoline-contaminated soil. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    Energy Technology Data Exchange (ETDEWEB)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  7. Bioremediation Approaches in a Laboratory Activity for the Industrial Biotechnology and Applied Microbiology (IBAM Course

    Directory of Open Access Journals (Sweden)

    L. Raiger Iustman

    2013-03-01

    Full Text Available Industrial Biotechnology and Applied Microbiology is an optional 128h-course for Chemistry and Biology students at the Faculty of Sciences, University of Buenos Aires, Argentina. This course is usually attended by 25 students, working in teams of two. The curriculum, with 8 lab exercises, includes an oil bioremediation practice covering an insight of bioremediation processes: the influence of pollutants on autochthonous microbiota, biodegrader isolation and biosurfactant production for bioavailability understanding. The experimental steps are: (A evaluation of microbial tolerance to pollutants by constructing pristine soil microcosms contaminated with diesel or xylene and (B isolation of degraders and biosurfactant production analysis. To check microbial tolerance, microcosms are incubated during one week at 25-28ºC. Samples are collected at 0, 4 and every 48 h for CFU/g soil testing. An initial decrease of total CFU/g related to toxicity is noticed. At the end of the experiment, a recovery of the CFU number is observed, evidencing enrichment in biodegraders. Some colonies from the CFU counting plates are streaked in M9-agar with diesel as sole carbon source. After a week, isolates are inoculated on M9-Broth supplemented with diesel to induce biosurfactant production. Surface tension and Emulsification Index are measured in culture supernatants to visualize tensioactive effect of bacterial products. Besides the improvement in the good microbiological practices, the students show enthusiasm in different aspects, depending on their own interests. While biology students explore and learn new concepts on solubility, emulsions and bioavailability, chemistry students show curiosity in bacterial behavior and manipulation of microorganisms for environmental benefits.

  8. Applying automated data acquisition and management technology to bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Widing, M.A.; Leser, C.

    1995-06-01

    Operating a bioremediation process requires timely and accurate analysis of physical and chemical parameters that can affect the system. At a fuel oil spill site, the operation of an in-situ bioremediation system, consisting of fluid and nutrient injection, fluid withdrawal, and aeration cycles, is monitored by means of electronic downhole sensors and on-site chemical analysis. A data acquisition and management system was designed and implemented to rapidly analyze data for operational decision malting. A hardware suite, containing an electronic monitoring system data acquisition computer, and data analysis workstation, was also developed. Through the use of both commercial software products and custom software, suites of data management and analysis tools were provided. The data acquisition suite of software tools assisted in programming dataloggers, automatically recording monitored data, and integrating these data with manually sampled chemical data. The data analysis suite of software tools assisted in downloading data to remote workstations, sampling the database for trend analysis, and automating the interface to commercial analysis packages.

  9. Laboratory studies of oil spill bioremediation; toward understanding field behavior

    International Nuclear Information System (INIS)

    Prince, R.C.; Hinton, S.M.; Elmendorf, D.L.; Lute, J.R.; Grossman, M.J.; Robbins, W.K.; Hsu, Chang S.; Richard, B.E.; Haith, C.E.; Senius, J.D.; Minak-Bernero, V.; Chianelli, R.R.; Bragg, J.R.; Douglas, G.S.

    1993-01-01

    Oil spill remediation aims to enhance the natural process of microbial hydrocarbon biodegradation. The microbial foundations have been studied throughout this century, but the focus of most of this work has been on the degradation of well defined compounds by well defined microbial species. This paper addresses laboratory studies on crude oil biodegradation by microbial consortia obtained from oiled beaches in Prince William Sound, Alaska following the spill from the Exxon Valdez. It demonstrates that oil degradation is indeed likely to be nitrogen-limited in Prince William Sound, the different molecular classes in crude oil that are subjected to biodegradation, the identification of conserved species in the oil that can be used for assessing biodegradation and bioremediation in the field, the effectiveness of fertilizers in stimulating sub-surface biodegradation, the role of the olephilic fertilizer Inipol EAP22, and the identification of the oil-degrading microorganisms in Prince William Sound. Together, these laboratory studies provided guidance and important insights into the microbial phenomena underlying the successful bioremediation of the oiled shorelines

  10. Bioremediation potential of crude oil spilled on soil

    International Nuclear Information System (INIS)

    McMillen, S.J.; Young, G.N.; Davis, P.S.; Cook, P.D.; Kerr, J.M.; Gray, N.R.; Requejo, A.G.

    1995-01-01

    Spills sometimes occur during routine operations associated with exploration and production (E and P) of crude oil. These spills at E and P sites typically are small, less than 1 acre (0.4 ha), and the spill may be in remote locations. As a result, bioremediation often represents a cost-effective alternative to other cleanup technologies. The goal of this study was to determine the potential for biodegrading a range of crude oil types and determining the effect of process variables such as soil texture and soil salinity. Crude oils evaluated ranged in American Petroleum institute (API) gravity from 14 degree to 45 degree. The extent of biodegradation was calculated from oxygen uptake data and the total extractable material (TEM) concentration. Based on the data collected, a simple model was developed for predicting the bioremediation potential of a range of crude oil types. Biodegradation rates were significantly lower in sandy soils. Soil salinities greater than approximately 40 mmhos/cm adversely impacted soil microbial activity and biodegradation rate

  11. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    Choi, Jeong-Hee; Maruthamuthu, Sundaram; Lee, Hyun-Goo; Ha, Tae-Hyun; Bae, Jeong-Hyo

    2009-01-01

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO 3 - reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  12. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    International Nuclear Information System (INIS)

    Lee, K.; Tremblay, G.H.

    1995-01-01

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture trademark condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox reg-sign Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox reg-sign bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products

  13. A bench-scale biotreatability methodology to evaluate field bioremediation

    International Nuclear Information System (INIS)

    Saberiyan, A.G.; MacPherson, J.R. Jr.; Moore, R.; Pruess, A.J.; Andrilenas, J.S.

    1995-01-01

    A bench-scale biotreatability methodology was designed to assess field bioremediation of petroleum contaminated soil samples. This methodology was performed successfully on soil samples from more than 40 sites. The methodology is composed of two phases, characterization and experimentation. The first phase is physical, chemical, and biological characterization of the contaminated soil sample. This phase determines soil parameters, contaminant type, presence of indigenous contaminant-degrading bacteria, and bacterial population size. The second phase, experimentation, consists of a respirometry test to measure the growth of microbes indirectly (via generation of CO 2 ) and the consumption of their food source directly (via contaminant loss). Based on a Monod kinetic analysis, the half-life of a contaminant can be calculated. Abiotic losses are accounted for based on a control test. The contaminant molecular structure is used to generate a stoichiometric equation. The stoichiometric equation yields a theoretical ratio for mg of contaminant degraded per mg of CO 2 produced. Data collected from the respirometry test are compared to theoretical values to evaluate bioremediation feasibility

  14. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Al-Maghrabi, I.M.A.; Bin Aqil, A.O.; Chaalal, O.; Islam, M.R.

    1999-01-01

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  15. Bioremediation of acid mine drainage using algae strains: A review

    Directory of Open Access Journals (Sweden)

    J.K. Bwapwa

    2017-12-01

    Full Text Available Acid mine drainage (AMD causes massive environmental concerns worldwide. It is highly acidic and contains high levels of heavy metals causing environmental damage. Conventional treatment methods may not be effective for AMD. The need for environmental remediation requires cost effective technologies for efficient removal of heavy metals. In this study, algae based systems were reviewed and analyzed to point out the potentials and gaps for future studies. Algae strains such as Spirulina sp., Chlorella, Scenedesmus, Cladophora, Oscillatoria, Anabaena, Phaeodactylum tricornutum have showed the capacity to remove a considerable volume of heavy metals from AMD. They act as “hyper-accumulators” and “hyper-adsorbents” with a high selectivity for different elements. In addition, they generate high alkalinity which is essential for precipitation of heavy metals during treatment. However, algae based methods of abating AMD are not the ultimate solution to the problem and there is room for more studies. : The bioremediation of acid mine drainage is achievable with the use of microalgae. Keywords: Acid mine drainage, Algae strains, Contamination, Heavy metals, Bioremediation

  16. Overview of a large-scale bioremediation soil treatment project

    International Nuclear Information System (INIS)

    Stechmann, R.

    1991-01-01

    How long does it take to remediate 290,000 yd 3 of impacted soil containing an average total petroleum hydrocarbon concentration of 3,000 ppm? Approximately 15 months from start to end of treatment using bioremediation. Mittelhauser was retained by the seller of the property (a major oil company) as technical manager to supervise remediation of a 45-ac parcel in the Los Angeles basin. Mittelhauser completed site characterization, negotiated clean-up levels with the regulatory agencies, and prepared the remedial action plan (RAP) with which the treatment approach was approved and permitted. The RAP outlined the excavation, treatment, and recompaction procedures for the impacted soil resulting from leakage of bunker fuel oil from a large surface impoundment. The impacted soil was treated on site in unline Land Treatment Units (LTUs) in 18-in.-thick lifts. Due to space restraints, multiple lifts site. The native microbial population was cultivated using soil stabilization mixing equipment with the application of water and agricultural grade fertilizers. Costs on this multimillion dollar project are broken down as follows: general contractor cost (47%), bioremediation subcontractor cost (35%), site characterization (10%), technical management (7%), analytical services (3%), RAP preparation and permitting (1%), and civil engineering subcontractor cost (1%). Start-up of field work could have been severely impacted by the existence of Red Fox habitation. The foxes were successfully relocated prior to start of field work

  17. Bioremediation in soil contaminated with hydrocarbons in Colombia.

    Directory of Open Access Journals (Sweden)

    María Alejandra Trujillo Toro

    2012-10-01

    Full Text Available This study analyzes bioremediation processes of hydrocarbon contaminated soils in Colombia as a sustainable alternative to the deterioration of environmental quality by hydrocarbon spillage. According to national and international environmental law, all waste contaminated with hydrocarbons is considered dangerous waste, and therefore it cannot be released in the ground, water or be incinerated. Such legislation has motivated companies around the world to implement treatment processes for contaminated soils. Within Colombia, oil companies have been implementing the bioremediation of hydrocarbon contaminated soils in order to manage the waste coming from activities of oil drilling, refinement, transport and distribution.These practices must be considered viable for their ease of implementation, their low overhead costs, and for the benefits they provide towards environmental quality. Among the positive impacts that these practices have generated, it may consider the following: a solution for the problem of hydrocarbon contaminated soils, alternatives for the ultimate disposal of said waste without affecting ground, water or air resources, the low cost of the operation, and the technical experience of sustainable development which can continue to be implemented in companies dealing with dangerous waste.

  18. Review on innovative techniques in oil sludge bioremediation

    Science.gov (United States)

    Mahdi, Abdullah M. El; Aziz, Hamidi Abdul; Eqab, Eqab Sanoosi

    2017-10-01

    Petroleum hydrocarbon waste is produced in worldwide refineries in significant amount. In Libya, approximately 10,000 tons of oil sludge is generated in oil refineries (hydrocarbon waste mixtures) annually. Insufficient treatment of those wastes can threaten the human health and safety as well as our environment. One of the major challenges faced by petroleum refineries is the safe disposal of oil sludge generated during the cleaning and refining process stages of crude storage facilities. This paper reviews the hydrocarbon sludge characteristics and conventional methods for remediation of oil hydrocarbon from sludge. This study intensively focuses on earlier literature to describe the recently selected innovation technology in oily hydrocarbon sludge bioremediation process. Conventional characterization parameters or measurable factors can be gathered in chemical, physical, and biological parameters: (1) Chemical parameters are consequently necessary in the case of utilization of topsoil environment when they become relevant to the presence of nutrients and toxic compounds; (2) Physical parameters provide general data on sludge process and hand ability; (3) Biological parameters provide data on microbial activity and organic matter presence, which will be used to evaluate the safety of the facilities. The objective of this research is to promote the bioremediating oil sludge feasibility from Marsa El Hariga Terminal and Refinery (Tobruk).

  19. Bioremediation of zirconium from aqueous solution by coriolus versicolor: process optimization

    International Nuclear Information System (INIS)

    Amin, M.; Bhatti, H. N.; Sadaf, S.

    2013-01-01

    In the present study the potential of live mycelia of Coriolus versicolor was explored for the removal of zirconium from simulated aqueous solution. Optimum experimental parameters for the bioremediation of zirconium using C. versicolor biomass have been investigated by studying the effect of mycelia dose, concentration of zirconium, contact time and temperature. The isothermal studies indicated that the ongoing bioremediation process was exothermic in nature and obeyed Langmuir adsorption isotherm model. The Gibbs free energy (ΔG), entropy (ΔS) and enthalpy (ΔH) of bioremediation were also determined. The result showed that bioremediation of zirconium by live C. versicolor was feasible and spontaneous at room temperature. The equilibrium data verified the involvement of chemisorption during the bioremediation. The kinetic data indicated the operation of pseudo-second order process during the biosorption of zirconium from aqueous solution. Maximum bioremediation capacity (110.75 mg/g) of C. versicolor was observed under optimum operational conditions: pH 4.5, biomass dose 0.05 mg/100 mL, contact time 6 h and temperature 30 degree C. The results showed that C. versicolor could be used for bioremediation of heavy metal ions from aqueous systems. (author)

  20. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    International Nuclear Information System (INIS)

    2000-01-01

    biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex

  1. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-18

    biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  2. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    Science.gov (United States)

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Potential Use of Apple Polyphenol Oxidase for Bioremediation of Phenolic Contaminants

    Directory of Open Access Journals (Sweden)

    Anita Šalić

    2018-04-01

    Full Text Available Phenolic compounds, such as catechol, are released into the environment from a variety of industrial sources and they present a serious ecosystem burden. This work examined the possibility of using partially purified apple polyphenol oxidase (PPO for bioremediation of phenolic contaminants. In order to optimize process conditions, the optimal pH and temperature for PPO activity were determined, while PPO affinity toward various phenols, as well as the effect of some salts and organic solvents which can be found in wastewaters, was used to confirm applicability of PPO in wastewater treatment. It was found that partially purified apple PPO shows maximal activity at pH 6.8 and 25 °C, but exhibits more than 85 % of its maximal activity in pH range from 5 to 8, and more than 90 % of activity in temperature range from 10 to 50 °C. PPO showed high affinity for various diphenols, but lack of affinity toward monophenols. Sodium tetraborate decahydrate moderately inhibited PPO activity, while exposure of PPO to the presence of organic solvents (φ = 5 % caused 40 % loss in its activity. Catechol oxidation by PPO performed for just 5 min in a batch reactor at optimal process conditions resulted in 25 % conversion. Based on obtained data, it seems that partially purified apple PPO has reasonable potential in wastewater treatment.

  4. An Electrode-based approach for monitoring in situ microbial activity during subsurface bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; Nevin, K.P.; Franks, A.; Englert, A.; Long, P.E.; Lovley, D.R.

    2009-11-15

    Current production by microorganisms colonizing subsurface electrodes and its relationship to substrate availability and microbial activity was evaluated in an aquifer undergoing bioremediation. Borehole graphite anodes were installed downgradient from a region of acetate injection designed to stimulate bioreduction of U(VI); cathodes consisted of graphite electrodes embedded at the ground surface. Significant increases in current density ({<=}50 mA/m{sup 2}) tracked delivery of acetate to the electrodes, dropping rapidly when acetate inputs were discontinued. An upgradient control electrode not exposed to acetate produced low, steady currents ({<=}0.2 mA/m{sup 2}). Elevated current was strongly correlated with uranium removal but minimal correlation existed with elevated Fe(II). Confocal laser scanning microscopy of electrodes revealed firmly attached biofilms, and analysis of 16S rRNA gene sequences indicated the electrode surfaces were dominated (67-80%) by Geobacter species. This is the first demonstration that electrodes can produce readily detectable currents despite long-range (6 m) separation of anode and cathode, and these results suggest that oxidation of acetate coupled to electron transfer to electrodes by Geobacter species was the primary source of current. Thus it is expected that current production may serve as an effective proxy for monitoring in situ microbial activity in a variety of subsurface anoxic environments.

  5. Fuzzy systems modeling of in situ bioremediation of chlorinatedsolve n ts

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris; Hazen, Terry C.

    2001-09-05

    A large-scale vadose zone-groundwater bioremediationdemonstration was conducted at the Savannah River Site (SRS) by injectingseveral types of gases (ambient air, methane, and nitrous oxide andtriethyl phosphate mixtures) through a horizontal well in the groundwaterat a 175 ft depth. Simultaneously, soil gas was extracted through aparallel horizontal well in the vadose zone at a 80 ft depth Monitoringrevealed a wide range of spatial and temporal variations ofconcentrations of VOCs, enzymes, and biomass in groundwater and vadosezone monitoring boreholes over the field site. One of the powerful modernapproaches to analyze uncertain and imprecise data chemical data is basedon the use of methods of fuzzy systems modeling. Using fuzzy modeling weanalyzed the spatio-temporal TCE and PCE concentrations and methanotrophdensities in groundwater to assess the effectiveness of differentcampaigns of air stripping and bioremediation, and to determine the fuzzyrelationship between these compounds. Our analysis revealed some detailsabout the processes involved in remediation, which were not identified inthe previous studies of the SRS demonstration. We also identified somefuture directions for using fuzzy systems modeling, such as theevaluation of the mass balance of the vadose zone - groundwater system,and the development of fuzzy-ruled methods for optimization of managingremediation activities, predictions, and risk assessment.

  6. Immobilization of bacteria isolated from the mining areas on polymeric supports for bioremediation

    International Nuclear Information System (INIS)

    Romdhane, Marwa

    2011-01-01

    Today pollution is an important environmental problem. Many bacteria have the ability to degrade several types of pollutants in various media (soil, water and air) are used in bioremediation. The present work is to study bacterial diversity colonizing contaminated soil from a mining site in the region of Gafsa and Sfax phosphogypsum and evaluate their potential in bioremediation. Three bacterial strains were selected based on the presence of pigments. These strains have been studied for their tolerances of strontium. Selected strains, was assessed for its bioremediation potential to confirm his use in the biodeppolution processes.

  7. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. 'Anaerobic' implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  8. Groundbreaking technology: in-situ anaerobic bioremediation for treatment of contaminated soil and groundwater

    International Nuclear Information System (INIS)

    Fernandes, K.A.

    2002-01-01

    Anaerobic in-situ bioremediation is a technique often used to cleanse contaminated soil and groundwater. 'Anaerobic in-situ bioremediation' is a phrase with distinct terms all having relevance in the application of this technique. Anaerobic implies the absence of dissolved oxygen, while 'in-situ' simply means that the environmental cleansing occurs with out removing, displacing, or significantly disturbing the specimen or surrounding area. 'Bioremediation' is a term used to describe the biological use of microbes or plants to detoxify the environment. In order to properly implement this complex process, one must have an understanding of microbiology, biochemistry, genetics, metabolic processes, and structure and function of natural microbial communities. (author)

  9. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI and lead (II toxicity

    Directory of Open Access Journals (Sweden)

    Pranoti Belapurkar

    2016-01-01

    Full Text Available Introduction: The bioaccumulation of heavy metals including chromium (VI (Cr (VI and lead (II (Pb (II causes fatal toxicity in humans. Some naturally occurring bacterial genera such as Bacillus and Pseudomonas help in bioremediation of these heavy metals and some of the species of Bacillus are proven probiotics. However, no study has been conducted on Bacillus coagulans, which is a proven probiotic species of genus Bacillus. Objectives: The primary objective of the present study was to assess the potential of a proven probiotic, B. coagulans, marketed as “Sporlac-DS,” to survive in the presence of Cr (VI and Pb (II and its ability to reduce its concentration in vitro. Materials and Methods: The Minimum inhibitory concentration (MIC of the organism for Cr (VI and Pb (II was determined followed by its biochemical and morphological characterization. Its antibiotic sensitivity and probiotic efficacy were assessed. Further, its bioremediation capacity was observed in vitro by determining the residual Cr (VI and Pb (II concentration after 72 h. Results: B. coagulans could tolerate up to 512 ppm concentration of Cr (VI and had an MIC of 128 ppm for Pb (II. After 72 h, the organism reduced 32 ppm Cr (VI and 64 ppm Pb (II by 93% and 89%, respectively. When B. coagulans was studied before and after growing on Cr (VI and Pb (II for 24 h, an increase was seen in sensitivity toward the tested antibiotics whereas no change was observed in morphological and biochemical characters. It also showed no change in their bile and acid tolerance, indicating that it retains its probiotic efficacy. Conclusion: The tested probiotic B. coagulans may have a potential role in bioremediation of Cr (VI and Pb (II, in vivo.

  10. A Uranium Bioremediation Reactive Transport Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  11. In-situ treatment of a mixed hydrocarbon plume through enhanced bio-remediation and a PRB system

    International Nuclear Information System (INIS)

    Aglietto, I.; Bargoni, G.; Bretti, L.L.

    2005-01-01

    Groundwater is frequently polluted with mixtures of contaminants that are amenable to different types of remediation. One example is the combination of petroleum hydrocarbons (BTEX) and chlorinated solvents (PCE, TCE, DCE, VC), as it occurs in the groundwater beneath the industrial site that is the objective of the present case study. The site is located in Italy near a main river (Arno), which is supposed to be the final recipient of the contamination and where a possible exposure might take place. The aim of the treatment is the plume containment within the site boundaries in order to avoid further migration of the contaminants towards the river. The design of the remediation system was based on an extensive site characterization that included - but was not limited to - the following information: geological and geochemical, microbiological and hydrological data, together with analytical data (i.e. contaminant concentrations). Pilot tests were also implemented in order to collect the necessary parameters for the full-scale treatment design and calibration. The monitoring of the site conditions was carried out throughout a period of several months, both with periodical measurements and sampling and with fixed monitoring probes, in order to record the aquifer changes (levels, concentrations, etc.) related both to seasonal variations and to the pilot tests. The groundwater is located in a highly heterogeneous aquifer, with a saturated thickness of 1.5 m and an average hydraulic conductivity of 2.5 x 10 -5 m/s. The seepage velocity is extremely low, with a mean value around 1.3 mm/d. This results in a long residence time and limited volumes per time unit to be treated. The site was contaminated by a mixed plume of more than 15 different contaminants, ranging from BTEX, to MTBE, to PAH, to chlorinated solvents. The concentration peaks were in the order of 1-100 mg/l for each contaminant. Petroleum hydrocarbons are quickly degradable through oxidative mechanisms

  12. Technical and Regulatory Requirements for Enhanced In Situ Bioremediation of Chlorinated Solvents in Groundwater

    National Research Council Canada - National Science Library

    1998-01-01

    Enhanced in situ bioremediation (EISB) of chlorinated solvents in groundwater involves the input of an organic carbon source, nutrients, electron acceptors, and/or microbial cultures to stimulate degradation...

  13. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2018-01-01

    Full Text Available Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  14. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  15. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  16. Evaluating intrinsic bioremediation at five sour gas processing facilities in Alberta

    International Nuclear Information System (INIS)

    Armstrong, J. E.; Moore, B. J.; Sevigny, J. H.; Forrester, P. I.

    1997-01-01

    Mass attenuation through intrinsic bioremediation of the aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) was studied at four facilities in Alberta. The objective of the study was to assess whether intrinsic bioremediation could attenuate BTEX-contaminated groundwater plumes at the four sites. The depletion of electron acceptors, and the enriched metabolic byproducts within the BTEX plumes indicate that BTEX biodegradation is occurring at all four sites. Bacterial plate counts were generally higher at three of the sites and lower at one site. At the three sites microcosm experiments indicated aerobic biodegradation, while anaerobic biodegradation was observed at only two sites after four to five months incubation. Theoretical estimates of the biodegradation potential were calculated for each site with intrinsic bioremediation appearing to have bioremediation potential at three of the sites. 13 refs., 4 tabs., 4 figs

  17. BIOREMEDIATION OF HAZARDOUS WASTE SITES: PRACTICAL APPROACHES TO IMPLEMENTATION (EPA/625/K-96/001)

    Science.gov (United States)

    This document contains abstracts and slide hardcopy for the U.S. Environmental Protection Agency's (EPA's) "Seminar Series on Bioremediation of Hazardous Waste Sites: Practical Approaches to Implementation." This technology transfer seminar series, sponsored by EPA's Biosystems ...

  18. Bioremediation efficacy in Marrow Marsh following the Apex oil spill, Galveston Bay, Texas

    International Nuclear Information System (INIS)

    Nadeau, R.; Singhvi, R.; Ryabik, J.; Lin, Yihua; Syslo, J.

    1992-01-01

    Samples taken from Marrow Marsh in Galveston Bay, Texas were taken to assess the efficacy of the August 5, 1990 bioremediation treatment in the marsh following the Apex barges oil spill on July 28, 1990. The bioremediation treatment combined a lyophilized bacterial mixture and a nutrient mix containing phosphorus and nitrogen. Samples from the marsh had been collected over a 96 h period from both treated and untreated oiled sites. Oil fingerprinting, fatty acid analysis, polynuclear aromatic hydrocarbons analysis, and total petroleum hydrocarbons analysis were performed to evaluate changes in the chemical characteristics of spilled oil. Results of analyses, although not statistically reliable, failed to support the occurrence of any definite chemical alteration in the spilled oil that could be attributed to the bioremediation treatment. The relatively short sampling period and the number of samples taken, however, may have been insufficient to document the efficacy of the overall bioremediation effect. 13 refs., 6 figs., 4 tabs

  19. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis.

    Science.gov (United States)

    Broszeit, Stefanie; Hattam, Caroline; Beaumont, Nicola

    2016-02-15

    Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Extended Bioremediation Study of the POPILE, Inc., Site, El Dorado, Arkansas

    National Research Council Canada - National Science Library

    Hansen, Lance

    2001-01-01

    A pilot scale study was conducted using land treatment units (LTUs) to evaluate the efficacy of bioremediation using traditional landfarming technology on contaminated soil from a wood treatment facility...

  1. Design of a smart biomarker for bioremediation: a machine learning approach.

    Science.gov (United States)

    Kumar, P T Krishna; Vinod, P T; Phoha, Vir V; Iyengar, S S; Iyengar, Puneeth

    2011-06-01

    Many trace elements (TE) occur naturally in marine environments and accomplish decisive functions in humans to maintain good health. Mytilus galloprovincialis (MG) is a rich source of TE, but since it is grown near industrial outfalls, they become polluted with elevated levels of TE concentration and serve as biomarkers of pollution. As bioremediation is increasingly reliant on machine learning data processing techniques, we propose the information theoretic concept of using MG for bioremediation. The in situ bioremediation in MG is accomplished by reduction in concentration of TE by the technique of determinant inequalities and the maximization of Mutual Information (MI) without adding any chemical element externally. We bring out the superiority of our technique of MI over that of Principal Component Analysis (PCA) in predicting lower concentration for bioremediation of Cd and Pb in MG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Integrating Electrokinetic and Bioremediation Process for Treating Oil Contaminated Low Permeability Soil

    Science.gov (United States)

    Ramadan, Bimastyaji Surya; Effendi, Agus Jatnika; Helmy, Qomarudin

    2018-02-01

    Traditional oil mining activities always ignores environmental regulation which may cause contamination in soil and environment. Crude oil contamination in low-permeability soil complicates recovery process because it requires substantial energy for excavating and crushing the soil. Electrokinetic technology can be used as an alternative technology to treat contaminated soil and improve bioremediation process (biostimulation) through transfer of ions and nutrient that support microorganism growth. This study was conducted using a combination of electrokinetic and bioremediation processes. Result shows that the application of electrokinetic and bioremediation in low permeability soils can provide hydrocarbon removal efficiency up to 46,3% in 7 days operation. The highest amount of microorganism can be found in 3-days operation, which is 2x108 CFU/ml using surfactant as flushing fluid for solubilizing hydrocarbon molecules. Enhancing bioremediation using electrokinetic process is very potential to recover oil contaminated low permeability soil in the future.

  3. MICROBIAL TRANSFORMATIONS OF URANIUM AND ENVIRONMENTAL RESTORATION THROUGH BIOREMEDIATION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2002-09-10

    Microorganisms present in the natural environment play a significant role in the mobilization and immobilization of uranium. Fundamental understanding of the mechanisms of microbiological transformations of various chemical forms of uranium present in wastes and contaminated soils and water has led to the development of novel bioremediation processes. One process uses anaerobic bacteria to stabilize the radionuclides and toxic metals from the waste, with a concurrent reduction in volume due to the dissolution and removal of nontoxic elements from the waste matrix. In an another process, uranium and other toxic metals are removed from contaminated soils and wastes by extracting with the chelating agent citric acid. Uranium is recovered from the citric acid extract after biodegradation/photodegradation in a concentrated form as UO{sub 3} {center_dot} 2H{sub 2}O for recycling or appropriate disposal.

  4. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Cole, L.L.; Rashidi, M.

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  5. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  6. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... with constructing fungal-bacterial consortia and examining whether their degradation would be superior to that of the single strains in unsaturated systems. In Manuscript II a consortium was created for degradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM). A consortium with Mortierella sp. LEJ702...... corresponding to 0, 1.7, 5 or 10% of water holding capacity (WHC) to the sand. A faster mineralization of BAM was obtained by the consortium compared to Aminobacter sp. MSH1 alone, especially at the lower moisture contents. These results were supported by chemical analyses of 14C residues extracted from...

  7. Petroleum-Degrading Enzymes: Bioremediation and New Prospects

    Directory of Open Access Journals (Sweden)

    R. S. Peixoto

    2011-01-01

    Full Text Available Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specificity, thus increasing cost-benefit ratios. Enzymatic remediation is a valuable alternative as it can be easier to work with than whole organisms, especially in extreme environments. Furthermore, the use of free enzymes avoids the release of exotic or genetically modified organisms (GMO in the environment.

  8. San Jacinto River oil spill: wetland bioremediation project

    International Nuclear Information System (INIS)

    Mills, M.A.; Bonner, J.S.

    1996-01-01

    Gasoline, diesel and unrefined Arabian light crude oil were accidentally released into the San Jacinto River after a series of pipelines ruptured. Natural removal processes (volatilization, dissolution, weathering), fire, and the spill clean-up effort, removed approximately 95% of the petroleum. The area where residual oil was found was an estuarine wetland on the lower San Jacinto River. Samples were collected from 21 study areas and an evaluation of the varying levels of bioremediation was conducted. Phase one has been completed and involved the evaluation of the natural recovery of oil from the spill. Phase two was still in progress and involved the addition of inorganic nutrients and the alternate electron acceptor to enhance the biodegradation of the petroleum. Results showed that biodegradation was responsible for much of the reduction of certain components in petroleum within the first 150 days. 12 refs., 8 figs

  9. Engineering microbial consortia to enhance biomining and bioremediation.

    Science.gov (United States)

    Brune, Karl D; Bayer, Travis S

    2012-01-01

    In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.

  10. Bioremediation of a controlled oil release in a wetland

    International Nuclear Information System (INIS)

    Mills, M. A.; Bonner, J. S.; Simon, M. A.; McDonald, T. J.; Autenrieth, R. L.

    1997-01-01

    To assess bioremediation as a remedial action in sensitive environments, 18 plots, consisting of a 5m x 5m perimeter and an elevated scaffold system to permit sampling, were oiled with a 'weathered' Arabian light crude oil. The oil was applied evenly onto wetland sediment during low tide. Three treatments, - control, inorganic nutrients, and inorganic nutrients plus nitrate as an alternate electron acceptor - were administered. Sediment samples were analyzed for petroleum chemistry, inorganic nutrients, toxicity and microbial counts. There was no significant difference in test results among the various treatment methods for total extractable materials, however, target compound analysis indicated significant differences in the biodegradation rates for the three treatments. Biodegradation of 95 per cent of target compounds was observed within an average of 167, 80 and 118 days for the control, nutrient, and nutrient plus nitrate treatments, respectively. 12 refs., 6 figs

  11. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  12. Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Petric, Ines; Hrsak, Dubravka; Udikovic-Kolic, Nikolina [Ruder Boskovic Inst., Division for Marine and Environmental Research, Zagreb (Croatia); Fingler, Sanja [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Bru, David; Martin-Laurent, Fabrice [INRA, Univ. der Bourgogne, Soil and Environmental Microbiology, Dijon (France)

    2011-02-15

    A small-scale bioremediation assay was developed in order to get insight into the functioning of a polychlorinated biphenyl (PCB) degrading community during the time course of bioremediation treatment of a contaminated soil. The study was conducted with the aim to better understand the key mechanisms involved in PCB-removal from soils. Materials and methods Two bioremediation strategies were applied in the assay: (a) biostimulation (addition of carvone as inducer of biphenyl pathway, soya lecithin for improving PCB bioavailability, and xylose as supplemental carbon source) and (b) bioaugmentation with selected seed cultures TSZ7 or Rhodococcus sp. Z6 originating from the transformer station soil and showing substantial PCB-degrading activity. Functional PCB-degrading community was investigated by using molecular-based approaches (sequencing, qPCR) targeting bphA and bphC genes, coding key enzymes of the upper biphenyl pathway, in soil DNA extracts. In addition, kinetics of PCBs removal during the bioremediation treatment was determined using gas chromatography mass spectrometry analyses. Results and discussion bphA-based phylogeny revealed that bioremediation affected the structure of the PCB-degrading community in soils, with Rhodococcus-like bacterial populations developing as dominant members. Tracking of this population further indicated that applied bioremediation treatments led to its enrichment within the PCB-degrading community. The abundance of the PCB-degrading community, estimated by quantifying the copy number of bphA and bphC genes, revealed that it represented up to 0.3% of the total bacterial community. All bioremediation treatments were shown to enhance PCB reduction in soils, with approximately 40% of total PCBs being removed during a 1-year period. The faster PCB reduction achieved in bioaugmented soils suggested an important role of the seed cultures in bioremediation processes. Conclusions The PCBs degrading community was modified in response to

  13. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.

    Science.gov (United States)

    Torres, Eric M; Hess, Derek; McNeil, Brian T; Guy, Tessa; Quinn, Jason C

    2017-05-01

    As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. TECHNOLOGY MATURATION OF DISPERSION TECHNOLOGY TO AUGMENT BIOREMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    J. NEELY - 54GO

    2000-07-01

    The data obtained from this preliminary short-term project demonstrated that dispersants such as 54GO are effective in accelerating the bio-remediation of soils containing contamination from waste oils, diesel, creosote and manufactured gas plant waste. This acceleration appears to be in the observation that 54GO quickly separates the hydrocarbon wastes from the soil particles, thereby allowing closer contact with the microbes. The project time limitations impacted the scope of data but was able to demonstrate a general reduction in the levels of contaminates. In this project only Total Petroleum Hydrocarbons [TPH] and 17 polycyclic aromatic hydrocarbons [PAH] were analyzed. These were chosen because they are standardized by EPA methodology. The raw data from these analytical methods indicate that there are many more intermediate metabolizes from the bio-remediation process that were not identified or measured [a limitation of the 17 analyte EPA Method 8270 protocol]. The limited data from these bio-reactors indicates that when both 54GO [dispersant] and stress selected microbes are used the reduction of contaminate metabolizes is the greatest. The use of microbes alone was also effective, but not consistent and to a lesser degree. An additional observation with 54GO, either alone or with microbes is that significant amounts of hydrocarbons were extracted or released from the test soils and became a separate phase floating on the surface of these bio-reactors. The levels of floating oil in these bio-reactors made mixing and sampling difficult tasks. This latter effect of, 54GO, indicates that this family of dispersants are excellent candidates for classic soil washing techniques and may be better served by pre-treating waste soils before mixing with microbes. It is estimated that 75% or more of the hydrocarbons were in the oil phase in these bio-reactors even in low water conditions [saturated soil].

  15. Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry [LBNL, Ecology Dept

    2007-07-18

    Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.

  16. Fungal treatment: a prospective process for eco-friendly bioremediation of wastewater sludge

    International Nuclear Information System (INIS)

    Molla, A. H.; Fakhru'l-Razi, A.

    2009-01-01

    None of the conventional techniques is safe and environmental friendly for wastewaters/sludge disposal. A sustainable, safe and environmental friendly biological technique is a great apprehension to the relevant scientists. Since the fungal treatment was exercised to evaluate its potentially for sustainable bioseparation and bioremediation of wastewater. Bioseparation and bioremediation of wastewater sludge by fungal inoculation implied the decreasing of bio solids, total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and specific resistance to filtration (SRF) of wastewater. (Author)

  17. Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation.

    Science.gov (United States)

    Shen, Weihang; Zhu, Nengwu; Cui, Jiaying; Wang, Huajin; Dang, Zhi; Wu, Pingxiao; Luo, Yidan; Shi, Chaohong

    2016-02-01

    A series of toxicity bioassays was conducted to monitor the ecotoxicity of soils in the different phases of bioremediation. Artificially oil-contaminated soil was inoculated with a petroleum hydrocarbon-degrading bacterial consortium containing Burkholderia cepacia GS3C, Sphingomonas GY2B and Pandoraea pnomenusa GP3B strains adapted to crude oil. Soil ecotoxicity in different phases of bioremediation was examined by monitoring total petroleum hydrocarbons, soil enzyme activities, phytotoxicity (inhibition of seed germination and plant growth), malonaldehyde content, superoxide dismutase activity and bacterial luminescence. Although the total petroleum hydrocarbon (TPH) concentration in soil was reduced by 64.4%, forty days after bioremediation, the phytotoxicity and Photobacterium phosphoreum ecotoxicity test results indicated an initial increase in ecotoxicity, suggesting the formation of intermediate metabolites characterized by high toxicity and low bioavailability during bioremediation. The ecotoxicity values are a more valid indicator for evaluating the effectiveness of bioremediation techniques compared with only using the total petroleum hydrocarbon concentrations. Among all of the potential indicators that could be used to evaluate the effectiveness of bioremediation techniques, soil enzyme activities, phytotoxicity (inhibition of plant height, shoot weight and root fresh weight), malonaldehyde content, superoxide dismutase activity and luminescence of P. phosphoreum were the most sensitive. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils.

    Science.gov (United States)

    Breedveld, G D; Karlsen, D A

    2000-08-01

    Bioremediation of soil contaminated by organic compounds can remove the contaminants to a large extent, but residual contamination levels may remain which are not or only slowly biodegraded. Residual levels often exceed existing clean-up guidelines and thereby limit the use of bioremediation in site clean-up. A method for estimating the expected residual levels would be a useful tool in the assessment of the feasibility of bioremediation. In this study, three soil types from a creosote-contaminated field site, which had been subjected to 6 months of bioremediation in laboratory column studies, were used to characterize the residual contamination levels and assess their availability for biodegradation. The soils covered a wide range of organic carbon levels and particle size distributions. Results from the biodegradation studies were compared with desorption rate measurements and selective extractability using butanol. Residual levels of polycyclic aromatic hydrocarbons after bioremediation were found to be strongly dependent on soil type. The presence of both soil organic matter and asphaltic compounds in the soil was found to be associated with higher residual levels. Good agreement was found between the biodegradable fraction and the rapidly desorbable fraction in two of the three soils studied. Butanol extraction was found to be a useful method for roughly estimating the biodegradable fraction in the soil samples. The results indicate that both desorption and selective extraction measurements could aid the assessment of the feasibility for bioremediation and identifying acceptable end-points.

  19. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant

    International Nuclear Information System (INIS)

    Rahman, K.S.M.; Banat, I.M.; Thahira, J.; Thayumanavan, T.; Lakshmanaperumalsamy, P.

    2002-01-01

    The aim of the present study was to find methods for enhancing rates of hydrocarbon biodegradation in gasoline contaminated soil by ex situ bioremediation. Red soil (RS) was treated with gasoline-spilled soil (GS) from a gasoline station and different combinations of amendments were prepared using (i) mixed bacterial consortium (MC), (ii) poultry litter (PL), (iii) coir pith (CP) and (iv) rhamnolipid biosurfactant (BS) produced by Pseudomonas sp. DS10-129. The study was conducted for a period of 90 days during which bacterial growth, hydrocarbon degradation and growth parameters of Phaseolus aureus RoxB including seed germination, chlorophyll content, shoot and root length were measured. Approximately 67% and 78% of the hydrocarbons were effectively degraded within 60 days in soil samples amended with RS + GS + MC + PL + CP + BS at 0.1% and 1%. Maximum percentage of seed germination, shoot length, root length and chlorophyll content in P. aureus were recorded after 60 days in the above amendments. Further incubation to 90 days did not exhibit significant improvements. Statistical analysis using analysis of variance (ANOVA) and Duncan's multiple range test (DMRT) revealed that the level of amendments, incubation time and combination of amendments significantly influenced bacterial growth, hydrocarbon degradation, seed germination and chlorophyll content at a 1% probability level. All tested additives MC, PL, CP and rhamnolipid BS had significant positive effects on the bioremediation of GS. (author)

  20. Evaluation of the potential of applying composting/bioremediation techniques to wastes generated within the construction industry.

    Science.gov (United States)

    McMahon, V; Garg, A; Aldred, D; Hobbs, G; Smith, R; Tothill, I E

    2009-01-01

    The objective of the present study was to evaluate the viability of reducing landfill requirements to satisfy EC Landfill Directive requirements by applying composting/bioremediation techniques to the construction and demolition (C&D) industry waste stream at laboratory scale. The experimental study was carried out in nine test rigs to examine different wood mixtures; untreated timber, creosote treated timber and chromated copper arsenate (CCA) treated timber. Several experimental variables affecting the process were characterised and optimised. These include the best nitrogen additive and optimum moisture content required for composting. Poultry manure was found to be the best nitrogen additive. The optimum moisture content was decreased after the addition of poultry manure. The composting/bioremediation process was evaluated through monitoring the microbial activity, carbon dioxide emissions and toxicity examination of the composted product. A typical temperature profile suggested that untreated and CCA treated mix could be classified as hot composting whereas creosote treated mix could be classified as cold composting. The paper reports on the results obtained during this investigation.

  1. Bioremediation of Spent Bleaching Earth (SBE Wastes using Lipolitic Bacteria (Bacillus cereus with Variation of Inoculum Volume

    Directory of Open Access Journals (Sweden)

    Maria Lusia

    2018-01-01

    Full Text Available Spent bleaching earth (SBE is a solid waste was generated from the CPO refining step into cooking oil.  SBE that was discharged directly into the environment has the potential to pollute the environment, because in the SBE waste contained oil and acid residues, which are easily to be oxidized and flammable.  Therefore, SBE must be processed first before being discharged into the environment.  One way to manage SBE is by bioremediationBioremediation is a method on cleaning the environment from contaminants by using  biological agents, such as bacteria, fungi etc.  The bacterial isolates used in this study were Bacillus cereus.  This study aims to obtain the best inoculum and to know the ability of Bacillus cereus bacteria in degrading the oil content in SBE waste. This study used Completely Randomized Design with the volume of Bacillus cereus bacteria inoculum as a treatment, consisting of 6 treatment levels of 0 mL kg-1, 25 mL kg-1, 50 mL kg-1, 75 mL kg-1, 100 mL kg-1, 125 mL kg-1.  Each treatment level was repeated 3 times, so taht 18 experimental units were obtained.  Observation was done once a week, in a month.  Parameters observed were bacterial population, percentage of oil degradation, and oil content degradation.  The best treatment result for the bacterial population was obtained at the treatment of 100 mL kg-1, at week 4 which was 7,4 x 108 cfu g-1, and for the oil degradation was obtained at 50 mL kg-1 on the treatment at week 4 as big as 90,43%.

  2. Final Project Report, DE-SC0001280, Characterizing the Combined Roles of Iron and Transverse Mixing on Uranium Bioremediation in Groundwater using Microfluidic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Finneran, Kevin [Clemson Univ., SC (United States); Werth, Charles [Univ. of Texas, Austin, TX (United States); Strathmann, Timothy [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2015-01-10

    In situ bioremediation of U(VI) involves amending groundwater with an appropriate electron donor and limiting nutrients to promote biological reduction to the less soluble and mobile U(IV) oxidation state. Groundwater flow is laminar; mixing is controlled by hydrodynamic dispersion. Recent studies indicate that transverse dispersion along plume margins can limit mixing of the amended electron donor and accepter (such as U(VI) in remediation applications). As a result, microbial growth, and subsequently contaminant reaction, may be limited to these transverse mixing zones during bioremediation. The primary objective of this work was to characterize the combined effects of hydrology, geochemistry, and biology on the (bio)remediation of U(VI). Our underlying hypothesis was that U(VI) reaction in groundwater is controlled by transverse mixing with an electron donor along plume margins, and that iron bioavailability in these zones affects U(VI) reduction kinetics and U(IV) re-oxidation. Our specific objectives were to a) quantify reaction kinetics mediated by biological versus geochemical reactions leading to U(VI) reduction and U(IV) re-oxidation, b) understand the influence of bioavailable iron on U(VI) reduction and U(IV) re-oxidation along the transverse mixing zones, c) determine how transverse mixing limitations and the presence of biomass in pores affects these reactions, and d) identify how microbial populations that develop along transverse mixing zones are influenced by the presence of iron and the concentration of electron donor. In the completed work, transverse mixing zones along plume margins were re-created in microfluidic pore networks, referred to as micromodels. We conducted a series of experiments that allowed us to distinguish among the hydraulic, biological, and geochemical mechanisms that contribute to U(VI) reduction, U(IV) re-oxidation, and U(VI) abiotic reaction with the limiting biological nutrient HP042-. This systematic approach may lead to a

  3. Adaptation of microalgae to lindane: a new approach for bioremediation.

    Science.gov (United States)

    González, Raquel; García-Balboa, Camino; Rouco, Mónica; Lopez-Rodas, Victoria; Costas, Eduardo

    2012-03-01

    Lindane is especially worrisome because its persistence in aquatic ecosystems, tendency to bioaccumulation and toxicity. We studied the adaptation of freshwater cyanobacteria and microalgae to resist lindane using an experimental model to distinguish if lindane-resistant cells had their origin in random spontaneous pre-selective mutations (which occur prior to the lindane exposure), or if lindane-resistant cells arose by a mechanism of physiological acclimation during the exposure to the selective agent. Although further research is needed to determine the different mechanisms contributing to the bio-elimination of lindane, this study, however, provides an approach to the bioremediation abilities of the lindane-resistant cells. Wild type strains of the experimental organisms were exposed to increasing lindane levels to estimate lethal concentrations. Growth of wild-type cells was completely inhibited at 5mg/L concentration of lindane. However, after further incubation in lindane for several weeks, occasionally the growth of rare lindane-resistant cells was found. A fluctuation analysis demonstrated that lindane-resistant cells arise only by rare spontaneous mutations that occur randomly prior to exposure to lindane (lindane-resistance did not occur as a result of physiological mechanisms). The rate of mutation from lindane sensitivity to resistance was between 1.48 × 10(-5) and 2.35 × 10(-7) mutations per cell per generation. Lindane-resistant mutants exhibited a diminished fitness in the absence of lindane, but only these variants were able to grow at lindane concentrations higher than 5mg/L (until concentrations as high as 40 mg/L). Lindane-resistant mutants may be maintained in uncontaminated waters as the result of a balance between new resistant mutants arising from spontaneous mutation and resistant cells eliminated by natural selection waters via clone selection. The lindane-resistant cells were also used to test the potential of microalgae to remove

  4. Extent and persistence of secondary water quality impacts after enhanced reductive bioremediation

    Science.gov (United States)

    Borden, Robert C.; Jason M. Tillotson,; Ng, Gene-Hua Crystal.; Bekins, Barbara A.; Kent, Douglas B.; Curtis, Gary P.

    2017-01-01

    Electron donor (ED) addition can be very effective in stimulating enhanced reductive bioremediation (ERB) of a wide variety of groundwater contaminants. However, ERB can result in Secondary Water Quality Impacts (SWQIs) including decreased levels of dissolved oxygen (O2), nitrate (NO3- ), and sulfate (SO42- ), and elevated levels of dissolved manganese (Mn2+), dissolved iron (Fe2+), methane (CH4), sulfide (S2- ), organic carbon, and naturally occurring hazardous compounds (e.g., arsenic). Fortunately, this ‘plume’ of impacted groundwater is usually confined within the original contaminant plume and is unlikely to adversely impact potable water supplies. This report summarizes available information on processes controlling the production and natural attenuation of SWQI parameters and can be used as a guide in understanding the magnitude, areal extent, and duration of SWQIs in ERB treatment zones and the natural attenuation of SWQI parameters as the dissolved solutes migrate downgradient with ambient groundwater flow. This information was compiled from a wide variety of sources including a survey and statistical analysis of SWQIs from 47 ERB sites, geochemical model simulations, field studies at sites where organic-rich materials have entered the subsurface (e.g., wastewater, landfill leachate, and hydrocarbon plumes), and basic information on physical, chemical, and biological processes in the subsurface. This information is then integrated to provide a general conceptual model of the major processes controlling SWQI production and attenuation.

  5. In situ measurement of methane oxidation in groundwater by using natural-gradient tracer tests

    International Nuclear Information System (INIS)

    Smith, R.L.; Howes, B.L.; Garabedian, S.P.

    1991-01-01

    Methane oxidation was measured in an unconfined sand and gravel aquifer (Cape Cod, Mass.) by using in situ natural-gradient tracer tests at both a pristine, oxygenated site and an anoxic, sewage-contaminated site. The tracer sites were equipped with multilevel sampling devices to create target grids of sampling points; the injectate was prepared with groundwater from the tracer site to maintain the same geochemical conditions. Methane oxidation was calculated from breakthrough curves of methane relative to halide and inert gas (hexafluoroethane) tracers and was confirmed by the appearance of 13 C-enriched carbon dioxide in experiments in which 13 C-enriched methane was used as the tracer. A V max for methane oxidation could be calculated when the methane concentration was sufficiently high to result in zero-order kinetics throughout the entire transport interval. Methane breakthrough curves could be simulated by modifying a one-dimensional advection-dispersion transport model to include a Michaelis-Menten-based consumption term for methane oxidation. The K m values for methane oxidation that gave the best match for the breakthrough curve peaks were 6.0 and 9.0 μM for the uncontaminated and contaminated sites, respectively. Natural-gradient tracer tests are a promising approach for assessing microbial processes and for testing in situ bioremediation potential in groundwater systems

  6. pH control for enhanced reductive bioremediation of chlorinated solvent source zones

    International Nuclear Information System (INIS)

    Robinson, Clare; Barry, D.A.; McCarty, Perry L.; Gerhard, Jason I.; Kouznetsova, Irina

    2009-01-01

    Enhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms. Where the soils' natural buffering capacity is likely to be exceeded, the addition of an external source of alkalinity is needed to ensure sustained dehalogenation. To assist in the design of bioremediation systems, an abiotic geochemical model was developed to provide insight into the processes influencing the groundwater acidity as dehalogenation proceeds, and to predict the amount of bicarbonate required to maintain the pH at a suitable level for dehalogenating bacteria (i.e., > 6.5). The model accounts for the amount of chlorinated solvent degraded, site water chemistry, electron donor, alternative terminal electron-accepting processes, gas release and soil mineralogy. While calcite and iron oxides were shown to be the key minerals influencing the soil's buffering capacity, for the extensive dehalogenation likely to occur in a DNAPL source zone, significant bicarbonate addition may be necessary even in soils that are naturally well buffered. Results indicated that the bicarbonate requirement strongly depends on the electron donor used and availability of competing electron acceptors (e.g., sulfate, iron (III)). Based on understanding gained from this model, a simplified model was developed for calculating a preliminary design estimate of the bicarbonate addition required to control the pH for user-specified operating conditions.

  7. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.H.; N' Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  8. Transcriptome Response to Heavy Metals in Sinorhizobium meliloti CCNWSX0020 Reveals New Metal Resistance Determinants That Also Promote Bioremediation by Medicago lupulina in Metal-Contaminated Soil.

    Science.gov (United States)

    Lu, Mingmei; Jiao, Shuo; Gao, Enting; Song, Xiuyong; Li, Zhefei; Hao, Xiuli; Rensing, Christopher; Wei, Gehong

    2017-10-15

    The symbiosis of the highly metal-resistant Sinorhizobium meliloti CCNWSX0020 and Medicago lupulina has been considered an efficient tool for bioremediation of heavy metal-polluted soils. However, the metal resistance mechanisms of S. meliloti CCNWSX00200 have not been elucidated in detail. Here we employed a comparative transcriptome approach to analyze the defense mechanisms of S. meliloti CCNWSX00200 against Cu or Zn exposure. Six highly upregulated transcripts involved in Cu and Zn resistance were identified through deletion mutagenesis, including genes encoding a multicopper oxidase (CueO), an outer membrane protein (Omp), sulfite oxidoreductases (YedYZ), and three hypothetical proteins (a CusA-like protein, a FixH-like protein, and an unknown protein), and the corresponding mutant strains showed various degrees of sensitivity to multiple metals. The Cu-sensitive mutant (Δ cueO ) and three mutants that were both Cu and Zn sensitive (Δ yedYZ , Δ cusA -like, and Δ fixH -like) were selected for further study of the effects of these metal resistance determinants on bioremediation. The results showed that inoculation with the Δ cueO mutant severely inhibited infection establishment and nodulation of M. lupulina under Cu stress, while inoculation with the Δ yedYZ and Δ fixH -like mutants decreased just the early infection frequency and nodulation under Cu and Zn stresses. In contrast, inoculation with the Δ cusA -like mutant almost led to loss of the symbiotic capacity of M. lupulina to even grow in uncontaminated soil. Moreover, the antioxidant enzyme activity and metal accumulation in roots of M. lupulina inoculated with all mutants were lower than those with the wild-type strain. These results suggest that heavy metal resistance determinants may promote bioremediation by directly or indirectly influencing formation of the rhizobium-legume symbiosis. IMPORTANCE Rhizobium-legume symbiosis has been promoted as an appropriate tool for bioremediation of heavy

  9. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    International Nuclear Information System (INIS)

    2005-01-01

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the addition of

  10. Bioremediation of the textile waste effluent by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Hala Yassin El-Kassas

    2014-01-01

    Full Text Available The microalgae biomass production from textile waste effluent is a possible solution for the environmental impact generated by the effluent discharge into water sources. The potential application of Chlorella vulgaris for bioremediation of textile waste effluent (WE was investigated using 22 Central Composite Design (CCD. This work addresses the adaptation of the microalgae C. vulgaris in textile waste effluent (WE and the study of the best dilution of the WE for maximum biomass production and for the removal of colour and Chemical Oxygen Demand (COD by this microalga. The cultivation of C. vulgaris, presented maximum cellular concentrations Cmax and maximum specific growth rates μmax in the wastewater concentration of 5.0% and 17.5%, respectively. The highest colour and COD removals occurred with 17.5% of textile waste effluent. The results of C. vulgaris culture in the textile waste effluent demonstrated the possibility of using this microalga for the colour and COD removal and for biomass production. There was a significant negative relationship between textile waste effluent concentration and Cmax at 0.05 level of significance. However, sodium bicarbonate concentration did not significantly influence the responses of Cmax and the removal of colour and COD.

  11. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology

    Science.gov (United States)

    Bisht, Sandeep; Pandey, Piyush; Bhargava, Bhavya; Sharma, Shivesh; Kumar, Vivek; Sharma, Krishan D.

    2015-01-01

    The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e. polyaromatic hydrocarbons (PAHs) due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa , Pseudomons fluoresens , Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective. PMID:26221084

  12. Nanoassembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing

    Science.gov (United States)

    Kuila, Debasish; Tien, Ming; Lvov, Yuri M.; McShane, Michael J.; Aithal, Rajendra K.; Singh, Saurabh; Potluri, Avinash; Kaul, Swati; Patel, Devendra S.; Krishna, Gopal

    2004-12-01

    Extracellular enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP) from white rot fungus Phanerochaete chrysosoporium, have been shown to degrade various harmful organic compounds ranging from chlorinated compounds to polycyclic aromatic hydrocarbons (PAH) to polymeric dyes. The problems in using immobilized enzymes for biocatalysis/bioremediation are their loss of activity and long-term stability. To address these issues, adsorption by layer-by-layer assembly (LbL) using polyelectrolytes, entrapment using gelatin, and chmisorption using coupling reagents have been investigated. In order to increase surface area for catalysis, porous silicon, formed by electrochemical etching of silicon, has been considered. The efficacy of these extremely stable nanoassemblies towards degradation of model organic compounds-veratryl alcohol (VA and 2,6-dimethoxyphenol (DMP)-in aqueous and in a mixture of aqueous/acetone has already been demonstrated. In parallel, we are pursuing development of sensors using these immobilized enzymes. Experiments carried out in solution show that NO can reversibly bind Ferri-LiP to produce a diamagnetic complex with a distinct change in its optical spectrum. NO can be photolyzed off to produce the spectrum of native paramagnetic ferri-species. Preliminary data on the detection of NO by LiP, based on surface plasmon resonance (SPR) using fiber optic probe, are presented.

  13. Bioremediation of metals, organic and mixed contaminants with microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Bender, J.

    1995-12-31

    Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed tightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings. These constructed mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and to remove Pb from sediments of shallow laboratory ponds. Uranium, U{sup 238}, was removed from groundwater samples at the rate of 3.19 Mg/m{sup 2}/h. Degradation of recalcitrant organic contaminants by mats is relatively rapid under both dark and light conditions. The following contaminants have been degraded in water and/or soil media by constructed mats: TNT, chrysene, naphthalene, hexadecane, phenanthrene, PCB, TCE, pulp and paper mill wastes, and three pesticides: chlordane, carbofuran and paraquat. Radio-labeled experiments with mat-treated carbofuran, petroleum distillates, TNT, chlordane, PCB and TCE show that these compounds are mineralized by the constructed mats. Mats applied to mixed contaminant solutions (TCE + Zn and TNT + pb) sequestered the metal while mineralizing the TCE. Remediation rates of the organic and inorganic components were the same in mixed solution as they were in single application.

  14. Potential for bioremediating using constructed mixed microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Goodroad, L. [Rust Federal Services, Inc., Anderson, SC (United States); Bender, J.; Phillips, P.; Gould, J. [Microbial and Aquatic Treatment Systems, Inc., Atlanta, GA (United States); Saha, G.; Rodriguez-Eaton, S.; Vatcharapijarn, Y. [Clark Atlanta Univ., Atlanta, GA (United States); Lee, R. [Skidaway Inst. of Oceanography, Savannah, GA (United States); Word, J. [Pacific Northwest Labs., Richland, WA (United States)

    1994-12-31

    Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed tightly together by slimy secretions from various Microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Constructed microbial mats can be generated rapidly by enriching a water surface with ensiled grass clippings. These constructed mats are durable, tolerant to a variety of toxins and resilient under changing environmental conditions. The mats can he designed for specific tasks by inoculating the cyanobacteria/silage with selected microorganisms. Mats constructed with specific microbial components have been developed for various bioremediation applications: removal of metals, organic degradation, treatment of mixed contaminants, biological treatment ponds, and soil remediation. Constructed mats offer a broad range of mechanisms related to the sequestration of heavy metals, the biodegradation of recalcitrant organic compounds, and the remediation of mixed organic/inorganic contaminants such as TCE and carbofuran with heavy metals.

  15. Bioremediation of polyaromatic hydrocarbons (PAHs using rhizosphere technology

    Directory of Open Access Journals (Sweden)

    Sandeep Bisht

    2015-03-01

    Full Text Available The remediation of polluted sites has become a priority for society because of increase in quality of life standards and the awareness of environmental issues. Over the past few decades there has been avid interest in developing in situ strategies for remediation of environmental contaminants, because of the high economic cost of physicochemical strategies, the biological tools for remediation of these persistent pollutants is the better option. Major foci have been considered on persistent organic chemicals i.e.polyaromatic hydrocarbons (PAHs due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity. Rhizoremediation, a specific type of phytoremediation that involves both plants and their associated rhizospheric microbes is the creative biotechnological approach that has been explored in this review. Moreover, in this review we showed the significance of rhizoremediation of PAHs from other bioremediation strategies i.e. natural attenuation, bioaugmentation and phytoremediation and also analyze certain environmental factor that may influence the rhizoremediation technique. Numerous bacterial species were reported to degrade variety of PAHs and most of them are isolated from contaminated soil, however few reports are available from non contaminated soil. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Finally, exploring the molecular communication between plants and microbes, and exploiting this communication to achieve better results in the elimination of contaminants, is a fascinating area of research for future perspective.

  16. Potential of Penicillium Species in the Bioremediation Field

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2009-04-01

    Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.

  17. Ethanol-enhanced bioremediation of PAH-contaminated soils

    International Nuclear Information System (INIS)

    Lee, P.H.; Ong, S.K.; Golchin, J.

    1999-01-01

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol

  18. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, M.J.; VerBerkmoes, N.C.; Williams, K.H.; Callister, S.J.; Mouser, P.J.; Elifantz, H.; N' Guessan, A.L.; Thomas, B.C.; Nicora, C.D.; Shah, M.B.; Lipton, M.S.; Lovley, D.R.; Hettich, R.L.; Long, P.E.; Banfield, J.F.; Abraham, P.

    2009-08-01

    Implementation of uranium bioremediation requires methods for monitoring the membership and activities of the subsurface microbial communities that are responsible for reduction of soluble U(VI) to insoluble U(IV). Here, we report a proteomics-based approach for simultaneously documenting the strain membership and microbial physiology of the dominant Geobacter community members during in situ acetate amendment of the U-contaminated Rifle, CO, aquifer. Three planktonic Geobacter-dominated samples were obtained from two wells down-gradient of acetate addition. Over 2,500 proteins from each of these samples were identified by matching liquid chromatography-tandem mass spectrometry spectra to peptides predicted from seven isolate Geobacter genomes. Genome-specific peptides indicate early proliferation of multiple M21 and Geobacter bemidjiensis-like strains and later possible emergence of M21 and G. bemidjiensis-like strains more closely related to Geobacter lovleyi. Throughout biostimulation, the proteome is dominated by enzymes that convert acetate to acetyl-coenzyme A and pyruvate for central metabolism, while abundant peptides matching tricarboxylic acid cycle proteins and ATP synthase subunits were also detected, indicating the importance of energy generation during the period of rapid growth following the start of biostimulation. Evolving Geobacter strain composition may be linked to changes in protein abundance over the course of biostimulation and may reflect changes in metabolic functioning. Thus, metagenomics-independent community proteogenomics can be used to diagnose the status of the subsurface consortia upon which remediation biotechnology relies.

  19. Bioremediation potential of microorganisms derived from petroleum reservoirs.

    Science.gov (United States)

    Dellagnezze, Bruna Martins; de Sousa, Gabriel Vasconcelos; Martins, Laercio Lopes; Domingos, Daniela Ferreira; Limache, Elmer E G; de Vasconcellos, Suzan Pantaroto; da Cruz, Georgiana Feitosa; de Oliveira, Valéria Maia

    2014-12-15

    Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Bioremediation potential of coal-tar-oil-contaminated soil

    International Nuclear Information System (INIS)

    Lajoie, C.A.

    1991-01-01

    The bioremediation of coal tar oil contaminated soil was investigated in 90 day laboratory simulation experiments. The effect of soil moisture, humic acid amendment, and coal tar oil concentration on the rate of disappearance of individual coal tar oil constituents (PAHs and related compounds) was determined by methylene chloride extraction and gas chromatography. Mass balance experiments determined the fate of both the individual 14 C-labeled PAHs phenanthrene, pyrene, and benzo(a)pyrene, and the total coal tar oil carbon. Mineralization, volatilization, incorporation into microbial biomass, disappearance of individual coal tar oil constitutents, and the distribution of residual 14 C-activity in different soil fractions were measured. The rate of disappearance of coal tar oil constituents increased with increasing soil moisture over the experimental range. Humic acid amendment initially enhanced the rate of disappearance, but decreased the extent of disappearance. The amount of contamination removed decreased at higher coal tar oil concentrations. The practical limit for biodegradation in the system tested appeared to be between 1.0 and 2.5% coal tar oil. Mineralization accounted for 40 to 50% of the applied coal tar oil. Volatilization was a minor pathway of disappearance

  1. Slurry reactor bioremediation of soil-bound polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Jones, A.B.; Brinkmann, M.R.; Mahaffey, W.R.

    1992-01-01

    ECOVA Corporation conducted pilot-scale process development studies in 1991 using a slurry-phase biotreatment design to evaluate bioremediation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil collected from a superfund site. Bench-scale studies were performed as an antecedent to pilot-scale evaluations in order to collect data which would be used to determine the optimal treatment protocols. This study was performed for the US EPA to supply information as part of the database on Best Demonstrated Available Technology (BDAT) for soil remediation. The database will be used to develop soil standards for land disposal restriction. This paper is a summary of the complete on-site engineering (OER) report is available from the US EPA. The site is a former railroad tie-treating facility. Two surface impoundments were used for the disposal of wastewater generated from wood-treating processes (Resource Conservation and Recovery Act waste code K001). Although all wastewater and liquid creosote have been removed from the impoundments, there is an estimated 12,500 cubic yards of soil and sludge remaining that is contaminated with 2-, 3-, and 4+-ring PAHs. There is also some groundwater contamination restricted to a relatively small area downgradient from the site

  2. Searching bioremediation patents through Cooperative Patent Classification (CPC).

    Science.gov (United States)

    Prasad, Rajendra

    2016-03-01

    Patent classification systems have traditionally evolved independently at each patent jurisdiction to classify patents handled by their examiners to be able to search previous patents while dealing with new patent applications. As patent databases maintained by them went online for free access to public as also for global search of prior art by examiners, the need arose for a common platform and uniform structure of patent databases. The diversity of different classification, however, posed problems of integrating and searching relevant patents across patent jurisdictions. To address this problem of comparability of data from different sources and searching patents, WIPO in the recent past developed what is known as International Patent Classification (IPC) system which most countries readily adopted to code their patents with IPC codes along with their own codes. The Cooperative Patent Classification (CPC) is the latest patent classification system based on IPC/European Classification (ECLA) system, developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) which is likely to become a global standard. This paper discusses this new classification system with reference to patents on bioremediation.

  3. Change of isoprenoids, steranes and terpanes during ex situ bioremediation of mazut on industrial level

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2010-01-01

    Full Text Available The paper presents results of the ex situ bioremediation of soil contaminated by mazut (heavy residual fuel oil in the field scale (600 m3. A treatment-bed (thickness 0.4 m consisted of mechanically mixed mazut-contaminated soil, softwood sawdust as the additional carbon source and crude river sand, as bulking and porosity increasing material. The inoculation/reinoculation was conducted periodically using a biomass of a consortium of zymogenous microorganisms isolated from the bioremediation substrate. The biostimulation was performed through addition of nutritious substances (N, P and K. The aeration was improved by systematic mixing of the bioremediation system. After 50 days, the number of hydrocarbon degraders increased 100 times. Based on the changes in the group composition, the average biodegradation rate during bioremediation was 24 mg/kg/day for the aliphatic fraction, 6 mg/kg/day for the aromatic fraction, and 3 mg/kg/day for the nitrogen-sulphuroxygen compounds (NSO-asphaltene fraction. In the saturated hydrocarbon fraction, gas chromatography-mass spectrometry (GC-MS in the single ion-monitoring mode (SIM was applied to analyse isoprenoids pristane and phytane and polycyclic molecules of sterane and triterpane type. Biodegradation occurred during the bioremediation process, as well as reduction of relative quantities of isoprenoids, steranes, tri- and tetracyclic terpanes and pentacyclic terpanes of hopane type.

  4. Bioremediation of soil and water: application to chemical and nuclear pollutions

    International Nuclear Information System (INIS)

    Vavasseur, Alain

    2014-06-01

    Bioremediation is a branch of biotechnology that uses natural or diverted biological mechanisms to address environmental problems. The biological agents can be simple organic molecules, such as DNA or antibodies, or live or dead organisms (bacteria, microalgae, fungi, higher algae and plants). Phyto-remediation refers more specifically to using plants to decontaminate polluted soil, water, or air. Unlike organic pollutants such as PCBs1, TNT2, TCE3, which can be metabolized by soil microorganisms and plant roots, radionuclides - like most heavy metals - cannot be degraded. Thus, bioremediation strategies for radionuclides will consist into: - stabilization/mineralization to reduce their bioavailability through a change in their redox state; - for soil, their extraction using the plant nutrition mechanisms; - for polluted solutions, their extraction using the 'cation traps' properties of plant cell walls. Compared to physicochemical methods conventionally used to decontaminate soils but which lead to a sharp decline in fertility and productivity, bioremediation is considered a friendly environmental technology. An important advantage of this technique is its cost, much lower than traditional remediation techniques. By cons, bioremediation cannot be applied in an emergency, because processing times are spread over several years - even decades - depending on the degree of pollution. Therefore current research focuses on optimizing the processing time. We present in this paper several examples of in situ bioremediation of heavy metals and radionuclides, and we discuss in conclusion the negative and positive aspects of this technique. (author)

  5. Enhanced bioremediation of lead-contaminated soil by Solanum nigrum L. with Mucor circinelloides.

    Science.gov (United States)

    Sun, Liqun; Cao, Xiufeng; Li, Min; Zhang, Xu; Li, Xinxin; Cui, Zhaojie

    2017-04-01

    Strain selected from mine tailings in Anshan for Pb bioremediation was characterized at the genetic level by internal transcribed spacer (ITS) sequencing. Results revealed that the strain belongs to Mucor circinelloides. Bioremediation of lead-contaminated soil was conducted using Solanum nigrum L. combined with M. circinelloides. The removal efficacy was in the order microbial/phytoremediation > phytoremediation > microbial remediation > control. The bioremediation rates were 58.6, 47.2, and 40.2% in microbial/phytoremediation, microbial remediation, and phytoremediation groups, respectively. Inoculating soil with M. circinelloides enhanced Pb removal and S. nigrum L. growth. The bioaccumulation factor (BF, 1.43), enrichment factor (EF, 1.56), and translocation factor (TF, 1.35) were higher than unit, suggesting an efficient ability of S. nigrum L. in Pb bioremediation. Soil fertility was increased after bioremediation according to change in enzyme activities. The results indicated that inoculating S. nigrum L. with M. circinelloides enhanced its efficiency for phytoremediation of soil contaminated with Pb.

  6. Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk.

    Science.gov (United States)

    Davie-Martin, Cleo L; Stratton, Kelly G; Teeguarden, Justin G; Waters, Katrina M; Simonich, Staci L Massey

    2017-09-05

    Bioremediation uses soil microorganisms to degrade polycyclic aromatic hydrocarbons (PAHs) into less toxic compounds and can be performed in situ, without the need for expensive infrastructure or amendments. This review provides insights into the cancer risks associated with PAH-contaminated soils and places bioremediation outcomes in a context relevant to human health. We evaluated which bioremediation strategies were most effective for degrading PAHs and estimated the cancer risks associated with PAH-contaminated soils. Cancer risk was statistically reduced in 89% of treated soils following bioremediation, with a mean degradation of 44% across the B2 group PAHs. However, all 180 treated soils had postbioremediation cancer risk values that exceeded the U.S. Environmental Protection Agency (USEPA) health-based acceptable risk level (by at least a factor of 2), with 32% of treated soils exceeding recommended levels by greater than 2 orders of magnitude. Composting treatments were most effective at biodegrading PAHs in soils (70% average reduction compared with 28-53% for the other treatment types), which was likely due to the combined influence of the rich source of nutrients and microflora introduced with organic compost amendments. Ultimately, bioremediation strategies, in the studies reviewed, were unable to successfully remove carcinogenic PAHs from contaminated soils to concentrations below the target cancer risk levels recommended by the USEPA.

  7. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Wiedemeier, T.H.; Swanson, M.A.; Wilson, J.T.; Kampbell, D.H.

    1995-01-01

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  8. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Initial assessment of intrinsic and assisted bioremediation potential for diesel fuel impacted soils at Eureka, NWT

    International Nuclear Information System (INIS)

    Wilson, J. J.; Yeske, B.; Lee, D.; Nahir, M.

    1999-01-01

    Two diesel fuel-impacted soil columns prepared to simulate in situ conditions for assessing intrinsic bioremediation were studied. The samples were from Eureka in the Northwest Territories. Two soil jars that were mixed periodically to simulate the ex situ land treatment bioremediation option, were also part of the treatability study. Results strongly suggest that bioremediation at Eureka is a viable option, although the slow rate of biodegradation and the short operating season will necessitate treatment over several years to achieve the remediation endpoint. The intrinsic bioremediation process can be accelerated using periodic addition of a water soluble nitrogen fertilizer, as shown by the nitrogen-amended soil column test. Ex situ bioremediation also appears to be possible judged by the response of the natural bacterial population to periodic mixing and oxygen uptake at 5 degrees C. The principal challenge will be to adequately mix the soil at the surface and to prevent it from drying out. The addition of organic bulking material may be required. 1 ref., 3 tabs., 4 figs

  10. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    Science.gov (United States)

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Desorption of ({sup 14}C) naphthalene from bioremediated and nonbioremediated soils contaminated with creosote compounds

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, P.M.; Gray, M.R.; Dudas, M.J. [University of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources

    1997-09-01

    Bioremediation changes the quantity and nature of the contaminant matrix remaining in soil, because some compounds are selectively degraded while others remain undegraded. It was hypothesized that changes to the contaminant matrix may alter the chemical and physical properties of the soil, such that subsequent desorption of a specific PAH compound would be altered. Desorption of {sup 14}C naphthalene from two creosote-contaminated soils was measured before and after bioremediation. Although the bioremediation treatment removed the lower-molecular weight components, increasing the average molecular weight of the residual creosote by 10-36%, partition coefficients based on the mass of organic carbon in the soil were unaffected. Partition coefficients for naphthalene in soil organic matter were 4.6-8.3 times smaller than in the creosote contaminant. When partitioning was modeled as the sum of the contributions of the nonaqueous phase contaminant and the soil organic matter, the partition coefficients for the creosote contaminant were in the range 3500-4040 mL/g of organic carbon, for both soils with and without bioremediation. The insensitivity of partition coefficients to creosote source and to bioremediation suggest that sorption of naphthalene to a residual creosote matrix was relatively insensitive to detailed composition of the creosote. 20 refs., 3 figs., 2 tabs.

  12. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  13. Bioremediation of petroleum hydrocarbon contaminated soil by Rhodobacter sphaeroides biofertilizer and plants.

    Science.gov (United States)

    Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin

    2015-09-01

    Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.

  14. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics.

    Science.gov (United States)

    Das, Sarbashis; Pettersson, B M Fredrik; Behra, Phani Rama Krishna; Ramesh, Malavika; Dasgupta, Santanu; Bhattacharya, Alok; Kirsebom, Leif A

    2015-06-16

    We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Use of a mathematical model for prediction of optimum feeding strategies for in situ bioremediation

    International Nuclear Information System (INIS)

    Shouche, M.; Petersen, J.N.

    1992-05-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy (DOE) Hanford site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCL 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of the contaminated liquids directly to the environment, and remediation of the existing contaminated groundwaters may be required. In-situ bioremediation is one technology currently being developed at the Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCL 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on-going effort to develop effective in-situ remediation strategies through the use of predictive simulations. In particular, strategies for nutrient injection are developed which minimize biomass accumulation within the flow field and thus extend the life of injection wells

  16. Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation.

    Science.gov (United States)

    Gertler, Christoph; Gerdts, Gunnar; Timmis, Kenneth N; Golyshin, Peter N

    2009-08-01

    An experimental prototype oil boom including oil sorbents, slow-release fertilizers and biomass of the marine oil-degrading bacterium, Alcanivorax borkumensis, was applied for sorption and degradation of heavy fuel oil in a 500-L mesocosm experiment. Fingerprinting of DNA and small subunit rRNA samples for microbial activity conducted to study the changes in microbial communities of both the water body and on the oil sorbent surface showed the prevalence of A. borkumensis on the surface of the oil sorbent. Growth of this obligate oil-degrading bacterium on immobilized oil coincided with a 30-fold increase in total respiration. A number of DNA and RNA signatures of aromatic hydrocarbon-degrading bacteria were detected both in samples of water body and on oil sorbent. Ultimately, the heavy fuel oil in this mesocosm study was effectively removed from the water body. This is the first study to successfully investigate the fate of oil-degrading microbial consortia in an experimental prototype for a bioremediation strategy in offshore, coastal or ship-bound oil spill mitigation using a combination of mechanical and biotechnological techniques.

  17. Fungi from industrial tannins: potential application in biotransformation and bioremediation of tannery wastewaters.

    Science.gov (United States)

    Prigione, Valeria; Trocini, Bruno; Spina, Federica; Poli, Anna; Romanisio, Davide; Giovando, Samuele; Varese, Giovanna Cristina

    2018-03-18

    Tannins are a complex family of polyphenolic compounds, widely distributed in the plant kingdom where they act as growth inhibitors towards many microorganisms including bacteria, yeasts, and fungi. Tannins are one of the major components of tannery wastewaters and may cause serious environmental pollution. In the present study, four different tannins (the hydrolysable chestnut ellagitannin and tara gallotannin and the condensed quebracho and wattle tannins) were characterized from a mycological point of view with the aim of selecting fungal strains capable of growing in the presence of high tannin concentration and thus potentially useful in industrial biotransformations of these compounds or in the bioremediation of tannery wastewaters. A total of 125 isolates of filamentous fungi belonging to 10 species and four genera (Aspergillus, Paecilomyces, Penicillium, and Talaromyces) were isolated from the tannin industrial preparations. Miniaturized biotransformation tests were set up with 10 fungal strains and the high-performance liquid chromatography (HPLC) analysis pointed out a strong activity of all the tested fungi on both chestnut and tara tannins. Two strains (Aspergillus tubingensis MUT 990 and Paecilomyces variotii MUT 1125), tested against a real tannery wastewater, were particularly efficient in chemical oxygen demand (COD) and tannin removal (> 60%), with a detoxification above 74%. These results indicate that these fungi are potentially exploitable in the treatment of tannery wastewaters.

  18. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    International Nuclear Information System (INIS)

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  19. Deployment Plan for Bioremediation and Natural Attenuation for In Situ Restoration of Chloroethene-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, L.N.; Starr, R.C.; Sorenson, K.S.; Smith, R.W.; Phelps, T.J.

    1999-03-01

    This deployment plan describes a project funded by the Accelerated Site Technology Deployment Program of the U.S. Department of Energy (DOE). The objective is to facilitate deployment of enhanced in situ bioremediation (ISB) an monitored natural attenuation (MNA) or chloroethene-contaminated groundwater to DOE sites. Enhanced ISB accelerates dechlorination of chloroethenes under anaerobic conditions by providing nutrients to the microbial community. Natural attenuation does not require nutrient addition. Enhanced ISB in the upgradient portion of a contaminant plume couples with MNA in the downgradient portion is being implemented at Test Area North (TAN) at the Idaho National Engineering and Environmental Laboratory. Selected DOE sites will be screened to assess their suitability for enhanced ISB/MNA. Tasks include: (1) characterization of the TAN microbial community and correlation of community characteristics with chloroethene degradation ability, (2) installation of wells to facilitate evaluation of MNA at TAN, (3) monitoring to better delineate MNA at TAN, and (4) screening of selected other DOE sites for suitability of ISB/MNA, and limited supplemental characterization. Data evaluation will provide a sound technical basis for decision makers to consider use of enhanced ISB and MNA, alone or together, as remedial technologies for these sites.

  20. Seasonal Microbial Population Shifts in a Bioremediation System Treating Metal and Sulfate-Rich Seepage

    Directory of Open Access Journals (Sweden)

    Susan A. Baldwin

    2016-04-01

    Full Text Available Biochemical reactors (BCRs using complex organics for bioremediation of mine-influenced water must operate successfully year round. In cold climates, where many mines in Canada are located, survival of the important microorganisms through the winter months is a concern. In this work, broad phylogenetic surveys, using metagenomics, of the microbial populations in pulp mill biosolids used to remediate metal leachate containing As, Zn, Cd and sulfate were performed to see if the types of microorganisms present changed over the seasons of one year (August 2008 to July 2009. Despite temperature variations between 0 and 17 °C the overall structure of the microbial population was fairly consistent. A cyclical pattern in relative abundance was detected in certain taxa. These included fermenter-related groups, which were out of phase with other taxa such as Desulfobulbus that represented potential consumers of fermentation byproducts. Sulfate-reducers in the BCR biosolids were closely related to psychrotolerant species. Temperature was not a factor that shaped the microbial population structure within the BCR biosolids. Kinetics of organic matter degradation by these microbes and the rate of supply of organic carbon to sulfate-reducers would likely affect the metal removal rates at different temperatures.

  1. Bioremediation of oil-contaminated soil using Candida catenulata and food waste

    International Nuclear Information System (INIS)

    Joo, Hung-Soo; Ndegwa, Pius M.; Shoda, Makoto; Phae, Chae-Gun

    2008-01-01

    Even though petroleum-degrading microorganisms are widely distributed in soil and water, they may not be present in sufficient numbers to achieve contaminant remediation. In such cases, it may be useful to inoculate the polluted area with highly effective petroleum-degrading microbial strains to augment the exiting ones. In order to identify a microbial strain for bioaugmentation of oil-contaminated soil, we isolated a microbial strain with high emulsification and petroleum hydrocarbon degradation efficiency of diesel fuel in culture. The efficacy of the isolated microbial strain, identified as Candida catenulata CM1, was further evaluated during composting of a mixture containing 23% food waste and 77% diesel-contaminated soil including 2% (w/w) diesel. After 13 days of composting, 84% of the initial petroleum hydrocarbon was degraded in composting mixes containing a powdered form of CM1 (CM1-solid), compared with 48% of removal ratio in control reactor without inoculum. This finding suggests that CM1 is a viable microbial strain for bioremediation of oil-contaminated soil with food waste through composting processes. - Enhancement on degradation ability of petroleum hydrocarbon by the microbial strain in the composting process with food waste

  2. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  3. The sociality of bioremediation: Hijacking the social lives of microbial populations to clean up heavy metal contamination

    OpenAIRE

    O'Brien, Siobhan; Buckling, Angus

    2015-01-01

    Bioremediation to remove toxic heavy metals from the environment relies on metal‐tolerant plants or microbes to do the job, but with varying degrees of success. Understanding the ecology and evolution of metal‐resistant bacterial societies could drastically improve the efficiency of microbial bioremediation.

  4. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation.

    Science.gov (United States)

    Khan, Naeem; Bano, Asghari

    2016-01-01

    The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.

  5. Laboratory study on the bioremediation of petrochemical sludge-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, I.S.; Del Panno, M.T.; De Antoni, G.L.; Painceira, M.T. [Universidad Nacional de La Plata, Buenos Aires (Argentina). Facultad de Ciencia Exactas, Laboratorio de Biodegradacion Microbiologica de Hidrocarburos

    2005-06-01

    This study evaluated by biological and chemical analyses the effectiveness of bioremediation of sludge from the petrochemical industry in systems containing artificially contaminated soil. The sludge-soil systems were prepared with three different initial concentrations of sludge, and during bioremediation 86-95% of the hydrocarbons was eliminated. Simultaneously, soil bacterial populations and inhibition of seed germination by aqueous extracts increased in all sludge-soil systems during the first 180 days of treatment. After 1 year of bioremediation, a loss in the catabolic capacity of the Gram-negative bacterial population was observed, but was not dependent on the initial sludge concentration. Furthermore, residual levels of hydrocarbons and seed germination inhibitory effect decreased sharply, but some level of toxicity remained in the systems containing the highest initial sludge concentration. Independent of the initial sludge concentration, the contaminated soils did not re-establish their original features even when residual hydrocarbon concentrations suggested the end of the process. (author)

  6. Ex-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes

    Directory of Open Access Journals (Sweden)

    I. D. Ferreira

    2012-03-01

    Full Text Available The aim of this research was to evaluate the bioremediation of a soil contaminated with wastes from a plasticizers industry, located in São Paulo, Brazil. A 100-kg soil sample containing alcohols, adipates and phthalates was treated in an aerobic slurry-phase reactor using indigenous and acclimated microorganisms from the sludge of a wastewater treatment plant of the plasticizers industry (11gVSS kg-1 dry soil, during 120 days. The soil pH and temperature were not corrected during bioremediation; soil humidity was corrected weekly to maintain 40%. The biodegradation of the pollutants followed first-order kinetics; the removal efficiencies were above 61% and, among the analyzed plasticizers, adipate was removed to below the detection limit. Biological molecular analysis during bioremediation revealed a significant change in the dominant populations initially present in the reactor.

  7. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    Travis, B.J.; Rosenberg, N.D.

    1994-06-01

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  8. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    Lombard, K.H.

    1994-01-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  9. Monitoring of white-rot fungus during bioremediation of polychlorinated dioxin-contaminated fly ash.

    Science.gov (United States)

    Suhara, H; Daikoku, C; Takata, H; Suzuki, S; Matsufuji, Y; Sakai, K; Kondo, R

    2003-10-01

    Bioremediation is a low-cost treatment alternative for the cleanup of polychlorinated-dioxin-contaminated soils and fly ash when pollution spread is wide-ranging. An interesting fungus, Ceriporia sp. MZ-340, with a high ability to degrade dioxin, was isolated from white rotten wood of a broadleaf tree from Kyushu Island in Japan. We have attempted to use the fungus for bioremediation of polychlorinated-dioxin-contaminated soil on site. However, we have to consider that this trial has the potential problem of introducing a biohazard to a natural ecosystem if this organism is naturalized. We have therefore developed a monitoring system for the introduced fungus as a part of the examination and evaluation of bioremediation in our laboratory. We have also developed a PCR-based assay to reliably detect the fungus at the bioremediation site. DNA isolated from the site was amplified by PCR using a specific primer derived from internal transcribed spacer region (ITS: ITS1, 5.8S rDNA and ITS2) sequences of Ceriporia sp. MZ-340. We successfully monitored Ceriporia sp. MZ-340 down to 100 fg/ micro l DNA and down to 2 mg/g mycelium. We also successfully monitored the fungus specifically at the bioremediation site. The polychlorinated dibenzo- p-dioxin and polychlorinated dibenzofuran content was observed to decrease in response to treatment with the fungus. The species-specific PCR technique developed in the present work is useful in evaluating the possibility of on-site bioremediation using the fungus Ceriporia sp. MZ-340.

  10. Bioremediation of Zn, Cu, Mg and Pb in Fresh Domestic Sewage by Brevibacterium sp

    International Nuclear Information System (INIS)

    Ojoawo, S. O.; Rao, C. V.; Goveas, L. C.

    2016-01-01

    The study applied an isolated Brevibacterium sp. (MTCC 10313) for bioremediation of Zn, Cu, Mg and Pb in domestic sewage. Batch culture experiments were performed on both the fresh and stale sewage samples with glucose supplementation of 1-8g/l. Nutrient broth medium was prepared, sterilized and p H adjusted to 6.5-6.8. 1% of the Brevibacteria sp. stock was inoculated into the broth and maintained at 370C for 24 hours in shaker incubator at 120 rpm. Another 1% of fresh grown sub-culture of broth was inoculated into supplemented and sterilized samples. Optical Density was taken at 600nm, growth monitored over 12 days, cultured samples denatured with TCA and centrifuged, supernatants filtered and analyzed with AAS, Settled pellets oven dried, subjected to SEM analysis for morphology and constituents determination. Fresh sewage samples permitted bacterial growth and facilitated bioremediation of Zn, Cu and Mg through metal uptake and bioabsoption by Brevibacteria sp. This effectively reduced concentration of heavy metals, with treatment efficiency order Cu>Zn>Mg, and respective removal percentages of 77, 63 and 55. The optimum glucose concentration for effective bioremediation found as 2g/l for Zn and Cu, and 8g/l for Mg. Pb was resistant to bioremediation with Brevibacteria sp. Stale sewage produced inhibitory substances preventing adequate growth of bacterium with no bioremediation. Bioremediation with Brevibacteria sp. is found effective in removal of micro-units of Zn, Cu and Mg from domestic sewage. As a readily available low-cost agent, it is recommended for large- scale application on those metals while Pb should be further subjected to advanced treatments.

  11. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  12. Taxonomy characterization and plumbum bioremediation of novel fungi.

    Science.gov (United States)

    Zhu, Zhenyuan; Song, Qiaoying; Dong, Fengying

    2018-02-02

    The objective of this study was to investigate the screening, taxonomy characterization, Pb biosorption, and application of the high Pb-resistant fungus F1 separated from the heavy metal contaminated soil. Fungus F1 was screened through metal concentration gradient ranging from 25 to 4000 mg L -1 . The internal transcribed spacers (ITS) of the strain was analyzed by molecular biotechnology. The adsorption conditions were also evaluated. The precipitation of fungus F1 was analyzed by Scanning Electron Microscopy (SEM), Fourier transformer infrared spectroscopy (FTIR) and energy dispersive X-ray (EDX) techniques. The Pb speciation was determined by BCR three-step sequential extraction. The highest concentration of fungus F1 resistance to Pb 2+ was 3500 mg L -1 . The fungus was identified as Trichoderma asperellum. The optimum condition for the Pb 2+ removal rate was discovered as follows: MTL: 3500 mg L -1 ; pH: 7; Pb2+ concentration: 800 mg L -1 ; temperature was 30 °C; initial biosorbent dosage: 6% (v/v). The surface chemical functional groups of fungus F1 were amino, hydroxyl, and carbonyl groups, which may be involved in the biosorption of Pb. Application test showed that the exchangeable, acid-and water soluble Pb were reduced, and the sulfide, organic combination state, and residual Pb were increased. With the preferable absorption capacity, fungus F1 was considered to have good prospects of bioremediation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Bioremediation potential of microorganisms derived from petroleum reservoirs

    International Nuclear Information System (INIS)

    Dellagnezze, Bruna Martins; Vasconcelos de Sousa, Gabriel; Lopes Martins, Laercio; Ferreira Domingos, Daniela; Limache, Elmer E.G.; Pantaroto de Vasconcellos, Suzan; Feitosa da Cruz, Georgiana; Oliveira, Valéria Maia de

    2014-01-01

    Highlights: • Metagenomic clones could degrade saturated hydrocarbons up to 47% in petroleum. • Metagenomic clones consumed more than 90% of some aromatic portion after 21 days. • Isolated strains could degrade n-alkanes with rates up to 99% after 21 days. • Bacterial strains and metagenomic clones showed high petroleum degradation potential. - Abstract: Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography–Flame Ionization Detector (GC–FID) and Gas Chromatography-Mass Spectrometry (GC–MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications

  14. Optimization of a Hydrocarbon Bioremediation System at Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Acuña A.J.

    2012-01-01

    Full Text Available The aim of this study was to optimize the parameters of moisture, temperature and ratio of nutrients to estimate the possibility of applying the technique of bioremediation in a soil contaminated with hydrocarbons. For this, an initial characterization of contaminated soil was made according to their physical and chemical characteristics and the number of heterotrophic and hydrocarbon degraders bacteria. Also the contaminant concentration by gravimetric method and by gas chromatography was studied. To optimize moisture and temperature, microcosms with moisture of 3%, 10%, 15% and 20% and temperatures of 5°C, 15°C, 28°C and 37°C were used. The monitoring of the mineralization of hydrocarbons was performed by measuring the CO2 produced. To optimize the ratio of nutrients, different microcosms were designed and were monitored by oxygen consumption and by determination of hydrocarbons by gas chromatography. The C:N:P relationships studied were 100:20:2, 100:10:1, 100:5:0,5 and 100:1:0,1. The results indicate that the mineralization of hydrocarbons was optimal for moisture of 10% to 20% and temperatures of 25°C to 37°C with CO2 production values of 3000-4500 mgCO2 kg-1. The optimal C:N:P ratio was 100:1:0,1 in which the highest oxygen consumption was and the elimination of 83% of total hydrocarbons determined by gas chromatography with 78% and 89% of n-alkanes and polyaromatic hydrocarbons elimination, respectively.

  15. Quantifying Technetium and Strontium Bioremediation Potential in Flowing Sediment Columns.

    Science.gov (United States)

    Thorpe, Clare L; Law, Gareth T W; Lloyd, Jonathan R; Williams, Heather A; Atherton, Nick; Morris, Katherine

    2017-11-07

    The high-yield fission products 99 Tc and 90 Sr are found as problematic radioactive contaminants in groundwater at nuclear sites. Treatment options for radioactively contaminated land include bioreduction approaches, and this paper explores 99m Tc and 90 Sr behavior and stability under a range of biogeochemical conditions stimulated by electron donor addition methods. Dynamic column experiments with sediment from the Sellafield nuclear facility, completed at site relevant flow conditions, demonstrated that Fe(III)-reducing conditions had developed by 60 days. Sediment reactivity toward 99 Tc was then probed using a 99m Tc(VII) tracer at columns were then exposed to selected treatments to examine the effects of different acetate amendment regimes and reoxidation scenarios over 55 days when they were again imaged with 99m Tc. Here, partially oxidized sediments with no further electron donor additions remained reactive toward 99m Tc under relevant groundwater O 2 and NO 3 - concentrations over 55 days. Immobilization of 99m Tc was highest where continuous acetate amendment had resulted in sulfate-reducing conditions. Interestingly, the sulfate reducing system showed enhanced Sr retention when stable Sr 2+ was added continuously as a proxy for 90 Sr. Overall, sediment reactivity was nondestructively imaged over an extended period to provide new information about dynamic iron and radionuclide biogeochemistry throughout realistic sediment redox cycling regimes.

  16. Identification of electrode respiring, hydrocarbonoclastic bacterial strain Stenotrophomonas maltophilia MK2 highlights the untapped potential for environmental bioremediation

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2016-12-01

    Full Text Available Electrode respiring bacteria (ERB possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential towards organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8-C36 of petroleum hydrocarbons including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells, maximum current density of 273±8 mA/m2 (1000Ω was produced (power density 113±7 mW/m2 by strain MK2 with a coulombic efficiency of 34.8 %. Further, the presence of possible alkane hydroxylase genes (alkB and rubA in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS.

  17. An ecofriendly approach for bioremediation of contaminated water environment: Potential contribution of a coastal seaweed community to environmental improvement.

    Science.gov (United States)

    Deniz, Fatih; Ersanli, Elif Tezel

    2018-02-23

    High levels of heavy metals like copper ions in many industrial based effluents lead to serious environmental and health problems. Biosorption is a potential environmental biotechnology approach for biotreatment of aquatic sites polluted with heavy metal ions. Seaweeds have received great attention for their high bioremediation potential in recent years. However, the co-application of marine macroalgae for removal of heavy metals from wastewater is very limited. Thus, for the first time in literature, a coastal seaweed community composed of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species was applied to remove copper ions from synthetic aqueous medium in this study. The biosorption experiments in batch mode were conducted to examine the effects of operating variables including pH, biosorbent amount, metal ion concentration and contact time on the biosorption process. The biosorption behavior of biosorbent was described by various equilibrium, kinetic and thermodynamic models. The biosorption of copper ions was strongly influenced by the operating parameters. The results indicated that the equilibrium data of biosorption were best modeled by Sips isotherm model. The values of mean free energy of biosorption computed from Dubinin-Radushkevich isotherm model and the standard Gibbs free energy change indicated a feasible, spontaneous and physical biotreatment system. The pseudo-second-order rate equation successfully defined the kinetic behavior of copper biosorption. The pore diffusion also played role in the control of biosorption process. The maximum copper uptake capacity of biosorbent was found to be greater than those of many other biosorbents. The obtained results revealed that this novel biosorbent could be a promising material for copper ion bioremediation implementations.

  18. Literature review and assessment of various approaches to bioremediation of oil and associated hydrocarbons in soil and groundwater

    International Nuclear Information System (INIS)

    1993-08-01

    A study was conducted of available techniques for the biological treatment of oil and associated hydrocarbon contamination in soil and groundwater. The study involved a detailed literature search and review, as well as discussions with the users and developers of a number of the bioremediation techniques assessed. The result is a compendium of selected state-of-the-art bioremediation technologies which can serve to guide the selection process for treatment technology for a particular site subject to remediation. Background is provided on the various classes of sites on which petroleum-related contamination could occur, and the nature of contaminants typical of such sites. The mechanisms of hydrocarbon biodegradation are outlined along with various approaches to bioremediation such as in-situ, on-site, bioreactors, landfarming, composting, and physical/chemical treatments. Field trials required to characterize the site and provide an indication of the suitability of bioremediation and the most appropriate bioremediation approach are described. Commercially available bioremediation technologies are briefly discussed. A number of the bioremedial techniques reviewed are compared to more conventional treatment processes in terms of such criteria as operating cost, effectiveness, advantages, risks, applicability, equipment and manpower requirements, and considerations regarding usage in Canadian conditions. 15 figs., 17 tabs

  19. Broad specificity dioxygenase enzymes and the bioremediation of hazardous aromatic pollutants

    International Nuclear Information System (INIS)

    Bonus, P.A.; Nies, L.

    1996-01-01

    The release of aromatic compounds to the environment is a major source of global pollution. In particular, the contamination of soil and groundwater with benzene, toluene, and xylenes (BTX) is the most ubiquitous form of aromatic pollution. The major source of BTX contamination is the release of gasoline and other petroleum products. This research focused on the improvement of bioremediation of BTX through a better understanding of broad specificity dioxygenase enzymes produced by soil and sediment bacteria. The investigation utilized pure bacterial strains isolated on biphenyl, naphthalene, or toluene. These isolated aerobic bacteria were then used to investigate the specificity of the initial enzymatic attack on aromatic compounds including BTX and polychlorinated biphenyls (PCBs). The enzymatic specificity and competency of the five isolates selected for study were determined through the use of growth tests and two rapid assay techniques. The growth tests were conducted on mineral agar plates or in liquid cultures, and they were used to determine substrate specificity. In addition, rapid assays for both BTX and PCBs were carried out using various growth substrates. These assays allowed further clarification of the specificity of the dioxygenase enzymes involved in aromatic degradation. Preliminary results of the PCB assay show that biphenyl and naphthalene isolated organisms grown on biphenyl, benzoate, naphthalene, and succinate maintain production of broad specificity dioxygenase enzymes able to degrade PCBs. Likewise, the BTX assay confirms that biphenyl and naphthalene selected organisms grown on their respective selection substrates completely degrade BTX including all three xylene isomers. In comparison, the toluene selected organism that was studied was unable to degrade PCBs, but it was able to degrade all BTX constituents

  20. Bioremediation of heavy metal contaminated aqueous solution by using red algae Porphyra leucosticta.

    Science.gov (United States)

    Ye, Jianjun; Xiao, Henglin; Xiao, Benlin; Xu, Weisheng; Gao, Linxia; Lin, Gan

    2015-01-01

    Bioremediation is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. In this study, red algae Porphyra leucosticta was examined to remove Cd(II) and Pb(II) ions from wastewater through biological enrichment and biological precipitation. The experimental parameters that affect the bioremediation process such as pH, contact time and biomass dosage were studied. The maximum bioremediation capacity of metal ions was 31.45 mg/g for Cd(II) and 36.63 mg/g for Pb(II) at biomass dosage 15 g/L, pH 8.0 and contact time 120 minutes containing initial 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution. Red algae Porphyra leucosticta biomass was efficient at removing metal ions of 10.0 mg/L of Cd(II) and 10.0 mg/L of Pb(II) solution with bioremediation efficiency of 70% for Cd(II) and 90% for Pb(II) in optimal conditions. At the same time, the removal capacity for real industrial effluent was gained at 75% for 7.6 mg/L Cd(II) and 95% for 8.9 mg/L Pb(II). In conclusion, it is demonstrated that red algae Porphyra leucosticta is a promising, efficient, cheap and biodegradable sorbent biomaterial for reducing heavy metal pollution in the environment and wastewater.

  1. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  2. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review.

    Science.gov (United States)

    Mansouri, Ahlem; Cregut, Mickael; Abbes, Chiraz; Durand, Marie-Jose; Landoulsi, Ahmed; Thouand, Gerald

    2017-01-01

    DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.

  3. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE�

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets were plac...

  4. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS(TM) CONTAINING PM1, SOS, ISOLITE (R)

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  5. BTEX AND MTBE BIOREMEDIATION: BIONETS™ CONTAINING SOS, PM1 AND ISOLITE®

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylenes) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets w...

  6. MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE.

    Science.gov (United States)

    MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...

  7. Commercial cultivation and bioremediation potential of sugar kelp, Saccharina latissima, in Danish waters

    DEFF Research Database (Denmark)

    Silva Marinho, Goncalo; Holdt, Susan Løvstad; Birkeland, Mads J.

    2015-01-01

    Several seaweed species have been successfully tested for their biofilter potential for integrated multi-trophic aquaculture (IMTA). In this study, Saccharina latissima bioremediation potential was assessed over 12 months with respect to the yield, phosphorous (P), nitrogen (N) content and N...

  8. Bioremediation of PAH-contaminated soil with fungi - from laboratory to field scale

    Czech Academy of Sciences Publication Activity Database

    Winquist, E.; Björklöf, K.; Schultz, E.; Räsänen, M.; Salonen, K.; Anasonye, F.; Cajthaml, Tomáš; Steffen, K.; Jorgensen, K.S.; Tuomela, M.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 238-247 ISSN 0964-8305 R&D Projects: GA TA ČR TE01020218 Institutional support: RVO:61388971 Keywords : bioremediation * contaminated soil * PAH * field scale Subject RIV: EE - Microbiology, Virology Impact factor: 2.131, year: 2014

  9. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  10. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter, carbon and ...

  11. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  12. DEVELOPMENT AND APPLICATION OF PROTOCOLS FOR EVALUATION OF OIL SPILL BIOREMEDIATION (RESEARCH BRIEF)

    Science.gov (United States)

    Protocols were developed and evaluated to assess the efficacy and environmental safety of commercial oil spill bioremediation agents (CBAs). Test systems that simulate oil slicks on open water or oiled sandy beaches were used to test the effectiveness of CBAs. Gravimetric and gas...

  13. TOXICITY TRENDS DURING AN OIL SPILL BIOREMEDIATION EXPERIMENT ON A SANDY SHORELINE IN DELAWARE, USA

    Science.gov (United States)

    A 13-week, refereed, inter-agency toxicity testing program involving five bioassay methods was used to document the effectiveness of shoreline bioremediation to accelerate toxicity reduction of an oiled sandy shoreline at Fowler Beach, Delaware, USA. The study was part of an inte...

  14. Bioremediation of a PAH-contaminated gasworks site with the Ebiox vacuum heap system

    International Nuclear Information System (INIS)

    Eiermann, D.R.; Bolliger, R.

    1995-01-01

    A former gasworks site in the industrial city of Winterthur, Switzerland, was extremely contaminated with polycyclic aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes (BTEX); phenols; ammonia; and mineral oils. Three vacuum heaps, with a total volume of 10,500 m 3 of contaminated soil, were bioremediated during 1993/94. Separating excavated soil material into different soil qualities was of particular importance because of the pathway definition of the specific soil material. Excavation of contamination took longer than 10 months, delivering continuously different contaminated soil-type material for bioremediation. Conditioning and subsequent biostimulation of the large soil volumes were the prerequisites for most advanced milieu optimization. The degradation results demonstrated the potential for successful application of bioremediation on former industrial sites. PAH-concentration reductions ranged from 75 to 83% for the soil values and from 87 to 98% for the elution values. Soil and elution target qualities were met within 6 to 12 months, depending on initial PAH-concentration and soil structure. The achieved target quality for the bioremediated soil allowed subsequent reuse as high-value backfill material for the ongoing building project

  15. Bioremediation in marine ecosystems: a computational study combining ecological modelling and flux balance analysis

    Directory of Open Access Journals (Sweden)

    Marianna eTaffi

    2014-09-01

    Full Text Available The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains.In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746 with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links.The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  16. Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis.

    Science.gov (United States)

    Taffi, Marianna; Paoletti, Nicola; Angione, Claudio; Pucciarelli, Sandra; Marini, Mauro; Liò, Pietro

    2014-01-01

    The pressure to search effective bioremediation methodologies for contaminated ecosystems has led to the large-scale identification of microbial species and metabolic degradation pathways. However, minor attention has been paid to the study of bioremediation in marine food webs and to the definition of integrated strategies for reducing bioaccumulation in species. We propose a novel computational framework for analysing the multiscale effects of bioremediation at the ecosystem level, based on coupling food web bioaccumulation models and metabolic models of degrading bacteria. The combination of techniques from synthetic biology and ecological network analysis allows the specification of arbitrary scenarios of contaminant removal and the evaluation of strategies based on natural or synthetic microbial strains. In this study, we derive a bioaccumulation model of polychlorinated biphenyls (PCBs) in the Adriatic food web, and we extend a metabolic reconstruction of Pseudomonas putida KT2440 (iJN746) with the aerobic pathway of PCBs degradation. We assess the effectiveness of different bioremediation scenarios in reducing PCBs concentration in species and we study indices of species centrality to measure their importance in the contaminant diffusion via feeding links. The analysis of the Adriatic sea case study suggests that our framework could represent a practical tool in the design of effective remediation strategies, providing at the same time insights into the ecological role of microbial communities within food webs.

  17. Bioremediation of endosulfan in laboratory-scale constructed wetlands: effect of bioaugmentation and biostimulation.

    Science.gov (United States)

    Zhao, Congcong; Xie, HuiJun; Mu, Yang; Xu, Xiaoli; Zhang, Jian; Liu, Cui; Liang, Shuang; Ngo, Huu Hao; Guo, Wenshan; Xu, Jingtao; Wang, Qian

    2014-11-01

    Bioremediation is widely used in organic pollutants disposal. However, very little has been known on its application in constructed wetlands contaminated with organochlorine pesticide, endosulfan in particular. To evaluate the effect of bioremediation on endosulfan removal and clarify the fate, bioaugmentation and biostimulation were studied in laboratory-scale vertical-flow constructed wetlands. After 20 days' experiment, endosulfan isomers removal efficiencies were increased to 89.24-97.62 % through bioremediation. In bacteria bioaugmentation (E-in) and sucrose biostimulation (E-C), peak concentrations of endosulfan in sediment were reduced by 31.02-76.77 %, and plant absorption were 347.45-576.65 μg kg(-1). By contrast, plant absorption in KH2PO4 biostimulation (E-P) was increased to 811.64 and 1,067.68 μg kg(-1). Degradation process was probably promoted in E-in and E-C, while plant absorption was enhanced in E-P. Consequently, E-in and E-C were effective for endosulfan removal in constructed wetlands, while adding KH2PO4 had potential to cause air pollution. Additionally, combined bioremediation was not recommended.

  18. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study.

    Science.gov (United States)

    Hubálek, Tomás; Vosáhlová, Simona; Matejů, Vít; Kovácová, Nora; Novotný, Cenek

    2007-01-01

    The ecotoxicity of hydrocarbon-contaminated soil originating from a brownfield site was evaluated during a 17-month biodegradation pilot test. The initial concentration of total petroleum hydrocarbons (TPHs) in the soil was 6380 microg/g dry weight. An amount of 200 kg soil was inoculated with 1.5 L of the bacterial preparation GEM-100 containing Pseudomonas sp. and Acinetobacter sp. strains (5.3 x 10(10) CFU.mL(-1)) adapted to diesel fuel. The concentration of TPHs in the soil decreased by 65.5% after bioremediation. Different organisms such as the bacterium Vibrio fischeri, terrestrial plants Sinapis alba, Lactuca sativa, and Hordeum vulgare, the water plant Lemna minor, the earthworm Eisenia fetida, and the crustacean Heterocypris incongruens were used for ecotoxicity evaluation. The highest toxicity was detected in the first period of bioremediation. However, certain toxic effects were detectable during the whole bioremediation process. The contact tests with plants, earthworms, and crustaceans were the most sensitive of all of the bioassays. Therefore, the contact tests performed directly on soil samples were shown to be a better tool for ecotoxicity evaluation of hydrocarbon-contaminated soil than the tests performed on soil elutriates. The ecotoxicity measured by the responses of the tests did not always correlate with the decrease in TPH concentrations in the soil during bioremediation.

  19. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  20. Bioremediation of PAH-Contaminated Soil by Composting: A Case Study

    Czech Academy of Sciences Publication Activity Database

    Cajthaml, Tomáš; Bhatt, M.; Šašek, Václav; Matějů, V.

    2002-01-01

    Roč. 47, č. 6 (2002), s. 696-700 ISSN 0015-5632 R&D Projects: GA MŠk LN00B030 Institutional research plan: CEZ:AV0Z5020903 Keywords : bioremediation * pah-contaminated * soil Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  1. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage Impacts of heterogeneity, thermal interference and bioremediation Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2 Abstract Aquifer thermal energy storage (ATES) is

  2. Bioremediation of refinery wastewater using immobilised Burkholderia cepacia and Corynebacterium sp and their transconjugants

    Directory of Open Access Journals (Sweden)

    Abdullahi T. Ajao

    2013-07-01

    Full Text Available When oil spill occurs, it poses serious toxic hazards to all forms of life. Mixed culture of Burkholderia cepacia and Corynebacterium sp isolated from refinery sludge using selective enrichment technique was used for bioremediation of refinery wastewater in a laboratoryscale bioreactor. Physicochemical parameters of both raw and treated water were as determined and compared with Federal Environ - mental Protection Agency (FEPA-limit, Abuja, Nigeria to asses the efficiency of the bioremediation process. Each of the bacterium was screened for the presence of plasmid DNA and for the involvement or otherwise of plasmid in the bioremediation of wastewater. The immobilised cells showed percentage decrease in chemical oxygen demand (97%, biochemical oxygen demand (94%, phenol (98%, total petroleum hydrocarbon (79%, oil and grease (90% of the refinery waste water after 20 days of treatment while their transconjugants showed the multiplicative effect by achieving the same percentage after 10 days of treatment. Therefore, the findings revealed that bioaugmentation of wastewater using transmissible catabolic plasmid will enhance efficiency of the bioremediation by spreading the plasmid among indigenous microbial community either through horizontal gene transfer or transformation.

  3. Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Kateřina; Novotný, Čeněk

    2018-01-01

    Roč. 102, č. 1 (2018), s. 39-46 ISSN 0175-7598 Institutional support: RVO:61388971 Keywords : Waste effluents * Bioremediation * White-rot fungal bioreactors Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.420, year: 2016

  4. Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Tomáš; Vosáhlová, S.; Matějů, V.; Kováčová, Nora; Novotný, Čeněk

    2007-01-01

    Roč. 52, č. 1 (2007), s. 1-7 ISSN 0090-4341 R&D Projects: GA MŠk LN00B030; GA AV ČR KJB600200514 Institutional research plan: CEZ:AV0Z50200510 Keywords : bioremediation * ecotoxicity * hydrocarbon-contaminated soil Subject RIV: EE - Microbiology, Virology Impact factor: 1.620, year: 2007

  5. Characterization of bacterial consortia for its use in bioremediation of gas-oil contaminated antarctic soils

    International Nuclear Information System (INIS)

    Ruberto, L.; Vazquez, S.; Mestre, C.; Nogales, B.; Christie-Oleza, J.; Bosch, R.; Mac Cormack, W. P.

    2009-01-01

    Success of bio augmentation of chronically-contaminated soils is controversial, mainly because the inocula are frequently unable to establish in the matrix under bioremediation. In Antarctica, the environmental conditions and the restriction for the introduction of non-autochthonous organisms (imposed by the Antarctic Treaty) prevent inoculation with foreign bacteria. (Author)

  6. EVALUATION OF BIOREMEDIATION STRATEGIES OF A CONTROLLED OIL RELEASE IN A WETLAND

    Science.gov (United States)

    A controlled petroleum release was conducted to evaluate bioremediation in a wetland near Houston, Texas. The 140-day study was conducted using a randomized, complete block design to test three treatments with six replicates per treatment. The three treatment strategies were in...

  7. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  8. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with. 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter ...

  9. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation

    Czech Academy of Sciences Publication Activity Database

    Novotný, Čeněk; Erbanová, Pavla; Cajthaml, Tomáš; Rothschild, N.; Dosoretz, C.; Šašek, Václav

    2000-01-01

    Roč. 54, - (2000), s. 850-853 ISSN 0175-7598 R&D Projects: GA ČR GA526/99/0519; GA ČR GA526/00/1303 Institutional research plan: CEZ:AV0Z5020903 Keywords : bioremediation * Irpex lacteus Subject RIV: EH - Ecology, Behaviour Impact factor: 1.505, year: 2000

  10. Bioremediation of {sup 60}Co from simulated spent decontamination solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G

    2004-07-26

    Bioremediation of {sup 60}Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 {mu}M) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 {mu}M) and varying iron concentrations so as to yield [Fe/Co]{sub initial} ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup.

  11. Bioremediation of 60Co from simulated spent decontamination solutions

    International Nuclear Information System (INIS)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G.

    2004-01-01

    Bioremediation of 60 Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 μM) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 μM) and varying iron concentrations so as to yield [Fe/Co] initial ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup

  12. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Science.gov (United States)

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India

    Directory of Open Access Journals (Sweden)

    Ghanshyam Kumar Satyapal

    2018-03-01

    Full Text Available In middle Gangetic plain, high arsenic concentration is present in water, which causes a significant health risk. Total 48 morphologically distinct arsenite resistant bacteria were isolated from middle Gangetic plain. The minimum inhibitory concentration (MIC values of arsenite varied widely in the range 1–15 mM of the isolates. On the basis of their MIC, two isolates, AK1 (KY569423 and AK9 (KY569424 were selected. The analysis of the 16S rRNA gene sequence of selected isolates revealed that they are belong to the genus Pseudomonas. The AgNO3 test based microplate method revealed that isolates, AK1 and AK9, have potential in transformation of arsenic species. Further, the presence of aoxR, aoxB and aoxC genes in the both isolated strain AK1 and AK9 was confirmed, which play an important role in arsenic bioremediation by arsenite oxidation. Isolated strains also showed heavy metal resistance against Cr(IV, Ni(II, Co(II, Pb(II, Cu(II, Hg(II, Ag(I and Cd(II.

  14. Possible bioremediation of arsenic toxicity by isolating indigenous bacteria from the middle Gangetic plain of Bihar, India.

    Science.gov (United States)

    Satyapal, Ghanshyam Kumar; Mishra, Santosh Kumar; Srivastava, Amrita; Ranjan, Rajesh Kumar; Prakash, Krishna; Haque, Rizwanul; Kumar, Nitish

    2018-03-01

    In middle Gangetic plain, high arsenic concentration is present in water, which causes a significant health risk. Total 48 morphologically distinct arsenite resistant bacteria were isolated from middle Gangetic plain. The minimum inhibitory concentration (MIC) values of arsenite varied widely in the range 1-15 mM of the isolates. On the basis of their MIC, two isolates, AK1 (KY569423) and AK9 (KY569424) were selected. The analysis of the 16S rRNA gene sequence of selected isolates revealed that they are belong to the genus Pseudomonas . The AgNO 3 test based microplate method revealed that isolates, AK1 and AK9, have potential in transformation of arsenic species. Further, the presence of aoxR, aoxB and aoxC genes in the both isolated strain AK1 and AK9 was confirmed, which play an important role in arsenic bioremediation by arsenite oxidation. Isolated strains also showed heavy metal resistance against Cr(IV), Ni(II), Co(II), Pb(II), Cu(II), Hg(II), Ag(I) and Cd(II).

  15. Characterization of the Rhodococcus sp. MK1 strain and its pilot application for bioremediation of diesel oil-contaminated soil.

    Science.gov (United States)

    Kis, Ágnes Erdeiné; Laczi, Krisztián; Zsíros, Szilvia; Kós, Péter; Tengölics, Roland; Bounedjoum, Naila; Kovács, Tamás; Rákhely, Gábor; Perei, Katalin

    2017-12-01

    Petroleum hydrocarbons and derivatives are widespread contaminants in both aquifers and soil, their elimination is in the primary focus of environmental studies. Microorganisms are key components in biological removal of pollutants. Strains capable to utilize hydrocarbons usually appear at the contaminated sites, but their metabolic activities are often restricted by the lack of nutrients and/or they can only utilize one or two components of a mixture. We isolated a novel Rhodococcus sp. MK1 strain capable to degrade the components of diesel oil simultaneously. The draft genome of the strain was determined and besides the chromosome, the presence of one plasmid could be revealed. Numerous routes for oxidation of aliphatic and aromatic compounds were identified. The strain was tested in ex situ applications aiming to compare alternative solutions for microbial degradation of hydrocarbons. The results of bioaugmentation and biostimulation experiments clearly demonstrated that - in certain cases - the indigenous microbial community could be exploited for bioremediation of oil-contaminated soils. Biostimulation seems to be efficient for removal of aged contaminations at lower concentration range, whereas bioaugmentation is necessary for the treatment of freshly and highly polluted sites.

  16. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  17. Combination of aquifer thermal energy storage and enhanced bioremediation: Biological and chemical clogging.

    Science.gov (United States)

    Ni, Zhuobiao; van Gaans, Pauline; Rijnaarts, Huub; Grotenhuis, Tim

    2018-02-01

    Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not yet clear. Of main concern is the potential for biological clogging which might be enhanced and hamper the proper functioning of ATES. On the other hand, more reduced conditions in the subsurface by enhanced bioremediation might lower the chance of chemical clogging, which is normally caused by Fe(III) precipitate. To investigate the possible effects of enhanced bioremediation on clogging with ATES, we conducted two recirculating column experiments with differing flow rates (10 and 50mL/min), where enhanced biological activity and chemically promoted Fe(III) precipitation were studied by addition of lactate and nitrate respectively. The pressure drop between the influent and effluent side of the column was used as a measure of the (change in) hydraulic conductivity, as indication of clogging in these model ATES systems. The results showed no increase in upstream pressure during the period of enhanced biological activity (after lactate addition) under both flow rates, while the addition of nitrate lead to significant buildup of the pressure drop. However, at the flow rate of 10mL/min, high pressure buildup caused by nitrate addition could be alleviated by lactate addition. This indicates that the risk of biological clogging is relatively small in the investigated areas of the mimicked ATES system that combines enhanced bioremediation with lactate as substrate, and furthermore that lactate may counter chemical clogging. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.

    Science.gov (United States)

    Bhattacharya, Sukanta S; Yadav, Jagjit S

    2018-01-01

    Cytochrome P450 enzymes are a structurally conserved but functionally diverse group of heme-containing mixed function oxidases found across both prokaryotic and eukaryotic forms of the microbial world. Microbial P450s are known to perform diverse functions ranging from the synthesis of cell wall components to xenobiotic/drug metabolism to biodegradation of environmental chemicals. Conventionally, many microbial systems have been reported to mimic mammalian P450-like activation of drugs and were proposed as the in-vitro models of mammalian drug metabolism. Recent reports suggest that native or engineered forms of specific microbial P450s from these and other microbial systems could be employed for desired specific biotransformation reactions toward natural and synthetic (drug) compounds underscoring their emerging potential in drug improvement and discovery. On the other hand, microorganisms particularly fungi and actinomycetes have been shown to possess catabolic P450s with unusual potential to degrade toxic environmental chemicals including persistent organic pollutants (POPs). Wood-rotting basidiomycete fungi in particular have revealed the presence of exceptionally large P450 repertoire (P450ome) in their genomes, majority of which are however orphan (with no known function). Our pre- and post-genomic studies have led to functional characterization of several fungal P450s inducible in response to exposure to several environmental toxicants and demonstration of their potential in bioremediation of these chemicals. This review is an attempt to summarize the postgenomic unveiling of this versatile enzyme superfamily in microbial systems and investigation of their potential to synthesize new drugs and degrade persistent pollutants, among other biotechnological applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Comparison of feeding strategies in acute toxicity tests of crude oil and commercial bioremediation agents

    International Nuclear Information System (INIS)

    Cavender, R.C.; Cherry, D.S.; Yeager, M.M.; Bidwell, J.R.

    1995-01-01

    Proposed modifications to the National Oil and Hazardous Substance Pollution Contingency Plan have prompted examinations of the methodology used in toxicity testing of the water soluble fraction (WSF) of oil, commercial bioremediation agents (CBA), and a combination of the two. The organisms currently used in acute (96 hr) testing of these agents are the inland silverside, Menidia beryllina, and an estuarine mysid, Mysidopsis bahia. The mysid is a carnivorous species that must be fed during a test in order to prevent predation within the test chambers. Currently proposed methodology for silverside testing also includes feeding. The high oxygen demand of CBAs and the WSF of oil causes dissolved oxygen to be a factor in toxicity. This effect can be intensified by the addition of brine shrimp (Artemia sp.) to the test chambers. The purpose of this study was to compare the toxicity of CBAs in combination with the WSF of oil to silversides with and without the addition of food. Tests were conducted using both 24-hour and 14-day spinning times for the CBA/WSF mixture. With the 24-hour spinning time, LC50 values from each day of the 4-day test were consistently lower in the Artemia fed test (47.8--22.6%) as compared to the unfed test (72.1--43.0%). A similar trend was seen in the 24 and 48 hour LC50's in the 14-day spinning time. Overall, low dissolved oxygen was found to be most relevant at the highest CBA/WSF concentrations where D.O. dropped below 2 mg/l in Artemia fed tests

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to a combination of lycopene, vitamin E, lutein and selenium and protection of the skin from UV-induced (including photo-oxidative) damage pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    -protective activity of the food, delaying the appearance of UV-induced erythema and decreasing its intensity. The target population proposed by the applicant is healthy adults in the general population, and in particular people with sensitive skin. The Panel considers that protection of the skin from UV......-induced (including photo-oxidative) damage is a beneficial physiological effect. The applicant identified one bioequivalence study as being pertinent to the health claim. The Panel notes that this study did not assess direct measures of UV-induced (including photo-oxidative) skin damage. Therefore, no conclusions...