WorldWideScience

Sample records for include advanced materials

  1. Challenges for INAA in studies of materials from advanced material research including rare earth concentrates and carbon based ceramics

    International Nuclear Information System (INIS)

    Bode, P.; Van Meerten, Th.G.

    2000-01-01

    Rare-earth elements are increasingly applied in advanced materials to be used, e.g., in electronic industry, automobile catalysts, or lamps and optical devices. Trace element analysis of these materials might be an interesting niche for NAA because of the intrinsic high accuracy of this technique, and the shortage of matrix matching reference materials with other methods for elemental analysis. The carbon composite materials form another category of advanced materials, where sometimes a very high degree of purity is required. Also for these materials, NAA has favorable analytical characteristics. Examples are given of the use of NAA in the analysis of both categories of materials. (author)

  2. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  3. Materials for advanced packaging

    CERN Document Server

    Wong, CP

    2017-01-01

    This second edition continues to be the most comprehensive review on the developments in advanced electronic packaging technologies, with a focus on materials and processing. Recognized experts in the field contribute to 22 updated and new chapters that provide comprehensive coverage on various 3D package architectures, novel bonding and joining techniques, wire bonding, wafer thinning techniques, organic substrates, and novel approaches to make electrical interconnects between integrated circuit and substrates. Various chapters also address advances in several key packaging materials, including: Lead-free solders Flip chip underfills Epoxy molding compounds Conductive adhesives Die attach adhesives/films Thermal interface materials (TIMS) Materials for fabricating embedded passives including capacitors, inductors, and resistors Materials and processing aspects on wafer-level chip scale package (CSP) and MicroElectroMechanical system (MEMS) Contributors also review new and emerging technologies such as Light ...

  4. Advanced materials for energy storage.

    Science.gov (United States)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.

  5. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  6. Advanced materials for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Li, Feng; Ma, Lai-Peng; Cheng, Hui-Ming [Shenyang National Laboratory for Materials Science Institute of Metal Research, Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016 (China)

    2010-02-23

    Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Machinability of advanced materials

    CERN Document Server

    Davim, J Paulo

    2014-01-01

    Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.

  8. Advances in laser ablation of materials

    International Nuclear Information System (INIS)

    Singh, R.K.; Lowndes, D.H.; Chrisey, D.B.; Fogarassy, E.; Narayan, J.

    1998-01-01

    The symposium, Advances in Laser Ablation of Materials, was held at the 1998 MRS Spring Meeting in San Francisco, California. The papers in this symposium illustrate the advances in pulsed laser ablation for a wide variety of applications involving semiconductors, superconductors, metals, ceramics, and polymers. In particular, advances in the deposition of oxides and related materials are featured. Papers dealing with both fundamentals and the applications of laser ablation are presented. Topical areas include: fundamentals of ablation and growth; in situ diagnostics and nanoscale synthesis advances in laser ablation techniques; laser surface processing; pulsed laser deposition of ferroelectric, magnetic, superconducting and optoelectronic thin films; and pulsed laser deposition of carbon-based and polymeric materials. Sixty papers have been processed separately for inclusion on the data base

  9. Advanced thermal management materials

    CERN Document Server

    Jiang, Guosheng; Kuang, Ken

    2012-01-01

    ""Advanced Thermal Management Materials"" provides a comprehensive and hands-on treatise on the importance of thermal packaging in high performance systems. These systems, ranging from active electronically-scanned radar arrays to web servers, require components that can dissipate heat efficiently. This requires materials capable of dissipating heat and maintaining compatibility with the packaging and dye. Its coverage includes all aspects of thermal management materials, both traditional and non-traditional, with an emphasis on metal based materials. An in-depth discussion of properties and m

  10. Advanced Industrial Materials Program

    Science.gov (United States)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  11. Handbook of Advanced Magnetic Materials

    CERN Document Server

    Liu, Yi; Shindo, Daisuke

    2006-01-01

    From high-capacity, inexpensive hard drives to mag-lev trains, recent achievements in magnetic materials research have made the dreams of a few decades ago reality. The objective of Handbook of Advanced Magnetic Materials is to provide a timely, comprehensive review of recent progress in magnetic materials research. This broad yet detailed reference consists of four volumes: 1.) Nanostructured advanced magnetic materials, 2.) Characterization and simulation of advanced magnetic materials, 3.) Processing of advanced magnetic materials, and 4.) Properties and applications of advanced magnetic materials The first volume documents and explains recent development of nanostructured magnetic materials, emphasizing size effects. The second volume provides a comprehensive review of both experimental methods and simulation techniques for the characterization of magnetic materials. The third volume comprehensively reviews recent developments in the processing and manufacturing of advanced magnetic materials. With the co...

  12. High Temperature Materials Characterization and Advanced Materials Development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H.

    2007-06-01

    The project has been carried out for 2 years in stage III in order to achieve the final goals of performance verification of the developed materials, after successful development of the advanced high temperature material technologies for 3 years in Stage II. The mechanical and thermal properties of the advanced materials, which were developed during Stage II, were evaluated at high temperatures, and the modification of the advanced materials were performed. Moreover, a database management system was established using user-friendly knowledge-base scheme to complete the integrated-information material database in KAERI material division

  13. Frontiers of advanced engineering materials (faem-06)

    International Nuclear Information System (INIS)

    Alam, S.; Mirza, J.A.

    2006-01-01

    The second international conference on Frontiers of Advanced Engineering Materials was held on 04-06 December 2006 in Lahore, Pakistan. At a time of the rapid expending enormous potential for the wide spread development and usage of Advanced Engineering Materials. About 121 papers were presented by engineers and scientists from 30 organizations, academic institutions and foreign experts from six countries. on the recommendation of a panel after review, only 72 papers were included in this conference proceedings. The main areas of interest which remained under focus during the conference were structure property relationship, surface Modifications, Nano Technology, Super and semi conductors, Magnetic Materials, Materials Proceeding, Glass and Ceramics, Composite Materials. This Conference open a way to help in strengthening the bounds between our foreign guests local and delegates. The participants showed their keen interest in the poster sessions. Fruitful conclusions of these presentations will be helpful to give rise to new topics of research in the fields of advanced engineering Materials. (A.B.)

  14. Advances in dental materials.

    Science.gov (United States)

    Fleming, Garry J P

    2014-05-01

    The dental market is replete with new resorative materials marketed on the basis of novel technological advances in materials chemistry, bonding capability or reduced operator time and/or technique sensitivity. This paper aims to consider advances in current materials, with an emphasis on their role in supporting contemporary clinical practice.

  15. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  16. Ion beam processing of advanced electronic materials

    International Nuclear Information System (INIS)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases

  17. Advanced ceramic materials and their potential impact on the future

    International Nuclear Information System (INIS)

    Laren, M.G.M.

    1989-01-01

    This article reviews the types of advanced ceramic materials that are being used today and their potential for even greater utilization in the future. Market analysis and projections have been developed from a number of sources both foreign and domestic are referenced and given in the text. Projection on the future use of advanced ceramics to the year 2000 indicate a potential growth of the total world market approaching 187 billion dollars. This paper describes advanced ceramic materials by their functionality, i.e. structural, electronic, chemical, thermal, biological, nuclear, etc. It also refers to specific engineering uses of advanced ceramics and include automotive ceramic materials with physical data for the most likely ceramic materials to be used for engine parts. This family of materials includes silicon carbides, silicon nitride, partially stabilized zirconia and alumina. Fiber reinforced ceramic composites are discussed with recognition of the research on fiber coating chemistry and the compatibility of the coating with the fiber and the matrix. Another class of advanced ceramics is toughened ceramics. The transformation toughened alumina is recognized as an example of this technology. The data indicate that electronic ceramic materials will always have the largest portion of the advanced ceramic market and the critical concepts of a wide range of uses is reviewed. (Auth.)

  18. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  19. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2012-01-01

    Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...

  20. Advanced quantum mechanics materials and photons

    CERN Document Server

    Dick, Rainer

    2016-01-01

    In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...

  1. Joining of advanced materials

    CERN Document Server

    Messler, Robert W

    1993-01-01

    Provides an unusually complete and readable compilation of the primary and secondary options for joining conventional materials in non-conventional ways. Provides unique coverage of adhesive bonding using both organic and inorganic adhesives, cements and mortars. Focuses on materials issues without ignoring issues related to joint design, production processing, quality assurance, process economics, and joining performance in service.Joining of advanced materials is a unique treatment of joining of both conventional and advanced metals andalloys, intermetallics, ceramics, glasses, polymers, a

  2. Advanced energy materials

    CERN Document Server

    Tiwari, Ashutosh

    2014-01-01

    An essential resource for scientists designing new energy materials for the vast landscape of solar energy conversion as well as materials processing and characterization Based on the new and fundamental research on novel energy materials with tailor-made photonic properties, the role of materials engineering has been to provide much needed support in the development of photovoltaic devices. Advanced Energy Materials offers a unique, state-of-the-art look at the new world of novel energy materials science, shedding light on the subject's vast multi-disciplinary approach The book focuses p

  3. Gas storage materials, including hydrogen storage materials

    Science.gov (United States)

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  4. Beam processing of advanced materials

    International Nuclear Information System (INIS)

    Singh, J.; Copley, S.M.

    1993-01-01

    International Conference on Beam Processing of Advanced Materials was held at the Fall TMS/ASM Materials Week at Chicago, Illinois, November 2--5, 1992. The symposium was devoted to the recent advances in processing of materials by an energy source such as laser, electron, ion beams, etc. The symposium served as a forum on the science of beam-induced materials processing and implications of this science to practical implementation. An increased emphasis on obtaining an understanding of the fundamental mechanisms of beam-induced surface processes was a major trend observed at this years symposium. This has resulted in the increased use of advanced diagnostic techniques and modeling studies to determine the rate controlling steps in these processes. Individual papers have been processed separately for inclusion in the appropriate data bases

  5. Interregional technology transfer on advanced materials and renewable energy systems

    International Nuclear Information System (INIS)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M.

    2008-01-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems

  6. Interregional technology transfer on advanced materials and renewable energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Agrianidis, P.; David, C.; Anthymidis, K.; Ekhrawat, M. [Department of Mechanical Engineering, Technological Educational Institute of Serres, Serres (Greece)

    2008-07-01

    Advanced materials are used in most industrial sectors and human activities and all developing and developed countries as well as international organizations eg. United Nations have established work groups, which survey the national and global state and developments in the area of advanced materials trying to establish strategies on that crucial technology sector. These strategies are focused on research and technology activities including education and vocation training, as well as stimulus for the starting up of new industrial applications. To introduce such a concept in Greece and especially in Northern Greece, the Technological Education Institute of Serres has initiated an Interregional technology transfer project in this scientific field. This project includes mod topics of advanced materials technology with emphasison specific industrial applications (renewable energy systems). The project demonstrates the development of a prototype photovoltaic thermal system in terms of a new industrial product. The product development procedure consists of steps such as initial product design, materials selection and processing, prototype design and manufacturing, quality control, performance optimization, but also control of materials ecocompatibility according to the national trends of life cycle design and recycling techniques. Keywords: Interregional technology transfer, materials, renewable energy systems.

  7. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    John Alexis, S.; Jayakumar, S.

    2012-01-01

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  8. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  9. Advanced Material Strategies for Next-Generation Additive Manufacturing.

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Mao, Mao; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen; Chua, Chee-Kai; Zhao, Xin

    2018-01-22

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  10. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Jinke Chang

    2018-01-01

    Full Text Available Additive manufacturing (AM has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing.

  11. Advanced Material Strategies for Next-Generation Additive Manufacturing

    Science.gov (United States)

    Chang, Jinke; He, Jiankang; Zhou, Wenxing; Lei, Qi; Li, Xiao; Li, Dichen

    2018-01-01

    Additive manufacturing (AM) has drawn tremendous attention in various fields. In recent years, great efforts have been made to develop novel additive manufacturing processes such as micro-/nano-scale 3D printing, bioprinting, and 4D printing for the fabrication of complex 3D structures with high resolution, living components, and multimaterials. The development of advanced functional materials is important for the implementation of these novel additive manufacturing processes. Here, a state-of-the-art review on advanced material strategies for novel additive manufacturing processes is provided, mainly including conductive materials, biomaterials, and smart materials. The advantages, limitations, and future perspectives of these materials for additive manufacturing are discussed. It is believed that the innovations of material strategies in parallel with the evolution of additive manufacturing processes will provide numerous possibilities for the fabrication of complex smart constructs with multiple functions, which will significantly widen the application fields of next-generation additive manufacturing. PMID:29361754

  12. Advancing Sustainable Materials Management: Facts and Figures Report

    Science.gov (United States)

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  13. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  14. Advanced energy materials (Preface)

    Science.gov (United States)

    Titus, Elby; Ventura, João; Araújo, João Pedro; Campos Gil, João

    2017-12-01

    Advances in material science make it possible to fabricate the building blocks of an entirely new generation of hierarchical energy materials. Recent developments were focused on functionality and areas connecting macroscopic to atomic and nanoscale properties, where surfaces, defects, interfaces and metastable state of the materials played crucial roles. The idea is to combine both, the top-down and bottom-up approach as well as shape future materials with a blend of both the paradigms.

  15. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  16. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  17. Advances in electronic materials

    CERN Document Server

    Kasper, Erich; Grimmeiss, Hermann G

    2008-01-01

    This special-topic volume, Advances in Electronic Materials, covers various fields of materials research such as silicon, silicon-germanium hetero-structures, high-k materials, III-V semiconductor alloys and organic materials, as well as nano-structures for spintronics and photovoltaics. It begins with a brief summary of the formative years of microelectronics; now the keystone of information technology. The latter remains one of the most important global technologies, and is an extremely complex subject-area. Although electronic materials are primarily associated with computers, the internet

  18. Research and development of advanced materials using ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Susumu [Nagasaki Inst. of Applied Science, Nagasaki (Japan)

    1997-03-01

    A wide range of research and development activities of advanced material synthesis using ion beams will be discussed, including ion beam applications to the state-of-the-art electronics from giant to nano electronics. (author)

  19. Advanced Materials for Space Applications

    Science.gov (United States)

    Pater, Ruth H.; Curto, Paul A.

    2005-01-01

    Since NASA was created in 1958, over 6400 patents have been issued to the agency--nearly one in a thousand of all patents ever issued in the United States. A large number of these inventions have focused on new materials that have made space travel and exploration of the moon, Mars, and the outer planets possible. In the last few years, the materials developed by NASA Langley Research Center embody breakthroughs in performance and properties that will enable great achievements in space. The examples discussed below offer significant advantages for use in small satellites, i.e., those with payloads under a metric ton. These include patented products such as LaRC SI, LaRC RP 46, LaRC RP 50, PETI-5, TEEK, PETI-330, LaRC CP, TOR-LM and LaRC LCR (patent pending). These and other new advances in nanotechnology engineering, self-assembling nanostructures and multifunctional aerospace materials are presented and discussed below, and applications with significant technological and commercial advantages are proposed.

  20. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  1. Plasma-wall interaction of advanced materials

    Directory of Open Access Journals (Sweden)

    J.W. Coenen

    2017-08-01

    Full Text Available DEMO is the name for the first stage prototype fusion reactor considered to be the next step after ITER. For the realization of fusion energy especially materials questions pose a significant challenge already today. Advanced materials solution are under discussion in order to allow operation under reactor conditions [1] and are already under development used in the next step devices. Apart from issues related to material properties such as strength, ductility, resistance against melting and cracking one of the major issues to be tackled is the interaction with the fusion plasma. Advanced tungsten (W materials as discussed below do not necessarily add additional lifetime issues, they will, however, add concerns related to erosion or surface morphology changes due to preferential sputtering. Retention of fuel and exhaust species are one of the main concerns. Retention of hydrogen will be one of the major issues to be solved in advanced materials as especially composites and alloys will introduce new hydrogen interactions mechanisms. Initial calculations show these mechanisms. Especially for Helium as the main impurity species material issues arise related to surfaces modification and embrittlement. Solutions are proposed to mitigate effects on material properties and introduce new release mechanisms.

  2. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  3. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  4. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  5. Advances in ultrasonic testing of austenitic stainless steel welds. Towards a 3D description of the material including attenuation and optimisation by inversion

    Science.gov (United States)

    Moysan, J.; Gueudré, C.; Ploix, M.-A.; Corneloup, G.; Guy, Ph.; Guerjouma, R. El; Chassignole, B.

    In the case of multi-pass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Anisotropy results from the metal solidification and is correlated with the grain orientation. A precise description of the material is one of the key points to obtain reliable results with wave propagation codes. A first advance is the model MINA which predicts the grain orientations in multi-pass 316-L steel welds. For flat position welding, good predictions of the grains orientations were obtained using 2D modelling. In case of welding in position the resulting grain structure may be 3D oriented. We indicate how the MINA model can be improved for 3D description. A second advance is a good quantification of the attenuation. Precise measurements are obtained using plane waves angular spectrum method together with the computation of the transmission coefficients for triclinic material. With these two first advances, the third one is now possible: developing an inverse method to obtain the material description through ultrasonic measurements at different positions.

  6. Mishap risk control for advanced aerospace/composite materials

    Science.gov (United States)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  7. Advances in Integrated Computational Materials Engineering "ICME"

    Science.gov (United States)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  8. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  9. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  10. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  11. Advanced Industrial Materials (AIM) Program. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1995-05-01

    The Advanced Industrial Materials Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy in the Department of Energy. The mission of the AIM Program is to conduct applied research, development, and applications engineering work, in partnership with industry, to commercialize new or improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. AIM is responsible for identifying, supporting, and coordinating multidisciplinary projects to solve identified industrial needs and transferring the technology to the industrial sector. Program investigators in the DOE National Laboratories are working closely with approximately 100 companies, including 15 partners in Cooperative Research and Development Agreements. Work is being done in a wide variety of materials technologies, including intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The Program supports other efforts in the Office of Industrial Technologies to assist the energy consuming process industries, including forest products, glass, steel, aluminum, foundries, chemicals, and refineries. To support OITs {open_quotes}Industries of the Future{close_quotes} initiatives and to improve the relevance of materials research, assessments of materials needs and opportunities in the process industries are being made. These assessments are being used for program planning and priority setting; support of work to satisfy those needs is being provided. Many new materials that have come into the marketplace in recent years, or that will be available for commercial use within a few more years, offer substantial benefits to society. This document contains 28 reports on advanced materials research. Individual reports have been processed separately for entry onto the Department of Energy databases.

  12. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  13. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  14. Precious-metal-base advanced materials

    International Nuclear Information System (INIS)

    Nowicki, T.; Carbonnaux, C.

    1993-01-01

    Precious metals constitute also the base of several advanced materials used in the industry in hundreds of metric tons. Platinum alloys have been used as structural materials for equipments in the glass industry. The essential reason for this is the excellent resistance of platinum alloys to oxidation and electrolytical corrosion in molten glasses at temperatures as high as 1200-1500 C. The major drawback is a weak creep resistance. The unique way for significant improvement of platinum base materials creep resistance is a strengthening by an oxide dispersion (ODS). In the case of CLAL's patented ''Plativer'' materials, 0.05 wt% of Y 2 O 3 is incorporated within the alloy matrix by the flame spraying process. Further improvement of platinum base materials is related, in the authors opinion, to the development of precious metals base intermetallics. Another interesting applications of precious metals are silver base electrical contacts. They are in fact silver matrix composites containing varying amounts of well-dispersed particles of constituents such as CdO, SnO 2 , Ni, WC or C. In the case of such materials, particular properties are required and tested : resistance to arc erosion, resistance to welding and contact resistance. Many other technically fascinating precious metals base materials exist: brazing alloys for assembling metals, superconductors and ceramics; dental materials including magnetic biocompatible alloys; silver composites for superconductor wire jackets. The observation of current evolution indicates very clearly that precious metals cannot be replaced by common metals because of their unique characteristics due to their atomic level properties

  15. Code qualification of structural materials for AFCI advanced recycling reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Majumdar, S.; Nanstad, R.K.; Sham, T.-L. (Nuclear Engineering Division); (ORNL)

    2012-05-31

    ) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of

  16. Novel Nanocomposite Materials for Advanced Li-Ion Rechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Chuan Cai

    2009-09-01

    Full Text Available Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. Nanocomposite materials will have a further enhancement in properties compared to their constituent phases. This Review describes some recent developments of nanocomposite materials for high-performance Li-ion rechargeable batteries, including carbon-oxide nanocomposites, polymer-oxide nanocomposites, metal-oxide nanocomposites, and silicon-based nanocomposites, etc. The major goal of this Review is to highlight some new progress in using these nanocomposite materials as electrodes to develop Li-ion rechargeable batteries with high energy density, high rate capability, and excellent cycling stability.

  17. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  18. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable

  19. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of ∼550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at ∼1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and

  20. Design of advanced materials for linear and nonlinear dynamics

    DEFF Research Database (Denmark)

    Frandsen, Niels Morten Marslev

    to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple......The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... but general model of inhomogeneous structural materials with nonlinear material characteristics. The second material system is an “engineered” material in the sense that a classical structural element, a linear elastic and homogeneous rod, is “enhanced” by applying a mechanism on its surface, amplifying...

  1. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  2. Advances in the material science of concrete

    National Research Council Canada - National Science Library

    Ideker, Jason H; Radlinska, Aleksandra

    2010-01-01

    ... Committee 236, Material Science of Concrete. The session focused on material science aspects of concrete with an emphasis placed on advances in understanding the fundamental scientific topics of cement-based materials, as well as the crucial...

  3. Dancing with light advances in photofunctional liquid-crystalline materials

    CERN Document Server

    Yu, Haifeng

    2015-01-01

    Recent progress in this field indicates that integrating photochromic molecules into LC materials enables one to photo-manipulate unique features such as photoinduced phase transition, photocontrolled alignment and phototriggered molecular cooperative motion, leading to their novel applications beyond displays. This book introduces readers to this field, from the primary- to the advanced level in photoresponsive LC materials. The subject is introduced step-by-step, including the basic knowledge of LCs, photoresponsive properties of LCs, and their detailed performances in the form of low-molecu

  4. Advanced superconducting materials

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1983-11-01

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de

  5. Advanced materials processing

    International Nuclear Information System (INIS)

    Giamei, A.F.

    1993-01-01

    Advanced materials will require improved processing methods due to high melting points, low toughness or ductility values, high reactivity with air or ceramics and typically complex crystal structures with significant anisotropy in flow and/or fracture stress. Materials for structural applications at elevated temperature in critical systems will require processing with a high degree of control. This requires an improved understanding of the relationship between process variables and microstructure to enable control systems to achieve consistently high quality. One avenue to the required level of understanding is computer simulation. Past attempts to do process modeling have been hampered by incomplete data regarding thermophysical or mechanical material behavior. Some of the required data can be calculated. Due to the advances in software and hardware, accuracy and costs are in the realm of acquiring experimental data. Such calculations can, for example, be done at an atomic level to compute lattice energy, fault energies, density of states and charge densities. These can lead to fundamental information about the competition between slip and fracture, anisotropy of bond strength (and therefore cleavage strength), cohesive strength, adhesive strength, elastic modulus, thermal expansion and possibly other quantities which are difficult (and therefore expensive to measure). Some of these quantities can be fed into a process model. It is probable that temperature dependencies can be derived numerically as well. Examples are given of the beginnings of such an approach for Ni 3 Al and MoSi 2 . Solidification problems are examples of the state-of-the-art process modeling and adequately demonstrate the need for extensive input data. Such processes can be monitored in terms of interfacial position vs. time, cooling rate and thermal gradient

  6. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  7. MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC

    CERN Document Server

    Valloni, A.; Mereghetti, A.; Molson, J. G.; Appleby, R.; Bruce, R.; Quaranta, E.; Redaelli, S.

    2016-01-01

    The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  8. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    Science.gov (United States)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  9. Advanced Material Rendering in Blender

    Czech Academy of Sciences Publication Activity Database

    Hatka, Martin; Haindl, Michal

    2012-01-01

    Roč. 11, č. 2 (2012), s. 15-23 ISSN 1081-1451 R&D Projects: GA ČR GAP103/11/0335; GA ČR GA102/08/0593 Grant - others:CESNET(CZ) 387/2010; CESNET(CZ) 409/2011 Institutional support: RVO:67985556 Keywords : realistic material rendering * bidirectional texture function * Blender Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/haindl-advanced material rendering in blender.pdf

  10. Materials performance in advanced fossil technologies

    International Nuclear Information System (INIS)

    Natesan, K.

    1991-01-01

    A number of advanced technologies are being developed to convert coal into clean fuels for use as a feedstock in chemical plants and for power generation. From the standpoint of component materials, the environments created by coal conversion and combustion in these technologies and their interactions with materials are of interest. This article identifies several modes of materials degradation and possible mechanisms for metal wastage. Available data on the performance of materials in several of the environments are highlighted, and examples of promising research activities to improve the corrosion resistance of materials are presented

  11. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao

    2013-01-01

    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  12. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  13. Advanced Electron Microscopy in Materials Physics

    International Nuclear Information System (INIS)

    Zhu, Y.; Jarausch, K.

    2009-01-01

    Aberration correction has opened a new frontier in electron microscopy by overcoming the limitations of conventional round lenses, providing sub-angstrom-sized probes and extending information limits. The imaging and analytical performance of these corrector-equipped microscopes affords an unprecedented opportunity to study structure-property relationships of matter at the atomic scale. This new generation of microscopes is able to retrieve high-quality structural information comparable to neutron and synchrotron x-ray experiments, but with local atomic resolution. These advances in instrumentation are accelerating the research and development of various functional materials ranging from those for energy generation, conversion, transportation and storage to those for catalysis and nano-device applications. The dramatic improvements in electron-beam illumination and detection also present a host of new challenges for the interpretation and optimization of experiments. During 7-9 November 2007, a workshop, entitled 'Aberration Corrected Electron Microscopy in Material Physics', was convened at the Center for Functional Nanomaterials, Brookhaven National Laboratories (BNL) to address these opportunities and challenges. The workshop was co-sponsored by Hitachi High Technologies, a leader in electron microscopy instrumentation, and BNL's Institute of Advanced Electron Microscopy, a leader in materials physics research using electron microscopy. The workshop featured presentations by internationally prominent scientists working at the frontiers of electron microscopy, both on developing instrumentation and applying it in materials physics. The meeting, structured to stimulate scientific exchanges and explore new capabilities, brought together ∼100 people from over 10 countries. This special issue complies many of the advances in instrument performance and materials physics reported by the invited speakers and attendees at the workshop.

  14. The Laboratory for Advanced Materials Processing

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory for Advanced Materials Processing - LAMP - is a clean-room research facility run and operated by Pr. Gary Rubloff's group. Research activities focus...

  15. Annual report 90. Institute for advanced materials

    International Nuclear Information System (INIS)

    1991-01-01

    The Annual Report 1990 of the Institute for Advanced Materials of the JRC highlights the Scientific Technical Achievements and presents in the Annex the Institute's Competence and Facilities available to industry for services and research under contract. The Institute executed in 1990 the R and D programme on advanced materials of the JRC and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately

  16. Materials and structural aspects of advanced gas-turbine helicopter engines

    Science.gov (United States)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  17. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  18. High temperature material characterization and advanced materials development

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others

    2005-03-01

    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division

  19. Economic benefits of advanced materials in nuclear power systems

    International Nuclear Information System (INIS)

    Busby, J.T.

    2009-01-01

    A key obstacle to the commercial deployment of advanced fast reactors is the capital cost. There is a perception of higher capital cost for fast reactor systems than advanced light water reactors. However, cost estimates come with a large uncertainty since far fewer fast reactors have been built than light water reactor facilities. Furthermore, the large variability of industrial cost estimates complicates accurate comparisons. Reductions in capital cost can result from design simplifications, new technologies that allow reduced capital costs, and simulation techniques that help optimize system design. It is plausible that improved materials will provide opportunities for both simplified design and reduced capital cost. Advanced materials may also allow improved safety and longer component lifetimes. This work examines the potential impact of advanced materials on the capital investment cost of fast nuclear reactors.

  20. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  1. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    Science.gov (United States)

    Goyal, Vivek Kumar

    to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  2. Evaluation and development of advanced nuclear materials: IAEA activities

    International Nuclear Information System (INIS)

    Inozemtsev, V.; Basak, U.; Killeen, J.; Dyck, G.; Zeman, A.; )

    2011-01-01

    Economical, environmental and non-proliferation issues associated with sustainable development of nuclear power bring about a need for optimization of fuel cycles and implementation of advanced nuclear systems. While a number of physical and design concepts are available for innovative reactors, the absence of reliable materials able to sustain new challenging irradiation conditions represents the real bottle-neck for practical implementation of these promising ideas. Materials performance and integrity are key issues for the safety and competitiveness of future nuclear installations being developed for sustainable nuclear energy production incorporating fuel recycling and waste transmutation systems. These systems will feature high thermal operational efficiency, improved utilization of resources (both fissile and fertile materials) and reduced production of nuclear waste. They will require development, qualification and deployment of new and advanced fuel and structural materials with improved mechanical and chemical properties combined with high radiation and corrosion resistance. The extensive, diverse, and expensive efforts toward the development of these materials can be more effectively organized within international collaborative programmes with wide participation of research, design and engineering communities. IAEA carries out a number of international projects supporting interested Member States with the use of available IAEA program implementation tools (Coordinated Research Projects, Technical Meetings, Expert Reviews, etc). The presentation summarizes the activities targeting material developments for advanced nuclear systems, with particular emphasis on fast reactors, which are the focal topics of IAEA Coordinated Research Projects 'Accelerator Simulation and Theoretical Modelling of Radiation Effects' (on-going), 'Benchmarking of Structural Materials Pre-Selected for Advanced Nuclear Reactors', 'Examination of advanced fast reactor fuel and core

  3. Advances in Osteobiologic Materials for Bone Substitutes.

    Science.gov (United States)

    Hasan, Anwarul; Byambaa, Batzaya; Morshed, Mahboob; Cheikh, Mohammad Ibrahim; Shakoor, Rana Abdul; Mustafy, Tanvir; Marei, Hany

    2018-04-27

    A significant challenge in the current orthopedics is the development of suitable osteobiologic materials that can replace the conventional allografts, autografts and xenografts, and thereby serve as implant materials as bone substitutes for bone repair or remodeling. The complex biology behind the nano-microstructure of bones and their repair mechanisms, which involve various types of chemical and biomechanical signaling amongst different cells, has set strong requirements for biomaterials to be used in bone tissue engineering. This review presents an overview of various types of osteobiologic materials to facilitate the formation of the functional bone tissue and healing of the bone, covering metallic, ceramic, polymeric and cell-based graft substitutes, as well as some biomolecular strategies including stem cells, extracellular matrices, growth factors and gene therapies. Advantages and disadvantages of each type, particularly from the perspective of osteoinductive and osteoconductive capabilities, are discussed. Although the numerous challenges of bone regeneration in tissue engineering and regenerative medicine are yet to be entirely addressed, further advancements in osteobiologic materials will pave the way towards engineering fully functional bone replacement grafts. This article is protected by copyright. All rights reserved.

  4. Proceedings of the twenty fourth annual general meeting of Materials Research Society of India and theme symposium on advanced materials for energy applications: abstract and souvenir book

    International Nuclear Information System (INIS)

    2013-01-01

    Materials science and engineering plays a crucial role in the development of advanced technologies that include development of materials that can withstand high temperatures and intense neutron dose, development of advanced sensors and radiochemical processing methodologies. The contributed papers in the symposium were focussed on energy materials: thermoelectrics, photovoltaics; nuclear materials: alloys and glasses; oxides and ceramics; alloys and intermetallics; fictionalised nanomaterials and applications; thin films; soft matter and bio materials etc. Papers relevant to INIS are indexed separately

  5. Advanced Materials and Devices for Bioresorbable Electronics.

    Science.gov (United States)

    Kang, Seung-Kyun; Koo, Jahyun; Lee, Yoon Kyeung; Rogers, John A

    2018-05-15

    clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.

  6. Advanced Electrical Materials and Components Development: An Update

    Science.gov (United States)

    Schwarze, Gene E.

    2005-01-01

    The primary means to develop advanced electrical components is to develop new and improved materials for magnetic components (transformers, inductors, etc.), capacitors, and semiconductor switches and diodes. This paper will give an update of the Advanced Power Electronics and Components Technology being developed by the NASA Glenn Research Center for use in future Power Management and Distribution subsystems used in space power systems for spacecraft and lunar and planetary surface power. The initial description and status of this technology program was presented two years ago at the First International Energy Conversion Engineering Conference held at Portsmouth, Virginia, August 2003. The present paper will give a brief background of the previous work reported and a summary of research performed the past several years on soft magnetic materials characterization, dielectric materials and capacitor developments, high quality silicon carbide atomically smooth substrates, and SiC static and dynamic device characterization under elevated temperature conditions. The rationale for and the benefits of developing advanced electrical materials and components for the PMAD subsystem and also for the total power system will also be briefly discussed.

  7. Advanced broadband baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.

    1991-01-01

    In this paper broadband performance characteristics of robust, light-weight, diffuse-absorptive baffle surfaces fabricated from sputter-deposited beryllium on cross-rolled Be ingot sheet material and on Be foam, plasma sprayed beryllium, plasma sprayed boron-on-beryllium, and chemical vapor deposited boron carbide on graphite are described and compared to Martin Black. An overview of the Optics Manufacturing Operations Development and Integration Laboratory (MODIL) Advanced Optical Baffle Program will be discussed

  8. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  9. Advanced Nano hybrid Materials: Surface Modification and Applications

    International Nuclear Information System (INIS)

    Liu, L.H.; Metivier, R.; Wang, Sh.; Wang, Sh.; Hui Wang

    2012-01-01

    The field of functional nano scale hybrid materials is one of the most promising and rapidly emerging research areas in materials chemistry. Nano scale hybrid materials can be broadly defined as synthetic materials with organic and inorganic components that are linked together by noncovalent bonds (Class I, linked by hydrogen bond, electrostatic force, or van der Waals force) or covalent bonds (Class II) at nanometer scale. The unlimited possible combinations of the distinct properties of inorganic, organic, or even bioactive components in a single material, either in molecular or nano scale dimensions, have attracted considerable attention. This approach provides an opportunity to create a vast number of novel advanced materials with well-controlled structures and multiple functions. The unique properties of advanced hybrid nano materials can be advantageous to many fields, such as optical and electronic materials, biomaterials, catalysis, sensing, coating, and energy storage. In this special issue, the breadth of papers shows that the hybrid materials is attracting attention, because of both growing fundamental interest, and a route to new materials. Two review articles and seven research papers that report new results of hybrid materials should gather widespread interest.

  10. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    Science.gov (United States)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  11. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  12. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  13. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials

    International Nuclear Information System (INIS)

    Coker, Eric Nicholas

    2010-01-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  14. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  15. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    International Nuclear Information System (INIS)

    Villa-Aleman, E.; Houk, A.; Spencer, W.

    2017-01-01

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  16. Advanced Ultrafast Spectroscopy for Chemical Detection of Nuclear Fuel Cycle Materials

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Houk, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Spencer, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    The development of new signatures and observables from processes related to proliferation activities are often related to the development of technologies. In our physical world, the intensity of observables is linearly related to the input drivers (light, current, voltage, etc.). Ultrafast lasers with high peak energies, opens the door to a new regime where the intensity of the observables is not necessarily linear with the laser energy. Potential nonlinear spectroscopic applications include chemical detection via remote sensing through filament generation, material characterization and processing, chemical reaction specificity, surface phenomena modifications, X-ray production, nuclear fusion, etc. The National Security Directorate laser laboratory is currently working to develop new tools for nonproliferation research with femtosecond and picosecond lasers. Prior to this project, we could only achieve laser energies in the 5 nano-Joule range, preventing the study of nonlinear phenomena. To advance our nonproliferation research into the nonlinear regime we require laser pulses in the milli-Joule (mJ) energy range. We have procured and installed a 35 fs-7 mJ laser, operating at one-kilohertz repetition rate, to investigate elemental and molecular detection of materials in the laboratory with potential applications in remote sensing. Advanced, nonlinear Raman techniques will be used to study materials of interest that are in a matrix of many materials and currently with these nonlinear techniques we can achieve greater than three orders of magnitude signal enhancement. This work studying nuclear fuel cycle materials with nonlinear spectroscopies will advance SRNL research capabilities and grow a core capability within the DOE complex.

  17. NATO Advanced Research Workshop on Molecular Engineering for Advanced Materials

    CERN Document Server

    Schaumburg, Kjeld

    1995-01-01

    An important aspect of molecular engineering is the `property directed' synthesis of large molecules and molecular assemblies. Synthetic expertise has advanced to a state which allows the assembly of supramolecules containing thousands of atoms using a `construction kit' of molecular building blocks. Expansion in the field is driven by the appearance of new building blocks and by an improved understanding of the rules for joining them in the design of nanometer-sized devices. Another aspect is the transition from supramolecules to materials. At present no single molecule (however large) has been demonstrated to function as a device, but this appears to be only a matter of time. In all of this research, which has a strongly multidisciplinary character, both existing and yet to be developed analytical techniques are and will remain indispensable. All this and more is discussed in Molecular Engineering for Advanced Materials, which provides a masterly and up to date summary of one of the most challenging researc...

  18. PREFACE: 7th EEIGM International Conference on Advanced Materials Research

    Science.gov (United States)

    Joffe, Roberts

    2013-12-01

    The 7th EEIGM Conference on Advanced Materials Research (AMR 2013) was held at Luleå University of Technology on the 21-22 March 2013 in Luleå, SWEDEN. This conference is intended as a meeting place for researchers involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE). This is great opportunity to present their on-going research in the various fields of Materials Science and Engineering, exchange ideas, strengthen co-operation as well as establish new contacts. More than 60 participants representing six countries attended the meeting, in total 26 oral talks and 19 posters were presented during two days. This issue of IOP Conference Series: Materials Science and Engineering presents a selection of articles from EEIGM-7 conference. Following tradition from previous EEIGM conferences, it represents the interdisciplinary nature of Materials Science and Engineering. The papers presented in this issue deal not only with basic research but also with applied problems of materials science. The presented topics include theoretical and experimental investigations on polymer composite materials (synthetic and bio-based), metallic materials and ceramics, as well as nano-materials of different kind. Special thanks should be directed to the senior staff of Division of Materials Science at LTU who agreed to review submitted papers and thus ensured high scientific level of content of this collection of papers. The following colleagues participated in the review process: Professor Lennart Walström, Professor Roberts Joffe, Professor Janis Varna, Associate Professor Marta-Lena Antti, Dr Esa Vuorinen, Professor Aji Mathew, Professor Alexander Soldatov, Dr Andrejs Purpurs, Dr Yvonne Aitomäki, Dr Robert Pederson. Roberts Joffe October 2013, Luleå Conference photograph EEIGM7 conference participants, 22 March 2013 The PDF

  19. Advanced Plasmonic Materials for Dynamic Color Display.

    Science.gov (United States)

    Shao, Lei; Zhuo, Xiaolu; Wang, Jianfang

    2018-04-01

    Plasmonic structures exhibit promising applications in high-resolution and durable color generation. Research on advanced hybrid plasmonic materials that allow dynamically reconfigurable color control has developed rapidly in recent years. Some of these results may give rise to practically applicable reflective displays in living colors with high performance and low power consumption. They will attract broad interest from display markets, compared with static plasmonic color printing, for example, in applications such as digital signage, full-color electronic paper, and electronic device screens. In this progress report, the most promising recent examples of utilizing advanced plasmonic materials for the realization of dynamic color display are highlighted and put into perspective. The performances, advantages, and disadvantages of different technologies are discussed, with emphasis placed on both the potential and possible limitations of various hybrid materials for dynamic plasmonic color display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Micro gravity - an important tool for development of advanced materials

    International Nuclear Information System (INIS)

    Sadiq, S.

    1995-01-01

    Microgravity provides the researchers the opportunity to investigate and improve the methods of creating advanced materials on earth. This can in turn assist in the advanced of economically significant technologies and technology infusement into the private sector. In some unique cases, involving inherently expensive materials that must have high purity, such as composites, high grade alloys etc. small amounts be made in space commercially and viably. A number of developed countries have gained sufficient expertise in material processing and other experiments under microgravity conditions, and their progress has been quite tremendous in this vital area of space research. The four important modes of platform, i.e., space shuttle/satellite, rocket flights, aircraft and drop tower tests have been employed for this purpose. Processing of materials in all such cases differs from the point of view of its cost effectiveness, time required to perform the expertise, instrumentation set up etc. In region of Far East and South East Asia, only one or two countries have made some advances in material processing experiments under microgravity conditions both in the upper atmosphere as well as using Drop Tower Test, but limited experimental means have made these countries to strive in this research area compared to work done in author advanced countries. The paper describes a brief history of microgravity experiments, their types and mode of transport employed for processing of novel materials under extreme low gravity or zero gravity conditions. This will definitely be useful and beneficial to developing nations of this region have entered an era of sophisticated and advanced materials processing and its utilization for industries such as aerospace, nuclear power plants, strategic materials, electronics, biological communication etc. (author)

  1. NATO Conference on Materials for Advanced Batteries

    CERN Document Server

    Broadhead, J; Steele, B

    1980-01-01

    The idea of a NATO Science Committee Institute on "Materials for Advanced Batteries" was suggested to JB and DWM by Dr. A. G. Chynoweth. His idea was to bring together experts in the field over the entire spectrum of pure research to applied research in order to familiarize everyone with potentially interesting new systems and the problems involved in their development. Dr. M. C. B. Hotz and Professor M. N. Ozdas were instrumental in helping organize this meeting as a NATO Advanced Science Institute. An organlzlng committee consisting of the three of us along with W. A. Adams, U. v Alpen, J. Casey and J. Rouxel organized the program. The program consisted of plenary talks and poster papers which are included in this volume. Nearly half the time of the conference was spent in study groups. The aim of these groups was to assess the status of several key aspects of batteries and prospects for research opportunities in each. The study groups and their chairmen were: Current status and new systems J. Broadhead Hig...

  2. Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials

    Science.gov (United States)

    2016-04-18

    SECURITY CLASSIFICATION OF: The grant focused on the purchase of a Renishaw InVia Raman microscope to support and enhance the research in...laser. The system includes an accessory for polarization (for 785 nm) and an optical cable that allows external Raman measurements. The manufacturer...UU 18-04-2016 1-Feb-2015 31-Jan-2016 Final Report: Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials The views

  3. Proceedings of the second international conference on advances in nuclear materials: abstract booklet and souvenir

    International Nuclear Information System (INIS)

    2011-01-01

    Nuclear materials form special class of materials which either act as fuel for the nuclear reactors or form the structure of the reactors and the allied systems. The topics covered in this conference are: materials challenges for thermal and fast reactors, technological advances in nuclear fuels and components, materials for future reactors, fuel cycles and materials challenges, materials degradation and life management, advanced materials development, modelling and simulation, advanced materials- II, advanced materials for future reactors, development of advanced fuel and structural materials, zirconium alloy developments, irradiation effects and PIE, advanced nuclear fuels, corrosion and materials characterization. Papers relevant to INIS are indexed separately

  4. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  5. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    Science.gov (United States)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  6. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  7. Review on advanced composite materials boring mechanism and tools

    Science.gov (United States)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  8. Proceedings of the second international conference on advanced functional materials

    International Nuclear Information System (INIS)

    2014-01-01

    This conference deals with the functional materials which have been an essential enabling ingredient in the aerospace industry. Advanced functional materials coupled with he enormous possibilities of nanotechnology have the potential to revolutionize applications across several domains like infrastructure, aerospace, energy storage, advanced electronics and biomedical technology. Papers relevant to INIS are indexed separately

  9. Proceedings of the national conference on multifunctional advanced materials: abstracts of invited speakers

    International Nuclear Information System (INIS)

    2013-01-01

    National Conference on Multifunctional Advanced Materials was a platform for scientists, physicists and chemists from diverse fields to discuss on interdisciplinary research on materials. The conference provided a forum for exchange of information and ideas in virtually all areas of advanced materials research, to encourage interdisciplinary research bridging the gap between magnetic materials, nanotechnology, composite materials, shockwave induced materials, physics, bio-materials, chemistry, electronics, among others. Thus, the main motive of the conference was to promote applied research in advanced materials. Papers relevant to INIS are indexed separately

  10. Advanced Bioinks for 3D Printing: A Materials Science Perspective.

    Science.gov (United States)

    Chimene, David; Lennox, Kimberly K; Kaunas, Roland R; Gaharwar, Akhilesh K

    2016-06-01

    Advanced bioinks for 3D printing are rationally designed materials intended to improve the functionality of printed scaffolds outside the traditional paradigm of the "biofabrication window". While the biofabrication window paradigm necessitates compromise between suitability for fabrication and ability to accommodate encapsulated cells, recent developments in advanced bioinks have resulted in improved designs for a range of biofabrication platforms without this tradeoff. This has resulted in a new generation of bioinks with high print fidelity, shear-thinning characteristics, and crosslinked scaffolds with high mechanical strength, high cytocompatibility, and the ability to modulate cellular functions. In this review, we describe some of the promising strategies being pursued to achieve these goals, including multimaterial, interpenetrating network, nanocomposite, and supramolecular bioinks. We also provide an overview of current and emerging trends in advanced bioink synthesis and biofabrication, and evaluate the potential applications of these novel biomaterials to clinical use.

  11. Development for advanced materials and testing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hishinuma, Akimichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Recent studies using a JMTR and research reactors of JRR-2 and JRR-3 are briefly summarized. Small specimen testing techniques (SSTT) required for an effective use of irradiation volume and also irradiated specimens have been developed focussing on tensile test, fatigue test, Charpy test and small punch test. By using the small specimens of 0.1 - several mm in size, similar values of tensile and fatigue properties to those by standard size specimens can be taken, although the ductile-brittle transition temperature (DBTT) depends strongly on Charpy specimen size. As for advanced material development, R and D about low activation ferritic steels have been done to investigate irradiation response. The low activation ferritic steel, so-called F82H jointly-developed by JAERI and NKK for fusion, has been confirmed to have good irradiation resistance within a limited dose and now selected as a standard material in the fusion material community. It is also found that TiAi intermetallic compounds, which never been considered for nuclear application in the past, have an excellent irradiation resistance under an irradiation condition. Such knowledge can bring about a large expectation for developing advanced nuclear materials. (author)

  12. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  13. ROCAM: The 5-th International Edition of Romanian Conference on Advanced Materials. Abstracts

    International Nuclear Information System (INIS)

    Stanculescu, Florin

    2006-01-01

    The proceedings of the 5-th International Edition of Romanian Conference on Advanced Materials and Crystal Growth with special topics on nano and multifunctional materials held on September 11-14, 2006 in Bucharest- Magurele, Romania, contains contributions presented as plenary lectures, invited papers and regular contributions in eight sections, namely: 1. Growth and characterization of inorganic crystals; 2. Growth and characterization of organic and biological crystals; 3. Nano and microstructured materials and thin films; 4. Polymers/fuel cells and hydrogen storage; 5. Plasma deposition and applications; 6. Advanced processing and characterization / noncrystalline solids; 7. Advanced nuclear materials; 8. Advanced materials: general aspects

  14. Selected advances in materials research

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1979-01-01

    Several findings emanating from materials research that should have a beneficial impact on technological advancement in the future are described. The report deals with the GRAPHNOL, a new class of high-temperature brazing alloy for joining refractory components, gel-sphere-pac process for manufacture of nuclear fuel, and noble-metal fuel cladding for service in radioisotope thermoelectric generators designed to provide auxiliary power aboard spacecraft for planetary exploration

  15. Materials for advanced reactor facilities: development and application. Materials of School-Conference for young scientists and specialists

    International Nuclear Information System (INIS)

    2012-01-01

    In the collection of works there are the texts, summaries and presentations of lectures delivered by the leading specialists of the branch as well as the abstracts of the students of school-conference for young scientists and specialists Materials for advanced reactor facilities: development and application, which took place on October, 29 - November, 2, 2012 in Zvenigorod. In the materials presented different aspects of development and application of materials of reactor cores and vessels of advanced reactors, computerized simulation of properties of radiation-resistant materials and simulation investigations of material radiation hardness are considered [ru

  16. Status Report on Structural Materials for Advanced Nuclear Systems

    International Nuclear Information System (INIS)

    Allen, T.R.; Balbaud-Celerier, F.; Asayama, T.; Pouchon, M.; Busby, J.T.; Maloy, S.; Park, J.Y.; Fazio, C.; Dai, Y.; Agostini, P.; Chevalier, J.P.; Marrow, J.

    2013-01-01

    Materials performance is critical to the safe and economic operation of any nuclear system. As the international community pursues the development of Generation IV reactor concepts and accelerator-driven transmutation systems, it will be increasingly necessary to develop advanced materials capable of tolerating the more challenging environments of these new systems. The international community supports numerous materials research programmes, with each country determining its individual focus on a case-by-case basis. In many instances, similar alloys of materials systems are being studied in several countries, providing the opportunity for collaborative and cross-cutting research that benefits different systems. This report is a snapshot of the current materials programmes supporting the development of advanced concepts. The descriptions of the research are grouped by concept, and national programmes are described within each concept. The report provides an overall sense of the importance of materials research worldwide and the opportunities for synergy among the countries represented in this overview. (authors)

  17. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  18. Advances in Functionalized Materials Research 2016

    International Nuclear Information System (INIS)

    Predoi, D.; Motelica-Heino, M.; Guegan, R.; Coustumer, L.Ph.

    2016-01-01

    In the last years, due to the rapid progress of technology, new materials at nano metric scale with special properties have become a flourishing field of research in materials science. The unique physicochemical properties of materials induced by various parameters such as mean size, shape, purity, crystallographic structure, and surface can generate effective solutions to challenging environmental and biomedical problems. As a result of this approach a large number of techniques were developed that enable obtaining novel materials at nano metric scale with specific and reproducible properties and parameters. Below will be highlighted studies on promising properties on the applicability of new materials that could lead to innovative applications in the medical field. Therefore, this special issue is focused on expected advances in the area of functionalized materials at nano metric scale. Due to multidisciplinarity of this topic, this special issue is comprised of a wide range of original research articles as well as review papers on the design and synthesis of functionalized nano materials, their structural, morphological, and biological characterization, and their potential uses in medical and environmental applications

  19. Numerical Forming Simulations and Optimisation in Advanced Materials

    International Nuclear Information System (INIS)

    Huetink, J.; Boogaard, A. H. van den; Geijselears, H. J. M.; Meinders, T.

    2007-01-01

    With the introduction of new materials as high strength steels, metastable steels and fibre reinforced composites, the need for advanced physically valid constitutive models arises. In finite deformation problems constitutive relations are commonly formulated in terms the Cauchy stress as a function of the elastic Finger tensor and an objective rate of the Cauchy stress as a function of the rate of deformation tensor. For isotropic materials models this is rather straightforward, but for anisotropic material models, including elastic anisotropy as well as plastic anisotropy, this may lead to confusing formulations. It will be shown that it is more convenient to define the constitutive relations in terms of invariant tensors referred to the deformed metric. Experimental results are presented that show new combinations of strain rate and strain path sensitivity. An adaptive through- thickness integration scheme for plate elements is developed, which improves the accuracy of spring back prediction at minimal costs. A procedure is described to automatically compensate the CAD tool shape numerically to obtain the desired product shape. Forming processes need to be optimized for cost saving and product improvement. Until recently, a trial-and-error process in the factory primarily did this optimization. An optimisation strategy is proposed that assists an engineer to model an optimization problem that suits his needs, including an efficient algorithm for solving the problem

  20. Soft computing in design and manufacturing of advanced materials

    Science.gov (United States)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  1. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  2. The diffusion bonding of advanced material

    International Nuclear Information System (INIS)

    Khan, T.I.

    2001-01-01

    As a joining process diffusion bonding has been used since early periods, and artifacts have been found which date back to 3000 years. However, over the last 20 years this joining process has been rediscovered and research has been carried out to understand the mechanisms of the process, and the application of the technique to advanced materials. This paper will review some of the reasons to why diffusion bonding may be preferred over other more conventional welding processes to join advanced alloy systems. It also describes in brief the different types of bonding processes, namely, solid-state and liquid phase bonding techniques. The paper demonstrates the application of diffusion bonding processes to join a range of dissimilar materials for instance: oxide dispersion strengthened superalloys, titanium to duplex stainless steels and engineering ceramics such as Si/sub 3/N/sub 4/ to metal alloys. The research work highlights the success and limitations of the diffusion bonding process and is based on the experience of the author and his colleagues. (author)

  3. Review of the proposed materials of construction for the SBWR and AP600 advanced reactors

    International Nuclear Information System (INIS)

    Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F.

    1994-06-01

    Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited

  4. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  5. Library of Advanced Materials for Engineering (LAME) 4.44.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2017-04-01

    Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to s ti ff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco) plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

  6. Library of Advanced Materials for Engineering (LAME) 4.48.

    Energy Technology Data Exchange (ETDEWEB)

    Plews, Julia A.; Crane, Nathan K; de Frias, Gabriel Jose; Le, San; Littlewood, David John; Merewether, Mark Thomas; Mosby, Matthew David; Pierson, Kendall H.; Porter, Vicki L.; Shelton, Timothy; Thomas, Jesse David; Tupek, Michael R.; Veilleux, Michael; Xavier, Patrick G.

    2018-03-01

    Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implement- ing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting imple- mentation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verifi- cation tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.

  7. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  8. Advanced Materials for Health Monitoring with Skin-Based Wearable Devices.

    Science.gov (United States)

    Jin, Han; Abu-Raya, Yasmin Shibli; Haick, Hossam

    2017-06-01

    Skin-based wearable devices have a great potential that could result in a revolutionary approach to health monitoring and diagnosing disease. With continued innovation and intensive attention to the materials and fabrication technologies, development of these healthcare devices is progressively encouraged. This article gives a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to recent advances and developments in the scope of skin-based wearable devices (e.g. temperature, strain, biomarker-analysis werable devices, etc.), with an emphasis on emerging materials and fabrication techniques in the relevant fields. To give a comprehensive statement, part of the review presents and discusses different aspects of these advanced materials, such as the sensitivity, biocompatibility and durability as well as the major approaches proposed for enhancing their chemical and physical properties. A complementary section of the review linking these advanced materials with wearable device technologies is particularly specified. Some of the strong and weak points in development of each wearable material/device are highlighted and criticized. Several ideas regarding further improvement of skin-based wearable devices are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  10. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  11. Materials technologies for advanced nuclear energy concepts

    International Nuclear Information System (INIS)

    DiStefano, J.; Harms, B.

    1983-01-01

    High-performance, advanced nuclear power plant concepts have emerged with major emphasis on lower capital costs, inherent safety, and increased reliability. The materials problems posed by these concepts are discussed and how the scientists and technologists at ORNL plan to solve them is described

  12. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  13. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  14. A manufacturing database of advanced materials used in spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1994-12-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  15. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  16. Advances in thermoelectric materials research: Looking back and moving forward.

    Science.gov (United States)

    He, Jian; Tritt, Terry M

    2017-09-29

    High-performance thermoelectric materials lie at the heart of thermoelectrics, the simplest technology applicable to direct thermal-to-electrical energy conversion. In its recent 60-year history, the field of thermoelectric materials research has stalled several times, but each time it was rejuvenated by new paradigms. This article reviews several potentially paradigm-changing mechanisms enabled by defects, size effects, critical phenomena, anharmonicity, and the spin degree of freedom. These mechanisms decouple the otherwise adversely interdependent physical quantities toward higher material performance. We also briefly discuss a number of promising materials, advanced material synthesis and preparation techniques, and new opportunities. The renewable energy landscape will be reshaped if the current trend in thermoelectric materials research is sustained into the foreseeable future. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.

  18. Advanced materials for space nuclear power systems

    International Nuclear Information System (INIS)

    Titran, R.H.; Grobstein, T.L.

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications

  19. International workshop on advanced materials for high precision detectors. Proceedings

    International Nuclear Information System (INIS)

    Nicquevert, B.; Hauviller, C.

    1994-01-01

    These proceedings gather together the contributions to the Workshop on Advanced Materials for High Precision Detectors, which was held from 28-30 September 1994 in Archamps, Haute-Savoie, France. This meeting brought together international experts (researchers, physicists and engineers) in the field of advanced materials and their use in high energy physics detectors or spacecraft applications. Its purpose was to discuss the status of the different materials currently in use in the structures of detectors and spacecraft, together with their actual performances, technological implications and future prospects. Environmental effects, such as those of moisture and radiation, were discussed, as were design and manufacturing technologies. Some case studies were presented. (orig.)

  20. Creep-fatigue effects in structural materials used in advanced nuclear power generating systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.

    1980-01-01

    Various aspects of time-dependent fatigue behavior of a number of structural alloys in use or planned for use in advanced nuclear power generating systems are reviewed. Materials included are types 304 and 316 stainless steel, Fe-2 1/4 Cr-1 Mo steel, and alloy 800H. Examples of environmental effects, including both chemical and physical interaction, are presented for a number of environments. The environments discussed are high-purity liquid sodium, high vacuum, air, impure helium, and irradiation damage, including internal helium bubble generation

  1. Fossil Energy Advanced Research and Technology Development Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. (comps.)

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  2. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials

    Science.gov (United States)

    Zhang, Yihui; Zhang, Fan; Yan, Zheng; Ma, Qiang; Li, Xiuling; Huang, Yonggang; Rogers, John A.

    2017-03-01

    A rapidly expanding area of research in materials science involves the development of routes to complex 3D structures with feature sizes in the mesoscopic range (that is, between tens of nanometres and hundreds of micrometres). A goal is to establish methods for controlling the properties of materials systems and the function of devices constructed with them, not only through chemistry and morphology, but also through 3D architectures. The resulting systems, sometimes referred to as metamaterials, offer engineered behaviours with optical, thermal, acoustic, mechanical and electronic properties that do not occur in the natural world. Impressive advances in 3D printing techniques represent some of the most broadly recognized developments in this field, but recent successes with strategies based on concepts in origami, kirigami and deterministic assembly provide additional, unique options in 3D design and high-performance materials. In this Review, we highlight the latest progress and trends in methods for fabricating 3D mesostructures, beginning with the development of advanced material inks for nozzle-based approaches to 3D printing and new schemes for 3D optical patterning. In subsequent sections, we summarize more recent methods based on folding, rolling and mechanical assembly, including their application with materials such as designer hydrogels, monocrystalline inorganic semiconductors and graphene.

  3. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  4. Materials for Advanced Ultra-supercritical (A-USC) Steam Turbines – A-USC Component Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Phillips, Jeffrey [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Tanzosh, James [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2016-10-01

    The work by the United States Department of Energy (U.S. DOE)/Ohio Coal Development Office (OCDO) advanced ultra-supercritical (A-USC) Steam Boiler and Turbine Materials Consortia from 2001 through September 2015 was primarily focused on lab scale and pilot scale materials testing. This testing included air- or steam-cooled “loops” that were inserted into existing utility boilers to gain exposure of these materials to realistic conditions of high temperature and corrosion due to the constituents in the coal. Successful research and development resulted in metallic alloy materials and fabrication processes suited for power generation applications with metal temperatures up to approximately 1472°F (800°C). These materials or alloys have shown, in extensive laboratory tests and shop fabrication studies, to have excellent applicability for high-efficiency low CO2 transformational power generation technologies previously mentioned. However, as valuable as these material loops have been for obtaining information, their scale is significantly below that required to minimize the risk associated with a power company building a multi-billion dollar A-USC power plant. To decrease the identified risk barriers to full-scale implementation of these advanced materials, the U.S. DOE/OCDO A-USC Steam Boiler and Turbine Materials Consortia identified the key areas of the technology that need to be tested at a larger scale. Based upon the recommendations and outcome of a Consortia-sponsored workshop with the U.S.’s leading utilities, a Component Test (ComTest) Program for A-USC was proposed. The A-USC ComTest program would define materials performance requirements, plan for overall advanced system integration, design critical component tests, fabricate components for testing from advanced materials, and carry out the tests. The AUSC Component Test was premised on the program occurring at multiple facilities, with the operating temperatures, pressure and/or size of

  5. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  6. Ecologia: Spanish Ecology Packet Resource Units and Materials for Intermediate and Advanced Spanish Classes.

    Science.gov (United States)

    Bell, Mozelle Sawyer; Arribas, E. Jaime

    This Spanish ecology packet contains resource units and materials for intermediate and advanced Spanish classes. It is designed to be used for individual and small-group instruction in the senior high school to supplement the Spanish language curriculum. Included are articles, pictures, and cartoons from Spanish-language newspapers and magazines…

  7. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  8. Filling the gaps in SCWR materials research: advanced nuclear corrosion research facilities in Hamilton

    International Nuclear Information System (INIS)

    Krausher, J.L.; Zheng, W.; Li, J.; Guzonas, D.; Botton, G.

    2011-01-01

    Research efforts on materials selection and development in support of the design of supercritical water-cooled reactors (SCWRs) have produced a considerable amount of data on corrosion, creep and other related properties. Summaries of the data on corrosion [1] and stress corrosion cracking [2] have recently been produced. As research on the SCWR advances, gaps and limitations in the published data are being identified. In terms of corrosion properties, these gaps can be seen in several areas, including: 1) the test environment, 2) the physical and chemical severity of the tests conducted as compared with likely reactor service/operating conditions, and 3) the test methods used. While some of these gaps can be filled readily using existing facilities, others require the availability of advanced test facilities for specific tests and assessments. In this paper, highlights of the new materials research facilities jointly established in Hamilton by CANMET Materials Technology Laboratory and McMaster University are presented. (author)

  9. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  10. Recent advances in the development of aerospace materials

    Science.gov (United States)

    Zhang, Xuesong; Chen, Yongjun; Hu, Junling

    2018-02-01

    In recent years, much progress has been made on the development of aerospace materials for structural and engine applications. Alloys, such as Al-based alloys, Mg-based alloys, Ti-based alloys, and Ni-based alloys, are developed for aerospace industry with outstanding advantages. Composite materials, the innovative materials, are taking more and more important roles in aircrafts. However, recent aerospace materials still face some major challenges, such as insufficient mechanical properties, fretting wear, stress corrosion cracking, and corrosion. Consequently, extensive studies have been conducted to develop the next generation aerospace materials with superior mechanical performance and corrosion resistance to achieve improvements in both performance and life cycle cost. This review focuses on the following topics: (1) materials requirements in design of aircraft structures and engines, (2) recent advances in the development of aerospace materials, (3) challenges faced by recent aerospace materials, and (4) future trends in aerospace materials.

  11. Advances in design and modeling of porous materials

    Science.gov (United States)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  12. Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon

    2005-01-01

    A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams

  13. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  14. A Revolution in the Making: Advances in Materials That May Transform Future Exploration Infrastructures and Missions

    Science.gov (United States)

    Harris, Charles E.; Dicus, Dennis L.; Shuart, Mark J.

    2001-01-01

    The NASA Strategic Plan identifies the long-term goal to provide safe and affordable space access, orbital transfer, and interplanetary transportation capabilities to enable research, human exploration, and the commercial development of space; and to conduct human and robotic missions to planets and other bodies in our solar system. Numerous scientific and engineering breakthroughs will be required to develop the technology necessary to achieve this goal. Critical technologies include advanced vehicle primary and secondary structure, radiation protection, propulsion and power systems, fuel storage, electronics and devices, sensors and science instruments, and medical diagnostics and treatment. Advanced materials with revolutionary new capabilities are an essential element of each of these technologies. This paper discusses those materials best suited for aerospace vehicle structure and highlights the enormous potential of one revolutionary new material, carbon nanotubes.

  15. Engineered Materials for Advanced Gas Turbine Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop innovative composite powders and composites that will surpass the properties of currently identified materials for advanced gas turbine...

  16. Systems and strippable coatings for decontaminating structures that include porous material

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  17. U. S. programs on reference and advanced cladding/duct materials

    International Nuclear Information System (INIS)

    Bennett, J.W.; Holmes, J.J.; Laidler, J.J.

    1977-05-01

    Two coordinated national programs are presently in place in the United States for development of reference and advanced cladding and duct alloys for near-term and long-term LMFBR applications. A number of government, industrial and university laboratories are active participants in these two ERDA-sponsored programs. The programs are administered by ERDA through a task group organization, with each task group representing a particular technical activity and the membership of the task group drawn from among the laboratories with active involvement in that activity. Technical coordination of the two programs is provided by the Hanford Engineering Development Laboratory. The National Reference Cladding and Duct Program is charged with the responsibility for development of the required technology to permit full utilization of the reference material, 20 percent cold-worked Type 316 stainless steel, in early LMFBR core applications. The current schedule calls for full evaluation of FFTF-related design base data prior to full-power operation of FFTF in early 1980, followed by a confirmation in early 1983 of reference material performance capabilities for initial-core CRBRP applications. Comprehensive evaluation of reference material performance to commercial plant goal fluence levels will be complete by 1985. The National Advanced Alloy Development Program was instituted in 1974 with the objective to develop, by 1986, advanced cladding and duct materials compatible with advanced fuel systems having peak burnup capabilities up to 150 MWD/kg and doubling times of 15 years or less. Screening of a large number of potential alloys was completed in mid-1975, and there are presently 16 candidate alloys under active investigation

  18. Computed phase equilibria for burnable neutron absorbing materials for advanced pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, E.C. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada)], E-mail: emily.corcoran@rmc.ca; Lewis, B.J.; Thompson, W.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, P.O. Box 17000, St. Forces, Kingston, Ont., K7K 7B4 (Canada); Hood, J. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada); Akbari, F.; He, Z. [Atomic Energy of Canada Ltd., Chalk River Laboratories, Chalk River, Ont., K0J 1J0 (Canada); Reid, P. [Atomic Energy of Canada Ltd., Sheridan Park, 2251 Speakman Drive, Mississauga, Ont., L5K 1B2 (Canada)

    2009-03-31

    Burnable neutron absorbing materials are expected to be an integral part of the new fuel design for the Advanced CANDU [CANDU is as a registered trademark of Atomic Energy of Canada Limited.] Reactor. The neutron absorbing material is composed of gadolinia and dysprosia dissolved in an inert cubic-fluorite yttria-stabilized zirconia matrix. A thermodynamic model based on Gibbs energy minimization has been created to provide estimated phase equilibria as a function of composition and temperature. This work includes some supporting experimental studies involving X-ray diffraction.

  19. Photon CT scanning of advanced ceramic materials

    International Nuclear Information System (INIS)

    Sawicka, B.D.; Ellingson, W.A.

    1987-02-01

    Advanced ceramic materials are being developed for high temperature applications in advanced heat engines and high temperature heat recovery systems. Small size flaws (10 - 200 μm) and small nonuniformities in density distributions (0.1 -2%) present as long-range density gradients, are critical in most ceramics and their detection is of crucial importance. Computed tomographic (CT) imaging provides a means of obtaining a precise two-dimensional density map of a cross section through an object from which accurate information about small flaws and small density gradients can be obtained. With the use of high energy photon sources high contrast CT images can be obtained for both low and high density ceramics. In the present paper we illustrate the applicability of the photon CT technique to the examination of advanced ceramics. CT images of sintered alumina tiles are presented from which data on high-density inclusions, cracks and density gradients have been extracted

  20. Annual report 1991. Institute for Advanced Materials

    International Nuclear Information System (INIS)

    1992-01-01

    The Institute executed in 1991 the R and D programme on advanced materials of the Joint Research Centre and contributed to the programmes: reactor safety, radio-active waste management, fusion technology and safety, nuclear fuel and actinide research. The supplementary programme: Operation of the High Flux Reactor is presented in condensed form. A full report is published separately. (Author). refs., figs., tabs

  1. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    Science.gov (United States)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  2. Advanced materials for thermal management of electronic packaging

    CERN Document Server

    Tong, Xingcun Colin

    2011-01-01

    The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry's ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility

  3. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    Science.gov (United States)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  5. Advanced gas cooled nuclear reactor materials evaluation and development program

    International Nuclear Information System (INIS)

    1977-01-01

    Results of work performed from January 1, 1977 through March 31, 1977 on the Advanced Gas Cooled Nuclear Reactor Materials Evaluation and Development Program are presented. The objectives of this program are to evaluate candidate alloys for Very High Temperature Reactor (VHTR) Process Heat and Direct Cycle Helium Turbine (DCHT) applications, in terms of the effect of simulated reactor primary coolant (impure Helium), high temperatures, and long time exposures, on the mechanical properties and structural and surface stability of selected candidate alloys. A second objective is to select and recommend materials for future test facilities and more extensive qualification programs. Work covered in this report includes progress to date on alloy selection for VHTR Nuclear Process Heat (NPH) applications and for DCHT applications. The present status on the simulated reactor helium loop design and on designs for the testing and analysis facilities and equipment is discussed

  6. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  7. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  8. Novel particle and radiation sources and advanced materials

    Energy Technology Data Exchange (ETDEWEB)

    Mako, Frederick [FM Technologies, Inc. and Electron Technologies, Inc. (United States)

    2016-03-25

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  9. Novel particle and radiation sources and advanced materials

    International Nuclear Information System (INIS)

    Mako, Frederick

    2016-01-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and “green” klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  10. Novel particle and radiation sources and advanced materials

    Science.gov (United States)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  11. Provisional materials: advances lead to extensive options for clinicians.

    Science.gov (United States)

    Comisi, John C

    2015-01-01

    The progression of provisional materials to bis-acrylics has lead to such improvements as easier handling, improved compressive and tensile strength, less water sorption, and less shrinkage. The end-result is more options for clinicians for high-quality chairside provisional restorations. Newer provisional materials are easy to manipulate and bring increased comfort to the patient. This review of current products affirms that the choices of provisional materials available for the dental professional today are quite extensive and have advanced the quality of interim restorations.

  12. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    Science.gov (United States)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  13. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  14. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    International Nuclear Information System (INIS)

    Sadik, Omowunmi A.; Mwilu, Samuel K.; Aluoch, Austin

    2010-01-01

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  15. Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials

    Science.gov (United States)

    Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar

    2015-01-01

    The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition

  16. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  17. Advanced Materials and Nano technology for Sustainable Energy Development

    International Nuclear Information System (INIS)

    Huo, Z.; Wu, Ch.H.; Zhu, Z.; Zhao, Y.

    2015-01-01

    Energy is the material foundation of human activities and also the single most valuable resource for the production activities of human society. Materials play a pivotal role in advancing technologies that can offer efficient renewable energy solutions for the future. This special issue has been established as an international foremost interdisciplinary forum that aims to publish high quality and original full research articles on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The special issue covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable energy production. It brings together stake holders from universities, industries, government agents, and businesses that are involved in the invention, design, development, and implementation of sustainable technologies. The research work has already been published in this special issue which discusses comprehensive technologies for wastewater treatment, strategies for controlling gaseous pollutant releases within chemical plant, evaluation of FCC catalysis poisoning mechanism, clean technologies for fossil fuel use, new-type photo catalysis material design with controllable morphology for solar energy conversion, and so forth. These studies describe important, intriguing, and systematic investigations on advanced materials and technologies for dealing with the key technologies and important issues that continue to haunt the global energy industry. They also tie together many aspects of current energy transportation science and technology, exhibiting outstanding industrial insights that have the potential to encourage and stimulate fresh perspectives on challenges, opportunities, and solutions to energy and environmental sustainability

  18. PREFACE: International Conference on Advanced Materials (ICAM 2015)

    Science.gov (United States)

    El-Khateeb, Mohammad Y.

    2015-10-01

    It is with great pleasure to welcome you to the "International Conference of Advanced Materials ICAM 2015" that will take place at Jordan University of Science and Technology (JUST), Irbid, Jordan. This year, the conference coincides with the coming of spring in Jordan; we hope the participants will enjoy the colors and fragrance of April in Jordan. The call for papers attracted submissions of over a hundred abstracts from twenty one different countries. These papers are going to be classified under four plenary lectures, fifteen invited papers, thirty five oral presentations and more than sixty posters covering the different research areas of the conference. The ICAM conference focuses on new advances in research in the field of materials covering chemical, physical and biological aspects. ICAM includes representatives from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and disseminate research in all fields of advanced materials. Topics range from synthesis, applications, and solid state to nano-materials. In addition, talented junior investigators will present their best ongoing research at a poster session. We have also organized several workshops contiguous to the main conference, such as the one-day workshop on "Particle Surface Modification for Improved Applications". The purpose of this short course was to introduce interested materials technologists to several methodologies that have been developed to modify the surfaces of particulate matter. Moreover, a pre-conference workshop on "Communication in Science" was conducted for young scientists. The main goal of this workshop was to train young scientists in matters of interdisciplinary scientific communications. In addition to the scientific program, the attendees will have a chance to discover the beauty of Jordan, a land of rich history and varied culture. Numerous social events that will provide opportunities to renew old contacts and

  19. Materials Advance Chemical Propulsion Technology

    Science.gov (United States)

    2012-01-01

    In the future, the Planetary Science Division of NASA's Science Mission Directorate hopes to use better-performing and lower-cost propulsion systems to send rovers, probes, and observers to places like Mars, Jupiter, and Saturn. For such purposes, a new propulsion technology called the Advanced Materials Bipropellant Rocket (AMBR) was developed under NASA's In-Space Propulsion Technology (ISPT) project, located at Glenn Research Center. As an advanced chemical propulsion system, AMBR uses nitrogen tetroxide oxidizer and hydrazine fuel to propel a spacecraft. Based on current research and development efforts, the technology shows great promise for increasing engine operation and engine lifespan, as well as lowering manufacturing costs. In developing AMBR, ISPT has several goals: to decrease the time it takes for a spacecraft to travel to its destination, reduce the cost of making the propulsion system, and lessen the weight of the propulsion system. If goals like these are met, it could result in greater capabilities for in-space science investigations. For example, if the amount (and weight) of propellant required on a spacecraft is reduced, more scientific instruments (and weight) could be added to the spacecraft. To achieve AMBR s maximum potential performance, the engine needed to be capable of operating at extremely high temperatures and pressure. To this end, ISPT required engine chambers made of iridium-coated rhenium (strong, high-temperature metallic elements) that allowed operation at temperatures close to 4,000 F. In addition, ISPT needed an advanced manufacturing technique for better coating methods to increase the strength of the engine chamber without increasing the costs of fabricating the chamber.

  20. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  1. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Science.gov (United States)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  2. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  3. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    Busby, Jeremy T.

    2009-01-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  4. Combinatorial methods for advanced materials research and development

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, R.; Dondorf, S.; Hauck, M.; Horbach, D.; Kaiser, M.; Krysta, S.; Kyrylov, O.; Muenstermann, E.; Philipps, M.; Reichert, K.; Strauch, G. [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Lehrstuhl fuer Theoretische Huettenkunde

    2001-10-01

    The applicability of combinatorial methods in developing advanced materials is illustrated presenting four examples for the deposition and characterization of one- and two-dimensionally laterally graded coatings, which were deposited by means of (reactive) magnetron sputtering and plasma-enhanced chemical vapor deposition. To emphasize the advantages of combinatorial approaches, metastable hard coatings like (Ti,Al)N and (Ti,Al,Hf)N respectively, as well as Ge-Sb-Te based films for rewritable optical data storage were investigated with respect to the relations between structure, composition, and the desired materials properties. (orig.)

  5. Advanced materials and processing for drug delivery: the past and the future.

    Science.gov (United States)

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W

    2013-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T

  7. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement: Advancing Risk Analysis for Nanoscale Materials

    Energy Technology Data Exchange (ETDEWEB)

    Shatkin, J. A. [Vireo Advisors, Boston MA USA; Ong, Kimberly J. [Vireo Advisors, Boston MA USA; Beaudrie, Christian [Compass RM, Vancouver CA USA; Clippinger, Amy J. [PETA International Science Consortium Ltd, London UK; Hendren, Christine Ogilvie [Center for the Environmental Implications of NanoTechnology, Duke University, Durham NC USA; Haber, Lynne T. [TERA, Cincinnati OH USA; Hill, Myriam [Health Canada, Ottawa Canada; Holden, Patricia [UC Santa Barbara, Bren School of Environmental Science & Management, ERI, and UC CEIN, University of California, Santa Barbara CA USA; Kennedy, Alan J. [U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg MS USA; Kim, Baram [Independent, Somerville MA USA; MacDonell, Margaret [Argonne National Laboratory, Environmental Science Division, Argonne IL USA; Powers, Christina M. [U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Transportation and Air Quality, Ann Arbor MI USA; Sharma, Monita [PETA International Science Consortium Ltd, London UK; Sheremeta, Lorraine [Alberta Ingenuity Labs, Edmonton Alberta Canada; Stone, Vicki [John Muir Building Gait 1 Heriot-Watt University, Edinburgh Scotland UK; Sultan, Yasir [Environment Canada, Gatineau QC Canada; Turley, Audrey [ICF International, Durham NC USA; White, Ronald H. [RH White Consultants, Silver Spring MD USA

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article.

  8. Machining, joining and modifications of advanced materials

    CERN Document Server

    Altenbach, Holm

    2016-01-01

    This book presents the latest advances in mechanical and materials engineering applied to the machining, joining and modification of modern engineering materials. The contributions cover the classical fields of casting, forming and injection moulding as representative manufacturing methods, whereas additive manufacturing methods (rapid prototyping and laser sintering) are treated as more innovative and recent technologies that are paving the way for the manufacturing of shapes and features that traditional methods are unable to deliver. The book also explores water jet cutting as an innovative cutting technology that avoids the heat build-up typical of classical mechanical cutting. It introduces readers to laser cutting as an alternative technology for the separation of materials, and to classical bonding and friction stir welding approaches in the context of joining technologies. In many cases, forming and machining technologies require additional post-treatment to achieve the required level of surface quali...

  9. Advances in electrode materials for Li-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui [China Academy of Space Technology (CAST), Beijing (China); Mao, Chengyu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Jianlin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Chen, Ruiyong [Korea Inst. of Science and Technology (KIST), Saarbrucken (Germany); Saarland Univ., Saarbrucken (Germany)

    2017-07-05

    Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and new tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.

  10. Advanced materials: The key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural material for the first wail and blanket (FWB), (2) plasma-facing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications

  11. Advanced materials - the key to attractive magnetic fusion power reactors

    International Nuclear Information System (INIS)

    Bloom, E.E.

    1992-01-01

    Fusion is one of the most attractive central station power sources from the viewpoint of potential safety and environmental impact characteristics. Studies also indicate that fusion can be economically competitive with other options such as fission reactors and fossil-fired power stations. However, to achieve this triad of characteristics we must develop advanced materials with properties tailored for performance in the various fusion reactor systems. This paper discusses the desired characteristics of materials and the status of materials technology in four critical areas: (1) structural materials for the first wall and blanket (FWB), (2) plasmafacing materials, (3) materials for superconducting magnets, and (4) ceramics for electrical and structural applications. (author)

  12. Advanced Materials Test Methods for Improved Life Prediction of Turbine Engine Components

    National Research Council Canada - National Science Library

    Stubbs, Jack

    2000-01-01

    Phase I final report developed under SBIR contract for Topic # AF00-149, "Durability of Turbine Engine Materials/Advanced Material Test Methods for Improved Use Prediction of Turbine Engine Components...

  13. Investigation of advanced materials for fusion alpha particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bonheure, G., E-mail: g.bonheure@fz-juelich.de [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Van Wassenhove, G. [Laboratory for Plasma Physics, Association “Euratom-Belgian State”, Royal Military Academy, Avenue de la Renaissance, 30 Kunstherlevinglaan, B-1000 Brussels (Belgium); Hult, M.; González de Orduña, R. [Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Strivay, D. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Vermaercke, P. [SCK-CEN, Boeretang, B-2400 Mol (Belgium); Delvigne, T. [DSI SPRL, 3 rue Mont d’Orcq, Froyennes B-7503 (Belgium); Chene, G.; Delhalle, R. [Centre Européen d’Archéométrie, Institut de Physique Nucléaire, Atomique et de Spectroscopie, Université de Liège (Belgium); Huber, A.; Schweer, B.; Esser, G.; Biel, W.; Neubauer, O. [Forschungszentrum Jülich GmbH, Institut für Plasmaphysik, EURATOM-Assoziation, Trilateral Euregio Cluster, D-52425 Jülich (Germany)

    2013-10-15

    Highlights: ► We examine the feasibility of alpha particle measurements in ITER. ► We test advanced material detectors borrowed from the GERDA neutrino experiment. ► We compare experimental results on TEXTOR tokamak with our detector response model. ► We investigate the detector response in ITER full power D–T plasmas. ► Advanced materials show good signal to noise ratio and alpha particle selectivity. -- Abstract: Fusion alpha particle diagnostics for ITER remain a challenging task. Standard escaping alpha particle detectors in present tokamaks are not applicable to ITER and techniques suitable for fusion reactor conditions need further research and development [1,2]. The activation technique is widely used for the characterization of high fluence rates inside neutron reactors. Tokamak applications of the neutron activation technique are already well developed [3] whereas measuring escaping ions using this technique is a novel fusion plasma diagnostic development. Despite low alpha particle fluence levels in present tokamaks, promising results using activation technique combined with ultra-low level gamma-ray spectrometry [4] were achieved before in JET [5,6]. In this research work, we use new advanced detector materials. The material properties beneficial for alpha induced activation are (i) moderate neutron cross-sections (ii) ultra-high purity which reduces neutron-induced background activation and (iii) isotopic tailoring which increases the activation yield of the measured activation product. Two samples were obtained from GERDA[7], an experiment aimed at measuring the neutrinoless double beta decay in {sup 76}Ge. These samples, made of highly pure (9 N) germanium highly enriched to 87% in isotope Ge-76, were irradiated in real D–D fusion plasma conditions inside the TEXTOR tokamak. Comparison of the calculated and the experimentally measured activity shows good agreement. Compared to previously investigated high temperature ceramic material [8

  14. Development of advanced tritium breeding material with added lithium for ITER-TBM

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Kato, Kenichi; Natori, Yuri; Oikawa, Fumiaki; Nakano, Natsuko; Nakamura, Mutsumi [Kaken, Co. Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan); Sasaki, Kazuya [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Suzuki, Akihiro [Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Ibaraki 319-1188 (Japan); Terai, Takayuki [Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Tatenuma, Katsuyoshi [Kaken, Co. Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan)

    2011-10-01

    Lithium titanate (Li{sub 2}TiO{sub 3}) is one of the most promising candidates among tritium breeding materials because of its good tritium release characteristics. However, the mass of Li{sub 2}TiO{sub 3} decreased with time in a hydrogen atmosphere by the reduction of Ti and Li evaporation. In order to prevent the mass decrease at high temperatures, advanced tritium breeding material with added Li (Li{sub 2+x}TiO{sub 3+y}) should be developed. For this purpose, an advanced Li{sub 2}TiO{sub 3} with added Li was synthesized from proportionally mixed LiOH.H{sub 2}O and H{sub 2}TiO{sub 3} with a Li/Ti ratio of 2.2. The results of X-ray diffraction measurement showed that this advanced tritium breeding material existed as the non-stoichiometric compound Li{sub 2+x}TiO{sub 3+y}. The desired molar ratio of Li/Ti was achieved by appropriate mixing of LiOH.H{sub 2}O and H{sub 2}TiO{sub 3}. Therefore, synthesis by mixing LiOH.H{sub 2}O and H{sub 2}TiO{sub 3} is a promising mass production method for the advanced tritium breeding material with added Li for the test blanket module of ITER.

  15. Challenges and Opportunities in Reactive Processing and Applications of Advanced Ceramic Materials

    Science.gov (United States)

    Singh, Mrityunjay

    2003-01-01

    Recently, there has been a great deal of interest in the research, development, and commercialization of innovative synthesis and processing technologies for advanced ceramics and composite materials. Reactive processing approaches have been actively considered due to their robustness, flexibility, and affordability. A wide variety of silicon carbide-based advanced ceramics and composites are currently being fabricated using the processing approaches involving reactive infiltration of liquid and gaseous species into engineered fibrous or microporous carbon performs. The microporous carbon performs have been fabricated using the temperature induced phase separation and pyrolysis of two phase organic (resin-pore former) mixtures and fiber reinforcement of carbon and ceramic particulate bodies. In addition, pyrolyzed native plant cellulose tissues also provide unique carbon templates for manufacturing of non-oxide and oxide ceramics. In spite of great interest in this technology due to their affordability and robustness, there is a lack of scientific basis for process understanding and many technical challenges still remain. The influence of perform properties and other parameters on the resulting microstructure and properties of final material is not well understood. In this presentation, mechanism of silicon-carbon reaction in various systems and the effect of perform microstructure on the mechanical properties of advanced silicon carbide based materials will be discussed. Various examples of applications of reactively processed advanced silicon carbide ceramics and composite materials will be presented.

  16. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  17. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1976-01-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major US Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed in this paper. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. Finally, a list of measures is given for assessing overall physical protection system performance. (author)

  18. Advanced physical protection systems for nuclear materials

    International Nuclear Information System (INIS)

    Jones, O.E.

    1975-10-01

    Because of the increasing incidence of terrorism, there is growing concern that nuclear materials and facilities need improved physical protection against theft, diversion, or sabotage. Physical protection systems for facilities or transportation which have balanced effectiveness include information systems, access denial systems, adequate and timely response, recovery capability, and use denial methods for despoiling special nuclear materials (SNM). The role of these elements in reducing societal risk is described; however, it is noted that, similar to nuclear war, the absolute risks of nuclear theft and sabotage are basically unquantifiable. Sandia Laboratories has a major Energy Research and Development Administration (ERDA) role in developing advanced physical protection systems for improving the security of both SNM and facilities. These activities are surveyed. A computer simulation model is being developed to assess the cost-effectiveness of alternative physical protection systems under various levels of threat. Improved physical protection equipment such as perimeter and interior alarms, secure portals, and fixed and remotely-activated barriers is being developed and tested. In addition, complete prototype protection systems are being developed for representative nuclear facilities. An example is shown for a plutonium storage vault. The ERDA safe-secure transportation system for highway shipments of all significant quantities of government-owned SNM is described. Adversary simulation as a tool for testing and evaluating physical protection systems is discussed. A list of measures is given for assessing overall physical protection system performance. (auth)

  19. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  20. Kalaeloa Energy System Redevelopment Options Including Advanced Microgrids.

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, Marion Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Baca, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); VanderMey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    In June 2016, the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) in collaboration with the Renewable Energy Branch for the Hawaii State Energy Office (HSEO), the Hawaii Community Development Authority (HCDA), the United States Navy (Navy), and Sandia National Laboratories (Sandia) established a project to 1) assess the current functionality of the energy infrastructure at the Kalaeloa Community Development District, and 2) evaluate options to use both existing and new distributed and renewable energy generation and storage resources within advanced microgrid frameworks to cost-effectively enhance energy security and reliability for critical stakeholder needs during both short-term and extended electric power outages. This report discusses the results of a stakeholder workshop and associated site visits conducted by Sandia in October 2016 to identify major Kalaeloa stakeholder and tenant energy issues, concerns, and priorities. The report also documents information on the performance and cost benefits of a range of possible energy system improvement options including traditional electric grid upgrade approaches, advanced microgrid upgrades, and combined grid/microgrid improvements. The costs and benefits of the different improvement options are presented, comparing options to see how well they address the energy system reliability, sustainability, and resiliency priorities identified by the Kalaeloa stakeholders.

  1. Analysis of the influence of advanced materials for aerospace products R and D and manufacturing cost

    International Nuclear Information System (INIS)

    Shen, A W; Guo, J L; Wang, Z J

    2015-01-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research and Development (R and D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R and D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable. (paper)

  2. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  3. Proceedings of the international conference on molecular spectroscopy of advanced materials and biomolecules

    International Nuclear Information System (INIS)

    Sajan, D.

    2012-01-01

    This conference was an effort towards exploring advanced applications, with emphasis on recent trends in the Infrared and Raman spectra of advanced materials and biomolecules. The conference topics focused on a wide range of molecular spectroscopy, yet connected with molecular biological systems and materials. As molecular spectroscopy is finding tremendous significance in various fields of materials science, biomedical, pharmaceutical, planetary, mineral and forensic sciences, IMSAB 2012, provided a very dynamic and interactive platform for the international scientific community specializing in the field. Papers relevant to INIS are indexed separately

  4. Advanced materials for control of post-earthquake damage in bridges

    International Nuclear Information System (INIS)

    Shrestha, Kshitij C; Saiidi, M Saiid; Cruz, Carlos A

    2015-01-01

    This paper presents analytical modeling to study the seismic response of bridge systems with conventional and advanced details. For validation, a 33 m quarter-scale model of a four-span bridge incorporating innovative materials and details seismically tested on the shake tables at the University of Nevada, Reno was taken. The bridge specimen involved use of advanced materials and details to reduce damage at plastic hinges and minimize residual displacements. A three-dimensional, nonlinear model incorporating the response of the innovative materials was developed to study the bridge response using the finite-element software OpenSees. Existing finite-element formulations were used to capture the response of the advanced materials used in the bridge. The analytical model was found to be able to reproduce comparable bent displacements and bent shear forces within reasonable accuracy. The validated model was further used to study different types of bridges under suite of scaled bi-directional near-fault ground motions. Comparisons were made on behavior of five different bridge types, first conventional reinforced concrete bridge, second post-tensioned column bridge, third bridge with elastomeric rubber elements at the plastic hinge zone, fourth bridge with nickel–titanium superelastic shape memory alloy (SMA) reinforcing bar and fifth bridge with CuAlMn superelastic SMA reinforcing bar. Both the SMA used bridges also utilized engineered cementitious composite element at the plastic hinge zone. The results showed effectiveness of the innovative interventions on the bridges in providing excellent recentering capabilities with minimal damage to the columns. (paper)

  5. Standardization Efforts for Mechanical Testing and Design of Advanced Ceramic Materials and Components

    Science.gov (United States)

    Salem, Jonathan A.; Jenkins, Michael G.

    2003-01-01

    Advanced aerospace systems occasionally require the use of very brittle materials such as sapphire and ultra-high temperature ceramics. Although great progress has been made in the development of methods and standards for machining, testing and design of component from these materials, additional development and dissemination of standard practices is needed. ASTM Committee C28 on Advanced Ceramics and ISO TC 206 have taken a lead role in the standardization of testing for ceramics, and recent efforts and needs in standards development by Committee C28 on Advanced Ceramics will be summarized. In some cases, the engineers, etc. involved are unaware of the latest developments, and traditional approaches applicable to other material systems are applied. Two examples of flight hardware failures that might have been prevented via education and standardization will be presented.

  6. Energy materials. Advances in characterization, modelling and application

    International Nuclear Information System (INIS)

    Andersen, N.H.; Eldrup, M.; Hansen, N.; Juul Jensen, D.; Nielsen, E.M.; Nielsen, S.F.; Soerensen, B.F.; Pedersen, A.S.; Vegge, T.; West, S.S.

    2008-01-01

    Energy-related topics in the modern world and energy research programmes cover the range from basic research to applications and structural length scales from micro to macro. Materials research and development is a central part of the energy area as break-throughs in many technologies depend on a successful development and validation of new or advanced materials. The Symposium is organized by the Materials Research Department at Risoe DTU - National Laboratory for Sustainable Energy. The Department concentrates on energy problems combining basic and applied materials research with special focus on the key topics: wind, fusion, superconductors and hydrogen. The symposium is based on these key topics and focus on characterization of materials for energy applying neutron, X-ray and electron diffraction. Of special interest is research carried out at large facilities such as reactors and synchrotrons, supplemented by other experimental techniques and modelling on different length scales that underpins experiments. The Proceedings contain 15 key note presentations and 30 contributed presentations, covering the abovementioned key topics relevant for the energy materials. The contributions clearly show the importance of materials research when developing sustainable energy technologies and also that many challenges remain to be approached. (BA)

  7. Advanced Chemical Propulsion

    Science.gov (United States)

    Bai, S. Don

    2000-01-01

    Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.

  8. Discuss the impact technological advances in equipment and materials have made on the delivery and outcome of endodontic treatment.

    Science.gov (United States)

    Lababidi, Emad Aldin

    2013-12-01

    Recent advances in endodontic equipment and materials have considerably changed the manner in which endodontic treatment is delivered. Specific technological advances, including nickel-titanium instruments, ultrasonic instruments and the dental operating microscope have been associated with increased efficiency and efficacy of treatment and simplification of delivery. The effects of most of these changes have been tested via in vitro studies and case reports. Ongoing studies should constantly investigate what effects technological advances might have on the outcome of endodontic treatment. © 2013 Australian Society of Endodontology.

  9. Advanced Technology Composite Fuselage - Materials and Processes

    Science.gov (United States)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  10. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications.

    Science.gov (United States)

    Hoppe, Cristina E; Williams, Roberto J J

    2018-03-01

    The self-assembly of n-alkyl chains at the bulk or at the interface of different types of materials and substrates has been extensively studied in the past. The packing of alkyl chains is driven by Van der Waals interactions and can generate crystalline or disordered domains, at the bulk of the material, or self-assembled monolayers at an interface. This natural property of alkyl chains has been employed in recent years to develop a new generation of materials for technological applications. These studies are dispersed in a variety of journals. The purpose of this article was to discuss some selected examples where these advanced properties arise from a process involving the self-assembly of alkyl chains. We included a description of electronic devices and new-generation catalysts with properties derived from a controlled two-dimensional (2D) or three-dimensional (3D) self-assembly of alkyl chains at an interface. Then, we showed that controlling the crystallization of alkyl chains at the bulk can be used to generate a variety of advanced materials such as superhydrophobic coatings, shape memory hydrogels, hot-melt adhesives, thermally reversible light scattering (TRLS) films for intelligent windows and form-stable phase change materials (FS-PCMs) for the storage of thermal energy. Finally, we discussed two examples where advanced properties derive from the formation of disordered domains by physical association of alkyl chains. This was the case of photoluminescent nanocomposites and materials used for reversible optical storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    Science.gov (United States)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  12. PREFACE: International Symposium on Dynamic Deformation and Fracture of Advanced Materials (D2FAM 2013)

    Science.gov (United States)

    Silberschmidt, Vadim V.

    2013-07-01

    Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013

  13. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    International Nuclear Information System (INIS)

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting

  14. 1. international spring school and symposium on advances in materials science; contributed papers. Proceedings. V.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The first International Conference on Advances in Materials Science was held on 15-20 March, 1994 in Cairo. The specialists discussed advances in materials science formation, development and observation. The applications of materials science technique in the field of construction material, Moessbauer measurements, physico science, corrosion and mechanical alloying were discussed at the meeting. more than 700 papers were presented in the meeting.

  15. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  16. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  17. Proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices

    International Nuclear Information System (INIS)

    Singh, R.; Messick, L.J.

    1989-01-01

    This book contains the proceedings of the first international conference on indium phosphide and related materials for advanced electronic and optical devices. Topics covered include: Growth and characterization of bulk and epitaxial films, Passivation technology, Processing technology, High speed optoelectronic integrated circuits, and Solar cells

  18. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    International Nuclear Information System (INIS)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-01-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  19. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Bradley [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hauch, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sridharan, Kumar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulation tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.

  20. Assessment of advanced materials development in the European Fusion long-term Technology Programme. Report to the FTSC-P by the Advanced Materials Working Group

    International Nuclear Information System (INIS)

    Van der Schaaf, B.

    1998-08-01

    In view of the transition to the next, fifth, framework program, and the resources available, the European Commission (EC) requested to launch an assessment for the Advanced Materials area, as part of the European Fusion Technology Programme. A working group chaired by the Materials Field Coordinator assessed the current status of the programme with the view to prepare its future focusing on one class of materials, as expressed by the FTSC-P. Two classes of materials: SiC/SiC ceramic composites and low activation alloys on the basis of V, Ti and Cr are presently in the Advanced Materials area. They are all in very early stages of development with a view to their application in fusion power reactors. All have adverse properties that could exclude their use. SiC/SiC ceramic composites have by far the highest potential operating temperature, contributing greatly to the efficiency of fusion power reactors. At the same time it is also the development with the highest development loss risk. This class of materials needs an integrated approach of design, manufacturing and materials development different from alloy development. The alloys with vanadium and titanium as base element have limited application windows due to their inherent properties. If the development of RAFM steels continues as foreseen, the development of V and Ti alloys is not justifiable in the frame of the advanced materials programme. The oxide dispersion strengthened variant of RAFM steels might reach similar temperature limits: about 900K. Chromium based alloys hold the promise of higher operating temperatures, but the knowledge and experience in fusion applications is limited. Investigating the potential of chromium alloys is considered worthwhile. The alloys have comparable activation hazards and early recycling potential, with properly controlled compositions. Recycling of the SiC/SiC class of materials needs further investigation. The working group concludes that at this stage no contender can be

  1. Down-selection of candidate alloys for further testing of advanced replacement materials for LWR core internals

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States). Applied Physics Program; Leonard, Keith J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Lizhen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) Light Water Reactor Sustainability Program to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to identify and develop advanced alloys with superior degradation resistance in light water reactor (LWR)-relevant environments by 2024.

  2. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    Science.gov (United States)

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2017-07-01

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of critical materials in five additional advance design photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  4. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  5. On the Mechanical Behavior of Advanced Composite Material Structures

    Science.gov (United States)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  6. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  7. Cladding and Structural Materials for Advanced Nuclear Energy Systems Final Report

    International Nuclear Information System (INIS)

    Was, G.S.; Allen, T.R.; Ila, D.; Levi, C.; Morgan, D.; Motta, A.; Wang, L.; Wirth, B.

    2011-01-01

    The goal of this consortium is to address key materials issues in the most promising advanced reactor concepts that have yet to be resolved or that are beyond the existing experience base of dose or burnup. The research program consists of three major thrusts: (1) high-dose radiation stability of advanced fast reactor fuel cladding alloys, (2) irradiation creep at high temperature, and (3) innovative cladding concepts embodying functionally-graded barrier materials. This NERI-Consortium final report represents the collective efforts of a large number of individuals over a period of three and a half years and included 9 PIs, 4 scientists, 3 post-docs and 12 students from the seven participating institutions and 8 partners from 5 national laboratories and 3 industrial institutions (see table). University participants met semi-annually and participants and partners met annually for meetings lasting 2-3 days and designed to disseminate and discuss results, update partners, address outstanding issues and maintain focus and direction toward achieving the objectives of the program. The participants felt that this was a highly successful program to address broader issues that can only be done by the assembly of a range of talent and capabilities at a more substantial funding level than the traditional NERI or NEUP grant. As evidence of the success, this group, collectively, has published 20 articles in archival journals and made 57 presentations at international conferences on the results of this consortium.

  8. Advanced materials for application in the aerospace and automotive industries

    CSIR Research Space (South Africa)

    Damm, O

    2008-11-01

    Full Text Available The CSIR conducts research and development (R&D) involving advanced materials with applications in the local automotive and aerospace industries. The relevance of these R&D programmes is illustrated by positioning them in the context of key industry...

  9. Advanced Insider Threat Mitigation Workshop Instructional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.

  10. Development of Advanced Nuclear Materials for Extreme Applications

    International Nuclear Information System (INIS)

    Jang, Jinsung; Rhee, Chang Kyu; Kim, Dae Hwan

    2011-09-01

    One of the critical paths to develop and deploy the Generation IV nuclear systems is to procure the materials necessary to the key components of the systems. Very high temperature gas-cooled reactor, which is anticipated to run at the reactor out-let temperature of about 900 .deg. C. Therefore high temperature materials that can sustain the system at that high temperature region for long design life such as tens of years is pre-requisite. Commercial high temperature materials could be a first consideration, but some improvement by modification is essential for the development of the system, and development of advanced new materials is anticipated to be eventually required. Materials development, however, need a long lead time compared with other research and development areas. In this project NC (nano cluster) strengthened Ni-base alloys are attempted for the development for the very high temperature applications. Three commercial Ni-base high temperature alloys were used as the matrix phase, and nano-sized yttria particles are dispersed by mechanical alloying. Alternative methods to prepare the nano-sized composite powders were investigated. Ni-base nano composite powders, which were characterized by one of the methods, were characterized and confirmed to be useful

  11. Advances in superconductivity: new materials, critical currents and devices

    International Nuclear Information System (INIS)

    Pinto, R.; Malik, S.K.; Grover, A.K.; Ayyub, P.

    1997-01-01

    The discovery of superconductivity in the cuprates produced an explosive growth in research, driven by the quest for higher and higher superconducting transition temperatures. In the initial stages, the excitement was tremendous both in the physical sciences and in engineering. However, the complexity of the new materials on the one hand, and the absence of a viable theory on the other, have made further developments much more difficult. It is to be expected therefore, that the early excitement and the subsequent rapid advances have paved the way for more systematic and detailed studies of all aspects of superconductivity. The International Symposium was intended to provide a forum to review the progress in selected areas in superconductivity. The emphasis was on experimental and theoretical studies of the new superconductors, advances in the theoretical understanding, progress in studies of flux pinning and vortex dynamics which affect critical currents, and developments of novel material synthesis methods. Recent developments in the twin areas of thin films and devices were extensively discussed during the symposium. Papers relevant to INIS are indexed separately

  12. Advanced Cathode Material For High Energy Density Lithium-Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  13. A literature survey on gas turbines materials - recent advances

    International Nuclear Information System (INIS)

    Gras, J.M.

    1992-10-01

    The 9001F gas turbine (rating of about 200 MW) is one of the most recent versions of the 9000 series, benefitting from the developments and technological advances, notably in regard to structural materials. In the framework of the EDF gas turbine engineering and construction program, evaluating the nature of these developments can provide guidance in appraising the construction materials proposed by other manufacturers. After a brief comparison between the Gennevilliers 9001F engine and the 85 MW 9000B gas turbine at Bouchain, ordered by EDF in 1971, various research aspects for optimizing gas turbine refractory material mechanical properties and corrosion resistance (superalloys, monolithic ceramics and composite ceramics) are presented; present current and future trends for high power equipment of this type are also discussed

  14. Fabrication and application of advanced functional materials from lignincellulosic biomass

    Science.gov (United States)

    Hu, Sixiao

    This dissertation explored the conversion of lignocellulosic biomass into advanced functional materials and their potential applications. Lignocellulosic biomass represents an as-of-yet underutilized renewable source for not only biofuel production but also functional materials fabrication. This renewable source is a great alternative for fossil fuel based chemicals, which could be one of the solutions to energy crisis. In this work, it was demonstrated a variety of advanced materials including functional carbons, metal and silica nanoparticles could be derived from lignocellulosic biomass. Chapter 1 provided overall reviewed of the lignin structures, productions and its utilizations as plastics, absorbents and carbons, as well as the preparation of nano-structured silver, silica and silicon carbide/nitride from biomass. Chapter 2, 3 and 4 discussed the fabrication of highly porous carbons from isolated lignin, and their applications as electric supercapacitors for energy storage. In chapter 2, ultrafine porous carbon fibers were prepared via electrospinning followed by simultaneous carbonization and activation. Chapter 3 covered the fabrication of supercapacitor based on the porous carbon fibers and the investigation of their electrochemical performances. In chapter 4, porous carbon particulates with layered carbon nano plates structures were produced by simple oven-drying followed by simultaneous carbonization and activation. The effects of heat processing parameters on the resulting carbon structures and their electrochemical properties were discussed in details. Chapter 5 and 6 addressed the preparation of silver nanoparticles using lignin. Chapter 5 reported the synthesis, underlying kinetics and mechanism of monodispersed silver nanospheres with diameter less than 25 nm in aqueous solutions using lignin as dual reducing and capping agents. Chapter 6 covered the preparation of silver nanoparticles on electrospun celluloses ultrafine fibers using lignin as both

  15. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Argonne National Lab. (ANL), Argonne, IL (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  16. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cipiti, Ben [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Durkee, Jr., Joe W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fallgren, Andrew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jarman, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Shelly [Idaho National Lab. (INL), Idaho Falls, ID (United States); Meier, Dave [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Osburn, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ticknor, Lawrence O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yoo, Tae-Sic [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  17. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting.

  18. 1. international spring school and symposium on advances in materials science; invited lectures. Proceedings. V.1

    International Nuclear Information System (INIS)

    1994-03-01

    The 1 st international conference on advances in materials science was held on 15-20 March, 1994 in cairo. The specialist discussed material science formation, development and observation. The application of advances in material science technique in the field of atomic energy, structure design, microelectronic structure were discussed at the meeting. more than 400 papers were presented in the meeting

  19. Fiscal 1989 achievement report on next-generation industrial structure technology. Research and development of advanced materials for extreme environments (Research and development of advanced composite materials using oil as raw material); 1989 nendo chotaikankyosei senshin zairyo no kenkyu kaihatsu seika hokokusho. Sekiyu genryokei senshin fukugo zairyo no kenkhyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The research and development of advanced composite materials succeeds the composite material development project initiated in fiscal 1981, and activities were conducted in the two domains of advanced composite material development and comprehensive survey implementation. In the comprehensive survey, trends of associated technologies were investigated, and technical tasks were studied relative to the development of advanced materials. In the effort to develop advanced composite materials, activities were conducted in the three fields of (1) oil pitch derived random structure carbon fiber/carbon based matrix composite materials, (2) oil pitch derived onion structure carbon fiber/carbon based matrix composite materials, and (3) oil pitch derived double structure carbon fiber/carbon based matrix composite materials. In Field (1), relations between conditions of forming carbon fibers out of pitch and carbon fiber random structure were elucidated, and development was started of technologies for providing fibers with oxidation resisting surface coatings. In Field (2), relations between conditions of forming carbon fibers out of pitch and carbon fiber onion structure were elucidated, and development was started of technologies for providing fibers with oxidation resisting surface coatings. In Field (3), efforts were started to elucidate oxidation resistance governing factors. (NEDO)

  20. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  1. Proceedings of national workshop on advanced methods for materials characterization

    International Nuclear Information System (INIS)

    2004-10-01

    During the past two decades there had been tremendous growth in the field of material science and a variety of new materials with user specific properties have been developed such as smart shape memory alloys, hybrid materials like glass-ceramics, cermets, met-glasses, inorganic- organic composite layered structures, mixed oxides with negative thermal expansion, functional polymer materials etc. Study of nano-particles and the materials assembled from such particles is another area of active research being pursued all over the world. Preparation and characterization of nano-sized materials is a challenge because of their dimensions and size dependent properties. This has led to the emergence of a variety of advanced techniques, which need to be brought to the attention of the researchers working in the field of material science which requires the expertise of physics, chemistry and process engineering. This volume deals with above aspects and papers relevant to INIS are indexed separately

  2. Advanced exergy-based analyses applied to a system including LNG regasification and electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Morosuk, Tatiana; Tsatsaronis, George; Boyano, Alicia; Gantiva, Camilo [Technische Univ. Berlin (Germany)

    2012-07-01

    Liquefied natural gas (LNG) will contribute more in the future than in the past to the overall energy supply in the world. The paper discusses the application of advanced exergy-based analyses to a recently developed LNG-based cogeneration system. These analyses include advanced exergetic, advanced exergoeconomic, and advanced exergoenvironmental analyses in which thermodynamic inefficiencies (exergy destruction), costs, and environmental impacts have been split into avoidable and unavoidable parts. With the aid of these analyses, the potentials for improving the thermodynamic efficiency and for reducing the overall cost and the overall environmental impact are revealed. The objectives of this paper are to demonstrate (a) the potential for generating electricity while regasifying LNG and (b) some of the capabilities associated with advanced exergy-based methods. The most important subsystems and components are identified, and suggestions for improving them are made. (orig.)

  3. Recent advances in membrane materials: introductory remarks

    International Nuclear Information System (INIS)

    Ayral, A.

    2007-01-01

    A lot of separation operations are currently performed using membranes both for production processes and for environmental applications. The main part of the used membranes are organic membranes but for specific conditions of utilization inorganic or organic-inorganic membranes have been also developed. Among the applications for gas separation, some examples are the removal of hydrogen from ammonia synthesis gas, the removal of carbon dioxide from natural gas and air separation. Environmental considerations like massive scale air and water pollution and also the gradual rarefaction of fossil energy resources gave rise to the concept of sustainable growth and to related strategies like process intensification, the reuse of water and solvents at their point of use, hydrogen as energy vector (requiring H 2 production...)..Membranes will have a key part to play in the new technologies associated with these strategies. Intensive efforts of research and development are now engaged everywhere in the world to develop high performance membranes for those emerging applications. Membrane science is a multidisciplinary scientific and technological domain covering mainly materials science, physical chemistry, chemical engineering, modeling. This issue (Annales de chimie - Science des materiaux, 2007 Vol.32 N.2) provides a wide review of recent advances in membrane materials. It is based on the contributions of experts in different fields of membrane materials (organic, organic-inorganic hybrid, composite, carbon, metallic, ceramic; dense, porous, surface modified materials). (O.M.)

  4. Characterization and damage evaluation of advanced materials

    Science.gov (United States)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested

  5. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  6. Advanced materials for thermal protection system

    Science.gov (United States)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  7. Advances in superconducting materials and electronics technologies

    International Nuclear Information System (INIS)

    Palmer, D.N.

    1990-01-01

    Technological barriers blocking the early implementation of ceramic oxide high critical temperature [Tc] and LHe Nb based superconductors are slowly being dismantled. Spearheading these advances are mechanical engineers with diverse specialties and creative interests. As the technology expands, most engineers have recognized the importance of inter-disciplinary cooperation. Cooperation between mechanical engineers and material and system engineers is of particular importance. Recently, several problems previously though to be insurmountable, has been successfully resolved. These accomplishment were aided by interaction with other scientists and practitioners, working in the superconductor research and industrial communities, struggling with similar systems and materials problems. Papers published here and presented at the 1990 ASME Winter Annual Meeting held in Dallas, Texas 25-30 November 1990 can be used as a bellwether to gauge the progress in the development of both ceramic oxide and low temperature Nb superconducting device and system technologies. Topics are focused into two areas: mechanical behavior of high temperature superconductors and thermal and mechanical problems in superconducting electronics

  8. Advanced Stirling Duplex Materials Assessment for Potential Venus Mission Heater Head Application

    Science.gov (United States)

    Ritzert, Frank; Nathal, Michael V.; Salem, Jonathan; Jacobson, Nathan; Nesbitt, James

    2011-01-01

    This report will address materials selection for components in a proposed Venus lander system. The lander would use active refrigeration to allow Space Science instrumentation to survive the extreme environment that exists on the surface of Venus. The refrigeration system would be powered by a Stirling engine-based system and is termed the Advanced Stirling Duplex (ASD) concept. Stirling engine power conversion in its simplest definition converts heat from radioactive decay into electricity. Detailed design decisions will require iterations between component geometries, materials selection, system output, and tolerable risk. This study reviews potential component requirements against known materials performance. A lower risk, evolutionary advance in heater head materials could be offered by nickel-base superalloy single crystals, with expected capability of approximately 1100C. However, the high temperature requirements of the Venus mission may force the selection of ceramics or refractory metals, which are more developmental in nature and may not have a well-developed database or a mature supporting technology base such as fabrication and joining methods.

  9. Scale-up of nature’s tissue weaving algorithms to engineer advanced functional materials

    Science.gov (United States)

    Ng, Joanna L.; Knothe, Lillian E.; Whan, Renee M.; Knothe, Ulf; Tate, Melissa L. Knothe

    2017-01-01

    We are literally the stuff from which our tissue fabrics and their fibers are woven and spun. The arrangement of collagen, elastin and other structural proteins in space and time embodies our tissues and organs with amazing resilience and multifunctional smart properties. For example, the periosteum, a soft tissue sleeve that envelops all nonarticular bony surfaces of the body, comprises an inherently “smart” material that gives hard bones added strength under high impact loads. Yet a paucity of scalable bottom-up approaches stymies the harnessing of smart tissues’ biological, mechanical and organizational detail to create advanced functional materials. Here, a novel approach is established to scale up the multidimensional fiber patterns of natural soft tissue weaves for rapid prototyping of advanced functional materials. First second harmonic generation and two-photon excitation microscopy is used to map the microscopic three-dimensional (3D) alignment, composition and distribution of the collagen and elastin fibers of periosteum, the soft tissue sheath bounding all nonarticular bone surfaces in our bodies. Then, using engineering rendering software to scale up this natural tissue fabric, as well as multidimensional weaving algorithms, macroscopic tissue prototypes are created using a computer-controlled jacquard loom. The capacity to prototype scaled up architectures of natural fabrics provides a new avenue to create advanced functional materials.

  10. 50th Anniversary Celebration: 46th Sagamore Army Materials Research Conference on Advances and Needs in Multi-Spectral Transparent Materials Technology

    National Research Council Canada - National Science Library

    Sands, James M; McCauley, James W

    2008-01-01

    ... technology issues of critical importance to the U.S. Army community. The 46th Sagamore Army Materials Research Conference continued this tradition with a focus on Advances and Needs in Multi-Spectral Transparent Materials Technology...

  11. NATO Advanced Research Workshop on Brilliant Light Facilities and Research in Life and Material Sciences

    CERN Document Server

    Tsakanov, Vasili; Brilliant Light in Life and Material Sciences

    2007-01-01

    The present book contains an excellent overview of the status and highlights of brilliant light facilities and their applications in biology, chemistry, medicine, materials and environmental sciences. Overview papers on diverse fields of research by leading experts are accompanied by the highlights in the near and long-term perspectives of brilliant X-Ray photon beam usage for fundamental and applied research. The book includes advanced topics in the fields of high brightness photon beams, instrumentation, the spectroscopy, microscopy, scattering and imaging experimental techniques and their applications. The book is strongly recommended for students, engineers and scientists in the field of accelerator physics, X-ray optics and instrumentation, life, materials and environmental sciences, bio and nanotechnology.

  12. High-Pressure Design of Advanced BN-Based Materials

    Directory of Open Access Journals (Sweden)

    Oleksandr O. Kurakevych

    2016-10-01

    Full Text Available The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN with hardness comparable to diamond, and superhard boron subnitride B13N2. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc. are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure–temperature conditions are considered.

  13. PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008

    Science.gov (United States)

    Kakeshita, Tomoyuki

    2009-07-01

    The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss

  14. NA Departmental Activities Related to Nuclear Materials for Advanced Reactor Systems

    International Nuclear Information System (INIS)

    Zeman, Andrej

    2013-01-01

    Overview of completed and ongoing coordinated research projects which address the following issues: (1) Better understanding of radiation effects and mechanisms of material damage and basic physics of accelerator irradiation under specific conditions, (2) Improvement of knowledge and data for the present and new generation of structural materials, (3) Contribution to developmental of theoretical models for radiation degradation mechanism, (4) Fostering of advanced and innovative technologies by support of Round Robin testing, collaboration and networking

  15. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  16. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  17. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  18. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  19. NATO Advanced Study Institute on Nanotechnological Basis for Advanced Sensors

    CERN Document Server

    Reithmaier, Johann Peter; Kulisch, Wilhelm; Popov, Cyril; Petkov, Plamen

    2011-01-01

    Bringing together experts from 15 countries, this book is based on the lectures and contributions of the NATO Advanced Study Institute on “Nanotechnological Basis for Advanced Sensors” held in Sozopol, Bulgaria, 30 May - 11 June, 2010. It gives a broad overview on this topic, and includes articles on: techniques for preparation and characterization of sensor materials; different types of nanoscaled materials for sensor applications, addressing both their structure (nanoparticles, nanocomposites, nanostructured films, etc.) and chemical nature (carbon-based, oxides, glasses, etc.); and on advanced sensors that exploit nanoscience and nanotechnology. In addition, the volume represents an interdisciplinary approach with authors coming from diverse fields such as physics, chemistry, engineering, materials science and biology. A particular strength of the book is its combination of longer papers, introducing the basic knowledge on a certain topic, and brief contributions highlighting special types of sensors a...

  20. Recent advances in the application of electron tomography to materials chemistry.

    Science.gov (United States)

    Leary, Rowan; Midgley, Paul A; Thomas, John Meurig

    2012-10-16

    Nowadays, tomography plays a central role in pureand applied science, in medicine, and in many branches of engineering and technology. It entails reconstructing the three-dimensional (3D) structure of an object from a tilt series of two-dimensional (2D) images. Its origin goes back to 1917, when Radon showed mathematically how a series of 2D projection images could be converted to the 3D structural one. Tomographic X-ray and positron scanning for 3D medical imaging, with a resolution of ∼1 mm, is now ubiquitous in major hospitals. Electron tomography, a relatively new chemical tool, with a resolution of ∼1 nm, has been recently adopted by materials chemists as an invaluable aid for the 3D study of the morphologies, spatially-discriminating chemical compositions, and defect properties of nanostructured materials. In this Account, we review the advances that have been made in facilitating the recording of the required series of 2D electron microscopic images and the subsequent process of 3D reconstruction of specimens that are vulnerable, to a greater or lesser degree, to electron beam damage. We describe how high-fidelity 3D tomograms may be obtained from relatively few 2D images by incorporating prior structural knowledge into the reconstruction process. In particular, we highlight the vital role of compressed sensing, a recently developed procedure well-known to information theorists that exploits ideas of image compression and "sparsity" (that the important image information can be captured in a reduced data set). We also touch upon another promising approach, "discrete" tomography, which builds into the reconstruction process a prior assumption that the object can be described in discrete terms, such as the number of constituent materials and their expected densities. Other advances made recently that we outline, such as the availability of aberration-corrected electron microscopes, electron wavelength monochromators, and sophisticated specimen goniometers

  1. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  2. Environment Conscious Ceramics (Ecoceramics): An Eco-Friendly Route to Advanced Ceramic Materials

    Science.gov (United States)

    Singh, M.

    2001-01-01

    Environment conscious ceramics (Ecoceramics) are a new class of materials, which can be produced with renewable natural resources (wood) or wood wastes (wood sawdust). This technology provides an eco-friendly route to advanced ceramic materials. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. Silicon carbide-based ecoceramics have been fabricated by reactive infiltration of carbonaceous preforms by molten silicon or silicon-refractory metal alloys. The fabrication approach, microstructure, and mechanical properties of SiC-based ecoceramics are presented.

  3. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  4. Computational modeling, optimization and manufacturing simulation of advanced engineering materials

    CERN Document Server

    2016-01-01

    This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials.  Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.

  5. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  6. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong (Amy); Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  7. Advanced electrical and electronics materials processes and applications

    CERN Document Server

    Gupta, K M

    2015-01-01

    This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments.   Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and exa

  8. Research and development of novel advanced materials for next-generation collimators

    CERN Document Server

    Bertarelli, A; Carra, F; Dallocchio, A; Gil Costa, M; Mariani, N

    2011-01-01

    The study of innovative collimators is essential to handle the high energy particle beams required to explore unknown territory in basic research. This calls for the development of novel advanced materials, as no existing metal-based or carbon-based material possesses the combination of physical, thermal, electrical and mechanical properties, imposed by collimator extreme working conditions. A new family of materials, with promising features, has been identified: metal-diamond composites. These materials are to combine the outstanding thermal and physical properties of diamond with the electrical and mechanical properties of metals. The best candidates are Copper-Diamond (Cu-CD) and Molybdenum-Diamond (Mo-CD). In particular, Mo-CD may provide interesting properties as to mechanical strength, melting temperature, thermal shock resistance and, thanks to its balanced material density, energy absorption. The research program carried out on these materials at CERN and collaborating partners is presented, mainly fo...

  9. Methods for measuring the spectral reflectivity of advanced materials at high temperature

    International Nuclear Information System (INIS)

    Salikhov, T.P.; Kan, V.V.

    1993-01-01

    For investigation in the domain of advanced materials as well as for new technologies there is an urgent need for knowledge of the spectral reflectivity of the materials specially at high temperatures. However the methods available are mostly intended for measuring the model materials with specular or diffuse reflection surface. This is not quite correct since advanced materials have mixed specular diffuse reflection surfaces. New methods for reflectivity measurements of materials in the visible, near and middle infrared range at high temperature, regardless of surface texture, have been developed. The advantages of the methods proposed are as flows: (a) the facility of performing the reflectivity measurements for materials with mixed specular diffuse reflectance; (b) wide spectral range 0,38-8 micro m; (c) wide temperature range 300-3000 K; (d) high accuracy and rapid measurements. The methods are based on the following principals (i) Diffuse irradiation of the sample surface and the use of Helkholtz reciprocity principle to determine the directional hemispherical reflectivity ii) Pulse polychromatic probing of the sample by additional light source. The first principle excludes the influence of the angular reflection distribution of sample surface on data obtained. The second principle gives the possibility of simultaneous measurements of the reflectivity. The second principle gives the possibility of simultaneous measurements of the reflectivity in wide spectral range. On the basis of these principles for high temperature reflectometers have been developed and discussed here. (author)

  10. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    Science.gov (United States)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  11. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  12. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  13. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  14. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  15. Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes

    CERN Document Server

    Poole, Brian R; Nelson, Scott D

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which requires nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes an...

  16. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    Energy Technology Data Exchange (ETDEWEB)

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  17. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    International Nuclear Information System (INIS)

    Poole, B R; Nelson, S D; Langdon, S

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes

  18. Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Pietro Calandra

    2010-01-01

    Full Text Available We review the most advanced methods for the fabrication of cathodes for dye-sensitized solar cells employing nanostructured materials. The attention is focused on metal nanoparticles and nanostructured carbon, among which nanotubes and graphene, whose good catalytic properties make them ideal for the development of counter electrode substrates, transparent conducting oxide, and advanced catalyst materials.

  19. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    Science.gov (United States)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  20. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    Science.gov (United States)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  1. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  2. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.T. [comp.

    1995-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

  3. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  4. Advanced materials for critical components in industrial gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, T.B. (Div. of Materials Metrology, National Physical Lab., Teddington (United Kingdom))

    1992-06-01

    Combined-cycle plant for power production has advantages in terms of capital costs and flexibility compared to large power plants either nuclear of fossil-fired, used for base load. In combined-cycle plant the overall efficiency is highly dependent on the performance of the gas turbine and turbine entry temperatures of > 1200deg C will be required to obtain attractive levels of efficiency. Bearing in mind the need for reliability and longterm performance from components such as turbine blades, the challenge to the materials enginer is formidable. In this paper some of the recent developments in Ni - Cr-base alloys are described and the potential for advanced materials such as ceramics and intermetallics is briefly considered. Development in coating technology to provide effective thermal barriers and good resistance to aggressive environments are discussed. (orig./MM).

  5. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    International Nuclear Information System (INIS)

    Wirth, Brian

    2015-01-01

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the ''selfhealing'' or radiation resistance in advanced

  6. Modeling investigation of the stability and irradiation-induced evolution of nanoscale precipitates in advanced structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-08

    Materials used in extremely hostile environment such as nuclear reactors are subject to a high flux of neutron irradiation, and thus vast concentrations of vacancy and interstitial point defects are produced because of collisions of energetic neutrons with host lattice atoms. The fate of these defects depends on various reaction mechanisms which occur immediately following the displacement cascade evolution and during the longer-time kinetically dominated evolution such as annihilation, recombination, clustering or trapping at sinks of vacancies, interstitials and their clusters. The long-range diffusional transport and evolution of point defects and self-defect clusters drive a microstructural and microchemical evolution that are known to produce degradation of mechanical properties including the creep rate, yield strength, ductility, or fracture toughness, and correspondingly affect material serviceability and lifetimes in nuclear applications. Therefore, a detailed understanding of microstructural evolution in materials at different time and length scales is of significant importance. The primary objective of this work is to utilize a hierarchical computational modeling approach i) to evaluate the potential for nanoscale precipitates to enhance point defect recombination rates and thereby the self-healing ability of advanced structural materials, and ii) to evaluate the stability and irradiation-induced evolution of such nanoscale precipitates resulting from enhanced point defect transport to and annihilation at precipitate interfaces. This project will utilize, and as necessary develop, computational materials modeling techniques within a hierarchical computational modeling approach, principally including molecular dynamics, kinetic Monte Carlo and spatially-dependent cluster dynamics modeling, to identify and understand the most important physical processes relevant to promoting the “selfhealing” or radiation resistance in advanced materials containing

  7. Thick electrodes including nanoparticles having electroactive materials and methods of making same

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Liu, Jun; Zhang, Jiguang; Graff, Gordon L.

    2017-02-21

    Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.

  8. PREFACE Conference on Advanced Materials and Nanotechnology (CAMAN 2009)

    Science.gov (United States)

    Ali, Aidy

    2011-02-01

    This special issue of IOP Conference Series: Materials science and Engineering contains papers contributed to the Conference on Advanced Materials and Nanotechnology (CAMAN 2009) held on 3-5 November 2009 in Putra World Trade Centre (PWTC), Kuala Lumpur, Malaysia. The objective of the congress is to provide a platform for professionals, academicians and researchers to exchange views, findings, ideas and experiences on advanced science and technology. After careful refereeing of all manuscripts, 50 papers were selected for publications in this issue. The policy of editing was the content of the material and its rapid dissemination was more important than its form. In 2009, the conference received close to 120 papers from leading researchers and participants from countries such as Iran, India, Switzerland, Myanmar, Nigeria, Canada, Yemen and Malaysia. We strongly hope the new ideas and results presented will stimulate and enhance the progress of research on the above conference theme. We are grateful to all the authors for their papers and presentations in this conference. They are also the ones who help make this conference possible through their hard work in the preparation of the manuscripts. We would also like to offer our sincere thanks to all the invited speakers who came to share their knowledge with us. We would also like to acknowledge the untiring efforts of the reviewers, research assistants and students in meeting deadlines and for their patience and perseverance. We wish to thank all the authors who contributed papers to the conference and all reviewers for their efforts to review the papers as well as the sponsors. We would also like to thank the members of the CAMAN 2009 Organising Committee and the International Advisory Committee for their efforts in making the conference a success. Thank you very much indeed. Guest Editor Aidy Ali

  9. Advanced neutron source materials surveillance program

    International Nuclear Information System (INIS)

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing

  10. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`

  11. Nanocrystalline materials: recent advances in crystallographic characterization techniques

    Directory of Open Access Journals (Sweden)

    Emilie Ringe

    2014-11-01

    Full Text Available Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR, the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask `how are nanoshapes created?', `how does the shape relate to the atomic packing and crystallography of the material?', `how can we control and characterize the external shape and crystal structure of such small nanocrystals?'. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed.

  12. Composite material including nanocrystals and methods of making

    Science.gov (United States)

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  13. Proceedings of the national conference on critical and strategic materials for advanced technologies

    International Nuclear Information System (INIS)

    2017-01-01

    The conference is totally devoted to all aspects of critical and strategic materials. The overall objectives of the symposium are to discuss: a) the key and enabling role of critical and strategic materials in advanced technologies; b) a sustainable supply and utilization of these materials; c) to bring into focus cross-cutting research and educational needs and scientific/technological grand challenges associated with the sustainable extraction, recovery, recycling, reuse, substitution and purification of critical materials and d) to communicate the research needs in this field to the scientists, technologists and government. Papers relevant to INIS are indexed separately

  14. Ultrafast Bessel beams: advanced tools for laser materials processing

    Science.gov (United States)

    Stoian, Razvan; Bhuyan, Manoj K.; Zhang, Guodong; Cheng, Guanghua; Meyer, Remy; Courvoisier, Francois

    2018-05-01

    Ultrafast Bessel beams demonstrate a significant capacity of structuring transparent materials with a high degree of accuracy and exceptional aspect ratio. The ability to localize energy on the nanometer scale (bypassing the 100-nm milestone) makes them ideal tools for advanced laser nanoscale processing on surfaces and in the bulk. This allows to generate and combine micron and nano-sized features into hybrid structures that show novel functionalities. Their high aspect ratio and the accurate location can equally drive an efficient material modification and processing strategy on large dimensions. We review, here, the main concepts of generating and using Bessel non-diffractive beams and their remarkable features, discuss general characteristics of their interaction with matter in ablation and material modification regimes, and advocate their use for obtaining hybrid micro and nanoscale structures in two and three dimensions (2D and 3D) performing complex functions. High-throughput applications are indicated. The example list ranges from surface nanostructuring and laser cutting to ultrafast laser welding and the fabrication of 3D photonic systems embedded in the volume.

  15. Evaluation of materials for heat exchanging components in advanced helium-cooled reactors

    International Nuclear Information System (INIS)

    Schubert, F.

    1984-01-01

    The qualification of metallic materials for advanced HTR applications is based on creep behaviour, fatigue properties, structural stability and corrosion resistance. A brief state of the art is provided for the materials for heat exchanging components. The experimental results are treated with respect to the importance for the design, the characteristic of time-depend materials behaviour are evaluated. Of specific interest are the possible effects of helium on the mechanical properties. Helium, which serves as primary coolant, contains traces of reactive impurities such as hydrogen, methane, carbon monoxide and water vapor. The evaluation of the HTR materials program serves as basis for structural design rules of components with operation temperatures above 800 deg C. The materials mechanical topics are discussed. Alloy improvement and the progress in development of new alloys are reviewed. (author)

  16. Testing Systems and Results for Advanced Nuclear Fuel Materials

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Griffith, G.W.; Garnier, J.E.

    2012-01-01

    Light Water Reactor Sustainability (LWRS) Program Advanced LWR Nuclear Fuel Development (ALFD) Pathway. Development and testing of high performance fuel cladding identified as high priority to support: enhancement of fuel performance, reliability, and reactor safety. One of the technologies being examined is an advanced fuel cladding made from ceramic matrix composites (CMC) utilizing silicon carbide (SiC) as a structural material supplementing a commercial Zircaloy-4 (Zr-4) tube. A series of out-of-pile tests to fully characterize the SiC CMC hybrid design to produce baseline data. The planned tests are intended to either produce quantitative data or to demonstrate the properties required to achieve two initial performance conditions relative to standard zircaloybased cladding: decreased hydrogen uptake (corrosion) and decreased fretting of the cladding tube under normal operating and postulated accident conditions. These two failure mechanisms account for approximately 70% of all in-pile failures of LWR commercial fuel assemblies

  17. Recent Advances in Material and Geometrical Modelling in Dental Applications

    Directory of Open Access Journals (Sweden)

    Waleed M. S. Al Qahtani

    2018-06-01

    Full Text Available This article touched, in brief, the recent advances in dental materials and geometric modelling in dental applications. Most common categories of dental materials as metallic alloys, composites, ceramics and nanomaterials were briefly demonstrated. Nanotechnology improved the quality of dental biomaterials. This new technology improves many existing materials properties, also, to introduce new materials with superior properties that covered a wide range of applications in dentistry. Geometric modelling was discussed as a concept and examples within this article. The geometric modelling with engineering Computer-Aided-Design (CAD system(s is highly satisfactory for further analysis or Computer-Aided-Manufacturing (CAM processes. The geometric modelling extracted from Computed-Tomography (CT images (or its similar techniques for the sake of CAM also reached a sufficient level of accuracy, while, obtaining efficient solid modelling without huge efforts on body surfaces, faces, and gaps healing is still doubtable. This article is merely a compilation of knowledge learned from lectures, workshops, books, and journal articles, articles from the internet, dental forum, and scientific groups' discussions.

  18. Radiation Processing of Advanced Composite Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Jeun, Joonpyo; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-04-15

    Advanced composites, such as carbon-fiber-reinforced plastics, are being used widely for many applications. Carbon fiber/epoxies composites have attracted special attention from the aircraft, aerospace, marine engineering, sporting goods and transportation industries, because they have useful mechanical properties including high strength-to-weight and stiffness-to-weight ratios, a corrosion resistant, impact and damage tolerance characteristics and wear properties. Thermal curing has been the dominant industrial process for advanced composites until now, however, a radiation curing process using UV, microwave x-ray, electron-beam(E-beam) and {gamma}-ray has emerged as a better alternative in recent years. These processes are compatible with the manufacturing of composites using traditional fabrication methods including a filament/tape winding, pultrusion, resin transfer moulding and hand lay-up. In this study, E-beam curable carbon fiber/epoxy composites were manufactured, and their mechanical properties were investigated. Two epoxy resins (bisphenol-A, bisphenol-F) containing photo-initiators (tri aryl sulfonium hexafluorophosphate, tri aryl sulfonium hexafluoroantimonate) were used as a matrix and a 4H-satin carbon woven fabric was used as a reinforcement. And then an electron beam irradiated the composites up to 200 kGy in a vacuum and an inert atmosphere. The cure cycle was optimized and the properties of composites were evaluated and analyzed via a differential scanning calorimetry, scanning electron microscopy, sol-gel extractions, FT-NIR, universal test machine, and an impact tester. The gel content, glass transition temperature and mechanical strength of the irradiated composites were increased with an increasing radiation dose.

  19. New era of neutron scattering research on advanced materials

    International Nuclear Information System (INIS)

    Ikeda, Susumu

    2001-01-01

    The projects of the next generation of pulsed spallation neutron source are planed in USA, Europe and Japan. They are one order of magnitude more powerful than the most powerful existing neutron source, ISIS in UK. They offer the exciting prospects for the future, and will open the new era of neutron scattering research on advanced materials. The Japanese project is named as the 'Joint project' between JAERI and KEK on high-intensity proton accelerators. The details of the neutron science facility in the 'Joint project' and the sciences to be developed are summarized. (author)

  20. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.

    2013-01-01

    as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...... having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected...

  1. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    Science.gov (United States)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  2. Development of advanced ceramics at AECL

    International Nuclear Information System (INIS)

    Palmer, B.J.F.; MacEwen, S.R.; Sawicka, B.D.; Hayward, P.J.; Sridhar, S.

    1986-12-01

    Atomic Energy of Canada Limited (AECL) has a long history of developing ceramics for nuclear fission and fusion applications. AECL is now applying its multidisciplinary materials R and D capabilities, including unique capabilities in ceramic processing and nondestructive evaluation, to develop advanced ceramic materials for commercial and industrial applications. This report provides an overview of the facilities and programs associated with the development of advanced ceramics at AECL

  3. Book of abstracts of the joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems

    International Nuclear Information System (INIS)

    2009-01-01

    Materials performance and reliability are key issues for the safety and competitiveness of future nuclear installations: Generation IV nuclear systems for increased sustainability, advanced systems for non-electrical uses of nuclear energy, partitioning and transmutation systems, as well as thermo-nuclear fusion systems. These systems will have to feature high thermal efficiency and optimized utilization of fuel combined with minimized nuclear waste. For the sustainability of the nuclear option, there is a renewed interest worldwide in new reactor systems, closed fuel cycle research and technology development, and nuclear process heat applications. This requires the development and qualification of new high temperature structural materials with improved radiation and corrosion resistance. To achieve the challenging materials performance parameters, focused research and targeted testing of new candidate materials are necessary. Recent developments regarding new classes of materials with improved microstructural features, such as fibre-reinforced ceramic composite materials, oxide dispersion strengthened steels or advanced ferritic-martensitic steels are promising since they combine good radiation resistance and corrosion properties with high-temperature strength and toughness. In view of a successful and timely implementation of design parameters, in particular for primary circuits, new structural materials have to be qualified during the next decade. To this end an international R and D effort is being undertaken. Recent progress in materials science, supported by computer modelling and advanced materials characterisation techniques, has the potential to accelerate the process of new structural materials development. The scope of the meeting is information exchange and cross-fertilisation of various disciplines, including an overview of recent status of world-wide R and D activities. A comprehensive review of the designs of fission as well as fusion reactor systems

  4. Novel functional magnetic materials fundamentals and applications

    CERN Document Server

    2016-01-01

    This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect.  Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdis...

  5. Josephson phase qubit circuit for the evaluation of advanced tunnel barrier materials

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Jeffrey S; Oh, Seongshik; Pappas, David P [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Wang Haohua; Martinis, John M [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)], E-mail: klinej@nist.gov

    2009-01-15

    We have found that crystalline Josephson junctions have problems with the control of critical current density that decrease the circuit yield. We present a superconducting quantum bit circuit designed to accommodate a factor of five variation in critical current density from one fabrication run to the next. The new design enables the evaluation of advanced tunnel barrier materials for superconducting quantum bits. Using this circuit design, we compare the performance of Josephson phase qubits fabricated with MgO and Al{sub 2}O{sub 3} advanced crystalline tunnel barriers to AlO{sub x} amorphous tunnel barrier qubits.

  6. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  7. Advances in Materials for Recent Low-Profile Implantable Bioelectronics

    Directory of Open Access Journals (Sweden)

    Yanfei Chen

    2018-03-01

    Full Text Available The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities.

  8. Advances in Materials for Recent Low-Profile Implantable Bioelectronics

    Science.gov (United States)

    Kim, Yun-Soung; Tillman, Bryan W.; Chun, Youngjae

    2018-01-01

    The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities. PMID:29596359

  9. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  10. Development of advanced high heat flux and plasma-facing materials

    Science.gov (United States)

    Linsmeier, Ch.; Rieth, M.; Aktaa, J.; Chikada, T.; Hoffmann, A.; Hoffmann, J.; Houben, A.; Kurishita, H.; Jin, X.; Li, M.; Litnovsky, A.; Matsuo, S.; von Müller, A.; Nikolic, V.; Palacios, T.; Pippan, R.; Qu, D.; Reiser, J.; Riesch, J.; Shikama, T.; Stieglitz, R.; Weber, T.; Wurster, S.; You, J.-H.; Zhou, Z.

    2017-09-01

    Plasma-facing materials and components in a fusion reactor are the interface between the plasma and the material part. The operational conditions in this environment are probably the most challenging parameters for any material: high power loads and large particle and neutron fluxes are simultaneously impinging at their surfaces. To realize fusion in a tokamak or stellarator reactor, given the proven geometries and technological solutions, requires an improvement of the thermo-mechanical capabilities of currently available materials. In its first part this article describes the requirements and needs for new, advanced materials for the plasma-facing components. Starting points are capabilities and limitations of tungsten-based alloys and structurally stabilized materials. Furthermore, material requirements from the fusion-specific loading scenarios of a divertor in a water-cooled configuration are described, defining directions for the material development. Finally, safety requirements for a fusion reactor with its specific accident scenarios and their potential environmental impact lead to the definition of inherently passive materials, avoiding release of radioactive material through intrinsic material properties. The second part of this article demonstrates current material development lines answering the fusion-specific requirements for high heat flux materials. New composite materials, in particular fiber-reinforced and laminated structures, as well as mechanically alloyed tungsten materials, allow the extension of the thermo-mechanical operation space towards regions of extreme steady-state and transient loads. Self-passivating tungsten alloys, demonstrating favorable tungsten-like plasma-wall interaction behavior under normal operation conditions, are an intrinsic solution to otherwise catastrophic consequences of loss-of-coolant and air ingress events in a fusion reactor. Permeation barrier layers avoid the escape of tritium into structural and cooling

  11. Strategies to prevent the occurrence of resistance against antibiotics by using advanced materials.

    Science.gov (United States)

    Bassegoda, Arnau; Ivanova, Kristina; Ramon, Eva; Tzanov, Tzanko

    2018-03-01

    Drug resistance occurrence is a global healthcare concern responsible for the increased morbidity and mortality in hospitals, time of hospitalisation and huge financial loss. The failure of the most antibiotics to kill "superbugs" poses the urgent need to develop innovative strategies aimed at not only controlling bacterial infection but also the spread of resistance. The prevention of pathogen host invasion by inhibiting bacterial virulence and biofilm formation, and the utilisation of bactericidal agents with different mode of action than classic antibiotics are the two most promising new alternative strategies to overcome antibiotic resistance. Based on these novel approaches, researchers are developing different advanced materials (nanoparticles, hydrogels and surface coatings) with novel antimicrobial properties. In this review, we summarise the recent advances in terms of engineered materials to prevent bacteria-resistant infections according to the antimicrobial strategies underlying their design.

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  13. Fiscal 1993 achievement outline. Research and development of advanced materials for extreme environments (Advanced composite material); Chotaikankyosei senshin zairyo no kenkyu kaihatsu (senshin fukugo zairyo). 1993 nendo seika gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Efforts were made to develop technologies for C/C (carbon/carbon) composite materials and SiC fiber reinforced intermetallic compound composite materials. The efforts involved (1) creation of carbon based composite materials, (2) advanced composite materials, (3) fiber reinforced intermetallic compound composite materials, and (4) comprehensive research activities. In the research, coordination was established between the three technological fields, test standards common to the three were worked out, and relevant technologies were investigated. Studied for development under item (1) were coal pitch derived carbon fiber/carbon based matrix composite materials, PAN (polyacrylonitrile) based carbon fiber/carbon based matrix composite materials, and oxidation resistance enhancement technology. Studied for development under item (2) were oil pitch derived random structure carbon fiber, oil pitch derived onion structure carbon fiber, and oil pitch derived double structure carbon fiber/carbon based matrix composite materials. Studied for development under item (3) were SiC/SiMC (M=metal) silicon carbide based fibers and complexation of intermetallic compounds and the developed silicon carbide based fibers. (NEDO)

  14. Non-destructive study of new construction materials for advanced nuclear reactors

    International Nuclear Information System (INIS)

    Simeg Veternikova, J.; Slugen, V.; Sabelova, V.; Sojak, S.; Petriska, M.

    2013-01-01

    Microstructure of new construction steels for advanced reactor systems with different type of structure: oxide dispersion strengthened steel - ODS Eurofer (20% Cr), ferritic-martensitic steel Eurofer 97 and austenitic steel NF 709 were studied by positron annihilation lifetime spectroscopy. Samples were measured before and after helium ion implantation (He"+); therefore microstructure changes and radiation resistance to alpha particles of these steels were observed. Defect accumulation due to the radiation treatment was assumed in all investigated materials; therefore positron mean-lifetimes will increase up with notable change. The paper compares radiation damage of different type of structure and point out to the most radiation resistant structure/material from the investigated ones. (authors)

  15. 1980's - Payoff decade for advanced materials Proceedings of the Twenty-fifth National Symposium and Exhibition, San Diego, Calif., May 6-8, 1980

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The symposium focuses on recent developments in advanced structural materials and adhesive formulations, material characterization, processing techniques, design and fabrication of composite structures, testing methods, and applications. Papers are presented on the advanced composite hardware utilized on the Intelsat V spacecraft, the development of advanced structural materials for fusion power, an instrumented tensile impact method for composite materials, and prospects for bonding primary aircraft structures in the 80's

  16. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design

    Science.gov (United States)

    Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi

    2017-01-01

    Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964

  17. NATO Advanced Research Workshop on Electron Correlation in New Materials and Nanosystems

    CERN Document Server

    Scharnberg, Kurt

    2007-01-01

    The articles collected in this book cover a wide range of materials with extraordinary superconducting and magnetic properties. For many of the materials studied, strong electronic correlations provide a link between these two phenomena which were long thought to be highly antagonistic. Both the progress in our understanding of fundamental physical processes and the advances made towards the development of devices are reported here. The materials studied come in a variety of forms and shapes from bulk to epitaxial films, nano- and heterostructures down to those involving single molecules and double quantum dots. In some cases the structuring serves the study of bulk properties. More often it is the change of these properties with nanostructuring and the properties of different materials in close proximity with each other that are of key interest because of possible application of these materials or heterostructures to quantum computing and spintronics.

  18. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  19. Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials. Techniques and applications

    International Nuclear Information System (INIS)

    Qin Ling; Leung, Kwok Sui; Griffith, J.F.

    2007-01-01

    This book provides a perspective on the current status of bioimaging technologies developed to assess the quality of musculoskeletal tissue with an emphasis on bone and cartilage. It offers evaluations of scaffold biomaterials developed for enhancing the repair of musculoskeletal tissues. These bioimaging techniques include micro-CT, nano-CT, pQCT/QCT, MRI, and ultrasound, which provide not only 2-D and 3-D images of the related organs or tissues, but also quantifications of the relevant parameters. The advance bioimaging technologies developed for the above applications are also extended by incorporating imaging contrast-enhancement materials. Thus, this book will provide a unique platform for multidisciplinary collaborations in education and joint R and D among various professions, including biomedical engineering, biomaterials, and basic and clinical medicine. (orig.)

  20. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  1. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO and DOE OCRWM Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-01-01

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent

  2. Devices, materials, and processes for nano-electronics: characterization with advanced X-ray techniques using lab-based and synchrotron radiation sources

    International Nuclear Information System (INIS)

    Zschech, E.; Wyon, C.; Murray, C.E.; Schneider, G.

    2011-01-01

    Future nano-electronics manufacturing at extraordinary length scales, new device structures, and advanced materials will provide challenges to process development and engineering but also to process control and physical failure analysis. Advanced X-ray techniques, using lab systems and synchrotron radiation sources, will play a key role for the characterization of thin films, nano-structures, surfaces, and interfaces. The development of advanced X-ray techniques and tools will reduce risk and time for the introduction of new technologies. Eventually, time-to-market for new products will be reduced by the timely implementation of the best techniques for process development and process control. The development and use of advanced methods at synchrotron radiation sources will be increasingly important, particularly for research and development in the field of advanced processes and new materials but also for the development of new X-ray components and procedures. The application of advanced X-ray techniques, in-line, in out-of-fab analytical labs and at synchrotron radiation sources, for research, development, and manufacturing in the nano-electronics industry is reviewed. The focus of this paper is on the study of nano-scale device and on-chip interconnect materials, and materials for 3D IC integration as well. (authors)

  3. Advanced methodology for generation expansion planning including interconnected systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, M; Yokoyama, R; Yasuda, K [Tokyo Metropolitan Univ. (Japan); Sasaki, H [Hiroshima Univ. (Japan); Ogimoto, K [Electric Power Development Co. Ltd., Tokyo (Japan)

    1994-12-31

    This paper reviews advanced methodology for generation expansion planning including interconnected systems developed in Japan, putting focus on flexibility and efficiency in a practical application. First, criteria for evaluating flexibility of generation planning considering uncertainties are introduced. Secondly, the flexible generation mix problem is formulated as a multi-objective optimization with more than two objective functions. The multi-objective optimization problem is then transformed into a single objective problem by using the weighting method, to obtain the Pareto optimal solution, and solved by a dynamics programming technique. Thirdly, a new approach for electric generation expansion planning of interconnected systems is presented, based on the Benders Decomposition technique. That is, large scale generation problem constituted by the general economic load dispatch problem, and several sub problems which are composed of smaller scale isolated system generation expansion plans. Finally, the generation expansion plan solved by an artificial neural network is presented. In conclusion, the advantages and disadvantages of this method from the viewpoint of flexibility and applicability to practical generation expansion planning are presented. (author) 29 refs., 10 figs., 4 tabs.

  4. Recent advances in mass transport in materials

    CERN Document Server

    Ochsner, Andreas

    2012-01-01

    The present topical volume presents a representative cross-section of some recent advances made in the area of diffusion. The range of topics covered is very large, and, this reflects the enormous breadth of the topic of diffusion. The areas covered include diffusion in intermetallics, phenomenological diffusion theory, diffusional creep, kinetics of steel-making, diffusion in thin films, precipitation, diffusional phase transformations, atomistic diffusion simulations, epitaxial growth and diffusion in porous media. Review from Book News Inc.: In 13 invited and peer-reviewed papers, scientist

  5. TESTING OF GAS REACTOR MATERIALS AND FUEL IN THE ADVANCED TEST REACTOR

    International Nuclear Information System (INIS)

    Grover, S.B.

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  6. Testing of Gas Reactor Materials and Fuel in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2004-01-01

    The Advanced Test Reactor (ATR) has long been involved in testing gas reactor materials, and has developed facilities well suited for providing the right conditions and environment for gas reactor tests. This paper discusses the different types of irradiation hardware that have been utilized in past ATR irradiation tests of gas reactor materials. The new Gas Test Loop facility currently being developed for the ATR is discussed and the different approaches being considered in the design of the facility. The different options for an irradiation experiment such as active versus passive temperature control, neutron spectrum tailoring, and different types of lead experiment sweep gas monitors are also discussed. The paper is then concluded with examples of different past and present gas reactor material and fuel irradiations

  7. Scientific capabilities of the advanced light source for radioactive materials

    International Nuclear Information System (INIS)

    Shuh, D.K.

    2007-01-01

    The Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory (LBNL) is a third-generation synchrotron radiation light source and is a U.S. Department of Energy (DOE) national user facility. Currently, the ALS has approximately forty-five operational beamlines spanning a spectrum of scientific disciplines, and provides scientific opportunities for more than 2 000 users a year. Access to the resources of the ALS is through a competitive proposal mechanism within the general user program. Several ALS beamlines are currently being employed for a range of radioactive materials investigations. These experiments are reviewed individually relying on a graded hazard approach implemented by the ALS in conjunction with the LBNL Environmental, Health, and Safety (EH and S) Radiation Protection Program. The ALS provides radiological work authorization and radiological control technician support and assistance for accepted user experimental programs. LBNL has several radioactive laboratory facilities located near the ALS that provide support for ALS users performing experiments with radioactive materials. The capabilities of the ALS beamlines for investigating radioactive materials are given and examples of several past studies are summarised. (author)

  8. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  9. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  10. Green materials for sustainable development

    Science.gov (United States)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  11. Raw materials for advanced ceramics: rare earths separation processes

    International Nuclear Information System (INIS)

    Ricci, D.R.; Nobre, J.S.M.; Paschoal, J.O.A.

    1990-01-01

    The importance of obtaining purified rare earths oxidesis related, mainly to the increasing use of these compounds as raw materials for advanced ceramics. Processes of rare earths separation and purification are almost always based on the solvent extraction, fractional precipitation and ion exchange chromatography techniques, whose association depends on the initial concentrate and on the desired purity. This paper describes some steps of fractionation of didymium carbonate by using the solvent extraction and fractional precipitation techniques. The experimental conditions presented here have enable the production of lantanium, neodimium - praseodimium, samarium - gadolinium and ytrium concentrates, which constitute the intermediate fractions of the overall process to obtain high purity rare earths. (author) [pt

  12. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    Science.gov (United States)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  13. New materials

    International Nuclear Information System (INIS)

    Joshi, S.K.; Rao, C.N.R.; Tsuruta, T.

    1992-01-01

    The book contains the state-of-the art lectures delivered at the discussion meeting on new materials, a field in which rapid advances are taking place. The main objective of the meeting was to bring active scientists in this area from Japan and India together. The topics covered diverse aspects of modern materials including high temperature superconducting compounds. (M.G.B.)

  14. Cladding tube materials for advanced nuclear facilities with closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, I. [Slovenska technicka univerzita v Bratislave, Fakulta elektrotechniky a informatiky, Ustav jadroveho a fyzikalneho inzinierstva, 81219 Bratislava (Slovakia)

    2013-04-16

    The paper is aimed on perspective materials for fuel cladding in advanced nuclear reactors. Samples of Eurofer and ODS Eurofer were studied by various techniques such as Positron Annihilation Lifetime Spectroscopy, Vickers Hardness and Coincidence Doppler Broadening. After studying the samples by these methods, we implanted them by Helium atoms to simulate irradiation damage. Samples were then remeasured by Positron Annihilation Lifetime Spectroscopy to determine the affect of implantation on its behavior. (authors)

  15. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications.

    Science.gov (United States)

    Zhao, Qingxia; Mao, Qiming; Zhou, Yaoyu; Wei, Jianhong; Liu, Xiaocheng; Yang, Junying; Luo, Lin; Zhang, Jiachao; Chen, Hong; Chen, Hongbo; Tang, Lin

    2017-12-01

    In recent years, advanced oxidation processes (AOPs), especially sulfate radical based AOPs have been widely used in various fields of wastewater treatment due to their capability and adaptability in decontamination. Recently, metal-free carbon materials catalysts in sulfate radical production has been more and more concerned because these materials have been demonstrated to be promising alternatives to conventional metal-based catalysts, but the review of metal-free catalysts is rare. The present review outlines the current state of knowledge on the generation of sulfate radical using metal-free catalysts including carbon nanotubes, graphene, mesoporous carbon, activated carbon, activated carbon fiber, nanodiamond. The mechanism such as the radical pathway and non-radical pathway, and factors influencing of the activation of sulfate radical was also be revealed. Knowledge gaps and research needs have been identified, which include the perspectives on challenges related to metal-free catalyst, heterogeneous metal-free catalyst/persulfate systems and their potential in practical environmental remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Segmented fuel irradiation program: investigation on advanced materials

    International Nuclear Information System (INIS)

    Uchida, H.; Goto, K.; Sabate, R.; Abeta, S.; Baba, T.; Matias, E. de; Alonso, J.

    1999-01-01

    The Segmented Fuel Irradiation Program, started in 1991, is a collaboration between the Japanese organisations Nuclear Power Engineering Corporation (NUPEC), the Kansai Electric Power Co., Inc. (KEPCO) representing other Japanese utilities, and Mitsubishi Heavy Industries, Ltd. (MHI); and the Spanish Organisations Empresa Nacional de Electricidad, S.A. (ENDESA) representing A.N. Vandellos 2, and Empresa Nacional Uranio, S.A. (ENUSA); with the collaboration of Westinghouse. The objective of the Program is to make substantial contribution to the development of advanced cladding and fuel materials for better performance at high burn-up and under operational power transients. For this Program, segmented fuel rods were selected as the most appropriate vehicle to accomplish the aforementioned objective. Thus, a large number of fuel and cladding combinations are provided while minimising the total amount of new material, at the same time, facilitating an eventual irradiation extension in a test reactor. The Program consists of three major phases: phase I: design, licensing, fabrication and characterisation of the assemblies carrying the segmented rods (1991 - 1994); phase II: base irradiation of the assemblies at Vandellos 2 NPP, and on-site examination at the end of four cycles (1994-1999). Phase III: ramp testing at the Studsvik facilities and hot cell PIE (1996-2001). The main fuel design features whose effects on fuel behaviour are being analysed are: alloy composition (MDA and ZIRLO vs. Zircaloy-4); tubing texture; pellet grain size. The Program is progressing satisfactorily as planned. The base irradiation is completed in the first quarter of 1999, and so far, tests and inspections already carried out are providing useful information on the behaviour of the new materials. Also, the Program is delivering a well characterized fuel material, irradiated in a commercial reactor, which can be further used in other fuel behaviour experiments. The paper presents the main

  17. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  18. Estimating the occurrence of foreign material in Advanced Gas-cooled Reactors: A Bayesian Monte Carlo approach

    International Nuclear Information System (INIS)

    Mason, Paolo

    2014-01-01

    Highlights: • The amount of a specific type of foreign material found in UK AGRs has been estimated. • The estimate is based on very few instances of detection in numerous inspections. • A Bayesian Monte Carlo approach was used. • The study supports safety case claims on coolant flow impairment. • The methodology is applicable to any inspection campaign on any plant system. - Abstract: The current occurrence of a particular sort of foreign material in eight UK Advanced Gas-cooled Reactors has been estimated by means of a parametric approach. The study includes both variability, treated in analytic fashion via the combination of standard probability distributions, and the uncertainty in the parameters of the model of choice, whose posterior distribution was inferred in Bayesian fashion by means of a Monte Carlo route consisting in the conditional acceptance of sets of model parameters drawn from a prior distribution based on engineering judgement. The model underlying the present study specifically refers to the re-loading and inspection routines of UK Advanced Gas-cooled Reactors. The approach to inference here presented, however, is of general validity and can be applied to the outcome of any inspection campaign on any plant system, and indeed to any situation in which the outcome of a stochastic process is more easily simulated than described by a probability density or mass function

  19. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  20. FOREWORD: Focus on Advanced Ceramics Focus on Advanced Ceramics

    Science.gov (United States)

    Ohashi, Naoki

    2011-06-01

    Much research has been devoted recently to developing technologies for renewable energy and improving the efficiency of the processes and devices used in industry and everyday life. Efficient solutions have been found using novel materials such as platinum and palladium-based catalysts for car exhaust systems, samarium-cobalt and neodymium-iron-boron permanent magnets for electrical motors, and so on. However, their realization has resulted in an increasing demand for rare elements and in their deficit, the development of new materials based on more abundant elements and new functionalities of traditional materials. Moreover, increasing environmental and health concerns demand substitution of toxic or hazardous substances with nature-friendly alternatives. In this context, this focus issue on advanced ceramics aims to review current trends in ceramics science and technology. It is related to the International Conference on Science and Technology of Advanced Ceramics (STAC) held annually to discuss the emerging issues in the field of ceramics. An important direction of ceramic science is the collaboration between experimental and theoretical sciences. Recent developments in density functional theory and computer technology have enabled the prediction of physical and chemical properties of ceramics, thereby assisting the design of new materials. Therefore, this focus issue includes articles devoted to theory and advanced characterization techniques. As mentioned above, the potential shortage of rare elements is becoming critical to the industry and has resulted in a Japanese government initiative called the 'Ubiquitous Element Strategy'. This focus issue also includes articles related to this strategy and to the associated topics of energy conversion, such as phosphors for high-efficiency lighting and photocatalysts for solar-energy harvesting. We hope that this focus issue will provide a timely overview of current trends and problems in ceramics science and

  1. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, A A [Materials Division, Nuclear Research Centre, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B{sub 4} C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs.

  2. Advances in nuclear fuel cycle materials and concepts. Vol. 1

    International Nuclear Information System (INIS)

    El-Sayed, A.A.

    1996-01-01

    This presentation gives an overview of the new trends in the materials used in various steps of the nuclear fuel cycle. This will cover fuels for various types of reactors (PWRs, HTRs, ... etc.) cladding materials, control rod materials, reactor structural materials, as well as materials used in the back end of the fuel cycle. Problems associated with corrosion of fuel cladding materials as well as those in control rod materials (B 4 C swelling...etc.), and approaches for combating these influences are reviewed. For the case of reactor pressure vessel materials issues related to the influences of alloy composition, design approaches including the use of more forged parts and minimizing, as for as possible, longitudinal welds especially in the central region, are discussed. Furthermore the application of techniques for recovery of pre-irradiation mechanical properties of PVS components is also covered. New candidate materials for the construction of high level waste containers including modified types of stainless steel (high Ni and high MO), nickel-base alloys and titanium alloys are also detailed. Finally, nuclear fuel cycle concepts involving plutonium and actinides recycling shall be reviewed. 28 figs., 6 tabs

  3. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    International Nuclear Information System (INIS)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-01-01

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with

  4. Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement.

    Science.gov (United States)

    Shatkin, J A; Ong, Kimberly J; Beaudrie, Christian; Clippinger, Amy J; Hendren, Christine Ogilvie; Haber, Lynne T; Hill, Myriam; Holden, Patricia; Kennedy, Alan J; Kim, Baram; MacDonell, Margaret; Powers, Christina M; Sharma, Monita; Sheremeta, Lorraine; Stone, Vicki; Sultan, Yasir; Turley, Audrey; White, Ronald H

    2016-08-01

    The Society for Risk Analysis (SRA) has a history of bringing thought leadership to topics of emerging risk. In September 2014, the SRA Emerging Nanoscale Materials Specialty Group convened an international workshop to examine the use of alternative testing strategies (ATS) for manufactured nanomaterials (NM) from a risk analysis perspective. Experts in NM environmental health and safety, human health, ecotoxicology, regulatory compliance, risk analysis, and ATS evaluated and discussed the state of the science for in vitro and other alternatives to traditional toxicology testing for NM. Based on this review, experts recommended immediate and near-term actions that would advance ATS use in NM risk assessment. Three focal areas-human health, ecological health, and exposure considerations-shaped deliberations about information needs, priorities, and the next steps required to increase confidence in and use of ATS in NM risk assessment. The deliberations revealed that ATS are now being used for screening, and that, in the near term, ATS could be developed for use in read-across or categorization decision making within certain regulatory frameworks. Participants recognized that leadership is required from within the scientific community to address basic challenges, including standardizing materials, protocols, techniques and reporting, and designing experiments relevant to real-world conditions, as well as coordination and sharing of large-scale collaborations and data. Experts agreed that it will be critical to include experimental parameters that can support the development of adverse outcome pathways. Numerous other insightful ideas for investment in ATS emerged throughout the discussions and are further highlighted in this article. © 2016 Society for Risk Analysis.

  5. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  6. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  7. Dual energy x-ray microtomography for development and inspection of advanced aerospace materials

    International Nuclear Information System (INIS)

    Alvarez, R.E.; Cao, Q.

    1990-01-01

    A key step in development of advanced composite materials is to characterize their internal structure and composition in a quantitative manner. In this paper, the authors describe a technique and an instrument that allows the measurements of the interior volume of the material. It has several key advantages over conventional computed tomography. The technique quantitatively measures the mass density and effective atomic number throughout the volume. Further, these measurements are made with microscopic (20 micrometer or better) spatial resolution. The technique is based on ARACOR's Tomoscope computed tomography instrument and on dual energy computed tomography. The authors describe the theory of the technique and show experimental measurements of metal matrix composite materials

  8. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  9. Multidisciplinary treatment including chemoradiotherapy for advanced esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Fukuda, Kazuhiro; Kikkawa, Nobuteru; Kobayashi, Tetsurou; Yagyu, Toshio; Hasuike, Yasunori; Mishima, Hideyuki; Shin, Eisei [Osaka National Hospital (Japan)

    1997-03-01

    Over 3 years, concurrent chemoradiotherapy was performed in 16 patients with advanced esophageal cancer (clinical Stage IV) and suspected noncurative resection. The subjects were {>=}A3 or N3, or were stage IV with distant metastasis on preoperative diagnosis. Two courses of 5FU and CDDP were given with concurrent radiotherapy. The predominant side effects were nausea, vomiting and anorexia. Mild or moderate leukopenia also occurred. The response was complete remission (CR) in two patients, partial remission (PR) in eight, minor response (MR) in two, no change (NC) in two and progressive disease (PD) in two. The overall response rate was 62.5%. Esophagectomy was performed in four patients (histological stage II in one, stage III in one, and stage IV in two). Two of 4 resected patients are alive (33.8 months), while the other died of unrelated causes. One of the 6 non-resected PR patients has survived for 18 months, but all other patients died of cancer within nine months of starting treatment. The survival rate of 16 patients undergoing chemoradiotherapy was 16.7% at one and two years. Thus, chemoradiotherapy may improve the prognosis of advanced esophageal cancer with suspected noncurative resection by increasing the response rate and the curative resection rate. (author)

  10. Active Learning through Materials Development: A Project for the Advanced L2 Classroom

    Directory of Open Access Journals (Sweden)

    Katrina Daly Thompson

    2008-01-01

    Full Text Available Building on the notion of active learning, the assumption that students learn more when given opportunities to practice using their skills and to receive feedback on their performance, this article de-scribes a project undertaken in an Advanced (third-year Swahili course in which students were given the opportunity to develop L2 materials for computer-mediated peer instruction. The article exam-ines the goals, design and results of the project in light of the litera-ture on active learning and learner autonomy, and suggests how the project might be improved in order to serve as a model for other Ad-vanced L2 courses.

  11. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  12. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  13. Superconducting magnets advanced in particle physics

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2000-01-01

    Superconducting magnet technology for particle detectors has been advanced to provide large-scale magnetic fields in particle physics experiments. The technology has been progressed to meet physics goals and the detector requirement of having maximum magnetic field with minimum material and space. This paper includes an overview of the advances of particle detector magnets and discusses key technologies

  14. Survey of advanced composite material technology; Senshin fukugo zairyo gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Results of functions and examples are investigated and described for more than 190 fiber reinforced composite materials. There should be a new viewpoint for even the same material when changing the point to observe it, and new industries will be expected if the viewpoint is adequate. This report has proposed a new concept of `composite functions.` The development works based on non-strength functions which will differentiate the other materials have been stressed. After describing the brief history of the advanced composite materials and significance of composite functions, the present situations and future possibilities of such functions as heat resistance, electricity-electromagnetism, chemicals-proof, adsorption, vibration-proof and resistance, tribology, erosion, sound, adaptability to living bodies and etc. have been examined based on the practical examples. As the future important subjects, adapting possibility of materials having composite functions to marine structures, and possibility of water cleaning system are described. 59 refs., 4 figs., 10 tabs.

  15. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  16. Review of the IAEA nuclear fuel cycle and material section activities connected with nuclear fuel including WWER fuel

    International Nuclear Information System (INIS)

    Sokolov, F.

    2001-01-01

    Program activities on Nuclear Fuel Cycle and Materials cover the areas of: 1) raw materials (B.1.01); 2) fuel performance and technology (B.1.02); 3) pent fuel (B.1.03); 4) fuel cycle issues and information system (B.1.04); 5) support to technical cooperation activities (B.1.05). The IAEA activities in fuel performance and technology in 2001 include organization of the fuel experts meetings and completion of the Co-ordinate Research Projects (CRP). The special attention is given to the advanced post-irradiation examination techniques for water reactor fuel and fuel behavior under transients and LOCA conditions. An international research program on modeling of activity transfer in primary circuit of NPP is finalized in 2001. A new CRP on fuel modeling at extended burnup (FUMEX II) has planed to be carried out during the period 2002-2006. In the area of spent fuel management the implementation of burnup credit (BUC) in spent fuel management systems has motivated to be used in criticality safety applications, based on economic consideration. An overview of spent fuel storage policy accounting new fuel features as higher enrichment and final burnup, usage of MOX fuel and prolongation of the term of spent fuel storage is also given

  17. Surviving the space environment - An overview of advanced materials and structures development at the CWRU CCDS

    Science.gov (United States)

    Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.

    1991-01-01

    The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.

  18. Applications of advanced electron microscopy techniques to the studies of radiation effects in ceramic materials

    International Nuclear Information System (INIS)

    Wang, L.M.

    1998-01-01

    This paper summarizes some recent results from the application of several advanced transmission electron microscopy (TEM) techniques to the studies of radiation effects in insulators with the main focus on radiation-induced amorphization. These techniques include in situ TEM during ion-beam irradiation at cryogenic and elevated temperatures, cross-sectional TEM, high-resolution TEM, and image simulation on partially damaged materials, as well as digital TEM with image processing and analysis. The combination of these techniques may often provide very detailed information about the microstructure evolution during energetic particle irradiation, especially at the early stages, which is unobtainable with any other analytical methods. These techniques have been successfully applied to the analysis of a large group of ion-beam-irradiated ceramics, including quartz, silicon carbides, uranium oxide, apatite, spinel and other complex mineral phases. The advantages and limitations of each technique, as well as some important technical details for the analysis of radiation damage in ceramics are presented. (orig.)

  19. Advanced Industrial Materials Program. Annual progress report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Stooksbury, F. [comp.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  20. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications.

    Science.gov (United States)

    Liu, Xiaofeng; Qiu, Jianrong

    2015-12-07

    Transfer of energy occurs endlessly in our universe by means of radiation. Compared to energy transfer (ET) in free space, in solid state materials the transfer of energy occurs in a rather confined manner, which is usually mediated by real or virtual particles, including not only photons, but also electrons, phonons, and excitons. In the present review, we discuss the recent advances in optical ET by resonance mediated with photons in solid materials as well as their nanoscale counterparts, with focus on the photoluminescence behavior pertaining to ET between optically active centers, such as rare earth (RE) ions. This review begins with a brief discussion on the classification of optical ET together with an overview of the theoretical formulations and experimental method for the examination of ET. We will then present a comprehensive discussion on the ET in practical systems in which normal photoluminescence, upconversion and quantum cutting resulted from ET involving metal ions, QDs, organic species, 2D materials and plasmonic nanostructures. Diverse ET systems are therefore simply categorized into cases of ion-ion interactions and non-ion interactions. Special attention has been paid to the progress in the manipulation of spatially confined ET in nanostructured systems including core-shell structures, as well as the ET in multiple exciton generation found in QDs and organic molecules, which behave quite similarly to resonance ET between metal ion centers. Afterwards, we will discuss the broad spectrum of applications of ET in the aforementioned systems, including solid state lighting, solar energy utilization, bio-imaging and diagnosis, and sensing. In the closing part, along with a short summary, we discuss further research focus regarding the problems and possible future directions of optical ET in solids.

  1. Recent advancements in the cobalt oxides, manganese oxides and their composite as an electrode material for supercapacitor: a review

    Science.gov (United States)

    Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.

    2017-08-01

    In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.

  2. Innovations in Advanced Materials and Metals Manufacturing Project (IAM2)

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Elizabeth [Columbia River Economic Development Council, Vancouver, WA (United States)

    2017-01-06

    This project, under the Jobs and Innovation Accelerator Challenge, Innovations in Advanced Materials and Metals Manufacturing Project, contracted with Cascade Energy to provide a shared energy project manager engineer to work with five different companies throughout the Portland metro grant region to implement ten energy efficiency projects and develop a case study to analyze the project model. As a part of the project, the energy project manager also looked into specific new technologies and methodologies that could change the way energy is consumed by manufacturers—from game-changing equipment and technology to monitor energy use to methodologies that change the way companies interact and use their machines to reduce energy consumption.

  3. New materials in defence

    International Nuclear Information System (INIS)

    Khan, Sikandar S.; Khan, Shahid A.; Butt, N.M.

    1992-01-01

    National defence is very important and always needs new such materials which have technological and socio-economic development of human society. The types of materials used by a society reflect its level of sophistication. These modern materials are basically the same conventional materials but with a greater knowledge content which include superalloys, modern polymers, engineering ceramics and the advanced composite. The production and use of new materials is playing and important role in the recent development in the defence industry. (A.B.)

  4. Recent Advances in Analytical Pyrolysis to Investigate Organic Materials in Heritage Science.

    Science.gov (United States)

    Degano, Ilaria; Modugno, Francesca; Bonaduce, Ilaria; Ribechini, Erika; Colombini, Maria Perla

    2018-06-18

    The molecular characterization of organic materials in samples from artworks and historical objects traditionally entailed qualitative and quantitative analyses by HPLC and GC. Today innovative approaches based on analytical pyrolysis enable samples to be analysed without any chemical pre-treatment. Pyrolysis, which is often considered as a screening technique, shows previously unexplored potential thanks to recent instrumental developments. Organic materials that are macromolecular in nature, or undergo polymerization upon curing and ageing can now be better investigated. Most constituents of paint layers and archaeological organic substances contain major insoluble and chemically non-hydrolysable fractions that are inaccessible to GC or HPLC. To date, molecular scientific investigations of the organic constituents of artworks and historical objects have mostly focused on the minor constituents of the sample. This review presents recent advances in the qualitative and semi-quantitative analyses of organic materials in heritage objects based on analytical pyrolysis coupled with mass spectrometry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  6. Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-13

    The supercritical carbon-dioxide (referred to as SC-CO2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO2 direct cycle gas fast reactor has also been recently proposed. The SC-CO2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO2 densities, and allows for smaller components size, fewer components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO2 environment is the possibility

  7. An analysis of the development and application of plant protection UAV based on advanced materials

    Science.gov (United States)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  8. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  9. Advanced Materials for Automotive Application

    International Nuclear Information System (INIS)

    Tisza, M

    2013-01-01

    In this paper some recent material developments will be overviewed mainly from the point of view of automotive industry. In car industry, metal forming is one of the most important manufacturing processes imposing severe restrictions on materials; these are often contradictory requirements, e.g. high strength simultaneously with good formability, etc. Due to these challenges and the ever increasing demand new material classes have been developed; however, the more and more wide application of high strength materials meeting the requirements stated by the mass reduction lead to increasing difficulties concerning the formability which requires significant technological developments as well. In this paper, the recent materials developments will be overviewed from the point of view of the automotive industry

  10. Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries

    Science.gov (United States)

    Zhu, Xiaobo; Lin, Tongen; Manning, Eric; Zhang, Yuancheng; Yu, Mengmeng; Zuo, Bin; Wang, Lianzhou

    2018-06-01

    The ever-growing market of electrochemical energy storage impels the advances on cost-effective and environmentally friendly battery chemistries. Lithium-ion batteries (LIBs) are currently the most critical energy storage devices for a variety of applications, while sodium-ion batteries (SIBs) are expected to complement LIBs in large-scale applications. In respect to their constituent components, the cathode part is the most significant sector regarding weight fraction and cost. Therefore, the development of cathode materials based on Earth's abundant elements (Fe and Mn) largely determines the prospects of the batteries. Herein, we offer a comprehensive review of the up-to-date advances on Fe- and Mn-based cathode materials for LIBs and SIBs, highlighting some promising candidates, such as Li- and Mn-rich layered oxides, LiNi0.5Mn1.5O4, LiFe1-xMnxPO4, NaxFeyMn1-yO2, Na4MnFe2(PO4)(P2O7), and Prussian blue analogs. Also, challenges and prospects are discussed to direct the possible development of cost-effective and high-performance cathode materials for future rechargeable batteries.

  11. ESR study of advanced materials with new parameters frequency and pressure

    CERN Document Server

    Mizoguchi, K

    2000-01-01

    It is well known that electron spin resonance (ESR) is a useful technique to investigate the magnetic properties of electrons in condensed matter. The frequency, as an additional parameter to the temperature, gives us the possibility to study the anisotropic dynamics of charge carriers with spin, even in polycrystalline materials. Furthermore, the pressure provides us a way to discuss how interactions between the electrons and their environments are responsible for the novel physical properties in these advanced materials, such as ferromagnetisms, charge-density waves, superconductivity, and so on. Results obtained by using ESR with these parameters are overviewed. Studies as a function of the frequency are demonstrated, especially for the conductive polymers, polyacetylene, polyaniline, and polypyrrole with various dopants for which single crystals are not available yet. Alkali-electro-sodalite (AES), a kind of zeolite with a regular electron lattice known as an s-electron Mott insulator, and fullerene compo...

  12. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    International Nuclear Information System (INIS)

    2010-01-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working_materials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation synthesize

  13. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira

    2001-01-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  14. Glycopolymeric Materials for Advanced Applications

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz-Bonilla

    2015-04-01

    Full Text Available In recent years, glycopolymers have particularly revolutionized the world of macromolecular chemistry and materials in general. Nevertheless, it has been in this century when scientists realize that these materials present great versatility in biosensing, biorecognition, and biomedicine among other areas. This article highlights most relevant glycopolymeric materials, considering that they are only a small example of the research done in this emerging field. The examples described here are selected on the base of novelty, innovation and implementation of glycopolymeric materials. In addition, the future perspectives of this topic will be commented on.

  15. Experimental and computing strategies in advanced material characterization problems

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, G. [Department of Civil and Environmental Engineering, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy gabriella.bolzon@polimi.it (Italy)

    2015-10-28

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities.

  16. Experimental and computing strategies in advanced material characterization problems

    International Nuclear Information System (INIS)

    Bolzon, G.

    2015-01-01

    The mechanical characterization of materials relies more and more often on sophisticated experimental methods that permit to acquire a large amount of data and, contemporarily, to reduce the invasiveness of the tests. This evolution accompanies the growing demand of non-destructive diagnostic tools that assess the safety level of components in use in structures and infrastructures, for instance in the strategic energy sector. Advanced material systems and properties that are not amenable to traditional techniques, for instance thin layered structures and their adhesion on the relevant substrates, can be also characterized by means of combined experimental-numerical tools elaborating data acquired by full-field measurement techniques. In this context, parameter identification procedures involve the repeated simulation of the laboratory or in situ tests by sophisticated and usually expensive non-linear analyses while, in some situation, reliable and accurate results would be required in real time. The effectiveness and the filtering capabilities of reduced models based on decomposition and interpolation techniques can be profitably used to meet these conflicting requirements. This communication intends to summarize some results recently achieved in this field by the author and her co-workers. The aim is to foster further interaction between engineering and mathematical communities

  17. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  18. Durability Issues and Challenges for Material Advancements in FRP Employed in the Construction Industry

    Directory of Open Access Journals (Sweden)

    Mariaenrica Frigione

    2018-02-01

    Full Text Available The use of fiber reinforced polymer (FRP composites for the rehabilitation of buildings or other infrastructure is increasingly becoming an effective and popular solution, being able to overcome some of the drawbacks experienced with traditional interventions and/or traditional materials. The knowledge of long-term performance and of durability behavior of FRP, in terms of their degradation/aging causes and mechanisms taking place in common as well as in harsh environmental conditions, still represents a critical issue for a safe and advantageous implementation of such advanced materials. The research of new and better performing materials in such fields is somewhat limited by practical and economical constrains and, as a matter of fact, is confined to an academic argument.

  19. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  20. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    Science.gov (United States)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  1. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A. (comp.)

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  2. Reduction of Ambient Radon Activity by the use of Advanced Building Materials at King Saud University, Saudi Arabia

    International Nuclear Information System (INIS)

    Diab, H.M.; Abd-El Hafeez, A.I.

    2011-01-01

    The spatial variation of radon concentration within the building of the preparatory year located in Riyadh was studied. Nuclear track detectors (CR-39) were used to measure radon concentration for two consecutive six month periods in more than 40 rooms of the surveyed building. Coefficient of variation (CV) was calculated as a measure of relative variation of radon concentration between floors and between rooms on the same floor. Floor mean ratios, with ground floor as a reference level, were calculated also in order to study the correlation between radon concentration and floor levels in case of using advanced Italian granite building material. All the results of this study were investigated and compared with usual Indian granite building material and it was found that the k nowledgement building i s a healthy work place which may be due to uses of advanced building materials.

  3. Material System Engineering for Advanced Electrocaloric Cooling Technology

    Science.gov (United States)

    Qian, Xiaoshi

    Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor

  4. Recent advances in the instrumental techniques for the analysis of modern materials (II)

    International Nuclear Information System (INIS)

    Ahmed, M.

    1990-01-01

    Inductively Coupled Plasma Mass Spectrometry ICP-MS a logical development of equally established sister technique of ICP-AEA discussed in part-1 of this series of article on modern analytical techniques. The rapid adaptation of argon plasma as ion source for time of flight quadrupole mass analyser has led to the development of truly integrated instrumental technique for analysis of solutions and slurries. The powerful combination with laser ablation device has made the direct analysis of geological, geochemical and other complex conducting and non conducting samples possible in days rather months at sub ppm levels. Parallel development in computer hardware and software has made the instrumental optimization easy enabling the generation of meaningful analytical data a matter of routine. The limitations imposed by spectroscopic and non restricted the variety of matrices and materials covered by ICP-MS of LA-ICP-MS. The technique has provided it formidable analytical power in wide areas of industrial environmental, social, biological and break through advanced materials used in space mass communication, transportation and general areas of advanced analytical chemistry. It is expected that in combination with other instrumental methods as HPLC, ETC, ion chromatography. ICP-MS shall continue to dominate well into the 21st century. (author)

  5. Sustainable Materials Management (SMM) - Materials and Waste Management in the United States Key Facts and Figures

    Data.gov (United States)

    U.S. Environmental Protection Agency — Each year EPA produces a report called Advancing Sustainable Materials Management: Facts and Figures. It includes information on municipal solid waste (MSW)...

  6. Research Staff | Advanced Manufacturing Research | NREL

    Science.gov (United States)

    manages wind turbine rotor blade composite manufacturing projects at the National Wind Technology Center postdoctoral researcher working to develop and validate advanced composite manufacturing processes using novel materials for wind and marine and hydrokinetic (MHK) turbines. This includes hands-on composite

  7. High burnup performance of an advanced oxide fuel assembly in FFTF [Fast Flux Test Facility] with ferritic/martensitic materials

    International Nuclear Information System (INIS)

    Bridges, A.E.; Saito, G.H.; Lovell, A.J.; Makenas, B.J.

    1986-05-01

    An advanced oxide fuel assembly with ferritic/martensitic materials has successfully completed its sixth cycle of irradiation in the FFTF, reaching a peak pellet burnup greater than 100 MWd/KgM and a peak fast fluence greater than 15 x 10 22 n/cm 2 . The cladding, wire-wrap, and duct material for the ACO-1 test assembly is the ferritic/martensitic alloy, HT9, which was chosen for use in long-lifetime fuel assemblies because of its good nominal temperature creep strength and low swelling rate. Valuable experience on the performance of HT9 materials has been gained from this test, advancing our quest for long-lifetime fuel. Pertinent data, obtained from the ACO-1 test assembly, will support the irradiation of the Core Demonstration Experiment in FFTF

  8. Materials R&D-student internships

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.B.; Jiles, D.C.; Chumbley, L.S. [Iowa State Univ., Ames, IA (United States)

    1995-05-01

    This program has as an objective the conduct of programmatic research for the Advanced Industrial Concepts Materials Program while training minority graduate students in the process. Well-known demographics indicate that minorities will constitute an increasing fraction of our future work force. Consequently, efforts have been initiated to increase the fraction of minorities and women who choose technical career paths. Included are a wide ranging set of programs beginning with pre-school education, progressing through efforts to retain students in technical paths in grades K-12 and undergraduate education, and ending with encouraging graduate education. The Materials R & D - Student Internships is a unique approach in the latter category. Here, we have focused on a particular area of applied materials research, the Advanced Industrial Concepts Materials Program. Our goal, then, is to educate minority graduate students in the context of this program. The Ames Laboratory was selected as a site for this pilot project since it is a DOE national laboratory, located on the campus of a major research university, which includes in its research interests programs with a strong technological flavor.

  9. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  10. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  11. Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Steve

    2013-09-11

    Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

  12. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cole, N.C.; Judkins, R.R. [comps.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  13. Recent advances in the molten salt technology for the destruction of energetic materials

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.

    1995-11-01

    The DOE has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The authors have demonstrated the Molten Salt Destruction (MSD) Process for the treatment of explosives and explosive-containing wastes on a 1.5 kilogram of explosive per hour scale and are currently building a 5 kilogram per hour unit. MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen and water. Any inorganic constituents of the waste, such as binders and metallic particles, are retained in the molten salt. The destruction of energetic material waste is accomplished by introducing it, together with air, into a crucible containing a molten salt, in this case a eutectic mixture of Na, K, and Li carbonates. The following pure component DOE and DoD explosives have been destroyed in LLNL's experimental unit at their High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K-6, NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following formulations were also destroyed: Comp B, LX-10, LX-16, LX-17, PBX-9404, and XM46, a US Army liquid gun propellant. In this 1.5 kg/hr unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NOx were found to be well below 1T. In addition to destroying explosive powders and molding powders the authors have also destroyed materials that are typical of real world wastes. These include shavings from machined pressed parts of plastic bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the information obtained on the smaller unit, the authors have constructed a 5 kg/hr MSD unit, incorporating LLNL's advanced chimney design. This unit is currently under shakedown tests and evaluation

  14. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  15. Report of the 2nd RCM on nanoscale radiation engineering of advanced materials for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    There are critical needs for advanced materials in the area of biomaterial engineering, primarily in generating biomaterials of enhanced specific functionalities, improved biocompatibility, and minimal natural rejection but with enhanced interfacial adhesion. These can be achieved by introduction of proper functionalities at the nanoscale dimensions for which, due to their characteristics, radiation techniques are uniquely suited. Accordingly, many of the IAEA Member States (MS) have interest in creating advanced materials for various health-care applications using a wide array of radiation sources and their broad expertise. In seeking new knowledge to advance the field and tackle this specific problem, to collaborate to enhance the quality of the scientific research and improve their efficiency and effectiveness, MS had requested the support of the IAEA for such collaboration. Based on these requests, and the conclusions and recommendations of the Consultant's meeting on Advanced Materials on the Nano-scale Synthesized by Radiation-Induced Processes, held on 10-14 December 2007, the present CRP was formulated and started in 2009. The first RCM was held in 30 March – 3 April 2009, in Vienna, where the work plan for both individual participants and collaborations were discussed and accepted, as reported in the Meeting Report published as IAEA Working Material (http://www-naweb.iaea.org/napc/iachem/working{sub m}aterials.html). The second RCM was held on 15-19 November 2010, Paris, France, and was attended by 17 participants (chief scientific investigators or team members) and one cost-free observer from Brazil. The participants presented their research achievements since the first RCM, centred on the main expected outputs of this CRP: a. Methodologies to prepare and characterize nanogels; nanoparticles and nanoporous membranes, as well as to synthesize and modify nanoparticle surfaces by attaching organic ligands by radiation; b. Methodologies to radiation

  16. Experience in nuclear materials accountancy, including the use of computers, in the UKAEA

    International Nuclear Information System (INIS)

    Anderson, A.R.; Adamson, A.S.; Good, P.T.; Terrey, D.R.

    1976-01-01

    The UKAEA have operated systems of nuclear materials accountancy in research and development establishments handling large quantities of material for over 20 years. In the course of that time changing requirements for nuclear materials control and increasing quantities of materials have required that accountancy systems be modified and altered to improve either the fundamental system or manpower utilization. The same accountancy principles are applied throughout the Authority but procedures at the different establishments vary according to the nature of their specific requirements; there is much in the cumulative experience of the UKAEA which could prove of value to other organizations concerned with nuclear materials accountancy or safeguards. This paper reviews the present accountancy system in the UKAEA and summarizes its advantages. Details are given of specific experience and solutions which have been found to overcome difficulties or to strengthen previous weak points. Areas discussed include the use of measurements, the establishment of measurement points (which is relevant to the designation of MBAs), the importance of regular physical stock-taking, and the benefits stemming from the existence of a separate accountancy section independent of operational management at large establishments. Some experience of a dual system of accountancy and criticality control is reported, and the present status of computerization of nuclear material accounts is summarized. Important aspects of the relationship between management systems of accountancy and safeguards' requirements are discussed briefly. (author)

  17. Development of advanced coatings for laser modifications through process and materials simulation

    International Nuclear Information System (INIS)

    Martukanitz, R.P.; Babu, S.S.

    2004-01-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit

  18. Development of advanced materials and devices for nuclear radiation measurements

    International Nuclear Information System (INIS)

    Gadkari, S.C.

    2015-01-01

    Single crystals of technologically important materials are grown in the Crystal Technology Section of the Technical Physics Division, BARC. These crystals find applications as scintillators and dosimeters in nuclear radiation detection/measurements. Scintillator crystals of some advanced materials like cerium doped Gd 3 Ga 3 Al 2 O 12 , Lu 2 SiO 5 , YAIO 3 etc and some conventional materials such as Bi 4 Ge 3 O 12 , CsI:Tl, NaI:Tl, etc have been grown from melts using the Czochralski and Bridgman techniques. Portable gamma-ray spectrometers that work from a USB port of a laptop have been developed using the grown scintillator crystals. In recent years there has been a flurry of research activities on materials containing Li 6 , B 10 , etc that have large capture cross-sections for neutrons to develop solid state detectors for neutrons. For this purpose single crystals of cerium doped Li 6 Y(BO 3 ) 3 and silver doped Li 2 B 4 O 7 have been developed. Optical, thermo-luminescence, photo-luminescence and scintillation properties of these crystals have been investigated with a view to develop detectors and dosimeters. The Li 2 B 4 O 7 :Ag is a tissue equivalent material (Z eff = 7.3 close to 7.4 of tissue) useful in the personal and medical dosimetry applications. As the emission of Ag + lies in the UV region (267 nm), a customized TL measurement set-up has been developed using a solar blind PMT that enabled the measurement of very low doses below 5 μGy and linearity up to 100 Gy. Films of CsI:TI in the 10 nm to 3 μm thickness range were deposited on silicon substrates using the physical vapor deposition technique under vacuum conditions. The deposited films investigated using SEM and AFM revealed a columnar growth behavior with a preferential orientation along <200>. The growth of single crystals from melts, recent efforts in the development of detectors and results of experiments conducted to detect thermal neutrons are described. (author)

  19. 78 FR 50135 - CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order...

    Science.gov (United States)

    2013-08-16

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] CNC Development, Ltd., Exousia Advanced Materials, Inc., and South American Minerals, Inc.; Order of Suspension of Trading August 14, 2013. It... securities of South American Minerals, Inc. because it has not filed any periodic reports since it filed a...

  20. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  1. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  2. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    Science.gov (United States)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β″-Al 2O 3 solid electrolyte at elevated temperatures (typically 300-350 °C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

  3. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

    2010-01-01

    The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a β''-Al 2 O 3 solid electrolyte at elevated temperatures (typically 300-350 C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However, there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement. (author)

  4. Advancements in Particle Analysis Procedures and their Application to the Characterization of Reference Materials for Safeguards

    International Nuclear Information System (INIS)

    Admon, U.; Chinea-Cano, E.; Dzigal, N.; Vogt, K.S.; Halevy, I.; Boblil, E.; Elkayam, T.; Weiss, A.

    2015-01-01

    Two approaches may be employed in the preparation of Reference Materials (RMs) for use in micro analytical techniques: placement of characterized micro artefacts in bulk materials and characterization of certain classes of individual particles in existing materials. In November 2013, a collaborative project was launched with the aim of adding information about such individual particles in existing RMs. The motivation behind this project was to investigate and characterize micro-artefacts present in certain commercially available RM, making them available and fit for use in safeguards and several other nuclear applications. The implementation and development of new techniques for particle characterization in bulk materials are also part of this project. The strategy for that approach includes the following steps: 1. Sample preparation: Dispersion of particles on stubs and planchets by an in-house shock-wave device. 2. Particle-of-Interest identification and characterization: (a) Fission Track (FT) route: Mosaic imaging of detectors containing FT stars; Applying automatic pattern recognition and localization of FT stars in detectors; Using Laser Micro-Dissection (LMD) for retrieval of individual particles; Preparation of sampled particles for SEM observation and other analytical techniques. (b) Alpha Track (αT) route: Direct particle identification and localization using position sensitive detectors (instrumental auto-radiography). (c) The advanced SEM route: Integration of analytical SEM techniques for characterization of individual particles of interest: EDS, mass spectrometry, FIB, micro-Raman. Preliminary results of the ongoing efforts will be reported. Utilization of these hyphenated techniques and instruments represents an innovative approach to particle characterization for Safeguards applications. (author)

  5. Joint EC-IAEA topical meeting on development of new structural materials for advanced fission and fusion reactor systems. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The key topics of the meeting are the following: Radiation damage phenomena and modelling of material properties under irradiation; On-going challenges in radiation materials science; Key material parameters and operational conditions of selected reactor designs; Microstructures and mechanical properties of nuclear structural materials; Pathways to development of new structural materials; Qualification of new structural materials; Advanced microstructure probing methods; Special emphasis is given to the application of nuclear techniques in the development and qualification of new structural materials.

  6. Utilization technique for advanced nuclear materials database system Data-Free-Way'

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Kurihara, Yutaka; Kinugawa, Junichi; Kitajima, Masahiro; Nagakawa, Josei; Yamamoto, Norikazu; Noda, Tetsuji; Yagi, Koichi; Ono, Akira [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    2001-02-01

    Four organizations the National Research Institute for Metals (NRIM), the Japan Atomic Energy Research Institute (JAERI), the Japan Nuclear Fuel Cycle Development Institute (JNC) and Japan Science and Technology Incorporation (JST), conducted the 2nd period joint research for the purpose of development of utilization techniques for advanced nuclear materials database system named 'Data-Free-Way' (DFW), to make more useful system to support research and development of the nuclear materials, from FY 1995 to FY 1999. NRIM intended to fill a data system on diffusion and nuclear data by developing utilization technique on diffusion informations of steels and aluminum and nuclear data for materials for its independent system together with participating in fulfil of the DFW. And, NRIM has entered to a project on wide area band circuit application agreed at the G7 by using technologies cultivated by NRIM, to investigate network application technology with the Michigan State University over the sea under cooperation assistant business of JST, to make results on CCT diagram for welding and forecasting of welding heat history accumulated at NRIM for a long term, to perform development of a simulator assisting optimum condition decision of welding. (G.K.)

  7. General program for the advancement of the radionuclide technology

    International Nuclear Information System (INIS)

    1979-12-01

    The 'General Program for the Advancement of the Radionuclide Technology' was elaborated in 1978 by the 'Arbeitsgemeinschaft zur Foerderung der Radionuklidtechnik' (AFR) (Association for the Promotion of Radionuclide Technology). In addition to an inventory of the major applications of radionuclide technology, this General Program includes a comprehensive description of tasks relating to the central topics of raw materials, environment, technology and materials, health and nutrition, scientific developments of radionuclide technology. The 'General Program for the Advancement of the Radionuclide Technology' serves inter alia as a basis of evaluation in opinions on funding applications filed with the Federal Ministry for Research and Technology (BMFT) with respect to the provision of advanced techniques involving radionuclides for industrial application. (orig.) [de

  8. Design and optimization of components and processes for plasma sources in advanced material treatments

    OpenAIRE

    Rotundo, Fabio

    2012-01-01

    The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, whi...

  9. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  10. Advanced metallic structural materials and a new role for microalloyed steels

    International Nuclear Information System (INIS)

    Korchynsky, M.

    2004-01-01

    The recent worldwide surge of steel consumption, mainly of low-strength carbon grades, has created raw-materials shortages and price increases. These supply-demand strains could be relaxed by satisfying engineering needs with less steel. However, materials used for such a substitution must combine high weight reducing potential with low cost. Microalloyed (MA) steels are cost-effective substitutes, since their high strength is the result of grain refinement and precipitation hardening. These two strengthening mechanisms are developed by the interaction of micro-additives: niobium or vanadium with the deformation occurring during hot rolling followed by cooling. The physical metallurgy of these phenomena is discussed in the paper. The optimum alloy design of MA steels combines superior properties with lowest processing cost. In many applications, the versatility and adaptability of vanadium steels provides an economic advantage. The monetary value of weight production is sufficient to increase the profitability of steel makers and to lower the material cost to steel users. This 'win-win' situation is financed by the elimination of efforts spent in producing inefficient steel, yielding an increase in wealth formation. The gain acceptance of substitution by the consumer, a long-term strategic plan is needed to be implemented by the beneficiaries - both steel producers and steel users. The successful substitution is of importance to the national economy, resources and energy conservation, and the environment. Since microalloyed steels, used as a replacement for carbon steels, offer low cost weight savings, they deserve to be classified as advanced structural materials. (author)

  11. Materials of 13. conference: ATM'92 - Advanced materials and technologies

    International Nuclear Information System (INIS)

    1992-01-01

    13th conference on metal science, modern materials and technologies (ATM'92) has been held in Popowo near Warsaw, Poland in September 1992. The conference has been divided into 9 sections. There are: Plenary section (7 lectures); Functional materials (12 lectures); Methods of material microstructure shaping (5 lectures and 14 posters); Surface engineering (5 lectures and 27 posters); Composites (5 lectures and 9 posters); Iron alloys A (7 lectures and 8 posters); Iron alloys B (7 lectures and 18 posters); Non-ferrous metal alloys (7 lectures and 11 posters) and Methods for materials research (5 lectures and 23 posters). The new materials preparation, their properties and structure as well as a methods for obtaining a desirable properties of material or their surface have been broadly referred and discussed

  12. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  13. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  14. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    Science.gov (United States)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  15. Proceedings of the national conference on materials for advanced technologies: abstract proceedings

    International Nuclear Information System (INIS)

    Srivastava, Anurag

    2012-01-01

    The world has experienced the semiconductor revolution in the form of wonderful electronics devices in faster and cheaper communication, faster and quicker computers, entertainment devices, medical surgery, characterization and testing, sensors, photography, space exploration etc. to name a few. In recent years nanotechnology has emerged as one of the most important and exciting forefront fields in science, engineering, energy, biotechnology, chemical technology, materials etc. It shows great promise for providing us in the near future with many breakthroughs that will change the direction of technological advances in a wide range of applications. Papers relevant to INIS are indexed separately

  16. General survey of Korean advanced technology

    International Nuclear Information System (INIS)

    1984-05-01

    This book includes advanced technology, world trend of advanced technology, technological innovation study for strengthening international competitiveness, patterns of Korea industrialization and its causes, structures of Korea electronic equipment and development direction, middle and long-term prospects of home appliance, the world of computer, current situation and prospect of robot industry, homework for strengthening international competitiveness of machine industry, direction for rationalization of materials industry, current situations of technical textile, future technology of developed countries, and trend of Korea technological activities.

  17. TECHcitement: Advances in Technological Education, 2006

    Science.gov (United States)

    American Association of Community Colleges (NJ1), 2006

    2006-01-01

    This publication includes 13 articles: (1) ATE [Advanced Technological Education] Attuned to Global Competition; (2) Materials Science Center Supplies Information on Often-Overlooked Field; (3) CSEC [Cyber Security Education Consortium] Builds Corps of Cyber Technicians; (4) KCTCS [Kentucky Community and Technical College System] Is U.S. Partner…

  18. Advanced EDL Materials (AEDLM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Via the exploration of alternate resins and substrate materials for ablative TPS, and the development of new high heat flux resistant flexible TPS systems, we intend...

  19. Ten years of high temperature materials research at PSI - An overview paper

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Chen Jiachao

    2014-01-01

    At the Paul Scherrer Institute high temperature materials research for advanced nuclear systems is performed since a decade, formerly by the HT-Mat group and today the advanced nuclear materials (ANM) group. In this paper the activities being conducted in this time are summarized. This includes the study of three major materials classes, intermetallics with a titanium alluminide, nanostructured steel with different ODS candidates, and ceramics with silicon carbide composites. The studies being performed include experimental work, studying the mechanical behavior as function of irradiation exposure and temperature, including also in situ studies such as the creep under ion beam irradiation plus miniaturized samples such as pillars. The microstructure changes as function of these exposures, using electron microscopy on one hand and advanced beamline techniques on the other hand. Part of the finding lead to the development of new damage mechanism models. Complementary to the experimental approach, modelling activities were conducted to understand the basics of the damage mechanisms. The research lead to a consolidation of the candidate materials to the most promising ones, namely the oxide dispersion strengthened steels (ODS) and the silicon carbide based composite materials. The research lead to new, relevant data such as the creep behavior of material under extreme reactor conditions, the embitterment mechanism in advanced materials, and much more. A sketch of the research philosophy and an outline of the main results will be given. (author)

  20. NATO Advanced Study Institute on Nondestructive Evaluation of Semiconductor Materials and Devices

    CERN Document Server

    1979-01-01

    From September 19-29, a NATO Advanced Study Institute on Non­ destructive Evaluation of Semiconductor Materials and Devices was held at the Villa Tuscolano in Frascati, Italy. A total of 80 attendees and lecturers participated in the program which covered many of the important topics in this field. The subject matter was divided to emphasize the following different types of problems: electrical measurements; acoustic measurements; scanning techniques; optical methods; backscatter methods; x-ray observations; accele­ rated life tests. It would be difficult to give a full discussion of such an Institute without going through the major points of each speaker. Clearly this is the proper task of the eventual readers of these Proceedings. Instead, it would be preferable to stress some general issues. What came through very clearly is that the measurements of the basic scientists in materials and device phenomena are of sub­ stantial immediate concern to the device technologies and end users.

  1. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  2. Sub-classification of Advanced-Stage Hepatocellular Carcinoma: A Cohort Study Including 612 Patients Treated with Sorafenib.

    Science.gov (United States)

    Yoo, Jeong-Ju; Chung, Goh Eun; Lee, Jeong-Hoon; Nam, Joon Yeul; Chang, Young; Lee, Jeong Min; Lee, Dong Ho; Kim, Hwi Young; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Yoon, Jung-Hwan

    2018-04-01

    Advanced hepatocellular carcinoma (HCC) is associated with various clinical conditions including major vessel invasion, metastasis, and poor performance status. The aim of this study was to establish a prognostic scoring system and to propose a sub-classification of the Barcelona-Clinic Liver Cancer (BCLC) stage C. This retrospective study included consecutive patientswho received sorafenib for BCLC stage C HCC at a single tertiary hospital in Korea. A Cox proportional hazard model was used to develop a scoring system, and internal validationwas performed by a 5-fold cross-validation. The performance of the model in predicting risk was assessed by the area under the curve and the Hosmer-Lemeshow test. A total of 612 BCLC stage C HCC patients were sub- classified into strata depending on their performance status. Five independent prognostic factors (Child-Pugh score, α-fetoprotein, tumor type, extrahepatic metastasis, and portal vein invasion) were identified and used in the prognostic scoring system. This scoring system showed good discrimination (area under the receiver operating characteristic curve, 0.734 to 0.818) and calibration functions (both p advanced HCC. A prognostic scoring system with five independent factors is useful in predicting the survival of patients with BCLC stage C HCC.

  3. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V K; Alander, T K.R. [eds.; Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1996-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  4. Advanced materials and technologies. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, V.K.; Alander, T.K.R. [eds.] [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Physical Metallurgy and Materials Science

    1995-12-31

    The contents of the proceedings consist of three chapters, of which, the first discusses common megatrends, both nationally and globally, in different fields of materials technology. The second chapter is dealing with novel production and processing of base metals and, finally, the third chapter is related with current achievements and future goals of electronic, magnetic, optical and coating materials and their processing

  5. Measurement of leakage neutron spectra from advanced blanket materials and structural materials induced by D-T neutrons. Correction for energy loss of charged particle in sample materials

    International Nuclear Information System (INIS)

    Nishio, Takashi; Kondo, Tetsuo; Takagi, Hiroyuki; Murata, Isao; Takahashi, Akito; Kokooo; Maekawa, Fujio; Ikeda, Yujiro; Takeuchi, Hiroshi

    2000-01-01

    D-T neutron benchmark experiments for LiAlO 2 , Li 2 TiO 3 , Li 2 ZrO 3 , Cu and W have been conducted at FNS of JAERI to validate five nuclear data files. The former three are promising advanced breeder materials and the latter two are important structural materials in a fusion reactor. From the results, all the nuclear data files were confirmed to be fairly reliable with respect to the prediction of neutron spectrum in the use of Li 2 TiO 3 and Cu. For LiAlO 2 and W, some large discrepancies between the experimental and calculated data were observed. For Li 2 ZrO 3 , the C/E values became very large for all the nuclear data files. (author)

  6. A review of a radioactive material shipping container including design, testing, upgrading compliance program and shipping logistics

    International Nuclear Information System (INIS)

    Celovsky, A.; Lesco, R.; Gale, B.; Sypes, J.

    2003-01-01

    Ten years ago Atomic Energy of Canada developed a Type B(U)-85 shipping container for the global transport of highly radioactive materials. This paper reviews the development of the container, including a summary of the design requirements, a review of the selected materials and key design elements, and the results of the major qualification tests (drop testing, fire test, leak tightness testing, and shielding integrity tests). As a result of the testing, improvements to the structural, thermal and containment design were made. Such improvements, and reasons thereof, are noted. Also provided is a summary of the additional analysis work required to upgrade the package from a Type B(U) to a Type B(F), i.e. essentially upgrading the container to include fissile radioisotopes to the authorized radioactive contents list. Having a certified shipping container is only one aspect governing the global shipments of radioactive material. By necessity the shipment of radioactive material is a highly regulated environment. This paper also explores the experiences with other key aspects of radioactive shipments, including the service procedures used to maintain the container certification, the associated compliance program for radioactive material shipments, and the shipping logistics involved in the transport. (author)

  7. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  8. Advanced Fuels Campaign FY 2014 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Braase, Lori [Idaho National Lab. (INL), Idaho Falls, ID (United States). INL Systems Analyses; May, W. Edgar [Idaho National Lab. (INL), Idaho Falls, ID (United States). INL Systems Analyses

    2014-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to

  9. Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors (Workshop Report)

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, RE

    2004-07-15

    The ''Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV Fission Reactors'' was convened to determine the degree to which an increased effort in modeling and simulation could help bridge the gap between the data that is needed to support the implementation of these advanced nuclear technologies and the data that can be obtained in available experimental facilities. The need to develop materials capable of performing in the severe operating environments expected in fusion and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range of potential Gen-IV fission reactor design concepts and each concept has its own unique demands. Improved economic performance is a major goal of the Gen-IV designs. As a result, most designs call for significantly higher operating temperatures than the current generation of LWRs to obtain higher thermal efficiency. In many cases, the desired operating temperatures rule out the use of the structural alloys employed today. The very high operating temperature (up to 1000 C) associated with the NGNP is a prime example of an attractive new system that will require the development of new structural materials. Fusion power plants represent an even greater challenge to structural materials development and application. The operating temperatures, neutron exposure levels and thermo-mechanical stresses are comparable to or greater than those for proposed Gen-IV fission reactors. In addition, the transmutation products created in the structural materials by the high energy neutrons produced in the DT plasma can profoundly influence the microstructural evolution and mechanical behavior of these materials. Although the workshop addressed issues relevant to both Gen-IV and fusion reactor materials, much of the discussion focused on fusion; the same focus is reflected in this report. Most of the physical models and computational methods

  10. The Materiality of Learning

    DEFF Research Database (Denmark)

    Sørensen, Estrid

    or postgraduate students interested in a variety of fields, including educational studies, educational psychology, social anthropology, and STS. Original ethnographic descriptions showing the fine details of how materials influence the learning process Introduces the advanced and complex Actor-Network Theory......The field of educational research lacks a methodology for the study of learning that does not begin with humans, their aims, and their interests. The Materiality of Learning seeks to overcome this human-centered mentality by developing a novel spatial approach to the materiality of learning....... Drawing on science and technology studies (STS), Estrid Sørensen compares an Internet-based 3D virtual environment project in a fourth-grade class with the class's work with traditional learning materials, including blackboards, textbooks, notebooks, pencils, and rulers. Taking into account pupils...

  11. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  12. Raw material versus processing

    International Nuclear Information System (INIS)

    Berg, E.A.T.

    1989-01-01

    Some brazilian aspects related with the obtainment of raw materials for advanced ceramic products are described. The necessity of import raw materials by the advanced ceramic industries is mentioned, generating dangerous depedence for the country. The brazilian mineral reserves for using in raw materials of advanced ceramic are also cited. (C.G.C.) [pt

  13. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  14. Electrospinning for advanced energy and environmental applications

    CERN Document Server

    Cavaliere, Sara

    2015-01-01

    Electrospinning for Advanced Energy and Environmental Applications delivers a state-of-the-art overview of the use of electrospun fibers in energy conversion and storage, as well as in environmental sensing and remediation. Featuring contributions from leading experts in electrospinning and its specific applications, this book: Introduces the electrospinning technique and its origins, outlining achievable one-dimensional (1D) nanoscaled materials and their various applications Discusses the use of electrospun materials in energy devices, including low- and high-temperature fuel cells, hydrogen storage, dye-sensitized solar cells, lithium-ion batteries, and supercapacitors Explores environmental applications of electrospun fibers, such as the use of electrospinning-issued materials in membranes for water and air purification, as well as in sensors and biosensors for pollution control Beneficial to both academic and industrial audiences, Electrospinning for Advanced Energy and Environmental Applications present...

  15. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Science.gov (United States)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  16. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong [Nonproliferation System Research Division, Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea, Republic of); Dae, Dongsun [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Whitehouse, Andrew I. [Applied Photonics Ltd., Unit 8 Carleton Business Park, Skipton, North Yorkshire BD23 2DE (United Kingdom)

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  17. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-01-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  18. Material and component progress within ARCHER for advanced high temperature reactor

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.; Davies, M.; Pra, F.; Bonnamy, P.; Fokkens, J.; Heijna, M.; Bout, N. de; Vreeling, A.; Bourlier, F.; Lhachemi, D.; Woayehune, A.; Dubiez-le-Goff, S.; Hahner, P.; Futterer, M.; Berka, J.; Kalivodora, J.; Pouchon, M.A.; Schmitt, R.; Homerin, P.; Marsden, B.; Mummery, P.; Mutch, G.; Ponca, D.; Buhl, P.; Hoffmann, M.; Rondet, F.; Pecherty, A.; Baurand, F.; Alenda, F.; Esch, M.; Kohlz, N.; Reed, J.; Fachinger, J.; Klower, Dr.

    2014-01-01

    The ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R and D) integrated project started in 2011 as part of the European Commission 7. Framework Programme (FP7) for a period of four years to perform High Temperature Reactor technology R and D in support of reactor demonstration. The project consortium encompasses conventional and Nuclear Industry, Utilities, Technical Support Organizations, Research and Development Organizations and Academia. The activities involved contribute to the Generation IV (GIF) International Forum and collaborate with related projects in the US, China, Japan, and the Republic of Korea in cooperation with IAEA and ISTC. This paper addresses the progress of the work on materials and component technologies within ARCHER over the first two years of the project. (authors)

  19. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    International Nuclear Information System (INIS)

    J. I. Cole; J. F. Jue

    2006-01-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted

  20. A 100 MWe Advanced Sodium-cooled Fast Reactor (AFR-100)

    International Nuclear Information System (INIS)

    Grandy, C.; Kim, T.K.; Jin, E.

    2013-01-01

    • AFR-100 Design development is continuing in the U.S.; • Various innovations are included in the design to understand their feasibility; • Engineering and safety analyses have been performed that demonstrate the inherent safety characteristics of the AFR-100 design during severe accidents; • R&D is being performed on a number of the innovations such as advanced materials, compact fuel handing system, advanced energy conversion system, advanced core design, etc

  1. Advanced Competencies for School Bus Drivers.

    Science.gov (United States)

    Illinois State Board of Education, Springfield.

    Four units are provided for formal classroom instruction in advanced competencies for school bus drivers in Illinois. Units cover passenger control, accidents and emergencies, detecting hazards, and first aid. Each unit contains some or all of the following components: table of contents; a list of objectives; informative material, including an…

  2. FOREWORD: Materials metrology Materials metrology

    Science.gov (United States)

    Bennett, Seton; Valdés, Joaquin

    2010-04-01

    It seems that so much of modern life is defined by the materials we use. From aircraft to architecture, from cars to communications, from microelectronics to medicine, the development of new materials and the innovative application of existing ones have underpinned the technological advances that have transformed the way we live, work and play. Recognizing the need for a sound technical basis for drafting codes of practice and specifications for advanced materials, the governments of countries of the Economic Summit (G7) and the European Commission signed a Memorandum of Understanding in 1982 to establish the Versailles Project on Advanced Materials and Standards (VAMAS). This project supports international trade by enabling scientific collaboration as a precursor to the drafting of standards. The VAMAS participants recognized the importance of agreeing a reliable, universally accepted basis for the traceability of the measurements on which standards depend for their preparation and implementation. Seeing the need to involve the wider metrology community, VAMAS approached the Comité International des Poids et Mesures (CIPM). Following discussions with NMI Directors and a workshop at the BIPM in February 2005, the CIPM decided to establish an ad hoc Working Group on the metrology applicable to the measurement of material properties. The Working Group presented its conclusions to the CIPM in October 2007 and published its final report in 2008, leading to the signature of a Memorandum of Understanding between VAMAS and the BIPM. This MoU recognizes the work that is already going on in VAMAS as well as in the Consultative Committees of the CIPM and establishes a framework for an ongoing dialogue on issues of materials metrology. The question of what is meant by traceability in the metrology of the properties of materials is particularly vexed when the measurement results depend on a specified procedure. In these cases, confidence in results requires not only traceable

  3. Composite Materials: An Educational Need.

    Science.gov (United States)

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  4. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  5. OCV Hysteresis in Li-Ion Batteries including Two-Phase Transition Materials

    Directory of Open Access Journals (Sweden)

    Michael A. Roscher

    2011-01-01

    Full Text Available The relation between batteries' state of charge (SOC and open-circuit voltage (OCV is a specific feature of electrochemical energy storage devices. Especially NiMH batteries are well known to exhibit OCV hysteresis, and also several kinds of lithium-ion batteries show OCV hysteresis, which can be critical for reliable state estimation issues. Electrode potential hysteresis is known to result from thermodynamical entropic effects, mechanical stress, and microscopic distortions within the active electrode materials which perform a two-phase transition during lithium insertion/extraction. Hence, some Li-ion cells including two-phase transition active materials show pronounced hysteresis referring to their open-circuit voltage. This work points out how macroscopic effects, that is, diffusion limitations, superimpose the latte- mentioned microscopic mechanisms and lead to a shrinkage of OCV hysteresis, if cells are loaded with high current rates. To validate the mentioned interaction, Li-ion cells' state of charge is adjusted to 50% with various current rates, beginning from the fully charged and the discharged state, respectively. As a pronounced difference remains between the OCV after charge and discharge adjustment, obviously the hysteresis vanishes as the target SOC is adjusted with very high current rate.

  6. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    International Nuclear Information System (INIS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies

  7. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Energy Technology Data Exchange (ETDEWEB)

    Fromer, Neil A., E-mail: nafromer@caltech.edu [California Institute of Technology, Resnick Sustainability Institute (United States); Diallo, Mamadou S., E-mail: diallo@wag.caltech.edu [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2013-11-15

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  8. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Science.gov (United States)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  9. Extended abstracts of the 8. international symposium on new materials and nano-materials for electrochemical systems : emerging trends and challenges in new materials development for sustainable energy and environment

    International Nuclear Information System (INIS)

    Savadogo, O.; Ma, Z.F.

    2010-01-01

    This conference provided a forum to highlight the advances made in the development of new materials and nano-materials for electrochemical systems, including fuel cells. Electrochemical energy system devices have the potential to provide new applications for high power mobile systems as an alternative to internal combustion engines. They also have the potential for applications in hand-held personal electronic devices, uninterrupted power supply and auxiliary power supply. However, additional advances in unit cell material and design are still needed before mass production of fuel cells can begin. Cost, reliability, service life, electrode performance and power density are among the technical challenges facing commercialization. In addition to a plenary and general session, the sessions of the conference were entitled: low temperature fuel cells; high temperature fuel cells; advanced secondary rechargeable batteries; hydrogen production and storage; electrochemical supercapacitors; and poster session. All 166 presentations at this conference have been catalogued separately for inclusion in this database

  10. Integrated Approach for a Knowledge-Based Process Layout for Simultaneous 5-Axis Milling of Advanced Materials

    Directory of Open Access Journals (Sweden)

    F. Klocke

    2011-01-01

    Full Text Available Advanced materials, like nickel-based alloys, gain importance in turbomachinery manufacturing, where creating complex surfaces constitute a major challenge. However, milling strategies that provide high material removal rates at acceptable tooling costs demand optimized tool geometry and process parameter selection. In this paper, a description of circular milling is given, focusing on resulting engagement conditions. Regarding this, a test bench was designed to investigate the chip formation process in an analogy milling process. Furthermore, the methodology for the approach in the analogy process was developed. Results of a first test run in Inconel 718 verify the presented approach.

  11. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  12. FY2015 Propulsion Materials Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-12-30

    The Propulsion Materials Program actively supports the energy security and reduction of greenhouse emissions goals of VTO by investigating and identifying the materials properties that are most essential for continued development of cost-effective, highly efficient, and environmentally friendly next-generation heavy and light-duty powertrains. The technical approaches available to enhance propulsion systems focus on improvements in both vehicle efficiency and fuel substitution, both of which must overcome the performance limitations of the materials currently in use. Propulsion Materials Program activities work with national laboratories, industry experts, and VTO powertrain systems (e.g., Advanced Combustion Engines [ACE], Advanced Power Electronics and Electrical Machines [APEEM], and fuels) teams to develop strategies that overcome materials limitations in future powertrain performance. The technical maturity of the portfolio of funded projects ranges from basic science to subsystem prototype validation. Projects within a Propulsion Materials Program activity address materials concerns that directly impact critical technology barriers within each of the above programs, including barriers that impact fuel efficiency, thermal management, emissions reduction, improved reliability, and reduced manufacturing costs. The program engages only the barriers that result from material property limitations and represent fundamental, high-risk materials issues.

  13. Novel Engineered Refractory Materials for Advanced Reactor Applications

    International Nuclear Information System (INIS)

    Shannon, Steven; Eapen, Jacob; Maria, Jon-Paul; Weber, William

    2016-01-01

    This report summarizes the results of DOE-NEUP grant 10-853. The project spanned 48 months (36 months under the original grant plus a 12 month no cost extension). The overarching goal of this work was to fabricate and characterize refractory materials engineered at the atomic scale with emphasis on their tolerance to accumulated radiation damage. With an emphasis on nano-scale structure, this work included atomic scale simulation to study the underlying mechanisms for modified radiation tolerance at these atomic scales.

  14. Novel Engineered Refractory Materials for Advanced Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Steven [North Carolina State Univ., Raleigh, NC (United States); Eapen, Jacob [North Carolina State Univ., Raleigh, NC (United States); Maria, Jon-Paul [North Carolina State Univ., Raleigh, NC (United States); Weber, William [Univ. of Tennessee, Knoxville, TN (United States)

    2016-03-14

    This report summarizes the results of DOE-NEUP grant 10-853. The project spanned 48 months (36 months under the original grant plus a 12 month no cost extension). The overarching goal of this work was to fabricate and characterize refractory materials engineered at the atomic scale with emphasis on their tolerance to accumulated radiation damage. With an emphasis on nano-scale structure, this work included atomic scale simulation to study the underlying mechanisms for modified radiation tolerance at these atomic scales.

  15. Nanomechanical analysis of high performance materials

    CERN Document Server

    2014-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On the one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in t...

  16. Advanced Mechanical Testing of Sandwich Materials

    DEFF Research Database (Denmark)

    Hayman, Brian; Berggreen, Christian; Jenstrup, Claus

    2008-01-01

    An advanced digital optical system has been used to measure surface strains on sandwich face and core specimens tested in a project concerned with improved criteria for designing sandwich X-joints. The face sheet specimens were of glass reinforced polyester and were tested in tension. The core sp...

  17. Acquisition of Dynamic Mechanical Analyzer and Stress-Controlled Rheometer for the Mechanical Characterization of Advanced Materials

    Science.gov (United States)

    2017-06-27

    Current efforts aim to refine synthetic methods to achieve high molecular weight polymer and investigate mechanical properties. Figure 4 shows... available in the PCCL. For example, the Sumerlin group is attempting to characterize stimuli-responsive methacrylate networks of varying glass transition...over 100 researchers in advanced polymer materials. Within this, the Polymer Chemistry Characterization Laboratory (PCCL) is a user facility that

  18. Advances in Lead-Free Piezoelectric Materials for Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Jacob L. Jones

    2010-03-01

    Full Text Available Piezoelectrics have widespread use in today’s sensor and actuator technologies. However, most commercially available piezoelectric materials, e.g., Pb [ZrxTi1-x] O3 (PZT,are comprised of more than 60 weight percent lead (Pb. Dueto its harmful effects, there is a strong impetus to identify new lead-free replacement materials with comparable properties to those of PZT. This review highlights recent developments in several lead-free piezoelectric materials including BaTiO3, Na0.5Bi0.5TiO3, K0.5Bi0.5TiO3, Na0.5K0.5NbO3, and their solid solutions. The factors that contribute to strong piezoelectric behavior are described and a summary of the properties for the various systems is provided.

  19. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances

    KAUST Repository

    Kim, Jin Young

    2013-09-01

    Colloidal quantum dot (CQD) optoelectronics offers a compelling combination of low-cost, large-area solution processing, and spectral tunability through the quantum size effect. Since early reports of size-tunable light emission from solution-synthesized CQDs over 25 years ago, tremendous progress has been made in synthesis and assembly, optical and electrical properties, materials processing, and optoelectronic applications of these materials. Here some of the major developments in this field are reviewed, touching on key milestones as well as future opportunities. Colloidal quantum dots offer a compelling combination of low-cost and large-area solution processing and spectral tunability via the quantum size effect. These materials are promising in a wide range of optoelectronic applications. The quarter-century-long history of the colloidal quantum dot field is reviewed, beginning with early discoveries in synthesis and physical chemistry, through foundational advances in materials processing, chemistry, and understanding, and concluding with an account of recent breakthroughs that have produced record-setting solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advanced Electrode Materials for High Energy Next Generation Li ion Batteries

    Science.gov (United States)

    Hayner, Cary Michael

    Lithium ion batteries are becoming an increasingly ubiquitous part of modern society. Since their commercial introduction by Sony in 1991, lithium-ion batteries have grown to be the most popular form of electrical energy storage for portable applications. Today, lithium-ion batteries power everything from cellphones and electric vehicles to e-cigarettes, satellites, and electric aircraft. Despite the commercialization of lithium-ion batteries over twenty years ago, it remains the most active field of energy storage research for its potential improvement over current technology. In order to capitalize on these opportunities, new materials with higher energy density and storage capacities must be developed. Unfortunately, most next-generation materials suffer from rapid capacity degradation or severe loss of capacity when rapidly discharged. In this dissertation, the development of novel anode and cathode materials for advanced high-energy and high-power lithium-ion batteries is reported. In particular, the application of graphene-based materials to stabilize active material is emphasized. Graphene, a unique two-dimensional material composed of atomically thin carbon sheets, has shown potential to address unsatisfactory rate capability, limited cycling performance and abrupt failure of these next-generation materials. This dissertation covers four major subjects: development of silicon-graphene composites, impact of carbon vacancies on graphene high-rate performance, iron fluoride-graphene composites, and ternary iron-manganese fluoride synthesis. Silicon is considered the most likely material to replace graphite as the anode active material for lithium-ion batteries due to its ability to alloy with large amounts of lithium, leading to significantly higher specific capacities than the graphite standard. However, Si also expands in size over 300% upon lithiation, leading to particle fracture and isolation from conductive support, resulting in cell failure within a few

  1. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    International Nuclear Information System (INIS)

    Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa; Petit, Camille

    2015-01-01

    CO 2 capture by amine scrubbing, which has a high CO 2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO 2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO 2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO 2 capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO 2 capture solvents, which are often anhydrous, have been developed as the third-generation CO 2 capture solvents. These novel classes of liquid materials include ionic liquids, CO 2 -triggered switchable solvents (i.e., CO 2 -binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO 2 capture. Particular attention is given to the mechanisms of CO 2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO 2 capture media.

  2. Advanced Fuel Pellet Materials and Fuel Rod Design for Water Cooled Reactors. Proceedings of a Technical Committee Meeting

    International Nuclear Information System (INIS)

    2010-10-01

    The economics of current nuclear power plants have improved through increased fuel burnup and longer fuel cycles, i.e. increasing the effective time that fuel remains in the reactor core and the amount of energy it generates. Efficient consumption of fissile material in the fuel element before it is discharged from the reactor means that less fuel is required over the reactor's life cycle, which results in lower amounts of fresh fuel, lower spent fuel storage costs, and less waste for ultimate disposal. Better utilization of fissile nuclear materials, as well as more flexible power manoeuvring, place challenging operational demands on materials used in reactor components, and first of all, on fuel and cladding materials. It entails increased attention to measures ensuring desired in-pile fuel performance parameters that require adequate improvements in fuel material properties and fuel rod designs. These are the main reasons that motivated the IAEA Technical Working Group on Fuel Performance and Technology (TWG-FPT) to recommend the organization of a Technical Committee Meeting on Advanced Fuel Pellet Materials and Fuel Rod Designs for Power Reactors. The proposal was supported by the IAEA TWGs on Advanced Technologies for Light and Heavy Water-Cooled Reactors (TWG-LWR and TWG-HWR), and the meeting was held at the invitation of the Government of Switzerland at the Paul Scherrer Institute in Villigen, from 23 to 26 November 2009. This was the third IAEA meeting on these subjects (the first was held in 1996 in Tokyo, Japan, and the second in 2003 in Brussels, Belgium), which reflects the continuous interest in the above issues among Member States. The purpose of the meeting was to review the current status in the development of fuel pellet materials and to explore recent improvements in fuel rod designs for light and heavy water cooled power reactors. The meeting was attended by 45 specialists representing fuel vendors, nuclear utilities, research and development

  3. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-01-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  4. Advanced Carbon Materials for Environmental and Energy Applications

    KAUST Repository

    Dua, Rubal

    2014-05-01

    Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise

  5. Materials science. Materials that couple sensing, actuation, computation, and communication.

    Science.gov (United States)

    McEvoy, M A; Correll, N

    2015-03-20

    Tightly integrating sensing, actuation, and computation into composites could enable a new generation of truly smart material systems that can change their appearance and shape autonomously. Applications for such materials include airfoils that change their aerodynamic profile, vehicles with camouflage abilities, bridges that detect and repair damage, or robotic skins and prosthetics with a realistic sense of touch. Although integrating sensors and actuators into composites is becoming increasingly common, the opportunities afforded by embedded computation have only been marginally explored. Here, the key challenge is the gap between the continuous physics of materials and the discrete mathematics of computation. Bridging this gap requires a fundamental understanding of the constituents of such robotic materials and the distributed algorithms and controls that make these structures smart. Copyright © 2015, American Association for the Advancement of Science.

  6. Advanced materials and techniques for fiber-optic sensing

    International Nuclear Information System (INIS)

    Henderson, P. J.

    2013-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. (author)

  7. Advanced materials and techniques for fibre-optic sensing

    Science.gov (United States)

    Henderson, Philip J.

    2014-06-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

  8. Proceedings of the fourth international symposium on advanced nuclear energy research

    International Nuclear Information System (INIS)

    1992-12-01

    The papers presented and discussed in the 4th International Symposium on Advanced Nuclear Energy Research, of which subject was focussed on the Roles and Direction of Material Science in Nuclear Technology are contained. The sessions organized for the aural session of the symposium were (1) Processing Science for New Materials, (2) New Tools for Advanced Materials Research, (3) Challenge of Materials Database and (4) Frontier of Materials Technology in New Power Systems, from which 18 invited and 77 contributed papers were selected for the publication. The volume includes also summaries of the panel discussions titled as (1) Computer Simulation for Materials Innovation and (2) What is Expected for Materials Science in Future Nuclear Energy Developments ?, with which a complete recording of the discussions for the latter subject was attempted by the Editorial Working Group of the Program Committee. The 65 of the presented papers are indexed individually. (J.P.N.)

  9. Advanced insider threat mitigation workshop instructional materials

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Larsen, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O Brien, Mike [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edmunds, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2008-11-01

    Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.

  10. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    Science.gov (United States)

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  11. Materials characterization for advanced pressurized water reactors: Pt. 2

    International Nuclear Information System (INIS)

    Little, E.A.; Gage, G.

    1994-01-01

    A compilation and overview is presented of the experimental techniques available for characterization of the microstructural changes induced by neutron irradiation of PWR pressure vessel steels, and directed towards monitoring of embrittlement processes by examination of surveillance samples from advanced reactor systems. The microstructural features of significance include copper precipitation, dislocation loop and/or microvoid matrix damage and grain boundary solute segregation. The techniques of transmission electron microscopy, field-emission gun scanning transmission electron microscopy, small angle neutron scattering, positron annihilation and field-ion microscopy have all developed to a degree of sophistication such that they are capable of providing detailed microstructural information in these areas, and afford considerable insight into embrittlement processes when used in combination. (author)

  12. Chemistry of high-energy materials

    Energy Technology Data Exchange (ETDEWEB)

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  13. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  14. Advanced lubrication systems and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.

    1998-05-07

    This report described the work conducted at the National Institute of Standards and Technology under an interagency agreement signed in September 1992 between DOE and NIST for 5 years. The interagency agreement envisions continual funding from DOE to support the development of fuel efficient, low emission engine technologies in terms of lubrication, friction, and wear control encountered in the development of advanced transportation technologies. However, in 1994, the DOE office of transportation technologies was reorganized and the tribology program was dissolved. The work at NIST therefore continued at a low level without further funding from DOE. The work continued to support transportation technologies in the development of fuel efficient, low emission engine development. Under this program, significant progress has been made in advancing the state of the art of lubrication technology for advanced engine research and development. Some of the highlights are: (1) developed an advanced high temperature liquid lubricant capable of sustaining high temperatures in a prototype heat engine; (2) developed a novel liquid lubricant which potentially could lower the emission of heavy duty diesel engines; (3) developed lubricant chemistries for ceramics used in the heat engines; (4) developed application maps for ceramic lubricant chemistry combinations for design purpose; and (5) developed novel test methods to screen lubricant chemistries for automotive air-conditioning compressors lubricated by R-134a (Freon substitute). Most of these findings have been reported to the DOE program office through Argonne National Laboratory who manages the overall program. A list of those reports and a copy of the report submitted to the Argonne National Laboratory is attached in Appendix A. Additional reports have also been submitted separately to DOE program managers. These are attached in Appendix B.

  15. Ion beam analysis and modern materials science

    International Nuclear Information System (INIS)

    Feldman, Leonard C.

    2012-01-01

    Full text: Modern research has provided the means of creating materials structures controlled at the atomic scale. Familiar examples include the formation of hetero-structures grown with atomic precision, nanostructures with designed electronic properties and new organic structures employing the richness of organic chemistry. The current forefront of such materials research includes the creation of new materials for energy and electronics applications. The electron transport properties of these diverse materials, and hence their performance, is invariably linked by the basic interactions at the interface. Interfaces are the critical component, and least understood aspect, of almost all such materials-based structures. Ion beam analysis, and its role in interfacial definition, will be described in the context of a number of such forefront projects underway at the Rutgers Institute for Advanced Materials, Devices and Nanotechnology (IAMDN). These include: 1) quantitative analysis of self-assembled monolayers on organic single crystals resulting in enhanced surface mobility and more effective organic field effect transistors, 2) monolayer scale interfacial analysis of complex oxide hetero-structures to elucidate the properties of the enhanced two-dimensional electron mobility and 3) characterization of the semiconductor- dielectric interface in the SiC/SiO2 system, with application for energy efficient power transmission. Despite extraordinary advances in synthesis, interface properties continue as an uncontrolled region of hetero-materials formation. Their understanding requires the detailed analysis of a complement of tools including ion beam analysis. Fellow Researchers: R. A. Bartynski, L.C.Feldman, E. Garfunkel, T. Gustafsson, H.D. Lee, D. Mastrogiovanni, V. Podzorov, L. S. Wielunski, J. R. Williams(Auburn), G. Liu, J. Williams, S. Dhar. (author)

  16. The advanced thermionics initiative...program update

    International Nuclear Information System (INIS)

    Lamp, T.R.; Donovan, B.D.

    1993-01-01

    The United States Air Force has had a long standing interest in thermionic space power dating back to the early 1960s when a heat pipe cooled thermionic converter was demonstrated through work at the predecessor to Wright Laboratory (WL). With the exception of the short hiatus in the mid-70s, Air Force thermionics work at Wright Laboratory has continued to the present time with thermionic technology programs including the burst power thermionic phase change concepts, heat pipe cooled planar diodes, and advanced in-core concept developments such as composite materials, insulators and oxygenation. The Advanced Thermionics Initiative (ATI) program was organized to integrate thermionic technology advances into a converter suitable for in-core reactor applications in the 10 to 40 kWe power range. As an advanced thermionics technology program, the charter and philosophy of the ATI program is to provide the needed advanced converter concepts in support of national thermionic space power programs

  17. Plasma Surface Interactions Common to Advanced Fusion Wall Materials and EUV Lithography - Lithium and Tin

    Science.gov (United States)

    Ruzic, D. N.; Alman, D. A.; Jurczyk, B. E.; Stubbers, R.; Coventry, M. D.; Neumann, M. J.; Olczak, W.; Qiu, H.

    2004-09-01

    Advanced plasma facing components (PFCs) are needed to protect walls in future high power fusion devices. In the semiconductor industry, extreme ultraviolet (EUV) sources are needed for next generation lithography. Lithium and tin are candidate materials in both areas, with liquid Li and Sn plasma material interactions being critical. The Plasma Material Interaction Group at the University of Illinois is leveraging liquid metal experimental and computational facilities to benefit both fields. The Ion surface InterAction eXperiment (IIAX) has measured liquid Li and Sn sputtering, showing an enhancement in erosion with temperature for light ion bombardment. Surface Cleaning of Optics by Plasma Exposure (SCOPE) measures erosion and damage of EUV mirror samples, and tests cleaning recipes with a helicon plasma. The Flowing LIquid surface Retention Experiment (FLIRE) measures the He and H retention in flowing liquid metals, with retention coefficients varying between 0.001 at 500 eV to 0.01 at 4000 eV.

  18. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  19. Understanding solids: the science of materials

    CERN Document Server

    Tilley, Richard J. D.

    2013-01-01

    This edition contains new sections on the use of computing methods to solve materials problems and has been thoroughly updated to include the many developments and advances made in the past 10 years, e.g.  batteries, solar cells, lighting technology, laser...

  20. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    Science.gov (United States)

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  1. Developments in data storage materials perspective

    CERN Document Server

    Chong, Chong Tow

    2011-01-01

    "The book covers the recent developments in the field of materials for advancing recording technology by experts worldwide. Chapters that provide sufficient information on the fundamentals will be also included, so that the book can be followed by graduate students or a beginner in the field of magnetic recording. The book also would have a few chapters related to optical data storage. In addition to helping a graduate student to quickly grasp the subject, the book also will serve as a useful reference material for the advanced researcher. The field of materials science related to data storage applications (especially hard disk drives) is rapidly growing. Several innovations take place every year in order to keep the growth trend in the capacity of the hard disk drives. Moreover, magnetic recording is very complicated that it is quite difficult for new engineers and graduate students in the field of materials science or electrical engineering to grasp the subject with a good understanding. There are no compet...

  2. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  3. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  4. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  5. An experimental program on advanced robotics

    International Nuclear Information System (INIS)

    Yuan, J.S.C.; Stovman, J.; MacDonald, R.; Norgate, G.

    1987-01-01

    Remote handling in hostile environments, including space, nuclear facilities, and mines, requires hybrid systems which permit close cooperation between state of the art teleoperation and advanced robotics. Teleoperation using hand controller commands and television feedback can be enhanced by providing force-feel feedback and simulation graphics enhancement of the display. By integrating robotics features such as computer vision and force/tactile feedback with advanced local control systems, the overall effectiveness of the system can be improved and the operator workload reduced. This has been demonstrated in the laboratory. Applications such as a grappling drifting satellite or transferring material at sea are envisaged

  6. Manufacturing and material properties of ultralarge size forgings for advanced BWRPV

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Tsukada, Hisashi

    1994-01-01

    Ultralarge size forgings for the advanced boiling water reactor (ABWR) pressure vessel as represented by the bottom petal made from a 600ton ingot have been developed. The bottom petal is a larger wall thickness ring with 10 integrated nozzles inside and outside the ring. The outer diameter is 7.8m, the height is 1.8m and the wall thickness if 1.1m in the as-forged condition. A very high purity level of P≤qslant0.003% and S≤qslant0.003% can be obtained by the application of double-refining processes to all the molten steel. The forging shows a homogeneous chemical distribution, sound internal qualities and adequate impact properties.This paper summarizes the manufacturing technique and material properties of large size forgings such as the bottom petal, the shell with integrated skirt and the bottom dome. ((orig.))

  7. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  8. Acquisition of an Advanced Thermal Analysis andImaging System for Integration with Interdisciplinary Researchand Education in Low Density Organic Inorganic Materials

    Science.gov (United States)

    2017-12-02

    Report: Acquisition of an Advanced Thermal Analysis and Imaging System for Integration with Interdisciplinary Research and Education in Low Density...Agreement Number: W911NF-16-1-0475 Organization: University of Texas at El Paso Title: Acquisition of an Advanced Thermal Analysis and Imaging System ...for Integration with Interdisciplinary Research and Education in Low Density Organic-Inorganic Materials Report Term: 0-Other Email: dmisra2

  9. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  10. Fossil Energy Materials Program conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R. (comp.)

    1987-08-01

    The US Department of Energy Office of Fossil Energy has recognized the need for materials research and development to assure the adequacy of materials of construction for advanced fossil energy systems. The principal responsibility for identifying needed materials research and for establishing a program to address these needs resides within the Office of Technical Coordination. That office has established the Advanced Research and Technology Development (AR and TD) Fossil Energy Materials Program to fulfill that responsibility. In addition to the AR and TD Materials Program, which is designed to address in a generic way the materials needs of fossil energy systems, specific materials support activities are also sponsored by the various line organizations such as the Office of Coal Gasification. A conference was held at Oak Ridge, Tennessee on May 19-21, 1987, to present and discuss the results of program activities during the past year. The conference program was organized in accordance with the research thrust areas we have established. These research thrust areas include structural ceramics (particularly fiber-reinforced ceramic composites), corrosion and erosion, and alloy development and mechanical properties. Eighty-six people attended the conference. Papers have been entered individually into EDB and ERA. (LTN)

  11. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  12. Innovative Materials for Aircraft Morphing

    Science.gov (United States)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  13. Advanced materials and techniques for fibre-optic sensing

    International Nuclear Information System (INIS)

    Henderson, Philip J

    2014-01-01

    Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company – a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon

  14. Prediction of Corrosion of Advanced Materials and Fabricated Components

    Energy Technology Data Exchange (ETDEWEB)

    A. Anderko; G. Engelhardt; M.M. Lencka (OLI Systems Inc.); M.A. Jakab; G. Tormoen; N. Sridhar (Southwest Research Institute)

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  15. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  16. Abs-initio, Predictive Calculations for Optoelectronic and Advanced Materials Research

    Science.gov (United States)

    Bagayoko, Diola

    2010-10-01

    Most density functional theory (DFT) calculations find band gaps that are 30-50 percent smaller than the experimental ones. Some explanations of this serious underestimation by theory include self-interaction and the derivative discontinuity of the exchange correlation energy. Several approaches have been developed in the search for a solution to this problem. Most of them entail some modification of DFT potentials. The Green function and screened Coulomb approximation (GWA) is a non-DFT formalism that has led to some improvements. Despite these efforts, the underestimation problem has mostly persisted in the literature. Using the Rayleigh theorem, we describe a basis set and variational effect inherently associated with calculations that employ a linear combination of atomic orbitals (LCAO) in a variational approach of the Rayleigh-Ritz type. This description concomitantly shows a source of large underestimation errors in calculated band gaps, i.e., an often dramatic lowering of some unoccupied energies on account of the Rayleigh theorem as opposed to a physical interaction. We present the Bagayoko, Zhao, and Williams (BZW) method [Phys. Rev. B 60, 1563 (1999); PRB 74, 245214 (2006); and J. Appl. Phys. 103, 096101 (2008)] that systematically avoids this effect and leads (a) to DFT and LDA calculated band gaps of semiconductors in agreement with experiment and (b) theoretical predictions of band gaps that are confirmed by experiment. Unlike most calculations, BZW computations solve, self-consistently, a system of two coupled equations. DFT-BZW calculated effective masses and optical properties (dielectric functions) also agree with measurements. We illustrate ten years of success of the BZW method with its results for GaN, C, Si, 3C-SIC, 4H-SiC, ZnO, AlAs, Ge, ZnSe, w-InN, c-InN, InAs, CdS, AlN and nanostructures. We conclude with potential applications of the BZW method in optoelectronic and advanced materials research.

  17. Depleted uranium hexafluoride: The source material for advanced shielding systems

    Energy Technology Data Exchange (ETDEWEB)

    Quapp, W.J.; Lessing, P.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Cooley, C.R. [Department of Technology, Germantown, MD (United States)

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 and $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.

  18. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  19. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  20. Advanced Fuels Campaign FY 2011 Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).