WorldWideScience

Sample records for inclined silicon crystal

  1. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  2. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    International Nuclear Information System (INIS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-01-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method. (paper)

  3. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  4. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  5. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  6. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  7. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  8. Tunable photoluminescence of porous silicon by liquid crystal infiltration

    International Nuclear Information System (INIS)

    Ma Qinglan; Xiong Rui; Huang Yuanming

    2011-01-01

    The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4'-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration. - Highlights: → Liquid crystal infiltration can tune the photoluminescence of porous silicon. → Red emission of porous silicon can be switched to blue by the infiltration. → Chromaticity coordinates are calculated for the tuned emissions. → White emission is realized for porous silicon by liquid crystal infiltration.

  9. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  10. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    Science.gov (United States)

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (contact angle determination. They are characterised by small deviations of the computed values. Additional to the detailed introduction of this novel analytical approaches plus fit solution special motion relations for the drop on inclined surfaces and detailed relations about the reactivity of the freshly cleaned silicon wafer surface resulting in acceleration

  11. Future application of Czochralski crystal pulling for silicon

    Science.gov (United States)

    Matlcok, J. H.

    1985-08-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  12. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  13. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  14. Quality evaluation of resistivity-controlled silicon crystals

    Science.gov (United States)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  15. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  17. Intravitreal properties of porous silicon photonic crystals

    Science.gov (United States)

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  18. High heat load performance of an inclined crystal monochromator with liquid gallium cooling on the CHESS-ANL undulator

    International Nuclear Information System (INIS)

    Macrander, A.T.; Lee, W.K.; Smither, R.K.; Mills, D.M.

    1992-01-01

    Recent results for the performance of a novel double crystal monochromator subjected to high heat loads on an APS prototype undulator at the Cornell High Energy Synchrotron Source (CHESS) are presented. The monochromator was designed to achieve symmetric diffraction from asymmetric planes to spread out the beam footprint thereby lowering the incident power density. Both crystals had (111) oriented surfaces and were arranged such that the beam was diffracted from the (11 bar 1) planes at 5 KeV. Rocking curves with minimal distortion were obtained at a ring electron current of 100 mA. This corresponded to 380 Watts total power and an average power density of 40 Watts/mm 2 normal to the incident beam. These results are compared to data obtained from the same crystals in the standard geometry (diffracting planes parallel to surface). The footprint area in the inclined case was three times that of the standard case. We also obtained rocking curve data for the (333) reflection at 15 KeV for both standard and inclined cases, and these data also showed a minimal distortion only for the inclined case. In addition, thermal data were obtained via infrared pyrometry. Liquid gallium flow rates of up to 2 gallons per minute were investigated. The diffraction data revealed a dramatically improved performance for the inclined crystal case

  19. Silicon crystal growth using a liquid-feeding Czochralski method

    Science.gov (United States)

    Shiraishi, Yutaka; Kurosaka, Shoei; Imai, Masato

    1996-09-01

    Silicon single crystals with uniformity along the growth direction were grown using a new continuous Czochralski (CCZ) method. Polycrystalline silicon rods used as charge materials are melted by carbon heaters over a crucible without contact between the raw material and other substances. Using this method, silicon crystals with diameters as large as 6 or 8 inch and good uniformity along the growth direction were grown.

  20. Silicon Crystal Growth by the Electromagnetic Czochralski (EMCZ) Method

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-01-01

    A new method for growing silicon crystals by using electromagnetic force to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski (EMCZ) growth. An electromagnetic force in the azimuthal direction is generated in the melt by the interaction between an electric current (I) through the melt in the radial direction and a vertical magnetic field (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I = 0 to 8 A and B = 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under two conditions: I = 2.0 A and B = 0.05 T (ωm = 105 rpm); and I =0.2 A and B = 0.1 T (ωm = 15 rpm). The oxygen concentration in the crystals was 8 ×1017 atoms/cm3 for the high rotation rate and 1×1017 atoms/cm3 for the low rotation rate. The oxygen-concentration distributions in the radial direction in both crystals were more homogeneous than those in the crystals grown by conventional CZ and/or MCZ growth. This new crystal-growth method can be easily adopted for growing large-diameter silicon crystals.

  1. Tailoring of silicon crystals for relativistic-particle channeling

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Baricordi, S.; Logallo, F.; Malagu, C.; Milan, E.; Ronzoni, A.; Stefancich, M.; Martinelli, G.; Vomiero, A.

    2005-01-01

    In the last years, the research on channeling of relativistic particles has progressed considerably. A significant contribution has been provided by the development of techniques for quality improvement of the crystals. In particular, a planar etching of the surfaces of the silicon crystals proved useful to remove the superficial layer, which is a region very rich in imperfections, in turn leading to greater channeling efficiency. Micro-fabrication techniques, borrowed from silicon technology, may also be useful: micro-indentation and deposition of tensile or compressive layers onto silicon samples allow one to impart an even curvature to the samples. In this way, different topologies may be envisaged, such as a bent crystal for deflection of protons and ions or an undulator to force coherent oscillations of positrons and electrons

  2. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  3. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  4. Crystallization induced of amorphous silicon by nickel

    International Nuclear Information System (INIS)

    Schmidt, J.A; Rinaldi, P; Budini, N; Arce, R; Buitrago, R.H

    2008-01-01

    Polycrystalline silicon (pc-Si) deposited on glass substrates is a very promising material for the production of different electronic devices, like thin film transistors, active matrices or solar cells. The crystallization of the amorphous silicon to obtain pc-Si can be achieved with different processes, among which nickel-induced crystallization is because it requires low concentrations of the metal and low annealing temperatures. Nucleation and growth of crystalline silicon are measured by the formation of silicide NiSi 2 , which has a lattice constant very similar to that of Si, and acts as a seed upon which crystalline grains can develop. The size of the pc-Si final grain depends on many factors, such as the initial concentration of Ni, the annealing time and temperature, and the presence of other atoms in the Si structure. This work presents a study on the influence of these parameters on the silicon crystallization process induced by Ni. We deposited a series of hydrogenated amorphous silicon samples (a-Si:H) on glass substrates, using the plasma-enhanced chemical vapor deposition method (PE-CVD) with silane gas (SiH 4 ). The deposition temperature was 200 o C, and we prepared intrinsic samples (i), lightly doped with boron (p), heavily doped with boron (p + ) and heavily doped with phosphorous (n + ). Each sample was divided into eight portions, depositing different concentrations of Ni into each one using the cathodic sputtering method. The concentration of Ni was determined by atomic adsorption spectroscopy, and included from 1.5 1 0 15 to 1.5 1 0 16 at/cm 2 . Later the samples were submitted to different thermal treatments in a circulating nitrogen atmosphere. In order to avoid violent dehydrogenation of the a-Si:H that damages the samples, the annealing was carried out gradually. In a first stage the samples were heated at a velocity of 0.5 o C /min up to 400 o C, holding them for 24 hrs at this temperature in order to reach hydrogen effusion. Heating

  5. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  6. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  7. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  8. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    Science.gov (United States)

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

  9. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-01-01

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics

  10. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  11. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  12. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  13. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending......, filters, sensors, and photodetectors utilizing silicon photonic platforms....... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators...

  14. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  15. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  16. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    Science.gov (United States)

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  17. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  18. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    . Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors....... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  19. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    International Nuclear Information System (INIS)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena; Warga, Joe; Li Rui; Dal Negro, Luca

    2008-01-01

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of ∼6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence

  20. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe; Andrä, Gudrun [Leibniz-Institut für Photonische Technologien, PF 100239, 07702 Jena (Germany); Himmerlich, Marcel; Krischok, Stefan [Institut für Mikro-und Nanotechnologien, Technische Universität Ilmenau, PF 100565, 98684 Ilmenau (Germany)

    2016-01-28

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) or silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  1. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    International Nuclear Information System (INIS)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-01-01

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics

  2. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  3. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  4. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    Science.gov (United States)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  5. Silicon photonic crystal all-optical logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yulan [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2013-01-03

    All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.

  6. Analysis of the crystalline characteristics of nc-Si:H thin film using a hyperthermal neutral beam generated by an inclined slot-excited antenna

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-Bae; Kim, Young-Woo; Kim, Dae Chul; Kim, Jongsik; Hong, Seung Pyo; Yoo, Suk Jae; Oh, Kyoung Suk, E-mail: ksoh@nfri.re.kr

    2013-11-29

    The deposition of hydrogenated nano-crystal silicon (nc-Si:H) thin film for manufacturing quantum dot solar cells, which has received attention due to the use of this film third-generation solar cells, is studied here. A hyperthermal neutral beam (HNB) generated by an inclined slot-excited antenna plasma source is used to reduce damage to the silicon thin film and deposition of the crystalline thin film is carried out on a substrate at a low temperature (< 200 °C). The size and the crystalline fraction of the nc-Si:H of the deposited thin film were analyzed by scanning transmission electron microscopy and a Raman microscope. As a result, silicon crystals 1–10 nm in size were observed in the amorphous silicon matrix. According to previous studies, the size and the crystalline fraction of nc-Si:H in deposited thin films increase as the hydrogen flow rate is increased. However, the increment of hydrogen flow rate decreases the deposition rate rapidly. The size and the crystalline fraction of nc-Si:H are adjustable by varying the substrate temperature and HNB energy without a change of the hydrogen flow rate. There are optimum conditions between the HNB energy and the substrate temperature for an appropriate amount of nc-Si:H in silicon thin film. - Highlights: • The appropriate hyperthermal neutral beam energy seems to assist film formation. • The Si crystal size can be adjusted by varying hyperthermal neutral beam energy. • The nc-Si:H 1 ∼ 10 in nm size was observed in the amorphous silicon matrix.

  7. Experimental studies on using silicon photodiode as read-out component of CsI(Tl) crystal

    International Nuclear Information System (INIS)

    He Jingtang; Chen Duanbao; Li Zuhao; Mao Yufang; Dong Xiaoli

    1996-01-01

    Experimental studies on using silicon photodiode as the read-out component of CsI(Tl) crystal are reported. The read-out properties of two different types of silicon photodiode produced by Hamamatsu were measured, including relations between energy resolution and bias, shaping time, sensitive area of photodiode and the dimension of the crystal

  8. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  9. Three-dimensional modelling of thermal stress in floating zone silicon crystal growth

    Science.gov (United States)

    Plate, Matiss; Krauze, Armands; Virbulis, Jānis

    2018-05-01

    During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.

  10. Irradiation of electron with high energy induced micro-crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Zhong Yule; Huang Junkai; Liu Weiping; Li Jingna

    2001-01-01

    Amorphous silicon is amorphous alloy of Si-H. It is random network of silicon with some hydrogen. And its structure has many unstable bonds as weak bonds of Si-Si and distortion bonds of all kinds. The bonds was broken or was out of shape by light and electrical ageing. It induced increase of defective state that causes character of material going to bad. This drawback will be overcome after micro-crystallization of amorphous silicon. It was discovered that a-Si:H was micro-crystallized by irradiated of electrons with energy of 0.3-0.5 MeV, density of electronic beam of 1.3 x 10 19 cm -1 s -1 and irradiated time of 10-600 s. Size of grain is 10-20 nm. Thick of microcrystalline lager is 25-250 nm

  11. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    Science.gov (United States)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  12. Inclined monochromator for high heat-load synchrotron x-ray radiation

    Science.gov (United States)

    Khounsary, Ali M.

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  13. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  14. Aggregation performance of CdO grains grown on surface of N silicon crystal

    International Nuclear Information System (INIS)

    Zhang Jizhong; Zhao Huan

    2010-01-01

    Four kinds of aggregation patterns of CdO grains were formed on the surface of N silicon substrate heated at 580 deg. C for 1 h in an evaporation-deposition device. They were ellipse-shaped or quasi-circular-shaped aggregate, long ribbon-shaped aggregate, long chain-shaped or long double-chain-shaped aggregate, and long ellipse-chain-shaped aggregate. These aggregates consisted of numerous grains or tiny crystals, and deposited on top of the CdO bush-like long crystal clusters grown earlier. They exhibited clearly spontaneous self-organization aggregation performance. Surface defects of the virgin N silicon crystal were analyzed, and mechanism of the self-organization aggregation was discussed with a defect induced aggregation (DIA) model.

  15. Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon

    International Nuclear Information System (INIS)

    Wang, J.Y.; He, D.; Zhao, Y.H.; Mittemeijer, E.J.

    2006-01-01

    It has been shown experimentally that the grain boundaries in aluminium in contact with amorphous silicon are the necessary agents for initiation of the crystallization of silicon upon annealing temperatures as low as 438 K. Thermodynamic analysis has shown (i) that Si can 'wet' the Al grain boundaries due to the favorable Si/Al interface energy as compared to the Al grain-boundary energy and (ii) that Si at the Al grain boundaries can maintain its amorphous state up to a thickness of about 1.0 nm. Beyond that thickness crystalline Si develops at the Al grain boundaries

  16. Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Sanford, T.W.L.; Mock, R.C.; Leeper, R.J.; Chandler, G.A.; Bailey, J.E.; McKenney, J.L.; Mehlhorn, T.A.; Seaman, J.F.; McGurn, J.; Schroen, D.; Russell, C.; Lake, P.E.; Jobe, D.O.; Gilliland, T.; Nielsen, D.S.; Lucas, J.; Moore, T.; Torres, J.A.; MacFarlane, J.J.; Apruzese, J.P.; Chrien, R.; Idzorek, G.; Peterson, D.L.; Watt, R.

    2005-01-01

    We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm3 densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/μs. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top

  17. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  18. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  19. Radiation emission phenomena in bent silicon crystals: Theoretical and experimental studies with 120 GeV/c positrons

    International Nuclear Information System (INIS)

    Lietti, D.; Bagli, E.; Baricordi, S.; Berra, A.; Bolognini, D.; Chirkov, P.N.; Dalpiaz, P.; Della Mea, G.; De Salvador, D.; Hasan, S.; Guidi, V.; Maisheev, V.A.

    2012-01-01

    The radiation emission phenomena in bent silicon crystals have been thoroughly investigated at the CERN SPS-H4 beamline. The incoming and outgoing trajectories of charged particles impinging on a silicon strip crystal have been reconstructed by high precision silicon microstrip detectors. A spectrometer method has been exploited to measure the radiation emission spectra both in volume reflection and in channeling. The theoretical method used to evaluate the photon spectra is presented and compared with the experimental results.

  20. Molecular dynamics studies of the ion beam induced crystallization in silicon

    International Nuclear Information System (INIS)

    Marques, L.A.; Caturla, M.J.; Huang, H.

    1995-01-01

    We have studied the ion bombardment induced amorphous-to-crystal transition in silicon using molecular dynamics techniques. The growth of small crystal seeds embedded in the amorphous phase has been monitored for several temperatures in order to get information on the effect of the thermal temperature increase introduced by the incoming ion. The role of ion-induced defects on the growth has been also studied

  1. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    Energy Technology Data Exchange (ETDEWEB)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-15

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  2. Automatically controlled facilities for irradiation of silicon crystals at the Rossendorf Research Reactor

    International Nuclear Information System (INIS)

    Ross, R.

    1988-01-01

    This report describes the facilities for neutron transmutation doping of silicon in GDR. The irradiation of silicon single crystals began at Rossendorf in 1978 with simple equipment. Only a small amount of silicon could be irradiated in it. The fast increasing need of NTD-silicon made it necessary to design and construct new and better facilities. The new facilities are capable of irradiating silicon from 2'' to 3'' in diameter. The irradiation process takes place automatically with the assistance of a computer. Material produced has an axial homogeneity of ± 7%. Irradiation riggs, techniques, irradiation control and quality control are discussed. (author). 4 figs

  3. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  4. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  5. Photoluminescence at room temperature of liquid-phase crystallized silicon on glass

    Directory of Open Access Journals (Sweden)

    Michael Vetter

    2016-12-01

    Full Text Available The room temperature photoluminescence (PL spectrum due band-to-band recombination in an only 8 μm thick liquid-phase crystallized silicon on glass solar cell absorber is measured over 3 orders of magnitude with a thin 400 μm thick optical fiber directly coupled to the spectrometer. High PL signal is achieved by the possibility to capture the PL spectrum very near to the silicon surface. The spectra measured within microcrystals of the absorber present the same features as spectra of crystalline silicon wafers without showing defect luminescence indicating the high electronic material quality of the liquid-phase multi-crystalline layer after hydrogen plasma treatment.

  6. Liquid gallium cooling of silicon crystals in high intensity photon beams

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1989-01-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator

  7. Photonic and plasmonic guided modes in graphene-silicon photonic crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...... and photonic modes....

  8. A new series of two-dimensional silicon crystals with versatile electronic properties

    Science.gov (United States)

    Chae, Kisung; Kim, Duck Young; Son, Young-Woo

    2018-04-01

    Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.

  9. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cusatis, Cesar; Souza, Paulo E.N. [Universidade Federal do Parana (LORXI/UFPR), Curitiba, PR (Brazil). Dept. de Fisica. Lab. de Optica de Raios X e Instrumentacao; Franco, Margareth Kobayaski; Kakuno, Edson [Laboratorio Nacional de Luz Sincroton (LNLS), Campinas, SP (Brazil); Gobbi, Angelo; Carvalho Junior, Wilson de [Centro de Pesquisa e Desenvolvimento em Telecomunicacoes (CPqD), Campinas, SP (Brazil)

    2011-07-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  10. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  11. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  12. Visual Sensor for Sterilization of Polymer Fixtures Using Embedded Mesoporous Silicon Photonic Crystals.

    Science.gov (United States)

    Kumeria, Tushar; Wang, Joanna; Chan, Nicole; Harris, Todd J; Sailor, Michael J

    2018-01-26

    A porous photonic crystal is integrated with a plastic medical fixture (IV connector hub) to provide a visual colorimetric sensor to indicate the presence or absence of alcohol used to sterilize the fixture. The photonic crystal is prepared in porous silicon (pSi) by electrochemical anodization of single crystal silicon, and the porosity and the stop band of the material is engineered such that the integrated device visibly changes color (green to red or blue to green) when infiltrated with alcohol. Two types of self-reporting devices are prepared and their performance compared: the first type involves heat-assisted fusion of a freestanding pSi photonic crystal to the connector end of a preformed polycarbonate hub, forming a composite where the unfilled portion of the pSi film acts as the sensor; the second involves generation of an all-polymer replica of the pSi photonic crystal by complete thermal infiltration of the pSi film and subsequent chemical dissolution of the pSi portion. Both types of sensors visibly change color when wetted with alcohol, and the color reverts to the original upon evaporation of the liquid. The sensor performance is verified using E. coli-infected samples.

  13. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.

    2008-01-01

    The authors present the fabrication and optical investigation of Silicon on Insulator photonic crystal drop-filters for use as refractive index sensors. Two types of defect nanocavities (L3 and H1-r) are embedded between two W1 photonic crystal waveguides to evanescently route light at the cavity...... mode frequency between input and output waveguides. Optical characterization of the structures in air and various liquids demonstrate detectivities in excess of n=n = 0:018 and n=n = 0:006 for the H1-r and L3 cavities, respectively. The measured cavity-frequencies and detector refractive index...... responsivities are in good agreement with simulations, demonstrating that the method provides a background free transducer signal with frequency selective addressing of a specic area of the sensor chip....

  14. Selective tuning of high-Q silicon photonic crystal nanocavities via laser-assisted local oxidation.

    Science.gov (United States)

    Chen, Charlton J; Zheng, Jiangjun; Gu, Tingyi; McMillan, James F; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee Wei

    2011-06-20

    We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×10(5) to 1.2×10(5). Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

  15. Transverse wave propagation in [ab0] direction of silicon single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sang Jin; Kim, Hye Jeong; Kwon, Se Ho; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan(Korea, Republic of)

    2015-12-15

    The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was 7.2 degree angle. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as 7.14 degree angle, and it was measured as 9.76 degree angle. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

  16. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  17. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  18. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    Science.gov (United States)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  19. High-voltage electron-microscopical observation of crack-tip dislocations in silicon crystals

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Higashida, Kenji

    2005-01-01

    Crack-tip dislocations in silicon single crystals were observed by high-voltage electron microscopy. Cracks were introduced into silicon wafers at room temperature by a Vickers indenter. The indented specimens were annealed at 823 K in order to activate dislocation emission from the crack tip under the residual stress due to the indentation. In the specimen without annealing, no dislocations were observed around the crack. On the other hand, in the specimen after the annealing, the aspect of the early stage of dislocation emission was observed, where dislocations were emitted not as a perfect dislocation but as a partial dislocation in the hinge-type plastic zone. Prominent dislocation arrays that were emitted from a crack tip were also observed, and they were found to be of shielding type, which increases the fracture toughness of those crystals

  20. Fabrication of polycrystalline silicon thin films on glass substrates using fiber laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Dao, Vinh Ai; Han, Kuymin; Heo, Jongkyu; Kyeong, Dohyeon; Kim, Jaehong; Lee, Youngseok; Kim, Yongkuk; Jung, Sungwook; Kim, Kyunghae [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.k [Information and Communication Device Laboratory, School of Information and Communication Engineering, Sungkyunkwan University (Korea, Republic of)

    2009-05-29

    Laser crystallization of amorphous silicon (a-Si), using a fiber laser of {lambda} = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave ({lambda} = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeO{sub x}, a-SiN{sub x}, and a-SiO{sub x}) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiO{sub x} as the capping layer.

  1. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  2. Phosphorus diffusion in float zone silicon crystal growth

    DEFF Research Database (Denmark)

    Larsen, Theis Leth

    2000-01-01

    This Ph.D thesis encompasses a global numerical simulation of the needle-eye oat zone process, used to grow silicon single crystals. The numerical models includes coupled electromagnetic and free surface models and a global heat transfer model, with moving boundaries. An axisymmetric uidow model......, including centrifugal, buoyancy, thermocapillary and electromagnetic forces, is used to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite element model for calculating dopant transport, using the calculated unsteady flow field, has been developed...... within this project. This model has furthermore been expanded to two equations coupled by a non-zero right hand side, for simulating transport of point defects in the crystal during growth. Free surface shapes and induced electric surface current are calculated for t wo different 4'' congurations and a 0...

  3. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Wong, Chee Wei; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  4. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  5. Specific features of doping with antimony during the ion-beam crystallization of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pashchenko, A. S., E-mail: as.pashchenko@gmail.com; Chebotarev, S. N.; Lunin, L. S. [Russian Academy of Sciences, Southern Scientific Center (Russian Federation); Irkha, V. A. [Special Engineering and Technology Department “Inversiya” Ltd. (Russian Federation)

    2016-04-15

    A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 10{sup 18} cm{sup –3} are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~10{sup 0} to ~10{sup –3}.

  6. 10 Gb/s operation of photonic crystal silicon optical modulators.

    Science.gov (United States)

    Nguyen, Hong C; Sakai, Yuya; Shinkawa, Mizuki; Ishikura, Norihiro; Baba, Toshihiko

    2011-07-04

    We report the first experimental demonstration of 10 Gb/s modulation in a photonic crystal silicon optical modulator. The device consists of a 200 μm-long SiO2-clad photonic crystal waveguide, with an embedded p-n junction, incorporated into an asymmetric Mach-Zehnder interferometer. The device is integrated on a SOI chip and fabricated by CMOS-compatible processes. With the bias voltage set at 0 V, we measure a V(π)L pseudo-random bit sequence signal. An open eye pattern is observed at bitrates of 10 Gb/s and 2 Gb/s, with and without pre-emphasis of the drive signal, respectively.

  7. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan; Wong, Chee Wei

    2016-01-01

    We demonstrate the enhanced fast photoresponsivity in graphene hybrid structures by combining the ultrafast dynamics of graphene with improved light-matter interactions in slow-light photonic crystal waveguides. With a 200 μm interaction length, a 0.8 mA/W photoresponsivity is achieved in a graphene-silicon Schottky-like photodetector, with an operating bandwidth in excess of 5 GHz and wavelength range at least from 1480 nm to 1580 nm. Fourfold enhancement of the photocurrent is observed in the slow light region, compared to the wavelength far from the photonic crystal bandedge, for a chip-scale broadband fast photodetector.

  8. Sensitivity of triple-crystal X-ray diffractometers to microdefects in silicon

    International Nuclear Information System (INIS)

    Molodkin, V.B.; Olikhovskii, S.I.; Len, E.G.; Kislovskii, E.N.; Kladko, V.P.; Reshetnyk, O.V.; Vladimirova, T.P.; Sheludchenko, B.V.

    2009-01-01

    The dynamical theory, which describes both diffraction profiles and reciprocal space maps measured from imperfect crystals with account for instrumental factors of triple-crystal diffractometer (TCD), has been developed for adequate quantitative characterization of microdefects. Analytical expressions for coherent and diffuse scattering (DS) intensities measured by TCD in the Bragg diffraction geometry have been derived by using the generalized statistical dynamical theory of X-ray scattering in real single crystals with randomly distributed defects. The DS intensity distributions from single crystals containing clusters and dislocation loops have been described by explicit analytical expressions. Particularly, these expressions take into account anisotropy of displacement fields around defects with discrete orientations. Characteristics of microdefect structures in silicon single crystals grown by Czochralsky- and float-zone methods have been determined by analyzing the measured TCD profiles and reciprocal space maps. The sensitivities of reciprocal space maps and diffraction profiles to defect characteristics have been compared. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  10. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  11. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    Science.gov (United States)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  12. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  13. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  14. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  15. Role of edge inclination in an optical microdisk resonator for label-free sensing.

    Science.gov (United States)

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-02-26

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.

  16. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  17. Apparent temperature versus true temperature of silicon crystals as a function of their thickness using infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-01-01

    The very high intensity x-ray beams that will be present at the Advanced Photon Source and other third generation synchrotron sources will require that the first optical element in the beamline and, possibly, the second optical element as well, be cooled to remove the heat deposited by the x-ray beam. In many of the beamlines this heat will be in the 1 to 5 kW range, and any failure of the cooling system will require a quick response from safety control circuits to shut off the beam before damage is done to the optical element. In many cases, this first optical element will be a silicon diffraction crystal. Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperatures on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  18. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  19. Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing

    OpenAIRE

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-01-01

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the devic...

  20. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    Directory of Open Access Journals (Sweden)

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  1. Role of Laser Power, Wavelength, and Pulse Duration in Laser Assisted Tin-Induced Crystallization of Amorphous Silicon

    Directory of Open Access Journals (Sweden)

    V. B. Neimash

    2018-01-01

    Full Text Available This work describes tin-induced crystallization of amorphous silicon studied with Raman spectroscopy in thin-film structures Si-Sn-Si irradiated with pulsed laser light. We have found and analyzed dependencies of the nanocrystals’ size and concentration on the laser pulse intensity for 10 ns and 150 μm duration laser pulses at the wavelengths of 535 nm and 1070 nm. Efficient transformation of the amorphous silicon into a crystalline phase during the 10 ns time interval of the acting laser pulse in the 200 nm thickness films of the amorphous silicon was demonstrated. The results were analyzed theoretically by modeling the spatial and temporal distribution of temperature in the amorphous silicon sample within the laser spot location. Simulations confirmed importance of light absorption depth (irradiation wavelength in formation and evolution of the temperature profile that affects the crystallization processes in irradiated structures.

  2. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chen Ruling; Luo Jianbin; Guo Dan; Lu Xinchun

    2008-01-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages

  3. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally...... in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  4. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  5. Annihilation of unthermalized positrons in a silicon single crystal at 770K

    International Nuclear Information System (INIS)

    Zaitsev, Yu.E.; Mungir, L.; Ue'pe, L.R.

    1984-01-01

    A model is considered for the annihilation of nonrelativistic positrons from quantized states in lattice channels. Annihilation gamma rays of energy over 511 keV have been observed when the positrons from an Na 22 source strike a silicon single crystal at 77 0 K. The experimental results agree well with the proposed model

  6. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Polarized photons from a silicon crystal in a 31 GeV electron beam at the Serpukhov proton accelerator

    International Nuclear Information System (INIS)

    Frolov, A.M.; Maisheev, V.A.; Arakelyan, E.A.; Armaganyan, A.A.; Avakyan, R.O.; Bayatyan, G.L.; Grigoryan, N.K.; Kechechyan, A.O.; Knyazyan, S.G.; Margaryan, A.T.

    1980-01-01

    Tagged photons coherently emitted in a silicon crystal by the 31 GeV electron beam of intensity 4 x 10 4 ppp and beam pulse duration of up to 1.7 s have been obtained at the Serpukhov proton accelerator. The photon intensities were I approx. 10 -1 - 10 -2 γ/e - in five almost equal energy bins within the total range k = (8.2-24.2) GeV. The calculated linear polarizations were P approx. 50-20%, respectively. Narrow peaks in the radiation intensity were observed when varying the orientation of a silicon crystal which could not be explained. The method for the experimental alignment of a crystal in electron beams at the proton accelerator has been described. (orig.)

  9. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  10. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  11. Liquid gallium cooling of silicon crystals in high intensity photon beam

    International Nuclear Information System (INIS)

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab

  12. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  13. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  14. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  15. ANSYS program and re-validation of the thermal analysis of the Cornell silicon crystal

    International Nuclear Information System (INIS)

    Khounsary, A.; Kuzay, T.

    1992-01-01

    Thermal analysis of the Cornell three-channel silicon crystal is carried out using the ANSYS finite element program. Results are in general agreement with those previously obtained using the Transient Heat Transfer, version B (THTB) program. The main thrust of the present study has been to (a) explore the thermal analysis potentials of the ANSYS program in solving thermal hydraulic problems in the APS beamline design, (b) compare the ANSYS results with those obtained by THTB for a specific test crystal, and (c) obtain some cost benchmarks for the ANSYS program. On the basis of a limited number of test runs for the silicon crystal problem, conclusions can be drawn that (a) except for conduction problems with simple boundary conditions the utility of ANSYS for solving a variety of three-dimensional thermal hydraulic problems is at best limited, (b) in comparison with THTB program, ANSYS requires a more detailed modeling (with increasing computation time) for comparably accurate results, and (c) no firm statement regarding the cost factor can be made at this time although the ANSYS program appears to be more expensive than any other code we have used so far

  16. Analysis of the inclination method for investigating the pendelloesung interferences of neutron beams and X-rays

    International Nuclear Information System (INIS)

    Belova, N.E.; Somenkov, V.A.; Utemisov, K.; Shilshtein, S.Sh.

    1983-01-01

    Pendelloesung interferences in a wide range of crystal thicknesses and extinction lengths can be measured by the inclination method. The positions of the extrema of intensity coincide well with the calculated ones but the observed contrast of the oscillations is considerably weaker than the theoretical one. A mathematical model is given, taking into account the influence of several factors which characterize the incident radiation as well as the crystal examined. From this follows, that the inclination method is insensitive to many disturbing factors, and therefore it can be used for metrological purposes. (author)

  17. Redistribution of erbium during the crystallization of buried amorphous silicon layers

    International Nuclear Information System (INIS)

    Aleksandrov, O.V.; Nikolaev, Yu.A.; Sobolev, N.A.; Sakharov, V.I.; Serenkov, I.T.; Kudryavtsev, Yu.A.

    1999-01-01

    The redistribution of Er during its implantation in silicon at doses close to the amorphization threshold and its subsequent solid-phase epitaxial (SPE) crystallization is investigated. The formation of a buried amorphous (a) layer is discovered at Er doses equal to 5x10 13 and 1x10 14 cm -2 using Rutherford backscattering. The segregation of Er in this case takes place inwardly from the two directions corresponding to the upper and lower boundaries of the buried αlayer and leads to the formation of a concentration peak at the meeting place of the two crystallization fronts. A method for calculating the coordinate dependence of the segregation coefficient k from the distribution profiles of the erbium impurity before and after annealing is proposed. The k(x) curve exhibits a drop, whose width increases with decreasing Er implantation dose. Its appearance is attributed to the nonequilibrium nature of the segregation process at the beginning of SPE crystallization

  18. EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Auger, J.M. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A.; Montgomery, P.C. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Maurice, C. [SMS Centre, UMR CNRS 5146, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint Etienne Cedex 2 (France); Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg Cedex 2 (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    Among the methods for enlarging the grain size of polycrystalline silicon (poly-Si) thin films, aluminium induced crystallization (AIC) of amorphous silicon is considered to be a very promising approach. In the AIC process, a thin a-Si layer on top of an aluminium layer crystallizes at temperatures well below the eutectic temperature of the Al/Si system (T{sub eu} = 577 deg. C). By means of electron backscattering diffraction (EBSD), we have mainly studied the effect of the aluminium layer quality varying the deposition system on the grain size, the defects and the preferential crystallographic orientation. We have found a strong correlation between the mean grain size and the size distribution with the Al deposition system and the surface quality. Furthermore, we show for the first time that more than 50% of the surface of the AIC films grown on alumina substrates are (103) preferentially oriented, instead of the commonly observed (100) preferential orientation. This may have important consequences for epitaxial thickening of the AIC layer into polysilicon absorber layers for solar cells.

  19. Influence of the crystal-surface unevenness on the angular spread of an x-ray diffracted beam

    International Nuclear Information System (INIS)

    Hrda, JaromIra; Potlovskiy, Kirill; Hrdy, JaromIr; Slechtova, Venceslava

    2005-01-01

    One of the factors influencing the focus size in diffractive-refractive optics is the quality of diffracting surface. If the surface is uneven, as it is when the silicon crystal surface is only etched, then the diffraction at each point of the surface is a combination of an asymmetric and inclined diffraction (general asymmetric diffraction). This somewhat deviates and spreads the diffracted beam. The integration over the surface hit by an incident beam gives the angular spread of the diffracted beam. It is shown theoretically that in some cases (highly asymmetric, highly inclined cut) the etched surface may create the spread of the diffracted beam such that it causes a significant broadening of the focus. In this case a mechanical-chemical polishing is necessary. This has been verified by us earlier in a preliminary experiment with synchrotron radiation. In this work the new experiment with the same crystals is performed using double crystal (+, -) arrangement and a laboratory x-ray source (CuKα radiation). We compared two samples; one of them is mechanically-chemically (MC) polished and thus the diffracting surface is almost perfect; the other is only etched. This experiment allows a better comparison of the result with the theory. The difference between the measured rocking curve widths for the etched and MC polished crystals (10'') roughly agrees with theory (7''), which supports the correctness of the theoretical approach

  20. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    International Nuclear Information System (INIS)

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-01-01

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10 6 ) photonic crystal cavities with low mode volume (V m  = 1.062 × (λ/n) 3 ), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10 3

  1. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  2. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    CERN Document Server

    Scandale, Walter; Carnera, Alberto; Della Mea, Gianantonio; De Salvador, Davide; Milan, Riccardo; Vomiero, Alberto; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli,Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik; Afonin, Alexander G; Baranov, Vladimir T; Chesnokov, Yury A; Kotov, Vladilen I; Maisheev, Vladimir A; Yaznin, Igor A; Afansiev, Sergey V; Kovalenko, Alexander D; Taratin, Alexander M; Denisov, Alexander S; Gavrikov, Yury A; Ivanov, Yuri M; Ivochkin, Vladimir G; Kosyanenko, Sergey V; Petrunin, Anatoli A; Skorobogatov, Vyacheslav V; Suvorov, Vsevolod M; Bolognini, Davide; Foggetta,Luca; Hasan, Said; Prest, Michela

    2007-01-01

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  3. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  4. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  5. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  6. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    International Nuclear Information System (INIS)

    Mokhtari, F; Bouabdallah, A; Zizi, M; Hanchi, S; Alemany, A

    2010-01-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  7. Forced and thermocapillary convection in silicon Czochralski crystal growth in semispherical crucible

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F [Physics Department, Faculty of Science, University of Mouloud Mammeri, Tizi Ouzou (Algeria); Bouabdallah, A; Zizi, M [LTSE Laboratory, University of Science and Technology USTHB. BP 32 Elalia, Babezzouar, Algiers (Algeria); Hanchi, S [UER Mecanique/ E.M.P B.P 17, Bordj El Bahri, Algiers (Algeria); Alemany, A, E-mail: abouab2002@yahoo.f [Laboratoire EPM, CNRS, Grenoble (France)

    2010-03-01

    In order to understand the influence of a semispherical crucible geometry combined with different convection modes as a thermocapillary convection, natural convection and forced convection, induced by crystal rotation, on melt flow pattern in silicon Czochralski crystal growth process, a set of numerical simulations are conducted using Fluent Software. We solve the system of equations of heat and momentum transfer in classical geometry as cylindrical and modified crystal growth process geometry as cylindro-spherical. In addition, we adopt hypothesis adapted to boundary conditions near the interface and calculations are executed to determine temperature, pressure and velocity fields versus Grashof and Reynolds numbers. The analysis of the obtained results led to conclude that there is advantage to modify geometry in comparison with the traditional one. The absence of the stagnation regions of fluid in the hemispherical crucible corner and the possibility to control the melt flow using the crystal rotation enhances the quality of the process comparatively to the cylindrical one. The pressure field is strongly related to the swirl velocity.

  8. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  9. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    Science.gov (United States)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  10. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  11. Continuous Czochralski growth: Silicon sheet growth development of the large area sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Johnson, C. M.

    1980-12-01

    The growth of 100 kg of silicon single crystal material, ten cm in diameter or greater, and 150 kg of silicon single crystal material 15 cm or greater utilizing one common silicon container material (one crucible) is investigated. A crystal grower that is recharged with a new supply of polysilicon material while still under vacuum and at temperatures above the melting point of silicon is developed. It accepts large polysilicon charges up to 30 kg, grows large crystal ingots (to 15 cm diameter and 25 kg in weight), and holds polysilicon material for recharging (rod or lump) while, at the same time, growing crystal ingots. Special equipment is designed to recharge polysilicon rods, recharge polysilicon lumps, and handle and store large, hot silicon crystal ingots. Many continuous crystal growth runs were performed lasting as long as 109 hours and producing as many as ten crystal ingots, 15 cm with weights progressing to 27 kg.

  12. Combined effects of crucible geometry and Marangoni convection on silicon Czochralski crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Unit of Developpement of Silicon Technologie, Algiers (Algeria); Bouabdallah, A.; Zizi, M. [LTSE Laboratory, University of Science and Technology USTHB., Babezzouar, Algiers (Algeria); Hanchi, S. [UER Mecanique/ E.M.P/ B.P, El Bahri/Alger (Algeria); Alemany, A. [Laboratoire EPM, CNRS, Grenoble (France)

    2009-08-15

    In order to understand the influence of crucible geometry combined with natural convection and Marangoni convection on melt flow pattern, temperature and pressure fields in silicon Czochralski crystal growth process, a set of numerical simulations was conducted. We carry out calculation enable us to determine temperature, pressure and velocity fields in function of Grashof and Marangoni numbers. The essential results show that the hemispherical geometry of crucible seems to be adapted for the growth of a good quality crystal and the pressure field is strongly affected by natural and Marangoni convection and it is more sensitive than temperature. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  14. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  15. Selective formation of porous silicon

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  16. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  17. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  18. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  19. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  20. Thermal detection of single e-h pairs in a biased silicon crystal detector

    Science.gov (United States)

    Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.

    2018-01-01

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.

  1. Thermal neutron scattering kernels for sapphire and silicon single crystals

    International Nuclear Information System (INIS)

    Cantargi, F.; Granada, J.R.; Mayer, R.E.

    2015-01-01

    Highlights: • Thermal cross section libraries for sapphire and silicon single crystals were generated. • Debye model was used to represent the vibrational frequency spectra to feed the NJOY code. • Sapphire total cross section was measured at Centro Atómico Bariloche. • Cross section libraries were validated with experimental data available. - Abstract: Sapphire and silicon are materials usually employed as filters in facilities with thermal neutron beams. Due to the lack of the corresponding thermal cross section libraries for those materials, necessary in calculations performed in order to optimize beams for specific applications, here we present the generation of new thermal neutron scattering kernels for those materials. The Debye model was used in both cases to represent the vibrational frequency spectra required to feed the NJOY nuclear data processing system in order to produce the corresponding libraries in ENDF and ACE format. These libraries were validated with available experimental data, some from the literature and others obtained at the pulsed neutron source at Centro Atómico Bariloche

  2. Gamma-stimulated modification of structure and mechanical properties of silicon crystals

    International Nuclear Information System (INIS)

    Khaydarov, T.K.; Khamraeva, R.N.; Rustamova, V.M.; Ibragimova, E.M.; Kalanov, M.U.; Abdurakhimov, A.A.; Abdurakhmanov, A.A.

    2004-01-01

    Full text: The paper presents the results of gamma-irradiation effect on the fine structure and mechanical properties of silicon crystals. The objects of researches were p-Si single crystals with the following characteristics: ρ ≅ 10Ω · cm; N D ≅ 10 2 cm -2 ; N O ≅ 10 17 cm -3 ; N B ≅ 6· 10 15 cm -3 . The plate size were 20.8·4.1· 1.2 mm 3 with the surface oriented along {111}. The structure was studied at the diffractometer DRON-UM1 with CuK α - radiation ( λ = 0.1542 nm). The intrinsic friction (Q -1 ) of the samples was measured with the ultra-sonic resonance technique at the frequency of 148 kHz of the plate bending oscillations. The samples were irradiated at the INP AS RUz 60 Co gamma-facility (E γ ≅ 1.2 MeV) in the dose range of 10 1 † 10 7 Gy at 320 K. The dose dependence of Q -1 had a non-monotonous character. The irradiation to the dose of 5·10 3 Gy resulted in increasing the initial value of Q -1 due to irradiation induced growth of the point defect concentration and accumulating of the elastic lattice strains. It is also evidenced by the symmetric broadening of the structure reflection (111). At the dose of 5 ·10 3 Gy the strain value seems to gain the upper fluidity limit of (6 †15) ·10 -8 N/m 2 , after which a weak splitting of the (111) reflection appears, meaning the beginning of twin formation in the form of insertion stock defects with partial dislocations. At dose increasing to 10 4 Gy the twins cause the sharp drop of Q -1 , related with decreasing of the elastic strains, which stops at the dose of 5·10 4 Gy probably due to reaching the lower limit of fluidity for silicon ((1† 4) · 10 -8 N/m 2 ), when the process of the twin defect formation completes. This mechanism is confirmed by the total splitting of the structure peak (111) and practical independence of Q -1 on dose till 10 7 Gy. Thus, gamma-irradiation in the studied dose range modifies the existing lattice imperfectness, that influences upon both mechanical

  3. Characterisation and stabilisation of the surface region of a highly polished silicon crystal sphere

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.

    1999-01-01

    Full text: Typically a single crystal silicon wafer has a native oxide layer a few nm thick which changes slowly with time. A number of parameters such as hydrocarbons, water vapour, storage environment can affect this layer. The thickness of the layer is also orientation dependent. In the case of a silicon sphere the situation becomes more complex, because all orientations are present and the process of polishing involves a higher pressure and also high local temperatures. A highly polished single crystal sphere 93.6 mm in diameter is being used to determine the Avogadro constant with an uncertainty of ≤ 1 x 10 -8 . This will then be used to obtain an atomic definition of the kilogram. The composition and structure of the surface oxide layer play an important role in this measurement. Firstly the density of the oxide layer is different from that of silicon. Secondly since the diameter is measured by optical interferometry, corrections must be applied for the phase change in the reflected light beam due to the surface layer. Thirdly the orientation dependence of the layer complicated the corrections to be applied. Fourthly if measurements are made over a period of time, any changes in the surface layer must be taken into account. Given the accuracy required in the determination, the surface layer is a determining factor in the final result. A number of techniques such as spectroscopic ellipsometry and ion beam analysis are being used to study the composition and structure of the surface of a silicon sphere. Cleaning techniques such as HF and low temperature ultraviolet (ozone) are being developed to produce a clean surface. The next step involves deposition of a stable and uniform surface oxide layer a few nm thick. Techniques being investigated for this include ultra violet ozone deposition at 450 deg C and plasma deposition. The paper describes work at the NML in achieving an appropriate stable surface on the silicon sphere

  4. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  5. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  6. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Directory of Open Access Journals (Sweden)

    Ming-Jay Yang

    2017-03-01

    Full Text Available We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  7. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); John, Sajeev [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y. [Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Bouwes, D. M. [iX-factory GmbH, Konrad Adenauer–Allee 11, 44263 Dortmund (Germany)

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  8. Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Varga, Marián; Pelant, Ivan; Valenta, J.; Kromka, Alexander; Elliman, R. G.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-8, č. článku 5763. ISSN 2045-2322 R&D Projects: GA ČR GJ16-09692Y; GA MŠk(CZ) LD15003 Institutional support: RVO:68378271 Keywords : photonic crystal slab * silicon nanocrystals * light emission Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  9. Digital silicon photomultiplier readout of a new fast and bright scintillation crystal (Ce:GFAG)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong-Seok [Department of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Leem, Hyun-Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kamada, Kei [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); C& A corporation, Sendai (Japan); Yoshikawa, Akira [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); C& A corporation, Sendai (Japan); Institute for Material Research, Tohoku University, Sendai (Japan); Park, Sang-Geon [Department of Electrical & Electronics, Silla University, Pusan (Korea, Republic of); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2016-10-01

    A new Gadolinium Fine Aluminum Gallate (Ce:GFAG) scintillation crystal with both high energy resolution and fast timing properties has successfully been grown. Compared to Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG), this new inorganic scintillation crystal has a high luminosity similar to and a faster decay time. In this paper, we report on the timing and energy performance results of the new GFAG scintillation crystal read out with digital silicon photomultipliers (dSiPM) for positron emission tomography (PET) application. The best coincidence resolving time (FWHM) of polished 3×3×5 mm{sup 3} crystals was 223±6 ps for GFAG crystals compared to 396±28 ps for GAGG crystals and 131±3 ps for LYSO crystals respectively. An energy resolution (511 keV peak of Na-22) of 10.9±0.2% was attained with GFAG coupled to dSiPM after correcting for saturation effect, compared to 9.5±0.3% for Ce:GAGG crystals and 11.9±0.4% for LYSO crystals respectively. It is expected that this new scintillator may be competitive in terms of overall properties such as energy resolution, timing resolution and growing (raw material) cost, compared to existing scintillators for positron emission tomography (PET).

  10. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    Science.gov (United States)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  11. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  12. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  13. Microcrystalline silicon growth by low laser energy crystallization on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, D. Y.; Seo, C. K.; Shim, M. S.; Kim, C. H.; Yi, J.

    2004-01-01

    We are reporting the crystallization of amorphous silicon (a-Si) using a XeCl excimer laser treatment. Although polycarbonate (PC) plastic substrates are very weak at high temperatures of more than 150 .deg. C, they are very useful for applications to microelectronics because of light weight, high transmittance, and flexibility. In order to crystallize a-Si films on plastic substrates, we suggest that a CeO 2 seed layer will be very helpful at a low laser energy density. The seed layer is deposited at room temperature by rf using magnetron sputtering. A seed layer deposition method will be also presented in detail in this article. We compare a-Si crytallization without a seed layer with one with a seed layer deposited between the a-Si and the plastic substrate. The a-Si was deposited on the plastic substrate by using inductively coupled plasma Chemical-Vapor Deposition (ICPCVD) at the room temperature. In this paper, we will present the crystallization properties of a-Si with and without a CeO 2 seed layer on the plastic substrate.

  14. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  15. Self-supporting film method of silicon single crystal by ion implantation and it`s application

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Miyagawa, Soji [National Industrial Research Inst. of Nagoya (Japan)

    1996-12-01

    A few {mu}m of thickness of self-supporting film of silicon single crystal was produced by the ion implantation and the selective etching. This materials are distinguished by a uniform film thickness, good controllability, crystallization and the mechanical strength. For applying it to device, the detailed process has to be established, because there are some improved problems such as pinhole and morphology on the surface. This materials are very useful to the basic experiment of the base for epitaxial growth under irradiation of ion beams and the ion beam analysis in the atmosphere. (S.Y.)

  16. Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-07-01

    A polysilicon pellets (≅1 mm diameter) feed continuous Czochralski (CCZ) growth process for silicon single crystals is proposed and investigated. Experiments in an industrial puller (14-18 inch diameter crucible) successfully demonstrate the feasibility of this process. The advantages of the proposed scheme are: a steady state growth process, a low aspect ratio melt, uniformity of heat addition and a growth apparatus with single crucible and no baffle(s). The addition of dopant with the solid charge will allow a better control of oxygen concentration leading to crystals of uniform properties and better quality. This paper presents theoretical results on melting of fully and partially immersed silicon spheres and numerical solutions on temperature and flow fields in low aspect ration melts with and without the addition of solid pellets. The theoretical and experimental results obtained thus far show a great promise for the proposed scheme.

  17. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    CERN Document Server

    Liu, Z.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation...

  18. Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals

    CERN Document Server

    Scandale, Walter; Baricordi, S; Dalpiaz, P; Fiorini, M; Guidi, V; Mazzolari, A; Della Mea, G; Milan, R; Ambrosi, G; Zuccon, P; Bertucci, B; Bürger, W; Duranti, M; Cavoto, G; Santacesaria, R; Valente, P; Luci, C; Iacoangeli, F; Vallazza, E; Afonin, A G; Chesnokov, Yu A; Kotov, V I; Maisheev, V A; Yazynin, I A; Kovalenko, A D; Taratin, A M; Denisov, A S; Gavrikov, Y A; Ivanov, Yu M; Lapina, L P; Malyarenko, L G; Skorogobogatov, V V; Suvorov, V M; Vavilov, S A; Bolognini, D; Hasan, S; Mozzanica, A; Prest, M

    2009-01-01

    The interactions of 400 GeV protons with different sequences of bent silicon crystals have been investigated at the H8 beam line of the CERN Super Proton Synchrotron. The multiple volume reflection of the proton beam has been studied in detail on a five-crystal reflector measuring an angular beam deflection =52.96±0.14 µrad. The efficiency was found larger than 80% for an angular acceptance at the reflector entrance of 70 µrad, with a maximal efficiency value of =0.90±0.01±0.03.

  19. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of particle nonacceleration growth type silicon thin-film crystals); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Ryushi hikasoku seichogata silicon usumaku kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-01

    As part of the research and development project for producing photovoltaic power generation systems at reduced cost, the R and D efforts are made for producing particle nonacceleration growth type silicon thin-film crystals. The research items are (1) research on thin-film crystals, and (2) research on cell-structuring method. The item (1) studies quantities, types and electrical properties of impurities and crystal defects in the polycrystalline ingots, produced by the Czochralski method from metal grade silicon and purified metal grade silicon stocks. Next, the substrate prepared above is coated with a thin film of silicon by the vapor-phase growth method with dichlorosilane as the source, to evaluate the thin-film crystals by measuring the crystal defects and lifetime of small numbers of carriers. The item (2) studies the effects of the solder dipping method. In addition, unevenness of photoelectric current is analyzed by a laser scanning microscope, to investigate the effects of the secondary impurities and crystal defects in the substrate crystals on photoelectric current. As a result, it is found that conversion efficiency is improved by grading the hole concentration in the p-type activated layer. The targets of 10 to 20 m{sup 2} as the area and 7 to 8% as the conversion efficiency are attained by preparing the crystals again. (NEDO)

  20. Monitoring of degradation of porous silicon photonic crystals using digital photography

    Science.gov (United States)

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t  pSi-ch. PMID:25242902

  1. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm.

    Science.gov (United States)

    Gan, Lin; Liu, Ya-Zhao; Li, Jiang-Yan; Zhang, Ze-Bo; Zhang, Dao-Zhong; Li, Zhi-Yuan

    2009-06-08

    We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.

  2. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    Science.gov (United States)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  3. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  4. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  5. A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls

    International Nuclear Information System (INIS)

    Aydin, O.; Uenal, A.; Ayhan, T.

    1999-01-01

    Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum

  6. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  7. N-type polycrystalline silicon films formed on alumina by aluminium induced crystallization and overdoping

    Energy Technology Data Exchange (ETDEWEB)

    Tuezuen, O. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France)], E-mail: Ozge.Tuzun@iness.c-strasbourg.fr; Slaoui, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Gordon, I. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Focsa, A. [InESS, UMR 7163 CNRS-ULP, 23 rue du Loess, F-67037 Strasbourg (France); Ballutaud, D. [GEMaC-UMR 8635 CNRS, 1 place Aristide Briand, F-92195 Meudon (France); Beaucarne, G.; Poortmans, J. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2008-08-30

    In this work, we investigated the formation of n-type polysilicon films on alumina substrates by overdoping a p-type silicon layer obtained by aluminium induced crystallization of amorphous silicon (AIC), and subsequent epitaxy. The phosphorus doping of the AIC was carried out by thermal diffusion from a solid source. The structural quality of the n-type Si film was monitored by optical microscope and scanning electron microscope (SEM). The doping efficiency was determined by resistivity measurements and secondary ion mass spectroscopy (SIMS). The sheet resitivity changed from 2700{omega}/sq to 19.6{omega}/sq after thermal diffusion at 950 deg. C for 1h, indicating the overdoping effect. The SIMS profile carried out after the high temperature epitaxy exhibits a two steps phosphorus distribution, indicating the formation of an n{sup +}n structure.

  8. Semiconductors and semimetals oxygen in silicon

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Shimura, Fumio

    1994-01-01

    This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen.Key Features* Comprehensive study of the behavior of oxygen in silicon* Discusses silicon crystals for VLSI and ULSI applications* Thorough coverage from crystal growth to device fabrication* Edited by technical experts in the field* Written by recognized authorities from industrial and academic institutions* Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research* 297 original line drawings

  9. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    Science.gov (United States)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  10. Using short silicon crystals for beam extraction and collimation at U-70 proton synchrotron

    International Nuclear Information System (INIS)

    Afonin, A.G.; Baranov, V.T.; Biryukov, V.M.; Kotov, V.I.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Fedotov, Yu.S.; Chepegin, V.N.; Chesnonkov, Yu.A.

    2002-01-01

    Results of investigations into escape and collimation of proton beams at the IHEP U-70 synchrotron with the application of short flexed silicon monocrystals in length 2 - 4 mm are demonstrated. Good agreement between the measured and calculated efficiency of the flexed crystal is available. Lowering efficiency with the decreasing proton energy is explained by growth of root-mean-square angle of the multiple Coulomb scattering and drop of dechanneling length [ru

  11. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  12. Sequential purification and crystal growth for the production of low cost silicon substrates. Quarterly technical progress report No. 1, 15 September 1979-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, M.; Secco, F.; Ingle, B.; Down, D.

    1980-02-01

    Over the past several years, Motorola's Materials Technology Laboratory (MTL), has been conducting several projects with goals directed at the production of high quality low cost silicon crystals. One of the projects which is being investigated is the direct purification of MG-Si. A unique characteristic of the approach used by this project is the use of a crystal puller to perform both purification and crystal growth. Sequential steps of purification were taken. By the completion of this series of purification, the purified MG-Si melt will be further purified by impurity redistribution using ingot pulling. The final purified silicon will be in an ingot form of desired dimensions for slicing into silicon sheets. The sequential steps of purification include: (1) leaching of MG-Si charge, (2) phase separation, (3) reactive gas treatment, (4) liquid-liquid extraction (called Slagging), and (5) purification by redistribution of impurities using ingot pulling. Progress on items (1) and (2) is reported. (WHK)

  13. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  14. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    Science.gov (United States)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  15. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    Science.gov (United States)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  16. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Zhao, Deyin; Zhou, Weidong [Nanophotonics Lab, Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Yin, Xin; Wang, Xudong [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  17. Beam tests of lead tungstate crystal matrices and a silicon strip preshower detector for the CMS electromagnetic calorimeter

    CERN Document Server

    Auffray, Etiennette; Barney, D; Bassompierre, Gabriel; Benhammou, Ya; Blick, A M; Bloch, P; Bonamy, P; Bourotte, J; Buiron, L; Cavallari, F; Chipaux, Rémi; Cockerill, D J A; Dafinei, I; Davies, G; Depasse, P; Deiters, K; Diemoz, M; Dobrzynski, Ludwik; Donskov, S V; Mamouni, H E; Ercoli, C; Faure, J L; Felcini, Marta; Gautheron, F; Géléoc, M; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Inyakin, A V; Jääskeläinen, S; Katchanov, V A; Kirn, T; Kloukinas, Kostas C; Korzhik, M V; Lassila-Perini, K M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Longo, E; MacKay, C K; Martin, E; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Organtini, G; Paoletti, S; Pansart, J P; Peigneux, J P; Puljak, I; Qian, S; Reid, E; Renker, D; Rosowsky, A; Rosso, E; Rusack, R W; Rykaczewski, H; Schneegans, M; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Sillou, D; Singovsky, A V; Sougonyaev, V; Soric, I; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1998-01-01

    Tests of lead tungstate crystal matrices carried out in high-energy electron beams in 1996, using new crystals, new APDs and an improved test set-up, confirm that an energy resolution of better than 0 .6% at 100 GeV can be obtained when the longitudinal uniformity of the struck crystal is adequate. Light loss measurements under low dose irradiation are reported. It is shown that there is no loss of energy resolution after irradiation and that the calibration change due to light loss can be tracked with a precision monitoring system. Finally, successuful tests with a preshower device, equipped wi th silicon strip detector readout, are described.

  18. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  19. Development of practical application technology for photovoltaic power generation systems in fiscal 1997. Development of technologies to manufacture application type thin film solar cells with new structure (development of technologies to manufacture amorphous silicon and thin film poly-crystal silicon hybrid thin film solar cells); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu. Usumaku taiyo denchi no seizo gijutsu kaihatsu, oyogata shinkozo usumaku taiyo denchi no seizo gijutsu kaihatsu (amorphous silicon/usumaku takessho silicon hybrid usumaku taiyo denchi no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Research and development was performed with an objective to manufacture amorphous silicon and thin film poly-crystal silicon hybrid solar cells with large area and at low cost, being a high-efficiency next generation solar cell. The research was performed based on a principle that low-cost substrates shall be used, that a manufacturing process capable of forming amorphous silicon films with large area shall be based on, and that silicon film with as thin as possible thickness shall be used. Fiscal 1997 has started research and development on making the cells hybrid with amorphous silicon cells. As a result of the research and development, such achievements have been attained as using texture structure on the rear layer in thin poly-crystal silicon film solar cells with a thickness of two microns, and having achieved conversion efficiency of 10.1% by optimizing the junction interface forming conditions. A photo-deterioration test was carried out on hybrid cells which combine the thin poly-crystal silicon film cells having STAR structure with the amorphous silicon cells. Stabilization efficiency of 11.5% was attained after light has been irradiated for 500 hours or longer. (NEDO)

  20. A new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon

    International Nuclear Information System (INIS)

    Klein, K.M.; Park, C.; Yang, S.; Morris, S.; Do, V.; Tasch, F.

    1992-01-01

    We have developed a new computationally-efficient two-dimensional model for boron implantation into single-crystal silicon. This paper reports that this new model is based on the dual Pearson semi-empirical implant depth profile model and the UT-MARLOWE Monte Carlo boron ion implantation model. This new model can predict with very high computational efficiency two-dimensional as-implanted boron profiles as a function of energy, dose, tilt angle, rotation angle, masking edge orientation, and masking edge thickness

  1. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    Science.gov (United States)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  2. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  3. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  4. Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.

    Science.gov (United States)

    Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A

    2010-03-29

    Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

  5. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  6. Variability of photovoltaic panels efficiency depending on the value of the angle of their inclination relative to the horizon

    Directory of Open Access Journals (Sweden)

    Majdak Marek

    2017-01-01

    Full Text Available The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance value determined by using resistor with variable value of resistance and known value of the angle of their inclination relative to the horizon.

  7. Development of low cost silicon solar cells by reusing the silicon saw dust collected during wafering process

    International Nuclear Information System (INIS)

    Zaidi, Z.I.; Raza, B.; Ahmed, M.; Sheikh, H.; Qazi, I.A.

    2002-01-01

    Silicon material due to its abundance in nature and maximum conversion efficiency has been successfully being used for the fabrication of electronic and photovoltaic devices such as ICs, diodes, transistors and solar cells. The 80% of the semiconductor industry is ruled by silicon material. Single crystal silicon solar cells are in use for both space and terrestrial application, due to the well developed technology and better efficiency than polycrystalline and amorphous silicon solar cells. The current research work is an attempt to reduce the cost of single crystal silicon solar cells by reusing the silicon saw dust obtained during the watering process. During the watering process about 45% Si material is wasted in the form of Si powder dust. Various waste powder silicon samples were analyzed using inductively Coupled Plasma (ICP) technique, for metallic impurities critical for solar grade silicon material. The results were evaluated from impurity and cost point of view. (author)

  8. Elite silicon and solar power

    International Nuclear Information System (INIS)

    Yasamanov, N.A.

    2000-01-01

    The article is of popular character, the following issues being considered: conversion of solar energy into electric one, solar batteries in space and on the Earth, growing of silicon large-size crystals, source material problems relating to silicon monocrystals production, outlooks of solar silicon batteries production [ru

  9. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  10. Quantitative study of the transmission of axially channeled protons in thin silicon crystals

    International Nuclear Information System (INIS)

    Rosner, J.S.; Gibson, W.M.; Golovchenko, J.A.; Goland, A.N.; Wegner, H.E.

    1978-01-01

    The azimuthal distributions of protons transmitted through thin silicon single crystals near the axis were measured using a two-dimensional position-sensitive detector. The data are composed of ringlike distributions with strong azimuthal and transverse energy dependence. The azimuthal distributions are compared with theoretical predictions based on the random string approximation using different forms of the interatomic potential. ''Blocking'' in the transverse plane is also observed. In addition, from an analysis of the radial spreading of the distribution the effects of inelastic scattering in the transverse plane are clearly seen

  11. Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications

    International Nuclear Information System (INIS)

    Song Dengyuan; Inns, Daniel; Straub, Axel; Terry, Mason L.; Campbell, Patrick; Aberle, Armin G.

    2006-01-01

    Polycrystalline silicon (poly-Si) thin-films are made on planar and textured glass substrates by solid phase crystallization (SPC) of in situ doped amorphous silicon (a-Si) deposited by electron-beam evaporation. These materials are referred to by us as EVA materials (SPC of evaporated a-Si). The properties of EVA poly-Si films are characterised by Raman microscopy, transmission electron microscopy, and X-ray diffraction. A narrow and symmetrical Raman peak at a wave number of about 520 cm -1 is observed for all samples, showing that the films are fully crystallized. X-ray diffraction (XRD) reveals that the films are preferentially (111)-oriented. Furthermore, the full width at half maximum of the dominant (111) XRD peaks indicates that the structural quality of the films is affected by the a-Si deposition temperature and the surface morphology of the glass substrates. A-Si deposition at 200 instead of 400 deg. C leads to an enhanced poly-Si grain size. On textured glass, the addition of a SiN barrier layer between the glass and the Si improves the poly-Si material quality. No such effect occurs on planar glass. Mesa-type solar cells are made from these EVA films on planar and textured glass. A strong correlation between the cells' current-voltage characteristics and their crystalline material quality is observed

  12. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarkissian, Raymond, E-mail: RaymondSark@gmail.com; O' Brien, John [Electrophysics department, University of Southern California, Los Angeles, California 90089 (United States)

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  13. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some...... recent advances in this direction. The efficient coupling of light between optical fibers and the planar silicon devices and circuits is of crucial importance. Both end-coupling (Fig. 1) and grating-coupling solutions will be discussed along with polarization issues. A new scheme for a hybrid III...

  14. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    T. N. Wistisen

    2016-07-01

    Full Text Available We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111 plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  15. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    International Nuclear Information System (INIS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-01-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30–50 nm. Annealing of the Al–Si stack on an oxidized silicon substrate was performed in air ambient at 300–550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10–95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ∼ 30 mV MPa −1 , when the Wheatstone bridge was biased at 1 V input voltage. (paper)

  16. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  17. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  18. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  19. Inclination Mixing in the Classical Kuiper Belt

    Science.gov (United States)

    Volk, Kathryn; Malhotra, Renu

    2011-07-01

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  20. Buried oxide layer in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  1. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    International Nuclear Information System (INIS)

    Liu, Z.; Pizzichemi, M.; Paganoni, M.; Auffray, E.; Lecoq, P.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation correction. The best energy resolution full width half maximum (FWHM) obtained for the 2×2×5mm 3 , 2×2×10 mm 3 , 2×2×15mm 3 , 2×2×20mm 3 LYSO crystals was 10.7%, 11.6%, 12.1%, 12.5%, respectively. For crystals with different cross sections coupled to the digital SiPM, we found that the larger the cross section of coupling area, the more photons were detected and thus a better energy resolution was obtained. The CTR of crystals fully wrapped with Teflon or without wrapping was measured by positioning two identical crystals facing each other. A larger area of digital SiPM improves the CTR and the CTR reaches the plateau when the active area is larger than 2.2×2.2mm 2 with both two configurations of wrapping. The best CTR value for the 2×2×5mm 3 , 2×2×10mm 3 , 2×2×15mm 3 , 2×2×20mm 3 LYSO crystals was 128.9 ps, 148.4 ps, 171.6 ps, 177.9 ps, respectively. The measurements performed lead us to conclude that optimising the coupling between crystal

  2. High-efficiency deflection of high energy protons due to channeling along the 〈110〉 axis of a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2016-09-01

    Full Text Available A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110 planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  3. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    Science.gov (United States)

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  4. Naturally occurring 32 Si and low-background silicon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  5. Naturally occurring 32Si and low-background silicon dark matter detectors

    Science.gov (United States)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  6. Numerically simulated and experimentally obtained X-ray section topographs of a spherical strain field in a floating zone silicon crystal

    International Nuclear Information System (INIS)

    Okitsu, Kouhei; Iida, Satoshi; Sugita, Yoshimitsu; Takeno, Hiroshi; Yagou, Yasuyoshi; Kawata, Hiroshi.

    1992-01-01

    An undoped floating zone (FZ) silicon crystal has been investigated by synchrotron X-radiation section topography with high-order reflections up to 14 14 0. Numerically simulated topographs based on the Takagi-Taupin equations were in good agreement with experimental distorted patterns when a spherical strain field was assumed in the crystal. The volume change of the lattice caused by the strain center was estimated to correspond to a sphere with a radius of 10 μm. (author)

  7. Solid-phase crystallization of amorphous silicon on ZnO:Al for thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.; Conrad, E.; Dogan, P.; Fenske, F.; Gorka, B.; Haenel, T.; Lee, K.Y.; Rau, B.; Ruske, F.; Weber, T.; Gall, S.; Rech, B. [Helmholtz-Zentrum Berlin fuer Materialien und Energie (formerly Hahn-Meitner-Institut Berlin), Kekulestr. 5, D-12489 Berlin (Germany); Berginski, M.; Huepkes, J. [Institute of Photovoltaics, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2009-06-15

    The suitability of ZnO:Al thin films for polycrystalline silicon (poly-Si) thin-film solar cell fabrication was investigated. The electrical and optical properties of 700 -nm-thick ZnO:Al films on glass were analyzed after typical annealing steps occurring during poly-Si film preparation. If the ZnO:Al layer is covered by a 30 nm thin silicon film, the initial sheet resistance of ZnO:Al drops from 4.2 to 2.2 {omega} after 22 h annealing at 600 C and only slightly increases for a 200 s heat treatment at 900 C. A thin-film solar cell concept consisting of poly-Si films on ZnO:Al coated glass is introduced. First solar cell results will be presented using absorber layers either prepared by solid-phase crystallization (SPC) or by direct deposition at 600 C. (author)

  8. Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves

    International Nuclear Information System (INIS)

    Bellini, Bob; Beccherelli, Romeo

    2009-01-01

    This paper presents a fully consistent theoretical framework for liquid crystal (LC) channel waveguides that have been experimentally demonstrated in previous publications. We revise the optical design of the LC waveguides in silicon grooves and implement here a vectorial, fully consistent model of the LC waveguide electro-optical behaviour, based on the finite element method. The numerical investigation shows that LC waveguides demonstrate properties of propagation control and switching. They switch on and off with a low applied voltage. We discuss the major design parameters of the device and the effect of loss-inducing control electrodes.

  9. Attenuation of Thermal Neutrons by Crystalline Silicon

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2002-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross - section including the Bragg scattering from different (hkt) planes to the neutron * transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy .A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500μ eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  10. Monte Carlo calculation of energy loss of hydrogen and helium ions transmitted under channelling conditions in silicon single crystal

    International Nuclear Information System (INIS)

    El Bounagui, O.; Erramli, H.

    2010-01-01

    In this work, we report on calculations of the electronic channelling energy loss of hydrogen and helium ions along Si and Si axial directions for the low energy range by using the Monte Carlo simulation code. Simulated and experimental data are compared for protons and He ions in the and axis of silicon. A reasonable agreement was found. Computer simulation was also employed to study the angular dependence of energy loss for 0.5, 0.8, 1, and 2 MeV channelled 4 He ions transmitted through a silicon crystal of 3 μm thickness along the axis.

  11. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  12. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    Science.gov (United States)

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

  13. Vibrational Spectroscopy of Chemical Species in Silicon and Silicon-Rich Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Kirill O. Bugaev

    2012-01-01

    Full Text Available Vibrational properties of hydrogenated silicon-rich nitride (SiN:H of various stoichiometry (0.6≤≤1.3 and hydrogenated amorphous silicon (a-Si:H films were studied using Raman spectroscopy and Fourier transform infrared spectroscopy. Furnace annealing during 5 hours in Ar ambient at 1130∘C and pulse laser annealing were applied to modify the structure of films. Surprisingly, after annealing with such high-thermal budget, according to the FTIR data, the nearly stoichiometric silicon nitride film contains hydrogen in the form of Si–H bonds. From analysis of the FTIR data of the Si–N bond vibrations, one can conclude that silicon nitride is partly crystallized. According to the Raman data a-Si:H films with hydrogen concentration 15% and lower contain mainly Si–H chemical species, and films with hydrogen concentration 30–35% contain mainly Si–H2 chemical species. Nanosecond pulse laser treatments lead to crystallization of the films and its dehydrogenization.

  14. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    Science.gov (United States)

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  15. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  16. FY 1979 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of vertically drawn ribbon crystals of silicon); 1979 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-03-01

    The efforts in this fiscal year for development of methods for vertically drawing ribbon crystals of silicon are directed to the following items, in order to further improve the techniques for vertically drawing two or more ribbon crystals on a continuous basis, developed in the previous fiscal year: (1) tests of the drawing apparatus, developed in the previous fiscal year, to deepen the techniques for drawing the ribbon crystals, (2) modification of the above apparatus to further develop the apparatus for vertically drawing two or more ribbon crystals on a continuous basis, (3) comparison of drawing a single ribbon crystal, conducted separately, with drawing two or more ribbon crystals, to clarify the problems involved in the latter, and (4) basic investigations on the materials for the furnace internals exposed to high temperature, other than the carbon material used at present. The vertically drawn ribbon crystals of silicon is investigated, based on the results obtained in the previous fiscal year that ribbon crystal quality depends on impurities present therein, mainly for (1) quantitative analysis of the impurity elements present in the ribbon crystal, (2) relationship between impurity elements and characteristics of the solar cells made on a trial basis, and (3) investigations on local concentration of the impurity elements. (NEDO)

  17. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems (Research and development of vertically drawn ribbon crystals of silicon); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. Silicon tatehiki ribon kessho no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at establishment of ribbon crystal production techniques and development of photovoltaic power generation systems incorporating the ribbon crystals, in order to greatly reduce cost of photovoltaic power generation systems. The research efforts in this fiscal year is focused on development of the techniques for continuously growing the ribbons, to attain the above goal by accelerating growth of the ribbon crystals in unit time and clarifying, in the early stage, the problems to be solved before commercializing the ribbon crystals for the future solar cells. The major research results are (1) development of the method for vertically drawing ribbon crystals of silicon, and (2) analysis of the vertically drawn ribbon crystals of silicon. For the item (1), the technological development efforts are focused on continuously drawing mechanisms and furnace for continuous drawing, with the structural studies as the center for the former and solution of heat-related problems for the latter, which eventually lead to development of a 800 mm long ribbon crystal passing over the roll. For the item (2), the crystal structure is analyzed by the electron channeling pattern method. The results suggest that use of a p-type substrate can improve average efficiency of the ribbon crystal type solar cell. (NEDO)

  18. Thermal resistor on the base of silicon and some polymer semiconductors

    International Nuclear Information System (INIS)

    Marupov, R.; Kasimov, Sh.T.; Achilov, T.Kh.; Karimov, Kh.S.; Akhmedov, Kh.M.

    1995-01-01

    The purpose of present work is investigation electrical properties ofthermal resistors which was made from second cast poly-crystal silicon,poly-carbazole, and compositions of poly-crystal silicon and poly-carbazole

  19. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Obreschkow, D.; Meyer, M. [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia)

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using any inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.

  20. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    International Nuclear Information System (INIS)

    Gong Yibin; Dai Pengfei; Gao Anran; Li Tie; Zhou Ping; Wang Yuelin

    2011-01-01

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 °C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields. (semiconductor materials)

  1. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang

    2011-01-01

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We report on the fabrication and optical properties of quasi-two-dimensional photonic crystals with triangular lattice of dielectric rods in air. Rod-type photonic crystal structures were fabricated in silicon by electron beam lithography and dry-etching techniques. Wavelength division multiplexing splitters were fabricated from two-dimensional photonic crystal directional waveguide couplers. Transmission spectra were measured and device operation was shown to be in agreement with theoretical calculations. The splitters can be used in visible light region. Such an approach to photonic element systems should enable new applications for designing components in photonic integrated circuits. -- Highlights: → We report the fabrication and optical properties of rod-type photonic crystal. → The splitter was fabricated by electron beam lithography and dry-etching techniques. → The splitter was composed of directional waveguide couplers. → Measured transmission spectra are in agreement with theoretical calculations. → The splitters can be used in visible light region.

  2. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  3. Controlling the flow of light with silicon nanostructures

    International Nuclear Information System (INIS)

    Park, W

    2010-01-01

    Silicon is an important material for integrated photonics applications. High refractive index and transparency in the infrared region makes it an ideal platform to implement nanostructures for novel optical devices. We fabricated silicon photonic crystals and experimentally demonstrated negative refraction and self-collimation. We also used heterodyne near-field scanning optical microscope to directly visualize the anomalous wavefronts. When the periodicity is much smaller than wavelength, silicon photonic crystal can be described by the effective medium theory. By engineering effective refractive index with silicon nanorod size, we demonstrated an all-dielectric cloak structure which can hide objects in front of a highly reflecting plane. The work discussed in this review shows the powerful design flexibility and versatility of silicon nanostructures

  4. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  5. Insight into excimer laser crystallization exploiting ellipsometry: Effect of silicon film precursor

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Mariucci, Luigi; Fortunato, Guglielmo [IFN-CNR, Via Cineto Romano, 42 - 00156 Rome (Italy)

    2007-07-16

    The optical diagnostic of spectroscopic ellipsometry is shown to be an effective tool to investigate the mechanism of excimer laser crystallization (ELC) of silicon thin films. A detailed spectroscopic ellipsometric investigation of the microstructures of polycrystalline Si films obtained on SiO{sub 2}/Si wafers by ELC of a-Si:H and nc-Si films deposited, respectively, by SiH{sub 4} plasma enhanced chemical vapor deposition (PECVD) and SiF{sub 4}-PECVD is presented. It is shown that ellipsometric spectra of the pseudodielectric function of polysilicon thin films allows to discern the three different ELC regimes of partial melting, super lateral growth and complete melting. Exploiting ellipsometry and atomic force microscopy, it is shown that ELC of nc-Si has very low energy density threshold of 95 mJ/cm{sup 2} for complete melting, and that re-crystallization to large grains of {approx} 2 {mu}m can be achieved by multi-shot irradiation at an energy density as low as 260 mJ/cm{sup 2} when using nc-Si when compared to 340 mJ/cm{sup 2} for the ELC of a-Si films.

  6. Self-diffusion in single crystalline silicon nanowires

    Science.gov (United States)

    Südkamp, T.; Hamdana, G.; Descoins, M.; Mangelinck, D.; Wasisto, H. S.; Peiner, E.; Bracht, H.

    2018-04-01

    Self-diffusion experiments in single crystalline isotopically controlled silicon nanowires with diameters of 70 and 400 nm at 850 and 1000 °C are reported. The isotope structures were first epitaxially grown on top of silicon substrate wafers. Nanowires were subsequently fabricated using a nanosphere lithography process in combination with inductively coupled plasma dry reactive ion etching. Three-dimensional profiling of the nanosized structure before and after diffusion annealing was performed by means of atom probe tomography (APT). Self-diffusion profiles obtained from APT analyses are accurately described by Fick's law for self-diffusion. Data obtained for silicon self-diffusion in nanowires are equal to the results reported for bulk silicon crystals, i.e., finite size effects and high surface-to-volume ratios do not significantly affect silicon self-diffusion. This shows that the properties of native point defects determined from self-diffusion in bulk crystals also hold for nanosized silicon structures with diameters down to 70 nm.

  7. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan, E-mail: liudanhu725@126.com [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Hu, Sen [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Gao, Yihua [Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 (China)

    2017-07-12

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%. - Highlights: • Photonic crystal heterojunction with circular and square scatterers is first studied. • One-way transmission efficiency is closely related to the hetero-interface. • Wide-band and efficient one-way transmission is realized.

  8. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I

    Czech Academy of Sciences Publication Activity Database

    Kohn, V.G.; Khikhlukha, Danila

    2016-01-01

    Roč. 72, May (2016), s. 349-356 ISSN 2053-2733 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : X-ray diffraction * silicon crystal * six-beam diffraction * section topography * computer simulations Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.725, year: 2016

  9. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    Science.gov (United States)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  10. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  11. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    Science.gov (United States)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  12. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  13. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, T. [Department of Physics, Anna University, Chennai 600 025 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi 110 007 (India); Mythili, P. [Department of Physics, Anna University, Chennai 600 025 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110 067 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600 025 (India)], E-mail: krgkrishnan@annauniv.edu

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  14. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  15. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City (Viet Nam); Bao, JingFu, E-mail: baojingfu@uestc.edu.cn [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2016-04-15

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  16. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  17. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  18. Gallium arsenide single crystal solar cell structure and method of making

    Science.gov (United States)

    Stirn, Richard J. (Inventor)

    1983-01-01

    A production method and structure for a thin-film GaAs crystal for a solar cell on a single-crystal silicon substrate (10) comprising the steps of growing a single-crystal interlayer (12) of material having a closer match in lattice and thermal expansion with single-crystal GaAs than the single-crystal silicon of the substrate, and epitaxially growing a single-crystal film (14) on the interlayer. The material of the interlayer may be germanium or graded germanium-silicon alloy, with low germanium content at the silicon substrate interface, and high germanium content at the upper surface. The surface of the interface layer (12) is annealed for recrystallization by a pulsed beam of energy (laser or electron) prior to growing the interlayer. The solar cell structure may be grown as a single-crystal n.sup.+ /p shallow homojunction film or as a p/n or n/p junction film. A Ga(Al)AS heteroface film may be grown over the GaAs film.

  19. Generation and manipulation of entangled photons on silicon chips

    Directory of Open Access Journals (Sweden)

    Matsuda Nobuyuki

    2016-08-01

    Full Text Available Integrated quantum photonics is now seen as one of the promising approaches to realize scalable quantum information systems. With optical waveguides based on silicon photonics technologies, we can realize quantum optical circuits with a higher degree of integration than with silica waveguides. In addition, thanks to the large nonlinearity observed in silicon nanophotonic waveguides, we can implement active components such as entangled photon sources on a chip. In this paper, we report recent progress in integrated quantum photonic circuits based on silicon photonics. We review our work on correlated and entangled photon-pair sources on silicon chips, using nanoscale silicon waveguides and silicon photonic crystal waveguides. We also describe an on-chip quantum buffer realized using the slow-light effect in a silicon photonic crystal waveguide. As an approach to combine the merits of different waveguide platforms, a hybrid quantum circuit that integrates a silicon-based photon-pair source and a silica-based arrayed waveguide grating is also presented.

  20. Microstrip silicon detectors in a bent crystal based collimation system: The UA9 experiment

    International Nuclear Information System (INIS)

    Bolognini, D.

    2010-01-01

    In a hadron accelerator like Lhc, a collimation system needs to be developed to protect the accelerator itself from the beam loss damage, increasing the beam luminosity. At present, a classical robust multi-stage collimation system (based on amorphous jaws) allows to protect Lhc, but limits the luminosity to the 40% of the nominal value. In order to solve this problem, a series of low-impedance collimation systems is being developed for the second Lhc collimation phase: among these, a key role could be played by bent crystals. In a bent crystal, in fact, charged particles can be deviated in a given direction with a high efficiency, reducing the impedance and increasing the luminosity. After the satisfactory results on extracted beams, it was decided to test bent crystals on a circular accelerator (the Super Proton Synchrotron Sps at CERN): the UA9 experiment was born. In order to qualify the crystal behavior, a tracking system has been developed: the system is based on microstrip silicon detectors readout by self-triggering ASICs with a spatial resolution of the order of 5 μm; the system, completely remotely controlled and based on the optical fiber transmission, would be able to measure the beam halo phase space x - x 1 . This paper, after a brief introduction of the UA9 experiment, will describe the tracking system and the first results obtained in the commissioning phase and data takings with a detector prototype.

  1. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    Science.gov (United States)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  2. Silicon Sheet Quality is Improved By Meniscus Control

    Science.gov (United States)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  3. On the use of silicon as thermal neutron filter

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M.

    2003-01-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 μeV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given

  4. On the use of silicon as thermal neutron filter

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N.; Ashry, A.; Fathalla, M. E-mail: mohamedfathalla@hotmail.com

    2003-12-01

    A simple formula is given which allows to calculate the contribution of the total neutron cross-section including the Bragg scattering from different (hkl) planes to the neutron transmission through a solid crystalline silicon. The formula takes into account the silicon form of poly or mono crystals and its parameters. A computer program DSIC was developed to provide the required calculations. The calculated values of the total neutron cross-section of perfect silicon crystal at room and liquid nitrogen temperatures were compared with the experimental ones. The obtained agreement shows that the simple formula fits the experimental data with sufficient accuracy. A good agreement was also obtained between the calculated and measured values of polycrystalline silicon in the energy range from 5 eV to 500 {mu}eV. The feasibility study on using a poly-crystalline silicon as a cold neutron filter and mono-crystalline as a thermal neutron one is given. The optimum crystal thickness, mosaic spread, temperature and cutting plane for efficiently transmitting the thermal reactor neutrons, while rejecting both fast neutrons and gamma rays accompanying the thermal ones for the mono crystalline silicon are also given.

  5. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    Science.gov (United States)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  6. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  7. Comparison of slowness profiles of lamb wave with elastic moduli and crystal structure in single crystalline silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Min, Young Jae; Yun, Gyeong Won; Kim, Kyung Min; Roh, Yuji; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan (Korea, Republic of)

    2016-02-15

    Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

  8. Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Chorkendorff, Ib

    2011-01-01

    Here we report on strontium zirconate as a getter for silicon dioxide and aluminum oxide in yttria stabilized zirconia (YSZ) single crystals for cleaning purposes. YSZ single crystals were covered with strontium zirconate powder and heat treated at 1450°C in water vapor. After treatment the YSZ...... by transmission electron microscopy (TEM) the interface region between bump and YSZ single crystal bulk was examined. EDS showed a homogeneous distribution of silicon and aluminum through the cross section of a bump. The results suggest strontium zirconate as a good getter for silicon and aluminum from bulk...

  9. Making Porous Luminescent Regions In Silicon Wafers

    Science.gov (United States)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  10. Process Research on Polycrystalline Silicon Material (PROPSM)

    Science.gov (United States)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  11. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  12. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  13. LSA Large Area Silicon Sheet Task. Continuous Liquid Feed Czochralski Growth. [for solar cell fabrication

    Science.gov (United States)

    Fiegl, G.

    1979-01-01

    The design and development of equipment and processes to demonstrate continuous growth of crystals by the Czochralski method suitable for producing single silicon crystals for use in solar cells is presented. The growth of at least 150 kg of mono silicon crystal, 150 mm in diameter is continuous from one growth container. A furnace with continuous liquid replenishment of the growth crucible, accomplished by a meltdown system with a continuous solid silicon feed mechanism and a liquid transfer system, with associated automatic feedback controls is discussed. Due to the silicon monoxide build up in the furnace and its retarding effect on crystal growth the furnace conversion for operation in the low pressure range is described. Development of systems for continuous solid recharging of the meltdown chamber for various forms of poly silicon is described.

  14. Correlation of the crystal orientation and electrical properties of silicon thin films on glass crystallized by line focus diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Huang, J.; Teal, A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Suntech R& D Australia, Botany, NSW 2019 (Australia); Varlamov, S.; Green, M.A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-06-30

    In this work, crystallographic orientation of polycrystalline silicon films on glass formed by continuous wave diode laser crystallization was studied. Most of the grain boundaries were coincidence lattice Σ3 twin boundaries and other types of boundaries such as, Σ6, Σ9, and Σ21 were also frequently observed. The highest photoluminescence signal and mobility were observed for a grain with (100) orientation in the normal direction. X-ray diffraction results showed the highest occupancies between 41 and 70% along the (110) orientation. However, the highest occupancies changed to (100) orientation when a 100 nm thick SiO{sub x} capping layer was applied. Suns-Voc measurement and photoluminescence showed that higher solar cell performance is obtained from the cell crystallized with the capping layer, which is suspected from increased occupancies of (100) orientation. - Highlights: • Linear grains parallel to the scan direction formed with high density. • Σ3 coincidence lattice (CSL) boundaries found inside a grain • Grain boundaries exhibit various CSL boundaries such as Σ9, Σ18, and Σ27. • Grain with < 100 > orientation in normal direction showed highest electrical properties. • Improved voltage observed when percentage of < 100 > normal orientation is increased.

  15. Study of a macrodefect in a silicon carbid single crystal by means of X-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Argunova, T. S., E-mail: argunova2002@mail.ru [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Kohn, V. G. [National Research Centre “Kurchatov Institute” (Russian Federation); Lim, J. H. [Pohang Accelerator Laboratory (Korea, Republic of); Je, J. H. [Pohang University of Science and Technology, Department of Materials Science and Engineering (Korea, Republic of)

    2016-11-15

    The morphology of a macrodefect in a single-crystal silicon carbide wafer has been investigated by the computer simulation of an experimental X-ray phase-contrast image. A micropipe, i.e., a long cavity with a small (elliptical in the general case) cross section, in a single crystal has been considered as a macrodefect. A far-field image of micropipe has been measured with the aid of synchrotron radiation without a monochromator. The parameters of micropipe elliptical cross section are determined based on one projection in two directions: parallel and perpendicular to the X-ray beam propagation direction, when scanning along the pipe axis. The results demonstrate the efficiency of the phase contrast method supplemented with computer simulation for studying such macrodefects when the defect position in the sample volume is unknown beforehand.

  16. LSSA large area silicon sheet task continuous Czochralski process development

    Science.gov (United States)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  17. Summary of structural refinement in hi-silicon aluminium piston alloy with phosphorous as grain refiner

    International Nuclear Information System (INIS)

    Malik, F.A.; Sheikh, S.T.; Choudhry, A.A.

    2003-01-01

    Aluminium Silicon Alloys are extensively used in a wide variety of applications. There are numerous variables in composition, production control, final structure which can influence the mechanical properties of Hi - Silicon Piston alloys. Hypereutectic AlSi alloys develop coarse grain primary silicon crystals, which have a strong negative effect on the tensile strength, the ductility, and the hardness. These crystals slow machining and reduce the tool life considerably. Phosphorous addition produce a fine, evenly spread crystal structure, lamellar structure of the silicon changes into a granular structure. (author)

  18. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  19. 14 MeV neutron activation analysis for oxygen determination in silicon single-crystals

    International Nuclear Information System (INIS)

    Timus, D.M.; Galatanu, V.; Catana, D.

    1985-01-01

    The nondestructive fast neutron activation method has been applied for the total oxygen content determination with regards to the correlation of this content with the material properties of the silicon. The nuclear reaction used is: 16 O (n,p) 16 N, (Tsub(1/2)=7,4 s). The equipment and experimental set-up of the analytical system contained fast neutron generator GENEDAC, gamma scintillation detector (NaI crystal), a photomultiplier, a preamplifier, a linear amplifier with variable energy discrimination thresholds and a pneumatic conveyor system. The method proposed is rapid (total analysis time is less than 60 s), specific (allows a good energetic discrimination in relation to other elements) and precise, being able to characterize nondestructively the whole volume of the analysed sample

  20. Orientation of quartz nanocrystallites in the silicon lattice

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Basing on the study of medium angle diffuse X-ray scattering from silicon single crystals, it was supposed to be due to rod like oxygen precipitates. It was shown by us later, that depending on the growth conditions, as-grown silicon single crystals contain quartz crystal inclusions at an amount of 0.3 / 0.5 wt. % . Since it has not been done before, the aim of this work was to study the shape and orientation of quartz inclusions relative to a chosen axis of the silicon crystal lattice. We studied p-Si single crystals of one crucible origin with the specific resistance ρ 0 ≅ 1/10 Ohm· cm with different cut surfaces parallel to the crystal planes (100), (110) and (111). All the samples were cut and polished in the bar form with the sizes of 20x12x1.5 mm 3 . The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N O ≅ 2/ 4 x10 17 cm -3 and N B ≅ 3· 10 1 5 c m -3 . Structure was analyzed at the set-up DRON-3M ( λ Cu K∝ = 0.1542 nm) at the room temperature in the angle range of angles 2Θ = 10/70 deg. The diffraction spectrum of the sample cut in (111) includes 5 selective reflections and the only diffuse one at 2Θ≅ 20 deg (d/n≅ 0.3136 nm), having a large width 0.1032 rad, which is due to presence of amorphous SiO x precipitate in the surface layer of silicon single crystal. The dominative selective line with d/n≅ 0.3136 nm at 2Θ≅ 28.5 deg belongs to reflection from (111) planes of the silicon lattice and the second less intensive one comes from the same planes with Cu K β radiation. Another selective reflection of a medium intensity at 2Θ≅ 59 deg with d/n≅ 0.1568 nm is its second order (222) and forbidden by the weakening laws. The rest narrow but weak lines with d/n≅ 0.3345 nm at 2Θ≅ 26.6 deg and 0.2468 nm at≅36.6 deg correspond to the diffraction reflections (101) and (110) from the crystal quartz lattice SiO 2 . It means that they are caused by optimally oriented quartz

  1. Enhanced extraction of silicon-vacancy centers light emission using bottom-up engineered polycrystalline diamond photonic crystal slabs

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Varga, Marián; Hruška, Karel; Fait, J.; Kapusta, Peter

    2017-01-01

    Roč. 11, č. 3 (2017), s. 2972-2981 ISSN 1936-0851 R&D Projects: GA ČR GJ16-09692Y; GA MŠk LD15003; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : photonic crystal * diamond * silicon vacancy center Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 13.942, year: 2016

  2. Method of forming buried oxide layers in silicon

    Science.gov (United States)

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  3. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  4. Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition

    Science.gov (United States)

    Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong

    2018-06-01

    The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.

  5. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.

    2012-06-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  6. Raman study of localized recrystallization of amorphous silicon induced by laser beam

    KAUST Repository

    Tabet, Nouar A.; Al-Sayoud, Abduljabar; Said, Seyed; Yang, Xiaoming; Yang, Yang; Syed, Ahad A.; Diallo, Elhadj; Wang, Zhihong; Wang, Xianbin; Johlin, Eric; Simmons, Christine; Buonassisi, Tonio

    2012-01-01

    The adoption of amorphous silicon based solar cells has been drastically hindered by the low efficiency of these devices, which is mainly due to a low hole mobility. It has been shown that using both crystallized and amorphous silicon layers in solar cells leads to an enhancement of the device performance. In this study the crystallization of a-Si prepared by PECVD under various growth conditions has been investigated. The growth stresses in the films are determined by measuring the curvature change of the silicon substrate before and after film deposition. Localized crystallization is induced by exposing a-Si films to focused 532 nm laser beam of power ranging from 0.08 to 8 mW. The crystallization process is monitored by recording the Raman spectra after various exposures. The results suggest that growth stresses in the films affect the minimum laser power (threshold power). In addition, a detailed analysis of the width and position of the Raman signal indicates that the silicon grains in the crystallized regions are of few nm diameter. © 2012 IEEE.

  7. Aesthetic evaluation of profile incisor inclination.

    Science.gov (United States)

    Ghaleb, Nathalie; Bouserhal, Joseph; Bassil-Nassif, Nayla

    2011-06-01

    The objectives of this study were to evaluate (1) the impact of maxillary incisor inclination on the aesthetics of the profile view of a smile, (2) to determine the most aesthetic inclination in the profile view of a smile and correlate it with facial features, and (3) to determine if dentists, orthodontists, and laypeople appreciate differently incisor inclination in smile aesthetics. A smiling profile photograph of a female subject (22 years of age) who fulfilled the criteria of soft tissue normative values and a balanced smile was obtained. The photograph was manipulated to simulate six lingual and labial inclinations at 5 degree increments to a maximum of 15 degrees. The seven photographs were randomly distributed in a binder to three groups of raters (30 dentists, 30 orthodontists, and 30 laypeople) who scored the attractiveness of the photographic variations using a visual analogue scale. Comparison of the mean scores was carried out by repeated analysis of variance, univariate tests, and multiple Bonferroni comparisons. The results showed a statistically significant interaction between the rater's profession and the aesthetic preference of incisor inclination (P = 0.013). The profile smile corresponding to an increase of 5 degrees in a labial direction had the highest score among all professions and among male and female raters. Orthodontists preferred labial crown torque; dentists and laypeople did not appreciate excessive incisor inclination in either the lingual or the labial directions. The most preferred smile matched with a maxillary incisor inclined 93 degrees to the horizontal line and +7 degrees to the lower facial third.

  8. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    Science.gov (United States)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  9. Optical design of ultrashort throw liquid crystal on silicon projection system

    Science.gov (United States)

    Huang, Jiun-Woei

    2017-05-01

    An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.

  10. Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal

    Science.gov (United States)

    Meng, Xiang; Liu, Shang; Dadap, Jerry I.; Osgood, Richard M.

    2017-06-01

    This work reports a rigorous and comprehensive three-dimensional electromagnetic computation to investigate and design photoluminescence enhancement from a single silicon-vacancy center (SVC) in a nanodiamond crystal embedded in various metallic nanoantennae, each having a different geometry. The study demonstrates how each antenna design enhances the photoluminescence of SVCs in diamond. In particular, our report discusses how the 2D or 3D curvature of the nanoantenna and the control of the local environment of the SVC can lead to significant field enhancement of its optical field. Our calculated optimal photoluminescence for each design enhances the emission intensity by 15 -300 × that of a single SVC without antenna. The enhancement mechanisms are investigated using four representative structures that can be fabricated under feasible and realistic growth conditions, i.e., spherical-, nanorod-, nanodisk-dimer, and bow-tie nanoantennae. These results demonstrate a method for rationally designing arbitrary metallic nanoantenna/emitter assemblies to achieve optimal SVC photoluminescence.

  11. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  12. Porous silicon investigated by positron annihilation

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1989-01-01

    The effect of the anodic conversion in silicon single crystals is investigated by positron lifetime measurements. Anodization at constant current induces changes in the positron lifetime spectrum of monocrystalline silicon samples. It is found that theses changes are primarily dependent on the silicon resistivity. The annihilation parameter behaviour of anodized samples, treated at high temperature under reducing conditions, is also investigated. The results reveal that positron annihilation can be a useful technique to characterize porous silicon formed by anodizing as well as to investigate its thermal behaviour. (author)

  13. Interference effects in Bragg-case synchrotron section topography of elastically bent silicon implanted crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Graeff, W.

    1997-01-01

    White-beam synchrotron section topography was applied to a silicon crystal implanted with 4.8 MeV α-particles elastically bent with the radius of curvature close to 100 m. A number of section patterns corresponding to different reflections was analysed. It was found that the section pattern in the bent sample was drastically different from those observed in a flat sample. The difference consists in the occurrence of the sets of additional interference fringes covering a long distance up to several millimetres behind the main diffraction maximum. It was possible to reproduce some characteristic features of the fringes both in the implanted and non-implanted region by numerical integration of the Takagi-Taupin equation

  14. Silicon wafers for integrated circuit process

    OpenAIRE

    Leroy , B.

    1986-01-01

    Silicon as a substrate material will continue to dominate the market of integrated circuits for many years. We first review how crystal pulling procedures impact the quality of silicon. We then investigate how thermal treatments affect the behaviour of oxygen and carbon, and how, as a result, the quality of silicon wafers evolves. Gettering techniques are then presented. We conclude by detailing the requirements that wafers must satisfy at the incoming inspection.

  15. Variability of photovoltaic panels efficiency depending on the value of the angle of their inclination relative to the horizon

    OpenAIRE

    Majdak Marek

    2017-01-01

    The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance...

  16. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  17. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  18. Effect of irradiation temperature and initial crystal doping level on defect creation efficiency in silicon

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Markevich, V.P.; Medvedeva, I.F.; Murin, L.I.

    1990-01-01

    The defect creation processes in n-type silicon irradiated by 60 Co gamma-rays or fast electrons (E = 4 MeV) have been investigated. Using electrical measurements the dependences of introduction efficiencies of the main radiation defects (A-, E-centres, carbon-related complexes) on the irradiation temperature (T irr = 77-470 K) and material doping level (N h = 2 x 10 12 - 2 x 10 15 cm -3 ) are obtained. It is shown that the efficiency of these defects formation is conditioned by the probability of the Frenkel pairs separation and depends strongly on the Fermi level position in crystals being irradiated. 9 refs.; 3 figs.; 1 tab

  19. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    International Nuclear Information System (INIS)

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  20. Accelerating action of stresses on crystallization kinetics in silicon ion-implanted layers during pulsed heating

    International Nuclear Information System (INIS)

    Aleksandrov, L.N.

    1985-01-01

    Numerical simulation of the effect of stressed in ion-implanted layers on kinetics of amorphous phase transformations is performed. The suggested model of accounting stresses including concentration ones is based on the locality of action of interstitial addition atoms and on general structural inhomogeneity of amorphous semiconductor leading to the formation of areas of the facilitated phase transition. Accounting of effect of energy variation of silicon atoms interaction on probability of displacement events and atoms building in lattice points or atomic bonds disintegration allows one to trace the accelerating action of introduced by ion implantation stresses on the kinetics of layer crystallization during pulsed heating

  1. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field

    Science.gov (United States)

    Chen, Jyh-Chen; Chiang, Pei-Yi; Nguyen, Thi Hoai Thu; Hu, Chieh; Chen, Chun-Hung; Liu, Chien-Cheng

    2016-10-01

    A three-dimensional simulation model is used to study the oxygen concentration distribution in silicon crystal during the Czochralski growth process under a transverse uniform magnetic field. The flow, temperature, and oxygen concentration distributions inside the furnace are calculated for different crystal lengths. There is significant variation in the flow structure in the melt with the growth length. The results show that in the initial stages, there is a decrease in the oxygen concentration at the crystal-melt interface as the length of the growing crystal increases. As the crystal lengthens further, a minimum value is reached after which the oxygen concentration increases continuously. This trend is consistent with that shown in the experimental results. The variation of the oxygen concentration with the growth length is strongly related to the depth of the melt in the crucible and the flow structure inside the melt. Better uniformity of the axial oxygen concentration can be achieved by proper adjustment of the crucible rotation rate during the growth process.

  2. CHANNELING OF B-IONS IN SILICON

    NARCIS (Netherlands)

    VOS, M; MITCHELL, [No Value; SMULDERS, PJM

    We present new results on the channeling of B ions in Si crystals. Standard surface barrier detectors have been used to record energy spectra for B ions backscattered from the near surface (approximately 1500 angstrom) of a silicon crystal, under perfect, and near axial and planar channeling

  3. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    Directory of Open Access Journals (Sweden)

    D. Barani Ganth

    2017-10-01

    Full Text Available The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship history. Analysis of the data revealed that males showed higher level of romantic inclination than females. Those who had current/past involvement in a romantic relationship (Lovers showed higher levels of romantic inclination than those who had never involved in a romantic relationship (Non-lovers. Parents’ type of marriage (Love/arranged, close fiends’ involvement in romantic relationship too had a discriminatory role in romantic inclination. Romantic inclination was significantly related to personality factors, attachment style, media and peer influences on romantic relationships and interpersonal attraction. Extraversion, openness to experience, agreeableness, media influence, peer influence, secure attachment and physical attraction emerged as significant predictors of romantic inclination in a regression model. Structural Equations Modeling (SEM indicated that personality, attachment style and interpersonal attraction had a significant influence on romantic inclination mediated by both media and peer influences. Romantic inclination in turn significantly predicted romantic relationship status.

  4. Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.

    1986-01-01

    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.

  5. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  6. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  7. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  8. Method of producing buried porous silicon-geramanium layers in monocrystalline silicon lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1997-01-01

    Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si--Ge layers followed by patterning into mesa structures. The mesa structures are stain etched resulting in porosification of the Si--Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si--Ge layers produced in a similar manner emitted visible light at room temperature.

  9. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  10. Disposable attenuated total reflection-infrared crystals from silicon wafer: a versatile approach to surface infrared spectroscopy.

    Science.gov (United States)

    Karabudak, Engin; Kas, Recep; Ogieglo, Wojciech; Rafieian, Damon; Schlautmann, Stefan; Lammertink, R G H; Gardeniers, Han J G E; Mul, Guido

    2013-01-02

    Attenuated total reflection-infrared (ATR-IR) spectroscopy is increasingly used to characterize solids and liquids as well as (catalytic) chemical conversion. Here we demonstrate that a piece of silicon wafer cut by a dicing machine or cleaved manually can be used as disposable internal reflection element (IRE) without the need for polishing and laborious edge preparation. Technical aspects, fundamental differences, and pros and cons of these novel disposable IREs and commercial IREs are discussed. The use of a crystal (the Si wafer) in a disposable manner enables simultaneous preparation and analysis of substrates and application of ATR spectroscopy in high temperature processes that may lead to irreversible interaction between the crystal and the substrate. As representative application examples, the disposable IREs were used to study high temperature thermal decomposition and chemical changes of polyvinyl alcohol (PVA) in a titania (TiO(2)) matrix and assemblies of 65-450 nm thick polystyrene (PS) films.

  11. A study on the effect of silicon content on mechanical properties

    International Nuclear Information System (INIS)

    Kwon, C.T.; Nam, T.W.; Lee, S.I.

    1978-01-01

    In Al-Si alloy, the variation of mechanical properties with silicon contents was investigated the silicon content being varied from 5% to 25%, and the effects of additives and refining elements were also studied. The results obtained are as follows: 1) Sodium treatment made the primary silicon crystals refined and spheroidized, and made the matrix structure intensified. The effect of P treatment on refining primary silicon crystals was greater then that of Na. 2) Tensile strength showed the maximum value at near the eutectic composition and was improved considerably by addition of Mg and treatment with Na. 3) The variation of matrix hardness with silicon contents was not perceptible and the hardness was improved by addition of Mg and treatment with Na. (author)

  12. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-01-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  13. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  14. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  15. Superior glenoid inclination and rotator cuff tears.

    Science.gov (United States)

    Chalmers, Peter N; Beck, Lindsay; Granger, Erin; Henninger, Heath; Tashjian, Robert Z

    2018-03-23

    The objectives of this study were to determine whether glenoid inclination (1) could be measured accurately on magnetic resonance imaging (MRI) using computed tomography (CT) as a gold standard, (2) could be measured reliably on MRI, and (3) whether it differed between patients with rotator cuff tears and age-matched controls without evidence of rotator cuff tears or glenohumeral osteoarthritis. In this comparative retrospective radiographic study, we measured glenoid inclination on T1 coronal MRI corrected into the plane of the scapula. We determined accuracy by comparison with CT and inter-rater reliability. We compared glenoid inclination between patients with full-thickness rotator cuff tears and patients aged >50 years without evidence of a rotator cuff tear or glenohumeral arthritis. An a priori power analysis determined adequate power to detect a 2° difference in glenoid inclination. (1) In a validation cohort of 37 patients with MRI and CT, the intraclass correlation coefficient was 0.877, with a mean difference of 0° (95% confidence interval, -1° to 1°). (2) For MRI inclination, the inter-rater intraclass correlation coefficient was 0.911. (3) Superior glenoid inclination was 2° higher (range, 1°-4°, P rotator cuff tear group of 192 patients than in the control cohort of 107 patients. Glenoid inclination can be accurately and reliably measured on MRI. Although superior glenoid inclination is statistically greater in those with rotator cuff tears than in patients of similar age without rotator cuff tears or glenohumeral arthritis, the difference is likely below clinical significance. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  17. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  18. Increased carrier lifetimes in epitaxial silicon layers on buried silicon nitride produced by ion implantation

    International Nuclear Information System (INIS)

    Skorupa, W.; Kreissig, U.; Hensel, E.; Bartsch, H.

    1984-01-01

    Carrier lifetimes were measured in epitaxial silicon layers deposited on buried silicon nitride produced by high-dose nitrogen implantation at 330 keV. The values were in the range 20-200 μs. The results are remarkable taking into account the high density of crystal defects in the epitaxial layers. Comparing with other SOI technologies the measured lifetimes are higher by 1-2 orders of magnitude. (author)

  19. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  20. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  1. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  2. Slipping and rolling on an inclined plane

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient (μ). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 μ. If μ > 2/7 tan θ, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  3. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    International Nuclear Information System (INIS)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel

    2014-01-01

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν 12 and ν 13 as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%

  4. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: zhang@esrf.fr; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble (France)

    2014-04-04

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν{sub 12} and ν{sub 13} as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  5. Excavating wide inclines in weak strata

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, N N [Ukrspetsstroiproekt (USSR)

    1990-09-01

    Discusses schemes for excavation of transport inclines in surface mines under conditions of weak, unstable rocks characterized by a high water content. The schemes are aimed at maximum reduction of excavation operations without infringing the safety of personnel. Use of walking draglines (the EhSh-20/90, EhSh-100/100 and EhSh-10/70) is evaluated. Optimum schemes for incline excavation and determining optimum slope inclination are described on the example of the Berezovsk brown coal surface mine in the USSR. Efficiency of optimum schemes is analyzed: range of excavation, safety degree, landslide hazards, water influx rate, accident rate, etc.

  6. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  7. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  8. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  9. Performance of a monolithic LaBr{sub 3}:Ce crystal coupled to an array of silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ulyanov, Alexei, E-mail: alexey.uliyanov@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Morris, Oran [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Department of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Galway (Ireland); Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Nelms, Nick; Shortt, Brian [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands); Slavicek, Tomas; Granja, Carlos; Solar, Michael [Institute of Experimental and Applied Physics, Czech Technical University in Prague, 12800 Prague 2 (Czech Republic)

    2016-02-21

    A gamma-ray detector composed of a single 28×28×20 mm{sup 3} LaBr{sub 3}:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  10. Strained silicon as a new electro-optic material

    DEFF Research Database (Denmark)

    Jacobsen, Rune Shim; Andersen, Karin Nordström; Borel, Peter Ingo

    2006-01-01

    For decades, silicon has been the material of choice for mass fabrication of electronics. This is in contrast to photonics, where passive optical components in silicon have only recently been realized1, 2. The slow progress within silicon optoelectronics, where electronic and optical...... functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data...... processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top...

  11. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  12. Ring formation on an inclined surface

    Science.gov (United States)

    Deegan, Robert; Du, Xiyu

    2015-11-01

    A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.

  13. UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Gulbis, A. A. S.; Elliot, J. L.; Adams, E. R.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H.

    2010-01-01

    Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0 +0.6 -0.5 0 and 8.1 +2.6 -2.1 0 . Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1 +3.9 -3.6 0 with a width of 6.9 +4.1 -2.7 0 . Centaur inclinations peak just below 20 0 , with one exceptionally high-inclination object near 80 0 . The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

  14. Crystal Growth Technology

    Science.gov (United States)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  15. High performance multilayered nano-crystalline silicon/silicon-oxide light-emitting diodes on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Shahmohammadi, M; Mortazavi, M; Mohajerzadeh, S [Thin Film and Nano-Electronic Laboratory, School of ECE, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Robertson, M; Morrison, T, E-mail: mohajer@ut.ac.ir [Department of Physics, Acadia University, Wolfville, NS (Canada)

    2011-09-16

    A low-temperature hydrogenation-assisted sequential deposition and crystallization technique is reported for the preparation of nano-scale silicon quantum dots suitable for light-emitting applications. Radio-frequency plasma-enhanced deposition was used to realize multiple layers of nano-crystalline silicon while reactive ion etching was employed to create nano-scale features. The physical characteristics of the films prepared using different plasma conditions were investigated using scanning electron microscopy, transmission electron microscopy, room temperature photoluminescence and infrared spectroscopy. The formation of multilayered structures improved the photon-emission properties as observed by photoluminescence and a thin layer of silicon oxy-nitride was then used for electrical isolation between adjacent silicon layers. The preparation of light-emitting diodes directly on glass substrates has been demonstrated and the electroluminescence spectrum has been measured.

  16. Phonon manipulation with phononic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  17. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  18. Periodically poled silicon

    Science.gov (United States)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  19. Channeling experiments at planar diamond and silicon single crystals with electrons from the Mainz Microtron MAMI

    Science.gov (United States)

    Backe, H.; Lauth, W.; Tran Thi, T. N.

    2018-04-01

    Line structures were observed for (110) planar channeling of electrons in a diamond single crystal even at a beam energy of 180 MeV . This observation motivated us to initiate dechanneling length measurements as function of the beam energy since the occupation of quantum states in the channeling potential is expected to enhance the dechanneling length. High energy loss signals, generated as a result of emission of a bremsstrahlung photon with about half the beam energy at channeling of 450 and 855 MeV electrons, were measured as function of the crystal thickness. The analysis required additional assumptions which were extracted from the numerical solution of the Fokker-Planck equation. Preliminary results for diamond are presented. In addition, we reanalyzed dechanneling length measurements at silicon single crystals performed previously at the Mainz Microtron MAMI at beam energies between 195 and 855 MeV from which we conclude that the quality of our experimental data set is not sufficient to derive definite conclusions on the dechanneling length. Our experimental results are below the predictions of the Fokker-Planck equation and somewhat above the results of simulation calculations of A. V. Korol and A. V. Solov'yov et al. on the basis of the MBN Explorer simulation package. We somehow conservatively conclude that the prediction of the asymptotic dechanneling length on the basis of the Fokker-Planck equation represents an upper limit.

  20. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  1. Active Thrust on an Inclined Retaining Wall with Inclined Cohesionless Backfill due to Surcharge Effect

    OpenAIRE

    Dewaikar, D. M.; Pandey, S. R.; Dixit, Jagabandhu

    2012-01-01

    A method based on the application of Kötter’s equation is proposed for the complete analysis of active thrust on an inclined wall with inclined cohesionless backfill under surcharge effect. Coulomb’s failure mechanism is considered in the analysis. The point of application of active thrust is determined from the condition of moment equilibrium. The coefficient of active pressure and the point of application of the active thrust are computed and presented in nondimensional form. One distinguis...

  2. Polysilicon tft's fabricated by crystallization of a-si:h enhanced by hydrogen plasma

    International Nuclear Information System (INIS)

    Gallegos, O.; Garcia, R.; Estrada, M.; Cerdeira, A.; Leyva, A.

    2001-01-01

    Poly-silicon thin film transistors (TFTs) are widely applied in integrated LCD driving circuits and image sensors, because they have better characteristics than a-Si:H TFTs. Poly-silicon can deposited or obtained by crystallization of amorphous silicon layers after annealing above 900 oC. For the last years, research is been done in order to crystallize a- Si:H films at low temperature and time budget. In this work we present crystallization at 650 oC of intrinsic and doped a-Si:H layers after a hydrogen plasma annealing to enhanced the crystallization process. Intrinsic layers crystallized in 4-6 hours after annealing in hydrogen plasma, while doped layers crystallized for the same annealing times, independently of been or not annealed in hydrogen plasma. Layers were characterized by XRD and by resistivity measurements. Resistivity of n-type layers changed from 300 to 0.02 cm after crystallization. Resistivity of i-layers also decreased, but both values are very high and it is difficult to determine with precision its change. The high resistivity of the polycrystalline layers is determined by the small grain size. Poly-silicon TFTs were fabricated using the above procedure to crystallize the amorphous layers. The complete fabrication process is presented. Output characteristics are shown and compared to same characteristics for a-Si:H TFTs fabricated simultaneously with the exception of the crystallization process. TFTs' sensibility to light was also used to verify that crystallization took place

  3. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    Science.gov (United States)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  4. Achievement report for fiscal 1997 on development of practical application technology for photovoltaic power generation systems. Development of technologies to manufacture thin film solar cells (development of technologies to manufacture silicon crystal based high-quality materials and substrates / survey and research on analysis of practical application); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (zairyo kiban seizo gijutsu kaihatsu / silicon kesshokei kohinshitsu zairyo kiban no seizo gijutsu kaihatsu (jitsuyoka kaiseki ni kansuru chosa kenkyu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a plan to develop technologies to manufacture materials and substrates for thin film solar cells, it is intended to reduce defect density, enhance film forming speed, largely improve the photo-electric conversion efficiency and increase manufacturing productivity. These goals will be realized by establishing methods to control defect density, crystal particle diameters and crystallization rate in silicon crystal systems. A technology to form micro-crystal silicon-based thin films will be developed, that have superior photo-stability, and are capable of realizing low cost and mass production. Discussions will be given on a high-density plasma control technology, a fundamental property evaluation technology for micro crystal silicon thin films, and a device design simulation technology. A technology will be developed to form amorphous silicon layer on a stainless steel substrate by using the plasma CVD process. At the same time, discussions will be given on optical annealing and thermal annealing as reformation methods. Fiscal 1997 has surveyed component technologies to identify and analyze quickly and accurately the technical trends inside and outside the country, and to mass produce thin film solar cells. The Material and Substrate System Technology Subcommittee (silicon crystals) was held to deliberate the four-year development program and its progress. (NEDO)

  5. 47 CFR 25.280 - Inclined orbit operations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Inclined orbit operations. 25.280 Section 25.280 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.280 Inclined orbit operations. (a) Satellite operators may commence...

  6. Electrical Properties Of Amorphous Selenium (aSe)/p-Type Silicon ...

    African Journals Online (AJOL)

    aSe) on four chemically etched p-type silicon crystals (pSi) each of 5Ω-cm resistivity and carrier concentration of 2.8x1015cm-3. Two of the pSi crystals have surface orientation of (111) while the other two crystals have (100) surface orientation.

  7. Rotational synkineses of occiput and atlas on lateral inclination

    Energy Technology Data Exchange (ETDEWEB)

    Jirout, J.

    1981-02-01

    An X-ray analysis was performed with regard to the question of synkinetic rotational movements of occiput and atlas on lateral inclination of the head and neck. It was found that the frequent synkinetic rotation of the head from the side of inclination can be taken for a stereotype that is ten times more frequent than the rotation towards the side of inclination. However, it does not represent an essential or indispensable feature of the synkinetic reaction. The associated rotation of the atlas from the side of inclination cannot be looked upon as a normal and constant element of the synkinetic response on lateral inclination, as it does not occur in nearly one-half of cases. Moreover, these studies have shown that the rotational movement between occiput and atlas is possible not only in the final stage of maximum forced rotation of the head, but that it belongs to normal dynamic features of the synkinetic response on lateral inclination of the head and neck.

  8. Rotational synkineses of occiput and atlas on lateral inclination

    International Nuclear Information System (INIS)

    Jirout, J.

    1981-01-01

    An X-ray analysis was performed with regard to the question of synkinetic rotational movements of occiput and atlas on lateral inclination of the head and neck. It was found that the frequent synkinetic rotation of the head from the side of inclination can be taken for a stereotype that is ten times more frequent than the rotation towards the side of inclination. However, it does not represent an essential or indispensable feature of the synkinetic reaction. The associated rotation of the atlas from the side of inclination cannot be looked upon as a normal and constant element of the synkinetic response on lateral inclination, as it does not occur in nearly one-half of cases. Moreover, these studies have shown that the rotational movement between occiput and atlas is possible not only in the final stage of maximum forced rotation of the head, but that it belongs to normal dynamic features of the synkinetic response on lateral inclination of the head and neck. (orig.)

  9. Crystallization behavior of polyethylene on silicon wafers in solution casting processes traced by time-resolved measurements of synchrotron grazing-incidence small-angle and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A

    2009-01-01

    Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.

  10. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  11. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  12. PAT and SEM study of porous silicon formed by anodization methods

    International Nuclear Information System (INIS)

    Liu Jian; Wei Long; Wang Huiyao; Ma Chuangxin; Wang Baoyi

    2000-01-01

    The porous silicon formed by anodization of crystal silicon was studied by positron annihilation technique (PAT) and scanning electron microscopy (SEM). The PAT experiments showed that the mean life and vacancy defects increased with the increasing anodization time. While the intensities of the longest lifetime, several ns-tens ns (ortho-positronium) dropped down. Small single-crystal Si spheres with mean radius of a few μm were observed by SEM after anodization. Pits with mean radius of a few μm from the divorcement of single-crystal spheres were also observed after further anodization. The increases of vacancy defects might be that the extension of structures of porous silicon towards inner layer with anodization time and caused more vacancy defects in inner layer. The SEM observation presented another possibility of the increase of density of vacancy defects in surface layer induced by the change of structures

  13. Production of Solar Grade (SoG) Silicon by Refining Liquid Metallurgical Grade (MG) Silicon: Final Report, 19 April 2001; FINAL

    International Nuclear Information System (INIS)

    Khattack, C. P.; Joyce, D. B.; Schmid, F.

    2001-01-01

    This report summarizes the results of the developed technology for producing SoG silicon by upgrading MG silicon with a cost goal of$20/kg in large-scale production. A Heat Exchanger Method (HEM) furnace originally designed to produce multicrystalline ingots was modified to refine molten MG silicon feedstock prior to directional solidification. Based on theoretical calculations, simple processing techniques, such as gas blowing through the melt, reaction with moisture, and slagging have been used to remove B from molten MG silicon. The charge size was scaled up from 1 kg to 300 kg in incremental steps and effective refining was achieved. After the refining parameters were established, improvements to increase the impurity reduction rates were emphasized. With this approach, 50 kg of commercially available as-received MG silicon was processed for a refining time of about 13 hours. A half life of and lt;2 hours was achieved, and the B concentration was reduced to 0.3 ppma and P concentration to 10 ppma from the original values of 20 to 60 ppma, and all other impurities to and lt;0.1 ppma. Achieving and lt;1 ppma B by this simple refining technique is a breakthrough towards the goal of achieving low-cost SoG silicon for PV applications. While the P reduction process was being optimized, the successful B reduction process was applied to a category of electronics industry silicon scrap previously unacceptable for PV feedstock use because of its high B content (50-400 ppma). This material after refining showed that its B content was reduced by several orders of magnitude, to(approx)1 ppma (0.4 ohm-cm, or about 5x1016 cm-3). NREL's Silicon Materials Research team grew and wafered small and lt;100 and gt; dislocation-free Czochralski (Cz) crystals from the new feedstock material for diagnostic tests of electrical properties, C and O impurity levels, and PV performance relative to similar crystals grown from EG feedstock and commercial Cz wafers. The PV conversion

  14. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  15. Economic analysis of crystal growth in space

    Science.gov (United States)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  16. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  17. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  18. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  19. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  20. Thermal convection of liquid sodium in inclined cylinders

    Science.gov (United States)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two halves of the cylinder indicates the torsional character of LSC fluctuations. At β =30∘ , the intensity of the oscillations at the

  1. Movements of a Sphere Moving Over Smooth and Rough Inclines

    Science.gov (United States)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free

  2. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    tions, they concluded that either reaction sintering or liquid phase .... α-6H silicon carbide single crystal by three different laboratories ... silicon carbide particles by the overall reaction .... layer displacement is likely to occur in such a manner as.

  3. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping

    International Nuclear Information System (INIS)

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. - Highlights: ► The effects of silicon cross section and neutron spectrum on the radial uniformity in NTD were experimentally investigated. ► The numerical results using silicon single crystal cross section reveal good agreements. ► The radial uniformity in hard neutron spectrum was more flat than that in soft spectrum. ► The silicon single crystal cross section and hard neutron spectrum are recommended for numerical analyses and radial uniformity flattening in NTD, respectively.

  4. Inclined-wall regular micro-pillar-arrayed surfaces covered entirely with an alumina nanowire forest and their improved superhydrophobicity

    International Nuclear Information System (INIS)

    Kim, Dae-Ho; Lee, Dongyun; Cho, Chae-Ryong; Kim, Soo-Hyung; Lee, Deug-Woo; Kim, Jong-Man; Kim, Yongsung; Kang, Jae-Wook; Hong, Suck Won

    2011-01-01

    This paper reports a multiple-scale hierarchically structured superhydrophobic surface that is composed of inclined-wall regular micro-pillar arrays covered entirely with an alumina nanowire forest (ANF) to improve the surface wettability. The multiple-scaled structures were fabricated stably using a simple batch process based on an anisotropic chemical silicon etching process and a subsequent time-controlled anodic aluminum oxide technique. The surface wetting properties of the mono-roughened surfaces with inclined-wall micro-pillar arrays, which are normally in the Wenzel wetting regime, could be transitioned perfectly to the slippery Cassie mode and enhanced greatly in the Wenzel regime in cases of a high- and low-density of the micro-pillars, respectively, by easily amplifying the intrinsic contact angle through the entire coverage of the ANF on the micro-roughened surfaces. The wettability of the proposed multiple-scaled surfaces could also be predicted using analytic surface models and the experimental results agreed greatly with the wetting trends estimated theoretically due to the geometrical regularity of the base micro-structures

  5. The Gothic arch (needle point) tracing and condylar inclination.

    Science.gov (United States)

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  6. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    Science.gov (United States)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  7. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  8. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  9. Raphide crystal structure in agave tequilana determined by x-ray originating from synchrotron radiation

    International Nuclear Information System (INIS)

    Tadokoro, Makoto; Ozawa, Yoshiki; Mitsumi, Minoru; Toriumi, Kohshiro; Ogura, Tetsuya

    2005-01-01

    The first single crystal structure of small natural raphides in an agave plant is completely determined using an intense X-ray originating from a synchrotron radiation. The SEM image shows that the tip of the crystal is approximately hundreds of nanometer in width sharply grow to stick to the tissue of herbivorous vermin. Furthermore, the crystal develops cracks that propagate at an inclination of approximately 45deg towards the direction of crystal growth such that the crystal easily splits into small pieces in the tissue. (author)

  10. Superacid Passivation of Crystalline Silicon Surfaces.

    Science.gov (United States)

    Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali

    2016-09-14

    The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.

  11. Possible relation between pulsar rotation and evolution of magnetic inclination

    Science.gov (United States)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  12. Optimization of chemical displacement deposition of copper on porous silicon.

    Science.gov (United States)

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  13. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wistisen, T. N. [Aarhus Univ. (Denmark); Uggerhoj, U. I. [Aarhus Univ. (Denmark); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Markiewicz, T. W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Noble, R. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Benson, B. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Smith, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bagli, E. [Univ. of Ferrara (Italy); Bandiera, L. [Univ. of Ferrara (Italy); Germogli, G. [Univ. of Ferrara (Italy); Guidi, V. [Univ. of Ferrara (Italy); Mazzolari, A. [Univ. of Ferrara (Italy); Holtzapple, R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Tucker, S. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  14. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  15. Third-harmonic generation in silicon and photonic crystals of macroporous silicon in the spectral intermediate-IR range; Erzeugung der Dritten Harmonischen in Silizium und Photonischen Kristallen aus makroporoesem Silizium im spektralen mittleren IR-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Mitzschke, Kerstin

    2007-11-01

    Nonlinear optical spectroscopy is a powerful method to study surface or bulk properties of condensed matter. In centrosymmetric materials like silicon even order nonlinear optical processes are forbidden. Besides self-focussing or self phase modulation third-harmonic-generation (THG) is the simplest process that can be studied. This work demonstrates that THG is a adapted non-contact and non-invasive optical method to get information about bulk structures of silicon and Photonic crystals (PC), consisting of silicon. Until now most studies are done in the visible spectral range being limited by the linear absorption losses. So the extension of THG to the IR spectral range is extremely useful. This will allow the investigation of Photonic Crystals, where frequencies near a photonic bandgap are of special interest. 2D- photonic structures under investigation were fabricated via photoelectrochemical etching of the Si (100) wafer (thickness 500 {mu}m) receiving square and hexagonal arranged pores. The typical periodicity of the structures used is 2 {mu}m and the length of the pores reached to 400 {mu}m. Because of stability the photonic structures were superimposed on silicon substrate. The experimental set-up used for the THG experiments generates tuneable picosecond IR pulses (tuning range 1500-4000 cm{sup -1}). The IR-pulse hit the sample either perpendicular to the sample surface or under an angle {theta}. The sample can be rotated (f) around the surface normal. The generated third harmonic is analysed by a polarizer, spectrally filtered by a polychromator and registered by a CCD camera. The setup can be used either in transmission or in reflection mode. Optical transmission and reflection spectra of the Si bulk correspond well with the theoretical description, a 4-fold and a 8-fold dependencies of the azimuth angle resulting in the structure of the x{sup (3)}-tensor of (100)-Si. The situation changes dramatically if the PC with hexagonal structure is investigated

  16. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    Science.gov (United States)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  17. Infrared characterization of some oxygen-related defects in Czochralski silicon

    International Nuclear Information System (INIS)

    Hallberg, T.

    1993-01-01

    This thesis is based on the work made at Linkoeping University at the Department of Physics and Measurement Technology. It is divided into two parts. The first part is a short introduction to defects in silicon, Fourier transform infrared spectroscopy as well as some physics involved in semiconductor crystals. The second part consists of two papers: Enhanced oxygen precipitation in electron irradiated silicon. Annealing of electron irradiated antimony-doped Czochralski silicon

  18. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    Science.gov (United States)

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.

  19. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  20. Silicon Web Process Development. [for solar cell fabrication

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  1. Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI

    Science.gov (United States)

    Nasr Esfahani, Mohammad; Kilinc, Yasin; Çagatay Karakan, M.; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; Erdem Alaca, B.

    2018-04-01

    The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μ m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.

  2. Raman crystallinity and Hall Effect studies of microcrystalline silicon ...

    African Journals Online (AJOL)

    Aluminium induced crystallization (AIC) was used to crystallize sputtered amorphous silicon thin films on aluminium‐coated glass at annealing temperatures ranging from 250‐520°C in vacuum. Crystalline volume fractions were measured by Raman spectrometry as a function of annealing temperature. It was shown that the ...

  3. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  4. Locomotor Behavior of Chickens Anticipating Incline Walking

    Directory of Open Access Journals (Sweden)

    Chantal LeBlanc

    2018-01-01

    Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.

  5. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ulin, V. P.; Ulin, N. V.; Soldatenkov, F. Yu., E-mail: f.soldatenkov@mail.ioffe.ru [Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl{sub 3}, V{sub 2}O{sub 5} and CrO{sub 3}) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d{sup 2}sp{sup 3} orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF{sub 2}){sub n} polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration

  6. Silumins alloy crystallization

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2009-07-01

    Full Text Available This paper presents the results of research, by ATD method, of hypo-, near- and hyperutectic silumins crystallization containing the following alloying additives: Mg, Ni, Cu, Cr, Mo, W, V. It has been shown that, depending on their concentration may crystallize pre-eutectic or eutectic multicomponent phases containing these alloy additives. It has been revealed that any subsequent crystallizable phase nucleate and grows near the liquid/former crystallized phase interface. In multiphases compound also falls the silicon, resulting in a reduction in its quantity and the fragmentation in the eutectic mixture. As a result, it gets a high hardness of silumins in terms of 110-220HB.

  7. Double and triple crystal diffraction investigation on ion implanted and electron beam annealed silicon

    International Nuclear Information System (INIS)

    Servidori, M.; Cembali, F.; Winter, U.; Zaumseil, P.; Richter, H.

    1985-01-01

    Double (DCD) and triple crystal (TCD) diffractometry was used to investigate radiation damage produced in silicon by silicon bombardment and its evolution after electron beam annealing. The implantation processes were carried out at 60 keV energy and at doses of 0.5, 1, 5, 10, 50, 100, and 200 x 10 13 ions/cm 2 . As to the annealing treatments, an electron gun was used, operating in the ranges 7.5 to 24 W/cm 2 and 2 to 20 seconds. DCD rocking curves were analyzed by means of the dynamical theory of X-ray diffraction. The formalism introduced by Taupin was used to simulate the experimental intensity profiles. From the resulting best fits, the lattice strain vs. depth profiles were obtained, indicating an increase of the damage with dose for the as-implanted samples up to 1 x 10 14 cm -2 dose, whereas amorphous layers are produced for the higher doses. After annealing, lowering of the residual strain was observed to be directly proportional to the implanted dose. In particular, a complete recovery of the damage occurred for the 0.5 and 1 x 10 13 cm -2 samples. The results obtained by the fitting procedure were substantially independent from the power densities and times used during electron beam irradiation. TCD as a very sensitive method to investigate lattice defects after implantation was used to obtain information about the crystallographic perfection of the surface layer. The absence of diffuse scattering indicates that the annealed layers do not contain microdefects within the detection limits. (author)

  8. Slipping and Rolling on an Inclined Plane

    Science.gov (United States)

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  9. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    Science.gov (United States)

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  10. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  11. Solar breeder: Energy payback time for silicon photovoltaic systems

    Science.gov (United States)

    Lindmayer, J.

    1977-01-01

    The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.

  12. Reciprocal space analysis of the microstructure of luminescent and nonluminescent porous silicon films

    International Nuclear Information System (INIS)

    Lee, S.R.; Barbour, J.C.; Medernach, J.W.; Stevenson, J.O.; Custer, J.S.

    1994-01-01

    The microstructure of anodically prepared porous silicon films was determined using a novel X-ray diffraction technique. This technique uses double-crystal diffractometry combined with position-sensitive X- ray detection to efficiently and quantitatively image the reciprocal space structure of crystalline materials. Reciprocal space analysis of newly prepared, as well as aged, p - porous silicon films showed that these films exhibit a very broad range of crystallinity. This material appears to range in structure from a strained, single-crystal, sponge-like material exhibiting long-range coherency to isolated, dilated nanocrystals embedded in an amorphous matrix. Reciprocal space analysis of n + and p + porous silicon showed these materials are strained single-crystals with a spatially-correlated array of vertical pores. The vertical pores in these crystals may be surrounded by nanoporous or nanocrystalline domains as small as a few nm in size which produce diffuse diffraction indicating their presence. The photoluminescence of these films was examined using 488 nm Ar laser excitation in order to search for possible correlations between photoluminescent intensity and crystalline microstructure

  13. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...

  14. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    Science.gov (United States)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  15. Fiber Optic Excitation of Silicon Microspheres in Amorphous and Crystalline Fluids

    NARCIS (Netherlands)

    Yilmaz, H.; Murib, M.S.; Serpenguzel, A.

    2016-01-01

    This study investigates the optical resonance spectra of free-standing monolithic single crystal silicon microspheres immersed in various amorphous fluids, such as air, water, ethylene glycol, and 4-Cyano-4’-pentylbiphenyl nematic liquid crystal. For the various amorphous fluids,

  16. Evaluation of performance of veterinary in-clinic hematology analyzers.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  17. Upper canine inclination influences the aesthetics of a smile.

    Science.gov (United States)

    Bothung, C; Fischer, K; Schiffer, H; Springer, I; Wolfart, S

    2015-02-01

    This current study investigated which angle of canine inclination (angle between canine tooth axis (CA-line) and the line between the lateral canthus and the ipsilateral labial angle (EM-line)) is perceived to be most attractive in a smile. The second objective was to determine whether laymen and dental experts share the same opinion. A Q-sort assessment was performed with 48 posed smile photographs to obtain two models of neutral facial attractiveness. Two sets of images (1 male model set, 1 female model set), each containing seven images with incrementally altered canine and posterior teeth inclinations, were generated. The images were ranked for attractiveness by three groups (61 laymen, 59 orthodontists, 60 dentists). The images with 0° inclination, that is CA-line (maxillary canine axis) parallel to EM-line (the line formed by the lateral canthus and the ipsilateral corner of the mouth) (male model set: 54·4%; female model set: 38·9%), or -5° (inward) inclination (male model set: 20%; female model set: 29·4%) were perceived to be most attractive within each set. Images showing inward canine inclinations were regarded to be more attractive than those with outward inclinations. Dental experts and laymen were in accordance with the aesthetics. Smiles were perceived to be most attractive when the upper canine tooth axis was parallel to the EM-line. In reconstructive or orthodontic therapy, it is thus important to incline canines more inwardly than outwardly. © 2014 John Wiley & Sons Ltd.

  18. Steering of sub-GeV electrons by ultrashort Si and Ge bent crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; INFN Sezione di Ferrara (Italy); Bandiera, L.; Mazzolari, A.; Bagli, E.; Germogli, G.; Guidi, V.; Romagnoni, M. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN Sezione di Ferrara (Italy); De Salvador, D.; Carturan, S.; Maggioni, G. [INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; Berra, A.; Prest, M. [Univ. dell' Insubria, Como (Italy); INFN, Sezione di Milano Bicocca, Milan (Italy); Durighello, C. [Ferrara Univ. (Italy). Dipt. di Fisica e Scienze della Terra; INFN, Laboratori Nazionali di Legnaro (Italy); Padova Univ. (Italy). Dipt. di Fisica; INFN Sezione di Ferrara (Italy); Klag, P.; Lauth, W. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Tikhomirov, V.V. [Belarusian State Univ., Minsk (Belarus). Inst. for Nuclear Problems; Vallazza, E. [INFN, Sezione di Trieste (Italy)

    2017-12-15

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μm of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals. (orig.)

  19. Steering of Sub-GeV electrons by ultrashort Si and Ge bent crystals

    Science.gov (United States)

    Sytov, A. I.; Bandiera, L.; De Salvador, D.; Mazzolari, A.; Bagli, E.; Berra, A.; Carturan, S.; Durighello, C.; Germogli, G.; Guidi, V.; Klag, P.; Lauth, W.; Maggioni, G.; Prest, M.; Romagnoni, M.; Tikhomirov, V. V.; Vallazza, E.

    2017-12-01

    We report the observation of the steering of 855 MeV electrons by bent silicon and germanium crystals at the MAinzer MIkrotron. Crystals with 15 μ m of length, bent along (111) planes, were exploited to investigate orientational coherent effects. By using a piezo-actuated mechanical holder, which allowed to remotely change the crystal curvature, it was possible to study the steering capability of planar channeling and volume reflection vs. the curvature radius and the atomic number, Z. For silicon, the channeling efficiency exceeds 35%, a record for negatively charged particles. This was possible due to the realization of a crystal with a thickness of the order of the dechanneling length. On the other hand, for germanium the efficiency is slightly below 10% due to the stronger contribution of multiple scattering for a higher-Z material. Nevertheless this is the first evidence of negative beam steering by planar channeling in a Ge crystal. Having determined for the first time the dechanneling length, one may design a Ge crystal based on such knowledge providing nearly the same channeling efficiency of silicon. The presented results are relevant for crystal-based beam manipulation as well as for the generation of e.m. radiation in bent and periodically bent crystals.

  20. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  1. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  2. Optical Effects Accompanying the Dynamical Bragg Diffraction in Linear 1D Photonic Crystals Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Anton Maydykovskiy

    2014-10-01

    Full Text Available We survey our recent results on the observation and studies of the effects accompanying the dynamical Bragg diffraction in one-dimensional photonic crystals (PhC. Contrary to the kinematic Bragg diffraction, the dynamical one considers a continuous interaction between the waves travelling within a spatially-periodic structure and is the most pronounced in the so called Laue geometry, leading to a number of exciting phenomena. In the described experiments, we study the PhC based on porous silicon or porous quartz, made by the electrochemical etching of crystalline silicon with the consequent thermal annealing. Importantly, these PhC are approximately hundreds of microns thick and contain a few hundreds of periods, so that the experiments in the Laue diffraction scheme are available. We discuss the effect of the temporal splitting of femtosecond laser pulses and show that the effect is quite sensitive to the polarization and the phase of a femtosecond laser pulse. We also show the experimental realization of the Pendular effect in porous quartz PhC and demonstrate the experimental conditions for the total spatial switching of the output radiation between the transmitted and diffracted directions. All described effects are of high interest for the control over the light propagation based on PhC structures.

  3. Ultrahigh thermal conductivity of isotopically enriched silicon

    Science.gov (United States)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  4. Silicon-germanium (Sige) nanostructures production, properties and applications in electronics

    CERN Document Server

    Usami, N

    2011-01-01

    Nanostructured silicon-germanium (SiGe) provides the prospect of novel and enhanced electronic device performance. This book reviews the materials science and technology of SiGe nanostructures, including crystal growth, fabrication of nanostructures, material properties and applications in electronics.$bNanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and mo...

  5. Microdefects in neutron-transmutationaly doped silicon

    International Nuclear Information System (INIS)

    Vysotskaya, V.V.; Gorin, S.N.; Gres'kov, I.M.; Sobolev, N.A.; Shek, E.I.

    1988-01-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed

  6. Microdefects in neutron-transmutationaly doped silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vysotskaya, V V; Gorin, S N; Gres' kov, I M; Sobolev, N A; Shek, E I

    1988-03-01

    Using the method of X-ray topography and high-voltage electron microscopy, the nature of microdefects and character of their changes in neutron-transmutationaly doped silicon depending on the sample prehistory and heat treatment (HT) conditions are refined. It is shown that the microstructure of neutron-transmutationaly doped dislocation-free silicon crystals depends on conditions of ingot growth and post-radiation annealing environment. Annealing in chlorine-containing atmosphere removes microdefects (MD), although in vacuum, argon or air growing MD are preserved and new MD are formed.

  7. Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon

    International Nuclear Information System (INIS)

    Hopman, Wico C L; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J; Kuipers, Laurens; Pollnau, Markus; Ridder, Rene M de

    2007-01-01

    Focused ion beam (FIB) milling is receiving increasing attention for nanostructuring in silicon (Si). These structures can for example be used for photonic crystal structures in a silicon-on-insulator (SOI) configuration or for moulds which can have various applications in combination with imprint technologies. However, FIB fabrication of submicrometre holes having perfectly vertical sidewalls is still challenging due to the redeposition effect in Si. In this study we show how the scan routine of the ion beam can be used as a sidewall optimization parameter. The experiments have been performed in Si and SOI. Furthermore, we show that sidewall angles as small as 1.5 0 are possible in Si membranes using a spiral scan method. We investigate the effect of the dose, loop number and dwell time on the sidewall angle, interhole milling and total milling depth by studying the milling of single and multiple holes into a crystal. We show that the sidewall angles can be as small as 5 0 in (bulk) Si and SOI when applying a larger dose. Finally, we found that a relatively large dwell time of 1 ms and a small loop number is favourable for obtaining vertical sidewalls. By comparing the results with those obtained by others, we conclude that the number of loops at a fixed dose per hole is the parameter that determines the sidewall angle and not the dwell time by itself

  8. Influence of functionalized silicones on hair fiber-fiber interactions and on the relationship with the macroscopic behavior of hair assembly.

    Science.gov (United States)

    Dussaud, Anne; Fieschi-Corso, Lara

    2009-01-01

    It is well established that silicones alter hair surface properties and that silicones have a significant impact on the macroscopic behavior of hair assembly, such as visual appearance, combing performance and manageability of the hair. In order to fine-tune the chemistry of functionlized silicones for specific consumer benefits and hair types, we investigated the influence of silicones on hair fiber-fiber interactions and their correlation to hair volume. The incline plane fiber loop method, implemented with a high-precision motorized rotary stage, was used to quantify the fiber-fiber interactions. Low load static friction was studied as a function of polymer molecular weight, dose and chemical architecture. This information was related to the macroscopic behavior of hair assembly, using virgin curly hair in high humidity.

  9. Radiative recombination in doped indium phosphide crystals

    International Nuclear Information System (INIS)

    Negreskul, V.V.; Russu, E.V.; Radautsan, S.I.; Cheban, A.G.; AN Moldavskoj SSR, Kishinev. Inst. Prikladnoj Fiziki)

    1975-01-01

    Photoluminiscence spectra of nondoped n-InP and their change upon doping with silicon, cadmium, zinc and copper impurities were studied. The shortest wave band at 1.41 eV is connected with radiative electron transition from a shallow donor level (probably silicon) to valent zone, while the band with maximum at 1.37 - 1.39 eV is due to radiative electron transition to an acceptor level whose energy depends upon the nature and concentration of impurity implanted. The luminescence of Light-doped p-InP crystals enables to estimate the ionization energies of acceptor levels in cadmium (Esub(a)=0.043 eV) and zinc (Esub(a)=0.027 eV). Energies of acceptor levels (0.22 and 0.40 eV) due to copper impurity are determined. Intensity of edge emission in the specimens light-doped with silicon is higher than in the nondoped n-InP crystals

  10. Transistors using crystalline silicon devices on glass

    Science.gov (United States)

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  11. Electrical properties of pressure quenched silicon by thermal spraying

    International Nuclear Information System (INIS)

    Tan, S.Y.; Gambino, R.J.; Sampath, S.; Herman, H.

    2007-01-01

    High velocity thermal spray deposition of polycrystalline silicon film onto single crystal substrates, yields metastable high pressure forms of silicon in nanocrystalline form within the deposit. The phases observed in the deposit include hexagonal diamond-Si, R-8, BC-8 and Si-IX. The peculiar attribute of this transformation is that it occurs only on orientation silicon substrate. The silicon deposits containing the high pressure phases display a substantially higher electrical conductivity. The resistivity profile of the silicon deposit containing shock induced metastable silicon phases identified by X-ray diffraction patterns. The density of the pressure induced polymorphic silicon is higher at deposit/substrate interface. A modified two-layer model is presented to explain the resistivity of the deposit impacted by the pressure induced polymorphic silicon generated by the thermal spraying process. The pressure quenched silicon deposits on the p - silicon substrate, with or without metastable phases, display the barrier potential of about 0.72 eV. The measured hall mobility value of pressure quenched silicon deposits is in the range of polycrystalline silicon. The significance of this work lies in the fact that the versatility of thermal spray may enable applications of these high pressure forms of silicon

  12. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  13. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  14. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  15. Measurement of Nuclear Interaction Rates in Crystal Using the CERN-SPS North Area Test Beams

    CERN Document Server

    Losito, R; Taratin, A

    2010-01-01

    A number of tests were performed in the North area of the SPS in view of investigating crystal-particles interactions for future application in hadron colliders. The rate of nuclear interactions was measured with 400 GeV proton beams directed into a silicon bent crystal. In this way the background induced by the crystal either in amorphous or in channeling orientation was revealed. The results provide fundamental information to put in perspective the use of silicon crystals to assist halo collimation in hadron colliders, whilst minimizing the induced loss.

  16. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  17. Microdefects in an as-grown Czochralski silicon crystal studied by synchrotron radiation section topography with aid of computer simulation

    International Nuclear Information System (INIS)

    Iida, Satoshi; Aoki, Yoshirou; Okitsu, Kouhei; Sugita, Yoshimitsu; Kawata, Hiroshi; Abe, Takao

    1998-01-01

    Grown-in microdefects of a Czochralski (CZ) silicon crystal grown at a slow growth rate were studied by section topography using high energy synchrotron radiation. Images of the microdefects in the section topographs were analyzed quantitatively using computer simulation based on the Takagi-Taupin type dynamical diffraction theory of X-rays, and reproduced successfully by the simulation when the microdefects were assumed to be spherical strain centers. Sizes and positions of the microdefects were able to be determined by detailed comparison between the experiments and the computer simulations. The validity of the computer simulation in an analysis of the section topographs is discussed. (author)

  18. Study on the fabrication of silicon nanoparticles in an amorphous silicon light absorbing layer for solar cell applications

    International Nuclear Information System (INIS)

    Park, Joo Hyung; Song, Jin Soo; Lee, Jae Hee; Lee, Jeong Chul

    2012-01-01

    Hydrogenated amorphous-silicon (a-Si:H) thin-film solar cells have advantages of relatively simple technology, less material consumption, higher absorption ratio compared to crystalline silicon, and low cost due to the use of cheaper substrates rather than silicon wafers. However, together with those advantages, amorphous-silicon thin-film solar cells face several issues such as a relatively lower efficiency, a relatively wider bandgap, and the Staebler-Wronski effect (SWE) compared to other competing materials (i.e., crystalline silicon, CdTe, Cu(In x Ga (1-x) )Se 2 (CIGS), etc.). As a remedy for those drawbacks and a way to enhance the cell conversion efficiency at the same time, the employment of crystalline silicon nanoparticles (Si-NPs) in the a-Si matrix is proposed to organize the quantum-dot (QD) structure as the light-absorbing layer. This structure of the light absorbing layer consists of single-crystal Si-NPs in an a-Si:H thin-film matrix. The single-crystal Si-NPs are synthesized by using SiH 4 gas decomposition with CO 2 laser pyrolysis, and the sizes of Si-NPs are calibrated to control their bandgaps. The synthesized size-controlled Si-NPs are directly transferred to another chamber to form a QD structure by using co-deposition of the Si-NPs and the a-Si:H matrix. Transmission electron microscopy (TEM) analyses are employed to verify the sizes and the crystalline properties of the Si-NPs alone and of the Si-NPs in the a-Si:H matrix. The TEM results show successful co-deposition of size-controlled Si-NPs in the a-Si:H matrix, which is meaningful because it suggests the possibility of further enhancement of the a-Si:H solar-cell structure and of tandem structure applications by using a single element.

  19. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  20. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  1. Method for the preparation of n-i-p type radiation detector from silicon

    International Nuclear Information System (INIS)

    Keleti, J.; Toeroek, T.; Lukacs, J.; Molnar, I.

    1978-01-01

    The patent describes a procedure for the preparation of n-i-p type silicon radiation detectors. The aim was to provide an adaquate procedure for the production of α, β, γ-detectors from silicon available on the market, either p-type single crystal silicon characterised by its boron level. The procedure and the 9 claims are illustrated by two examples. (Sz.J.)

  2. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  3. Optimization of planar self-collimating photonic crystals.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  4. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  5. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  6. Effects of nanostructurized silicon on proliferation of stem and cancer cell.

    Science.gov (United States)

    Osminkina, L A; Luckyanova, E N; Gongalsky, M B; Kudryavtsev, A A; Gaydarova, A Kh; Poltavtseva, R A; Kashkarov, P K; Timoshenko, V Yu; Sukhikh, G T

    2011-05-01

    In vitro experiments showed that stem and cancer cells retained their viability on the surface of porous silicon with 10-100 nm nanostructures, but their proliferation was inhibited. Silicon nanoparticles of 100 nm in size obtained by mechanical grinding of porous silicon films or crystal silicon plates in a concentration below 1 mg/ml in solution did not modify viability and proliferation of mouse fibroblast and human laryngeal cancer cells. Additional ultrasonic exposure of cancer cells in the presence of 1 mg/ml silicon nanoparticles added to nutrient medium led to complete destruction of cells or to the appearance of membrane defects blocking their proliferation and initiating their apoptotic death.

  7. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  8. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  9. The orbital inclination of Cygnus XR-1 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The X-ray binary Cyg XR-1/HDE 226868 was observed polarimetrically over one orbit at three different optical wavelengths. The standard theory of Brown, et al. (1978) is used to derive an orbital inclination i = 62 deg (+5 deg, -37 deg), where the error is the 90-percent-confidence interval derived by the method of Simmons, et al. (1980). The value of the orbital inclination is significantly lower than values based on polarimetric observations. The difference is a result of the observational protocols used. A bias toward larger values of the inclination caused by the tidal distortion of the primary is still found in the present result. The inclination derived corresponds to a mass of the compact component of 6.3 solar masses, above the maximum mass of any degenerate configuration consistent with general relativity except a black hole. 37 refs

  10. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-01

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type  silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559

  11. Electrophysical properties of silicon doped by palladium-103 isotope

    International Nuclear Information System (INIS)

    Makhkamov, Sh.; Tursunov, N.A.; Sattiev, A.R.; Normurodov, A.B.

    2007-01-01

    The work is devoted to study of radiation physical processes taking place in Si under nuclear transmutation, Identification and determination of defects microstructure and homogeneities and their distribution, study of interactions of nuclear-transformed phosphorus isotopes with palladium atoms, and its effect on crystal properties. For examination monocrystalline silicon of n- and p-type conductivity with specific resistance from 1 to 40 Ω·cm, dislocation density ∼10 4 cm -2 and oxygen content ∼10 17 cm -3 has been applied. Doping of silicon plates by examined admixture has been carried out by thermal diffusion method within temperature range 1000-1250 deg. C for 0.5- 5 h. Irradiation of doped silicon was conducted by reactor neutron fluences 5·10 18 - 5·10 19 cm -2 with subsequent annealing at 1000 deg. C for 30 min. Efficiency of mixture centers formation in silicon, effect of concentration of formed mixture-defect centers on electro-physical, photoelectric and recombination parameters of doped silicon and revealing of type and state of generated defects have been controlled by electric, volume and X-ray fluorescent methods. On the base of spectroscopic researches it is shown, that in silicon forbidden zone after Pd diffusion in DLTS spectra peaks related with acceptor (E c -0.18 and E v +0.34 eV) levels, and peak responsible for level E v +0.32 eV of donor character caused by palladium impurity. It is shown, that irradiation of doped silicon samples by neutrons lead to nuclear transmutation of 102 Pd, 104 Pd in 103 Pd isotopes in the crystal volume with following electron capture in stable isotope 103m Rh

  12. A versatile Czochralski crystal growth system with automatic diameter control

    Science.gov (United States)

    Aggarwal, M. D.; Metzl, R.; Wang, W. S.; Choi, J.

    1995-07-01

    A versatile Czochralski crystal pulling system with automatic diameter control for the growth of nonlinear optical oxide crystals is discussed. Pure and doped bulk single crystals of bismuth silicon oxide (Bi12SiO20) have been successfully grown using this system. The system consists of a regular Czochralski type pulling system with provision for continuous weighing of the growing crystal to provide feedback for power control.

  13. Material Properties of Laser-Welded Thin Silicon Foils

    Directory of Open Access Journals (Sweden)

    M. T. Hessmann

    2013-01-01

    Full Text Available An extended monocrystalline silicon base foil offers a great opportunity to combine low-cost production with high efficiency silicon solar cells on a large scale. By overcoming the area restriction of ingot-based monocrystalline silicon wafer production, costs could be decreased to thin film solar cell range. The extended monocrystalline silicon base foil consists of several individual thin silicon wafers which are welded together. A comparison of three different approaches to weld 50 μm thin silicon foils is investigated here: (1 laser spot welding with low constant feed speed, (2 laser line welding, and (3 keyhole welding. Cross-sections are prepared and analyzed by electron backscatter diffraction (EBSD to reveal changes in the crystal structure at the welding side after laser irradiation. The treatment leads to the appearance of new grains and boundaries. The induced internal stress, using the three different laser welding processes, was investigated by micro-Raman analysis. We conclude that the keyhole welding process is the most favorable to produce thin silicon foils.

  14. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Science.gov (United States)

    Linez, F.; Gilabert, E.; Debelle, A.; Desgardin, P.; Barthe, M.-F.

    2013-05-01

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H-SiC single crystals have been implanted with 50 keV-He ions at 2 × 1014 and 1015 cm-2 and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  15. Helium interaction with vacancy-type defects created in silicon carbide single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Linez, F., E-mail: florence.linez@aalto.fi [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France); Gilabert, E. [CENBG, U.R.A. 451 CNRS, Université de Bordeaux I, BP120, Le Haut Vigneau, 33175 Gradignan Cedex (France); Debelle, A. [CSNSM, Univ. Paris-Sud, CNRS-IN2P3, 91405 Orsay Campus (France); Desgardin, P.; Barthe, M.-F. [CEMHTI CNRS, 3A rue de la Férollerie, 45071 Orléans (France)

    2013-05-15

    Generation of He bubbles or cavities in silicon carbide is an important issue for the use of this material in nuclear and electronic applications. To understand the mechanisms prior to the growth of these structures, an atomic-scale study has been conducted. 6H–SiC single crystals have been implanted with 50 keV-He ions at 2 × 10{sup 14} and 10{sup 15} cm{sup −2} and successively annealed at various temperatures from 150 to 1400 °C. After each annealing, the defect distributions in the samples have been probed by positron annihilation spectroscopy. Four main evolution stages have been evidenced for the two investigated implantation fluences: at (1) 400 °C for both fluences, (2) at 850 °C for the low fluence and 950 °C for the high one, (3) at 950 °C for the low fluence and 1050 °C for the high one and (4) at 1300 °C for both fluences. The perfect correlation between the positron annihilation spectroscopy and the thermodesorption measurements has highlighted the He involvement in the first two stages corresponding respectively to its trapping by irradiation-induced divacancies and the detrapping from various vacancy-type defects generated by agglomeration processes.

  16. Texture and magnetic properties of non-oriented electrical steels processed by an unconventional cold rolling scheme

    Energy Technology Data Exchange (ETDEWEB)

    He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON (Canada); Hilinski, Erik J. [Formerly Research and Technology Centre, United States Steel Corporation, Munhall, PA (United States); Now Tempel Steel Co., Chicago, IL (United States)

    2016-05-01

    Two non-oriented electrical steels containing 0.9 wt% and 2.8 wt% of silicon were processed using an unconventional cold rolling scheme, i.e. the cold rolling direction (CRD) was intentionally inclined at an angle to the hot rolling direction (HRD) so that the initial texture before cold rolling and the rotation paths of crystals during cold deformation were both altered as compared to conventional cold rolling along the original HRD. The cold-rolled steel strips were then annealed, skin-pass rolled and final annealed. The texture and microstructure of the materials were characterized by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and optical microscopy, and considerable differences in average grain size and texture were observed at different inclination angles. The magnetic properties of the steel strips were measured at 400 Hz and 1.0 T/1.5 T using a specially designed Epstein frame, and apparent differences were also noticed at various angles. The magnetic quality of texture was evaluated using different texture factors/parameters and compared to the measured magnetic properties. Although apparent improvement on the magnetic quality of texture can be noted by inclining the CRD to HRD, the trend does not match the measured magnetic properties at 400 Hz, which may have been affected by other parameters in addition to crystallographic texture. - Highlights: • The cold rolling direction is inclined an angle to the hot rolling direction. • The deformation and annealing textures are both changed by the inclined rolling. • Magnetic quality of texture is improved at specific inclination angles. • Low silicon steel is more sensitive in texture change than high silicon steel. • High frequency core loss does not follow the computed magnetic quality of texture.

  17. Development of an Inclined Plate Extractor-Separator for Immiscible Liquids

    Directory of Open Access Journals (Sweden)

    Syed Zahoor ul Hassan Rizvi

    2009-10-01

    Full Text Available A new inclined plates extractor-separator is developed for operation with immiscible liquids in which extraction and separation is achieved in one unit contrary to mixer settlers. The inclined plates extractor-separator combines turbulent jets for contacting, and an inclined plate for separation of the two phases. The inclined plates extractor-separator does not have any moving part inside the vessel. This feature makes it free from the mechanical problems associated with conventional apparatus. The proposed inclined plates extractor-separator was operated in batch mode under various operating conditions to evaluate its performance on the basis of extraction efficiency. Water (light phase was used as solvent to extract ethyl acetate from a heavy phase pool of tetrachloroethylene and ethyl acetate. The ethyl acetate content was analysed using chromatography. A hydrodynamic study was carried out using high speed photography to understand the mechanisms occurring during mass transfer across the two phases. Furthermore, it was found that the proposed inclined plate extractor-separator reduces the overall operating time by 67% and consumes only 13% of the power in comparison to a mixer-settler. A hydraulic power consumption comparison with a mixer settler and a gullwing extractor-separator is also presented.

  18. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  19. High frequency guided wave propagation in monocrystalline silicon wafers

    OpenAIRE

    Pizzolato, M.; Masserey, B.; Robyr, J. L.; Fromme, P.

    2017-01-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full...

  20. Surface effects in segmented silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kopsalis, Ioannis

    2017-05-15

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO{sub 2} layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO{sub 2} and at the Si-SiO{sub 2} interface. In this thesis the surface radiation damage of the Si-SiO{sub 2} system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO{sub 2} of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO{sub 2}) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO{sub 2} interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface

  1. Surface effects in segmented silicon sensors

    International Nuclear Information System (INIS)

    Kopsalis, Ioannis

    2017-05-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO 2 layers at the surface, thus changing the sensor properties and limiting their life time. Non-Ionizing Energy Loss (NIEL) of incident particles causes silicon crystal damage. Ionizing Energy Loss (IEL) of incident particles increases the densities of oxide charge and interface traps in the SiO 2 and at the Si-SiO 2 interface. In this thesis the surface radiation damage of the Si-SiO 2 system on high-ohmic Si has been investigated using circular MOSFETs biased in accumulation and inversion at an electric field in the SiO 2 of about 500 kV/cm. The MOSFETs have been irradiated by X-rays from an X-ray tube to a dose of about 17 kGy(SiO 2 ) in different irradiation steps. Before and after each irradiation step, the gate voltage has been cycled from inversion to accumulation conditions and back. From the dependence of the drain-source current on gate voltage the threshold voltage of the MOSFET and the hole and electron mobility at the Si-SiO 2 interface were determined. In addition, from the measured drain-source current the change of the oxide charge density during irradiation has been determined. The interface trap density and the oxide charge has been determined separately using the subthreshold current technique based on the Brews charge sheet model which has been applied for first time on MOSFETs built on high-ohmic Si. The results show a significant field-direction dependence of the surface radiation parameters. The extracted parameters and the acquired knowledge can be used to improve simulations of the surface radiation damage of silicon sensors.

  2. Imaging, structural, and chemical analysis of silicon nanowires

    International Nuclear Information System (INIS)

    Barsotti, R.J. Jr.; Fischer, J.E.; Lee, C.H.; Mahmood, J.; Adu, C.K.W.; Eklund, P.C.

    2002-01-01

    Laser ablation has been used to grow silicon nanowires with an average silicon crystal core diameter of 6.7 nm±2.9 nm surrounded by an amorphous SiO x sheath of 1-2 nm, the smallest silicon wires reported in the literature. Imaging, chemical, and structural analysis of these wires are reported. Due to the growth temperature and the presence of calcium impurities and trace oxygen, two distinct types of wires are found. They appear to grow by two different processes. One requires a metal catalyst, the other is catalyzed by oxygen. Suggestions for controlled synthesis based on these growth mechanisms are made

  3. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  4. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  5. Full-color OLED on silicon microdisplay

    Science.gov (United States)

    Ghosh, Amalkumar P.

    2002-02-01

    eMagin has developed numerous enhancements to organic light emitting diode (OLED) technology, including a unique, up- emitting structure for OLED-on-silicon microdisplay devices. Recently, eMagin has fabricated full color SVGA+ resolution OLED microdisplays on silicon, with over 1.5 million color elements. The display is based on white light emission from OLED followed by LCD-type red, green and blue color filters. The color filters are patterned directly on OLED devices following suitable thin film encapsulation and the drive circuits are built directly on single crystal silicon. The resultant color OLED technology, with hits high efficiency, high brightness, and low power consumption, is ideally suited for near to the eye applications such as wearable PCS, wireless Internet applications and mobile phone, portable DVD viewers, digital cameras and other emerging applications.

  6. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  7. Families Among High-Inclination Asteroids

    Science.gov (United States)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  8. Quantum chemical simulation of hydrogen like states in silicon and diamond

    International Nuclear Information System (INIS)

    Gel'fand, R.B.; Gordeev, V.A.; Gorelkinskij, Yu.V.

    1989-01-01

    The quantum-chemical methods of the complete neglect of differential overlap (CNDO) and intermediate neglect of differential overlap (INDO) are used to calculate the electronic structure of atomic hydrogen (muonium) located at different interstital sites of the silicon and diamond crystal lattices. The electronic g- and hyperfine interaction tensors of the impure atom are determined.The results obtained are compared with the experimental data on the 'normal' (Mu') and 'anomalous' (Mu * ) muonium centers as well as on the hydrogen-bearing Si-AA9 EPR center which is a hydrogen-bearing analogue of (Mu * ). The most likely localization sites for hydrogen (muonium) atoms in silicon and diamond crystals are established. 22 refs

  9. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

    Science.gov (United States)

    Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J

    2014-01-08

    Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

  10. LSA Large Area Silicon Sheet Task Continuous Liquid Feed Czochralski Growth

    Science.gov (United States)

    Fiegl, G.

    1979-01-01

    A process for the continuous growth of crystals by the Czochralski method, suitable for producing single silicon crystals for use in solar cells was studied. Continuous growth is the growth of 100 Kg of single silicon crystals, 10 cm in diameter, from one container. A furnace with continuous liquid replenishment of the growth crucible, accomplished by a melt-down system and a liquid transfer mechanism, with associated automatic feedback controls was developed. Elements of the transfer system were further developed and tested during actual transfer runs. Considerable simplification of the heating element of the transfer tube was achieved. Accuracy and reliability of the temperature sensor, which is part of the power input control system for the transfer tube, was improved. Electrical and thermal effectiveness were increased while assembly of the transfer tube system was further simplified.

  11. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  12. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Highlights: • Molecular dynamic model of nanoscale high speed grinding of silicon workpiece has been established. • The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation during high speed grinding process are thoroughly investigated. • Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle. • The hydrostatic stress and von Mises stress by the established analytical model are studied subsurface damage mechanism during nanoscale grinding. - Abstract: Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s −1 , subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high

  13. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  14. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  15. Guided ultrasonic wave beam skew in silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2018-04-01

    In the photovoltaic industry, monocrystalline silicon wafers are employed for solar cells with high conversion efficiency. Micro-cracks induced by the cutting process in the thin wafers can lead to brittle wafer fracture. Guided ultrasonic waves would offer an efficient methodology for the in-process non-destructive testing of wafers to assess micro-crack density. The material anisotropy of the monocrystalline silicon leads to variations of the guided wave characteristics, depending on the propagation direction relative to the crystal orientation. Selective guided ultrasonic wave excitation was achieved using a contact piezoelectric transducer with custom-made wedges for the A0 and S0 Lamb wave modes and a transducer holder to achieve controlled contact pressure and orientation. The out-of-plane component of the guided wave propagation was measured using a non-contact laser interferometer. The phase slowness (velocity) of the two fundamental Lamb wave modes was measured experimentally for varying propagation directions relative to the crystal orientation and found to match theoretical predictions. Significant wave beam skew was observed experimentally, especially for the S0 mode, and investigated from 3D finite element simulations. Good agreement was found with the theoretical predictions based on nominal material properties of the silicon wafer. The important contribution of guided wave beam skewing effects for the non-destructive testing of silicon wafers was demonstrated.

  16. Improving wellbore position accuracy of horizontal wells by using a continuous inclination measurement from a near bit inclination MWD sensor

    Energy Technology Data Exchange (ETDEWEB)

    Berger, P. E.; Sele, R. [Baker Hughes INTEQ (United States)

    1998-12-31

    Wellbore position calculations are typically performed by measuring azimuth and inclination at 10 to 30 meter intervals and using interpolation techniques to determine the borehole position between survey stations. The input parameters are measured depth (MD), azimuth and inclination, where the two parameters are measured with an MWD tool. Output parameters are the geometric coordinates; true value depth (TVD), north and east. By improving the accuracy of the inclination measurement reduces the uncertainty of the calculated TVD value, resulting in increased confidence in wellbore position. Significant improvements in quality control can be achieved by using multiple sensors. This paper describes a set of quality control parameters that can be used to verify individual sensor performance and a method for calculating TVD uncertainty in horizontal wells, using a single sensor or a combination of sensors. 6 refs., 5 figs.

  17. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  18. SiPM based readout system for PbWO4 crystals

    Science.gov (United States)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20-100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  19. SiPM based readout system for PbWO4 crystals

    International Nuclear Information System (INIS)

    Berra, A.; Bolognini, D.; Bonfanti, S.; Bonvicini, V.; Lietti, D.; Penzo, A.; Prest, M.; Stoppani, L.; Vallazza, E.

    2013-01-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20–100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs

  20. Stratified flow model for convective condensation in an inclined tube

    International Nuclear Information System (INIS)

    Lips, Stéphane; Meyer, Josua P.

    2012-01-01

    Highlights: ► Convective condensation in an inclined tube is modelled. ► The heat transfer coefficient is the highest for about 20° below the horizontal. ► Capillary forces have a strong effect on the liquid–vapour interface shape. ► A good agreement between the model and the experimental results was observed. - Abstract: Experimental data are reported for condensation of R134a in an 8.38 mm inner diameter smooth tube in inclined orientations with a mass flux of 200 kg/m 2 s. Under these conditions, the flow is stratified and there is an optimum inclination angle, which leads to the highest heat transfer coefficient. There is a need for a model to better understand and predict the flow behaviour. In this paper, the state of the art of existing models of stratified two-phase flows in inclined tubes is presented, whereafter a new mechanistic model is proposed. The liquid–vapour distribution in the tube is determined by taking into account the gravitational and the capillary forces. The comparison between the experimental data and the model prediction showed a good agreement in terms of heat transfer coefficients and pressure drops. The effect of the interface curvature on the heat transfer coefficient has been quantified and has been found to be significant. The optimum inclination angle is due to a balance between an increase of the void fraction and an increase in the falling liquid film thickness when the tube is inclined downwards. The effect of the mass flux and the vapour quality on the optimum inclination angle has also been studied.

  1. Investigation of beam effect on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kotai, E. E-mail: kotai@rmki.kfki.hu; Paszti, F.; Szilagyi, E

    2000-03-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction.

  2. Investigation of beam effect on porous silicon

    International Nuclear Information System (INIS)

    Kotai, E.; Paszti, F.; Szilagyi, E.

    2000-01-01

    When performing Rutherford Backscattering Spectroscopy (RBS) measurements combined with channeling on 'columnar' porous silicon (PS) samples with beam aligned to the direction of the pores, a strong beam effect was observed. The minimum yield as a function of the beam dose for different porous samples was compared with the yield measured on single crystal silicon. It was demonstrated that the beam effect strongly depends on the porosity of the sample. Bombardment in the random direction caused about 10% higher change in the minimum yield than in the channel direction

  3. VISION: a Versatile and Innovative SIlicOn tracking system

    CERN Document Server

    Lietti, Daniela; Vallazza, Erik

    This thesis work focuses on the study of the performance of different tracking and profilometry systems (the so-called INSULAB, INSUbria LABoratory, and VISION, Versatile and Innovative SIlicON, Telescopes) used in the last years by the NTA-HCCC, the COHERENT (COHERENT effects in crystals for the physics of accelerators), ICE-RAD (Interaction in Crystals for Emission of RADiation) and CHANEL (CHAnneling of NEgative Leptons) experiments, four collaborations of the INFN (Istituto Nazionale di Fisica Nucleare) dedicated to the research in the crystals physics field.

  4. Silicon web process development. [for low cost solar cells

    Science.gov (United States)

    Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.

  5. Natural circulation of integrated-type marine reactor at inclined attitude

    International Nuclear Information System (INIS)

    Iyori, Isao; Aya, Izuo; Murata, Hiroyuki; Kobayashi, Michiyuki; Nariai, Hideki

    1987-01-01

    A steady-state single-phase natural circulation test was performed to clarify the effect of inclination by using a model of an integrated-type marine reactor. It was found that several types of flow pattern occur in the natural circulation loop corresponding to the range of inclination angle. Stable flow rates are sustained up to near 90 0 because of the occurrence of a driving force arising from those sections of the facility which were horizontal before the inclination. It was found that the temperature distribution in the steam generator at inclined attitude depends essentially only on the elevation z. The applicability of a one-dimensional analytical model was examined. It was clarified that employment of detailed U-turn flow paths, their correlation, and temperature-distribution function of core is essential for improvement. (orig.)

  6. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    Science.gov (United States)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  7. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  8. Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, S.A. [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation); Osipov, A.V., E-mail: Andrey.V.Osipov@gmail.com [Institute of Problems of Mechanical Engineering, Russian Academy of Science, St Petersburg, 199178 (Russian Federation); St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 197101 (Russian Federation)

    2017-05-01

    This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. In the proposed hydraulic model, the dependences of the film thickness both on the gas pressure and time have been calculated. It was shown that not only the qualitative but also quantitative correspondence between theoretical and experimental results takes place. As one would expect, due to the Einstein relation, at short growth times the drift model coincides with the diffusion one. Consequences of this drift mechanism of epitaxial film growing are discussed. - Graphical abstract: This work aims to study the pressure dependence of the thickness of the epitaxial silicon carbide film growing from crystalline silicon due to the heterogeneous reaction with gaseous carbon monoxide. It turned out that this dependence exhibits the clear maximum. On further pressure increasing the film thickness decreases. The theoretical model has been developed which explains such a character of the dependence by the fact that the gaseous silicon monoxide reaction product inhibits the drift of the gaseous reagent through the channels of a crystal lattice, thus decreasing their hydraulic diameter. - Highlights: • It is established that the greater pressure, the smaller is the reaction rate. • The reaction product prevents penetration of the reagent into a reaction zone. • For description the hydraulic model of crystal lattice channels is developed. • Theoretical results for polytropic

  9. Participation of oxygen and carbon in formation of oxidation-induced stacking faults in monocrystalline silicon

    Directory of Open Access Journals (Sweden)

    Иван Федорович Червоный

    2015-11-01

    Full Text Available It is experimentally established, that density of oxidation-induced stacking faults (OISF in the boron doped monocrystalline silicon plates, that above, than it is more relation of oxygen atoms concentration to carbon atoms concentration in them.On research results of geometry of OISF rings in the different sections of single-crystal geometry of areas is reconstructed with their different closeness. At adjustment of the growing modes of single-crystals of silicon the increase of output of suitable product is observed

  10. Magneto-optical non-reciprocal devices in silicon photonics

    Directory of Open Access Journals (Sweden)

    Yuya Shoji

    2014-01-01

    Full Text Available Silicon waveguide optical non-reciprocal devices based on the magneto-optical effect are reviewed. The non-reciprocal phase shift caused by the first-order magneto-optical effect is effective in realizing optical non-reciprocal devices in silicon waveguide platforms. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer enhances the magneto-optical phase shift, which reduces the device footprints. A surface activated direct bonding technique was developed to integrate a magneto-optical garnet crystal on the silicon waveguides. A silicon waveguide optical isolator based on the magneto-optical phase shift was demonstrated with an optical isolation of 30 dB and insertion loss of 13 dB at a wavelength of 1548 nm. Furthermore, a four port optical circulator was demonstrated with maximum isolations of 15.3 and 9.3 dB in cross and bar ports, respectively, at a wavelength of 1531 nm.

  11. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    OpenAIRE

    D. Barani Ganth; S. Kadhiravan

    2017-01-01

    The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship histor...

  12. The orbital inclination of A0620 - 00 measured polarimetrically

    International Nuclear Information System (INIS)

    Dolan, J.F.; Tapia, S.

    1989-01-01

    The mass of the degenerate primary in A0620 - 00 is inferred from its spectroscopic mass function to be not less than 3.2 solar masses, making it an excellent candidate for a black hole. The exact value of the mass depends on the orbital inclination. The inclination of a binary system can be determined from the shape of its Stokes parameter light curves if the linear polarization of the system varies as a function of orbital phase. A0620 - 00 over one 8-hour binary period was observed with the 4.5-m equivalent MMT. Its polarization in the visible is variable with orbital phase. The standard theory of Brown et al. (1978) was used to derive an orbital inclination of i = 57 deg (+20 deg, -50 deg), where the error is the 90-percent confidence interval. An inclination of i = 57 deg corresponds to a mass of the compact primary of 6.6 solar masses, but the large uncertainty in the measured value of the inclination allows the derived mass of A0620 - 00 to be as low as 3.8 solar masses. If this is taken to be the maximum mass of any degenerate configuration consistent with general relativity except a black hole, then the mass of A0620 - 00 is still not well enough determined to conclude that it must be a black hole. 21 refs

  13. Doping of silicon by laser-induced diffusion

    International Nuclear Information System (INIS)

    Pretorius, R.; Allie, M.S.

    1986-01-01

    This report gives information on the doping of silicon by laser-induced diffusion, modelling and heat-flow calculation, doping from evaporated layers and silicon self-diffusion during pulsed laser irradiation. In order to tailor dopant profiles accurately a knowledge of the heat flow and the melt depths attained as a function of laser energy and material type is crucial. The heat flow calculations described can be used in conjuntion with most diffusion equations in order to predict the redistribution of the deposited dopant which occurs as a result of liquid phase diffusion during the melting period. Doping of Si was carried out by evaporating this films of Sb, In and Bi 10 to 300 A thick, onto the substrates. During pulsed laser irradiation the dopant film and underlying silicon substrate is melted and the dopant incorporated into the crystal lattice during recrystallization. Radioactive 31 Si(T1/2=2,62h) was used as a tracer to measure the self-diffusion of silicon in silicon during pulsed laser (pulsewidth = 30ns, wavelength = 694nm) irradiation

  14. Wave propagation inside one-dimensional photonic crystals with single-negative materials

    International Nuclear Information System (INIS)

    Wang Ligang; Chen Hong; Zhu Shiyao

    2006-01-01

    The propagation of light waves in one-dimensional photonic crystals (1DPCs) composed of alternating layers of two kinds of single-negative materials is investigated theoretically. The phase velocity is negative when the frequency of the light wave is smaller than the certain critical frequency ω cr , while the Poynting vector is always positive. At normal incidence, such 1DPCs may act as equivalent left-handed materials. At the inclined incidence, the effective wave vectors inside such 1DPCs do refract negatively, while the effective energy flows do not refract negatively. Therefore, at the inclined incidence, the 1DPCs are not equivalent to the left-handed materials

  15. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    Science.gov (United States)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  16. Terahertz spectroscopy of three-dimensional photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.

    1994-01-01

    We have fabricated and built three-dimensional photonic band-gap crystals with band-gap frequencies larger than 500 GHz. We built the crystals by stacking micromachined (110) silicon wafers. The transmission and dispersion characteristics of the structures were measured by an all-electronic terahertz spectroscopy setup. The experimental results were in good agreement with theoretical calculations. To our knowledge, our new crystal has the highest reported photonic band-gap frequency

  17. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  18. Efficient Fluorescence Resonance Energy Transfer between Quantum Dots and Gold Nanoparticles Based on Porous Silicon Photonic Crystal for DNA Detection.

    Science.gov (United States)

    Zhang, Hongyan; Lv, Jie; Jia, Zhenhong

    2017-05-10

    A novel assembled biosensor was prepared for detecting 16S rRNA, a small-size persistent specific for Actinobacteria. The mechanism of the porous silicon (PS) photonic crystal biosensor is based on the fluorescence resonance energy transfer (FRET) between quantum dots (QDs) and gold nanoparticles (AuNPs) through DNA hybridization, where QDs act as an emission donor and AuNPs serve as a fluorescence quencher. Results showed that the photoluminescence (PL) intensity of PS photonic crystal was drastically increased when the QDs-conjugated probe DNA was adhered to the PS layer by surface modification using a standard cross-link chemistry method. The PL intensity of QDs was decreased when the addition of AuNPs-conjugated complementary 16S rRNA was dropped onto QDs-conjugated PS. Based on the analysis of different target DNA concentration, it was found that the decrease of the PL intensity showed a good linear relationship with complementary DNA concentration in a range from 0.25 to 10 μM, and the detection limit was 328.7 nM. Such an optical FRET biosensor functions on PS-based photonic crystal for DNA detection that differs from the traditional FRET, which is used only in liquid. This method will benefit the development of a new optical FRET label-free biosensor on Si substrate and has great potential in biochips based on integrated optical devices.

  19. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  20. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    Science.gov (United States)

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  1. Doping of monocrystalline silicon with phosphorus by means of neutron irradiation at the IEA-R1 research reactor

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Puget, M.A.C.

    1990-11-01

    The first neutron irradiation experiments with monocrystal silicon in the IEA-R1 research reactor of IPEN are related. The silicon is irradiated with phosphorus producing a N type semiconductor with a very small resistivity variation throughout the crystal volume. The neutrons induce nuclear reactions in Si-30 isotope and these atoms are then transformed in to phosphorous atoms. This process is known as Neutron Transmutation Doping. In order to irradiate the silicon crystals in the reactor, a specific device has been constructed, and it permits the irradiation of up to 2.5'' diameter monocrystals. (author)

  2. Ultra-High-Efficiency Apodized Grating Coupler Using a Fully Etched Photonic Crystal

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2013-01-01

    We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated.......We demonstrate an apodized fiber-to-chip grating coupler using fully etched photonic crystal holes on the silicon-on-insulator platform. An ultra-high coupling efficiency of 1.65 dB (68%) with 3 dB bandwidth of 60 nm is experimentally demonstrated....

  3. Heat and mass transfer in semiconductor melts during single-crystal growth processes

    Science.gov (United States)

    Kakimoto, Koichi

    1995-03-01

    The quality of large semiconductor crystals grown from melts is significantly affected by the heat and mass transfer in the melts. The current understanding of the phenomena, especially melt convection, is reviewed starting from the results of visualization using model fluids or silicon melt, and continuing to the detailed numerical calculations needed for quantitative modeling of processing with solidification. The characteristics of silicon flows are also reviewed by focusing on the Coriolis force in the rotating melt. Descriptions of flow instabilities are included that show the level of understanding of melt convection with a low Prandtl number. Based on hydrodynamics, the origin of the silicon flow structure is reviewed, and it is discussed whether silicon flow is completely turbulent or has an ordered structure. The phase transition from axisymmetric to nonaxisymmetric flow is discussed using different geometries. Additionally, surface-tension-driven flow is reviewed for Czochralski crystal growth systems.

  4. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  5. Study of porous silicon morphologies for electron transport

    International Nuclear Information System (INIS)

    Pang, Y.; Demroff, H.P.; Elliott, T.S.; Lee, B.; Lu, J.; Madduri, V.B.; Mazumdar, T.K.; McIntyre, P.M.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Field emitter devices are being developed for the gigatron, a high-efficiency, high frequency and high power microwave source. One approach being investigated is porous silicon, where a dense matrix of nanoscopic pores are galvanically etched into a silicon surface. In the present paper pore morphologies were used to characterize these materials. Using of Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images of both N-type and P-type porous layers, it is found that pores propagate along the crystallographic direction, perpendicular to the surface of (100) silicon. Distinct morphologies were observed systematically near the surface, in the main bulk and near the bottom of N-type (100) silicon lift-off samples. It is seen that the pores are not cylindrical but exhibit more or less approximately square cross sections. X-ray diffraction spectra and electron diffraction patterns verified that bulk porous silicon is still a single crystal. In addition, a Scanning Tunnelling Microscope (STM) and an Atomic Force Microscope (AFM) were successfully applied to image the 40 angstrom gold film structure which was coated upon a cooled porous silicon layer. By associating the morphology study with the measured emitting current density of the Oxidized Porous Silicon Field Emission Triode (OPSFET), techniques for the surface treatment of porous silicon will be optimized

  6. Influence of external effects on the electron silicon properties

    International Nuclear Information System (INIS)

    Orazgulyev, B.; Bigozha, O.D.

    2005-01-01

    It is noted, that study of angular dependence of longitudinal piezo-resistance of n-type silicon presents the both scientific and practical interest because the obtained data could serve the ground for creating a high-sensitive piezo-sensors. Measurement of angular dependence allows objectively estimate the errors of anisotropy parameter determination, constant of deformation potential caused of mistakes in maintenance of crystallographic directions during the samples production process. In the case of X||J||[111] at one-axis deformation a new kind of piezo-effect in electron silicon is revealed. It is explained by transformation of iso-energy rotation ellipsoid into three-axis ellipsoid at presence of shear silicon crystal deformation

  7. Laser induced single-crystal transition in polycrystalline silicon

    International Nuclear Information System (INIS)

    Vitali, G.; Bertolotti, M.; Foti, G.; Rimini, E.

    1978-01-01

    Transition to single crystal of polycrystalline Si material underlying a Si crystal substrate of 100 orientation was obtained via laser irradiation. The changes in the structure were analyzed by reflection high energy electron diffraction and by channeling effect technique using 2.0 MeV He Rutherford scattering. The power density required to induce the transition in a 4500 A thick polycrystalline layer is about 70 MW/cm 2 (50ns). The corresponding amorphous to single transition has a threshold of about 45 MW/cm 2 . (orig.) 891 HPOE [de

  8. Rationally designed porous silicon as platform for optical biosensors

    International Nuclear Information System (INIS)

    Priano, G.; Acquaroli, L.N.; Lasave, L.C.; Battaglini, F.; Arce, R.D.; Koropecki, R.R.

    2012-01-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: ► Mesoporous silicon structure ► Functionalization of mesoporous silicon as sensors ► Design of the one-dimensional photonic crystal ► Simulation of non-uniformity in covering the sensor structure

  9. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    Science.gov (United States)

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  10. Control and homogenization of oxygen distribution in Si crystals by the novel technique: electromagnetic Czochralski method (EMCZ)

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-07-01

    A novel method for control and homogenization oxygen distribution in silicon crystals by using electromagnetic force (EMF) to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski method. An EMF in the azimuthal direction is generated in the melt by the interaction between an electric current through the melt in the radial direction and a vertical magnetic field. (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I equals 0 to 8 A and B equals 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under several conditions. The oxygen concentration in the crystals was continuously changed from 1 X 1017 to 1 X 1018 atoms/cm3 with increase of melt rotation by electromagnetic force. The homogeneous oxygen distributions in the radial directions were achieved. The continuous change of oxygen concentration and the homogenization of oxygen distribution along the radial direction are attributed to the control of the diffusion-boundary-layer at both the melt/crucible and crystal/melt by forced flow due to the EMF. This new method would be useful for growth of the large-diameter silicon crystals with a homogeneous distribution of oxygen.

  11. Hybridization assay of insect antifreezing protein gene by novel multilayered porous silicon nucleic acid biosensor.

    Science.gov (United States)

    Lv, Xiaoyi; Chen, Liangliang; Zhang, Hongyan; Mo, Jiaqing; Zhong, Furu; Lv, Changwu; Ma, Ji; Jia, Zhenhong

    2013-01-15

    A fabrication of a novel simple porous silicon polybasic photonic crystal with symmetrical structure has been reported as a nucleic acid biosensor for detecting antifreeze protein gene in insects (Microdera puntipennis dzhungarica), which would be helpful in the development of some new transgenic plants with tolerance of freezing stress. Compared to various porous silicon-based photonic configurations, porous silicon polytype layered structure is quite easy to prepare and shows more stability; moreover, polybasic photonic crystals with symmetrical structure exhibit interesting optical properties with a sharp resonance in the reflectance spectrum, giving a higher Q factor which causes higher sensitivity for sensing performance. In this experiment, DNA oligonucleotides were immobilized into the porous silicon pores using a standard crosslink chemistry method. The porous silicon polybasic symmetrical structure sensor possesses high specificity in performing controlled experiments with non-complementary DNA. The detection limit was found to be 21.3nM for DNA oligonucleotides. The fabricated multilayered porous silicon-based DNA biosensor has potential commercial applications in clinical chemistry for determination of an antifreeze protein gene or other genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  13. Protein crystals as scanned probes for recognition atomic force microscopy.

    Science.gov (United States)

    Wickremasinghe, Nissanka S; Hafner, Jason H

    2005-12-01

    Lysozyme crystal growth has been localized at the tip of a conventional silicon nitride cantilever through seeded nucleation. After cross-linking with glutaraldehyde, lysozyme protein crystal tips image gold nanoparticles and grating standards with a resolution comparable to that of conventional tips. Force spectra between the lysozyme crystal tips and surfaces covered with antilysozyme reveal an adhesion force that drops significantly upon blocking with free lysozyme, thus confirming that lysozyme crystal tips can detect molecular recognition interactions.

  14. SiPM based readout system for PbWO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Bolognini, D.; Bonfanti, S. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Lietti, D. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M.; Stoppani, L. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca, Via Valleggio, 11-22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2013-08-01

    Silicon PhotoMultipliers (SiPMs) consist of a matrix of small passively quenched silicon avalanche photodiodes operated in limited Geiger-mode (GM-APDs) and read out in parallel from a common output node. Each pixel (with a typical size in the 20–100 μm range) gives the same current response when hit by a photon; the SiPM output signal is the sum of the signals of all the pixels, which depends on the light intensity. The main advantages of SiPMs with respect to photomultiplier tubes (PMTs) are essentially the small dimensions, the insensitivity to magnetic fields and a low bias voltage. This contribution presents the performance of a SiPM based readout system for crystal calorimeters developed in the framework of the FACTOR/TWICE collaboration. The SiPM used for the test is a new device produced by FBK-irst which consists in a matrix of four sensors embedded in the same silicon substrate, called QUAD. The SiPM has been coupled to a lead tungstate crystal, an early-prototype version of the crystals developed for the electromagnetic calorimeter of the CMS experiment. New tests are foreseen using a complete module consisting of nine crystals, each one readout by two QUADs.

  15. Silicon nanocrystal films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Robert W.

    2009-02-06

    Whether nanoparticles of silicon are really suited for such applications, whether layers fabricated from this exhibit semiconducting properties, whether they can be doped, and whether for instance via the doping the conductivity can be tuned, was studied in the present thesis. Starting material for this were on the one hand spherical silicon nanocrystals with a sharp size distribution and mean diameters in the range from 4-50 nm. Furthermore silicon particle were available, which are with 50-500 nm distinctly larger and exhibit a broad distribution of the mean size and a polycrystalline fine structure with strongly bifurcated external morphology. The small conductivities and tje low mobility values of the charge carriers in the layers of silicon nanocrystals suggest to apply suited thermal after-treatment procedures. So was found that the aluminium-induced layer exchange (ALILE) also can be transferred to the porous layers of nanocrystals. With the deuteron passivation a method was available to change the charge-carrier concentration in the polycrystalline layers. Additionally to ALILE laser crystallization as alternative after-treatment procedure of the nanocrystal layers was studied.

  16. Environmentally benign silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S. [National Renewable Energy Lab., Golden, CO (United States); Gee, J.M. [Sandia National Labs., Albuquerque, NM (United States); Menna, P. [National Agency for New Technologies Energy and Environment, Portici (Italy); Strebkov, D.S.; Pinov, A.; Zadde, V. [Intersolarcenter, Moscow (Russian Federation)

    1998-09-01

    The manufacturing of silicon devices--from polysilicon production, crystal growth, ingot slicing, wafer cleaning, device processing, to encapsulation--requires many steps that are energy intensive and use large amounts of water and toxic chemicals. In the past two years, the silicon integrated-circuit (IC) industry has initiated several programs to promote environmentally benign manufacturing, i.e., manufacturing practices that recover, recycle, and reuse materials resources with a minimal consumption of energy. Crystalline-silicon solar photovoltaic (PV) modules, which accounted for 87% of the worldwide module shipments in 1997, are large-area devices with many manufacturing steps similar to those used in the IC industry. Obviously, there are significant opportunities for the PV industry to implement more environmentally benign manufacturing approaches. Such approaches often have the potential for significant cost reduction by reducing energy use and/or the purchase volume of new chemicals and by cutting the amount of used chemicals that must be discarded. This paper will review recent accomplishments of the IC industry initiatives and discuss new processes for environmentally benign silicon solar-cell manufacturing.

  17. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  18. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  19. Plasma deposition of amorphous silicon-based materials

    CERN Document Server

    Bruno, Giovanni; Madan, Arun

    1995-01-01

    Semiconductors made from amorphous silicon have recently become important for their commercial applications in optical and electronic devices including FAX machines, solar cells, and liquid crystal displays. Plasma Deposition of Amorphous Silicon-Based Materials is a timely, comprehensive reference book written by leading authorities in the field. This volume links the fundamental growth kinetics involving complex plasma chemistry with the resulting semiconductor film properties and the subsequent effect on the performance of the electronic devices produced. Key Features * Focuses on the plasma chemistry of amorphous silicon-based materials * Links fundamental growth kinetics with the resulting semiconductor film properties and performance of electronic devices produced * Features an international group of contributors * Provides the first comprehensive coverage of the subject, from deposition technology to materials characterization to applications and implementation in state-of-the-art devices.

  20. Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory

    Science.gov (United States)

    Van Laerhoven, Christa L.

    2015-05-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.

  1. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    Science.gov (United States)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  2. Depth-of-interaction measurement in a single-layer crystal array with a single-ended readout using digital silicon photomultiplier

    International Nuclear Information System (INIS)

    Lee, Min Sun; Lee, Jae Sung

    2015-01-01

    We present the first experimental evaluation of a depth-of-interaction (DOI) positron emission tomography (PET) detector using a digital silicon photomultiplier (dSiPM). To measure DOI information from a mono-layer array of scintillation crystals with a single-ended readout, our group has previously proposed and developed a new method based on light spread using triangular reflectors. Since this method relies on measurement of the light distribution, dSiPM, which has a fully digital interface, has several merits for our DOI measurement. The DOI PET detector comprised of a dSiPM sensor (DPC-3200-22-44) coupled with a 14   ×   14 array of 2 mm  ×  2 mm  ×  20 mm unpolished LGSO crystals. All crystals were covered with triangular reflectors. To obtain a good performance of the DOI PET detector, several parameters of detector were selected as a preliminary experiment. Detector performance was evaluated with the selected parameters and the optimal experimental setup, and a DOI measurement was conducted by irradiating the crystal block at five DOI positions spaced at intervals of 4 mm. Maximum-likelihood estimation was employed for DOI positioning and the optimal DOI estimation scheme was also investigated in this study. As a result, the DOI PET detector showed clear crystal identification. The energy resolution (full-width at half-maximum (FWHM)) averaged over all depths was 10.21%  ±  0.15% at 511 keV, and time resolution averaged over all depths was 1198.61   ±   39.70 ps FWHM. The average DOI positioning accuracy for all depths was 74.22%  ±  6.77%, which equates to DOI resolution of 4.67 mm. Energy and DOI resolutions were uniform over all crystal positions except for the back parts of the array. Furthermore, additional simulation studies were conducted to verify the results of our DOI measurement method that is combined with dSiPM technology. In conclusion, our continuous DOI PET detector

  3. Amorphous-polycrystal transition induced by laser pulse in self-ion implanted silicon

    International Nuclear Information System (INIS)

    Foti, G.; Rimini, E.; Vitali, G.; Bertolotti, M.

    1977-01-01

    Reflection high energy electron diffraction has been used to investigate the amorphous to polycrystalline structure transition in silicon induced by laser pulse. The power density of the ruby laser pulse, in the free generation mode, has been maintained below the threshold to induce surface damage. Depth analysis has been carried out in silicon crystal using the channeling effect technique. (orig.) [de

  4. Structure and mechanical properties of the irradiated silicon

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Khamraeva, R.N.; Ummatov, Kh.D.; Khajdarov, T.Kh.; Rustamova, V.M.

    2001-01-01

    In this work the results of study for radiation influence on phase content and mechanical properties of mono- and polycrystalline silicon are presented. Samples were irradiated at room temperature for 10 hours by X-quanta with mean energy 35 keV. Structural measurements were carried out on the DRON-UM1 with CuK α =1.542 Angstrom. Crystal internal friction was measurement by the ultrasonic resonance method at frequency 39 k Hz. Structure examinations show the impurity phase presence in the crystalline quartz form in the initial silicon mono- and polycrystals

  5. Investigation of γ-irradiation influence on the DLTS spectra in silicon diluted by tellurium

    International Nuclear Information System (INIS)

    Sultanov, N.A.; Tadzhibaev, M.; Mirzabadalov, Zh

    1997-01-01

    The influence of gamma-radiation on deep level transient spectroscopy(DLTS) spectra for silicon crystals doped with tellurium was studied. The DLTS spectra have shown that tellurium in silicon formed two deep levels with fixed ionization energy. It was shown that the presence of tellurium prevents the formation of radiation defects

  6. Increasing the radiation resistance of single-crystal silicon epitaxial layers

    Directory of Open Access Journals (Sweden)

    Kurmashev Sh. D.

    2014-12-01

    Full Text Available The authors investigate the possibility of increasing the radiation resistance of silicon epitaxial layers by creating radiation defects sinks in the form of dislocation networks of the density of 109—1012 m–2. Such networks are created before the epitaxial layer is applied on the front surface of the silicon substrate by its preliminary oxidation and subsequent etching of the oxide layer. The substrates were silicon wafers KEF-4.5 and KDB-10 with a diameter of about 40 mm, grown by the Czochralski method. Irradiation of the samples was carried out using electron linear accelerator "Electronics" (ЭЛУ-4. Energy of the particles was 2,3—3,0 MeV, radiation dose 1015—1020 m–2, electron beam current 2 mA/m2. It is shown that in structures containing dislocation networks, irradiation results in reduction of the reverse currents by 5—8 times and of the density of defects by 5—10 times, while the mobility of the charge carriers is increased by 1,2 times. Wafer yield for operation under radiation exposure, when the semiconductor structures are formed in the optimal mode, is increased by 7—10% compared to the structures without dislocation networks. The results obtained can be used in manufacturing technology for radiation-resistant integrated circuits (bipolar, CMOS, BiCMOS, etc..

  7. Luminescence and optical absorption determination in porous silicon

    International Nuclear Information System (INIS)

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G.

    2012-10-01

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 μm and 1-5 ωcm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  8. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres

    Czech Academy of Sciences Publication Activity Database

    Healy, N.; Mailis, S.; Bulgakova, Nadezhda M.; Sazio, P.J.A.; Day, T.D.; Sparks, J.R.; Cheng, H.Y.; Badding, J.V.; Peacock, A.C.

    2014-01-01

    Roč. 13, č. 12 (2014), s. 1122-1127 ISSN 1476-1122 Institutional support: RVO:68378271 Keywords : strained silicon * modulation * generation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 36.503, year: 2014

  9. High surface area silicon materials: fundamentals and new technology.

    Science.gov (United States)

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  10. A study on the development of silicon carbide materials for nuclear application

    International Nuclear Information System (INIS)

    Won, Dong Yeon; Kim, Chan Jung; Lee, Jae Choon; Kim, Joon Hyung; Lim, Kyung Soo; Kim, Ki Baik

    1987-12-01

    Silicon carbide was synthesized by reaction sintering process from carbon and silicon powders as starting materials. The effects of two processing parameters, i.e., heat treatment time and temperature, were examined (to characterize the reaction sintering process) in terms of the degree of reaction and phase developed during heat treatment. The final products after reaction of silicon and carbon powders were identified as β-SiC having ZnS crystal structure. Sintering of cordierite ceramics which was used as an high temperature inorganic binder to fabricate ceramically bound silicon carbide, and phase identification of the sintered ceramics by X-ray powder diffraction techniques. (Author)

  11. Rationally designed porous silicon as platform for optical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Priano, G. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Acquaroli, L.N.; Lasave, L.C. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Battaglini, F. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Arce, R.D., E-mail: rarce@intec.unl.edu.ar [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina); Koropecki, R.R. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina)

    2012-08-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: Black-Right-Pointing-Pointer Mesoporous silicon structure Black-Right-Pointing-Pointer Functionalization of mesoporous silicon as sensors Black-Right-Pointing-Pointer Design of the one-dimensional photonic crystal Black-Right-Pointing-Pointer Simulation of non-uniformity in covering the sensor structure.

  12. Performance evaluation of a continuous flow inclined solar still desalination system

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; El-Samadony, Y.A.F.; Kabeel, A.E.

    2015-01-01

    Highlights: • A mathematical model was presented to analyze the performance of inclined still. • The effect of air speed, water masses, film thickness and velocity was studied. • Productivity for the Model 3 was higher than conventional still by 57.2%. • The performance was strongly affected by water film thickness and velocity. • Model 3 gave the highest performance while Model 1 gave the lowest performance. - Abstract: In the present work, theoretical study of the performance evaluation of a continuous water flow inclined solar still desalination system is performed. Three models are studied for inclined solar still desalination system with and without water close loop. The effects of the water mass, water film thickness, water film velocity and air wind velocity on the performance of the three models are studied. The results show that the inclined solar still with a makeup water is superior in productivity (57.2% improvement) compared with a conventional basin-type solar still. Also, the application of inclined solar still with open water loop is recommended when combined with other still desalination system due to high water temperature output. The inclined solar still with a makeup (Model 3) gives the highest performance while Model 1 gives the lowest performance. Finally, the water film thickness, and velocity as well as wind velocity plays important roles in improving the still productivity and efficiency

  13. Magneto-optical properties of biogenic photonic crystals in algae

    International Nuclear Information System (INIS)

    Iwasaka, M.; Mizukawa, Y.

    2014-01-01

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror

  14. High frequency guided wave propagation in monocrystalline silicon wafers

    Science.gov (United States)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  15. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    Science.gov (United States)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  16. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  17. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  18. Some new aspects of microstructural development during sintering of silicon nitride

    International Nuclear Information System (INIS)

    Feuer, H.; Woetting, G.; Gugel, E.

    1994-01-01

    The mechanical properties of silicon nitride ceramics strongly depend on their microstructure. However, there is still a lively discussion about the parameters controlling the microstructural development. The current research was stimulated by the observation that a bimodal grain-size distribution in dense silicon nitride has a very beneficial effect on the mechanical properties, especially on the fracture toughness. This paper is focused on the relationship between the α-β-transformation and the densification of silicon nitride powders with different characteristics and sintering additives. Effects of β-grains originally present in the silicon nitride powder, of added β-silicon nitride seeds and of β-crystals formed by the α/β-transformation on the resulting microstructure and on the properties are discussed. The results are summarised in a model describing prerequisites and processing conditions, which are necessary to achieve a bimodal microstructure, i. e. a self-reinforced silicon nitride ceramic. (orig.)

  19. Extraction from TEV-range accelerators using bent crystal channeling

    International Nuclear Information System (INIS)

    Carrigan, R.A. Jr.; Jackson, G.; Murphy, C.T.; Newberger, B.

    1993-01-01

    Plans and first results from Fermilab Experiment 853 are presented. E853 is an experiment to test the feasibility and efficiency of extracting a low-intensity beam from the halo of the Tevatron using channeling in a bent silicon crystal. The motivation of the experiment is to apply crystal extraction to trans-TeV accelerators like the SSC. Channeling developments related to crystal extraction and some early results from accelerator studies at the Tevatron are presented

  20. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934