WorldWideScience

Sample records for inclined silicon crystal

  1. Brilliance and flux reduction in imperfect inclined crystals

    International Nuclear Information System (INIS)

    Lee, W.K.; Blasdell, R.C.; Fernandez, P.B.; Macrander, A.T.; Mills, D.M.

    1996-01-01

    The inclined crystal geometry has been suggested as a method of reducing the surface absorbed power density of high-heat-load monochromators for third-generation synchrotron radiation sources. Computer simulations have shown that if the crystals are perfectly aligned and have no strains then the diffraction properties of a pair of inclined crystals are very similar to a pair of conventional flat crystals with only subtle effects differentiating the two configurations. However, if the crystals are strained, these subtle differences in the behavior of inclined crystals can result in large beam divergences causing brilliance and flux losses. This manuscript elaborates on these issues and estimates potential brilliance and flux losses from strained inclined crystals at the APS

  2. Self-filtering extremely inclined x-ray crystal monochromator

    Czech Academy of Sciences Publication Activity Database

    Hrdá, Jaromíra; Hrdý, Jaromír

    2011-01-01

    Roč. 44, č. 6 (2011), 1169-1172 ISSN 0021-8898 R&D Projects: GA MPO FR-TI1/412 Institutional research plan: CEZ:AV0Z10100522 Keywords : synchrotron radiation monochromator * x-ray crystal monochromator * inclined monochromator * inclined diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.152, year: 2011

  3. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    Science.gov (United States)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  4. Sagittal crystal focusing of undulator radiation with high heat load inclined crystals

    International Nuclear Information System (INIS)

    Ice, G.E.; Sparks, C.J.

    1992-01-01

    Sagittal focusing of undulator radiation is shown to be compatible with the proposed inclined double-crystal monochromator geometry for heat load reduction. The focusing aberrations are found to be negligible for typical undulator-beam divergences over a range of magnifications from 1:2 to 6:1 and energies from 3 to 40 keV. The inclined geometry reduces the required signal sagittal curvature of the focusing crystal compared to focusing with conventional symmetric crystals; hence, focusing is possible at higher X-ray energies and with less anticlastic bending. In addition, anticlastic stiffening ribs project a smaller footprint to the beam so that the achievable focal spot size is potentially better than with conventional symmetrically cut crystals. 16 refs

  5. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  6. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  7. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  8. Photoacoustic spectroscopy analysis of silicon crystals

    International Nuclear Information System (INIS)

    Benamrani, H.; Satour, F.Z.; Zegadi, A.; Zouaoui, A.

    2012-01-01

    A high resolution fully automated photoacoustic spectrometer (PAS) of the gas-microphone type is used in the photon energy region 0.8–1.6 eV to analyze the optical properties of silicon single crystals at different frequencies between 25 and 312 Hz. At modulating frequencies at which the sample thickness approaches its thermal diffusion length, the results obtained of untreated specimens using different PA cells reveal the presence of several peaks in the absorption tail, some of which are independent of the photon energy. The magnitude of these peaks is seen to be stronger than that of the maximum of the fundamental edge of silicon, thus making it indistinct. At lower modulating frequencies at which the sample thickness is far less than its thermal diffusion length and using a highly reflecting backing material, multiple reflections of the light beam within the sample interfaces are seen to enhance the PA amplitude signal sensitivity response as predicted theoretically. The effect of etching silicon samples in a diluted solution of hydrofluoric acid (5%) on photoacoustic spectra has been investigated. It is observed that this process removes all spurious features in the spectra originating from the surface contaminants making the fundamental absorption edge clearly visible and leaving only one distinct peak at hν=0.9 eV. Transmission-photoacoustic (T-PAS) has also been used to study silicon single crystals. In the light of recent literature a comparison is carried out between the results obtained using the two techniques in determining the absorption coefficient and the gap energy. - Highlights: ► High resolution photoacoustic spectrometer used to analyze silicon crystals. ► Effects of sample preparation and the photoacoustic cell in measurements. ► Transmission-photoacoustic spectroscopy use in the study of silicon crystals. ► Comparison between the two modes of operation to characterise silicon.

  9. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  10. LYSO crystal calorimeter readout with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.com [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Cecchi, C.; Germani, S. [INFN sezione di Perugia (Italy); Guffanti, D. [Università degli Studi dell' Insubria (Italy); Lietti, D. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Lubrano, P.; Manoni, E. [INFN sezione di Perugia (Italy); Prest, M. [Università degli Studi dell' Insubria (Italy); INFN sezione di Milano Bicocca (Italy); Rossi, A. [INFN sezione di Perugia (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2014-11-01

    Large area Silicon PhotoMultipliers (SiPMs) are the new frontier of the development of readout systems for scintillating detectors. A SiPM consists of a matrix of parallel-connected silicon micropixels operating in limited Geiger–Muller avalanche mode, and thus working as independent photon counters with a very high gain (∼10{sup 6}). This contribution presents the performance in terms of linearity and energy resolution of an electromagnetic homogeneous calorimeter composed of 9∼18X{sub 0} LYSO crystals. The crystals were readout by 36 4×4 mm{sup 2} SiPMs (4 for each crystal) produced by FBK-irst. This calorimeter was tested at the Beam Test Facility at the INFN laboratories in Frascati with a single- and multi-particle electron beam in the 100–500 MeV energy range.

  11. Materials of construction for silicon crystal growth

    Science.gov (United States)

    Leipold, M. H.; Odonnell, T. P.; Hagan, M. A.

    1980-01-01

    The performance of materials for construction and in contact with molten silicon for crystal growth is presented. The basis for selection considers physical compatibility, such as thermal expansion and strength, as well as chemical compatibility as indicated by contamination of the silicon. A number of new high technology materials are included as well as data on those previously used. Emphasis is placed on the sources and processing of such materials in that results are frequently dependent on the way a material is prepared as well as its intrinsic constituents.

  12. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  13. Crystal growth and evaluation of silicon for VLSI and ULSI

    CERN Document Server

    Eranna, Golla

    2014-01-01

    PrefaceAbout the AuthorIntroductionSilicon: The SemiconductorWhy Single CrystalsRevolution in Integrated Circuit Fabrication Technology and the Art of Device MiniaturizationUse of Silicon as a SemiconductorSilicon Devices for Boolean ApplicationsIntegration of Silicon Devices and the Art of Circuit MiniaturizationMOS and CMOS Devices for Digital ApplicationsLSI, VLSI, and ULSI Circuits and ApplicationsSilicon for MEMS ApplicationsSummaryReferencesSilicon: The Key Material for Integrated Circuit Fabrication TechnologyIntroductionPreparation of Raw Silicon MaterialMetallurgical-Grade SiliconPuri

  14. Composite single crystal silicon scan mirror substrates, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  15. Silicon crystal growth using a liquid-feeding Czochralski method

    Science.gov (United States)

    Shiraishi, Yutaka; Kurosaka, Shoei; Imai, Masato

    1996-09-01

    Silicon single crystals with uniformity along the growth direction were grown using a new continuous Czochralski (CCZ) method. Polycrystalline silicon rods used as charge materials are melted by carbon heaters over a crucible without contact between the raw material and other substances. Using this method, silicon crystals with diameters as large as 6 or 8 inch and good uniformity along the growth direction were grown.

  16. Resistivity distribution of silicon single crystals using codoping

    Science.gov (United States)

    Wang, Jong Hoe

    2005-07-01

    Numerous studies including continuous Czochralski method and double crucible technique have been reported on the control of macroscopic axial resistivity distribution in bulk crystal growth. The simple codoping method for improving the productivity of silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. Wang [J. Crystal Growth 275 (2005) e73] demonstrated using numerical analysis and by experimental results that the axial specific resistivity distribution can be modified in melt growth of silicon crystals and relatively uniform profile is possible by B-P codoping method. In this work, the basic characteristic of 8 in silicon single crystal grown using codoping method is studied and whether proposed method has advantage for the silicon crystal growth is discussed.

  17. Future application of Czochralski crystal pulling for silicon

    Science.gov (United States)

    Matlcok, J. H.

    1985-08-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  18. Quality evaluation of resistivity-controlled silicon crystals

    Science.gov (United States)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  19. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.

    2008-01-01

    The authors present the fabrication and optical investigation of Silicon on Insulator photonic crystal drop-filters for use as refractive index sensors. Two types of defect nanocavities (L3 and H1-r) are embedded between two W1 photonic crystal waveguides to evanescently route light at the cavity...

  20. Silicon Crystal Growth by the Electromagnetic Czochralski (EMCZ) Method

    Science.gov (United States)

    Watanabe, Masahito; Eguchi, Minoru; Hibiya, Taketoshi

    1999-01-01

    A new method for growing silicon crystals by using electromagnetic force to rotate the melt without crucible rotation has been developed. We call it electromagnetic Czochralski (EMCZ) growth. An electromagnetic force in the azimuthal direction is generated in the melt by the interaction between an electric current (I) through the melt in the radial direction and a vertical magnetic field (B). The rotation rate (ωm) of the silicon melt is continuously changed from 0 to over 105 rpm under I = 0 to 8 A and B = 0 to 0.1 T. Thirty-mm-diameter silicon single crystals free of dislocations could be grown under two conditions: I = 2.0 A and B = 0.05 T (ωm = 105 rpm); and I =0.2 A and B = 0.1 T (ωm = 15 rpm). The oxygen concentration in the crystals was 8 ×1017 atoms/cm3 for the high rotation rate and 1×1017 atoms/cm3 for the low rotation rate. The oxygen-concentration distributions in the radial direction in both crystals were more homogeneous than those in the crystals grown by conventional CZ and/or MCZ growth. This new crystal-growth method can be easily adopted for growing large-diameter silicon crystals.

  1. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  2. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  3. Two-dimensional photonic crystal polarizer modulated by silicon resin

    Science.gov (United States)

    Tan, Chunhua; Huang, Xuguang

    2007-11-01

    Photonic crystals(PCs)have many potential applications because of their ability to control light-wave propagation. In this paper, we theoretically investigate the tunability of light propagation in photonic crystal waveguides in two-dimensional photonic crystals with square lattices composed of heat-resistant silicon resin. Waveguides can be obtained by the infiltration of silicon resin into air regions in two-dimensional photonic crystals composed of air holes with square lattices of dielectric cylinders. The refractive index of silicon resin can be changed by manipulating the temperature of the sample. Numerical simulation by solving Maxwell's equations using the plane wave expansion(PWE) method shows that the band gaps can be continuously tuned by silicon resin, accordingly the light propagation in photonic crystal waveguides can be controlled. The band gap is analyzed in the temperature range of 20°C-120°C. In our work, the gap map for a square lattice of dielectric cylinders is also simulated. The method can separate TM- and TE-polarized modes in the waveguide. Such a mechanism of band gap adjustment should open up a new application for designing field-sensitive polarizer in photonic integrated circuits.

  4. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  5. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  6. Crystallization of silicon nanoclusters with inert gas temperature control

    Science.gov (United States)

    Zhao, Junlei; Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Aranishi, Kengo; Sowwan, Mukhles; Nordlund, Kai; Djurabekova, Flyura

    2015-01-01

    We analyze the fundamental process of crystallization of silicon nanoclusters by means of molecular dynamics simulations, complemented by magnetron-sputter inert gas condensation, which was used to synthesize polycrystalline silicon nanoclusters with good size control. We utilize two well-established Si interatomic potentials: the Stillinger-Weber and the Tersoff III. Both the simulations and experiments show that upon cooling down by an Ar gas thermal bath, initially liquid, free-standing Si nanocluster can grow multiple crystal nuclei, which drive their transition into polycrystalline solid nanoclusters. The simulations allow detailed analysis of the mechanism, and show that the crystallization temperature is size-dependent and that the probability of crystalline phase nucleation depends on the highest temperature the cluster reaches during the initial condensation and the cooling rate after it.

  7. A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride

    Science.gov (United States)

    Woo, Wan-Sik; Lee, Choon-Man

    2018-02-01

    Ceramics are difficult to machine due to their high hardness and brittleness. As an effective method for machining ceramics, laser-assisted machining (LAM) has been studied by many researchers. In particular, many studies of methods to improve the machinability of silicon nitride using LAM have been performed. However, there is little research on the effect of the inclination angle of the workpiece, because varying the angle increases the difficulty of controlling the laser preheating and tool path. This paper investigates the effect of preheating temperature, spindle speed and inclination angle of the workpiece on edge chipping of silicon nitride in an effort to obtain an enhanced surface finish using laser-assisted milling (LAMill). The machining conditions were determined by considering the parameters that can reduce edge chipping using related theory. Experimental results showed a reduction in edge chipping based on increases in preheating temperature, spindle speed and inclination angle of the workpiece. Also, by increasing the spindle speed and the inclination angle of the workpiece, surface roughness was decreased due to reduction in the cutting force. The energy efficiency of LAMill by comparing the specific cutting energy according to the machining conditions is analyzed.

  8. Effect of oxygen on dislocation multiplication in silicon crystals

    Science.gov (United States)

    Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi

    2018-03-01

    This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.

  9. Spatially localized current-induced crystallization of amorphous silicon films

    Czech Academy of Sciences Publication Activity Database

    Rezek, Bohuslav; Šípek, Emil; Ledinský, Martin; Krejza, P.; Stuchlík, Jiří; Fejfar, Antonín; Kočka, Jan

    2008-01-01

    Roč. 354, 19-25 (2008), s. 2305-2309 ISSN 0022-3093 R&D Projects: GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : silicon * crystallization * atomic force and scanning tunneling microscopy * nanocrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.449, year: 2008

  10. Single crystal ternary oxide ferroelectric integration with Silicon

    Science.gov (United States)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  11. Mutiple Czochralski growth of silicon crystals from a single crucible

    Science.gov (United States)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  12. Detached Solidification of Germanium-Silicon Crystals on the ISS

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2016-01-01

    A series of Ge(sub 1-x) Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  13. Nanostructured Porous Silicon Photonic Crystal for Applications in the Infrared

    Directory of Open Access Journals (Sweden)

    G. Recio-Sánchez

    2012-01-01

    Full Text Available In the last decades great interest has been devoted to photonic crystals aiming at the creation of novel devices which can control light propagation. In the present work, two-dimensional (2D and three-dimensional (3D devices based on nanostructured porous silicon have been fabricated. 2D devices consist of a square mesh of 2 μm wide porous silicon veins, leaving 5×5 μm square air holes. 3D structures share the same design although multilayer porous silicon veins are used instead, providing an additional degree of modulation. These devices are fabricated from porous silicon single layers (for 2D structures or multilayers (for 3D structures, opening air holes in them by means of 1 KeV argon ion bombardment through the appropriate copper grids. For 2D structures, a complete photonic band gap for TE polarization is found in the thermal infrared range. For 3D structures, there are no complete band gaps, although several new partial gaps do exist in different high-symmetry directions. The simulation results suggest that these structures are very promising candidates for the development of low-cost photonic devices for their use in the thermal infrared range.

  14. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  15. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  16. Silicon photonic crystal all-optical logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yulan [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2013-01-03

    All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.

  17. Porous silicon photonic crystals for detection of infections

    Science.gov (United States)

    Gupta, B.; Guan, B.; Reece, P. J.; Gooding, J. J.

    2012-10-01

    In this paper we demonstrate the possibility of modifying porous silicon (PSi) particles with surface chemistry and immobilizing a biopolymer, gelatin for the detection of protease enzymes in solution. A rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index. To immobilize gelatin in the pores of the particles, the hydrogen-terminated silicon surface was first modified with an alkyne, 1,8-nonadiyne via hydrosilylation to protect the silicon surfaces from oxidation. This modification allows for further functionality to be added such as the coupling of gelatin. Exposure of the gelatin modified particles to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The ability to monitor the spectroscopic properties of microparticles, and shifts in the optical signature due to changes in the refractive index of the material within the pore space, is demonstrated.

  18. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    Science.gov (United States)

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-04-26

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  19. Defects in silicon effect on device performance and relationship to crystal growth conditions

    Science.gov (United States)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  20. Silicon crystals: Process for manufacturing wafer-like silicon crystals with a columnar structure

    Science.gov (United States)

    Authier, B.

    1978-01-01

    Wafer-like crystals suitable for making solar cells are formed by pouring molten Si containing suitable dopants into a mold of the desired shape and allowing it to solidify in a temperature gradient, whereby the large surface of the melt in contact with the mold is kept at less than 200 D and the free surface is kept at a temperature of 200-1000 D higher, but below the melting point of Si. The mold can also be made in the form of a slit, whereby the 2 sides of the mold are kept at different temperatures. A mold was milled in the surface of a cylindrical graphite block 200 mm in diameter. The granite block was induction heated and the bottom of the mold was cooled by means of a water-cooled Cu plate, so that the surface of the mold in contact with one of the largest surfaces of the melt was held at approximately 800 D. The free surface of the melt was subjected to thermal radiation from a graphite plate located 2 mm from the surface and heated to 1500 D. The Si crystal formed after slow cooling to room temperature had a columnar structure and was cut with a diamond saw into wafers approximately 500 mm thick. Solar cells prepared from these wafers had efficiencies of 10 to 11%.

  1. Crystallization and doping of amorphous silicon on low temperature plastic

    Science.gov (United States)

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  2. Up-conversion of crystal oscillator frequency in silicon package by near infrared, ultrashort laser

    Science.gov (United States)

    Ito, Yoshiro; Sato, Fumiya; Shinohe, Yuuki; Tanabe, Rie; Tada, Kozo

    2010-02-01

    Using an ultrashort pulse laser, photon energy of which is smaller than the band gap energy of silicon, machining of substances located at back of a silicon plate should be achievable. To realize this possibility, machining of a silicon substrate as well as machining of gold film on it was carried out using femtosecond laser pulses, wavelength of which lay between 1.5 to 2.5 μm. It is demonstrated that the rare surface of the silicon substrate and the gold film placed at the back of the silicon substrate can be machined with no detectable change on its front surface. Frequency adjustment of crystal oscillator sealed in a silicon package is tried and up-conversion of the frequency is achieved by removing small amount of thin gold film on the crystal with irradiation of 1.5 μm laser pulses through the silicon lid.

  3. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  4. RBS/channeling analysis of hydrogen-implanted single crystals of FZ silicon and 6H silicon

    International Nuclear Information System (INIS)

    Irwin, R.B.

    1984-01-01

    Single crystals of FZ silicon and 6H silicon carbide were implanted with hydrogen ions (50 and 80 keV, respectively) to fluences from 2 x 10 16 H + /cm 2 to 2 x 10 18 H+/cm 2 . The implantations were carried out at three temperatures: approx.95K, 300 K, and approx.800 K. Swelling of the samples was measured by surface profilometry. RBS/channeling was used to obtain the damage profiles and to determine the amount of hydrogen retained in the lattice. The damage profiles are centered around X/sub m/ for the implants into silicon and around R/sub p/ for silicon carbide. For silicon carbide implanted at 95 K and 300 K and for silicon implanted at 95 K, the peak damage region is amorphous for fluences above 8 x 10 16 H + /cm 2 , 4 x 10 17 H + /cm 2 , and 2 x 10 17 H + /cm 2 , respectively. Silicon implanted at 300 and 800 K and silicon carbide implanted at 800 K remain crystalline up to fluences of 1 x 10 18 H + /cm 2 . The channeling damage results agree with previously reported TEM and electron diffraction data. The predictions of a simple disorder-accumulation model with a linear annealing term explains qualitatively the observed damage profiles in silicon carbide. Quantitatively, however, the model predicts faster development of the damage profiles than is observed at low fluences in both silicon and silicon carbide. For samples implanted at 300 and 800 K, the model also predicts substantially less peak disorder than is observed. The effect of the surface, the retained hydrogen, the shape of S/sub D/(X), and the need for a nonlinear annealing term may be responsible for the discrepancy

  5. Buckling of Single-Crystal Silicon Nanolines under Indentation

    Directory of Open Access Journals (Sweden)

    Min K. Kang

    2008-01-01

    Full Text Available Atomic force microscope-(AFM- based indentation tests were performed to examine mechanical properties of parallel single-crystal silicon nanolines (SiNLs of sub-100-nm line width, fabricated by a process combining electron-beam lithography and anisotropic wet etching. The SiNLs have straight and nearly atomically flat sidewalls, and the cross section is almost perfectly rectangular with uniform width and height along the longitudinal direction. The measured load-displacement curves from the indentation tests show an instability with large displacement bursts at a critical load ranging from 480 μN to 700 μN. This phenomenon is attributed to a transition of the buckling mode of the SiNLs under indentation. Using a set of finite element models with postbuckling analyses, we analyze the indentation-induced buckling modes and investigate the effects of tip location, contact friction, and substrate deformation on the critical load of mode transition. The results demonstrate a unique approach for the study of nanomaterials and patterned nanostructures via a combination of experiments and modeling.

  6. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    Science.gov (United States)

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  7. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    Science.gov (United States)

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  8. Two-dimensional silicon crystals with sizable band gaps and ultrahigh carrier mobility.

    Science.gov (United States)

    Zhuo, Zhiwen; Wu, Xiaojun; Yang, Jinlong

    2018-01-18

    Due to their compatibility in the well-developed Si-based semiconductor industry, exploring two-dimensional (2D) silicon crystals with both sizable band gaps and high carrier mobility is important to develop high-performance electronic and optoelectronic devices on the nanoscale. Here, eleven new 2D silicon crystals are reported based on the strategy of mixing 3-fold and 4-fold coordinated silicon atoms in 2D confined phases and first-principles calculations. We establish that these 2D silicon crystals can be obtained by functionalizing silicene with silicon atoms, dimers, or chains, which exhibit lower formation energy than that of silicene. Their dynamic stability and thermal stability are confirmed by phonon calculations and Born-Oppenheimer molecular dynamic simulation at temperatures up to 700 K. Electronic structure calculations reveal that these 2D silicon crystals are semiconductors with sizable and tunable band gaps, ranging from 1.12 to 1.67 eV, and four of them are direct or quasi-direct band gap semiconductors with strong absorption in the visible-light frequency. The calculated Young's stiffness of 2D silicon crystals ranges from 31 to 88 N m -1 , which are comparable to phosphorene, but remarkably smaller than those of MoS 2 monolayer and graphene. Remarkably, C z -P2/c-Si 12 possesses a negative Poisson's ratio with a maximum value of -0.055. In particular, 2D silicon crystals possess ultrahigh carrier mobility of up to 1.7 × 10 5 and 1.3 × 10 4 cm 2 V -1 s -1 at room temperature for electrons and holes, respectively, suitable for high-speed electronic and optoelectronic applications on the nanoscale.

  9. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  10. Electrically active light-element complexes in silicon crystals grown by cast method

    Science.gov (United States)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  11. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.

    2012-06-01

    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  12. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  13. Inclined planes

    CERN Document Server

    Rivera, Andrea

    2016-01-01

    From moving ramps to playground slides, inclined planes are at work all over in our world today. Learn all about them in five easy-to-read chapters. Vibrant, full-color photos, bolded glossary words, and a key stats section let readers zoom in even deeper. Aligned to Common Core Standards and correlated to state standards. Abdo Zoom is a division of ABDO.

  14. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  15. Characterization of cryogenically cooled silicon crystals, for the double-crystal monochromator on BL11XU at SPring-8

    International Nuclear Information System (INIS)

    Tozawa, Kazukiyo; Kiriyama, Koji; Mitsui, Takaya; Shiwaku, Hideaki; Harami, Taikan

    2004-03-01

    Liquid-N 2 -cooled Si crystals have replaced water-cooled diamond crystals for the double-crystal monochromator on the JAERI beamline, BL11XU at SPring-8. To use the whole energy range from 6 to 70 keV, we developed the multi-crystal switching system, which can switch various crystals by a horizontal translation (X) stage perpendicular to the beam axis, and adopted the dual symmetric Si geometry, Si(111)/Si(311). The crystals are put side by side together with an indium sheet of 0.1 or 0.2 mm in thickness as a thermal conductor. The off-line experiment was performed to characterize the degree of the crystal strain, which may be introduced from the way of assembling in the crystal holder or upside-down posturing particularly for the second crystal of double-crystal monochromator. With MoKα 1 radiation from the x-ray generator, rocking curves from the dual symmetric silicon geometry, Si(111)/Si(311), for the second crystal were measured by the double-crystal diffractometer of parallel setting for the precise measurement of the crystal strain. Each of the observed FWHM was almost constant and identical to the calculated FWHM wherever an x-ray impinges on the crystal surface. These crystals were installed in the undulator beamline, BL11XU with cryogenically cooled condition, and tested for the performance by measuring the reflected intensity and the width of rocking curves. Highly improved results, in comparison with those in the water-cooled diamond case, were obtained. (author)

  16. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    Science.gov (United States)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  17. Tuning of the Optical Properties in Photonic Crystals Made of Macroporous Silicon

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2008-06-01

    Full Text Available It is well known that robust and reliable photonic crystal structures can be manufactured with very high precision by electrochemical etching of silicon wafers, which results in two- and three-dimensional photonic crystals made of macroporous silicon. However, tuning of the photonic properties is necessary in order to apply these promising structures in integrated optical devices. For this purpose, different effects have been studied, such as the infiltration with addressable dielectric liquids (liquid crystals, the utilization of Kerr-like nonlinearities of the silicon, or free-charge carrier injection by means of linear (one-photon and nonlinear (two-photon absorptions. The present article provides a review, critical discussion, and perspectives about state-of-the-art tuning capabilities.

  18. Crystallization of HWCVD amorphous silicon thin films at elevated temperatures

    CSIR Research Space (South Africa)

    Muller, TFG

    2006-01-01

    Full Text Available Hot-wire chemical vapour deposition (HWCVD) has been used to prepare both hydrogenated amorphous silicon (a-Si:H) and nano/ microcrystalline thin layers as intrinsic material at different deposition conditions, in order to establish optimum...

  19. Effect of oxygen and nitrogen interactions on friction of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Friction studies were conducted with single-crystal silicon carbide contacting silicon carbide and titanium after having been exposed to oxygen and nitrogen in various forms. After they had been sputter cleaned, the surfaces were (1) exposed to gaseous oxygen and nitrogen (adsorption), (2) ion bombarded with oxygen and nitrogen, or (3) reacted with oxygen (SiC only). Auger emission spectroscopy was used to determine the presence of oxygen and nitrogen. The results indicate that the surfaces of silicon carbide with reacted and ion-bombarded oxygen ions give higher coefficients of friction than do argon sputter-cleaned surfaces. The effects of oxygen on friction may be related to the relative chemical, thermodynamic properties of silicon, carbon, and titanium for oxygen. The adsorbed films of oxygen, nitrogen, and mixed gases of oxygen and nitrogen on sputter-cleaned, oxygen-ion bombarded, and oxygen-reacted surfaces generally reduce friction. Adsorption to silicon carbide is relatively weak.

  20. Simulation of V/G During Φ450 mm Czochralski Grown Silicon Single Crystal Growth Under the Different Crystal and Crucible Rotation Rates

    Directory of Open Access Journals (Sweden)

    Guan X J

    2016-01-01

    Full Text Available For discovering the principle of processing parameter combination for the stable growth and better wafer quality of Φ450 mm Czochralski grown silicon single crystal (shortly called Cz silicon crystal, the effects of crystal rotation rate and crucible one on the V/G ratio were simulated by using CGSim software. The results show that their effect laws on the V/G ratio for Φ450 mm Cz silicon crystal growth are some different from that for Φ200 mm Cz silicon one, and the effects of crucible rotation rate are relatively smaller than that of crystal one and its increasing only makes the demarcation point between two regions with different V/G ratio variations outward move along radial direction, and it promotes the wafer quality to weaken crystal rotation rate and strengthen crucible one.

  1. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  2. Mid-infrared characterization of two-dimensional photonic crystal slabs fabricated in silicon with laser interference lithography

    NARCIS (Netherlands)

    Prodan, L.G.

    2008-01-01

    The goal of the present work was to perform mid-infrared characterization of two dimensional photonic crystal slabs fabricated in silicon with laser interference lithography. A two-dimensional (2D) silicon photonic crystal (PhC), which is designed to provide a modified dispersion for photon energies

  3. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  4. Molecular dynamics studies of the ion beam induced crystallization in silicon

    International Nuclear Information System (INIS)

    Marques, L.A.; Caturla, M.J.; Huang, H.

    1995-01-01

    We have studied the ion bombardment induced amorphous-to-crystal transition in silicon using molecular dynamics techniques. The growth of small crystal seeds embedded in the amorphous phase has been monitored for several temperatures in order to get information on the effect of the thermal temperature increase introduced by the incoming ion. The role of ion-induced defects on the growth has been also studied

  5. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  6. Inclined nanoimprinting lithography-based 3D nanofabrication

    Science.gov (United States)

    Liu, Zhan; Bucknall, David G.; Allen, Mark G.

    2011-06-01

    We report a 'top-down' 3D nanofabrication approach combining non-conventional inclined nanoimprint lithography (INIL) with reactive ion etching (RIE), contact molding and 3D metal nanotransfer printing (nTP). This integration of processes enables the production and conformal transfer of 3D polymer nanostructures of varying heights to a variety of other materials including a silicon-based substrate, a silicone stamp and a metal gold (Au) thin film. The process demonstrates the potential of reduced fabrication cost and complexity compared to existing methods. Various 3D nanostructures in technologically useful materials have been fabricated, including symmetric and asymmetric nanolines, nanocircles and nanosquares. Such 3D nanostructures have potential applications such as angle-resolved photonic crystals, plasmonic crystals and biomimicking anisotropic surfaces. This integrated INIL-based strategy shows great promise for 3D nanofabrication in the fields of photonics, plasmonics and surface tribology.

  7. Two-dimensional photonic crystal slab with embedded silicon nanocrystals: efficient photoluminescence extraction

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Varga, Marián; Hruška, Karel; Kromka, Alexander; Herynková, Kateřina; Hönerlage, B.; Pelant, Ivan

    2013-01-01

    Roč. 102, č. 25 (2013), "251111-1"-"251111-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : photonic crystal * silicon nanocrystals * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013

  8. Photonic and plasmonic guided modes in graphene-silicon photonic crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...

  9. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending...

  10. Liquid crystal designs for high-contrast field sequential color liquid crystal on silicon (LCoS) microdisplays (Invited Paper)

    Science.gov (United States)

    Anderson, James; Chen, Cheng; Bos, Philip J.

    2005-04-01

    Single or dual panel microdisplay systems are becoming more popular in the marketplace. Consequently, Liquid Crystal on Silicon (LCoS) microdisplays are constantly being pushed to achieve faster switching times as well as higher contrast, while becoming simpler and allowing simpler optics engine design. Currently, most products use a Twisted Nematic (TN) mode with a retardation film. The most promising solution in research now is the Vertically Aligned Nematic (VAN) mode, which does not require a retarder.

  11. Optimization and applications of planar silicon-based photonic crystal devices

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Burgos Leon, Juan

    2005-01-01

    Very low propagation losses in straight planar photonic crystal waveguides have previously been reported. A next natural step is to add functionality to the photonic crystal waveguides and create ultra compact optical components. We have designed and fabricated such structures in a silicon-on-insulator...... such as topology optimization. We have also investigated a new device concept for coarse wavelength division de-multiplexing based on planar photonic crystal waveguides. The filtering of the wavelength channels has been realized by shifting the cut-off frequency of the fundamental photonic band gap mode...

  12. Monochromator for synchrotron light with temperature controlled by electrical current on silicon crystal

    International Nuclear Information System (INIS)

    Cusatis, Cesar; Souza, Paulo E.N.; Gobbi, Angelo; Carvalho Junior, Wilson de

    2011-01-01

    Full text. doped silicon crystal was used simultaneously as a monochromator, sensor and actuator in such way that its temperature could be controlled. Ohmic contacts allowed resistance measurements on a perfect silicon crystal, which were correlated to its temperature. Using the ohmic contacts, an electrical current caused Joule heating on the monochromator that was used to control its temperature. A simple stand-alone electronic box controlled the system. The device was built and tested with white beam synchrotron light on the double crystal monochromator of the XRD line of LNLS, Laboratorio Nacional de Luz Sincrotron, Campinas. The first crystal of a double crystal monochromator determines the energy that is delivered to a synchrotron experimental station and its temperature instability is a major source of energy and intensity instability. If the (333) silicon monochromator is at theta Bragg near 45 degree the variation of the diffraction angle is around one second of arc per degree Kelvin. It may take several minutes for the first crystal temperature to stabilize at the beginning of the station operation when the crystal and its environment are cold. With water refrigeration, the average overall temperature of the crystal may be constant, but the temperature of the surface changes with and without the white beam. The time used to wait for stabilization of the beam energy/intensity is lost unless the temperature of the crystal surface is kept constant. One solution for keeping the temperature of the monochromator and its environment constant or nearly constant is Joule heating it with a controlled small electrical current flowing on the surface of a doped perfect crystal. When the white beam is on, this small amount of extra power will be more concentrated at the beam footpath because the resistance is lower in this region due to the higher temperature. In addition, if the crystal itself is used to detect the temperature variation by measuring the electrical

  13. Functionalization of silicon crystal surface by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Jastrabík, Lubomír; Vorlíček, Vladimír; Chvostová, Dagmar; Potůček, Zdeněk; Narumi, K.; Naramoto, H.

    2012-01-01

    Roč. 12, č. 12 (2012), s. 9136-9141 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : cluster impacts * silicon * surface * quantum dots * light emission Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2012

  14. Optical properties of one-dimensional photonic crystals obtained by micromatchining silicon (a review)

    Science.gov (United States)

    Tolmachev, V. A.

    2017-04-01

    The theoretical and experimental investigations of photonic band gaps in one-dimensional photonic crystals created by micromatchining silicon, which have been performed by the author as part of his doctoral dissertation, are presented. The most important result of the work is the development of a method of modeling photonic crystals based on photonic band gap maps plotted in structure-property coordinates, which can be used with any optical materials and in any region of electromagnetic radiation, and also for nonperiodic structures. This method made it possible to realize the targeted control of the optical contrast of photonic crystals and to predict the optical properties of optical heterostructures and three-component and composite photonic crystals. The theoretical findings were experimentally implemented using methods of micromatchining silicon, which can be incorporated into modern technological lines for the production of microchips. In the IR spectra of a designed and a fabricated optical heterostructure (a composite photonic crystal), extended bands with high reflectivities were obtained. In a Si-based three-component photonic crystal, broad transmission bands and photonic band gaps in the middle IR region have been predicted and experimentally demonstrated for the first time. Si-liquid crystal periodic structures with electric-field tunable photonic band-gap edges have been investigated. The one-dimensional photonic crystals developed based on micromatchining silicon can serve as a basis for creating components of optical processors, as well as highly sensitive chemical and biological sensors in a wide region of the IR spectrum (from 1 to 20 μm) for lab-on-a-chip applications.

  15. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    Science.gov (United States)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  16. Electrical control of silicon photonic crystal cavity by graphene.

    Science.gov (United States)

    Majumdar, Arka; Kim, Jonghwan; Vuckovic, Jelena; Wang, Feng

    2013-02-13

    The efficient conversion of an electrical signal to an optical signal in nanophotonics enables solid state integration of electronics and photonics. The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A ~2 nm change in the cavity resonance line width and almost 400% (6 dB) change in resonance reflectivity is observed. In addition, our analysis shows that a graphene-photonic crystal device can potentially be useful for a high speed and low power absorptive and refractive modulator, while maintaining a small physical footprint.

  17. On-Chip All-Optical Switching and Memory by Silicon Photonic Crystal Nanocavities

    Directory of Open Access Journals (Sweden)

    Masaya Notomi

    2008-01-01

    Full Text Available We review our recent studies on all-optical switching and memory operations based on thermo-optic and carrier-plasma nonlinearities both induced by two-photon absorption in silicon photonic crystal nanocavities. Owing to high-Q and small volume of these photonic crystal cavities, we have demonstrated that the switching power can be largely reduced. In addition, we demonstrate that the switching time is also reduced in nanocavity devices because of their short diffusion time. These features are important for all-optical nonlinear processing in silicon photonics technologies, since silicon is not an efficient optical nonlinear material. We discuss the effect of the carrier diffusion process in our devices, and demonstrate improvement in terms of the response speed by employing ion-implantation process. Finally, we show that coupled bistable devices lead to all-optical logic, such as flip-flop operation. These results indicate that a nanocavity-based photonic crystal platform on a silicon chip may be a promising candidate for future on-chip all-optical information processing in a largely integrated fashion.

  18. Growth and characterization of indium doped silicon single crystals at industrial scale

    Science.gov (United States)

    Haringer, Stephan; Giannattasio, Armando; Alt, Hans Christian; Scala, Roberto

    2016-03-01

    Indium is becoming one of the most important dopant species for silicon crystals used in photovoltaics. In this work we have investigated the behavior of indium in silicon crystals grown by the Czochralski pulling process. The experiments were performed by growing 200 mm crystals, which is a standard diameter for large volume production, thus the data reported here are of technological interest for the large scale production of indium doped p-type silicon. The indium segregation coefficient and the evaporation rate from the silicon melt have been calculated to be 5 × 10-4 ± 3% and 1.6 × 10-4 cm·s-1, respectively. In contrast to previous works the indium was introduced in liquid phase and the efficiency was compared with that deduced by other authors, using different methods. In addition, the percentage of electrically active indium at different dopant concentrations is calculated and compared with the carrier concentration at room temperature, measured by four-point bulk method.

  19. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chen Ruling; Luo Jianbin; Guo Dan; Lu Xinchun

    2008-01-01

    The process of a silica cluster impact on a crystal silicon substrate is studied by molecular dynamics simulation. At the impact loading stage, crystal silicon of the impact zone transforms to a locally ordered molten with increasing the local temperature and pressure of the impact zone. And then the transient molten forms amorphous silicon directly as the local temperature and pressure decrease at the impact unloading stage. Moreover, the phase behavior between the locally ordered molten and amorphous silicon exhibits the reversible structural transition. The transient molten contains not only lots of four-fold atom but also many three- and five-fold atoms. And the five-fold atom is similar to the mixture structure of semi-Si-II and semi-bct5-Si. The structure transformation between five- and four-fold atoms is affected by both pressure and temperature. The structure transformation between three- and four-fold atoms is affected mostly by temperature. The direct structure transformation between five- and three-fold atoms is not observed. Finally, these five- and three-fold atoms are also different from the usual five- and three-fold deficient atoms of amorphous silicon. In addition, according to the change of coordination number of atoms the impact process is divided into six stages: elastic, plastic, hysteresis, phase regressive, adhesion and cooling stages

  20. Hydrogen diffusion and induced-crystallization in intrinsic and doped hydrogenated amorphous silicon films

    International Nuclear Information System (INIS)

    Kail, F.; Hadjadj, A.; Roca i Cabarrocas, P.

    2005-01-01

    We have studied the evolution of the structure of intrinsic and doped hydrogenated amorphous silicon films exposed to a hydrogen plasma. For this purpose, we combine in situ spectroscopic ellipsometry and secondary ion mass spectrometry measurements. We show that hydrogen diffuses faster in boron-doped hydrogenated amorphous silicon than in intrinsic samples, leading to a thicker subsurface layer from the early stages of hydrogen plasma exposure. At longer times, hydrogen plasma leads to the formation of a microcrystalline layer via chemical transport, but there is no evidence for crystallization of the a-Si:H substrate. Moreover, we observe that once the microcrystalline layer is formed, hydrogen diffuses out of the sample

  1. Boron, phosphorus, and gallium determination in silicon crystals doped with gallium

    International Nuclear Information System (INIS)

    Shklyar, B.L.; Dankovskij, Yu.V.; Trubitsyn, Yu.V.

    1989-01-01

    When studying IR transmission spectra of silicon doped with gallium in the range of concentrations 1 x 10 14 - 5 x 10 16 cm -3 , the possibility to quantity at low (∼ 20 K) temperatures residual impurities of boron and phosphorus is ascertained. The lower determination limit of boron is 1 x 10 12 cm -3 for a sample of 10 nm thick. The level of the impurities in silicon crystals, grown by the Czochralski method and method of crucible-free zone melting, is measured. Values of boron and phosphorus concentrations prior to and after their alloying with gallium are compared

  2. Growth of poly-crystalline silicon–germanium on silicon by aluminum-induced crystallization

    International Nuclear Information System (INIS)

    Lin, Jian-Yang; Chang, Pai-Yu

    2012-01-01

    The formation of poly-crystalline silicon–germanium films on single-crystalline silicon substrates by the method of aluminum-induced crystallization was investigated. The aluminum and germanium films were evaporated onto the single-crystalline silicon substrate to form an amorphous-germanium/aluminum/single-crystalline silicon structure that was annealed at 450 °C–550 °C for 0–3 h. The structural properties of the films were examined using x-ray diffraction, Raman spectroscopy and Auger electron spectroscopy. The x-ray diffraction patterns confirmed that the initial transition from an amorphous to a poly-crystalline structure occurs after 20 min of aluminum-induced crystallization annealing process at 450 °C. The micro-Raman spectral analysis showed that the aluminum-induced crystallization process yields a better poly-crystalline SiGe film when the film is annealed at 450 °C for 40 min. The growth mechanism of the poly-crystalline silicon–germanium by aluminum-induced crystallization was also studied and is discussed. - Highlights: ► Aluminum-induced poly-SiGe growth on Si substrates has been studied. ► Initial transition from a-SiGe to poly-SiGe occurs after 20-min AIC at 450 °C. ► Free Ge and Si atoms undergo inter-diffusion during AIC.

  3. Formation of (100)-oriented large polycrystalline silicon thin films with multiline beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Thuy Nguyen, Thi; Hiraiwa, Mitsuhisa; Koganezawa, Tomoyuki; Yasuno, Satoshi; Kuroki, Shin-Ichiro

    2018-03-01

    Low-temperature crystallization to (100)-oriented polycrystalline silicon (poly-Si) thin films is a key requirement for high-performance low-temperature poly-Si thin-film transistors (LTPS-TFTs). Biaxially (100)-oriented poly-Si thin films were formed by multiline beam continuous-wave laser lateral crystallization in single scans. By overlapping scanning, the (100) preferential orientation was stable and (100) silicon crystals were developed over a large area. The crystallinities of the poly-Si films were precisely characterized, especially by two-dimensional X-ray diffraction. It was found that the poly-Si thin films predominantly had (100)-surface-oriented crystals. The crystallinity of the laser-crystallized poly-Si films was dependent on the scanning speed and overlapping condition. The (100) poly-Si films were formed at scanning speeds below the threshold for lateral-crystallized silicon.

  4. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    International Nuclear Information System (INIS)

    Xin, J.Z.; Jim, K.L.; Tsang, Y.H.; Chan, H.L.W.; Leung, C.W.; Yang, J.; Gong, X.J.; Chen, L.Q.; Gao, F.

    2012-01-01

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index (∝18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si d Si /STO d STO ) N /Si d Si was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (d STO /(d Si +d STO )), periodicity (d Si +d STO ) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 μm and 200 μm were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  5. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  6. Silicon nano crystal-based non-volatile memory devices

    International Nuclear Information System (INIS)

    Ng, C.Y.; Chen, T.P.; Sreeduth, D.; Chen, Q.; Ding, L.; Du, A.

    2006-01-01

    In this work, we have investigated the performance and reliability of a Flash memory based on silicon nanocrystal synthesized with very-low energy ion beams. The devices are fabricated with a conventional CMOS process and the size of the nanocrystal is ∼ 4 nm as determined from TEM measurement. Electrical properties of the devices with a tunnel oxide of either 3 nm or 7 nm are evaluated. The devices exhibit good endurance up to 10 5 W/E cycles even at the high operation temperature of 85 deg. C for both the tunnel oxide thicknesses. For the thicker tunnel oxide (i.e., the 7-nm tunnel oxide), a good retention performance with an extrapolated 10-year memory window of ∼ 0.3 V (or ∼ 20% of charge lose after 10 years) is achieved. However, ∼ 70% of charge loss after 10 years is expected for the thinner tunnel oxide (i.e., the 3-nm tunnel oxide)

  7. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    Science.gov (United States)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  8. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    in the most important for applications plasmonic and photonic regimes are numerically investigated. We also demonstrate fabrication of photonic crystal membranes, high-quality transfer of large area chemically vapor deposited graphene on them and their comprehensive Raman, AFM and FTIR experimental....... Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  9. A thermal model for czochralski silicon crystal growth with an axial magnetic field

    Science.gov (United States)

    Hjellming, L. N.

    1990-07-01

    This paper presents a thermal model for molten silicon in a Czochralski crystal puller system with an applied uniform axial magnetic field. The melt depth is treated as continually decreasing, which affects the thermal environment of the melt and crystal. The radiative heat loss and the input heat flux are treated as functions of time, with a constraint placed on the heat lost to the crystal from the melt. As the melt motion reaches a steady state rapidly, the temperature and flow fields are treated as instantaneously steady at each melt depth. The heat transport is a mixture of conduction and convection, and by considering the crystal and crucible to be rotating with the same angular velocity, the flows driven by buoyancy and thermocapillarity are isolated and provide the convective heat transport in the melt for the range of magnetic field strengths 0.2 ≤ B ≤ 1.0T.

  10. High precision density comparison measurement of silicon crystals by the pressure of flotation method

    Science.gov (United States)

    Waseda, A.; Fujii, K.

    2001-12-01

    The development of a new density comparison measurement system for silicon crystals using the pressure of flotation method (PFM) is described. The effective isothermal compressibility of a flotation liquid mixture of 1,2,3-tribromopropane and 1,2-dibromoethane is obtained. Density comparison measurements are presented for silicon spheres of mass 1 kg from the National Research Laboratory of Metrology (NRLM) for the density standard and the determination of the Avogadro constant. The combined relative uncertainty of PFM density comparison measurement for S4 and S5 NRLM silicon spheres is 5×10-8. Adjusted densities are calculated from the comparison and absolute measurements based on a least-squares analysis through a matrix formulation.

  11. High-density G-centers, light-emitting point defects in silicon crystal

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    2011-09-01

    Full Text Available We propose a new method of creating light-emitting point defects, or G-centers, by modifying a silicon surface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3. Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

  12. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  13. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  14. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  15. Visual Sensor for Sterilization of Polymer Fixtures Using Embedded Mesoporous Silicon Photonic Crystals.

    Science.gov (United States)

    Kumeria, Tushar; Wang, Joanna; Chan, Nicole; Harris, Todd J; Sailor, Michael J

    2018-01-26

    A porous photonic crystal is integrated with a plastic medical fixture (IV connector hub) to provide a visual colorimetric sensor to indicate the presence or absence of alcohol used to sterilize the fixture. The photonic crystal is prepared in porous silicon (pSi) by electrochemical anodization of single crystal silicon, and the porosity and the stop band of the material is engineered such that the integrated device visibly changes color (green to red or blue to green) when infiltrated with alcohol. Two types of self-reporting devices are prepared and their performance compared: the first type involves heat-assisted fusion of a freestanding pSi photonic crystal to the connector end of a preformed polycarbonate hub, forming a composite where the unfilled portion of the pSi film acts as the sensor; the second involves generation of an all-polymer replica of the pSi photonic crystal by complete thermal infiltration of the pSi film and subsequent chemical dissolution of the pSi portion. Both types of sensors visibly change color when wetted with alcohol, and the color reverts to the original upon evaporation of the liquid. The sensor performance is verified using E. coli-infected samples.

  16. Silicon photonic crystal filter with ultrawide passband characteristics.

    Science.gov (United States)

    Baldycheva, Anna; Tolmachev, Vladimir A; Perova, Tatiana S; Zharova, Yulia A; Astrova, Ekaterina V; Berwick, Kevin

    2011-05-15

    We report on what is believed to be the first example of an ultrawide, bandpass filter, based on a high-contrast multicomponent one-dimensional Si photonic crystal (PC). The effect of the disappearance of a limited number of flat stopbands and their replacement with extended passbands is demonstrated over a wide IR range. The passbands obtained exhibit a high transmission of 92% to 96% and a substantial bandwidth of 1800 nm, which is spectrally flat within the passband. The multicomponent PC model suggested can be applied to the design of any micro- or nanostructured semiconductor or dielectric material for application across a wide spectral range. © 2011 Optical Society of America

  17. Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2013-01-01

    Full Text Available The preservation of seed crystals is important for the casting of quasi-single crystalline (QSC silicon ingots. We carried out transient global simulations of the feedstock melting process in an industrial-sized directional solidification (DS furnace to investigate key factors influencing seed preservation. The power distribution between the top and side heaters is adjusted in the conventional furnace for multicrystalline silicon ingots and in the evolved furnace with a partition block for QSC silicon ingots. The evolution of the solid-liquid interface for melting and the temperature distribution in the furnace core area are analyzed. The power distribution can influence the temperature gradient in the silicon domain significantly. However, its effect on seed preservation is limited in both furnaces. Seed crystals can be preserved in the evolved furnace, as the partition block reduces the radiant heat flux from the insulation walls to the heat exchange block and prevents the heat flowing upwards under the crucible. Therefore, the key to seed preservation is to control radiant heat transfer in the DS furnace and guarantee downward heat flux under the crucible.

  18. Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Varga, Marián; Pelant, Ivan; Valenta, J.; Kromka, Alexander; Elliman, R. G.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-8, č. článku 5763. ISSN 2045-2322 R&D Projects: GA ČR GJ16-09692Y; GA MŠk(CZ) LD15003 Institutional support: RVO:68378271 Keywords : photonic crystal slab * silicon nanocrystals * light emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016

  19. Effects of growth conditions on thermal profiles during Czochralski silicon crystal growth

    Science.gov (United States)

    Choe, Kwang Su; Stefani, Jerry A.; Dettling, Theodore B.; Tien, John K.; Wallace, John P.

    1991-01-01

    An eddy current testing method was used to continuously monitor crystal growth process and investigate the effects of growth conditions on thermal profiles during Czochralski silicon crystal growth. The experimental concept was to monitor the intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. In terms of the experiments, the effects of changes in growth parameters, which include the crystal and crucible rotation rates, crucible position, and pull rate, and hot-zone geometries were investigated. The results show that the crystal thermal profile could shift significantly as a function of crystal length if the closed-loop control fails to maintain a constant thermal condition. As a direct evidence to the effects of the melt flow on heat transfer processes, a thermal gradient minimum was observed when the crystal/crucible rotation combination was 20/-10 rpm cw. The thermal gradients in the crystal near the growth interface were reduced most by decreasing the pull rate or by reducing the radiant heat loss to the environment; a nearly constant axial thermal gradient was achieved when either the pull rate was decreased by half, the height of the exposed crucible wall was doubled, or a radiation shield was placed around the crystal. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5°C/mm. When compared to theoretical results found in literature, the axial profiles correlated well with the results of the models which included radiant interactions. However, the radial gradients estimated from three-frequency data were much higher than what were predicted by known theoretical models. This discrepancy seems to indicate that optical phenomenon within the crystal is significant and should be included in theoretical modeling.

  20. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    Energy Technology Data Exchange (ETDEWEB)

    Xin, J.Z.; Jim, K.L.; Tsang, Y.H.; Chan, H.L.W.; Leung, C.W. [Hong Kong Polytechnic University, Department of Applied Physics and Materials Research Centre, Kowloon, Hong Kong (China); Yang, J.; Gong, X.J.; Chen, L.Q.; Gao, F. [Chinese Academy of Sciences, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Shenzhen (China)

    2012-04-15

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index ({proportional_to}18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si d{sub Si}/STO d{sub STO}){sub N} /Si d{sub Si} was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (d{sub STO}/(d{sub Si}+d{sub STO})), periodicity (d{sub Si}+d{sub STO}) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 {mu}m and 200 {mu}m were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  1. Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Nakano, Satoshi; Kakimoto, Koichi

    2017-06-01

    Carbon (C) contamination in Czochralski silicon (CZ-Si) crystal growth mainly originates from carbon monoxide (CO) generation on the graphite components, which reaches a maximum during the melting stage. Loading a crucible with poly-Si feedstock includes many technical details for optimization of the melting and growth processes. To investigate the effect of the packing structure of Si chunks on C accumulation in CZ-Si crystal growth, transient global simulations of heat and mass transport were performed for the melting process with different packing structures of poly-Si. The heat transport modeling took into account the effective thermal conductivity (ETC) of the Si feedstock, which is affected by the packing structure. The effect of the chunk size on the melting process and C accumulation were investigated by parametric studies of different packing structures. The heat transport and melting process in the crucible were affected by the ETC and the emissivity of the Si feedstock. It was found that smaller Si chunks packed in the upper part could speed up the melting process and smooth the power profile. Decreasing the duration of the melting process is favorable for reduction of C contamination in the Si feedstock. Parametric studies indicated that optimization of the melting process by the packing structure is possible and essential for C reduction in CZ-Si crystal growth.

  2. Phosphorus diffusion in float zone silicon crystal growth

    DEFF Research Database (Denmark)

    Larsen, Theis Leth

    2000-01-01

    , including centrifugal, buoyancy, thermocapillary and electromagnetic forces, is used to determine flow field, after the phase boundaries have been determined, by the heat transfer model. A finite element model for calculating dopant transport, using the calculated unsteady flow field, has been developed.......8'' conguration. The heat transfer calculations of the same three congurations, yields the global temperature field, from which temperature gradients are determined. The heat transfer model is furthermore expanded to study convective cooling of the crystal from natural convection in the pressurized surrounding...... boundary layers at the lower phase boundaries. The dopant concentrations, at the lower phase boundaries, are used to determine radial resistivity profies, which with fair agreement are compared to measurements. Simulations of defect transport are conducted for both of the 4'', as well as the 0...

  3. Enhancement of heat transfer in Czochralski growth of silicon crystals with a chemical cooling technique

    Science.gov (United States)

    Ding, Junling; Liu, Lijun; Zhao, Wenhan

    2017-06-01

    The cost of producing single-crystalline silicon with the Czochralski method can be reduced by promoting the crystal size and/or crystal pulling rate. However, more latent heat of solidification needs to be released from the melt-crystal (m-c) interface during the crystal growth process. In this study, the C-CO2 chemical endothermic reaction is proposed as a novel and efficient cooling technique to solve this problem. Compared with the conventional gas cooling method, C-CO2 endothermic reaction method can significantly enhance the heat transfer in the crystal at the m-c interface. It was found that the heat transfer is more enhanced with a chemical reaction of smaller activation energy, and the m-c interface becomes flatter. The influence of the carbon concentration in the chemical reactive gas flow on the heat removal in the crystal at the m-c interface is also investigated. The cooling effect is significantly increased with the increase in the carbon concentration when it is small. However, when the carbon concentration in the reactive gas is high, the cooling effect just increases slightly. The research demonstrates that the proposed chemical endothermic reaction is a promising cooling technique to be applied in CZ-Si crystal growth with large size/high pulling rate.

  4. N-type compensated silicon: resistivity, crystal growth, carrier lifetime, and relevant application for HIT solar cells

    Science.gov (United States)

    Li, Shuai; Gao, Wenxiu; Li, Zhen; Cheng, Haoran; Lin, Jinxia; Cheng, Qijin

    2017-05-01

    N-type compensated silicon shows unusual distribution of resistivity as crystal grows compared to the n-type uncompensated silicon. In this paper, evolutions of resistivities with varied concentrations of boron and varied starting resistivities of the n-type silicon are intensively calculated. Moreover, reduction of carrier mobility is taken into account by Schindler’s modified model of carrier mobility for the calculation of resistivity of the compensated silicon. As for substrates of solar cells, optimized starting resistivity and corresponding concentration of boron are suggested for better uniformity of resistivity and higher yield (fraction with ρ >0.5 ~ Ω \\centerdot \\text{cm} ) of the n-type compensated Cz crystal rod. A two-step growth method is investigated to obtain better uniformity of resistivity of crystal rod, and this method is very practical especially for the n-type compensated silicon. Regarding the carrier lifetime, the recombination by shallow energy-level dopants is taken into account for the compensated silicon, and evolution of carrier lifetime is simulated by considering all main recombination centers which agrees well with our measured carrier lifetimes as crystal grows. The n-type compensated silicon shows a larger reduction of carrier lifetime compared to the uncompensated silicon at the beginning of crystal growth, and recombination with a oxygen-related deep defect is sufficient to describe the reduction of degraded lifetime. Finally, standard heterojunction with intrinsic thin-layer (HIT) solar cells are made with substrates from the n-type compensated silicon rod, and a high efficiency of 22.1% is obtained with a high concentration (0.8× {{10}16}~\\text{c}{{\\text{m}}-3} ) of boron in the n-type compensated silicon feedstock. However, experimental efficiencies of HIT solar cells based on the n-type compensated silicon show an average reduction of 4% along with the crystal length compared to the uncompensated silicon. The

  5. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  6. Aluminium-induced crystallization of amorphous silicon films deposited by DC magnetron sputtering on glasses

    International Nuclear Information System (INIS)

    Kezzoula, F.; Hammouda, A.; Kechouane, M.; Simon, P.; Abaidia, S.E.H.; Keffous, A.; Cherfi, R.; Menari, H.; Manseri, A.

    2011-01-01

    Amorphous silicon (a-Si) and hydrogenated amorphous silicon (a-Si:H) films were deposited by DC magnetron sputtering technique with argon and hydrogen plasma mixture on Al deposited by thermal evaporation on glass substrates. The a-Si/Al and a-Si:H/Al thin films were annealed at different temperatures ranging from 250 to 550 deg. C during 4 h in vacuum-sealed bulb. The effects of annealing temperature on optical, structural and morphological properties of as-grown as well as the vacuum-annealed a-Si/Al and a-Si:H/Al thin films are presented in this contribution. The averaged transmittance of a-Si:H/Al film increases upon increasing the annealing temperature. XRD measurements clearly evidence that crystallization is initiated at 450 deg. C. The number and intensity of diffraction peaks appearing in the diffraction patterns are more important in a-Si:H/Al than that in a-Si/Al layers. Results show that a-Si:H films deposited on Al/glass crystallize above 450 deg. C and present better crystallization than the a-Si layers. The presence of hydrogen induces an improvement of structural properties of poly-Si prepared by aluminium-induced crystallization (AIC).

  7. Characterisation and stabilisation of the surface region of a highly polished silicon crystal sphere

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.

    1999-01-01

    Full text: Typically a single crystal silicon wafer has a native oxide layer a few nm thick which changes slowly with time. A number of parameters such as hydrocarbons, water vapour, storage environment can affect this layer. The thickness of the layer is also orientation dependent. In the case of a silicon sphere the situation becomes more complex, because all orientations are present and the process of polishing involves a higher pressure and also high local temperatures. A highly polished single crystal sphere 93.6 mm in diameter is being used to determine the Avogadro constant with an uncertainty of ≤ 1 x 10 -8 . This will then be used to obtain an atomic definition of the kilogram. The composition and structure of the surface oxide layer play an important role in this measurement. Firstly the density of the oxide layer is different from that of silicon. Secondly since the diameter is measured by optical interferometry, corrections must be applied for the phase change in the reflected light beam due to the surface layer. Thirdly the orientation dependence of the layer complicated the corrections to be applied. Fourthly if measurements are made over a period of time, any changes in the surface layer must be taken into account. Given the accuracy required in the determination, the surface layer is a determining factor in the final result. A number of techniques such as spectroscopic ellipsometry and ion beam analysis are being used to study the composition and structure of the surface of a silicon sphere. Cleaning techniques such as HF and low temperature ultraviolet (ozone) are being developed to produce a clean surface. The next step involves deposition of a stable and uniform surface oxide layer a few nm thick. Techniques being investigated for this include ultra violet ozone deposition at 450 deg C and plasma deposition. The paper describes work at the NML in achieving an appropriate stable surface on the silicon sphere

  8. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  9. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    Science.gov (United States)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger

  10. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  11. Acoustic mode converters micromachined in silicon by proton beam writing

    International Nuclear Information System (INIS)

    Scholz, U.; Menzel, F.; Pluta, M.; Grill, W.; Butz, T.

    2011-01-01

    Proton beam writing is a powerful tool for the production of microstructures for acoustic applications because it allows to create structures inclined to the original sample surface which therefore can act as acoustic mode converters. We report on experiments, finding optimal structure sizes in p-type 12 Ω cm silicon for this purpose. For the creation of the structures the proton beam at the LIPSION laboratory was used. Furthermore, by investigating the micromachined silicon with a phase sensitive acoustic microscope we give evidence that inclined structures such as rods and walls can be used to change the mode of acoustic waves in the crystal.

  12. ANSYS program and re-validation of the thermal analysis of the Cornell silicon crystal

    International Nuclear Information System (INIS)

    Khounsary, A.; Kuzay, T.

    1992-01-01

    Thermal analysis of the Cornell three-channel silicon crystal is carried out using the ANSYS finite element program. Results are in general agreement with those previously obtained using the Transient Heat Transfer, version B (THTB) program. The main thrust of the present study has been to (a) explore the thermal analysis potentials of the ANSYS program in solving thermal hydraulic problems in the APS beamline design, (b) compare the ANSYS results with those obtained by THTB for a specific test crystal, and (c) obtain some cost benchmarks for the ANSYS program. On the basis of a limited number of test runs for the silicon crystal problem, conclusions can be drawn that (a) except for conduction problems with simple boundary conditions the utility of ANSYS for solving a variety of three-dimensional thermal hydraulic problems is at best limited, (b) in comparison with THTB program, ANSYS requires a more detailed modeling (with increasing computation time) for comparably accurate results, and (c) no firm statement regarding the cost factor can be made at this time although the ANSYS program appears to be more expensive than any other code we have used so far

  13. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    Science.gov (United States)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  14. A new series of two-dimensional silicon crystals with versatile electronic properties

    Science.gov (United States)

    Chae, Kisung; Kim, Duck Young; Son, Young-Woo

    2018-04-01

    Silicon (Si) is one of the most extensively studied materials owing to its significance to semiconductor science and technology. While efforts to find a new three-dimensional (3D) Si crystal with unusual properties have made some progress, its two-dimensional (2D) phases have not yet been explored as much. Here, based on a newly developed systematic ab initio materials searching strategy, we report a series of novel 2D Si crystals with unprecedented structural and electronic properties. The new structures exhibit perfectly planar outermost surface layers of a distorted hexagonal network with their thicknesses varying with the atomic arrangement inside. Dramatic changes in electronic properties ranging from semimetal to semiconducting with indirect energy gaps and even to one with direct energy gaps are realized by varying thickness as well as by surface oxidation. Our predicted 2D Si crystals with flat surfaces and tunable electronic properties will shed light on the development of silicon-based 2D electronics technology.

  15. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    Science.gov (United States)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  16. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    Science.gov (United States)

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  17. Influence of ITO-Silver Wire Electrode Structure on the Performance of Single-Crystal Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Wern-Dare Jheng

    2012-01-01

    Full Text Available This study aimed to explore the effect of various electrode forms on single-crystal silicon solar cells by changing their front and back electrode structures. The high light penetration depth of the Indium Tin Oxide (ITO and the high conductivity of the silver wire that were coated on the single crystal silicon solar cells increased photoelectron export, thus increasing the efficiency of the solar cell. The experiment utilized a sol-gel solution containing phosphorus that was spin coated on single-crystal silicon wafers; this phosphorus also served as a phosphorus diffusion source. A p-n junction was formed after annealing at high temperature, and the substrate was coated with silver wires and ITO films of various structures to produce the electrodes. This study proposed that applying a heat treatment to the aluminum of back electrodes would result in a higher efficiency for single-crystal silicon solar cells, whereas single-crystal silicon solar cells containing front electrodes with ITO film coated with silver wires would result in efficiencies that are higher than those achieved using pure ITO thin-film electrodes.

  18. Enhancement of photoluminescence and raman scattering in one-dimensional photonic crystals based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonchar, K. A., E-mail: k.a.gonchar@gmail.com [Moscow State University, Physics Faculty (Russian Federation); Musabek, G. K.; Taurbayev, T. I. [Al Farabi Kazakh National University, Physics Department (Kazakhstan); Timoshenko, V. Yu. [Moscow State University, Physics Faculty (Russian Federation)

    2011-05-15

    In porous-silicon-based multilayered structures that exhibit the properties of one-dimensional photonic crystals, an increase in the photoluminescence and Raman scattering intensities is observed upon optical excitation at the wavelength 1.064 {mu}m. When the excitation wavelength falls within the edge of the photonic band gap of the structures, a multiple increase (by a factor larger than 400) in the efficiency of Raman scattering is detected. The effect is attributed to partial localization of excitation light and, correspondingly, to the much longer time of interaction of light with the material in the structures.

  19. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I

    Czech Academy of Sciences Publication Activity Database

    Kohn, V.G.; Khikhlukha, Danila

    2016-01-01

    Roč. 72, May (2016), s. 349-356 ISSN 2053-2733 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162; ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : X-ray diffraction * silicon crystal * six-beam diffraction * section topography * computer simulations Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 5.725, year: 2016

  20. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Directory of Open Access Journals (Sweden)

    Ming-Jay Yang

    2017-03-01

    Full Text Available We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  1. Enhanced radiative recombination rate for electron-hole droplets in a silicon photonic crystal nanocavity

    Science.gov (United States)

    Ihara, Toshiyuki; Takahashi, Yasushi; Noda, Susumu; Kanemitsu, Yoshihiko

    2017-07-01

    We investigate photoluminescence (PL) spectra and dynamics of clean silicon photonic crystal nanocavities at 10 K. A sharp emission peak due to the nanocavity mode has the largest intensity when the energy of the nanocavity mode is equal to the emission energy of the electron-hole droplets (EHDs). Time-resolved PL spectroscopy indicates that the PL lifetime of the EHD is reduced to as short as 1.2 ns by the nanocavity mode. A careful analysis of the lifetimes indicates that the radiative recombination rate for EHD is enhanced by a factor of larger than 5 by the Purcell effect.

  2. Fracture analysis of surface exfoliation on single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Shen, Jie; Shahid, Ijaz; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Yan, Sha; Zhang, Gaolong; Zhang, Xiaofu; Le, Xiaoyun

    2017-12-01

    Surface exfoliation was observed on single crystal silicon surface irradiated by Intense Pulsed Ion Beam (IPIB). As the strong transient thermal stress impact induced by IPIB was mainly attributed to the exfoliation, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution along the energy deposition process. After computation with finite element method, J integral parameter was applied as the criterion for crack development. It was demonstrated that the exfoliation initiation calls for specific material, crack depth and IPIB parameter. The results are potentially valuable for beam/target selection and IPIB parameter optimization.

  3. Role of current profiles and atomic force microscope tips on local electric crystallization of amorphous silicon

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Rezek, Bohuslav; Šípek, Emil; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 518, č. 21 (2010), s. 5965-5970 ISSN 0040-6090 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous materials * atomic force microscopy (AFM) * conductivity * crystallization * nanostructures * silicon * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  4. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, V. B., E-mail: vb.novikov@physics.msu.ru; Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I. [Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2015-11-21

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  5. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan, E-mail: liudanhu725@126.com [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Hu, Sen [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Gao, Yihua [Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 (China)

    2017-07-12

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%. - Highlights: • Photonic crystal heterojunction with circular and square scatterers is first studied. • One-way transmission efficiency is closely related to the hetero-interface. • Wide-band and efficient one-way transmission is realized.

  6. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Gu, Tingyi, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu; McMillan, James F. [Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee [Institute of Microelectronics, Singapore, Singapore 117685 (Singapore); Feng, Guoying; Zhou, Shouhuan [College of Electronics and Information Engineering, Sichuan University, Chengdu 610065 (China); Wong, Chee Wei, E-mail: zhoufirst@scu.edu.cn, E-mail: tg2342@columbia.edu, E-mail: cheewei.wong@ucla.edu [Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    We demonstrate the enhanced fast photoresponsivity in graphene hybrid structures by combining the ultrafast dynamics of graphene with improved light-matter interactions in slow-light photonic crystal waveguides. With a 200 μm interaction length, a 0.8 mA/W photoresponsivity is achieved in a graphene-silicon Schottky-like photodetector, with an operating bandwidth in excess of 5 GHz and wavelength range at least from 1480 nm to 1580 nm. Fourfold enhancement of the photocurrent is observed in the slow light region, compared to the wavelength far from the photonic crystal bandedge, for a chip-scale broadband fast photodetector.

  7. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    T. N. Wistisen

    2016-07-01

    Full Text Available We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111 plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  8. Influence of temperature on the anisotropic cutting behaviour of single crystal silicon: A molecular dynamics simulation investigation

    OpenAIRE

    Chavoshi, Saeed Zare; Goel, Saurav; Luo, Xichun

    2016-01-01

    Using molecular dynamics (MD) simulation, this paper investigates anisotropic cutting behaviour of single crystal silicon in vacuum under a wide range of substrate temperatures (300 K, 500 K, 750 K, 850 K, 1173 K and 1500 K). Specific cutting energy, force ratio, stress in the cutting zone and cutting temperature were the indicators used to quantify the differences in the cutting behaviour of silicon. A key observation was that the specific cutting energy required to cut the (1 1 1) surface o...

  9. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    International Nuclear Information System (INIS)

    Jung, Y. J.; Kim, W. K.; Jung, J. H.

    2014-01-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  10. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. J.; Kim, W. K.; Jung, J. H. [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-08-15

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and low cost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11 - 13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  11. A MEMS Infrared Thermopile Fabricated from Silicon-On-Insulator with Phononic Crystal Structures and Carbon Nanotube Absorption Layer

    Science.gov (United States)

    Gray, Kory Forrest

    The goal of this project was to examine the possibility of creating a novel thermal infrared detector based on silicon CMOS technology that has been enhanced by the latest nano-engineering discoveries. Silicon typically is not thought as an efficient thermoelectric material. However recent advancements in nanotechnology have improved the potential for a highly sensitive infrared detector based on nano-structured silicon. The thermal conductivity of silicon has been shown to be reduced from 150 W/mK down to 60 W/mK just by decreasing the scale of the silicon from bulk down to the sub-micron scale. Further reduction of the thermal conductivity has been shown by patterning silicon with a phonon crystal structure which has been reported to have thermal conductivities down to 10 W/mK. The phonon crystal structure consists of a 2D array of holes that are etched into the silicon. The size and pitch of the holes are on the order of the mean free path of the phonons in silicon which is approximately 200-500nm. This particular device had 200nm holes on a 400nm pitch. The Seebeck coefficient of silicon can also be enhanced by the reduction of the material from the bulk to sub-micron scale and with degenerate level doping. The combination of decreased thermal conductivity and increased Seebeck coefficient allow silicon to be a promising material for thermoelectric infrared detectors. The highly doped silicon is desired to reduce the electrical resistance of the device. The low electrical resistance is required to reduce the Johnson noise of the device which is the dominant noise source for most thermal detectors. This project designed a MEMS thermopile using a silicon-on-insulator substrate, and a CMOS compatible process. The basic thermopile consists of a silicon dioxide membrane with phononic crystal patterned silicon thermocouples around the edges of the membrane. Vertical aligned, multi-walled, carbon nanotubes were used as the infrared absorption layer. A MEMS

  12. Crystal spectroscopy of silicon aero-gel end-caps driven by a dynamic hohlraum on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Sanford, T.W.L.; Mock, R.C.; Leeper, R.J.; Chandler, G.A.; Bailey, J.E.; McKenney, J.L.; Mehlhorn, T.A.; Seaman, J.F.; McGurn, J.; Schroen, D.; Russell, C.; Lake, P.E.; Jobe, D.O.; Gilliland, T.; Nielsen, D.S.; Lucas, J.; Moore, T.; Torres, J.A.; MacFarlane, J.J.; Apruzese, J.P.; Chrien, R.; Idzorek, G.; Peterson, D.L.; Watt, R.

    2005-01-01

    We present results from crystal spectroscopic analysis of silicon aero-gel foams heated by dynamic hohlraums on Z. The dynamic hohlraum on Z creates a radiation source with a 230-eV average temperature over a 2.4-mm diameter. In these experiments silicon aero-gel foams with 10-mg/cm3 densities and 1.7-mm lengths were placed on both ends of the dynamic hohlraum. Several crystal spectrometers were placed both above and below the z-pinch to diagnose the temperature of the silicon aero-gel foam using the K-shell lines of silicon. The crystal spectrometers were (1) temporally integrated and spatially resolved, (2) temporally resolved and spatially integrated, and (3) both temporally and spatially resolved. The results indicate that the dynamic hohlraum heats the silicon aero-gel to approximately 150-eV at peak power. As the dynamic hohlraum source cools after peak power the silicon aero-gel continues to heat and jets axially at an average velocity of approximately 50-cm/μs. The spectroscopy has also shown that the reason for the up/down asymmetry in radiated power on Z is that tungsten enters the line-of-sight on the bottom of the machine much more than on the top

  13. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  14. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  15. Influence of Crucible Thermal Conductivity on Crystal Growth in an Industrial Directional Solidification Process for Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2016-01-01

    Full Text Available We carried out transient global simulations of heating, melting, growing, annealing, and cooling stages for an industrial directional solidification (DS process for silicon ingots. The crucible thermal conductivity is varied in a reasonable range to investigate its influence on the global heat transfer and silicon crystal growth. It is found that the crucible plays an important role in heat transfer, and therefore its thermal conductivity can influence the crystal growth significantly in the entire DS process. Increasing the crucible thermal conductivity can shorten the time for melting of silicon feedstock and growing of silicon crystal significantly, and therefore large thermal conductivity is helpful in saving both production time and power energy. However, the high temperature gradient in the silicon ingots and the locally concave melt-crystal interface shape for large crucible thermal conductivity indicate that high thermal stress and dislocation propagation are likely to occur during both growing and annealing stages. Based on the numerical simulations, some discussions on designing and choosing the crucible thermal conductivity are presented.

  16. Correlation of the crystal orientation and electrical properties of silicon thin films on glass crystallized by line focus diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J., E-mail: j.yun@unsw.edu.au [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Huang, J.; Teal, A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Suntech R& D Australia, Botany, NSW 2019 (Australia); Varlamov, S.; Green, M.A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-06-30

    In this work, crystallographic orientation of polycrystalline silicon films on glass formed by continuous wave diode laser crystallization was studied. Most of the grain boundaries were coincidence lattice Σ3 twin boundaries and other types of boundaries such as, Σ6, Σ9, and Σ21 were also frequently observed. The highest photoluminescence signal and mobility were observed for a grain with (100) orientation in the normal direction. X-ray diffraction results showed the highest occupancies between 41 and 70% along the (110) orientation. However, the highest occupancies changed to (100) orientation when a 100 nm thick SiO{sub x} capping layer was applied. Suns-Voc measurement and photoluminescence showed that higher solar cell performance is obtained from the cell crystallized with the capping layer, which is suspected from increased occupancies of (100) orientation. - Highlights: • Linear grains parallel to the scan direction formed with high density. • Σ3 coincidence lattice (CSL) boundaries found inside a grain • Grain boundaries exhibit various CSL boundaries such as Σ9, Σ18, and Σ27. • Grain with < 100 > orientation in normal direction showed highest electrical properties. • Improved voltage observed when percentage of < 100 > normal orientation is increased.

  17. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  18. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    Science.gov (United States)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  19. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  20. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  1. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    Science.gov (United States)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  2. High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station

    International Nuclear Information System (INIS)

    Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

    1995-01-01

    This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ''pin-post'' crystal and (2) the ''criss-cross'' crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995

  3. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available A first-principle plane-wave pseudopotential method based on the density function theory (DFT was employed to investigate the effects of vacancy cluster (VC defects on the band structure and thermoelectric properties of silicon (Si crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature θD for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (Cv value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10, the heat capacity decreased by approximately 17%.

  4. Porous silicon photonic crystals as hosts for polymers, biopolymers, and magnetic nanoparticles

    Science.gov (United States)

    Li, Yang Yang

    This thesis describes the construction of one-dimensional photonic crystals of porous silicon by electrochemically etching and the use of these materials as hosts for polymers, biopolymers, and magnetic nanoparticles. The spectral features of the photonic crystals derive from a porosity gradient that is determined by the electrochemical etching parameters. Since the photonic crystals are constructed of a porous material, they can serve as hosts for other materials. The first chapter of the thesis provides an introduction to porous Si, templating techniques and the use of porous materials for controlled release of drugs. This latter section is added because much of the thesis work addresses the application of porous Si hosts for controlled release of drugs. In the second chapter, it is shown that the spectral properties of the porous Si photonic crystal template can be transferred to a variety of organic and biopolymers. It is demonstrated that these castings can be used as vapor sensors and as self-reporting, bioresorbable materials. If the template is not removed, porous Si polymer composites are formed. The third chapter discussed that by spray-coating a fine mist of polymer solution onto the porous Si film, robust and smooth micron-sized cylindrical photonic crystals suitable for bioassays can be prepared. The fourth chapter focuses on using porous Si photonic crystals as a host for magnetic nanoparticles. The magnetic nanoparticles in this work are found to adhere to the surface of the porous Si film as well to infiltrate the pore structure. In a demonstration of optical switching that may be useful for information display applications, flipping between the colored to dark sides by application of a magnetic field is found to occur at rates of as large as 175 Hz. As the host for soluble molecular species, porous Si photonic crystals can be impregnated from solution. The aggregates that form upon evaporation of solvent are found to scatter light from the resonant

  5. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    Science.gov (United States)

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  6. Gamma-stimulated modification of structure and mechanical properties of silicon crystals

    International Nuclear Information System (INIS)

    Khaydarov, T.K.; Khamraeva, R.N.; Rustamova, V.M.; Ibragimova, E.M.; Kalanov, M.U.; Abdurakhimov, A.A.; Abdurakhmanov, A.A.

    2004-01-01

    Full text: The paper presents the results of gamma-irradiation effect on the fine structure and mechanical properties of silicon crystals. The objects of researches were p-Si single crystals with the following characteristics: ρ ≅ 10Ω · cm; N D ≅ 10 2 cm -2 ; N O ≅ 10 17 cm -3 ; N B ≅ 6· 10 15 cm -3 . The plate size were 20.8·4.1· 1.2 mm 3 with the surface oriented along {111}. The structure was studied at the diffractometer DRON-UM1 with CuK α - radiation ( λ = 0.1542 nm). The intrinsic friction (Q -1 ) of the samples was measured with the ultra-sonic resonance technique at the frequency of 148 kHz of the plate bending oscillations. The samples were irradiated at the INP AS RUz 60 Co gamma-facility (E γ ≅ 1.2 MeV) in the dose range of 10 1 † 10 7 Gy at 320 K. The dose dependence of Q -1 had a non-monotonous character. The irradiation to the dose of 5·10 3 Gy resulted in increasing the initial value of Q -1 due to irradiation induced growth of the point defect concentration and accumulating of the elastic lattice strains. It is also evidenced by the symmetric broadening of the structure reflection (111). At the dose of 5 ·10 3 Gy the strain value seems to gain the upper fluidity limit of (6 †15) ·10 -8 N/m 2 , after which a weak splitting of the (111) reflection appears, meaning the beginning of twin formation in the form of insertion stock defects with partial dislocations. At dose increasing to 10 4 Gy the twins cause the sharp drop of Q -1 , related with decreasing of the elastic strains, which stops at the dose of 5·10 4 Gy probably due to reaching the lower limit of fluidity for silicon ((1† 4) · 10 -8 N/m 2 ), when the process of the twin defect formation completes. This mechanism is confirmed by the total splitting of the structure peak (111) and practical independence of Q -1 on dose till 10 7 Gy. Thus, gamma-irradiation in the studied dose range modifies the existing lattice imperfectness, that influences upon both mechanical

  7. Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy

    Science.gov (United States)

    Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.

    2016-01-01

    We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.

  8. Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography.

    Science.gov (United States)

    Settle, Michael; Salib, Mike; Michaeli, Albert; Krauss, Thomas F

    2006-03-20

    We show the successful fabrication and operation of photonic crystal waveguides on SOI, with lower silicon dioxide cladding remaining, using 193 nm DUV lithography. We demonstrate that 193 nm lithography gives more process latitude, allowing a wider range of periods and hole diameters to be printed, as well as reducing the optical proximity effect to a minimum. The smallest period /hole size variation printed successfully was 280 nm and 150 nm, which is very promising for ambitious future designs. Lowest losses obtained were 14.2 +/- 2.0 dB/cm for a W1 waveguide in a 400 nm lattice with an r/a of 0.25 at a frequency of 0.257 a/lambda, which approaches the best losses reported for air-bridge type W1s.

  9. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  10. Dielectric band structure of crystals: General properties, and calculations for silicon

    International Nuclear Information System (INIS)

    Car, R.; Baroni, S.; Tosatti, E.; Leelaprute, S.

    1981-02-01

    We shift the dielectric band structure method, orginially proposed by Baldereschi and Tosatti for the description of microscopic electronic screening in crystals. Some general properties are examined first, including the requirements of causality and stability. The specific test case of silicon is then considered. Dielectric bands are calculated, according to several different prescriptions for the construction of the dielectric matrix. It is shown that the results allow a very direct appraisal of the screening properties of the system, as well as of the quality of the dielectric model adopted. The electronic charge displacement induced by γsub(25') and X 3 phonon-like displacements of the atoms is also calculated and compared with the results of existent full self-consistent calculations. Conclusions are drawn on the relative accuracies of the dielectric band structures. (author)

  11. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    Science.gov (United States)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  12. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  13. Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities.

    Science.gov (United States)

    Haret, Laurent-Daniel; Checoury, Xavier; Bayle, Fabien; Cazier, Nicolas; Boucaud, Philippe; Combrié, Sylvain; de Rossi, Alfredo

    2013-04-22

    Collection of free carriers is a key issue in silicon photonics devices. We show that a lateral metal-semiconductor-metal Schottky junction is an efficient and simple way of dealing with that issue in a photonic crystal microcavity. Using a simple electrode design, and taking into account the optical mode profile, the resulting carrier distribution in the structure is calculated. We show that the corresponding effective free carrier lifetime can be reduced by 50 times when the bias is tuned. This allows one to maintain a high cavity quality factor under strong optical injection. In the fabricated structures, carrier depletion is correlated with transmission spectra and directly visualized by Electron Beam Induced Current pictures. These measurements demonstrate the validity of this carrier extraction principle. The design can still be optimized in order to obtain full carrier depletion at a smaller energy cost.

  14. A numerical simulation to verify the stress-free growth of silicon crystal ribbon

    Science.gov (United States)

    Ray, Sujit K.; Utku, Senol; Wada, Ben K.

    1987-01-01

    Thermal stresses developed during the growth of silicon crystal ribbon have been shown to be negligible, thus eliminating residual stresses and dislocations, if the temperature profile satisfies a second-order partial differential equation inside the ribbon. This has been numerically verified through a finite element model, an outline of which is presented here. This model shows that, for homogeneous isotropic material with temperature independent thermal expansion coefficients, thermal stresses will vanish if the temperature profile satisfies the Laplacian. A comparison of stresses due to uniform and nonuniform temperature gradients in the plane of the ribbon is also presented. The strategies employed to control the round-off error and to validate the computer model are discussed.

  15. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal

    International Nuclear Information System (INIS)

    Chen Xi-Yao; Lin Gui-Min; Li Jun-Jun; Xu Xiao-Fu; Jiang Jun-Zhen; Qiang Ze-Xuan; Qiu Yi-Shen; Li Hui

    2012-01-01

    A polarization beam splitter based on a self-collimation Michelson interferometer (SMI) in a hole-type silicon photonic crystal is proposed and numerically demonstrated. Utilizing the polarization dependence of the transmission spectra of the SMI and polarization peak matching method, the SMI can work as a polarization beam splitter (PBS) by selecting an appropriate path length difference in the structure. Based on its novel polarization beam splitting mechanics, the polarization extinction ratios (PERs) for TM and TE modes are as high as 18.4 dB and 24.3 dB, respectively. Since its dimensions are only several operating wavelengths, the PBS may have practical applications in photonic integrated circuits. (fundamental areas of phenomenology(including applications))

  16. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  17. Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal

    Science.gov (United States)

    Meng, Xiang; Liu, Shang; Dadap, Jerry I.; Osgood, Richard M.

    2017-06-01

    This work reports a rigorous and comprehensive three-dimensional electromagnetic computation to investigate and design photoluminescence enhancement from a single silicon-vacancy center (SVC) in a nanodiamond crystal embedded in various metallic nanoantennae, each having a different geometry. The study demonstrates how each antenna design enhances the photoluminescence of SVCs in diamond. In particular, our report discusses how the 2D or 3D curvature of the nanoantenna and the control of the local environment of the SVC can lead to significant field enhancement of its optical field. Our calculated optimal photoluminescence for each design enhances the emission intensity by 15 -300 × that of a single SVC without antenna. The enhancement mechanisms are investigated using four representative structures that can be fabricated under feasible and realistic growth conditions, i.e., spherical-, nanorod-, nanodisk-dimer, and bow-tie nanoantennae. These results demonstrate a method for rationally designing arbitrary metallic nanoantenna/emitter assemblies to achieve optimal SVC photoluminescence.

  18. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides.

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N Asger; Dong, Jianji; Ding, Yunhong

    2017-02-09

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW -1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10-90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater.

  19. Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi

    2017-09-01

    Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.

  20. Designing High-Efficiency Thin Silicon Solar Cells Using Parabolic-Pore Photonic Crystals

    Science.gov (United States)

    Bhattacharya, Sayak; John, Sajeev

    2018-04-01

    We demonstrate the efficacy of wave-interference-based light trapping and carrier transport in parabolic-pore photonic-crystal, thin-crystalline silicon (c -Si) solar cells to achieve above 29% power conversion efficiencies. Using a rigorous solution of Maxwell's equations through a standard finite-difference time domain scheme, we optimize the design of the vertical-parabolic-pore photonic crystal (PhC) on a 10 -μ m -thick c -Si solar cell to obtain a maximum achievable photocurrent density (MAPD) of 40.6 mA /cm2 beyond the ray-optical, Lambertian light-trapping limit. For a slanted-parabolic-pore PhC that breaks x -y symmetry, improved light trapping occurs due to better coupling into parallel-to-interface refraction modes. We achieve the optimum MAPD of 41.6 mA /cm2 for a tilt angle of 10° with respect to the vertical axis of the pores. This MAPD is further improved to 41.72 mA /cm2 by introducing a 75-nm SiO2 antireflective coating on top of the solar cell. We use this MAPD and the associated charge-carrier generation profile as input for a numerical solution of Poisson's equation coupled with semiconductor drift-diffusion equations using a Shockley-Read-Hall and Auger recombination model. Using experimentally achieved surface recombination velocities of 10 cm /s , we identify semiconductor doping profiles that yield power conversion efficiencies over 29%. Practical considerations of additional upper-contact losses suggest efficiencies close to 28%. This improvement beyond the current world record is largely due to an open-circuit voltage approaching 0.8 V enabled by reduced bulk recombination in our thin silicon architecture while maintaining a high short-circuit current through wave-interference-based light trapping.

  1. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  2. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  3. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    CERN Document Server

    Liu, Z.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation...

  4. Insight into excimer laser crystallization exploiting ellipsometry: Effect of silicon film precursor

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Mariucci, Luigi; Fortunato, Guglielmo [IFN-CNR, Via Cineto Romano, 42 - 00156 Rome (Italy)

    2007-07-16

    The optical diagnostic of spectroscopic ellipsometry is shown to be an effective tool to investigate the mechanism of excimer laser crystallization (ELC) of silicon thin films. A detailed spectroscopic ellipsometric investigation of the microstructures of polycrystalline Si films obtained on SiO{sub 2}/Si wafers by ELC of a-Si:H and nc-Si films deposited, respectively, by SiH{sub 4} plasma enhanced chemical vapor deposition (PECVD) and SiF{sub 4}-PECVD is presented. It is shown that ellipsometric spectra of the pseudodielectric function of polysilicon thin films allows to discern the three different ELC regimes of partial melting, super lateral growth and complete melting. Exploiting ellipsometry and atomic force microscopy, it is shown that ELC of nc-Si has very low energy density threshold of 95 mJ/cm{sup 2} for complete melting, and that re-crystallization to large grains of {approx} 2 {mu}m can be achieved by multi-shot irradiation at an energy density as low as 260 mJ/cm{sup 2} when using nc-Si when compared to 340 mJ/cm{sup 2} for the ELC of a-Si films.

  5. Effect of controlled crucible movement on melting process and carbon contamination in Czochralski silicon crystal growth

    Science.gov (United States)

    Liu, Xin; Han, Xue-Feng; Nakano, Satoshi; Kakimoto, Koichi

    2018-02-01

    In Czochralski silicon (CZ-Si) crystal growth, packed Si chunks experience collapse and volume shrinkage during the melting process. The axial movements of the crucible and the melting of the Si feedstock lead to dynamic thermal and flow fields and affect mass transport. To study the effect of crucible movement on the melting process and carbon (C) contamination, the cases of fixed and lifting crucible were investigated by the transient global simulation with dynamic mesh deformation. The gap width between the gas-guide and the top surface of Si feedstock was kept constant during the crucible lifting process. Impurity and species transport in Si feedstock and argon gas was investigated for the cases with the fixed and lifting crucibles. The comparison of C accumulation processes indicated that the lifting crucible case resulted in higher C contamination than that found in the fixed crucible case. Furthermore, lifting crucible cases with different gap widths were investigated to elaborate strategies for controlling the crucible movement for its effect on the melting process and C contamination in CZ-Si crystal growth. It was observed that the optimum gap width for C reduction results from the trade-off between the back diffusion and gas convection.

  6. Apparent temperature versus true temperature of silicon crystals as a function of their thickness using infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-01-01

    The very high intensity x-ray beams that will be present at the Advanced Photon Source and other third generation synchrotron sources will require that the first optical element in the beamline and, possibly, the second optical element as well, be cooled to remove the heat deposited by the x-ray beam. In many of the beamlines this heat will be in the 1 to 5 kW range, and any failure of the cooling system will require a quick response from safety control circuits to shut off the beam before damage is done to the optical element. In many cases, this first optical element will be a silicon diffraction crystal. Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperatures on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  7. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    International Nuclear Information System (INIS)

    Heib, F.; Hempelmann, R.; Munief, W.M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-01-01

    Highlights: • Analysis of the triple line motion on surfaces with nanoscale surface topographies. • Analysis of the triple line motion is performed in sub-pixel resolution. • A special fitting and statistical approach for contact angle analysis is applied. • The analyses result set of contact angle data which is independent of “user-skills”. • Characteristically density distributions in dependence on the surface properties. - Abstract: Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θ a and the receding θ r contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis

  8. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  9. Numerical Simulation of Multi-Crystalline Silicon Crystal Growth Using a Macro–Micro Coupled Method during the Directional Solidification Process

    Directory of Open Access Journals (Sweden)

    Qingqing Lian

    2016-12-01

    Full Text Available In this work, the crystal growth of multi-crystalline silicon (mc-Si during the directional solidification process was studied using the cellular automaton method. The boundary heat transfer coefficient was adjusted to get a suitable temperature field and a high-quality mc-Si ingot. Under the conditions of top adiabatic and bottom constant heat flux, the shape of the crystal-melt interface changes from concave to convex with the decrease of the heat transfer coefficient on the side boundaries. In addition, the nuclei form at the bottom boundary while columnar crystals develop into silicon melt with amzigzag-faceted interface. The higher-energy silicon grains were merged into lower energy ones. In the end, the number of silicon grains decreases with the increase of crystal length.

  10. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    International Nuclear Information System (INIS)

    Kopach, V. R.; Kirichenko, M. V.; Khrypunov, G. S.; Zaitsev, R. V.

    2010-01-01

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 μm thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 μm thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  11. Numerical and experimental study of a solid pellet feed continuous Czochralski growth process for silicon single crystals

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-07-01

    A polysilicon pellets (≅1 mm diameter) feed continuous Czochralski (CCZ) growth process for silicon single crystals is proposed and investigated. Experiments in an industrial puller (14-18 inch diameter crucible) successfully demonstrate the feasibility of this process. The advantages of the proposed scheme are: a steady state growth process, a low aspect ratio melt, uniformity of heat addition and a growth apparatus with single crucible and no baffle(s). The addition of dopant with the solid charge will allow a better control of oxygen concentration leading to crystals of uniform properties and better quality. This paper presents theoretical results on melting of fully and partially immersed silicon spheres and numerical solutions on temperature and flow fields in low aspect ration melts with and without the addition of solid pellets. The theoretical and experimental results obtained thus far show a great promise for the proposed scheme.

  12. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    Science.gov (United States)

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  13. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  14. Vehicle with inclinable caterpillars

    International Nuclear Information System (INIS)

    Carra, O.; Delevallee, A.

    1991-01-01

    Vehicle has a body with propulsion assemblies that drive caterpillar tracks. When a propulsion unit inclines about its articulation axis it is aided by an advance movement of the caterpillar track in the opposite direction of rotation [fr

  15. Single-crystal-silicon-based microinstrument to study friction and wear at MEMS sidewall interfaces

    International Nuclear Information System (INIS)

    Ansari, N; Ashurst, W R

    2012-01-01

    Since the advent of microelectromechanical systems (MEMS) technology, friction and wear are considered as key factors that determine the lifetime and reliability of MEMS devices that contain contacting interfaces. However, to date, our knowledge of the mechanisms that govern friction and wear in MEMS is insufficient. Therefore, systematically investigating friction and wear at MEMS scale is critical for the commercial success of many potential MEMS devices. Specifically, since many emerging MEMS devices contain more sidewall interfaces, which are topographically and chemically different from in-plane interfaces, studying the friction and wear characteristics of MEMS sidewall surfaces is important. The microinstruments that have been used to date to investigate the friction and wear characteristics of MEMS sidewall surfaces possess several limitations induced either by their design or the structural film used to fabricate them. Therefore, in this paper, we report on a single-crystal-silicon-based microinstrument to study the frictional and wear behavior of MEMS sidewalls, which not only addresses some of the limitations of other microinstruments but is also easy to fabricate. The design, modeling and fabrication of the microinstrument are described in this paper. Additionally, the coefficients of static and dynamic friction of octadecyltrichlorosilane-coated sidewall surfaces as well as sidewall surfaces with only native oxide on them are also reported in this paper. (paper)

  16. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  17. Photonic molecules for improving the optical response of macroporous silicon photonic crystals for gas sensing purposes.

    Science.gov (United States)

    Cardador, D; Segura, D; Rodríguez, A

    2018-02-19

    In this paper, we report the benefits of working with photonic molecules in macroporous silicon photonic crystals. In particular, we theoretically and experimentally demonstrate that the optical properties of a resonant peak produced by a single photonic atom of 2.6 µm wide can be sequentially improved if a second and a third cavity of the same length are introduced in the structure. As a consequence of that, the base of the peak is reduced from 500 nm to 100 nm, while its amplitude remains constant, increasing its Q-factor from its initial value of 25 up to 175. In addition, the bandgap is enlarged almost twice and the noise within it is mostly eliminated. In this study we also provide a way of reducing the amplitude of one or two peaks, depending whether we are in the two- or three-cavity case, by modifying the length of the involved photonic molecules so that the remainder can be used to measure gas by spectroscopic methods.

  18. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Science.gov (United States)

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  19. Simulated human eye retina adaptive optics imaging system based on a liquid crystal on silicon device

    International Nuclear Information System (INIS)

    Jiang Baoguang; Cao Zhaoliang; Mu Quanquan; Hu Lifa; Li Chao; Xuan Li

    2008-01-01

    In order to obtain a clear image of the retina of model eye, an adaptive optics system used to correct the wave-front error is introduced in this paper. The spatial light modulator that we use here is a liquid crystal on a silicon device instead of a conversional deformable mirror. A paper with carbon granule is used to simulate the retina of human eye. The pupil size of the model eye is adjustable (3-7 mm). A Shack–Hartman wave-front sensor is used to detect the wave-front aberration. With this construction, a value of peak-to-valley is achieved to be 0.086 λ, where λ is wavelength. The modulation transfer functions before and after corrections are compared. And the resolution of this system after correction (691p/m) is very close to the dirraction limit resolution. The carbon granule on the white paper which has a size of 4.7 μm is seen clearly. The size of the retina cell is between 4 and 10 mu;m. So this system has an ability to image the human eye's retina. (classical areas of phenomenology)

  20. Local heating of discrete droplets using magnetic porous silicon-based photonic crystals.

    Science.gov (United States)

    Park, Ji-Ho; Derfus, Austin M; Segal, Ester; Vecchio, Kenneth S; Bhatia, Sangeeta N; Sailor, Michael J

    2006-06-21

    This paper describes a method for local heating of discrete microliter-scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers. The top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic silicon oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18 A rms current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 degrees C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/rebinding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems.

  1. Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission.

    Science.gov (United States)

    Ondič, L; Varga, M; Pelant, I; Valenta, J; Kromka, A; Elliman, R G

    2017-07-18

    Light extraction from a thin planar layer can be increased by introducing a two-dimensional periodic pattern on its surface. This structure, the so-called photonic crystal (PhC) slab, then not only enhances the extraction efficiency of light but can direct the extracted emission into desired angles. Careful design of the structures is important in order to have a spectral overlap of the emission with extraction (leaky) modes. We show that by fabricating PhC slabs with optimized dimensions from silicon nanocrystals (SiNCs) active layers, the extraction efficiency of vertical light emission from SiNCs at a particular wavelength can be enhanced ∼ 11 times compared to that of uncorrugated SiNCs-rich layer. More importantly, increased light emission can be obtained in a broad spectral range and, simultaneously, the extracted light can stay confined within relatively narrow angle around the normal to the sample plane. We demonstrate experimentally and theoretically that the physical origin of the enhancement is such that light originating from SiNCs first couples to leaky modes of the PhCs and is then efficiently extracted into the surrounding.

  2. Optical design of ultrashort throw liquid crystal on silicon projection system

    Science.gov (United States)

    Huang, Jiun-Woei

    2017-05-01

    An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.

  3. Meshed doped silicon photonic crystals for manipulating near-field thermal radiation

    Science.gov (United States)

    Elzouka, Mahmoud; Ndao, Sidy

    2018-01-01

    The ability to control and manipulate heat flow is of great interest to thermal management and thermal logic and memory devices. Particularly, near-field thermal radiation presents a unique opportunity to enhance heat transfer while being able to tailor its characteristics (e.g., spectral selectivity). However, achieving nanometric gaps, necessary for near-field, has been and remains a formidable challenge. Here, we demonstrate significant enhancement of the near-field heat transfer through meshed photonic crystals with separation gaps above 0.5 μm. Using a first-principle method, we investigate the meshed photonic structures numerically via finite-difference time-domain technique (FDTD) along with the Langevin approach. Results for doped-silicon meshed structures show significant enhancement in heat transfer; 26 times over the non-meshed corrugated structures. This is especially important for thermal management and thermal rectification applications. The results also support the premise that thermal radiation at micro scale is a bulk (rather than a surface) phenomenon; the increase in heat transfer between two meshed-corrugated surfaces compared to the flat surface (8.2) wasn't proportional to the increase in the surface area due to the corrugations (9). Results were further validated through good agreements between the resonant modes predicted from the dispersion relation (calculated using a finite-element method), and transmission factors (calculated from FDTD).

  4. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    Science.gov (United States)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  5. Hydrogen related crystallization in intrinsic hydrogenated amorphous silicon films prepared by reactive radiofrequency magnetron sputtering at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Senouci, D. [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Baghdad, R., E-mail: r_baghdad@mail.univ-tiaret.dz [Laboratoire de Genie Physique, Universite Ibn-Khaldoun, 14000 Tiaret (Algeria); Belfedal, A.; Chahed, L. [LPCMME, Departement de Physique, Universite d' Oran Es-senia, 3100, Oran (Algeria); Portier, X. [CIMAP, CEA, CNRS UMR 6252-ENSICAEN, UCBN, 6 Bvd Marechal Juin, 14050 Caen Cedex (France); Charvet, S. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France); Kim, K.H. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); TOTAL S.A., Gas and Power, R and D Division, Courbevoie (France); Roca i Cabarrocas, P. [LPICM, Laboratoire de Physique des Interfaces et Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Zellama, K. [LPMC, UFR des Sciences, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens (France)

    2012-11-01

    We present an investigation on the transition from amorphous to nanocrystalline silicon and associated hydrogen changes during the first steps of hydrogenated nanocrystalline silicon growth for films elaborated by reactive radiofrequency magnetron sputtering at a substrate temperature as low as room temperature and for deposition times varying from 3 to 60 min. Complementary experimental techniques have been used to characterize the films in their as-deposited state. They are completed by thermal hydrogen effusion experiments conducted in the temperature range, from room temperature to 800 Degree-Sign C. The results show that, during the initial stages of growth, the presence of a hydrogen-rich layer is necessary to initiate the crystallization process. - Highlights: Black-Right-Pointing-Pointer Nanocrystalline silicon growth at room temperature. Black-Right-Pointing-Pointer Transition from amorphous to nanocrystalline silicon. Black-Right-Pointing-Pointer Chemical reactions of H atoms with strained Si-Si bonds. Black-Right-Pointing-Pointer H selective etching and chemical transport caused the silicon nucleation.

  6. Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass.

    Science.gov (United States)

    Eisenhauer, David; Köppel, Grit; Jäger, Klaus; Chen, Duote; Shargaieva, Oleksandra; Sonntag, Paul; Amkreutz, Daniel; Rech, Bernd; Becker, Christiane

    2017-06-01

    Recently, liquid phase crystallization of thin silicon films has emerged as a candidate for thin-film photovoltaics. On 10 μm thin absorbers, wafer-equivalent morphologies and open-circuit voltages were reached, leading to 13.2% record efficiency. However, short-circuit current densities are still limited, mainly due to optical losses at the glass-silicon interface. While nano-structures at this interface have been shown to efficiently reduce reflection, up to now these textures caused a deterioration of electronic silicon material quality. Therefore, optical gains were mitigated due to recombination losses. Here, the SMooth Anti-Reflective Three-dimensional (SMART) texture is introduced to overcome this trade-off. By smoothing nanoimprinted SiO x nano-pillar arrays with spin-coated TiO x layers, light in-coupling into laser-crystallized silicon solar cells is significantly improved as successfully demonstrated in three-dimensional simulations and in experiment. At the same time, electronic silicon material quality is equivalent to that of planar references, allowing to reach V oc values above 630 mV. Furthermore, the short-circuit current density could be increased from 21.0 mA cm -2 for planar reference cells to 24.5 mA cm -2 on SMART textures, a relative increase of 18%. External quantum efficiency measurements yield an increase for wavelengths up to 700 nm compared to a state-of-the-art solar cell with 11.9% efficiency, corresponding to a j sc, EQE gain of 2.8 mA cm -2 .

  7. High precision trace neutron transmutation doping of detector-grade high resistance zone-refined silicon mono-crystal

    International Nuclear Information System (INIS)

    Chen Bingxian; Gao Jijin; Gao Xiuqing; Dong Heqin; Li Shiling

    1993-08-01

    The technique of high precision trace neutron transmutation doping of detector grade high resistance zone-refined Si mono-crystal is introduced. The key technique is to precisely control the doping element. It includes the determination of ρ 0 value according to theoretical calculation and experimental results, the selection of irradiation channel and improvement of irradiation devices, the regulation of doping coefficient K, the simulation experiment of silicon crystal, strict control of irradiation time and the study on mechanism of radiation damage and its elimination. The developed N-type (10 ∼ 100) kΩcm NTD FZ Si has excellent uniformity of specific resistance, long life of minority carrier and high-purity of the crystal

  8. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  9. Optical simulations of advanced light management for liquid-phase crystallized silicon thin-film solar cells

    Science.gov (United States)

    Jäger, Klaus; Köppel, Grit; Eisenhauer, David; Chen, Duote; Hammerschmidt, Martin; Burger, Sven; Becker, Christiane

    2017-08-01

    Light management is a key issue for highly efficient liquid-phase crystallized silicon (LPC-Si) thin-film solar cells and can be achieved with periodic nanotextures. They are fabricated with nanoimprint lithography and situated between the glass superstrate and the silicon absorber. To combine excellent optical performance and LPC-Si material quality leading to open circuit voltages exceeding 640 mV, the nanotextures must be smooth. Optical simulations of these solar cells can be performed with the finite element method (FEM). Accurately simulating the optics of such layer stacks requires not only to consider the nanotextured glass-silicon interface, but also to adequately account for the air-glass interface on top of this stack. When using rigorous Maxwell solvers like the finite element method (FEM), the air-glass interface has to be taken into account a posteriori, because the solar cells are prepared on thick glass superstrates, in which light is to be treated incoherently. In this contribution we discuss two different incoherent a posteriori corrections, which we test for nanotextures between glass and silicon. A comparison with experimental data reveals that a first-order correction can predict the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

  10. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  11. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    International Nuclear Information System (INIS)

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-01-01

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films

  12. Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities.

    Science.gov (United States)

    Shambat, Gary; Gong, Yiyang; Lu, Jesse; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vucković, Jelena

    2010-03-15

    Optical fiber tapers are used to collect photoluminescence emission at approximately 1.5 microm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

  13. Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate-single-crystal silicon system

    Science.gov (United States)

    Coman, B. P.; Juzevych, V. N.

    2012-07-01

    The kinetics of generation of internal mechanical stresses σ( d) in chromium, copper, gold, and aluminum thin films on single-crystal silicon substrates at different deposition rates has been experimentally investigated using the cantilever method. A two-step character of the variations in internal tensile stresses has been revealed. The regularities of the formation of the maximum level of mechanical stresses in the condensates under investigation have been established. The energy and adhesion parameters of chromium, copper, gold, and aluminum nanolayers on silicon, germanium, and nickel substrates have been studied using the macroscopic methods of surface physics. The interfacial energy, interfacial tension, work of adhesion, interfacial charge, and a new energy characteristic of the interfacial layer, namely, the energy of adhesive bonds, which exceeds the interfacial energy, have been determined.

  14. Enhanced extraction of silicon-vacancy centers light emission using bottom-up engineered polycrystalline diamond photonic crystal slabs

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Varga, Marián; Hruška, Karel; Fait, J.; Kapusta, Peter

    2017-01-01

    Roč. 11, č. 3 (2017), s. 2972-2981 ISSN 1936-0851 R&D Projects: GA ČR GJ16-09692Y; GA MŠk LD15003; GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : photonic crystal * diamond * silicon vacancy center Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Physical chemistry (UFCH-W) Impact factor: 13.942, year: 2016

  15. Dual-plane in-line digital holography based on liquid crystal on silicon spatial light modulator.

    Science.gov (United States)

    Panezai, Spozmai; Wang, Dayong; Zhao, Jie; Wang, Yunxin; Rong, Lu

    2014-09-20

    A dual-plane in-line digital holographic method is proposed with a liquid crystal on silicon (LCOS) spatial light modulator (SLM) for recording holograms at two slightly displaced planes. The computer-generated chirp-like complex reflectance is displayed on the LCOS SLM to adapt the object beam at two planes for recording two holograms processed to eliminate the DC term and twin image accurately; no mechanical components or manual operation during data acquisition is required. The proposed approach improves the speed, accuracy, and stability of the experiment. Computer simulation and experiments for both amplitude and phase objects are carried out to validate the proposed method.

  16. Channeling and Radiation of Electrons in Silicon Single Crystals and Si1−xGex Crystalline Undulators

    DEFF Research Database (Denmark)

    Backe, H.; Krambrich, D.; Lauth, W.

    2013-01-01

    The phenomenon of channeling and the basic features of channeling radiation emission are introduced in a pedestrian way. Both, radiation spectra as well as dechanneling length measurements at electron beam energies between 195 and 855 MeV feature quantum state phenomena for the (110) planar...... potential of the silicon single crystals. Radiation from a crystalline undulator, produced at the Aarhus University (UAAR), has been investigated at the Mainz Microtron electron accelerator facility MAMI. The 4-period epitaxially grown strained layer Si1−xGex undulator had a period length λu = 9.9 μm...

  17. Photo-aligned blend films of azobenzene-containing polyimides with and without side-chains for inducing inclined alignment of liquid crystal molecules

    Science.gov (United States)

    Usami, Kiyoaki; Sakamoto, Kenji

    2011-08-01

    We have succeeded in controlling the pretilt angle of liquid crystal (LC) molecules over the whole range of 0 to 90° by using photo-aligned blend films of two azobenzene-containing polyimides (Azo-PIs) with and without side-chains. The Azo-PIs were synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-(4'-propylbi(cyclohexan)-4-yl)phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into the polyimide. Defect-free uniform LC alignment was obtained in the pretilt angle (θp) ranges of θp ≤ 11° and θp ≥ 78°. Previously, we reported that the pretilt angle can be controlled using pure photo-aligned films of Azo-PIs with different molar fractions of PBCP-DABA. For the pure photo-aligned films, the defect-free pretilt angle ranges were θp < 5° and θp ≥ 85°. These results suggest that the azimuthal anchoring strength of the blend Azo-PI film is stronger than that of the pure films of Azo-PIs with side-chains, at least for the pretilt angle range from 5 to 11°. We found that the defect-free pretilt angle range can be extended by using the blend Azo-PI films instead of the pure Azo-PI films.

  18. Oxidation and crystallization behavior of calcium europium silicon nitride thin films during rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M. de, E-mail: m.dejong-1@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Enter, V.E. van, E-mail: vvanenter@gmail.com [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Schuring, E.W., E-mail: schuring@ecn.nl [Energy Center of the Netherlands, Westerduinweg 3, 1755LE Petten (Netherlands); Kolk, E. van der, E-mail: e.vanderkolk@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2016-03-31

    Luminescent thin films were fabricated on silicon wafers using reactive magnetron sputtering of Ca, Si and Eu in Ar/N{sub 2} atmosphere. In order to activate the luminescence, the as-deposited nitride films were heated to 1100 °C by a rapid thermal processing treatment. X-ray diffraction measurements reveal the crystal phases that form during thermal treatment. By recording scanning electron microscopy images of the surface and the cross-section of the film at different radial locations, the formation of different layers with a thickness depending on the radial position is revealed. Energy dispersive x-ray spectroscopy analysis of these cross-sections reveals the formation of an oxide top layer and a nitride bottom layer. The thickness of the top layer increases as a function of radial position on the substrate and the thickness of the bottom layer decreases accordingly. The observation of different 4f{sup 6}5d{sup 1} → 4f{sup 7} Eu{sup 2+} luminescence emission bands at different radial positions correspond to divalent Eu doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4} and CaSiO{sub 3}, which is in agreement with the phases identified by X-ray diffraction analysis. A mechanism for the observed oxidation process of the nitride films is proposed that consists of a stepwise oxidation from the as-deposited amorphous nitride state to crystalline Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, to Ca{sub 2}SiO{sub 4} and finally CaSiO{sub 3}. The oxidation rate and final state of oxidation show a strong temperature–time dependency during anneal treatment. - Highlights: • A thin film of nitridated Ca, Si and Eu was deposited using magnetron sputtering. • Rapid thermal processing (RTP) results in Eu{sup 2+} doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4}, and CaSiO{sub 3}. • Oxidation rate differs with radial position due to a temperature gradient during RTP. • Cross-section SEM–EDX shows how the oxidation progresses in lateral direction.

  19. Sequential purification and crystal growth for the production of low cost silicon substrates. Quarterly technical progress report No. 1, 15 September 1979-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, M.; Secco, F.; Ingle, B.; Down, D.

    1980-02-01

    Over the past several years, Motorola's Materials Technology Laboratory (MTL), has been conducting several projects with goals directed at the production of high quality low cost silicon crystals. One of the projects which is being investigated is the direct purification of MG-Si. A unique characteristic of the approach used by this project is the use of a crystal puller to perform both purification and crystal growth. Sequential steps of purification were taken. By the completion of this series of purification, the purified MG-Si melt will be further purified by impurity redistribution using ingot pulling. The final purified silicon will be in an ingot form of desired dimensions for slicing into silicon sheets. The sequential steps of purification include: (1) leaching of MG-Si charge, (2) phase separation, (3) reactive gas treatment, (4) liquid-liquid extraction (called Slagging), and (5) purification by redistribution of impurities using ingot pulling. Progress on items (1) and (2) is reported. (WHK)

  20. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres

    Czech Academy of Sciences Publication Activity Database

    Healy, N.; Mailis, S.; Bulgakova, Nadezhda M.; Sazio, P.J.A.; Day, T.D.; Sparks, J.R.; Cheng, H.Y.; Badding, J.V.; Peacock, A.C.

    2014-01-01

    Roč. 13, č. 12 (2014), s. 1122-1127 ISSN 1476-1122 Institutional support: RVO:68378271 Keywords : strained silicon * modulation * generation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 36.503, year: 2014

  1. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.

  2. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  3. Modeling of MnS precipitation during the crystallization of grain oriented silicon steel

    OpenAIRE

    Kalisz, D.; Żak, P. L.; Lelito, J.; Szucki, M.; Suchy, J. S.; Gracz, B.

    2015-01-01

    The process of manganese sulfide formation in the course of grain-oriented silicon steel solidification process is described in the paper. Fine dispersive MnS inclusions are grain growth inhibitors and apart from AlN inclusions they contribute to the formation of a privileged texture, i.e. Goss texture. A computer simulation of a high-silicon steel ingot solidification with the use of author’s software has been performed. Ueshima model was adapted for simulating the 3 % Si steel ingot solidif...

  4. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  5. Acoustic waveguiding in a silicon carbide phononic crystals at microwave frequencies

    Science.gov (United States)

    Ghasemi Baboly, M.; Reinke, C. M.; Griffin, B. A.; El-Kady, I.; Leseman, Z. C.

    2018-03-01

    Two dimensional SiC-air phononic crystals have been modeled, fabricated, and tested with a measured bandgap ranging from 665 to 693 MHz. Snowflake air inclusions on a hexagonal lattice were used for the phononic crystal. By manipulating the phononic crystal lattice and inserting circular inclusions, a waveguide was created at 680 MHz. The combined insertion loss and propagation loss for the waveguide is 8.2 dB, i.e., 39% of the energy is guided due to the high level of the confinement afforded by the phononic crystal. The SiC-air phononic crystals and waveguides were fabricated using a CMOS-compatible process, which allows for seamless integration of these devices into wireless communication systems operating at microwave frequencies.

  6. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  7. All-optical Integrated Switches Based on Azo-benzene Liquid Crystals on Silicon

    Science.gov (United States)

    2011-11-01

    Conclusions References List of Figures and Tables Fig. 1: Tridimensional schematic of the LCW and a representation of the molecular...controlled Silicon V-groove: methods, assumptions and procedures Fig. 1: Tridimensional schematic of the LCW and a representation of molecular

  8. Surface finish in ultra-precision diamond turning of single-crystal silicon

    Science.gov (United States)

    Ayomoh, M.; Abou-El-Hossein, K.

    2015-10-01

    Silicon is an optical material widely used in the production of infrared optics. However, silicon as a brittle material exhibits some difficulties when ultra-precision machined by mono-crystalline single point diamond. Finish turning of silicon with mono- crystalline diamond inserts results in accelerated tool wear rates if the right combination of the machining parameters is not properly selected. In this study, we conducted a series of machining tests on an ultra-high precision machine tool using finish turning conditions when using mono-crystalline diamond inserts with negative rake angle and relatively big nose radius. The study yields some recommendations on the best combination of machining parameters that will result in maximum material removal rates with smallest possible surface finish. In this work, standard non-controlled waviness diamond inserts having nose radius of about 1.5 mm, rake angle of negative 25°, and clearance angle of 5° were used to produce flat surfaces on silicon disk. From the results, it has been established that feed rate has the most influential effect followed by the depth of cut and cutting speed.

  9. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  10. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity.

    Science.gov (United States)

    Pan, Ting; Qiu, Ciyuan; Wu, Jiayang; Jiang, Xinhong; Liu, Boyu; Yang, Yuxing; Zhou, Huanying; Soref, Richard; Su, Yikai

    2015-09-07

    We propose and numerically study an on-chip graphene-silicon hybrid electro-optic (EO) modulator operating at the telecommunication band, which is implemented by a compact 1D photonic crystal nanobeam (PCN) cavity coupled to a bus waveguide with a graphene sheet on top. Through electrically tuning the Fermi level of the graphene, both the quality factor and the resonance wavelength can be significantly changed, thus the in-plane lightwave can be efficiently modulated. Based on finite-difference time-domain (FDTD) simulation results, the proposed modulator can provide a large free spectral range (FSR) of 125.6 nm, a high modulation speed of 133 GHz, and a large modulation depth of ~12.5 dB in a small modal volume, promising a high performance EO modulator for wavelength-division multiplexed (WDM) optical communication systems.

  11. Novel Gas Sensor Arrays Based on High-Q SAM-Modified Piezotransduced Single-Crystal Silicon Bulk Acoustic Resonators

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2017-06-01

    Full Text Available This paper demonstrates a novel micro-size (120 μm × 200 μm piezoelectric gas sensor based on a piezotransduced single-crystal silicon bulk acoustic resonator (PSBAR. The PSBARs operate at 102 MHz and possess high Q values (about 2000, ensuring the stability of the measurement. A corresponding gas sensor array is fabricated by integrating three different self-assembled monolayers (SAMs modified PSBARs. The limit of detection (LOD for ethanol vapor is demonstrated to be as low as 25 ppm with a sensitivity of about 1.5 Hz/ppm. Two sets of identification code bars based on the sensitivities and the adsorption energy constants are utilized to successfully discriminate isopropanol (IPA, ethanol, hexane and heptane vapors at low and high gas partial pressures, respectively. The proposed sensor array shows the potential to form a portable electronic nose system for volatile organic compound (VOC differentiation.

  12. Radiation hardness test of un-doped CsI crystals and Silicon Photomultipliers for the Mu2e calorimeter

    Science.gov (United States)

    Baccaro, S.; Cemmi, A.; Cordelli, M.; Diociaiuti, E.; Donghia, R.; Giovannella, S.; Loreti, S.; Miscetti, S.; Pillon, M.; Sarra, I.

    2017-11-01

    The Mu2e calorimeter is composed by 1400 un-doped CsI crystals coupled to large area UV extended Silicon Photomultipliers arranged in two annular disks. This calorimeter has to provide precise information on energy, timing and position. It should also be fast enough to handle the high rate background and it must operate and survive in a high radiation environment. Simulation studies estimated that, in the hottest regions, each crystal will absorb a dose of 300 Gy and will be exposed to a neutron fluency of 6 × 1011 n/cm2 in 3 years of running. Test of un-doped CsI crystals irradiated up to 900 Gy and to a neutron fluency up to 9 × 1011 n/cm2 have been performed at CALLIOPE and FNG ENEA facilities in Italy. We present our study on the variation of light yield (LY) and longitudinal response uniformity (LRU) of these crystals after irradiation. The ionization dose does not modify LRU while a 20% reduction in LY is observed at 900 Gy. Similarly, the neutron flux causes an acceptable LY deterioration (≤ 15%). A neutron irradiation test on different types of SIPMs (two different array models from Hamamatsu and one from FBK) have also been carried out by measuring the variation of the leakage current and the charge response to an ultraviolet led. We concluded that, in the experiment, we will need to cool down the SIPMs to 0 °C reduce the leakage current to an acceptable level.

  13. Optical Effects Accompanying the Dynamical Bragg Diffraction in Linear 1D Photonic Crystals Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Anton Maydykovskiy

    2014-10-01

    Full Text Available We survey our recent results on the observation and studies of the effects accompanying the dynamical Bragg diffraction in one-dimensional photonic crystals (PhC. Contrary to the kinematic Bragg diffraction, the dynamical one considers a continuous interaction between the waves travelling within a spatially-periodic structure and is the most pronounced in the so called Laue geometry, leading to a number of exciting phenomena. In the described experiments, we study the PhC based on porous silicon or porous quartz, made by the electrochemical etching of crystalline silicon with the consequent thermal annealing. Importantly, these PhC are approximately hundreds of microns thick and contain a few hundreds of periods, so that the experiments in the Laue diffraction scheme are available. We discuss the effect of the temporal splitting of femtosecond laser pulses and show that the effect is quite sensitive to the polarization and the phase of a femtosecond laser pulse. We also show the experimental realization of the Pendular effect in porous quartz PhC and demonstrate the experimental conditions for the total spatial switching of the output radiation between the transmitted and diffracted directions. All described effects are of high interest for the control over the light propagation based on PhC structures.

  14. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, Gazi N., E-mail: g.aliev@bath.ac.uk; Goller, Bernhard [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  15. Modeling of MnS precipitation during the crystallization of grain oriented silicon steel

    Directory of Open Access Journals (Sweden)

    D. Kalisz

    2015-01-01

    Full Text Available The process of manganese sulfide formation in the course of grain-oriented silicon steel solidification process is described in the paper. Fine dispersive MnS inclusions are grain growth inhibitors and apart from AlN inclusions they contribute to the formation of a privileged texture, i.e. Goss texture. A computer simulation of a high-silicon steel ingot solidification with the use of author’s software has been performed. Ueshima model was adapted for simulating the 3 % Si steel ingot solidification. The calculations accounted for the back diffusion effect according to Wołczyński equation. The computer simulation results are presented in the form of plots representing the process of steel components segregation in a solidifying ingot and curves illustrating the inclusion separation process.

  16. Energy loss distributions of 7 TeV protons channeled in a bent silicon crystals

    Directory of Open Access Journals (Sweden)

    Stojanov Nace

    2013-01-01

    Full Text Available The energy loss distributions of relativistic protons axially channeled through the bent Si crystals, with the constant curvature radius, R = 50 m, are studied here. The proton energy is 7 TeV and the thickness of the crystal is varied from 1 mm to 5 mm, which corresponds to the reduced crystal thickness, L, from 2.1 to 10.6, respectively. The proton energy was chosen in accordance with the large hadron collider project, at the European Organization for Nuclear Research, in Geneva, Switzerland. The energy loss distributions of the channeled protons were generated by the computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Dispersion of the proton scattering angle caused by its collisions with the crystal’s electrons was taken into account. [Projekat Ministarstva nauke Republike Srbije, br. III 45006

  17. Investigation of design parameters and choice of substrate resistivity and crystal orientation for the CMS silicon microstrip detector

    CERN Document Server

    Braibant, S

    2000-01-01

    The electrical characteristics ( interstrip and backplane capacitance, leakage current, depletion and breakdown voltage) of silicon microstrip detectors were measured for strip pitches between 60 um and 240 um and various strip implant and metal widths on multi-geometry devices. Both AC and DC coupled devices wereinvestigated. Measurements on detectors were performed before and after irradiation with 24 GeV/c protons up to a fluence of 4.1x10E14 cm-2. We found that the total strip capacitance can be parametrized as a linear function of the ratio of the implant width over the read-out pitch only. We found a significant increase in the interstrip capacitance after radiation on detectors with standard <111> crystal orientation but not on sensors with <100> crystal orientation. We analyzed the measured depletion voltages as a function of the detector geometrical parameters ( read-out pitch, strip width and substrate thickness) found in the literature and we found a linear dependence in...

  18. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs.

    Science.gov (United States)

    Ondič, Lukáš; Varga, Marian; Hruška, Karel; Fait, Jan; Kapusta, Peter

    2017-03-28

    Silicon vacancy (SiV) centers are optically active defects in diamond. The SiV centers, in contrast to nitrogen vacancy (NV) centers, possess narrow and efficient luminescence spectrum (centered at ≈738 nm) even at room temperature, which can be utilized for quantum photonics and sensing applications. However, most of light generated in diamond is trapped in the material due to the phenomenon of total internal reflection. In order to overcome this issue, we have prepared two-dimensional photonic crystal slabs from polycrystalline diamond thin layers with high density of SiV centers employing bottom-up growth on quartz templates. We have shown that the spectral overlap between the narrow light emission of the SiV centers and the leaky modes extracting the emission into almost vertical direction (where it can be easily detected) can be obtained by controlling the deposition time. More than 14-fold extraction enhancement of the SiV centers photoluminescence was achieved compared to an uncorrugated sample. Computer simulation confirmed that the extraction enhancement originates from the efficient light-matter interaction between light emitted from the SiV centers and the photonic crystal slab.

  19. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper

  20. Tuning of a cavity in a silicon photonic crystal by thermal expansion of an elastomeric infill

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro, J.

    2011-01-01

    We use an elastomer as infill material for a photonic crystal. As a result of the thermal-expansion-induced strongly negative thermal optical coefficient, this material is highly suitable for thermal tuning of the transmission of a cavity. This is demonstrated by global infilling of a hole-type

  1. The applications of silicon liquid crystal light valves to optical data processing: A review

    Science.gov (United States)

    Efron, U.; Soffer, B. H.; Caulfield, H. J.

    1984-01-01

    The applications of the photo-activated, the CCD-addressed, and the variable-grating mode liquid crystal light valves (LCLVs) to optical data processing are described. These applications include image correlation, level slicing, spectral analysis and correlation, bi-spectral image division, and matrix-matrix multiplication.

  2. Thermal tuning of a silicon photonic crystal cavity infilled with an elastomer

    NARCIS (Netherlands)

    Erdamar, A.K.; Van Leest, M.M.; Picken, S.J.; Caro, J.

    2011-01-01

    Thermal tuning of the transmission of an elastomer infilled photonic crystal cavity is studied. An elastomer has a thermal expansion-induced negative thermo-optic coefficient that leads to a strong decrease of the refractive index upon heating. This property makes elastomer highly suitable for

  3. Friction and wear of metals with a single-crystal abrasive grit of silicon carbide: Effect of shear strength of metal

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with spherical, single-crystal silicon carbide riders in contact with various metals and with metal riders in contact with silicon carbide flats. Results indicate that: (1) the friction force in the plowing of metal and (2) the groove height (corresponding to the volume of the groove) are related to the shear strength of the metal. That is, they decrease linearly as the shear strength of the bulk metal increases. Grooves are formed in metals primarily from plastic deformation, with occasional metal removal. The relation between the groove width D and the load W can be expressed by W = kD, superscript n which satisfies Meyer's law.

  4. Deep level centers in electron-irradiated silicon crystals doped with copper at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    The effect of bombardment with energetic particles on the deep-level spectrum of copper-contaminated silicon wafers is studied by space charge spectroscopy methods. The p-type FZ-Si wafers were doped with copper in the temperature range of 645-750 C and then irradiated with the 10{sup 15} cm{sup -2} fluence of 5 MeV electrons at room temperature. Only the mobile Cu{sub i} species and the Cu{sub PL} centers are detected in significant concentrations in the non-irradiated Cu-doped wafers. The properties of the irradiated samples are found to qualitatively depend on the copper in-diffusion temperature T{sub diff}. For T{sub diff} > 700 C, the irradiation partially reduces the Cu{sub i} concentration and introduces additional Cu{sub PL} centers while no standard radiation defects are detected. If T{sub diff} was below ∝700 C, the irradiation totally removes the mobile Cu{sub i} species. Instead, the standard radiation defects and their complexes with copper appear in the deep-level spectrum. A model for the defects reaction scheme during the irradiation is derived and discussed. DLTS spectrum of the Cu-contaminated and then irradiated silicon qualitatively depends on the copper in-diffusion temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Silicon impurity as a possible growth-regime indicator for LiNbO3 crystals

    Energy Technology Data Exchange (ETDEWEB)

    Erdei, S.; Szaller, Z.; Raksanyi, K.; Matok, G.

    1985-08-01

    The influence of Si concentration and temperature regimes on the visually observable properties of LiNbO3 single crystals grown by Czochralski method was studied. Si concentration measurements were carried out and minima in the radial and axial distribution curves have been established. An upper estimate is given for the equilibrium distribution coefficient of Si in LiNbO3. A direct correlation has been found between the degree of opacity and the Si concentration. The variation of the Grashof number during growth and a correlated modification of the structure of the concentration layer width, implying a position dependent fulfilment of the Hurle-Bardsley criterium for constitutional super cooling, accounts reasonably well with the visually observable properties of the opaque regions appearing in the course of crystal growth. The use of Si as an overall indicator for the characterization of growth regimes is discussed.

  6. Dissociative chemisorption of O2 inducing stress corrosion cracking in silicon crystals.

    Science.gov (United States)

    Gleizer, Anna; Peralta, Giovanni; Kermode, James R; De Vita, Alessandro; Sherman, Dov

    2014-03-21

    Fracture experiments to evaluate the cleavage energy of the (110)[1 1 0] and (111)[1 1 2] cleavage systems in silicon at room temperature and humidity give 2.7 ± 0.3 and 2.2 ± 0.2 J/m(2), respectively, lower than any previous measurement and inconsistent with density functional theory (DFT) surface energy calculations of 3.46 and 2.88 J/m(2). However, in an inert gas environment, we measure values of 3.5 ± 0.2 and 2.9 ± 0.2 J/m(2), consistent with DFT, that suggest a previously undetected stress corrosion cracking scenario for Si crack initiation in room conditions. This is fully confirmed by hybrid quantum-mechanics-molecular-mechanics calculations.

  7. High-efficiency deflection of high energy protons due to channeling along the 〈110〉 axis of a bent silicon crystal

    Directory of Open Access Journals (Sweden)

    W. Scandale

    2016-09-01

    Full Text Available A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the 〈110〉 axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the 〈111〉 axis. The measured probability of inelastic nuclear interactions of protons in channeling along the 〈110〉 axis is only about 10% of its amorphous level whereas in channeling along the (110 planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  8. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    Science.gov (United States)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  9. Deflection of 400  GeV/c proton beam with bent silicon crystals at the CERN Super Proton Synchrotron

    CERN Document Server

    Scandale, Walter; Della Mea, Gianantonio; De Salvador, Davide; Milan, Riccardo; Vomiero, Alberto; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik; Afonin, Alexander G; Baranov, Vladimir T; Chesnokov, Yury A; Kotov, Vladilen I; Maisheev, Vladimir A; Yazynin, Igor A; Afanasiev, Sergey V; Kovalenko, Alexander D; Taratin, Alexander M; Denisov, Alexander S; Gavrikov, Yury A; Ivanov,Yuri M; Ivochkin, Vladimir G; Kosyanenko, Sergey V; Petrunin, Anatoli A; Skorobogatov, Vyacheslav V; Suvorov, Vsevolod M; Bolognini, Davide; Foggetta, Luca; Hasan, Said; Prest, Michela

    2008-01-01

    This paper presents a detailed study of the deflection phenomena of a 400  GeV/c proton beam impinging on a new generation of bent silicon crystals; the tests have been performed at the CERN Super Proton Synchrotron H8 beam line. Channeling and volume reflection angles are measured with an extremely precise goniometer and with high resolution silicon microstrip detectors. Volume reflection has been observed and measured for the first time at this energy, with a single-pass efficiency as large as 98%, in good agreement with the simulation results. This efficiency makes volume reflection a possible candidate for collimation with bent crystals at the CERN Large Hadron Collider.

  10. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    Science.gov (United States)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  11. Optical nose based on porous silicon photonic crystal infiltrated with ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijuan [Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou, 3100058 (China); Zhejiang Academy of Medical Sciences, Hangzhou, 310013 (China); Lin, Leimiao; Liu, Dong; Chen, Qiaofen [Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou, 3100058 (China); Wu, Jianmin, E-mail: wjm-st1@zju.edu.cn [Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou, 3100058 (China)

    2017-02-08

    A photonic-nose for the detection and discrimination of volatile organic compounds (VOCs) was constructed. Each sensing element on the photonic sensor array was formed by infiltrating a specific type of ionic liquid (IL) into the pore channel of a patterned porous silicon (PSi) chip. Upon exposure to VOC, the density of IL dramatically decreased due to the nano-confinement effect. As a result, the IL located in pore channel expanded its volume and protrude out of the pore channel, leading to the formation of microdroplets on the PSi surface. These VOC-stimulated microdroplets could scatter the light reflected from the PSi rugate filter, thereby producing an optical response to VOC. The intensity of the optical response produced by IL/PSi sensor mainly depends on the size and shape of microdroplets, which is related to the concentration of VOC and the physi-chemical propertied of ILs. For ethanol vapor, the optical response has linear relationship with its relative vapor pressure within 0–60%. The LOD of the IL/PSi sensor for ethanol detection is calculated to be 1.3 ppm. It takes around 30 s to reach a full optical response, while the time for recovery is less than 1 min. In addition, the sensor displayed good stability and reproducibility. Owing to the different molecular interaction between IL and VOC, the ILs/PSi sensor array can generate a unique cross-reactive “fingerprint” in response to a specific type of VOC analyte. With the assistance of image technologies and principle components analysis (PCA), rapid discrimination of VOC analyte could be achieved based on the pattern recognition of photonic sensor array. The technology established in this work allows monitoring in-door air pollution in a visualized way. - Highlights: • Ionic liquids confined in the pore channel of porous silicon (PSi) can form microdroplets on the PSi surface upon exposure to VOCs. • These VOC-stimulated microdroplets could scattered the light reflected from the PSi rugate

  12. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    Science.gov (United States)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei

    2017-12-01

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.

  13. Adaptive optics scanning laser ophthalmoscope using liquid crystal on silicon spatial light modulator: Performance study with involuntary eye movement

    Science.gov (United States)

    Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi

    2017-09-01

    The performance of an adaptive optics scanning laser ophthalmoscope (AO-SLO) using a liquid crystal on silicon spatial light modulator and Shack-Hartmann wavefront sensor was investigated. The system achieved high-resolution and high-contrast images of human retinas by dynamic compensation for the aberrations in the eyes. Retinal structures such as photoreceptor cells, blood vessels, and nerve fiber bundles, as well as blood flow, could be observed in vivo. We also investigated involuntary eye movements and ascertained microsaccades and drifts using both the retinal images and the aberrations recorded simultaneously. Furthermore, we measured the interframe displacement of retinal images and found that during eye drift, the displacement has a linear relationship with the residual low-order aberration. The estimated duration and cumulative displacement of the drift were within the ranges estimated by a video tracking technique. The AO-SLO would not only be used for the early detection of eye diseases, but would also offer a new approach for involuntary eye movement research.

  14. Real-time Monitoring of Sustained Drug Release using the Optical Properties of Porous Silicon Photonic Crystal Particles

    Science.gov (United States)

    Wu, E.C.; Andrew, J.S.; Cheng, L; Freeman, W.R.; Pearson, L; Sailor, M.J.

    2011-01-01

    A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 micrometers thick and 35 micrometers across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change. PMID:21122914

  15. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    Science.gov (United States)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  16. Effect of grain-boundary crystallization on the high-temperature strength of silicon nitride

    Science.gov (United States)

    Pierce, L. A.; Mieskowski, D. M.; Sanders, W. A.

    1986-01-01

    Si3N4 specimens having the composition 88.7 wt pct Si3N4-4.9 wt pct SiO2-6.4 wt pct Y2O3 were sintered at 2140 C under 25 atm N2 for 1 h and then subjected to a 5 h anneal at 1500 C. Crystallization of an amorphous grain-boundary phase resulted in the formation of Y2Si2O7. The short-time 1370 C strength of this material was compared with that of material of the same composition having no annealing treatment. No change in strength was noted. This is attributed to the refractory nature of the yttrium-rich grain-boundary phase (apparently identical in both glassy and crystalline phases) and the subsequent domination of the failure process by common processing flaws.

  17. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  18. Full-scale experiments on solid-pellets feed continuous Czochralski growth of silicon crystals

    Science.gov (United States)

    Anselmo, A.; Koziol, J.; Prasad, V.

    1996-06-01

    Two long-term solid-pellets feed continuous Czochralski growth experiments were performed in an industrial Czochralski crystal puller as an extension to our previous work [7]. The goals of these experiments were to examine how polysilicon pellets would melt in a standard Cz system, to discover the thermal effects the pellets would have on the overall melt, and to find if pellet addition could be an effective melt replenishment technique. These experiments demonstrate that the quality of the melt for the CCz growth is based heavily on the surface temperature of the melt. A novel characterization method ("impact severity") is developed to characterize the quality of the CCz melt. Stable feed rate and melt conditions were achieved for three different pull rates. These experiments demonstrate that the process is technically feasible, and can be retrofitted to the existing industrial systems. Several critical issues that need to be addressed to develop a successful CCz process are also discussed.

  19. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    Science.gov (United States)

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni  K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO 3 ) 2 . The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  20. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía

    2016-07-06

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the `glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni Kedge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  1. Bridgman Growth of Germanium and Germanium-Silicon Crystals under Microgravity

    Science.gov (United States)

    Croell, A.; Hess, A.; Zaehringer, J.; Sorgenfrei, T.; Egorov, A.; Senchenkov, A.; Mazuruk, K.; Volz, M.

    2016-01-01

    Four different Bridgman growth experiments on Ge:Ga and Ge(sub x)Si(sub 1-x) were performed under microgravity during the FOTON M4 flight in fall 2014 as joint German-Russian experiments. The experiments were also part of the RDGS/ICESAGE project(s) of ESA/NASA on detached growth of Ge and Ge-Si. Three experiments on Ge:Ga investigated different heat and mass transport regimes, i.e. mostly diffusive conditions, flows driven by a rotating magnetic field, and flows driven by vibration. The fourth experiment on Ge(sub 0.98)Si(0.02) investigated detached growth. All four experiments were successful and yielded crystals. Both the Ge-Si experiment and two of the Ge:Ga experiments showed stable detachment from the ampoule wall, although this was not planned for the latter two experiments. The influence of the rotating magnetic field as well as of the vibration was pronounced in the case of the microgram experiments, but dominated by buoyancy convection under 1g.

  2. Role of fluttering dislocations in the thermal interface resistance between a silicon crystal and plastic solid 4He

    Science.gov (United States)

    Amrit, Jay; Ramiere, Aymeric; Volz, Sebastian

    2018-01-01

    A quantum solid (solid 4He) in contact with a classical solid defines a new class of interfaces. In addition to its quantum nature, solid 4He is indeed a very plastic medium. We examine the thermal interface resistance upon solidification of superfluid 4He in contact with a silicon crystal surface (111) and show that dislocations play a crucial role in the thermal interface transport. The growth of solid 4He and the measurements are conducted at the minimum of the melting curve of helium (0.778 K and ˜25 bar ). The results display a first-order transition in the Kapitza resistance from a value of RK ,L=(80 ±8 ) c m2K /W at a pressure of 24.5 bar to a value of RK ,S=(41.7 ±8 ) c m2K /W after the formation of solid helium at ˜25.2 bar . The drop in RK ,S is only of a factor of ˜2 , although transverse phonon modes in solid 4He now participate in heat transmission at the interface. We provide an explanation for the measured RK ,S by considering the interaction of thermal phonons with vibrating dislocations in solid 4He. We demonstrate that this mechanism, also called fluttering, induces a thermal resistance RF l∝NdT-6 , where T is the temperature and Nd is the density of dislocations. We estimate that for dislocation densities on the order of ˜107c m-2 , RF l predominates over the boundary resistance RK ,S. These fundamental findings shed light on the role of dislocations and provide a quantitative explanation for previous experiments which showed no measurable change in the Kapitza resistance between Cu and superfluid 4He upon solidification of the latter. This demonstrates the possibility of using dislocations as an additional means to tailor thermal resistances at interfaces, formed especially with a plastic material.

  3. Thermal stress analysis and diffraction simulation of a standard and inclined gallium-cooled high-heat-load X-ray monochromator

    International Nuclear Information System (INIS)

    Rogers, C.S.; Macrander, A.T.

    1993-01-01

    This paper describes the methods used to calculate the thermally induced deformations in symmetrically cut, standardly configured and inclined monochromator crystals using finite element analysis. The results of these analyses are compared to recent undulator experiments conducted at the Cornell High Energy Synchrotron Source (CHESS) using a high-performance, liquid-gallium-cooled silicon crystal. The modeling was carried out for a range of machine currents, and the calculated rocking curve widths were within 10% of the experimental values. The asymmetric shape of the rocking curves at high currents was also predicted. These results lend credibility to our assertion that computer simulations can be used to reliably and accurately predict the performance of high-heat-load X-ray optics for future synchrotron sources. (orig.)

  4. Fabrication and optical characteristics of silicon-based two-dimensional wavelength division multiplexing splitter with photonic crystal directional waveguide couplers

    International Nuclear Information System (INIS)

    Liu, Cheng-Yang

    2011-01-01

    Photonic crystals have many potential applications because of their ability to control lightwave propagation. We report on the fabrication and optical properties of quasi-two-dimensional photonic crystals with triangular lattice of dielectric rods in air. Rod-type photonic crystal structures were fabricated in silicon by electron beam lithography and dry-etching techniques. Wavelength division multiplexing splitters were fabricated from two-dimensional photonic crystal directional waveguide couplers. Transmission spectra were measured and device operation was shown to be in agreement with theoretical calculations. The splitters can be used in visible light region. Such an approach to photonic element systems should enable new applications for designing components in photonic integrated circuits. -- Highlights: → We report the fabrication and optical properties of rod-type photonic crystal. → The splitter was fabricated by electron beam lithography and dry-etching techniques. → The splitter was composed of directional waveguide couplers. → Measured transmission spectra are in agreement with theoretical calculations. → The splitters can be used in visible light region.

  5. Numerical simulation of the oxygen concentration distribution in silicon melt for different crystal lengths during Czochralski growth with a transverse magnetic field

    Science.gov (United States)

    Chen, Jyh-Chen; Chiang, Pei-Yi; Nguyen, Thi Hoai Thu; Hu, Chieh; Chen, Chun-Hung; Liu, Chien-Cheng

    2016-10-01

    A three-dimensional simulation model is used to study the oxygen concentration distribution in silicon crystal during the Czochralski growth process under a transverse uniform magnetic field. The flow, temperature, and oxygen concentration distributions inside the furnace are calculated for different crystal lengths. There is significant variation in the flow structure in the melt with the growth length. The results show that in the initial stages, there is a decrease in the oxygen concentration at the crystal-melt interface as the length of the growing crystal increases. As the crystal lengthens further, a minimum value is reached after which the oxygen concentration increases continuously. This trend is consistent with that shown in the experimental results. The variation of the oxygen concentration with the growth length is strongly related to the depth of the melt in the crucible and the flow structure inside the melt. Better uniformity of the axial oxygen concentration can be achieved by proper adjustment of the crucible rotation rate during the growth process.

  6. Third-harmonic generation in silicon and photonic crystals of macroporous silicon in the spectral intermediate-IR range; Erzeugung der Dritten Harmonischen in Silizium und Photonischen Kristallen aus makroporoesem Silizium im spektralen mittleren IR-Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Mitzschke, Kerstin

    2007-11-01

    Nonlinear optical spectroscopy is a powerful method to study surface or bulk properties of condensed matter. In centrosymmetric materials like silicon even order nonlinear optical processes are forbidden. Besides self-focussing or self phase modulation third-harmonic-generation (THG) is the simplest process that can be studied. This work demonstrates that THG is a adapted non-contact and non-invasive optical method to get information about bulk structures of silicon and Photonic crystals (PC), consisting of silicon. Until now most studies are done in the visible spectral range being limited by the linear absorption losses. So the extension of THG to the IR spectral range is extremely useful. This will allow the investigation of Photonic Crystals, where frequencies near a photonic bandgap are of special interest. 2D- photonic structures under investigation were fabricated via photoelectrochemical etching of the Si (100) wafer (thickness 500 {mu}m) receiving square and hexagonal arranged pores. The typical periodicity of the structures used is 2 {mu}m and the length of the pores reached to 400 {mu}m. Because of stability the photonic structures were superimposed on silicon substrate. The experimental set-up used for the THG experiments generates tuneable picosecond IR pulses (tuning range 1500-4000 cm{sup -1}). The IR-pulse hit the sample either perpendicular to the sample surface or under an angle {theta}. The sample can be rotated (f) around the surface normal. The generated third harmonic is analysed by a polarizer, spectrally filtered by a polychromator and registered by a CCD camera. The setup can be used either in transmission or in reflection mode. Optical transmission and reflection spectra of the Si bulk correspond well with the theoretical description, a 4-fold and a 8-fold dependencies of the azimuth angle resulting in the structure of the x{sup (3)}-tensor of (100)-Si. The situation changes dramatically if the PC with hexagonal structure is investigated

  7. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  8. A study of Channeling, Volume Reflection and Volume Capture of 3.35 - 14.0 GeV Electrons in a bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wistisen, T. N. [Aarhus Univ. (Denmark); Uggerhoj, U. I. [Aarhus Univ. (Denmark); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Markiewicz, T. W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Noble, R. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Benson, B. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Smith, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bagli, E. [Univ. of Ferrara (Italy); Bandiera, L. [Univ. of Ferrara (Italy); Germogli, G. [Univ. of Ferrara (Italy); Guidi, V. [Univ. of Ferrara (Italy); Mazzolari, A. [Univ. of Ferrara (Italy); Holtzapple, R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States); Tucker, S. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2015-12-03

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasi-mosaic silicon crystal. Additionally, these phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5 and 14.0 GeV with a crystal with bending radius of 0.15m, corresponding to curvatures of 0.070, 0.088, 0.13, 0.22 and 0.29 times the critical curvature respectively. We have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  9. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  10. Microdefects revealed by X-ray diffusion scattering in Czochralski-growth dislocation-free silicon single crystals

    International Nuclear Information System (INIS)

    Bublik, B.T.; Zotov, N.M.

    1997-01-01

    Microdefects in the regions of Si crystals having different thermal history defined by growth conditions was studied by the X-ray diffuse scattering method on a triple crystal X-ray diffractometer. It was shown that in such crystals the microdefects with positive strength are prevalent. However, between the above indicated regions the defects with the strength of opposite sign prevail

  11. Crystallization of amorphous silicon thin-film on glass substrate preheated at 650 Degree-Sign C using Xe arc flash of 400 {mu}s

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hyun [Department of Mechanical and System Design Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of); Kim, Byung-Kuk [Viatron Technologies, Suwon Industrial Complex, 972 Gosaek-dong, Kwonsun-koo, Suwon 441-813 (Korea, Republic of); Kim, Hyoung June [Department of Materials Science and Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of); Park, Seungho, E-mail: spark@hongik.ac.kr [Department of Mechanical and System Design Engineering, Hongik University, 72-1 Sangsoo-dong, Mapo-koo, Seoul 121-791 (Korea, Republic of)

    2012-08-31

    Experimental and theoretical investigations on flash lamp annealing (FLA) of amorphous silicon (a-Si) film on glass were carried out with a view to practical applications in large-window display industries. A Xe arc flash lamp of 950 mm in length and 22 mm in bore diameter was applied with nominal input voltage of 7 kV and flash duration of 400 {mu}s. Prior to the annealing process, the specimen for FLA was preheated at 650 Degree-Sign C, which was very close to the service temperature of the glass specimen used in this study. By employing a focusing elliptic reflector, maximum light energy density of up to 8.4 J/cm{sup 2} could be attained with an active exposure width of 2 cm. Crystallization of a-Si could be achieved in solid-phase by applying a flash beam with light density of at least 5 J/cm{sup 2}, and its phase-transition characteristics that varied with energy densities could be explained by theoretically estimated temperature fields. Electron microscopy observations confirmed that solid-phase crystallization preceded melting of a-Si due to relatively long flashing (heating) duration of 400 {mu}s, which was comparable to solid-phase crystal-growth times at elevated temperatures. - Highlights: Black-Right-Pointing-Pointer Flash lamp annealing of amorphous silicon (a-Si) on glass for large-scale displays Black-Right-Pointing-Pointer Xe-arc flash lamp of 950 mm in length and 22 mm in bore diameter Black-Right-Pointing-Pointer Flash duration of 400 {mu}s at nominal input voltage of 7 kV Black-Right-Pointing-Pointer Solid-phase crystallization precedes melting of a-Si due to long flashing duration.

  12. Sagittal x-ray beam deviation at asymmetric inclined diffractors

    Czech Academy of Sciences Publication Activity Database

    Korytár, D.; Hrdý, Jaromír; Artemiev, Nikolai; Ferrari, C.; Freund, A.

    2001-01-01

    Roč. 8, - (2001), s. 1136-1139 ISSN 0909-0495 R&D Projects: GA MŠk OK 305; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray optics * Si(111) W/grooved crystals * inclined diffraction * out-of-diffraction-plane beams * sagittal focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  13. Effect of radiation-induced lattice defects in silicon single crystals on the characteristic states of an intersticial muonium atom

    International Nuclear Information System (INIS)

    Barsov, S.G.; Getalov, A.L.; Gordeev, V.A.

    1983-01-01

    It is observed experimentally that radiation defects affect normal and anomalous muonium in silicon differently. It is shown that the mobilities of these two states of muonium in the lattice of the specimen differ considerably

  14. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  15. Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon

    International Nuclear Information System (INIS)

    Hopman, Wico C L; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J; Kuipers, Laurens; Pollnau, Markus; Ridder, Rene M de

    2007-01-01

    Focused ion beam (FIB) milling is receiving increasing attention for nanostructuring in silicon (Si). These structures can for example be used for photonic crystal structures in a silicon-on-insulator (SOI) configuration or for moulds which can have various applications in combination with imprint technologies. However, FIB fabrication of submicrometre holes having perfectly vertical sidewalls is still challenging due to the redeposition effect in Si. In this study we show how the scan routine of the ion beam can be used as a sidewall optimization parameter. The experiments have been performed in Si and SOI. Furthermore, we show that sidewall angles as small as 1.5 0 are possible in Si membranes using a spiral scan method. We investigate the effect of the dose, loop number and dwell time on the sidewall angle, interhole milling and total milling depth by studying the milling of single and multiple holes into a crystal. We show that the sidewall angles can be as small as 5 0 in (bulk) Si and SOI when applying a larger dose. Finally, we found that a relatively large dwell time of 1 ms and a small loop number is favourable for obtaining vertical sidewalls. By comparing the results with those obtained by others, we conclude that the number of loops at a fixed dose per hole is the parameter that determines the sidewall angle and not the dwell time by itself

  16. Role of Edge Inclination in an Optical Microdisk Resonator for Label-Free Sensing

    OpenAIRE

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-01-01

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the devic...

  17. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    Science.gov (United States)

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  18. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)

    2012-10-15

    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  20. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  1. Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

    Energy Technology Data Exchange (ETDEWEB)

    Tiriolo, Raffaele [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Rangnekar, Neel [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Zhang, Han [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Shete, Meera [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Bai, Peng [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Nelson, John [Characterization Facility, University of Minnesota, 12 Shepherd Labs, 100 Union St. S.E. Minneapolis MN 55455 USA; Karapetrova, Evguenia [Surface Scattering and Microdiffraction, X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave, Building 438-D002 Argonne IL 60439 USA; Macosko, Christopher W. [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA; Siepmann, Joern Ilja [Department of Chemistry and Chemistry Theory Center, University of Minnesota, 207 Pleasant St SE Minneapolis MN 55455 USA; Lamanna, Ernesto [Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Lavano, Angelo [Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro Italy; Tsapatsis, Michael [Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE Minneapolis MN 55455 USA

    2017-05-08

    A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a non-thermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal-insulator-metal configuration, highlights the ultralow k approximate to 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E approximate to 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.

  2. Impact of carrier doping on electrical properties of laser-induced liquid-phase-crystallized silicon thin films for solar cell application

    Science.gov (United States)

    Umishio, Hiroshi; Matsui, Takuya; Sai, Hitoshi; Sakurai, Takeaki; Matsubara, Koji

    2018-02-01

    Large-grain-size (>1 mm) liquid-phase-crystallized silicon (LPC-Si) films with a wide range of carrier doping levels (1016–1018 cm‑3 either of the n- or p-type) were prepared by irradiating amorphous silicon with a line-shaped 804 nm laser, and characterized for solar cell applications. The LPC-Si films show high electron and hole mobilities with maximum values of ∼800 and ∼200 cm2 V‑1 s‑1, respectively, at a doping level of ∼(2–4) × 1016 cm‑3, while their carrier lifetime monotonically increases with decreasing carrier doping level. A grain-boundary charge-trapping model provides good fits to the measured mobility–carrier density relations, indicating that the potential barrier at the grain boundaries limits the carrier transport in the lowly doped films. The open-circuit voltage and short-circuit current density of test LPC-Si solar cells depend strongly on the doping level, peaking at (2–5) × 1016 cm‑3. These results indicate that the solar cell performance is governed by the minority carrier diffusion length for the highly doped films, while it is limited by majority carrier transport as well as by device design for the lowly doped films.

  3. Amorphous silicon crystallization by laser. Report of the experiments at Frascati (Project Foto); Cristallizzazione di silicio amorfo via laser. Rapporto degli esperimenti a frascati (Progetto Foto)

    Energy Technology Data Exchange (ETDEWEB)

    Bollanti, S.; Di Lazzaro, P.; Murra, D. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Imparato, A.; Privato, C. [ENEA, Centro Ricerche Portici, Naples (Italy). Div. Fonti Rinnovabili; Carluccio, R.; Fortunato, G.; Mariucci, L.; Pecora, A. [CNR Istituto di Elettronica dello Stato Solido, Rome (Italy)

    2000-07-01

    The final goal of the Project FOTO is the construction of a laboratory in a clean room for the production of active matrix which can be used to obtain Active Matrix Liquid Crystal Displays (AMLCD). The AMLCD are based on Thin Film Transistors (TFT), which can be obtained by poly-silicon (poly-Si) thin films, achieved, e.g., by irradiating films of amorphous silicon (a-Si) by ultraviolet laser radiation. In this report, are presented the results of the a-Si irradiation by using the laser-facility Hercules (excimer XeCl, l=0,308 mm) done at the ENEA Frascati Centre. The transformation of a-Si into poly-Si is commented upon the variation of the space-time characteristics of the laser pulses, of the irradiation conditions and of the characteristics of the irradiated a-Si films. [Italian] Il macro-obiettivo del Progetto FOTO e' la realizzazione di un laboratorio in camera pulita per lo sviluppo di processi atti a fabbricare matrici attive utilizzabili per ottenere schermi piatti a cristalli liquidi (AMLCD, Active Matrix Liquid Crystal Display). Uno dei primi passi del processo consiste nel creare transistori a film sottile (TFT, Thin Film Transistor). A tal fine, e' necessario ottenere strati sottili di Silicio policristallino irragiando films di silicio amorfo con luce laser ultravioletta. In questo rapporto, sono presentati i risultati degli irraggiamenti di film sottili di silicio amorfo tramite la laser-facility Hercules (eccimero XeCl, l=0,308 mm) effettuati presso il C.R. ENEA di Frascati. La trasformazione di silicio amorfo in silicio policristallino cosi' ottenuta e' commentata al variare delle caratteristiche spazio-temporali dell'impulso laser, delle condizioni di irraggiamento e delle caratteristiche del film di silicio amorfo irraggiato.

  4. Measurements of high energy loss rates of fast highly charged U ions channeled in thin silicon crystals

    International Nuclear Information System (INIS)

    Ray, C.; Chevallier, M.; Dauvergne, D.; Poizat, J.-C.; Testa, E.; Braeuning-Demian, A.; Braeuning, H.; Kozhuharov, C.; Liesen, D.; Stoehlker, Th.; Cohen, C.; L'Hoir, A.; Mokler, P. H.; Toulemonde, M.

    2011-01-01

    The results of two channeling experiments show that highly charged heavy ions at moderate velocities (v 0 ) may lose more energy in the traversal of a thin crystal when they are injected along a major crystallographic direction than when they traverse the crystal in random conditions. This is due to the fact that the large reduction of electron capture probabilities allows them to keep their high electronic charge throughout the crystal, which is not the case for projectiles traveling in random conditions. Although channeled projectiles experience reduced electron densities, their energy loss rate, that is, at first order, proportional to the square of the ions charge, is then strongly enhanced. This feature could be used as a step for decelerating highly charged ions from the high energies that are needed to produce them, and also to improve our understanding of the slowing down of very highly charged projectiles at low velocities, for which the current perturbative models are not well suited.

  5. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  6. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    plasma effect have been tested up to 40 Gbit/s, and hybrid evanescent silicon lasers have been realized both in the form of distributed feed-back lasers and micro-disk lasers. For enhancing the impact of silicon photonics in future ultrafast and energy-efficient all-optical signal processing, e.......g. in high-bit-rate optical communication circuits and networks, it is vital that the nonlinear optical effects of silicon are being strongly enhanced. This can among others be achieved in photonic-crystal slow-light waveguides and in nano-engineered photonic-wires (Fig. 1). In this talk I shall present some......Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice...

  7. Electrode Placement for Active Tuning of Silicon-on-Insulator (SOI) Ring Resonator Structure Clad in Nematic Liquid Crystals

    Science.gov (United States)

    2014-08-01

    Beer – Lambert law :    0 expI z I z  , (1) where α is the attenuation coefficient expressed as 02 ,k k  (2) and 0 02 /k   , where λ0...influenced by the location of the metal layer above the BOX. 4. REFERENCES 1. W. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. DeVos, S . K...47–73. 2. X. Wang, S . Grist, J. Flueckiger, N. Jaeger, and L. Chrostowski. 2013. “Silicon Photonic Slot Waveguide Bragg Gratings and Resonators

  8. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  9. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  10. Cold-Crucible Premelter for Silicon

    Science.gov (United States)

    Lane, R. L.

    1984-01-01

    System allows replenishment of silicon melt in crystal puller. Cold crucible consists of water-cooled, silver plated boat in 500kHz field. Induced secondary currents cause preheated chunks of silicon to melt. Magnetic repulsion between current in silicon and in boat prevents silicon from touching boat. Used for crystal growth of other materials sufficiently conductive and difficult to keep free of contamination by container walls at temmperature of operation.

  11. Sensitive detection of protein and miRNA cancer biomarkers using silicon-based photonic crystals and a resonance coupling laser scanning platform.

    Science.gov (United States)

    George, Sherine; Chaudhery, Vikram; Lu, Meng; Takagi, Miki; Amro, Nabil; Pokhriyal, Anusha; Tan, Yafang; Ferreira, Placid; Cunningham, Brian T

    2013-10-21

    Enhancement of the fluorescent output of surface-based fluorescence assays by performing them upon nanostructured photonic crystal (PC) surfaces has been demonstrated to increase signal intensities by >8000×. Using the multiplicative effects of optical resonant coupling to the PC in increasing the electric field intensity experienced by fluorescent labels ("enhanced excitation") and the spatially biased funneling of fluorophore emissions through coupling to PC resonances ("enhanced extraction"), PC enhanced fluorescence (PCEF) can be adapted to reduce the limits of detection of disease biomarker assays, and to reduce the size and cost of high sensitivity detection instrumentation. In this work, we demonstrate the first silicon-based PCEF detection platform for multiplexed biomarker assay. The sensor in this platform is a silicon-based PC structure, comprised of a SiO2 grating that is overcoated with a thin film of high refractive index TiO2 and is produced in a semiconductor foundry for low cost, uniform, and reproducible manufacturing. The compact detection instrument that completes this platform was designed to efficiently couple fluorescence excitation from a semiconductor laser to the resonant optical modes of the PC, resulting in elevated electric field strength that is highly concentrated within the region <100 nm from the PC surface. This instrument utilizes a cylindrically focused line to scan a microarray in <1 min. To demonstrate the capabilities of this sensor-detector platform, microspot fluorescent sandwich immunoassays using secondary antibodies labeled with Cy5 for two cancer biomarkers (TNF-α and IL-3) were performed. Biomarkers were detected at concentrations as low as 0.1 pM. In a fluorescent microarray for detection of a breast cancer miRNA biomarker miR-21, the miRNA was detectable at a concentration of 0.6 pM.

  12. Achievement report for fiscal 1997. Technological development for practical application of a solar energy power generation system /development of technology to manufacture solar cells/development of technology to manufacture thin film solar cells (development of technology to manufacture materials and substrates (development of technology to manufacture silicon crystal based high-quality materials and substrates)); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchi seizo gijutsu kaihatsu, usumaku taiyo denchi seizo gijutsu kaihatsu, zairyo kiban seizo gijutsu kaihatsu (silicon kesshokei kohinshitsu zairyo kiban no seizo gujutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is intended to develop thin film solar cells capable of mass production with high photo-stability and at low cost. Thus, the objective of the present research is to analyze the growth process of micro crystal silicon based thin films, the crystal being a high quality silicon crystal based material, and develop technology to manufacture high-quality micro crystal silicon thin films based on the findings therefrom. It was found that, when silicon source is available in cathode, pure hydrogen plasma forms micro crystal silicon films by using the plasma as a result of the chemical transportation effect from the silicon source. It was revealed that the crystal formation due to hydrogen plasma exposure is performed substantially by the crystals forming the films due to the chemical transportation effect, rather than crystallization in the vicinity of the surface. The crystal formation under this experiment was concluded that the formation takes place during film growth accompanied by diffusion of film forming precursors on the surface on which the film grows. According to the result obtained so far, the most important issue in the future is particularly the control of crystal growing azimuth by reducing the initially formed amorphous layer by controlling the stress in the initial phase for film formation, and by controlling the film forming precursors. (NEDO)

  13. Selectively Transparent and Conducting Photonic Crystals and their Potential to Enhance the Performance of Thin-Film Silicon-Based Photovoltaics and Other Optoelectronic Devices

    Science.gov (United States)

    O'Brien, Paul G.

    2011-12-01

    The byproducts of human engineered energy production are increasing atmospheric CO2 concentrations well above their natural levels and accompanied continual decline in the natural reserves of fossil fuels necessitates the development of green energy alternatives. Solar energy is attractive because it is abundant, can be produced in remote locations and consumed on site. Specifically, thin-film silicon-based photovoltaic (PV) solar cells have numerous inherent advantages including their availability, non-toxicity, and they are relatively inexpensive. However, their low-cost and electrical performance depends on reducing their thickness to as great an extent as possible. This is problematic because their thickness is much less than their absorption length. Consequently, enhanced light trapping schemes must be incorporated into these devices. Herein, a transparent and conducting photonic crystal (PC) intermediate reflector (IR), integrated into the rear side of the cell and serving the dual function as a back-reflector and a spectral splitter, is identified as a promising method of boosting the performance of thin-film silicon-based PV. To this end a novel class of PCs, namely selectively transparent and conducting photonic crystals (STCPC), is invented. These STCPCs are a significant advance over existing 1D PCs because they combine intense wavelength selective broadband reflectance with the transmissive and conductive properties of sputtered ITO. For example, STCPCs are made to exhibit Bragg-reflectance peaks in the visible spectrum of 95% reflectivity and have a full width at half maximum that is greater than 200nm. At the same time, the average transmittance of these STCPCs is greater than 80% over the visible spectrum that is outside their stop-gap. Using wave-optics analysis, it is shown that STCPC intermediate reflectors increase the current generated in micromorph cells by 18%. In comparison, the more conventional IR comprised of a single homogeneous

  14. Near-Infrared and Optical Beam Steering and Frequency Splitting in Air-Holes-in-Silicon Inverse Photonic Crystals

    Science.gov (United States)

    2017-01-01

    We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime. PMID:29541653

  15. Features of polyatomic ion emission under sputtering of a silicon single crystal by Au sub m sup - cluster ions

    CERN Document Server

    Akhunov, S; Rasulev, U K

    2003-01-01

    Comparative studies of the emission of secondary cluster Si sub n sup + ions (n=1-11) and polyatomic Si sub n X sub l Y sub k sup + ions (X, Y are Au, B, C, N), as well as doubly charged Si sup 2 sup + ions under bombardment of single crystalline silicon by cluster Au sub m sup - (m=1-5) ions with energy E sub 0 =4-18 keV have been carried out. High non-additivity enhancement of the yield of the Si sub n sup + ions and most polyatomic ones has been observed with an increase of the number of atoms in the projectiles. For Si sup 2 sup + ions the negative non-additive effect has been observed. The increase in the yield of impurity-containing cluster Si sub n X sup + ions allows for an increase by a factor of 100-1000 for the sensitivity of the SIMS analysis of the Au, B, C, N impurities in Si with the use of cluster ions as primary and secondary ones.

  16. A simplified boron diffusion for preparing the silicon single crystal p-n junction as an educational device

    International Nuclear Information System (INIS)

    Shiota, Koki; Kai, Kazuho; Nagaoka, Shiro; Tsuji, Takuto; Wakahara, Akihiro; Rusop, Mohamad

    2016-01-01

    The educational method which is including designing, making, and evaluating actual semiconductor devices with learning the theory is one of the best way to obtain the fundamental understanding of the device physics and to cultivate the ability to make unique ideas using the knowledge in the semiconductor device. In this paper, the simplified Boron thermal diffusion process using Sol-Gel material under normal air environment was proposed based on simple hypothesis and the feasibility of the reproducibility and reliability were investigated to simplify the diffusion process for making the educational devices, such as p-n junction, bipolar and pMOS devices. As the result, this method was successfully achieved making p+ region on the surface of the n-type silicon substrates with good reproducibility. And good rectification property of the p-n junctions was obtained successfully. This result indicates that there is a possibility to apply on the process making pMOS or bipolar transistors. It suggests that there is a variety of the possibility of the applications in the educational field to foster an imagination of new devices.

  17. A simplified boron diffusion for preparing the silicon single crystal p-n junction as an educational device

    Energy Technology Data Exchange (ETDEWEB)

    Shiota, Koki, E-mail: a14510@sr.kagawa-nct.ac.jp; Kai, Kazuho; Nagaoka, Shiro, E-mail: nagaoka@es.kagawa-nct.ac.jp [National Institute of Technology, Kagawa College, Kagawa, Mitoyo, Takuma, Koda 551 (Japan); Tsuji, Takuto [National Institute of Technology, Suzuka College, Mie, Suzuka, Shiroko (Japan); Wakahara, Akihiro [Toyohashi University of Technology, Aichi, Toyohashi, Tenpaku, Hibarigaoka 1-1 (Japan); Rusop, Mohamad [University Technology Mara, Selangor, Shah Alam, 40450 (Malaysia)

    2016-07-06

    The educational method which is including designing, making, and evaluating actual semiconductor devices with learning the theory is one of the best way to obtain the fundamental understanding of the device physics and to cultivate the ability to make unique ideas using the knowledge in the semiconductor device. In this paper, the simplified Boron thermal diffusion process using Sol-Gel material under normal air environment was proposed based on simple hypothesis and the feasibility of the reproducibility and reliability were investigated to simplify the diffusion process for making the educational devices, such as p-n junction, bipolar and pMOS devices. As the result, this method was successfully achieved making p+ region on the surface of the n-type silicon substrates with good reproducibility. And good rectification property of the p-n junctions was obtained successfully. This result indicates that there is a possibility to apply on the process making pMOS or bipolar transistors. It suggests that there is a variety of the possibility of the applications in the educational field to foster an imagination of new devices.

  18. Role of edge inclination in an optical microdisk resonator for label-free sensing.

    Science.gov (United States)

    Gandolfi, Davide; Ramiro-Manzano, Fernando; Rebollo, Francisco Javier Aparicio; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo

    2015-02-26

    In this paper, we report on the measurement and modeling of enhanced optical refractometric sensors based on whispering gallery modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide, which differ in their sidewall inclination angle. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. Device modeling shows that the optimization of the device is a delicate balance of the resonance quality factor and evanescent field overlap with the surrounding environment to analyze. By numerical simulations, we show that the microdisk thickness is critical to yield a high figure of merit for the sensor and that edge inclination should be kept as high as possible. We also show that bulk-sensing figures of merit as high as 1600 RIU(-1) (refractive index unit) are feasible.

  19. Design of an elliptic spot illumination system in LED-based color filter-liquid-crystal-on-silicon pico projectors for mobile embedded projection.

    Science.gov (United States)

    Chen, Enguo; Yu, Feihong

    2012-06-01

    We present an elliptic spot illumination system for a color filter-liquid-crystal-on-silicon (CF-LCoS) pico projector employing a specifically designed free-form lens and a cylindrical lens to improve on previous designs in terms of optical efficiency while yielding an ultracompact and low-cost optical architecture. The detailed design description of the optical system is thoroughly investigated. Simulation results coincide well with the theoretical calculation. The single 1  mm×1  mm LED chip-powered optical engine, which employs a CF-LCoS panel with a diagonal of 0.28 in and an aspect ratio of 4:3, has an estimated output efficiency over 9.8% (11.8 lm@1 W) and an ANSI 9-point uniformity over 88.5%, with the ultrasmall volume 24  mm×19  mm×7  mm. Compared to the circular spot-illuminated projection system, a total increment of about 23% of system efficiency is available with this improved optical engine. It is believed that there would be a huge market potential to commercialize our design.

  20. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    Science.gov (United States)

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  1. The effect of speleothem surface slope on the remanent magnetic inclination

    Science.gov (United States)

    Ponte, J. M.; Font, E.; Veiga-Pires, C.; Hillaire-Marcel, C.; Ghaleb, B.

    2017-06-01

    Speleothems are of interest for high-resolution reconstruction of the Earth's magnetic field. However, little is known about the influence of speleothem morphologies on their natural remanent magnetization (NRM) record. Here we report on a high-resolution paleomagnetic study of a dome-shaped speleothem of middle Holocene age from southern Portugal, with special attention to the anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). To assess the potential influence of the slope of the speleothem surface on the recorded remanent magnetization, we compare magnetic directions and AMS and AARM fabrics from subhorizontal to gradually subvertical calcite growth layers collected in a transversal cross section of the speleothem. A linear correlation is observed between magnetic inclinations, calcite laminae slope, and AARM k1 inclination. The AMS fabric is mostly controlled by calcite crystals, with direction of the minimum axes (k3) perpendicular to laminae growth. Magnetic inclinations recorded in inclined and vertical calcite growth layers are underestimated when compared to a global paleosecular variation (PSV) model. After extrapolating magnetic inclinations to the horizontal, the corrected data better fit the PSV model but are still lower than the predicted magnetic inclinations, suggesting that inclination shallowing affects the entire speleothem. We suggest that speleothem morphology exerts a critical role on the magnetic inclination recording, which is controlled by the Earth's magnetic field but also influenced by particle rolling along the sloping surfaces. These observations open new avenues for reconstructing high-resolution paleomagnetic secular variation records from speleothems and provide new insights into their NRM acquisition mechanisms.

  2. 229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection

    Science.gov (United States)

    Liu, Dong; Cho, Sang June; Park, Jeongpil; Seo, Jung-Hun; Dalmau, Rafael; Zhao, Deyin; Kim, Kwangeun; Gong, Jiarui; Kim, Munho; Lee, In-Kyu; Albrecht, John D.; Zhou, Weidong; Moody, Baxter; Ma, Zhenqiang

    2018-02-01

    AlGaN based 229 nm light emitting diodes (LEDs), employing p-type Si to significantly increase hole injection, were fabricated on single crystal bulk aluminum nitride (AlN) substrates. Nitride heterostructures were epitaxially deposited by organometallic vapor phase epitaxy and inherit the low dislocation density of the native substrate. Following epitaxy, a p-Si layer is bonded to the heterostructure. LEDs were characterized both electrically and optically. Owing to the low defect density films, large concentration of holes from p-Si, and efficient hole injection, no efficiency droop was observed up to a current density of 76 A/cm2 under continuous wave operation and without external thermal management. An optical output power of 160 μW was obtained with the corresponding external quantum efficiency of 0.03%. This study demonstrates that by adopting p-type Si nanomembrane contacts as a hole injector, practical levels of hole injection can be realized in UV light-emitting diodes with very high Al composition AlGaN quantum wells, enabling emission wavelengths and power levels that were previously inaccessible using traditional p-i-n structures with poor hole injection efficiency.

  3. Silicon etch process

    International Nuclear Information System (INIS)

    Day, D.J.; White, J.C.

    1984-01-01

    A silicon etch process wherein an area of silicon crystal surface is passivated by radiation damage and non-planar structure produced by subsequent anisotropic etching. The surface may be passivated by exposure to an energetic particle flux - for example an ion beam from an arsenic, boron, phosphorus, silicon or hydrogen source, or an electron beam. Radiation damage may be used for pattern definition and/or as an etch stop. Ethylenediamine pyrocatechol or aqueous potassium hydroxide anisotropic etchants may be used. The radiation damage may be removed after etching by thermal annealing. (author)

  4. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern...

  5. Locomotor Behavior of Chickens Anticipating Incline Walking

    Directory of Open Access Journals (Sweden)

    Chantal LeBlanc

    2018-01-01

    Full Text Available Keel bone damage (KBD is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.

  6. Silicone metalization

    Energy Technology Data Exchange (ETDEWEB)

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  7. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  8. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  9. Crucible Grows Wide Silicon Ribbon

    Science.gov (United States)

    Seidensticker, R.

    1982-01-01

    Inexpensive manufacture of solar cells may require quality silicon ribbon crystals. One way to produce them is by growing wide dendritic webs, which can be very long and have high structural perfection. Dendrites grow from supercooled melt, so width of ribbon depends on how wide a region of supercooled molten silicon can be maintained in crucible. Elongated geometry of suscepter/crucible/lid assembly allows molten silicon to supercool over a wider region -- a necessary condition for the growth of wide dendritic crystal ribbon.

  10. Internally cooled V-shape inclined monochromator

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Áč, V.; Hrdý, Jaromír

    2008-01-01

    Roč. 15, - (2008), 8-11 ISSN 0909-0495 R&D Projects: GA AV ČR IAA100100716 Grant - others:VEGA(SK) 1/4134/07 Institutional research plan: CEZ:AV0Z10100522 Keywords : inclined monochromator * heat load * internal cooling Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.333, year: 2008

  11. A matter of chance, environment and inclination

    Indian Academy of Sciences (India)

    Lawrence

    Why did I opt for science subjects in school, and choose a career in science? Perhaps the best answer would be. 'Chance, Environment and Inclination'. Here I am, considered to be a professional woman scien- tist, working towards understanding the biology of the malaria parasite and the challenges put up by the same.

  12. Inclined test of nacelle wind lidar

    DEFF Research Database (Denmark)

    Courtney, Michael

    A nacelle wind lidar, placed at ground level, is tested by inclining the laser beams to bisect a measurement mast at a known distance and height. The horizontal wind speed reported by the lidar is compared to a reference cup anemometer mounted on the mast at the comparison height....

  13. Vehicle with inclinable caterpillar propulsion units

    International Nuclear Information System (INIS)

    Clar, G.

    1991-01-01

    This vehicle usable in hostile environment such nuclear industry has four propulsion units with a caterpillar track and two integrated motors: one for advancing the caterpillar track and the other for inclining the propulsion unit when overcoming obstacles. Each propulsion unit is easily replaceable because there are no mechanical parts in the body of the vehicle [fr

  14. Variability of photovoltaic panels efficiency depending on the value of the angle of their inclination relative to the horizon

    Directory of Open Access Journals (Sweden)

    Majdak Marek

    2017-01-01

    Full Text Available The objective of this paper was to determine the relationship between the efficiency of photovoltaic panels and the value of the angle of their inclination relative to the horizon. For the purpose of experimental research have been done tests on the photovoltaic modules made of monocrystalline, polycrystalline and amorphous silicon. The experiment consisted of measurement of the voltage and current generated by photovoltaic panels at a known value of solar radiation and a specified resistance value determined by using resistor with variable value of resistance and known value of the angle of their inclination relative to the horizon.

  15. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals; Echanges de charge et perte d'energie d'ions lourds ralentis, canalises dans des cristaux de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E

    2005-10-15

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U{sup 91+} ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb{sup 81+} ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  16. Planarization of amorphous silicon thin film transistors for high-aperture-ratio and large-area active-matrix liquid crystal displays

    Science.gov (United States)

    Lan, Je-Hsiung

    The reduction of the backlight power consumption and the improvement of the display image uniformity for future large-area and high-resolution active-matrix liquid- crystal displays (AM-LCDs) are very important. One possible method to achieve the former goal is to increase the pixel electrode aperture-ratio. This can be realized by overlapping the pixel electrode with both gate/data buslines. While for the latter, reduction of the RC-delay by using a low resistance gate metal line is the key. Both of these approaches can be realized by using planarization technology. In this dissertation, the planarization technology based on low dielectric constant organic polymer, benzocyclobutene (BCB), is demonstrated, and this technology has been successfully applied to hydrogenated amorphous-silicon (a-Si:H) thin-film transistor (TFT) arrays and thick metal gate buslines/electrodes. Through the planarization technology, a high-aperture-ratio (HAR) pixel electrode structure has been fabricated. The parasitic capacitance and crosstalk issues in the HAR pixel electrode have been studied through interconnect analysis and circuit simulation. The impact of the parasitic capacitance on display performances, such as feedthrough voltage, vertical crosstalk, pixel electrode aperture-ratio, pixel charging behavior, and gate busline RC-delay issues, has been thoroughly discussed. Some key issues during the process integration of the HAR pixel electrode structure have been addressed. These include the BCB contact via formation, the patterning of the ITO pixel electrodes on BCB layer, the selection of Ar plasma treatment conditions for BCB surface, and the optical transmittance evaluation of the ITO/BCB double-layer structure. In addition, the BCB passivation effects on back-channel etched type a-Si:H TFTs have been investigated. It is found that there is no degradation in the TFT electrical performance and reliability after the BCB passivation. Finally, the planarization technology is

  17. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  18. Process for making silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1987-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  19. Granular flow down a flexible inclined plane

    Directory of Open Access Journals (Sweden)

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  20. Granular flow down a flexible inclined plane

    Science.gov (United States)

    Sonar, Prasad; Sharma, Ishan; Singh, Jayant

    2017-06-01

    Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  1. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    Analytical expressions are derived for the stress field caused by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress, where the hydrostatic stress is positive.

  2. Stress field of a dislocating inclined fault

    Energy Technology Data Exchange (ETDEWEB)

    Huang, F.; Wang, T.

    1980-02-01

    In this paper, analytical expressions of the stress field given rise by a rectangular dislocating fault of an arbitrary dip in a semi-infinite elastic medium for the case of unequal Lame constants are derived. The results of computations for the stress fields on the ground surface of an inclined strike-slip and an inclined dip-slip fault are represented by contour maps. The effects of the Poisson Ratio of the medium, the dip angle, upper and lower boundaries of the faults on the stress field at the surface have been discussed. As an application, the contour maps for shear stress and hydrostatic stress of near fields of the Tonghai (1970), Haicheng, (1975) and Tangshan (1976) earthquakes have been calculated and compared with the spatial distributions of strong aftershocks of these earthquakes. It is found that most of the strong aftershocks are distributed in the regions of tensional stress where the hydrostatic stress is positive.

  3. Bubble streams rising beneath an inclined surface

    Science.gov (United States)

    Bird, James; Brasz, Frederik; Kim, Dayoung; Menesses, Mark; Belden, Jesse

    2017-11-01

    Bubbles released beneath a submerged inclined surface can tumble along the wall as they rise, dragging the surrounding fluid with them. This effect has recently regained attention as a method to mitigate biofouling in marine environment, such as a ship hull. It appears that the efficacy of this approach may be related to the velocity of the rising bubbles and the extent that they spread laterally as they rise. Yet, it is unclear how bubble stream rise velocity and lateral migration depend on bubble size, flow rate, and inclination angle. Here we perform systematic experiments to quantify these relationships for both individual bubble trajectories and ensemble average statistics. Research supported by the Office of Naval Research under Grant Number award N00014-16-1-3000.

  4. HIGH-INCLINATION ASTEROID FAMILIES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the high-inclination asteroid families of Gil-Hutton (2006). A data set of 3652 high-inclination numbered asteroids was analyzed to search for...

  5. Incisor inclination and perceived tooth colour changes.

    Science.gov (United States)

    Ciucchi, Philip; Kiliaridis, Stavros

    2017-10-01

    Social attractiveness is influenced by a variety of different smile-related factors. We evaluated whether the degree of upper central incisor proclination can result in tooth colour change. Forty young adult subjects (20-25 years) in good health with a complete sound dentition were selected. The subjects were seated in standardized light conditions with an above-directed light source. Their natural head position was stated as 0 degrees. To mimic the range of possible anterior torque movements they were asked to tilt their heads upward +15 degrees (upward tilting) and downward -15 degrees (downward tilting). Frontal macro photographs, parallel to the Frankfort plane of the patient's natural head position were taken at the three head angulations (+15, 0, and -15 degrees ). Photographs were analysed for colour differences at the centre of the incisor clinical crowns with a CIE L*a*b* colour model based software. A paired t-test was used to test for significance between each value for each inclination. Differences were found between the CIE L*a*b* colour values for: upward tilting, downward tilting, and -15 to +15 degrees (total tilting) except for b* values for downward tilting. As the inclination of the subject's head changed downward, the upper incisors were retroclined and the CIE L*a*b* values indicated a darker and less green but redder colour component. As the inclination of the subject's head changed upwards the upper incisors were proclined and the L*a*b* values indicated a lighter and less green and yellow but redder and bluer colour component. Proclination of upper incisors caused lighter tooth colour parameters compared to retroclined incisors and colour changes. Orthodontic change of upper incisor inclination may induce alterations on how tooth colour is perceived.

  6. Tooth Wear Inclination in Great Ape Molars.

    Science.gov (United States)

    Knight-Sadler, Jordan; Fiorenza, Luca

    2017-01-01

    Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.

  7. A jumping cylinder in an incline

    Science.gov (United States)

    Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne

    2012-02-01

    The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

  8. Precession of a Spinning Ball Rolling down an Inclined Plane

    Science.gov (United States)

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  9. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  10. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  11. Harmonic and Anharmonic Properties of Diamond Structure Crystals with Application to the Calculation of the Thermal Expansion of Silicon. Ph.D. Thesis. Final Report

    Science.gov (United States)

    Wanser, K. H.

    1981-01-01

    Silicon has interesting harmonic and anharmonic properties such as the low lying transverse acoustic modes at the X and L points of the Brillouin zone, negative Gruneisen parameters, negative thermal expansion and anomalous acoustic attenuation. In an attempt to understand these properties, a lattice dynamical model employing long range, nonlocal, dipole-dipole interactions was developed. Analytic expression for the Gruneisen parameters of several modes are presented. These expressions explain how the negative Gruneisen parameters arise. This model is applied to the calculation of the thermal expansion of silicon from 5K to 1700K. The thermoelastic contribution to the acoustic attenuation of silicon is computed from 1 to 300 K. Strong attenuation anomalies associated with negative thermal expansion are found in the vicinity of 17K and 125K.

  12. Impact of slope inclination on salt accumulation

    Science.gov (United States)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  13. Inclined solar chimney for power production

    Energy Technology Data Exchange (ETDEWEB)

    Panse, S.V., E-mail: sudhirpanse@yahoo.com [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Jadhav, A.S.; Gudekar, A.S. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Joshi, J.B. [Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India)

    2011-09-15

    Highlights: {yields} Solar energy harnessing using inclined face of high mountains as solar chimney. {yields} Solar chimneys with structural stability, ease of construction and lower cost. {yields} Mathematical model developed, using complete (mechanical and thermal) energy balance. {yields} Can harness wind power also, as wind velocities at mountain top add to power output. {yields} Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  14. CCDC 939502: Experimental Crystal Structure Determination : catena-[hexadecakis(N,N-Dicyclohexyl-N-ethyl-N-methylammonium) icosahectakis(mu2-oxo)-hexapentaconta(germanium-silicon)

    KAUST Repository

    Yu, Zheng-Bao

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. Effect of inclined ribs on heat transfer coefficient in stationary square channel

    Directory of Open Access Journals (Sweden)

    Natthaporn Kaewchoothong

    2017-11-01

    Full Text Available The main objective of this research is to study the effect of rib arrangement on the distributions of the local heat transfer coefficient in a stationary channel. In this study, the ribs with square cross section were used to place on two side walls for study. The rib height-to-hydraulic diameter ratio (e/D h and the rib pitch-to-height (p/e ratio were fixed at 0.133 and 10, respectively. Three different types of rib arrangement for inclined ribs, V-shaped ribs and inverted V-shaped ribs were investigated. The rib angle of attack (α was varied from 30° to 90° for inclined ribs and 45° and 60° for both V-shaped and inverted V-shaped ribs, and compared at constant Reynolds number Re =30000. Thermal Liquid Crystal sheet was applied for evaluating the heat transfer distributions. The results showed that the average Nusselt number on surface with rib inclined angle at 60°, 45°, and 60° V-shaped ribs was improved up to about 20%, 25% and 30% higher than case of angle 90° and the rib inclined angle at 60° V-shaped ribs provided the highest Nusselt number covering largest area when compared to the other cases.

  16. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Black, Marcie [Bandgap Engineering, Lincoln, MA (United States)

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  17. Crystal structures of tris-[1-oxo-pyridine-2-olato(1-)]silicon(IV) chloride chloro-form-d 1 disolvate, tris-[1-oxo-pyridine-2-olato(1-)]silicon(IV) chloride aceto-nitrile unqu-anti-fied solvate, and fac-tris-[1-oxo-pyridine-2-thiol-ato(1-)]silicon(IV) chloride chloro-form-d 1 disolvate.

    Science.gov (United States)

    Kraft, Bradley M; Brennessel, William W; Ryan, Amy E; Benjamin, Candace K

    2015-12-01

    The cations in the title salts, [Si(OPO)3]Cl·2CDCl3, (I), [Si(OPO)3]Cl·xCH3CN, (II), and fac-[Si(OPTO)3]Cl·2CDCl3, (III) (OPO = 1-oxo-2-pyridin-one, C5H4NO2, and OPTO = 1-oxo-2-pyridine-thione, C5H4NOS), have distorted octa-hedral coordination spheres. The first two structures contain the same cation and anion, but different solvents of crystallization led to different solvates and packing arrangements. In structures (I) and (III), the silicon complex cations and chloride anions are well separated, while in (II), there are two C-H⋯Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the planar flips of themselves [(I): 0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15); (II): 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13)], demonstrating that both fac and mer isomers are co-crystallized. In (II), highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] function of program PLATON, which determined there to be 54 electrons in 225 Å(3) accounted for per unit cell (25 electrons in 109 Å(3) in one channel, and 29 electrons in 115 Å(3) in the other). In (I) and (II), all species lie on general positions. In (III), all species are located along crystallographic threefold axes.

  18. Dense, layered, inclined flows of spheres

    Science.gov (United States)

    Jenkins, James T.; Larcher, Michele

    2017-12-01

    We consider dense, inclined flows of spheres in which the particles translate in layers, whose existence may be promoted by the presence of a rigid base and/or sidewalls. We imagine that in such flows a sphere of a layer is forced up the back of a sphere of the layer below, lifting a column of spheres above it, and then falls down the front of the lower sphere, until it bumps against the preceding sphere of the lower layer. We calculate the forces and rate of momentum transfer associated with this process of rub, lift, fall, and bump and determine a relation between the ratio of shear stress to normal stress and the rate of strain that may be integrated to obtain the velocity profile. The fall of a sphere and that of the column above it results in a linear increase in the magnitude of the velocity fluctuations with distance from the base of the flow. We compare the predictions of the model with measured profiles of velocity and granular temperature in several different dense, inclined flows.

  19. Selfsupported epitaxial silicon films

    International Nuclear Information System (INIS)

    Lazarovici, D.; Popescu, A.

    1975-01-01

    The methods of removing the p or p + support of an n-type epitaxial silicon layer using electrochemical etching are described. So far, only n + -n junctions have been processed. The condition of anodic dissolution for some values of the support and layer resistivity are given. By this method very thin single crystal selfsupported targets of convenient areas can be obtained for channeling - blocking experiments

  20. Radiation damage in silicon detectors

    CERN Document Server

    Bruzzi, Mara

    2000-01-01

    This work presents an overview of the most important mechanisms of radiation damage in silicon detectors to be used for high energy experiments in LHC. The changes in the shallow concentration have been studied by Thermally Stimulated Currents (TSC) after proton and neutron irradiation with fluences up to 1015 cm-2 to investigate the role of thermal donors and the donor-removal effect in standard and oxygen enriched silicon with different resistivities. Deep defects in irradiated silicon have been analysed by Deep Level Transient Spectroscopy (DLTS) and Photo Induced Current Transient Spectroscopy (P1CTS) in the same materials. The radiation-induced microscopic disorder has been related with the carrier transport properties of irradiated silicon measured by Hall effect, by capacitance and current vs. voltage characteristics and with charge collection efficiency. The dependence of the irradiated silicon detectors performances on crystal orientation, on incident particle type and on the starting concentration o...

  1. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  2. Solution of kinetic equation by means of the moments method for phonon thermoconductivity and effect of isotopic disorder on it in the case of germanium and silicon crystals at T = 300 K

    CERN Document Server

    Zhernov, A P

    2001-01-01

    The problem on solving the kinetic equation through the moments method for the dielectric and semiconductor thermal conductivity is discussed. The evaluations of the isotopic disorder effect on the germanium crystals heat resistance in the multimoment approximation are obtained on the basis of the microscopic models. The contributions of the acoustic and optical phonons to the thermal conductivity are accounted for. The DELTA W surplus heat resistance in comparison with highly-enriched samples was determined for the natural composition samples. Good agreement between the theory and experiment for DELTA W is observed in the case of germanium. The theoretical value in the case of silicon is essentially lower as compared to the DELTA W experimental value

  3. Silicon Germanium Quantum Well Solar Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Quantum-well structures embodied on single crystal silicon germanium drastically enhanced carrier mobilities.  The cell-to-cell circuits of quantum-well PV...

  4. Crystal structure of (110) oriented La0.7Sr0.3MnO3 grown on (001) silicon

    International Nuclear Information System (INIS)

    Sinha, Umesh Kumar; Sahoo, Antarjami; Padhan, Prahallad

    2016-01-01

    The mixed valance perovskite manganites have attracted a considerable attention due to their colossal magnetoresistance behavior. In particular, La 0.7 Sr 0.3 MnO 3 (LSMO) show half metallicity and possess Curie temperature (T C ) above room temperature, which makes this material an attractive candidate for spintronic device application. Thin films of LSMO were grown on (001) oriented Silicon (Si) using sputtering technique

  5. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  6. Granular flow over inclined channels with constrictions

    Science.gov (United States)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  7. Optical properties of amorphous hydrogenated and microcrystalline silicon films prepared by plasma enhanced chemical vapor deposition and re-crystallized at moderate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Netrvalova, Marie; Prusakova, Lucie; Sutta, Pavol [New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Plzen (Czech Republic); Mullerova, Jarmila [Faculty of Electrical Engineering, University of Zilina, ul. kpt. J. Nalepku 1390, 03101 Liptovsky Mikulas (Slovakia)

    2011-09-15

    Amorphous hydrogenated silicon films different in thickness (600 - 2400 nm) were deposited by plasma enhanced chemical vapour deposition on Corning glass substrates at 250 C using silan 10% / argon 90% gas mixture. The samples were consequently isothermally heated in a high temperature vacuum chamber at 0.1 Pa and at temperatures from 580 to 620 C. In order to evaluate structural and optical properties of the films X-ray diffraction analysis, Raman spectrometry and optical spectrophotometry were used. Crystalline state (amorphous or microcrystalline), optical band gaps, refractive indices, extinction coefficients, absorption coefficients were determined. X-ray diffraction analysis indicated that originally deposited films were amorphous with different degree of homogeneity depending on the film thickness. After the heat treatment the films became polycrystalline with crystallite sizes 40-50 nm without particular dependence on the recrystallization process used. Raman spectrometry confirmed the results obtained from X-ray diffraction and furthermore revealed the residual amorphous phase 20-25% in volume. Optical spectrophotometry has shown that the values of refractive indices of thermally treated films approach the mono-crystalline silicon refractive index. Extinction coefficients of the thermally treated films are slightly higher than those for monocrystalline silicon. Absorption coefficients for thermally treated films reached quite high values near the absorption edge of the original amorphous material, which can be advantageous for tandem solar cell technologies. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Inclined Buildings – Some Reasons and Solutions

    Science.gov (United States)

    Kijanka, Małgorzata; Kowalska, Magdalena

    2017-10-01

    To straighten a leaning building is never easy. There are no standard solutions. On the other hand, there are several, usually historical, leaning structures which have not been rectified, mostly because in the current shape they are a touristic attraction - the best example being the famous Leaning Tower of Pisa. This does not mean however that inclination of load bearing walls can be ignored. Even though in some cases the problem can be treated in terms of serviceability limit states (the deformation is only decreasing the comfort of ‘normal use’ of the building), in the other – it may be a signal of the forthcoming structural failure. The situation must always be treated individually – if the problem concerns a residential building, then cracks on the walls, not-opening doors or tilted ceilings, which often coincide with the leaning of the external walls, are always the reason of worry and such a building needs to be straightened. The reasons of the problem lie usually in uneven settlement of the ground, which in turn, may be caused by various problems, such as the presence of too soft, too weak, unconsolidated or expansive soils under the building, varying groundwater table, mining activity etc. Solving of the problem by just straightening the building is often not enough. To prevent further deformations a detailed analysis of the possible causes is necessary. Sometimes it may be helpful to review similar cases. The paper contains a general overview of selected inclined buildings: starting with the well-known historical examples and ending with individual houses from the Region of Silesia. Since the problem of instability mostly affects structures with critical height to width ratio, tall and narrow structures (towers) are dominating in the work. The aim of the study was to describe the reasons of the problems and present solutions that have been successfully applied and can be also useful to engineers and designers to prevent similar situations.

  9. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  10. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    Directory of Open Access Journals (Sweden)

    D. Barani Ganth

    2017-10-01

    Full Text Available The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship history. Analysis of the data revealed that males showed higher level of romantic inclination than females. Those who had current/past involvement in a romantic relationship (Lovers showed higher levels of romantic inclination than those who had never involved in a romantic relationship (Non-lovers. Parents’ type of marriage (Love/arranged, close fiends’ involvement in romantic relationship too had a discriminatory role in romantic inclination. Romantic inclination was significantly related to personality factors, attachment style, media and peer influences on romantic relationships and interpersonal attraction. Extraversion, openness to experience, agreeableness, media influence, peer influence, secure attachment and physical attraction emerged as significant predictors of romantic inclination in a regression model. Structural Equations Modeling (SEM indicated that personality, attachment style and interpersonal attraction had a significant influence on romantic inclination mediated by both media and peer influences. Romantic inclination in turn significantly predicted romantic relationship status.

  11. Impact of flow inclination on downwind turbine loads and power

    Science.gov (United States)

    Kress, C.; Chokani, N.; Abhari, R. S.; Hashimoto, T.; Watanabe, M.; Sano, T.; Saeki, M.

    2016-09-01

    Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwind turbine, whereas the relative increase in rotor thrust is only 9%. Furthermore, it is also shown that the performance of downwind turbines is less sensitive to changes in the flow inclination, as the upstream nacelle on downwind turbines beneficially redirects and accelerates the flow around the nacelle into the rotor plane.

  12. The Gothic arch (needle point) tracing and condylar inclination.

    Science.gov (United States)

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  13. Silicon Sheet Quality is Improved By Meniscus Control

    Science.gov (United States)

    Yates, D. A.; Hatch, A. E.; Goldsmith, J. M.

    1983-01-01

    Better quality silicon crystals for solar cells are possible with instrument that monitors position of meniscus as sheet of solid silicon is drawn from melt. Using information on meniscus height, instrument generates feedback signal to control melt temperature. Automatic control ensures more uniform silicon sheets.

  14. Muon decay channeling in silicon

    International Nuclear Information System (INIS)

    Bosshard, A.; Patterson, B.D.; Straumann, U.; Truoel, P.; Wichert, Th.

    1984-01-01

    This experiment employs the channeling effect of the host lattice on the trajectories of decay positrons in order to determine the position of positive muons implanted into silicon crystals. Low-momentum ( 0 ). In order to achieve sufficient angular resolution, the Si wafer is bent to a spherical shape, thereby focussing a particular crystal axis to a point at the center of the MWPC (located 3.4 m from the wafer). (Auth.)

  15. Simulation of Canopy Leaf Inclination Angle in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-cui ZHANG

    2013-11-01

    Full Text Available A leaf inclination angle distribution model, which is applicable to simulate leaf inclination angle distribution in six heights of layered canopy at different growth stages, was established by component factors affecting plant type in rice. The accuracy of the simulation results was validated by measured values from a field experiment. The coefficient of determination (R2 and the root mean square error (RMSE between the simulated and measured values were 0.9472 and 3.93%, respectively. The simulation results showed that the distribution of leaf inclination angles differed among the three plant types. The leaf inclination angles were larger in the compact variety Liangyoupeijiu with erect leaves than in the loose variety Shanyou 63 with droopy leaves and the intermediate variety Liangyou Y06. The leaf inclination angles were distributed in the lower range in Shanyou 63, which matched up with field measurements. The distribution of leaf inclination angles in the same variety changed throughout the seven growth stages. The leaf inclination angles enlarged gradually from transplanting to booting. During the post-booting period, the leaf inclination angle increased in Shanyou 63 and Liangyou Y06, but changed little in Liangyoupeijiu. At every growth stage of each variety, canopy leaf inclination angle distribution on the six heights of canopy layers was variable. As canopy height increased, the layered leaf area index (LAI decreased in all the three plant types. However, while the leaf inclination angles showed little change in Liangyoupeijiu, they became larger in Shanyou 63 but smaller in Liangyou Y06. The simulation results used in the constructed model were very similar to the actual measurement values. The model provides a method for estimating canopy leaf inclination angle distribution in rice production.

  16. Continuous Czochralski growth: Silicon sheet growth development of the large area sheet task of the low cost silicon solar array project

    Science.gov (United States)

    Johnson, C. M.

    1980-12-01

    The growth of 100 kg of silicon single crystal material, ten cm in diameter or greater, and 150 kg of silicon single crystal material 15 cm or greater utilizing one common silicon container material (one crucible) is investigated. A crystal grower that is recharged with a new supply of polysilicon material while still under vacuum and at temperatures above the melting point of silicon is developed. It accepts large polysilicon charges up to 30 kg, grows large crystal ingots (to 15 cm diameter and 25 kg in weight), and holds polysilicon material for recharging (rod or lump) while, at the same time, growing crystal ingots. Special equipment is designed to recharge polysilicon rods, recharge polysilicon lumps, and handle and store large, hot silicon crystal ingots. Many continuous crystal growth runs were performed lasting as long as 109 hours and producing as many as ten crystal ingots, 15 cm with weights progressing to 27 kg.

  17. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  18. Entrepreneurial inclinations of women from rural areas

    Directory of Open Access Journals (Sweden)

    Marković-Savić Olivera S.

    2014-01-01

    Full Text Available Entrepreneurial inclinations of women from rural areas are shaped by the lack of business ideas and economic capital, which, in addition to financial resources, includes cultural capital in the form of knowledge and skills. The paper presents a part of a broader study on the social position of women from the rural areas of northern Kosovo and Metohija, conducted in 2013. The research was predominantly focused on entrepreneurial inclinations of rural women, and the findings suggest that private enterprise in the studied population is undeveloped as a result of two dominant reasons. The first reason is the situation which is unfavorable in terms of politics and security, and therefore, not conducive to investment security, together with the specificity in the form of complex administrative business conditions requiring compliance to parallel and mutually incompatible standards (of the Republic of Serbia and of the UNMIK administration. The second important reason for the lack of entrepreneurial initiatives is the lack of ownership of property and the means of production, since banks do not give loans without guarantees in the form of ownership of the mortgage, while other forms of financial incentives are unavailable. The respondents attended programs for acquiring new knowledge and skills only in a small number of cases, while showing the greatest susceptibility to education in traditional skills, such as training in agriculture and handicrafts, which are not the skills in line with the needs of the labor market. As the most important reasons that -prevent them from having their own business, the respondents -mentioned: the lack of ideas and the lack of financial resources. In this regard, they would find incentives in the form of grants most helpful to start their own business. The absence of funds and gender inequality form the basis for the lack of ownership of property and means of production. In addition to the shortage of financial

  19. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    Science.gov (United States)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  20. Reaching 200-ps timing resolution in a time-of-flight and depth-of-interaction positron emission tomography detector using phosphor-coated crystals and high-density silicon photomultipliers

    Science.gov (United States)

    Kwon, Sun Il; Ferri, Alessandro; Gola, Alberto; Berg, Eric; Piemonte, Claudio; Cherry, Simon R.; Roncali, Emilie

    2016-01-01

    Abstract. Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; <210  ps) was obtained by coupling RGB-HD SiPMs and  3 × 3 × 20  mm3 lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins (∼6.7-mm width) with an average sensitivity of 83.1%. A CRT of ∼200  ps combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector. PMID:27921069

  1. Shallow bias in Mediterranean paleomagnetic directions caused by inclination error

    NARCIS (Netherlands)

    Krijgsman, W.; Tauxe, Lisa

    2004-01-01

    A variety of paleomagnetic data from the Mediterranean region show a strong bias toward shallow inclinations. This pattern of shallow inclinations has been interpreted to be the result of (1) major northward terrane displacement, (2) large nondipole components in the Earth’s magnetic field, and

  2. Analysis of deformation due to inclined load in generalized ...

    African Journals Online (AJOL)

    The present investigation deals with study of deformation in homogeneous, isotropic thermodiffusion elastic half-space as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. The integral transform technique is used to solve the problem. As an application of ...

  3. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Machinery, angles of inclination. 58.01-40 Section 58.01-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a) Propulsion machinery and all auxiliary...

  4. Collimation: a silicon solution

    CERN Multimedia

    2007-01-01

    Silicon crystals could be used very efficiently to deflect high-energy beams. Testing at CERN has produced conclusive results, which could pave the way for a new generation of collimators. The set of five crystals used to test the reflection of the beams. The crystals are 0.75 mm wide and their alignment is adjusted with extreme precision. This figure shows the deflection of a beam by channelling and by reflection in the block of five crystals. Depending on the orientation of the crystals: 1) The beam passes without "seeing" the crystals and is not deflected 2) The beam is deflected by channelling (with an angle of around 100 μrad) 3) The beam is reflected (with an angle of around 50 μrad). The intensity of the deflected beam is illustrated by the intensity of the spot. The spot of the reflected beam is clearly more intense than that one of the channelled beam, demonstrating the efficiency of t...

  5. A jig for measuring incisor inclination.

    Science.gov (United States)

    Shah, N; Spary, D J; Rock, W P

    2005-06-01

    The aim of this study was to design and construct a jig for measuring the inclination of the upper incisors to the maxillary plane and of the lower incisors to the mandibular plane. After several prototypes had been tested, the required properties for a successful jig were identified and a simple inexpensive device was produced. Measurements obtained when using the jig on 51 subjects were compared with cephalometric values by means of regression analysis. This revealed that measurements obtained using the jig against the upper and then the lower incisor crowns could be converted to cephalometric incisor angulations with 96 per cent accuracy to 10 degrees, by adding 23 and 3 degrees, respectively. The jig was accurate to 5 degrees on 69 per cent of occasions for the upper teeth. The 5 degrees accuracy with the lower incisors was only 27 per cent, although over a 6 degree range it improved to 78 per cent. For upper and lower tooth measurements combined, the jig was accurate to within 6 degrees on 75 per cent of occasions.

  6. Porous silicon investigated by positron annihilation

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1989-01-01

    The effect of the anodic conversion in silicon single crystals is investigated by positron lifetime measurements. Anodization at constant current induces changes in the positron lifetime spectrum of monocrystalline silicon samples. It is found that theses changes are primarily dependent on the silicon resistivity. The annihilation parameter behaviour of anodized samples, treated at high temperature under reducing conditions, is also investigated. The results reveal that positron annihilation can be a useful technique to characterize porous silicon formed by anodizing as well as to investigate its thermal behaviour. (author)

  7. Semiconductors and semimetals oxygen in silicon

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Shimura, Fumio

    1994-01-01

    This volume reviews the latest understanding of the behavior and roles of oxygen in silicon, which will carry the field into the ULSI era from the experimental and theoretical points of view. The fourteen chapters, written by recognized authorities representing industrial and academic institutions, cover thoroughly the oxygen related phenomena from the crystal growth to device fabrication processes, as well as indispensable diagnostic techniques for oxygen.Key Features* Comprehensive study of the behavior of oxygen in silicon* Discusses silicon crystals for VLSI and ULSI applications* Thorough coverage from crystal growth to device fabrication* Edited by technical experts in the field* Written by recognized authorities from industrial and academic institutions* Useful to graduate students, scientists in other disciplines, and active participants in the arena of silicon-based microelectronics research* 297 original line drawings

  8. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon (Open Access Publisher’s Version)

    Science.gov (United States)

    2016-01-04

    beam shape, catastrophic optical damage free, and two-dimensional integration capabilities with CMOS electronics , vertical-cavity surface-emitting...longitudinal and transverse mode over a large lasing area , narrow linewidth, high power output, small beam divergence angle, polarization control...crystal lasers—ultimate nanolasers and broad - area coherent lasers [Invited]. J. Opt. Soc. Am. B 27, B1–B8 (2010). 13. Painter, O. et al. Two-dimensional

  9. Passivating electron contact based on highly crystalline nanostructured silicon oxide layers for silicon solar cells

    Czech Academy of Sciences Publication Activity Database

    Stuckelberger, J.; Nogay, G.; Wyss, P.; Jeangros, Q.; Allebe, Ch.; Debrot, F.; Niquille, X.; Ledinský, Martin; Fejfar, Antonín; Despeisse, M.; Haug, F.J.; Löper, P.; Ballif, C.

    2016-01-01

    Roč. 158, Dec (2016), s. 2-10 ISSN 0927-0248 R&D Projects: GA MŠk LM2015087 Institutional support: RVO:68378271 Keywords : surface passivation * passivating contact * nanostructure * silicon oxide * nanocrystalline * microcrystalline * poly-silicon * crystallization * Raman * transmission line measurement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.784, year: 2016

  10. Apparatus for making molten silicon

    Science.gov (United States)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  11. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  12. Development of locomotion over inclined surfaces in laying hens.

    Science.gov (United States)

    LeBlanc, C; Tobalske, B; Bowley, S; Harlander-Matauschek, A

    2018-03-01

    The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.

  13. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  14. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  15. Economic analysis of crystal growth in space

    Science.gov (United States)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  16. High-voltage (100 V ChipfilmTM single-crystal silicon LDMOS transistor for integrated driver circuits in flexible displays

    Directory of Open Access Journals (Sweden)

    J. N. Burghartz

    2009-05-01

    Full Text Available System-in-Foil (SiF is an emerging field of large-area polymer electronics that employs new materials such as conductive polymers and electrophoretic micro-capsules (E-Ink along with ultra-thin and thus flexible chips. In flexible displays, the integration of gate and source drivers onto the flexible part increases the yield and enhances the reliability of the system. In this work we propose a high-voltage ChipfilmTM lateral diffused MOS transistor (LDMOS structure on ultra-thin single-crystalline silicon chips. The fabrication process is compatible with CMOS standard processing. This LDMOS structure proves to be well suited for providing adequately large switching voltages in spite of the thin (<10 μm substrate. A breakdown voltage of more than 100 volts with drain-to-source saturation current Ids(sat≈85 μA/μm for N-LDMOS and Ids(sat≈20 μA/μm for P-LDMOS is predicted through process and device simulations.

  17. Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series

    Science.gov (United States)

    Noyes, Thomas; Stezelberger, Shane

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.

  18. Systems of pillarless working of adjacent, sloped and inclined seams

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1979-01-01

    An analysis is made (advantages and disadvantages) of existing and recommended (pillarless) systems of working adjacent, sloped, and inclined seams. The economic benefits, area and extent of those systems are indicated. 8 references, 4 figures.

  19. Psychosocial Determinants of Romantic Inclination Among Indian Youth

    OpenAIRE

    D. Barani Ganth; S. Kadhiravan

    2017-01-01

    The present study was conducted with the aim of understanding the psychosocial determinants of romantic inclination among youth in India. We involved 779 student participants from a large central university in south India in the age range of 18-24 years. The participants filled measures on romantic inclination, personality, attachment style, interpersonal attraction, and social influence on romantic relationship in addition to a questionnaire on demographic information and relationship histor...

  20. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness. [crystal growth

    Science.gov (United States)

    Lane, R. L.

    1981-01-01

    Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.

  1. Uplift Capacity of Inclined Underreamed Piles Subjected to Vertical Load

    Science.gov (United States)

    Rahman, Md. Akilur; Sengupta, Siddhartha

    2017-12-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Inclined (batter) piles are used to support such structures, and to carry the horizontal and vertical loads resulted from the overturning moments. Though studies have been done with inclined piles having no underream bulb, little information is available in the literature about estimating the uplift capacity of inclined underreamed piles. In the present study laboratory experiments have been done with vertically loaded model piles having no underream as well as with one and two underreams. The piles were positioned at angle of inclination of θ = 0°, 10°, 20°, 30° (with vertical); and placed in locally available sand under vertical uplift load. Three different pile stem diameters (D = 20, 25, and 35 mm) were used. The corresponding pile length to stem diameter (l/D) ratio were 18, 14, and 10 respectively. Experiments had been conducted with two relative different densities (45 and 70%) of sand. The failure uplift loads were obtained in each case. It had been found that for inclined piles increase in number of underream bulbs from 0 to 2 was quite effective in resisting uplift loads corresponding to piles having l/D equals to 10. The percentage decreases in uplift capacity corresponding to increase in inclination angle were more pronounced for piles with double underreams.

  2. Trunk muscle activity with different sitting postures and pelvic inclination.

    Science.gov (United States)

    Watanabe, Masahiro; Kaneoka, Koji; Wada, Yusuke; Matsui, Yasushi; Miyakawa, Shumpei

    2014-01-01

    Sitting posture may often place large burden on trunk muscles, while trunk muscle activities in the sitting posture have not been well clarified. In this study, a difference in trunk muscle activity between two kinds of sitting postures was evaluated, focusing on low back pain induced by posture holding. An experiment was conducted on the subjects sitting on a stable-seat and on an unstable-seat, with the pelvis inclined forward, backward, rightward, and leftward. With the pelvis inclined forward, rightward and leftward, muscle activities were significantly increased in a stable-seat sitting posture. In contrast, no significant increase in muscle activity was observed with the pelvis inclined in every direction in an unstable-seat sitting posture. With the pelvis inclined in the stable-seat sitting posture, muscle activities were imbalanced, while with the pelvis inclined in the unstable-seat sitting posture, muscle activities were not imbalanced. Thus, it is suggested that with the pelvis inclined to the maximum extent in the stable-seat sitting posture, low back pain may be induced by imbalanced muscle activities.

  3. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  4. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  5. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-01-01

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. 170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. 135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i ≤ 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  6. Diffusion of terbium in silicon

    International Nuclear Information System (INIS)

    Nazyrov, D.Eh.

    2006-01-01

    The diffusion of terbium in silicon is studied by tracer technique in the temperature range 1100-1250 deg C. The diffusion coefficient of terbium, D Tb , is shown to increase with temperature from 4 x 10 -14 to 10 -12 cm 2 /s. The temperature dependence of D Tb at temperatures studied obeys the Arrhenius law according to: D Tb [cm 2 /s] = 5 x 10 -2 exp(-3.3 eV/kT). Experimental data on D Tb and activation energy (E a = 3.3 eV) suggest that terbium dopant diffuses in silicon along the crystal lattice nodes [ru

  7. Evaluation of performance of veterinary in-clinic hematology analyzers.

    Science.gov (United States)

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  8. Structural equation modeling for alteration of occlusal plane inclination.

    Science.gov (United States)

    Shigeta, Yuko; Ogawa, Takumi; Nakamura, Yoshiharu; Ando, Eriko; Hirabayashi, Rio; Ikawa, Tomoko

    2015-07-01

    Occlusal plane inclination is important to maintain a normal opening closing/biting function. However, there can be several causes that lead to alterations of the occlusal plane. The purpose of this study was to observe variations of occlusal plane inclination in adult patients, and to uncover the factors affecting changes in occlusal plane inclination with aging. Subjects were 143 patients. A cephalometric image was taken of these patients. In this study, our inquiry points were age, 3 variables on intra-oral findings, and 7 variables on cephalometric analysis. To evaluate the possible causes that affect occlusal plane inclination, factor analysis was carried out, and each component was treated as factors, which were then statistically applied to a structural equation model. Statistical analysis was carried out through the SPSS 20.0 (SPSS Inc., Chicago, USA). In all patients, Camper-occlusal plane angle (COA) ranged from -25.7 to -4.9° (Mean±SD: -6.4±5.36). In the 60 patients who had no missing teeth, COA ranged from -11.6 to -4.9° (Mean±SD: -3.3±3.31). From the results of the structural analysis, it was suggested that the occlusal plane changes to counter-clockwise (on the right lateral cephalograms) with aging. In this study, variations of occlusal plane inclination in adult patients were observed, and the factors affecting changes in occlusal plane inclination with aging were investigated via factor analysis. From our results, it was suggested that the mandibular morphology change and loss of teeth with aging influence occlusal plane inclination. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  9. Dislocation sources and slip band nucleation from indents on silicon wafers

    International Nuclear Information System (INIS)

    Wittge, J.; Danilewsky, A.N.; Allen, D.

    2010-01-01

    The nucleation of dislocations at controlled indents in silicon during rapid thermal annealing has been studied by in situ X-ray diffraction imaging (topography). Concentric loops extending over pairs of inclined {111} planes were formed, the velocities of the inclined and parallel segments being almost equal. Following loss of the screw segment from the wafer, the velocity of the inclined segments almost doubled, owing to removal of the line tension of the screw segments. The loops acted as obstacles to slip band propagation. (orig.)

  10. Semiconductor Grade, Solar Silicon Purification Project. [photovoltaic solar energy conversion

    Science.gov (United States)

    Ingle, W. M.; Rosler, R. S.; Thompson, S. W.; Chaney, R. E.

    1979-01-01

    A low cost by-product, SiF4, is reacted with mg silicon to form SiF2 gas which is polymerized. The (SiF2)x polymer is heated forming volatile SixFy homologues which disproportionate on a silicon particle bed forming silicon and SiF4. The silicon analysis procedure relied heavily on mass spectroscopic and emission spectroscopic analysis. These analyses demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). However, electrical analysis via crystal growth reveal that the product contains compensated phosphorus and boron.

  11. Silicon Qubits

    Energy Technology Data Exchange (ETDEWEB)

    Ladd, Thaddeus D. [HRL Laboratories, LLC, Malibu, CA (United States); Carroll, Malcolm S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-28

    Silicon is a promising material candidate for qubits due to the combination of worldwide infrastructure in silicon microelectronics fabrication and the capability to drastically reduce decohering noise channels via chemical purification and isotopic enhancement. However, a variety of challenges in fabrication, control, and measurement leaves unclear the best strategy for fully realizing this material’s future potential. In this article, we survey three basic qubit types: those based on substitutional donors, on metal-oxide-semiconductor (MOS) structures, and on Si/SiGe heterostructures. We also discuss the multiple schema used to define and control Si qubits, which may exploit the manipulation and detection of a single electron charge, the state of a single electron spin, or the collective states of multiple spins. Far from being comprehensive, this article provides a brief orientation to the rapidly evolving field of silicon qubit technology and is intended as an approachable entry point for a researcher new to this field.

  12. Strained silicon as a new electro-optic material

    DEFF Research Database (Denmark)

    Jacobsen, Rune Shim; Andersen, Karin Nordström; Borel, Peter Ingo

    2006-01-01

    functionalities can be integrated into monolithic components based on the versatile silicon platform, is due to the limited active optical properties of silicon3. Recently, however, a continuous-wave Raman silicon laser was demonstrated4; if an effective modulator could also be realized in silicon, data...... processing and transmission could potentially be performed by all-silicon electronic and optical components. Here we have discovered that a significant linear electro-optic effect is induced in silicon by breaking the crystal symmetry. The symmetry is broken by depositing a straining layer on top...... of a silicon waveguide, and the induced nonlinear coefficient, (2) 15 pm V-1, makes it possible to realize a silicon electro-optic modulator. The strain-induced linear electro-optic effect may be used to remove a bottleneck5 in modern computers by replacing the electronic bus with a much faster optical...

  13. Crystal Collimation Cleaning Measurements with Proton Beams in LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Odd Oyvind; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    During this MD, performed on July 29th, 2016, bent silicon crystal were tested with proton beams for a possible usage of crystal-assisted collimation. Tests were performed at both injection energy and flat top using horizontal and vertical crystal. Loss maps with crystals at 6.5 TeV were measured.

  14. Single-Crystal X-Ray Diffraction of Orthoenstatite to 48 GPa: New High-Pressure Phases with 4-, 5-, and 6-Coordinated Silicon

    Science.gov (United States)

    Finkelstein, G. J.; Dera, P. K.; Duffy, T. S.

    2013-12-01

    Orthopyroxene (opx, (Mg,Fe)SiO3) is one of the major phases in Earth's upper mantle, comprising ~20% of the region by volume. At high pressures and temperatures, this phase undergoes several well-characterized phase transitions. Its behavior at low temperature is less well known, but may be important for cold subducting slabs (1, 2). Previous studies (3, 4) reported that MgSiO3 orthoenstatite persists up to ~12 GPa, and a phase transition above this pressure was recently discovered by Zhang et al. (5). This structure, which we call β-opx (designated HPCEN2 in previous studies), is related to one predicted by theory (6), and has P21/c monoclinic symmetry. It retains an opx topology despite its lower symmetry, distinguishing it from a true clinopyroxene. We conducted single-crystal X-ray diffraction experiments in a diamond anvil cell at GSECARS and HPCAT at the APS. Mg0.91Fe0.09SiO3 orthopyroxene was compressed in a neon pressure medium with a gold pressure standard. In addition to the orthopyroxene to β-opx transition, we observe two further phase changes at ~28 GPa and ~38 GPa. The transitions result in volume reductions of ~2.5% and ~3.9%, respectively. The Si layers in both new structures are intermediate between the opx structure and that of the ilmenite-structured akimotoite polymorph. Akimotoite consists of edge-sharing MgO6 and SiO6 octahedra arranged in alternating honeycomb sheets. A theoretical study suggested clinoenstatite could transform directly to akimotoite at low temperatures through a shear-based mechanism (7). Here, we observe that the path toward akimotoite-like Si layers is stepwise. In the new MgSiO3 structures, the initial chains of SiO4 tetrahedra are partially converted to the characteristic 6-coordinated honeycomb layers. This results in some 5-coordinated Si sites in both structures. Due to the increased coordination number, we are calling the new structures α- and β-post-orthopyroxene (α-popx and β-popx). The Mg layers, however, do

  15. Prospects of Mid Infrared Silicon Raman Laser

    Science.gov (United States)

    Jalali, Bahram

    2006-03-01

    Mid wave infrared (MWIR) lasers in the wavelength range of 2-5μm form an important tool for free space communications, bio-chemical detection and certain medical applications. Most organic chemicals and biological agents have unique signatures in the MWIR and can be detected using these lasers. The strong water absorption peak at 2.9μm renders such a laser attractive for surgery and dentistry. Solid state lasers comprising OPO-based nonlinear frequency converters and Raman lasers have been the popular choice for these applications. However, the low damage threshold, poor thermal conductivity and high cost limit the commercial availability of these sources. The recent demonstration of the first silicon Raman laser in 2004 combined with excellent transmission of silicon in the mid-IR suggests that silicon should be considered as a MWIR Raman crystal. In the near IR, where current silicon Raman lasers operate, free carriers that are generated by two photon absorption (TPA) create severe losses. TPA vanishes in the MWIR regime (λ > 2.25μm), hence eliminating the main problem with silicon Raman lasers. This combined with (i) the unsurpassed quality of commercial silicon crystals, (ii) the low cost and wide availability of the material, (iii) extremely high optical damage threshold of 1-4 GW/cm2 (depending on the crystal resistivity), and (iv) excellent thermal conductivity renders silicon a very attractive Raman crystal. Moreover, integrated waveguide and resonator technologies can lead to device miniaturization. This talk discusses the MWIR silicon laser and its applications.

  16. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  17. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2010-01-01

    An electrically tunable bandpass filter is designed and fabricated by integrating two solid-core photonic crystal fibers filled with different liquid crystals in a double silicon v-groove assembly. By separately controlling the driving voltage of each liquid-crystal-filled section, both the short...

  18. Instability timescale for the inclination instability in the solar system

    Science.gov (United States)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  19. Influence of occlusal plane inclination and mandibular deviation on esthetics.

    Science.gov (United States)

    Corte, Cristiane Cherobini Dalla; Silveira, Bruno Lopes da; Marquezan, Mariana

    2015-10-01

    The aim of this study was to assess the degree of perception of occlusal plane inclination and mandibular deviation in facial esthetics, assessed by laypeople, dentists and orthodontists. A woman with 5.88° of inclination and 5.54 mm of mandibular deviation was selected and, based on her original photograph, four new images were created correcting the deviations and creating more symmetric faces and smiles. Examiners assessed the images by means of a questionnaire. Their opinions were compared by qualitative and quantitative analyses. A total of 45 laypeople, 27 dentists and 31 orthodontists filled out the questionnaires. All groups were able to perceive the asymmetry; however, orthodontists were more sensitive, identifying asymmetries as from 4.32° of occlusal plane inclination and 4.155 mm of mandibular deviation (pocclusal plane inclination and 5.54 mm of mandibular deviation (pOcclusal plane inclination and mandibular deviation were perceived by all groups, but orthodontists presented higher perception of deviations.

  20. Superhydrophobic RTV silicone rubber insulator coatings

    Science.gov (United States)

    Seyedmehdi, Seyed Amirhossein; Zhang, Hui; Zhu, Jesse

    2012-01-01

    On wet days, environmental contamination of outdoor insulation surfaces can reduce the reliability of electrical transmission systems and lead to flashover and arcing over the entire insulator. The use of superhydrophobic coatings would resolve this problem due to their self-cleaning effect. Water droplets can pick up dirt particles and remove contamination from the surfaces of insulators. This paper reports on a study to make a superhydrophobic RTV silicone rubber coating that has contact angles of higher than 145° and good UV durability. The Inclined Plane Test, water durability test and adhesion test are presented to show the effectiveness of this coating and the best formulations. The results of tracking and erosion resistance test (Inclined Plane Test) showed that formulations with at least 35 wt% ATH can be used for superhydrophobic RTV insulator coatings.

  1. Barrier for Continuous-Crystal-Growth Crucible

    Science.gov (United States)

    Skutch, M. E.; Piotrowski, P. A.

    1983-01-01

    Properly designed openings permit free flow of melt while restraining pellets. Redesigned partition between growth region and melt-replenishment region of crystal-growth crucible makes it less likely crucible will run out of feed material in middle of cycle. Supply of molten silicon is maintained by addition of silicon pellets to compartment at one end of heated crucible, and partition or barrier is required to hold pellets while allowing melted silicon to flow from compartment.

  2. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    Science.gov (United States)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  3. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  4. Titanium catalyzed silicon nanowires and nanoplatelets

    Directory of Open Access Journals (Sweden)

    Mohammad A. U. Usman

    2013-03-01

    Full Text Available Silicon nanowires, nanoplatelets, and other morphologies resulted from silicon growth catalyzed by thin titanium layers. The nanowires have diameters down to 5 nm and lengths to tens of micrometers. The two-dimensional platelets, in some instances with filigreed, snow flake-like shapes, had thicknesses down to the 10 nm scale and spans to several micrometers. These platelets grew in a narrow temperature range around 900 celsius, apparently representing a new silicon crystallite morphology at this length scale. We surmise that the platelets grow with a faceted dendritic mechanism known for larger crystals nucleated by titanium silicide catalyst islands.

  5. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.

    2004-01-01

    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  6. Psychopathic Inclination Among Incarcerated Youth of Hazara Division Pakistan

    Directory of Open Access Journals (Sweden)

    Sher Dil

    2016-09-01

    Full Text Available Present study aimed at evaluating the psychopathic inclination among youth and finding the gender differences in psychopathy. An indigenously developed Psychopathy scale (Urdu has been used in this study. Alpha reliability of the scale was .90. The study was conducted on 100 males (50 criminals and 50 non-criminals and 100 females (26 criminals and 74 non-criminals using a convenient sampling technique from three districts of Hazara division: Haripur, Abbottabad, and Mansehra. Results confirmed that there is significant difference in psychopathic inclination of males and females; criminals differed significantly from the non-criminals. The study also paves way for further investigation in the field in Pakistan.

  7. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-10-01

    Full Text Available Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  8. Fluorescence intensity dependence on the propagation plane inclination

    International Nuclear Information System (INIS)

    Fernandez, J.E.; Rubio, Marcelo; Sanchez, H.J.

    1987-01-01

    A Monte Carlo simulation of the primary and secondary X-ray fluorescent emission from an homogeneous and infinite thickness sample, irradiated under different inclination of the propagation plane, is carried out. An agreement with the predictions based on Sherman equations depending on the inclination angle α was found. The invariance of the primary fluorescence with respect to α and the decrease until evanescence of the secondary fluorescence for a α → π/2 are confirmed. A discussion about the physical basis of this dependence is carried out. Similar results are expected for tertiary fluorescence. (Author) [es

  9. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    Science.gov (United States)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  10. MEASUREMENTS OF DUST EXTINCTION IN HIGHLY INCLINED SPIRAL GALAXIES

    NARCIS (Netherlands)

    JANSEN, RA; KNAPEN, JH; BECKMAN, JE; PELETIER, RF; HES, R

    1994-01-01

    We study the extinction properties of dust in the well-defined dust lanes of four highly inclined galaxies, using U-, B-, V-, R- and I-band CCD and J- and K'-band near-infrared array images. For three of these galaxies, we could use the symmetry of the underlying light profile to obtain absolute

  11. Motion on an Inclined Plane and the Nature of Science

    Science.gov (United States)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  12. Evidences of inclined transpression at the contact between ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 5. Evidences of inclined ... a right lateral strike-slip component. As a whole, it is suggested that Udayagiri group is thrusted over Vinjamuru group along a westerly dipping thrust plane with a right lateral strike-slip motion and simultaneous E–W contraction.

  13. Inclined Planes and Motion Detectors: A Study of Acceleration.

    Science.gov (United States)

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  14. The effect of circular bridge piers with different inclination angles ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. The effect of circular bridge piers with different inclination angles toward downstream on scour. MOHAMMAD VAGHEFI1,∗, MASOUD GHODSIAN2 and. SAEID SALIMI3. 1Department of Civil Engineering, Persian Gulf University, Shahid Mahini Street, P.O. Box: 75169-13817,. Bushehr, Iran.

  15. The inter-relationships between angle of inclination, height and ...

    African Journals Online (AJOL)

    Experiments were conducted to investigate the dependence of number of sprouted teak (Tectona grandis Linn. F) stumps on the height above root collar and angle of inclination of planted teak stumps. The studies were aim-ed at developing suitable methods of converting teak seedlings into stumps and planting practices to ...

  16. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    Science.gov (United States)

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  17. Optimization of PV array inclination in India using ANN estimator ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 40; Issue 5. Optimization of PV array inclination in India using ANN estimator: Method comparison study ... Although different non-linear, empirical models have been proposed by different researchers in India, they have too many constraints and needs complex and rigorous computational ...

  18. A layered model for inclined pipe flow of settling slurry

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Krupička, Jan; Kesely, Mikoláš

    2018-01-01

    Roč. 333, June (2018), s. 317-326 ISSN 0032-5910 R&D Projects: GA ČR GA17-14271S Institutional support: RVO:67985874 Keywords : inclined pipe * settling slurry * pressure drop * flow stratification * laboratory loop Impact factor: 2.942, year: 2016

  19. Evidences of inclined transpression at the contact between ...

    Indian Academy of Sciences (India)

    zone may show different structures or dominance of certain type of structures, depending on whether that part is dominated by strike-slip, dip slip or compression. The present study finds evidences of inclined transpression at the contact between. Udayagiri and Vinjamuru group of NSB, which is the main focus of this paper.

  20. A Sensor Fusion Algorithm for Filtering Pyrometer Measurement Noise in the Czochralski Crystallization Process

    OpenAIRE

    Komperød, Magnus; Bones, John Atle; Lie, Bernt

    2011-01-01

    The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon for solar cell wafers and electronics. Tight temperature control of the molten silicon is most important for achieving high crystal quality. SINTEF Materials and Chemistry operates a CZ process. During one CZ batch, two pyrometers were used for temperature measurement. The silicon pyrometer measures the temperature of the molten silicon. This pyrometer is assumed to be accurate, but has much high-frequency...

  1. Summary of structural refinement in hi-silicon aluminium piston alloy with phosphorous as grain refiner

    International Nuclear Information System (INIS)

    Malik, F.A.; Sheikh, S.T.; Choudhry, A.A.

    2003-01-01

    Aluminium Silicon Alloys are extensively used in a wide variety of applications. There are numerous variables in composition, production control, final structure which can influence the mechanical properties of Hi - Silicon Piston alloys. Hypereutectic AlSi alloys develop coarse grain primary silicon crystals, which have a strong negative effect on the tensile strength, the ductility, and the hardness. These crystals slow machining and reduce the tool life considerably. Phosphorous addition produce a fine, evenly spread crystal structure, lamellar structure of the silicon changes into a granular structure. (author)

  2. Influence of cold rolling direction on texture, inhibitor and magnetic properties in strip-cast grain-oriented 3% silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F., E-mail: fangfengdbdx@163.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Lu, X.; Zhang, Y.X.; Wang, Y.; Jiao, H.T.; Cao, G.M.; Yuan, G.; Xu, Y.B. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, EL Paso, TX 79968 (United States); Wang, G.D. [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    An unconventional cold rolling scheme (inclined rolling at 0°, 30°, 45°, 90° during second-stage cold rolling process) was adopted to process grain-oriented silicon steel based on strip casting process. The influences of inclination angles on microstructure, texture, inhibitor and magnetic properties were studied by a combination of EBSD, XRD and TEM. It was found that the α-fiber texture was weakened and γ-fiber was strengthened in cold rolled sheet with increase in inclination angle. The primary recrystallization sheet exhibited more homogeneous microstructure with relatively strong γ-fiber, medium α-fiber texture, weak λ-fiber texture and Goss component at high inclination angles. Fine and homogeneous inhibitors were obtained after primary annealing with increase in inclination angle from 0° to 90° because of more uniform deformation after inclined rolling. The grain-oriented silicon steel experienced completely secondary recrystallization at various inclination angles after final annealing process, with superior magnetic properties at 0° and 90°. Furthermore, Goss nuclei capable of final secondary recrystallization in strip casting process newly formed both in-grain shear bands and grain boundaries region during second-stage cold rolling and subsequent annealing process, which is different from the well-accepted results that Goss texture originated from the subsurface layer of the hot rolled sheet or during intermediate annealing process. In addition, the Goss texture that nucleated in-grain shear bands was weaker but more accurate as compared to that in grain boundaries region. - Highlights: • Inclined cold rolling was adopted to process strip-cast grain-oriented silicon steel. • Influence of inclination angles on texture, inhibitor and magnetic properties was studied. • The initial texture was changed with respect to the inclination angle. • Homogeneous inhibitors were obtained after primary annealing at various inclination angles.

  3. LSSA large area silicon sheet task continuous Czochralski process development

    Science.gov (United States)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  4. Porous silicon: Synthesis and optical properties

    International Nuclear Information System (INIS)

    Naddaf, M.; Awad, F.

    2006-06-01

    Formation of porous silicon by electrochemical etching method of both p and n-type single crystal silicon wafers in HF based solutions has been performed by using three different modes. In addition to DC and pulsed voltage, a novel etching mode is developed to prepare light-emitting porous silicon by applying and holding-up a voltage in gradient steps form periodically, between the silicon wafer and a graphite electrode. Under same equivalent etching conditions, periodic gradient steps voltage etching can yield a porous silicon layer with stronger photoluminescence intensity and blue shift than the porous silicon layer prepared by DC or pulsed voltage etching. It has been found that the holding-up of the applied voltage during the etching process for defined interval of time is another significant future of this method, which highly affects the blue shift. This can be used for tailoring a porous layer with novel properties. The actual mechanism behind the blue shift is not clear exactly, even the experimental observation of atomic force microscope and purist measurements in support with quantum confinement model. It has been seen also from Fourier Transform Infrared study that interplays between O-Si-H and Si-H bond intensities play key role in deciding the efficiency of photoluminescence emission. Study of relative humidity sensing and photonic crystal properties of pours silicon samples has confirmed the advantages of the new adopted etching mode. The sensitivity at room temperature of porous silicon prepared by periodic gradient steps voltage etching was found to be about 70% as compared to 51% and 45% for the porous silicon prepared by DC and pulsed voltage etching, respectively. (author)

  5. Czochralski method of growing single crystals. State-of-art

    International Nuclear Information System (INIS)

    Bukowski, A.; Zabierowski, P.

    1999-01-01

    Modern Czochralski method of single crystal growing has been described. The example of Czochralski process is given. The advantages that caused the rapid progress of the method have been presented. The method limitations that motivated the further research and new solutions are also presented. As the example two different ways of the technique development has been described: silicon single crystals growth in the magnetic field; continuous liquid feed of silicon crystals growth. (author)

  6. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

    Science.gov (United States)

    Zhang, Huigang; Braun, Paul V

    2012-06-13

    Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity of most silicon anodes dramatically decays within a few cycles. Here we report a three-dimensional (3D) bicontinuous silicon anode formed by depositing a layer of silicon on the surface of a colloidal crystal templated porous nickel metal scaffold, which maintains electrical connectivity during cycling due to the scaffold. The porous metal framework serves to both impart electrical conductivity to the anode and accommodate the large volume change of silicon upon lithiation and delithiation. The initial capacity of the bicontinuous silicon anode is 3568 (silicon basis) and 1450 mAh g(-1) (including the metal framework) at 0.05C. After 100 cycles at 0.3C, 85% of the capacity remains. Compared to a foil-supported silicon film, the 3D bicontinuous silicon anode exhibits significantly improved mechanical stability and cycleability.

  7. Effects of impurities on the performance of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, K.A.

    1981-09-01

    The major factors that determine the tolerable concentrations of impurities in silicon feedstock for solar cells used in power generation are discussed. It is concluded that a solar-grade silicon can be defined only for a specific manufacturing process. It is also concluded that it is the electrical effects, efficiency and resistivity, that are dominant in determining tolerable concentrations of impurities in the silicon feedstock. Crystal growth effects may become important when faster growth rates and larger crystal diameters are developed and used.

  8. Progress in silicon carbide semiconductor technology

    Science.gov (United States)

    Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.

    1992-01-01

    Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.

  9. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    Science.gov (United States)

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.

  10. Single Crystal Silicon Mirrors for Spaceflight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a well understood process for manufacturing visible quality SCSi mirrors. Areas of research include stress relief, figure, finish, and light weighting...

  11. Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.

    Science.gov (United States)

    Muller, R A; MacDonald, G J

    1997-08-05

    Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.

  12. Entrepreneurial Inclination Among Business Students: A Malaysian Study

    Directory of Open Access Journals (Sweden)

    Yet-Mee Lim

    2012-11-01

    Full Text Available Normal 0 false false false IN X-NONE AR-SA MicrosoftInternetExplorer4 Entrepreneurship has been the fundamental topics of discussion among the politicians, economists, and academics. Business creation is especially critical in developing countries to stimulate economic growth. The present study attempts to examine entrepreneurial inclination among students who are a potential source of entrepreneurs. The fi ndings of the present research study indicate that majority of our business students are not entrepreneurial-inclined. They do not seem to possess strong entrepreneurial characteristics and entrepreneurial skills, and they are not keen in starting a new business. The roles of higher institutes of education and the government in promoting entrepreneurship are discussed.

  13. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    Science.gov (United States)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  14. Raman crystallinity and Hall Effect studies of microcrystalline silicon ...

    African Journals Online (AJOL)

    Aluminium induced crystallization (AIC) was used to crystallize sputtered amorphous silicon thin films on aluminium‐coated glass at annealing temperatures ranging from 250‐520°C in vacuum. Crystalline volume fractions were measured by Raman spectrometry as a function of annealing temperature. It was shown that the ...

  15. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Science.gov (United States)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  16. Graphs and matroids weighted in a bounded incline algebra.

    Science.gov (United States)

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  17. Drop impact and rebound dynamics on an inclined superhydrophobic surface.

    Science.gov (United States)

    Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

    2014-10-14

    Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination.

  18. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  19. Determination of angle of inclination for optimum power production ...

    African Journals Online (AJOL)

    This study evaluates the performance of the photovoltaic modules at different tilt angle (angle of inclination) from 5º to 90º. The solar panel of 45 Watts capacity was placed on the manual tracker between the hours of 7:00am and 6:15pm on the geographical location of latitude of 40 55' 58” North and longitude of 60 59' 55” ...

  20. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Impurities of oxygen in silicon

    International Nuclear Information System (INIS)

    Gomes, V.M.S.

    1985-01-01

    The electronic structure of oxygen complex defects in silicon, using molecular cluster model with saturation by watson sphere into the formalism of Xα multiple scattering method is studied. A systematic study of the simulation of perfect silicon crystal and an analysis of the increasing of atom number in the clusters are done to choose the suitable cluster for the calculations. The divacancy in three charge states (Si:V 2 + , Si:V 2 0 , Si:V 2 - ), of the oxygen pair (Si:O 2 ) and the oxygen-vacancy pair (Si:O.V) neighbours in the silicon lattice, is studied. Distortions for the symmetry were included in the Si:V 2 + and Si:O 2 systems. The behavior of defect levels related to the cluster size of Si:V 2 0 and Si:O 2 systems, the insulated oxygen impurity of silicon in interstitial position (Si:O i ), and the complexes involving four oxygen atoms are analysed. (M.C.K.) [pt

  2. Three-dimensional volumetric display by inclined-plane scanning

    Science.gov (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji

    2003-05-01

    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  3. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2016-09-01

    Full Text Available It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond and geometric factors (fiber diameter, embedment length and inclination angle on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.

  4. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    Science.gov (United States)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  5. A piezoelectric gyroscope based on thickness-shear modes of an AlN bimorph with inclined c-axes

    Science.gov (United States)

    Cui, Jing; Du, Jianke; Wang, Ji; Yang, Jiashi

    2014-07-01

    We propose a new structure for piezoelectric gyroscope application. It consists of a two-layered plate of AlN with inclined c-axes. Through a theoretical analysis, it is shown that when the plate is electrically driven into thickness-shear (TSh) vibration in one direction and is rotating about the plate normal, the rotation causes a TSh vibration in a perpendicular direction with an electrical output which can be used to measure the angular rate of the rotation. Since AlN can be made into thin film devices much smaller than conventional crystal acoustic wave devices, the proposed gyroscope can be made much smaller than existing piezoelectric gyroscopes. The structure can also work with other crystals of class 6mm such as ZnO and polarized ceramics.

  6. Crystal Collimation with protons at injection energy

    CERN Document Server

    Rossi, Roberto; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Redaelli, Stefano; Valentino, Gianluca; Scandale, Walter; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on August 30th, 2015, bent silicon crystals were tested with protons beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals, providing a crucial test of the hardware for precise crystal angle adjustments (goniometers). Proton channeling was observed for the first time with LHC beams and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  7. Refining of metallurgical silicon by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Martorano, M.A., E-mail: martoran@usp.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo-SP, 05508-900 (Brazil); Neto, J.B. Ferreira, E-mail: jbfn@ipt.br [Laboratory of Metallurgy and Ceramics Materials, Institute for Technological Research, Av. Prof. Almeida Prado, 532, Sao Paulo-SP, 05508-901 (Brazil); Oliveira, T.S., E-mail: theo.usp@bol.com.br [Department of Metallurgical and Materials Engineering, University of Sao Paulo, Av. Prof. Mello Moraes, 2463 Sao Paulo-SP, 05508-900 (Brazil); Tsubaki, T.O., E-mail: tomoe@ipt.br [Laboratory of Metallurgy and Ceramics Materials, Institute for Technological Research, Av. Prof. Almeida Prado, 532, Sao Paulo-SP, 05508-901 (Brazil)

    2011-02-25

    The directional solidification of a typical and a previously refined metallurgical silicon was carried out in a vertical Bridgman furnace. The mold velocity out of the hot zone of the furnace changed from one experiment to another in the range between 5 and 110 {mu}m s{sup -1}. Samples were extracted from the cylindrical ingots obtained in the experiments to investigate the effects of the mold velocity on the micro and macrostructures and on the concentration profiles of impurities along the ingots. At the lowest mold velocity, the macrostructures consist of columnar grains oriented approximately parallel to the ingot axis. As velocity increases, grains become thinner and more inclined in the radial direction. Precipitated particles containing Si, Fe, Al, and Ti are observed at the top of all ingots and, as the mold velocity increases, they are also seen at the ingot bottom and middle. The concentration profiles of several impurities have been measured along the ingots by inductively coupled plasma atomic emission spectrometry (ICP), indicating an accumulation of impurities at the ingot top. Consequently, the bottom and middle of the ingots are purer than the corresponding metallurgical silicon from which they solidified. Slices from the ingot bottom have also been analyzed by the glow discharge mass spectrometry technique (GDMS), allowing measurement of impurity concentrations that were below the quantification limit of the ICP. The purification effect and the accumulation of impurities at the ingot top are more pronounced as the mold velocity decreases. In the ingots obtained from the typical metallurgical silicon at the lowest mold velocities (5 and 10 {mu}m s{sup -1}), except for Al, all impurities are in concentrations below an important maximum limit for the feedstock of solar grade silicon. At the same mold velocities, the concentrations of Fe, Ti, Cu, Mn, and Ni measured at the bottom of the ingots obtained from both types of metallurgical silicon (typical

  8. A Novel Method to Grow Vertically Aligned Silicon Nanowires on Si (111 and Their Optical Absorption

    Directory of Open Access Journals (Sweden)

    Tzuen-Wei Ho

    2012-01-01

    Full Text Available In this study we grew silicon nanowires (SiNWs on Si (111 substrate by gold-catalyzed vapor liquid solid (VLS process using tetrachlorosilane (SiCl4 in a hot-wall chemical vapor deposition reactor. SiNWs with 150–200 nm diameters were found to grow along the orientations of all 〈111〉 family, including the vertical and the inclined, on Si (111. The effects of various process conditions, including SiCl4 concentration, SiCl4 feeding temperature, H2 annealing, and ramp cooling, on the crystal quality and growth orientation of SiNWs, were studied to optimize the growth conditions. Furthermore, a novel method was developed to reliably grow vertically aligned SiNWs on Si (111 utilizing the principle of liquid phase epitaxy (LPE. A ramp-cooling process was employed to slowly precipitate the epitaxial Si seeds on Si (111 after H2 annealing at 650°C. Then, after heating in SiCl4/H2 up to 850°C to grow SiNWs, almost 100% vertically aligned SiNWs could be achieved reproducibly. The high degree of vertical alignment of SiNWs is effective in reducing surface reflection of solar light with the reflectance decreasing with increasing the SiNWs length. The vertically aligned SiNWs have good potentials for solar cells and nano devices.

  9. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  10. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  11. Silicon plasmonics at midinfrared using silicon-insulator-silicon platform

    Science.gov (United States)

    Gamal, Rania; Shafaay, Sarah; Ismail, Yehea; Swillam, Mohamed A.

    2017-01-01

    We propose devices based on doped silicon. Doped silicon is designed to act as a plasmonic medium in the midinfrared (MIR) range. The surface plasmon frequency of the doped silicon can be tuned within the MIR range, which gives rise to useful properties in the material's dispersion. We propose various plasmonic configurations that can be utilized for silicon on-chip applications in MIR. These devices have superior performance over conventional silicon devices and provide unique functionalities such as 90-sharp degree bends, T- and X-junction splitters, and stubs. These devices are CMOS-compatible and can be easily integrated with other electronic devices. In addition, the potential for biological and environmental sensing using doped silicon nanowires is demonstrated.

  12. Effect of neutron irradiation on p-type silicon

    International Nuclear Information System (INIS)

    Sopko, B.

    1973-01-01

    The possibilities are discussed of silicon isotope reactions with neutrons of all energies. In the reactions, 30 Si is converted to a stable phosphorus isotope forming n-type impurities in silicon. The above reactions proceed as a result of thermal neutron irradiation. An experiment is reported involving irradiation of two p-type silicon single crystals having a specific resistance of 2000 ohm.cm and 5000 to 20 000 ohm.cm, respectively, which changed as a result of irradiation into n-type silicon with a given specific resistance. The specific resistance may be pre-calculated from the concentration of impurities and the time of irradiation. The effects of irradiation on other silicon parameters and thus on the suitability of silicon for the manufacture of semiconductor elements are discussed. (J.K.)

  13. LSA Large Area Silicon Sheet Task. Continuous Liquid Feed Czochralski Growth. [for solar cell fabrication

    Science.gov (United States)

    Fiegl, G.

    1979-01-01

    The design and development of equipment and processes to demonstrate continuous growth of crystals by the Czochralski method suitable for producing single silicon crystals for use in solar cells is presented. The growth of at least 150 kg of mono silicon crystal, 150 mm in diameter is continuous from one growth container. A furnace with continuous liquid replenishment of the growth crucible, accomplished by a meltdown system with a continuous solid silicon feed mechanism and a liquid transfer system, with associated automatic feedback controls is discussed. Due to the silicon monoxide build up in the furnace and its retarding effect on crystal growth the furnace conversion for operation in the low pressure range is described. Development of systems for continuous solid recharging of the meltdown chamber for various forms of poly silicon is described.

  14. Naturally occurring 32 Si and low-background silicon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  15. Porous silicon technology for integrated microsystems

    Science.gov (United States)

    Wallner, Jin Zheng

    With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially

  16. Sex Differences in Incline-Walking among Humans.

    Science.gov (United States)

    Wall-Scheffler, Cara M

    2015-12-01

    Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g. carrying a load). Here we investigate what men and women will do when given a high rate walking activity, namely walking on an inclined surface. Fourteen people (nine men and five women) walked at four speeds on a level treadmill and four speeds on an inclined treadmill while their metabolic rate, kinematics and core temperature were monitored. Following the data collection, participants were asked to identify their ‘preferred’ walking speed at each of the conditions. Cost of transport (CoT) curves were calculated for each individual, and the delta between the preferred and the ‘optimal’ speeds were calculated. People chose to walk at slightly slower speeds on the level; there was minimal change in the cost to walk at these slower speeds. Women walked at absolutely slower speeds on the incline than men (P=0.06) and had significantly larger speed deltas (P=0.02), thus choosing to walk at slower rate speeds. Women also showed a significant relationship between the rate of activity and core temperature, whereas men did not. This is consistent with other research showing that women choose behavioral strategies to minimize body temperature changes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  17. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  18. Articulator-related registration and analysis of sagittal condylar inclination

    OpenAIRE

    Čimić, Samir; Kraljević Šimunković, Sonja; Simonić Kocijan, Sunčana; Matijević, Jurica; Dulčić, Nikša; Ćatić, Amir

    2015-01-01

    The purpose of this investigation was to study sagittal condylar inclination values within a uniform sample (Angle class I occlusion) using ‘articulator-related registration’ and Camper’s plane as a reference plane. The study was performed on a sample of 58 Angle class I subjects (mean age 25.1, SD 3.1). Measurements were performed with an ultrasonic jaw tracking device with six degrees of freedom. After a paraocclusal tray was fixed in the mouth, each subject had to make three protrusive ...

  19. Mining adjacent inclined coal seams of varying thickness

    Energy Technology Data Exchange (ETDEWEB)

    Batmanov, Yu.K.; Bakhtin, A.F.; Bulavka, E.I.

    1980-01-01

    In the Donbass coal basin a large number of thin coal seams located near other thicker coal seams are left. It is suggested that coal output from the Donbass could be increased by 100% and cost of mining could be lowered by 0.4-1.1 roubles per 1 ton of coal if thinner coal seams were also mined. Mining methods in the Donbass are analyzed from the point of view of reducing the cost of mining and increasing coal production. Recommendations on methods of mining thin inclined coal seams are given. (6 refs.) (In Russian)

  20. THE TWO STAGE CRYSTAL COLLIMATOR FOR RHIC

    International Nuclear Information System (INIS)

    FLILLER, R.P. III; DREES, A.; GASSNER, D.; HAMMONS, L.; MCINTYRE, G.; TRBOJEVIC, D.; BIRYUKOV, V.; CHESNOKOV, Y.; TEREKHOV, V.

    2001-01-01

    The use of a two stage crystal collimation system in the RHIC yellow ring is examined. The system includes a copper beam scraper and a bent silicon crystal. While scrapers were installed in both of the RHIC rings before the year 2000 run, the crystal is installed for the 2001 run in one ring only, forming a two stage collimation system there. We present simulations of the expected channeling through the bent silicon crystal for both protons and gold ions with various beam parameters. This gives a picture of the particle losses around the ring, and the expected channeling efficiency. These results are then used to optimize the beam parameters in the area of the crystal to obtain maximum channeling efficiency, minimize out-scattering in the secondary collimator, and reduce beam halo

  1. Strain-induced Pockels effect in silicon waveguides (Conference Presentation)

    Science.gov (United States)

    Berciano, Mathias; Damas, Pedro; Marcaud, Guillaume; Le Roux, Xavier; Crozat, Paul; Alonso-Ramos, Carlos; Benedikovic, Daniel; Marris-Morini, Delphine; Cassan, Eric; Vivien, Laurent

    2017-05-01

    With the increasing demand of data, current chip-scale communication systems based on metallic interconnects suffer rate limitations and power consumptions. In this context, Silicon photonics has emerged as an alternative by replacing the classical copper interconnects with silicon waveguides while taking advantage of the well-established CMOS foundries techniques to reduce fabrication costs. Silicon is now considered as an excellent candidate for the development of integrated optical functionalities including waveguiding structures, modulators, switches… One of the main challenges of silicon photonics is to reduce the power consumption and the swing voltage of optical silicon modulators while increasing the data rate speed. However, silicon is a centrosymmetric crystal, vanishing the second order nonlinear effect i.e. Pockels effect which is intrinsically a high speed effect. To overcome this limitation, mechanical stresses on silicon to break the crystal symmetry can be used depositing a strained overlayer. In this work, we have studied the effect of the stress layer in the modulation characteristics based on Mach-Zehnder interferometers. The deposition of silicon nitride as the stress layer and its optimization to induce the maximum effect will be presented.

  2. Epitaxial Growth of Cadmium Selenide Films on Silicon with a Silicon Carbide Buffer Layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.; Rubets, V. P.

    2018-03-01

    An epitaxial cubic 350-nm-thick cadmium selenide has been grown on silicon for the first time by the method of evaporation and condensation in a quasi-closed volume. It is revealed that, in this method, the optimum substrate temperature is 590°C, the evaporator temperature is 660°C, and the growth time is 2 s. To avoid silicon etching by selenium with formation of amorphous SiSe2, a high-quality 100-nm-thick buffer silicon carbide layer has been synthesized on the silicon surface by substituting atoms. The powder diffraction pattern and the Raman spectrum unambiguously correspond to cubic cadmium selenide crystal. The ellipsometric, Raman, and electron diffraction analyses demonstrate high structural perfection of the cadmium selenide layer and the absence of a polycrystalline phase.

  3. Analysis of deformation due to inclined load in generalized ...

    African Journals Online (AJOL)

    user

    resistors, form the source/drain regions in MOS transistors and dope poly-silicon gates in MOS transistors. Nowacki (1974(a),. 1974(b), 1974(c),1976) developed the theory of coupled themoelastic diffusion. This implies infinite speeds of propagation of theromelastic waves. Olesiak and Pyryev (1995) discussed a coupled ...

  4. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  5. An Experimental Investigation on Inclined Negatively Buoyant Jets

    Directory of Open Access Journals (Sweden)

    Raed Bashitialshaaer

    2012-09-01

    Full Text Available An experimental study was performed to investigate the behavior of inclined negatively buoyant jets. Such jets arise when brine is discharged from desalination plants. A turbulent jet with a specific salinity was discharged through a circular nozzle at an angle to the horizontal into a tank with fresh water and the spatial evolution of the jet was recorded. Four different initial jet parameters were changed, namely the nozzle diameter, the initial jet inclination, the jet density and the flow rate. Five geometric quantities describing the jet trajectory that are useful in the design of brine discharge systems were determined. Dimensional analysis demonstrated that the geometric jet quantities studied, if normalized with the jet exit diameter, could be related to the densimetric Froude number. Analysis of the collected data showed that this was the case for a Froude number less than 100, whereas for larger values of the Froude number the scatter in the data increased significantly. As has been observed in some previous investigations, the slope of the best-fit straight line through the data points was a function of the initial jet angle (θ, where the slope increased with θ for the maximum levels (Ym studied, but had a more complex behavior for horizontal distances.

  6. Simplification of rat intubation on inclined metal plate.

    Science.gov (United States)

    Kastl, Sigrid; Kotschenreuther, U; Hille, B; Schmidt, J; Gepp, H; Hohenberger, W

    2004-12-01

    Small-animal intubation is often necessary during inhalation anesthesia to allow steady-state conditions for large operations and in vivo experiments in all fields of experimental surgery. In rats, placing an orotracheal tube is technically difficult primarily because of the small size of the subject and the lack of equipment specifically designed for this task. We describe a simple rat intubation technique in which the animal is suspended in dorsal recumbency on an inclined metal plate. The animal, anesthetized with ether, is fixed to a 70 degrees-inclined metal plate in a dorsal position by means of a Mersilene ribbon hooked around the upper incisors. This method of positioning the animal is the most important step in the intubation process and further facilitates the technique already described by other authors. A human otoscope was used as a laryngoscope, intubation was performed using the Seldinger technique, and a 14-gauge intravenous catheter served as an endotracheal tube. This inexpensive technique is quickly learned and can be used in any laboratory. Safe and reliable airway management can thus be achieved, permitting in vivo examinations and operations.

  7. Geosynchronous inclined orbits for high-latitude communications

    Science.gov (United States)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  8. Non-dispersive traveling waves in inclined shallow water channels

    International Nuclear Information System (INIS)

    Didenkulova, Ira; Pelinovsky, Efim

    2009-01-01

    Existence of traveling waves propagating without internal reflection in inclined water channels of arbitrary slope is demonstrated. It is shown that traveling non-monochromatic waves exist in both linear and nonlinear shallow water theories in the case of a uniformly inclined channel with a parabolic cross-section. The properties of these waves are studied. It is shown that linear traveling waves should have a sign-variable shape. The amplitude of linear traveling waves in a channel satisfies the same Green's law, which is usually derived from the energy flux conservation for smoothly inhomogeneous media. Amplitudes of nonlinear traveling waves deviate from the linear Green's law, and the behavior of positive and negative amplitudes are different. Negative amplitude grows faster than positive amplitude in shallow water. The phase of nonlinear waves (travel time) is described well by the linear WKB approach. It is shown that nonlinear traveling waves of any amplitude always break near the shoreline if the boundary condition of the full absorption is applied.

  9. Dissipative descent: rocking and rolling down an incline

    Science.gov (United States)

    Balmforth, N. J.; Bush, J. W. M.; Vener, D.; Young, W. R.

    We consider the dynamics of a hollow cylindrical shell that is filled with viscous fluid and another, nested solid cylinder, and allowed to roll down an inclined plane. A mathematical model is compared to simple experiments. Two types of behaviour are observed experimentally: on steeper slopes, the device accelerates; on shallower inclines, the cylinders rock and roll unsteadily downhill, with a speed that is constant on average. The theory also predicts runaway and unsteady rolling motions. For the rolling solutions, however, the inner cylinder cannot be suspended in the fluid by the motion of the outer cylinder, and instead falls inexorably toward the outer cylinder. Whilst only occurs after an infinite time, the system slows progressively as the gap between the cylinders narrows, owing to heightened viscous dissipation. Such a deceleration is not observed in the experiments, suggesting that some mechanism limits the approach to contact. Coating the surface of the inner cylinder with sandpaper of different grades changes the rolling speed, consistent with the notion that surface roughness is responsible for limiting the acceleration.

  10. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    Science.gov (United States)

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  11. Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Chorkendorff, Ib

    2011-01-01

    Here we report on strontium zirconate as a getter for silicon dioxide and aluminum oxide in yttria stabilized zirconia (YSZ) single crystals for cleaning purposes. YSZ single crystals were covered with strontium zirconate powder and heat treated at 1450°C in water vapor. After treatment the YSZ...... by transmission electron microscopy (TEM) the interface region between bump and YSZ single crystal bulk was examined. EDS showed a homogeneous distribution of silicon and aluminum through the cross section of a bump. The results suggest strontium zirconate as a good getter for silicon and aluminum from bulk...

  12. A versatile Czochralski crystal growth system with automatic diameter control

    Science.gov (United States)

    Aggarwal, M. D.; Metzl, R.; Wang, W. S.; Choi, J.

    1995-07-01

    A versatile Czochralski crystal pulling system with automatic diameter control for the growth of nonlinear optical oxide crystals is discussed. Pure and doped bulk single crystals of bismuth silicon oxide (Bi12SiO20) have been successfully grown using this system. The system consists of a regular Czochralski type pulling system with provision for continuous weighing of the growing crystal to provide feedback for power control.

  13. Shock Response of Silicon Nitride

    Science.gov (United States)

    Dandekar, D. P.; Casem, D. T.; Motoyashiki, Y.; Sato, E.

    2009-06-01

    Silicon nitride is suitable for varied applications. The properties of silicon nitride have been tailored through processing and doping. The current work presents shock response of silicon nitride marketed as SN282. The density of this material, 3.4 Mg/m^3, exceeds its single crystal density due to the presence of lutetium oxide as an additive in ca. 5% by weight in the material. While the average grain size is 3.4 microns, aspect ratio of the grains exceed 3. Preliminary results of shock wave experiments may be summarized as follows: (1) The Hugoniot Elastic Limit (HEL) of SN282 is 11.2 GPa. (2) The magnitude of the inelastic wave velocity just above the HEL is 8.73 km/s, suggesting that inelastic deformation above the HEL is due to shock induced plasticity in the material. (3) The estimated value of the spall strength is 0.5 GPa. The spall strength of SN282 remains unchanged even when shocked beyond the HEL. The non-vanishing spall strength suggests that doping plays a role in the retention of spall strength of SN282. The role of doping needs to be further investigated.

  14. Studies of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, S G; Carlos, W E

    1984-07-01

    This report discusses the results of probing the defect structure and bonding of hydrogenated amorphous silicon films using both nuclear magnetic resonance (NMR) and electron spin resonance (ESR). The doping efficiency of boron in a-Si:H was found to be less than 1%, with 90% of the boron in a threefold coordinated state. On the other hand, phosphorus NMR chemical shift measurements yielded a ration of threefold to fourfold P sites of roughly 4 to 1. Various resonance lines were observed in heavily boron- and phosphorus-doped films and a-SiC:H alloys. These lines were attributed to band tail states on twofold coordinated silicon. In a-SiC:H films, a strong resonance was attributed to dangling bonds on carbon atoms. ESR measurements on low-pressure chemical-vapor-deposited (LPCVD) a-Si:H were performed on samples. The defect density in the bulk of the films was 10/sup 17//cc with a factor of 3 increase at the surface of the sample. The ESR spectrum of LPCVD-prepared films was not affected by prolonged exposure to strong light. Microcrystalline silicon samples were also examined. The phosphorus-doped films showed a strong signal from the crystalline material and no resonance from the amorphous matrix. This shows that phosphorus is incorporated in the crystals and is active as a dopant. No signal was recorded from the boron-doped films.

  15. Contact lines on silicone elastomers promote contamination

    Science.gov (United States)

    Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien

    2017-11-01

    Silicone elastomers are used in contact with aqueous liquids in a large range of applications. Due to numerous advantages such as its flexibility, optical transparency, or gas permeability, polydimethylsiloxane is widely spread in rapid prototyping for microfluidics or elastocapillarity experiments. However, silicone elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood. We show that in various setups involving an air-water-silicone elastomer contact line, a capillarity-induced extraction of uncrosslinked oligomers occurs, leading to a contamination of water-air interfaces. We investigate the case of a static air-water-PDMS contact line, before focusing on moving contact lines. A water droplet sliding down on a PDMS inclined plane or an air bubble rising on an immersed PDMS plane exhibits two successive speed regimes: the second regime is reached only when a monolayer of oligomers completely covers the water-air interface. These experiments involve processes occurring at the polymer network scale that have significant macroscopic consequences, and therefore provide a simple test to evaluate the presence of uncrosslinked oligomers in an elastomer sample.

  16. Effect of metalloids on crystallization and magnetic behaviour of ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A series of amorphous iron–cobalt alloys with varying metalloid, boron and silicon contents were studied for their thermal stability and magnetic behaviour. The crystallization temperature and thermal sta- bility increased with the silicon content. Good soft magnetic properties were observed for the materials.

  17. Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2007-01-01

    We demonstrate a liquid crystal photonic bandgap fiber based polarizer integrated in a double silicon v-groove assembly. The polarizer axis can be electrically controlled as well as switched on and off.......We demonstrate a liquid crystal photonic bandgap fiber based polarizer integrated in a double silicon v-groove assembly. The polarizer axis can be electrically controlled as well as switched on and off....

  18. Effects of nanostructurized silicon on proliferation of stem and cancer cell.

    Science.gov (United States)

    Osminkina, L A; Luckyanova, E N; Gongalsky, M B; Kudryavtsev, A A; Gaydarova, A Kh; Poltavtseva, R A; Kashkarov, P K; Timoshenko, V Yu; Sukhikh, G T

    2011-05-01

    In vitro experiments showed that stem and cancer cells retained their viability on the surface of porous silicon with 10-100 nm nanostructures, but their proliferation was inhibited. Silicon nanoparticles of 100 nm in size obtained by mechanical grinding of porous silicon films or crystal silicon plates in a concentration below 1 mg/ml in solution did not modify viability and proliferation of mouse fibroblast and human laryngeal cancer cells. Additional ultrasonic exposure of cancer cells in the presence of 1 mg/ml silicon nanoparticles added to nutrient medium led to complete destruction of cells or to the appearance of membrane defects blocking their proliferation and initiating their apoptotic death.

  19. Improvement in greenhouse solar drying using inclined north wall reflection

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India); Arora, Sadhna [Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana 141004, Punjab (India)

    2009-09-15

    A conventional greenhouse solar dryer of 6 m{sup 2} x 4 m{sup 2} floor area (east-west orientation) was improved for faster drying using inclined north wall reflection (INWR) under natural as well as forced convection mode. To increase the solar radiation availability onto the product (to be dried) during extreme summer months, a temporary inclined wall covered with aluminized reflector sheet (of 50 {mu}m thickness and reflectance 0.93) was raised inside the greenhouse just in front of the vertical transparent north wall. By doing so, product fully received the reflected beam radiation (which otherwise leaves through the north wall) in addition to the direct total solar radiation available on the horizontal surface during different hours of drying. The increment in total solar radiation input enhanced the drying rate of the product by increasing the inside air and crop temperature of the dryer. Inclination angle of the reflective north wall with vertical ({beta}) was optimized for various selective widths of the tray W (1.5, 2, 2.5 and 3 m) and for different realistic heights of existing vertical north wall (h) at 25 N, 30 N and 35 N latitudes (hot climatic zones). Experimental performance of the improved dryer was tested during the month of May 2008 at Ludhiana (30.56 N) climatic conditions, India by drying bitter gourd (Momordica charantia Linn) slices. Results showed that by using INWR under natural convection mode of drying, greenhouse air and crop temperature increased by 1-6.7 C and 1-4 C, respectively, during different drying hours as compared to, when INWR was not used and saved 13.13% of the total drying time. By using INWR under forced convection mode of drying, greenhouse air and crop temperature increased by 1-4.5 C and 1-3 C, respectively, during different drying hours as compared to, when INWR was not used and saved 16.67% of the total drying time. (author)

  20. Hydraulic shock waves in an inclined chute contraction

    Science.gov (United States)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle

  1. Determination of X-ray anomalous scattering in silicon

    International Nuclear Information System (INIS)

    Cusatis, C.

    1987-01-01

    The linear attenuation coeficient for X-ray in silicon was measured with approximately 0,1% accuracy, for 6 diferent wavelenghts of caracteristic radiation. From these result the imaginary parts of the atomic scattering factors, for silicon and for those wavelenghts, were obtained with the same accuracy. The results are compared with the most recent published values. The proposed method to avoid Rayleigh scattering can be used for any type of ''perfect'' crystal. (author) [pt

  2. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    Science.gov (United States)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  3. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  4. Ultrahigh thermal conductivity of isotopically enriched silicon

    Science.gov (United States)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  5. Unique operations for a highly inclined, elliptical, geosynchronous satellite

    Science.gov (United States)

    Anglin, Patrick T.; Briskman, Robert D.

    2004-08-01

    The first space segment devoted to a Digital Audio Radio Service (DARS) for the Continental United States (CONUS) was established when the last satellite of a three satellite constellation (Flight Models FM-1, FM-2 and FM-3) was launched in November 2000. Each satellite is in a highly inclined, elliptical, geosynchronous orbit that is separated by 120° in Right Angle of the Ascending Node (RAAN) from the other two satellites' orbits. This results in an 8 h phasing in ground track between each satellite. These distinct orbits provide superior look angles and signal availability to mobile receivers in the northern third of the United States when compared to geostationary satellites. However, this unique orbital constellation results in some particular performance and operational differences from geostationary orbit satellites. Some of these are: Earth Sensor noise, maneuver implementation and power management. Descriptions and performance improvements of these orbit specific operations are detailed herein.

  6. Friction and drag forces on spheres propagating down inclined planes

    Science.gov (United States)

    Tee, Yi Hui; Longmire, Ellen

    2017-11-01

    When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).

  7. Simulation of Solar Radiation Incident on Horizontal and Inclined Surfaces

    Directory of Open Access Journals (Sweden)

    MA Basunia

    2012-12-01

    Full Text Available A computer model was developed to simulate the hourly, daily and monthly average of daily solar radiation on horizontal and inclined surfaces. The measured hourly and daily solar radiation was compared with simulated radiation, and favourable agreement was observed for the measured and predicted values on clear days. The measured and simulated monthly averages of total (diffuse and beam daily solar radiation were compared and a reasonable agreement was observed for a number of stations in Japan. The simulation showed that during the rice harvesting season, September to October, there is a daily average of 14.7 MJ/m2 of solar irradiation on a horizontal surface in Matsuyama, Japan. There is a similar amount of solar radiation on a horizontal surface during the major rice harvesting season, November to December, in Bangladesh. This radiation can be effectively utilized for drying rough rice and other farm crops.

  8. Segregation in inclined flows of binary mixtures of spheres

    Directory of Open Access Journals (Sweden)

    Larcher Michele

    2017-01-01

    Full Text Available We outline the equations that govern the evolution of segregation of a binary mixture of spheres in flows down inclines. These equations result from the mass and momentum balances of a kinetic theory for dense flows of inelastic spheres that interact through collisions. The theory employed for segregation is appropriate for particles with relatively small differences in size and mass. The flow of the mixture is assumed to reach a fully developed state much more rapidly than does the concentrations of the two species. We illustrate the predictions of the theory for a mixture of spheres of the same diameter but different masses and for spheres of different diameters but nearly the same mass. We show the evolution of the profiles of the concentration fractions of the two types of spheres and the profiles in the final, steady state. The latter compare favourably with those obtained in discrete-element numerical simulations.

  9. Method and apparatus for logging inclined earth boreholes

    International Nuclear Information System (INIS)

    Youmans, A.H.

    1981-01-01

    An improved technique is provided for comparing the velocity of an elongated well logging instrument traversing an inclined earth borehole with the playout velocity of the well logging cable at the earth's surface to control both the cable hoist drum rotation and the rate of movement of the subsurface instrument and thus insure cable playout is in equilibrium with the logging instrument movement. Method and apparatus are described for detecting any reduction in movement of the logging instrument through the borehole and for reducing the velocity of the logging cable playout in response thereto by reducing drum rotation. Further, when the velocity of cable playout slows to a preselected value, a monitoring circuit generates control signals which actuate a means of power attached to or integral with the logging instrument which, upon initiation, apply a force to move the logging instrument upward or downward within the borehole

  10. Deformation Analysis of Fixed Bearing Inclined Plane Thrust Bearing

    Directory of Open Access Journals (Sweden)

    LI Yong--hai

    2017-02-01

    Full Text Available According to the theory of lubrication,Numerical simulation of the deformation of the thrust bearing of the fixed inclined plane was carried out,by finite element numerical analysis method and using the ANSYS software. The mathematical model of the oil film shape control equations about of the deformation and bearing is established. Analytical result showed that the force caused the tile surface generating concave deformation,and convex deformation increased with the height and the size of the load and bearing;Tile surface temperature generated convex deformation and increased with the height and the size of the temperature of bearing bush;The actual deformation of the tile surface is the superposition of the force and the thermal deformation. This conclusion can provide reference for the design and the application of thrust bearing,to reduce the tile surface,which is not conducive to the carrying capacity of the concave deformation.

  11. Transient flow and heat transfer phenomena in inclined wavy films

    Energy Technology Data Exchange (ETDEWEB)

    Serifi, Katerina; Bontozoglou, Vasilis [Department of Mechanical and Industrial Engineering, University of Thessaly, 38334, Volos (Greece); Malamataris, Nikolaos A. [Department of Mechanical Engineering, Technological Educational Institution of Western Macedonia, 50100, Kila Kozani (Greece)

    2004-08-01

    A finite-element numerical scheme is used to study rigorously the flow of an inclined liquid film and the heat transfer from the constant-temperature wall. Regular inlet disturbances are predicted to evolve into periodic or solitary waves depending on the frequency of the forcing. At very low disturbance frequencies parasitic crests appear and the regularity of the wave-train is lost. The effect of a solitary wave-train on heat transfer from the wall is studied, and it is predicted that a stationary temperature distribution develops with periodic flux variation that follows the waves. The thinning of the substrate between successive humps combines with the effect of convection at the crest and tail of the solitary humps to produce heat transfer enhancement significantly above the conduction limit. (authors)

  12. Inclined transpression in the Neka Valley, eastern Alborz, Iran

    Science.gov (United States)

    Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.

    2017-07-01

    Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary ( θ') is between 6° and 20°. The estimated oblique convergence angle ( α), therefore, ranges between 31° and 43°. The average kinematic vorticity number ( W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.

  13. Soil-structure interaction on inclined soil layers

    International Nuclear Information System (INIS)

    Massa, G.; De Stefano, R.

    1983-01-01

    The case history presented deals with a Category I building having two-thirds of its base founded on a wedge of hard material. This wedge is underlain by an inclined layer of softer material, which also directly supports the remaining one-third of the foundation. The inclined layer is underlain by a third material, possessing large stiffness and extending to great depth. This case is analyzed with the methodology described below: - Determination of the static soil compliances by discretizing the foundation area into a number of strips and taking the soil profile as horizontally layered under each strip. Lumped parameter soil compliances for the whole foundation are obtained by weighting the contributions to stiffness in proportion to the area of each strip. - Definition of the degree of coupling between modes. The soil compliances defined in the previous step include coupling between the vertical and rocking modes and the horizontal and torsional modes through the positioning of the corresponding soil springs. The degree of coupling is checked through a static finite element analysis. - Frequency correction of the static soil compliances taking into account the inhomogeneity of the foundation conditions. The correction is based on obtaining dynamic stiffness coefficients for extreme configurations of the soil profile. - Assessment of the sliding potential of the structure under earthquake loading, considering eccentricities of the dynamic forces and non-uniform friction resistance over the foundation area, accounting for the frictional capacity of the different bearing materials. It is concluded that the simplified technique can provide accurate soil compliances, coupling and frequency corrections for soil-structure interaction on sloping layers, and an appropriate assessment of the sliding potential. (orig./HP)

  14. A metallurgical route to solar-grade silicon

    Science.gov (United States)

    Schei, A.

    1986-02-01

    The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.

  15. Sexual dimorphism and regional variation in human frontal bone inclination measured via digital 3D models.

    Science.gov (United States)

    Petaros, Anja; Garvin, Heather M; Sholts, Sabrina B; Schlager, Stefan; Wärmländer, Sebastian K T S

    2017-11-01

    The frontal bone is one of the most sexually dimorphic elements of the human skull, due to features such as the glabella, frontal eminences, and frontal inclination. While glabella is frequently evaluated in procedures to estimate sex in unknown human skeletal remains, frontal inclination has received less attention. In this study we present a straightforward, quick, and reproducible method for measuring frontal inclination angles from glabella and supraglabella. Using a sample of 413 human crania from four different populations (U.S. Whites, U.S. Blacks, Portuguese, and Chinese), we test the usefulness of the inclination angles for sex estimation and compare their performance to traditional methods of frontal inclination assessment. Accuracy rates in the range 75-81% were achieved for the U.S. White, U.S. Black, and Portuguese groups. For Chinese the overall accuracy was lower, i.e. 66%. Although some regional variation was observed, a cut-off value of 78.2° for glabellar inclination angles separates female and male crania from all studied populations with good accuracy. As inclination angles measured from glabella captures two sexually dimorphic features (i.e. glabellar prominence and frontal inclination) in a single measure, the observed clear male/female difference is not unexpected. Being continuous variables, inclination angles are suitable for use in statistical methods for sex estimations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Machining of Silicon-Ribbon-Forming Dies

    Science.gov (United States)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  17. Pairs of chalcogen impurities in silicon

    International Nuclear Information System (INIS)

    Paula Junior, H.F. de.

    1988-01-01

    The electronic structure of complex defects in silicon involving oxygen and sulfur (O-O, S-O and S-S), occupying different positions in the host crystal is studied. It is shown that the many-electron effects (via configuration interaction) are important to describe the correct ground state. The orbital base set is obtained through the LCAO-MO-INDO/S method. (author) [pt

  18. Rationally designed porous silicon as platform for optical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Priano, G. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Acquaroli, L.N.; Lasave, L.C. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Battaglini, F. [INQUIMAE, DQIAyQF, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2 (C1428EHA) Buenos Aires (Argentina); Arce, R.D., E-mail: rarce@intec.unl.edu.ar [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina); Koropecki, R.R. [Instituto De Desarrollo Tecnologico Para La Industria Quimica, UNL, CONICET, Gueemes 3450 (S3000GLN) Santa Fe (Argentina); Departamento De Materiales, Facultad De Ingenieria Quimica, UNL, Santiago del Estero 2829 (S3000) Santa Fe (Argentina)

    2012-08-01

    Optical porous silicon multilayer structures are able to work as sensitive chemical sensors or biosensors based in their optical response. An algorithm to simulate the optical response of these multilayers was developed, considering the optical properties of the individual layers. The algorithm allows designing and customizing the porous silicon structures according to a given application. The results obtained by the simulation were experimentally verified; for this purpose different photonic structures were prepared, such as Bragg reflectors and microcavities. Some of these structures have been derivatized by the introduction of aminosilane groups on the porous silicon surface. The algorithm also permits to simulate the effects produced by a non uniform derivatization of the multilayer. - Highlights: Black-Right-Pointing-Pointer Mesoporous silicon structure Black-Right-Pointing-Pointer Functionalization of mesoporous silicon as sensors Black-Right-Pointing-Pointer Design of the one-dimensional photonic crystal Black-Right-Pointing-Pointer Simulation of non-uniformity in covering the sensor structure.

  19. Coordinating bracket torque and incisor inclination : Part 3: Validity of bracket torque values in achieving norm inclinations.

    Science.gov (United States)

    Zimmer, Bernd; Sino, Hiba

    2018-03-19

    To analyze common values of bracket torque (Andrews, Roth, MBT, Ricketts) for their validity in achieving incisor inclinations that are considered normal by different cephalometric standards. Using the equations developed in part 1 (eU1 (BOP) = 90° - BT (U1) - TCA (U1) + α 1 - α 2 and eL1 (BOP) = 90° - BT (L1) - TCA (L1) + β 1 - β 2 ) (abbreviations see part 1) and the mean values (± SD) obtained as statistical measures in parts 1 and 2 of the study (α 1 and β 1 [1.7° ± 0.7°], α 2 [3.6° ± 0.3°], β 2 [3.2° ± 0.4°], TCA (U1) [24.6° ± 3.6°] and TCA (L1) [22.9° ± 4.3°]) expected (= theoretically anticipated) values were calculated for upper and lower incisors (U1 and L1) and compared to targeted (= cephalometric norm) values. For U1, there was no overlapping between the ranges of expected and targeted values, as the lowest targeted value of (58.3°; Ricketts) was higher than the highest expected value (56.5°; Andrews) relative to the bisected occlusal plane (BOP). Thus all of these torque systems will aim for flatter inclinations than prescribed by any of the norm values. Depending on target values, the various bracket systems fell short by 1.8-5.5° (Andrews), 6.8-10.5° (Roth), 11.8-15.5° (MBT), or 16.8-20.5° (Ricketts). For L1, there was good agreement of the MBT system with the Ricketts and Björk target values (Δ0.1° and Δ-0.8°, respectively), and both the Roth and Ricketts systems came close to the Bergen target value (both Δ2.3°). Depending on target values, the ranges of deviation for L1 were 6.3-13.2° for Andrews (Class II prescription), 2.3°-9.2° for Roth, -3.7 to -3.2° for MBT, and 2.3-9.2° for Ricketts. Common values of upper incisor bracket torque do not have acceptable validity in achieving normal incisor inclinations. A careful selection of lower bracket torque may provide satisfactory matching with some of the targeted norm values.

  20. Optical trapping apparatus, methods and applications using photonic crystal resonators

    Science.gov (United States)

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  1. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    Science.gov (United States)

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  2. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  3. Method for producing silicon thin-film transistors with enhanced forward current drive

    Science.gov (United States)

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  4. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  5. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  6. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  7. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  8. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  9. Phonon manipulation with phononic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III

    2012-01-01

    In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power

  10. Investigation of γ-irradiation influence on the DLTS spectra in silicon diluted by tellurium

    International Nuclear Information System (INIS)

    Sultanov, N.A.; Tadzhibaev, M.; Mirzabadalov, Zh

    1997-01-01

    The influence of gamma-radiation on deep level transient spectroscopy(DLTS) spectra for silicon crystals doped with tellurium was studied. The DLTS spectra have shown that tellurium in silicon formed two deep levels with fixed ionization energy. It was shown that the presence of tellurium prevents the formation of radiation defects

  11. Silicon-based thin-film transistors with a high stability

    NARCIS (Netherlands)

    Stannowski, Bernd

    2002-01-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the

  12. New inclination changing eclipsing binaries in the Magellanic Clouds

    Science.gov (United States)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our

  13. Aerodynamics of wing-assisted incline running in birds.

    Science.gov (United States)

    Tobalske, Bret W; Dial, Kenneth P

    2007-05-01

    Wing-assisted incline running (WAIR) is a form of locomotion in which a bird flaps its wings to aid its hindlimbs in climbing a slope. WAIR is used for escape in ground birds, and the ontogeny of this behavior in precocial birds has been suggested to represent a model analogous to transitional adaptive states during the evolution of powered avian flight. To begin to reveal the aerodynamics of flap-running, we used digital particle image velocimetry (DPIV) and measured air velocity, vorticity, circulation and added mass in the wake of chukar partridge Alectoris chukar as they engaged in WAIR (incline 65-85 degrees; N=7 birds) and ascending flight (85 degrees, N=2). To estimate lift and impulse, we coupled our DPIV data with three-dimensional wing kinematics from a companion study. The ontogeny of lift production was evaluated using three age classes: baby birds incapable of flight [6-8 days post hatching (d.p.h.)] and volant juveniles (25-28 days) and adults (45+ days). All three age classes of birds, including baby birds with partially emerged, symmetrical wing feathers, generated circulation with their wings and exhibited a wake structure that consisted of discrete vortex rings shed once per downstroke. Impulse of the vortex rings during WAIR was directed 45+/-5 degrees relative to horizontal and 21+/-4 degrees relative to the substrate. Absolute values of circulation in vortex cores and induced velocity increased with increasing age. Normalized circulation was similar among all ages in WAIR but 67% greater in adults during flight compared with flap-running. Estimated lift during WAIR was 6.6% of body weight in babies and between 63 and 86% of body weight in juveniles and adults. During flight, average lift was 110% of body weight. Our results reveal for the first time that lift from the wings, rather than wing inertia or profile drag, is primarily responsible for accelerating the body toward the substrate during WAIR, and that partially developed wings, not yet

  14. Percentiles relative to maxillary permanent canine inclination by age: a radiologic study.

    Science.gov (United States)

    Alessandri Bonetti, Giulio; Zanarini, Matteo; Danesi, Margherita; Parenti, Serena Incerti; Gatto, Maria Rosaria

    2009-10-01

    Few studies have investigated developmental norms for maxillary permanent canine eruption. In this observational cross-sectional study, we aimed to provide an age-related description of the percentiles relative to canine inclination in a large sample of nonorthodontic patients. Associations between inclination and sector were also analyzed. Canine inclination and sector location were measured on 1020 panoramic radiographs obtained from subjects of white ancestry aged between 8 and 11 years not seeking orthodontic treatment. The total sample comprised 2037 canines. Canine inclination increases between 8 and 9 years and decreases between 9 and 11 years. The greatest value for each percentile is at 9 years. A linear model should be hypothesized for differences in canine inclination between 2 successive ages in correspondence to each percentile. The proportion of sector 2 canines decreases and that of sector 1 increases with age. In the same age group, the inclination generally decreases as the sector decreases. Percentiles by age show the average canine inclination in a certain population. Further studies are required to verify whether percentiles can be a diagnostic aid for determining normal canine inclination at a given age and for quantifying the risk of canine impaction or adjacent root resorption.

  15. How do the substrate reaction forces acting on a gecko's limbs respond to inclines?

    Science.gov (United States)

    Wang, Zhouyi; Dai, Zhendong; Li, Wei; Ji, Aihong; Wang, Wenbao

    2015-02-01

    Locomotion is an essential character of animals, and excellent moving ability results from the delicate sensing of the substrate reaction forces (SRF) acting on body and modulating the behavior to adapt the motion requirement. The inclined substrates present in habitats pose a number of functional challenges to locomotion. In order to effectively overcome these challenges, climbing geckos execute complex and accurate movements that involve both the front and hind limbs. Few studies have examined gecko's SRF on steeper inclines of greater than 90°. To reveal how the SRFs acting on the front and hind limbs respond to angle incline changes, we obtained detailed measurements of the three-dimensional SRFs acting on the individual limbs of the tokay gecko while it climbed on an inclined angle of 0-180°. The fore-aft forces acting on the front and hind limbs show opposite trends on inverted inclines of greater than 120°, indicating propulsion mechanism changes in response to inclines. When the incline angles change, the forces exerted in the normal and fore-aft directions by gecko's front and hind limbs are reassigned to take full advantage of limbs' different roles in overcoming resistance and in propelling locomotion. This also ensures that weight acts in the angle range between the forces generated by the front and hind limbs. The change in the distribution of SRF with a change in the incline angle is directly linked to the favorable trade-off between locomotive maneuverability and stability.

  16. Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board

    Science.gov (United States)

    Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua

    2018-01-01

    A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…

  17. The effect of surfactants on upward air-water pipe flow at various inclinations

    NARCIS (Netherlands)

    van Nimwegen, A.T.; Portela, L.; Henkes, R.A.W.M.

    2016-01-01

    In this work, we extend our previous efforts on the effect of surfactants on air-water flow in a vertical pipe by also considering pipe inclinations between 20° (with respect to horizontal) and vertical. For air-water flow, independent of the inclination, there is a regular annular flow at large

  18. Comparison of normal permanent and primary dentition sagittal tooth-crown inclinations of Japanese females.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Hayasaki, Haruaki; Iwase, Yoko; Kubota, Naoko; Takemoto, Yoshihiko; Yamasaki, Youichi

    2012-01-01

    The purpose of this study was to clarify the characteristics of permanent and primary tooth-crown inclinations. Landmark points from cephalograms and dental casts of two groups; 23 women (mean 20.3 +/- 3.3 years) and 11 girls (mean 5.2 +/- 0.1 years) were digitized, and the coordinates were integrated and transformed to a standardized plane. The 3-dimensional crown inclinations were projected on the sagittal plane, and the angles between the tooth vectors and the FH plane were calculated. An independent-group t-test was used to test for group differences of each tooth inclination, and correlation coefficients were generated for the inclination angles among the permanent and primary teeth. Most maxillary tooth-crown inclinations showed significant age-related differences, while only the second premolar and primary second molar differed significantly in the mandible. The maxillary molars were parallel to the corresponding mandibular molars and correlated with each other, but the primary molars were not. Significant correlations were found between inclinations of most permanent teeth, but not the primary teeth. Maxillary tooth-crown inclinations change during growth, but tooth-crown inclinations of the mandibular teeth do not.

  19. Topology optimization and fabrication of photonic crystal structures

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Harpøth, Anders; Frandsen, Lars Hagedorn

    2004-01-01

    Topology optimization is used to design a planar photonic crystal waveguide component resulting in significantly enhanced functionality. Exceptional transmission through a photonic crystal waveguide Z-bend is obtained using this inverse design strategy. The design has been realized in a silicon-on-insulator...

  20. Polarization of the induced THz emission of donors in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, K. A., E-mail: atan4@yandex.ru; Zhukavin, R. Kh.; Tsyplenkov, V. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, S. G.; Hübers, H.-W. [Humboldt University of Berlin (Germany); Abrosimov, N. V.; Shastin, V. N. [Leibniz Institute for Crystal Growth (Germany)

    2016-12-15

    The polarization of the terahertz (4.9–6.4 THz) stimulated emission of Group-V (Sb, P, As, Bi) donors in single-crystal silicon under pumping (photoionization) by a CO{sub 2} laser (photon energy 117 meV), depending on the uniaxial compressive deformation of the crystal along the [100] axis, is experimentally investigated. The influence of the field direction of the pump wave on its efficiency is discussed.